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Abstract— This paper addresses the joint optimization of Our MSE duality is defined user-wise making the uplink-
linear transmitters and receivers in a multi-user multiple-input  downlink transformation very simple. This transformatien
multiple-output (MIMO) broadcast channel (BC) system under acaggary, as the equivalent uplink model is solved instéad

the assumption of perfectchannel state information (CSIl) at the d link bl Having f d th fi tri
both transmitter and receivers. Our first design criterion is the € downlink problem. Having tfoun e opimum matrices

sum mean square error (MSE), which we seek to minimize. in the equivalenmultiple access chann¢MAC), they have
In a second approach, we need to satisfQuality of Service to be transformed into solutions of the BC channel.

(QoS) requirements by means of as few transmit power as We consider two design criteria: 1) Minimization of the
possible or try to fulfill these requests as good as possiblevgn sum-MSE (overall system efficiency) and 2) Assuring given

a fixed sum transmit power. Since the downlink problem is . - .
difficult to handle, we formulate an equivalent uplink problem Quality of Serviceuser request (QoS based design). For

by exploiting the duality between both scenarios. We presen the first problem, iterative solutions already exist, cf]. [7
efficient iterative solutions, which deliver the optimum transmit However, we present a new algorithm with drastically reduce

and receive matrices. The performance of our algorithms is complexity. Based on a user-wise formulation, we also solve
studied theoretically and via simulations, we compare the €sign - the QoS problem and deliver an algorithmic solution.
criteria with existing precoding algorithms. . . .

Our paper is organized as follows. In Section Ill, we prove
the duality between uplink and downlink in terms of MSE for
a multi-user MIMO system, then we derive the optimal uplink

In a multi-user downlink scenario, each of the decemeceiverin Section IV. In Section V, we deal with the itevati
tralized receivers may be equipped with a single antenselution of the weighted sum-MSE minimization problem
(multi-user MISO system) or multiple antennas (multi-usarsing a gradient projection approach [11], and provide a
MIMO system). The decentralization implies the necessigpecial solution for the MISO sum-MSE minimization in
of preequalization at the transmitter to combat the inteection VI. Next, the QoS problem is discussed in Section
user interference. Linear pre-processing was considerfld i VII. Finally, simulation results are presented in Sectiokl.V
based on themininumMSE andzeroforcing(ZF) criterion,
where the receivers were restricted to apihlg samescalar
weight. Jointly optimizing the linear transmit and receive We consider akK-users MIMO BC with an}M antennas
matrices based o@uality of Service(QoS) constraints or transmitter and th&th receiver hasv;, antennas. Fig. 1 shows
sum-MSE minimization was considered in [2], [3], [4] ford general linear MIMO BC system, wheld) € CN«>*M,
the MISO case and was extended to the MIMO case in [3],= 1,---, K, is the channel matrix of user. The vector
6], [7], [8]. However, as most of these algorithms are baséd € C”* comprises theB; uncorrelated unit variance
on thealternating optimizationof receivers and transmitter, Symbols of usek which are assumed to be uncorrelated with
they suffer from a very slow convergence speed at high SNEher users’ symbols. The vectons, ..., ny refer to zero-
values if not initialized in a clever fashion, or may even ndhean white noise with varianee; for each component. The
converge to the optimum. centralized linear precoders are denotedlbg/' € CMxBx,

Our main contributions are on the one hand efficient iter@dG7- € CP:x Nk are the decentralized receive filters. With
tive solutions, that jointly optimize the linear precoderttee  these definitions, the estimagg for the symbols;, of userk
centralized transmitter and the linear decoders at thentiete "€2ds as
ized receivers for thenultiple-input multiple-outpufMIMO) 5 _ GOt rHpDLg, Z GR HE PP s, + GR .. (1)
broadcast channe(BC) based on different design criteria. oy
On the other hand, a novel simplified uplink-downlink MSBwjith uncorrelated unit variance entries of the sigegl we
duality is presented facilitating the conversion of an mipli compute the downlink MSEP™ = E[||3;, — s3] of userk
receiver/transmitters pair into a downlink receiversitraitter oL DL o H DL DL DL
pair. €k :tr(IBk_Gk H P — P, " H,G. ™"

As the downlink optimization is in general very complicated K

and non-convex, we make use of the duality between uplink ZGELHI,;IP?LP?L"HH,CGEL*H+aZGELGfL=H )
and downlink and solve the equivalent uplink problem indfea = O
which features the nice property to have a better mathealatic
structure with less coupling of the variables. In [9], [1@hd From (2), we see that the MSE" of userk depends on
[3], the duality in a linear system was proven in terms ddll precoding matricesP;-DL which are strongly coupled by
information capacity, SINR, anthean square erro{MSE), the sum power constraint. Thus, we formulate an equivalent
respectively. Contrary to [7], where the MSE duality is showuplink problem with a better mathematical structure, as the
making use of the SINR duality in [10], we directly deducg@recoders are decoupled and only a joint power constraint
the MSE duality for the MIMO case without detouringhas to be considered.

|. INTRODUCTION

II. SYSTEM MODEL AND NOTATION



Fig. 1. Linear downlink model. Fig. 2. Equivalent linear uplink model.

I1l. LINEAR DOWNLINK/UPLINK DUALITY real-valued matri% so it is non-singular(|T| > 0);
The dual uplink channel is shown in Fig. 2 and consisf80reover, it has strictly positive diagonal entries andatieg
of a K-users MIMO uplink channel (MIMO MAC), where off-diagonal entries, thus all entries of the inverse mxafij '
each of the dual uplink channels is the conjugate transpddé Non-negative (the diagonal entries are strictly p@3if
of the corresponding BC channd, denotes the transmit SUMMing up the rows in (6), we get:
matrix andG/. the centralized receive matrix of usef The K ( 2 H) K ( H)

. : . t GG, ) = tr ( PPy ) . 7
estimates;, in the uplink can be expressed as Zkzl PR SR Zkzl ARk 0
A We see that there is always a strictly positiveolution

8k = GrHiPysy, + Z#k GeHPjsi+Gn ) oiior [a2,.. .,o@(]T, such that the uplink system can be
transformed into an equivalent downlink system with the sam

and the uplink MSEY" = E|||3; — s ||3] of userk can easily <™ .
P k {13 = l2] y individual MSEs using the same sum power (due to Eqn. 7).

be found to be
UL g (IBk _ G.H.P, — PIHIGY B. Downlink tol Uplink Transformation .
X (4) Conversely, it can be shown by the same reasoning that
+ ijl G.H;P;PTH! G + UinGI,;I> . every downlink system can be transformed into an equivalent

) ) ) ) uplink system with the same individual MSEs and with the
In what follows, we establish the uplink/downlink dualityrf same sum-poweP;. The uplink transceivers are

linear multi-user MIMO systems. 1

Theorem 1: Given the dimensioB, ..., Bx of the sym- P, =aGMY, G =—P)M" (8)
bol vectorss;,, the MIMO BC channel and the dual MIMO Ak
MAC channel achieve the same MSE region, by using alf to a7 satisfy the following system of equations:
possible sets of linear precoders and receivers under a fixed DL DL, H
sum power constraint oy tr (Pl Py )

Proof: To prove the MSE duality between uplink and Tr : = o2 : (9)

downlink, we show that for any set of precodePs, and dé oL DL, H
receivers G, describing the uplink system and achieving K tr (PK P )
certain user-wise MSE values, there exists at least one ggfere the strictly (column) diagonally dominant real-waiu
of linear precoders and receivers for the dual BC channel thaatrix T, has a similar structure a%;, in (6). Thus, a
achieves the same MSE values under the same sum poy@tly positive solution to (9) exists and the downlinknca
and vice versa (see the following two subsections). B pe transformed into an uplink with the same sum power and

A. Uplink to Downlink Transformation the same individual user-wise MSEs.

Given an uplink system, an equivalent downlink model is IV. OPTIMAL RECEIVER
obtained by switching the roles of transmitters and reesive To design the system, we first derive the optimum receive
and scaling them withK strictly positive constantsy, and matrices, assuming all transmittef, to be fixed. Then, we

agl, respectively, i.e., deal with the difficult part, i.e., the derivation of the aptim
DL H DL 1 H transmit matrices.
Py~ = oy Gy and Gy~ = oy " Py, k. (5) For given precodersP; and a cost function which is

increasing in every MSEy, the optimum linear receivagy,

Settinge ' = P yields a linear system of equations fof: _
9ex By y g iof detecting the symbol vectar;, of userk turns out to be the

o2 tr (Plplf) MMSE receiver minimizing the MSE;, individually:

1

T,| @ | =02 : 7 6) Gr=P HT '=PH}(H,P,PH;+R;)", (10)
o2 tr (PKPI[{() with the substitutions

T =) H;P;P]H}+0.l,
Rk :Ziik HZPZP?HlH + 0'721|

where (11)

i#k
—tr (G;H P, PYHIGY) k # j. 2Tk > Sk [TLjk| V.
. . . . 3The proof follows from considering the explicit formula dfet adjoint
Wee see thafl'r, is a strictly (column) diagonally dominant magrix. P 9 P )
4We assume that alP;, # 0, since we have to consider only the active
1The uplink suffix 'UL’ is omitted here to simplify the notatio users. For the other users, the duality is evident. Thezefor > 0 Vk.

{ S tr(GeH PP HIG))+ortr (GGY) k=3,
Ty k=



The MSE of user: then reduces to Algorithm 1 MIMO Weighted Sum-MSE Algorithm

. Initializa- 0)(q . . Py
e = tr(Ey) = tr(l — PI,;IHI,;IT_IHkPk). (12) Initialize: Pi (1:Bg,1: By)« SFn I 5, VE
) ) d«—2,1-—0
Here, E,;, denotes the error covariance matrix of uger 2: repeat

Since the cost functions considered in the following are;. , .y
increasing in every MSEy, the MMSE receivers are always ,. (0 _ ;2| 4 S, HkP;(f_l)P;(f_l)’HHE
optimum, and we can plug (10) into our optimizations to end5: s 3, wkaPI(f—l)ng—l),HHI];I

up with problems depending only on the precodBys 6.  Gradient update foPEf’l)
V. WEIGHTED SUM-MSE OPTIMIZATION Vk : 6P — HITO~ Y, TO-8O)7 O~ |, P

Our goal is to design the precoder matrices for the downlink  Vk : 6P,(f) — %63&@ (scaled gradient)

that minimize aveightedsum of the MSEs, namely, wye 2|0 ‘F
k

with positive scalarsw, under a sum power constraint. vk : P,(f) — ézSPEf) + P,(f_l)
The introduction of weighting scalars enables us to comsidez. vk : P — [—B__ pP" (projection)
different design criteria such as an MMSE design, QoS based | P )HF
design, or equal user MSEs (fairness). Using the duality, ths:  if 3, wytr(E\)) > 3=, wetr(BEY V) then
is equivalent to solving the same optimization problem i th o d—d+1, (—/¢-1
dual uplink: 10:  end if

. . H 11: until desired accuracy foF), is achieved
{PIT}%K};wkek st zk:tr(PkPk) =he (18) o, Uplink/downlink conversion:
Py

0\ S (e, PRHIT T H, P;)
cfor k=1,...,K do
14: Q. — Q/ Wk
pPy £ HIT (0, T — ST 'H P,,  (14) 15 g‘};{L — Pl PYY e aT ' HyPy
16: end for

Using (12), the KKT conditions of the weighted sum-MSE13
minimization read as:

where

S§=> wH;P;P]'H} (15)
' whereas in part two (step 7), the projection onto the coimétra
set is done. Steps 12 to 16 perform the uplink/downlink
conversion. The convergence of this algorithm is proved by

and the Lagrangian multiplier € R with p > 0. If we
multiply (14) for eachk with PE from the left and take
its trace, we observe that the weighting satisfies nearly ]
the same linear system of equations as the scalarof means of a d'escent arggment [11]: . -
the uplink/downlink transformation (cf. Eq. 5) except for a Theorem 2. Supposg s bounded below and Lipschitzian

9 5 . .. with the Lipschitz constant L, and < n < 2/L. The
constant/a, (cf. Bq. 6)” We get the following relation: sequence generated by the gradient projection algorithem th
2

oy % (16) converges. Furthermore, the limit point of this sequence
wi; W Wi satisfies the first order KKT optimality condition. In pattlar,

Thus, all a, are equal for the special case of sum-MSI'éf f is convex then the algorithm converges to the global

minimization (v, = constvk). Hence, they can be computed™Mmum.

directly with minimum complexity from the transmit power h Proof: See [11]. h f the alqori h.
constraint, which is the big advantage of our duality corBdar,T N parameten ensures t € convergence o the a gorlt. m. It
to the one given in [3] and [7]. is determined by successive reduction, ires 1/d whered is

In order to solve constrained optimization problems, tH'Qitialized with 2 and is incremented as soon as the objectiv

standard unconstrained gradient algorithm can be modifi[?g!ds to mcrer??e. I ,
to take into account the constraints. The modified gradie-ﬁ_ is approach features excellent convergence propestess (

algorithm is called theprojected gradient algorithm and its Fig. 3) compared to alternayng op-tlmlzatlon of [ECeIvers
iteration is defined as follows [L1]: and transmitters. Moreover, this algorithm presents @stiang

properties from an implementation point of view, since it
P — (PO MV (PO, (17) requires only one inverse in each iteration (computational
complexity isO(M?)).
O For the case of sum-MSE minimizationw{ = 1 Vk), the
Rost function simplifies to

o3 1

where V corresponds to the matrix valued nabla operat
(Jacobianmatrix), [.]. denotes the projection operator ont
the hypersphere with radiugPy, 1 is the step size, and/

represents a preconditioning matrix, which is chosen to be Zk ek = Zk By, — M + o%tr(T™), (18)
M~' = /- LI In this way, the speed of the algorithm . .
NI y P g which is jointly convex with respect to al), = PP},

becomes almost independent from the SNR. Hence, Algorithm 1 converges to the global optimum in this

Algorithm 1 shows the pseudo-code of the iterative gradieghse due to Theorem 2. The KKT conditions then read as:
projection solution. The iteration is divided into two parin

! _
part one (steps 4 to 6), the standard gradient is computed, pPy = on H)'T > H Py, V. (19)

_ In the following section, we derive an efficient algorithnath
sRemembgr (hat. = P H, T . ; solves the KKqI' conditions in (19) for the MISg case with
6The function is nearly flat for a high SNR. Thus, the Jacobias & small i

Frobenius norm, which makes this scaling important. very low complexity.



Algorithm 2 MISO Sum-MSE Minimization
— 0VEk, £ —1

1: Initialize: p;co)
2: repeat

3 TOW — 521 + Yok p,(f)’QhkhE

4. Water-filling: Sort users decreasing |1|R,(f)”1hk||2.

ko — K+1
5: repeat
6: ko «— ko —1 .
7 H71/2 — P"JrzkiﬁhEREf)ﬁlhk)il

on Ziil ||R;f),—1hk||2(th§f),—l hy) 1

g until (1 /20, [|RY " hiyll2—1) > 0
_(£+1), _ £),—
o plt? P20, | R hy | —1) ¢

= (
RER() " h,

10. if £ <5 then

11- pl(fﬂ),z - ﬁl(erl),Q’w€

12:  else

13: p;f—ﬁ-l),Z - %Z_)I(f-&—l),Q + K[glp;f)ﬂ vk
14: end if

150 (—/{+1

16: until |3, e -3 W) <€

17 o« D

ZpihET72hk L
18: Pt 2 pPL e oT ' hypy

[e3

V1. SUM-MSE MINIMIZATION FOR THE MISO SYSTEM

In the equivalent SIMO uplink, the precoders are simp
scalarspi. The resulting system of nonlinear equations ¢
be solved iteratively using the Jacobi method by computi
pr Via (19) fork =1,..., K in a parallel fashion (assuming

the other precoders to be fixed). Then, (19) reduces to

£ (20)

7= hiThy,
and applying the inversion lemma 6 = R; + hkhﬁpi
yields

R, 'hhi'R;!
Pl +hiR ‘hy

T '=R.'— (21)

Again, K is the number of users.

Proposition 1: The sequencg’, 5,(f) generated by the
scaled Jacobi iteration in (24) is monotone decreasing in
and converges to the global minimum, independently of the
initialization.

Proof: The sum-MSE is given by (18), thus we have:

—1
tr(T(eH),—l) —tr [(aﬁl T Zpﬁ””"%h?) 1

r -1
K-1 1
2 (£),2 (£+1),2\p 2 H
<0n| + % ( D; + —=D; )hzhi )

= tr

-1
(oil +l_);(f+1)’2hkhg+Zp§é)’2hih?)>
itk

IN

itk

1 0,2 -1 _
< Ezk:tr (a,%l +3 hih?) 1 = tr(TO 1,

(25)
where the first inequality follows from the convexity of
tr(A~"') and the second one from the Jacobi iteration in (23).
Therefore every iteration step given by (24) decreases the
II\éISE. Due to the non-negativity of the cost function, the
sequence generated by the algorithm converges to a limit

k
1 —1
= S [(ail +p T2, pll 4 Zpy)ﬂhih?)
k

an .

oint from the Heine Borel covering theorem. Moreover, sinc
e limit point of this sequence surely satisfies the KKT
conditions and since the problem is convex, the algorithm
converges to the global optimum. |
The iterative solution of the sum-MSE minimization is sum-
marized in Algorithm 2. Lines 4 to 8 describe thvater-filling
procedure that determines the Lagrangian multiplierTo
speed up the algorithm, the first four iterations are diyectl
performed by the Jacobi iteration (23), which approaches
the optimal solution rapidly but doesn’t ensure convergenc
Then, we switch to the scaled iteration from (24), which

The right hand side expression from (20) can then be coguarantees the convergence to the optimum. The divergénce o

puted to be

R, 'h;

hiThy = | T he3 = | — 25—
i k= kll2 T bRy

2

(22)
1
_ S IR R

I
(1+ pri R B )
The Jacobi iteration for stefp+ 1 follows from plugging (22)
into (20) and solving it fop?:
m 1)

pHD2 _ 1 (ff_n
* WIR " hy, \VE

, (23)
+

where 11 is chosen to satisfy the transmit ?ower constrai
2

and (z); denotesmax(z,0). Note thatﬁ,ﬁ”1 minimizes

Blp) = 25:1 tr[(on] + pihkhg + E#k pg)’zhihiH)il]
under the constraint|p|3 < P,. Thus, g(p“*tY) <
B\, . .., p)T), wherep+1) = [p{ ) plct T,

the unscaled Jacobi iteration in (23) was observed for a high
number of users > 100). Even in those cases, the first
iterations directly performed with the Jacobi variant dedi

an excellent starting point for the scaled iteration. Ndigt t

the matricesR; ' can all be computed frorl’~* using the
matrix inversion lemma, i.e.,
T hih T
R'=T7'4p? bk (26)

1—pih T 'hy
Finally, the uplink to downlink conversion takes place in
Lines 17 and 18. Simulations show that this combination

converges very quickly (only 2 or 3 iterations are needed),
independently from the number of users and antennas. Thus,

"Fis more efficient and faster than the interior point apgtoa

suggested in [3] (see Fig. 4).

We can generalize this algorithm to the MIMO case by
decomposing the filter®;, into VX, whereV;, has unit
norm columns andx; is diagonal. A new update foV

Above iteration doesn’t necessarily converge. However, ths found using the gradient projection method explained in
following scaled version converges to the global minimizerthe previous section and the power matrids are updated

1 K—-1
;fﬂ),z — E_§€€+1),2 4 pg),zl (24)

K

similarly to the MISO iteration in (23). Due to the lack of
space, this approach will be not discussed in details.
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Fig. 3.  Convergence of the MIMO weighted sum-MSE minimaati _ N )
algorithm; M = 6 transmit antennads’ = 3 users,N,, = 2 receive antennas 9. 4. Convergence of the MISO sum_—MSE minimization algon; M = 3
per user,B;, = 2 streams per user, weights;, = 1vk; SNR = 20dB. transmit antennasis’ = 3 users, SNR = 6dB.

VIl. QOS OPTIMIZATION otherwise we could decrease the power related with
inactive constraints and thus decrease the objective 12], [

The multi-user MISO QoS/fairness problem has alrea . A
herefore, the optimal solution is given by

been solved in the context of SINR optimization in [2].
The general MIMO case has been studied in [12] but only 1/er, — 1 =y, Vk. (30)
for fixed receivers. Two problems have been investigated:

The first one consists of minimizing the total transmissiof®M Section IV we know that, the optimal receiver is the

power while satisfying a set of SINR constraints. The secor%MSE receiver (Wiener.filter) and that the MMSE of each _
one seeks to maximize the jointly achievable SINR margh‘fser has then the following form (see Eqn. 12 and Eqn. 21):

under a total sum power constraint. We are interested in I 1
achieving different QoSs among the users rather than among k 1 +p§hER;1hk'
subchgnnels separa_\tely. The user-wise QoS _for_mulatlonv\lﬁth the QoS constraints in (30) and the MMSE in (31), we
especially attractive if the subchannels of each individigar et a svstem of non-linear equations:

are jointly encoded and decoded. A possible metric for this y g '

(31)

problem is the mutual informatiofy,, which can be tightly P = % = fr({p?,i # k}). (32)
related to the users’ MSEs by means of the approximation hy, R, " hy
I, = —logs| Ex| 2 Biloga(By/er), 27) Obviously, this a fixed point problem. The functiorfs =

{fx} can easily be shown to satisfy the condition of [13], i.e.,
where we used the arithmetic-geometric sum inequality (fefey are positive, monotone increasing, and concave (see th
the eigenvalues oEy). A strict equality holds forB, = 1. Jacobian off in Eqn. 35). Thusjf has at most one fixed point,
Thus, for the QoS/faimess problem, we uSe — 1 as the j.e., there is at most one solution. For the casek(H) = K,

metric which is identical to the SINR in the single-streanyhere H = [hy,--- , hx], there is always a unique solution
case. We formulate the power minimization problem (28) andee [12]).
power assignment problem (29) as follows: Assuming that the problem is feasible, i.e., there is a
min Zktr(PkPE) st % 1>, Yk (28) un_ique s_olution;‘)_%, e ,;‘ﬁ{_, we desire to solve fthis system
{P1,...Pk} F using a fixed point technique (also known as Picard-itenatio
max 7o S-t-izktr(PkPg) <P, and method or direct iteration method). This method generates
{P1,. o Prcvo} (29) new updatep\" "2 .. pf™1)? by evaluating the functions
Le — 1> oy, VE, with their old arguments!”% ... p{?%. In other words, the
where v,k = 1,...,K are given. Although these prob-fixed point iteration for our problem is
lems are non-convex, we note that the KKT conditions are (0),2
sufficient. Consequently, they can be solved using nonlinea pgfﬂm = Tk = NP (33)

. . . . 2 . - RERW.—1p o -1

programming methods. First, we derive a fixed point itegativ kLY kB

solution for the MISO case, which is numerically more , _ 0),2 -
efficient than the one in [2] and prove its convergence. Ther?! the starting point, we use) = fu(0,...,0) = pre.

an algorithm for the general MIMO case is proposed. ByNiS flxe(_j point method is summarlzed in AIgonthm 3._The
means of our approach, it is possible to guarantee fairné§¥)-feasibility of the problem is detected by checking i th

not only among the users, but also among all subchannel$$UM power exceeds a maximum powgfax. We see that
this algorithm needs only an inverse per iteration, all othe

A. Qos fixed point solution for MISGB( = 1 V) computations have a lower order of complexity.
1) Power minimization problem (28)it can be easily = We now prove that this fixed iteration is locally contractive
seen that the constraints in (28) are fulfilled with equalitand thus converges. If the problem is feasible, i.e., theis e



Algorithm 3 MISO Power Minimization Algorithm Algorithm 4 MISO Power Allocation Algorithm

1: Initialize: p\® — Z’é—fi Vk, 0 — 1 1: Initialize: p! H\/Rthhk/\/Z R Vh, L1
2: repeat , 2: repeat y

3 PY—diag{p"} » 3 PY—diag{p"}5 B

4 EwHQ+%P®HWﬂﬂ0 4 EwHO+leHWﬂﬂU

E! {41 0),2

5 p,(f+1) - lvkE,El;; ](f)’ vk 5: ( ) Pr/(z:Z - E(l)pz() )

6: (—I1+1 041 e TIED ()

7: until ‘pgf“m @, 2‘ <evkor Y, pt2 s P O P - klegf)k Lpy) Vk

. - S\ L 7. L—(1+1 ’
& G— PH" (HP°H" 1 57 | | BNM‘ﬁm—ﬁ*ﬂ<aW
9: Compute the downlink transceivers using the up- . — S\ !
link/downlink transformation (5) 9 G—PH (HP H" + Unl)
10: Compute the downlink transceivers using the up-
link/downlink transformation (5)

a unique fixed poinp; = fx(p3,...,p%), and the starting

point is chosen sufficiently close to the fixed point, then the
following condition is sufficient to guarantee the converge  2) Power allocation problem (29)For the same reasons as
p(J) = sup{|A| : \ eigenvalue off} < 1. (34) in the previous subsection, the constraints in (29) arelledfi
with equality. Therefore, we can adjust the previous atbari

pis the spectral radius of the Jacobian maifief f evaluated sq thaty, is determined iteratively to satisfy the sum power
at the fixed point. To verify this, we calculate the Jacobiagynstraint, i.e.,

matrix:
O W ng (D) o

(R R, 'hy)
0 else,

Jii=
tom)
(35) The powersp? are then updated in a similar way as in the

which means that everyy, is increasing in each argumentpower minimization problem. The resulting Algorithm 4 also

pi, i # k. Evaluating the Jacobian at the fixed point we obtaitonverges, since the projection on the hypersphere witasad

for the off-diagonal elements by means of (32) Py is a non-expansive operation.
Joi= 7 hy R, 'h:hi 'R’ hi (36) B. QoS lIterative Solution for MIMO
ok hHR,C hy As stated in the beginning of this section, we define the
To prove the convergence we make use of QoS problem user-wise, since it is easier to tackle then.
Theorem 3 (Perron-Frobenius Theorem, 1912 [14]): Nevertheless in some applications it might be important to

If all elements a;,; of an irreducible matrix A are assure different SINR constraints among the streams. We
nonnegative, thenR = ming My is an eigenvalue ofA show that under a user-wise QoS solution, some degrees of
and all the eigenvalues oA lie on the disk|\ < R, freedom always remain for each user in order to achieve

where, if 8 = [6,...,0x]" is a set of nonnegative restricted QoS constraints among its streams. In fact, user
numbers (which are not all zero simultaneously)y can multiply its precoded”; with a unitary matrixUy
My = influ:pby> Z Car0,1<k<K}, and from the right side without any influence on the other users.

We see from (12) that this operation conserves the trace and
the eigenvalues of the error covariance mathy, but its
diagonal elements will be changed. In particular, thistiota
For 6 we use the vectof — 2, ... ,pﬁ(]. gzg}izrf{;fgi?:eziz) ?r?ztlen s.uch thAY, has identical diagonal_

. gorithm that computes such a matrix
U, is given in [15]. The same observation was done for the

R = ming Mg = p(A) is the biggest eigenvalue and alsg
the spectral radius ofA.

hHF -1 _2 H\p—1 _
Z kab; = hHR h hi Ry, (Zpi hihi )Ry "hi = gingle user case in [16].
k Tk i#k ) However, the distribution of each user’s MSE on its streams
;‘)ﬁhERk (- cr,%Rk Y (1 HR,ZQhk> 9 cannot be done arbitrarily. The maximumnfairness” that
— e — O‘ —_— k> . . . . . .
hI;kalhk hHRk h can be achieved is given by the eigenvaluestqRf This is

(37) aresult of the Schur-Horn theorem [17] stating that a matrix

where the last step follows from the definition &, (see With given eigenvalues\ and diagonal elementd can be
Egn. 11). We obtain: constructed if and only it\ weakly majorizesd. In other

a2 words (ascending order sortag and sorted/; assumed now)
. _ hi; R, "hy\
Mg = inf u:upiz 1-0 27 Pl <k<K

K K
-
"R, DAY diV 1<i<K (40)
2 | =i i=i
= sup e 1<k Ky <1 . . )
hHR hs We see that the solutions of (28) and (29) satisfy only the firs

- (38) equation of (40) wheré= 1. Therefore it is a necessary con-
Thus convergence is guarateed,;dd) = ming Mg < Mg.  dition for the stream-wise QoS problems but not a sufficient



one. For the fairness problem, both formulations (user- afdgorithm 5 MIMO Power Allocation Algorithm
stream-wise) are equivalent except that we need to do campui; |nitialize: 02(272 — 5B, V(1 : By, 1: By) « g,
the rotation matrixU;, explained above. Allocating different ComputeE” with (12), VkVq, d — 2, £ — 0
MSEs for the individual streams lying between maximum P k ' . '
’ H ’ AT ’ . 2: I'epeat
unfairness’ and complete 'fairness’ can be achieved by thé
) . . 3 l—l+1

generalized Bendel-Mickey algorithm from [18]. © WES D (q.q) _(0-1),2

Now, we derive an iterative solution for the power assign-* 7 Pe/2 1.q 1—BC D(qq ka7
ment problem (29) with a sum-power constraint. As stated L PEC D (q.q) (0-1) .
earlier the first order conditions are sufficient, i.e., ¢hés 1jE§fk’“(q-,q) ka VK- g (power allocation)

only a single local minimum which is the global optimum. ng) — diag{al(f)}Bkl
g 4=

(0)
kg

The proof of this proposmo_n_ is omitted due to the lack of s T _ o243, Hkvl(ffl)zl(f)zvgffl),HHE
space. Now, the KKT conditions for the problem (29) read 0 (0) temp . -
as: 6: Computew, (gndEk“’ ) V\(/Lt)h2 (4(%3) tla\)n}tlj (12)
: 14 - > —1), H
Py, = HIT Y (w, T — S)T'H Py, 7 S HiVy, 3V THp
B, 8:  Gradient Update foiVEe) with fixed 2,& ), w,g) (Vk):
- 4 — 14 ,— -1
er < T+ 7078 ,Vk, and (41) 5‘/*5C ) (_HI;{)(EL l(wl(c )T(l)_s(z))T(z), 1]{,5/’5C )
) ov .. .
tr(z PP < Py, vy — M,Vq (scaled gradient)
k 2

. . . o . 0 15y (e=1)  (0) ;.
where S is defined in (15). We see the similarity to the % Vi = a0V + Vi v, — 5 Ve

weighted sum-MSE minimization problem in (14). But now,

the scalarsw; are Lagrangian multipliers, that must be

determined, and are not fixed parameters as in (14). i
The proposed iterative solution in Algorithm 5 for solvinglz: d - d+1; goto line 9

this problem works as follow. The filtet®,, are decomposed 23 end if _ ,

into V3, where v has unit norm columns anB, is 14 Until desired accuracy foFy is achieved

diagonal. For fixedV, Line 4 updates the power matrices™™ Gp' —oZuVi, Pp T HiVii

similarly to the MISO iteration in Algorithm 4. Next, assum- ~ whereay, < \/Ztr(wkzkvsﬁg’.;"*QHkvkzk)

ing VX, to be fixed, the Lagrangian multipliers;, are

computed by solving the linear system of equation in (41); a

new update folV;, is then found using the gradient projection

method explained previously (Lines 5 to 13). Since bothssteWhiCh guarantiegairnessamong all streams, outperforms the

are contractive as we have seen in the previous sections, $H8-MSE transceiver for high SNR, due to the fact that the
algorithm converges to the optimum. performance of the system in this SNR range strongly depends

on the stream with the worst SINR. The choice of the optimum
VIII. SIMULATION RESULTS design thus depends on the application and the SNR range. In

In our channel model, the entries B, are complex-valued Fig. 7, we compare our sum-MSE transceiver with existing
realizations of independent zero-mean Gaussian randaim vA#IMO approaches in the literature, in particular the block
ables. For each channel realization, 100 16QAM modulatéépgonal approach (also known zsroforcingZF) [19], [20].
symbols are transmitted, and the bit error rates are averadtote that the algorithm in [19] requires that the number of
over 1000 channel realizations. transmit antennas must be greater than or equal to the total

In Fig. 5, we compare the sum-MSE transceiver with theumber of receive antennas in order to satisfy the null-espac
TXWF of [1], where all users apply the same scalar at treaiterion. Therefore, we chose a system with= 6 transmit
receivers. We choose a MISO system (one antenna per us@ffennas and” = 3 users withV;, = 2 receive antennas and
where K = 3 users are served W =3 transmit antennas. Bk = 2 streams eaCh. It iS not Surprising that the sum-MSE
Furthermore, the user’s channels do not have the same averbligP clearly outperforms theeroforcingtransceiver. The main
power, i.e., B|hs||2] = 9E[||h2||3] = 100E[||hy||3], as for advantage of the sum-MSE design is also its robustness with
identical average powers only small gains can be achievedi§gpect to rank deficient channels.
extending the receivers toward different scalars. Theng&o
user (cross marker) dramatically benefits, whereas the aveak
user (diamond marker) sees only few improvement. Thus theWe addressed the problem of jointly designing the linear
overall efficiency of the system slightly improves. transmitter and receivers for a multi-user MIMO system.

The comparison between the performance of the sum-MSBanks to a general form of duality between downlink
and the QoS transceivers is shown in Fig. 6 for a three userd uplink, we formulated all optimization problems in the
MIMO system (16QAM), where thaveragechannel power equivalent uplink, and solved the KKT conditions iteralyve
of user 2 and 3 is four times stronger than that of user $everal design criteria have been considered. Exampléiseare
The QoS transceiver features fairness among all subchanmedighted sum-MSE minimization, the QoS, and fa@gness
(v = 1,Yk — minimizing the maximumey ,), thus it optimization problems, for which we have provided algorith
assures equal BERs to all users (dashed lines). The sum-M8IE solutions. The choice of a certain criterion dependshen t
transceiver has a better overall efficiency for low and meddproperties of the channel and the application. The predente
SNR, but user 1 with the weak channel is disfavored comparalgorithms have good convergence properties compared to al
to the others (solid lines). Nevertheless, the QoS tramsgei ternating optimization of transmitter and receivers. Mwer,

ComputeE,(f), vk
it >, wtr(EL) >3, wtr(EL ™) then

IX. CONCLUSION
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of view. Thanks to the joint optimization of the transmigter
and receivers, our transceivers, which have no requiresient
the dimensions of system (as opposed to the ZF approachgs),
outperform the existingeroforcingsolutions and offer excel-
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