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Abstract— This paper addresses the joint optimization of
linear transmitters and receivers in a multi-user multiple-input
multiple-output (MIMO) broadcast channel (BC) system under
the assumption of perfect channel state information (CSI) at
both transmitter and receivers. Our first design criterion is the
sum mean square error (MSE), which we seek to minimize.
In a second approach, we need to satisfyQuality of Service
(QoS) requirements by means of as few transmit power as
possible or try to fulfill these requests as good as possible given
a fixed sum transmit power. Since the downlink problem is
difficult to handle, we formulate an equivalent uplink problem
by exploiting the duality between both scenarios. We present
efficient iterative solutions, which deliver the optimum transmit
and receive matrices. The performance of our algorithms is
studied theoretically and via simulations, we compare the design
criteria with existing precoding algorithms.

I. I NTRODUCTION

In a multi-user downlink scenario, each of the decen-
tralized receivers may be equipped with a single antenna
(multi-user MISO system) or multiple antennas (multi-user
MIMO system). The decentralization implies the necessity
of preequalization at the transmitter to combat the inter-
user interference. Linear pre-processing was considered in [1]
based on theminimumMSE andzeroforcing(ZF) criterion,
where the receivers were restricted to applythe samescalar
weight. Jointly optimizing the linear transmit and receive
matrices based onQuality of Service(QoS) constraints or
sum-MSE minimization was considered in [2], [3], [4] for
the MISO case and was extended to the MIMO case in [5],
[6], [7], [8]. However, as most of these algorithms are based
on thealternating optimizationof receivers and transmitter,
they suffer from a very slow convergence speed at high SNR
values if not initialized in a clever fashion, or may even not
converge to the optimum.

Our main contributions are on the one hand efficient itera-
tive solutions, that jointly optimize the linear precoder at the
centralized transmitter and the linear decoders at the decentral-
ized receivers for themultiple-input multiple-output(MIMO)
broadcast channel(BC) based on different design criteria.
On the other hand, a novel simplified uplink-downlink MSE
duality is presented facilitating the conversion of an uplink
receiver/transmitters pair into a downlink receivers/transmitter
pair.
As the downlink optimization is in general very complicated
and non-convex, we make use of the duality between uplink
and downlink and solve the equivalent uplink problem instead,
which features the nice property to have a better mathematical
structure with less coupling of the variables. In [9], [10],and
[3], the duality in a linear system was proven in terms of
information capacity, SINR, andmean square error(MSE),
respectively. Contrary to [7], where the MSE duality is shown
making use of the SINR duality in [10], we directly deduce
the MSE duality for the MIMO case without detouring.

Our MSE duality is defined user-wise making the uplink-
downlink transformation very simple. This transformationis
necessary, as the equivalent uplink model is solved insteadof
the downlink problem. Having found the optimum matrices
in the equivalentmultiple access channel(MAC), they have
to be transformed into solutions of the BC channel.
We consider two design criteria: 1) Minimization of the
sum-MSE (overall system efficiency) and 2) Assuring given
Quality of Serviceuser request (QoS based design). For
the first problem, iterative solutions already exist, cf. [7].
However, we present a new algorithm with drastically reduced
complexity. Based on a user-wise formulation, we also solve
the QoS problem and deliver an algorithmic solution.

Our paper is organized as follows. In Section III, we prove
the duality between uplink and downlink in terms of MSE for
a multi-user MIMO system, then we derive the optimal uplink
receiver in Section IV. In Section V, we deal with the iterative
solution of the weighted sum-MSE minimization problem
using a gradient projection approach [11], and provide a
special solution for the MISO sum-MSE minimization in
Section VI. Next, the QoS problem is discussed in Section
VII. Finally, simulation results are presented in Section VIII.

II. SYSTEM MODEL AND NOTATION

We consider aK-users MIMO BC with anM antennas
transmitter and thekth receiver hasNk antennas. Fig. 1 shows
a general linear MIMO BC system, whereHH

k ∈ CNk×M ,
k = 1, . . . , K, is the channel matrix of userk. The vector
sk ∈ CBk comprises theBk uncorrelated unit variance
symbols of userk which are assumed to be uncorrelated with
other users’ symbols. The vectorsη1, . . . , ηK refer to zero-
mean white noise with varianceσ2

n for each component. The
centralized linear precoders are denoted byP DL

k ∈ CM×Bk ,
andGDL

k ∈ CBk×Nk are the decentralized receive filters. With
these definitions, the estimatêsk for the symbolsk of userk
reads as

ŝk = GDL
k HH

kP DL
k sk +

∑

j 6=k

GDL
k HH

kP DL
j sj + GDL

k ηk. (1)

With uncorrelated unit variance entries of the signalsk, we
compute the downlink MSEεDL

k = E[‖ŝk − sk‖22] of userk

εDL
k = tr

(

IBk
−GDL

k HH
k P DL

k − P
DL,H
k HkG

DL,H
k

+

K
∑

j=1

GDL
k HH

k P DL
j P

DL,H
j HkG

DL,H
k +σ2

nGDL
k G

DL,H
k

)

.

(2)

From (2), we see that the MSEεDL
k of user k depends on

all precoding matricesP DL
j which are strongly coupled by

the sum power constraint. Thus, we formulate an equivalent
uplink problem with a better mathematical structure, as the
precoders are decoupled and only a joint power constraint
has to be considered.
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Fig. 1. Linear downlink model.

III. L INEAR DOWNLINK /UPLINK DUALITY

The dual uplink channel is shown in Fig. 2 and consists
of a K-users MIMO uplink channel (MIMO MAC), where
each of the dual uplink channels is the conjugate transpose
of the corresponding BC channel.P k denotes the transmit
matrix andGk the centralized receive matrix of userk.1 The
estimateŝk in the uplink can be expressed as

ŝk = GkHkP ksk +
∑

j 6=k
GkHjP jsj + Gkη, (3)

and the uplink MSEεUL
k = E[‖ŝk−sk‖22] of userk can easily

be found to be

εUL
k = tr

(

IBk
−GkHkP k − P H

k HH
k GH

k

+
∑K

j=1
GkHjP jP

H
j HH

j GH
k + σ2

nGkGH
k

)

.
(4)

In what follows, we establish the uplink/downlink duality for
linear multi-user MIMO systems.

Theorem 1: Given the dimensionsB1, . . . , BK of the sym-
bol vectorssk, the MIMO BC channel and the dual MIMO
MAC channel achieve the same MSE region, by using all
possible sets of linear precoders and receivers under a fixed
sum power constraint.

Proof: To prove the MSE duality between uplink and
downlink, we show that for any set of precodersP k and
receiversGk describing the uplink system and achieving
certain user-wise MSE values, there exists at least one set
of linear precoders and receivers for the dual BC channel that
achieves the same MSE values under the same sum power
and vice versa (see the following two subsections).

A. Uplink to Downlink Transformation

Given an uplink system, an equivalent downlink model is
obtained by switching the roles of transmitters and receivers
and scaling them withK strictly positive constantsαk and
α−1

k , respectively, i.e.,

P DL
k = αkGH

k andGDL
k = α−1

k P H
k , ∀k. (5)

SettingεUL
k = εDL

k yields a linear system of equations forα2
k:

T L







α2
1
...

α2
K






= σ2

n











tr
(

P 1P
H
1

)

...

tr
(

P KP H
K

)











, (6)

where

T L,k,j =

( P

i6=k

tr
`

GkH iP iP
H

i HH

i GH

k

´

+σ2

ntr
`

GkGH

k

´

k = j,

−tr
`

GjHkP kP H

k HH

k GH

j

´

k 6= j.

Wee see thatT L is a strictly (column) diagonally dominant

1The uplink suffix ’UL’ is omitted here to simplify the notation.
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Fig. 2. Equivalent linear uplink model.

real-valued matrix2, so it is non-singular(|T L| > 0);
moreover, it has strictly positive diagonal entries and negative
off-diagonal entries, thus all entries of the inverse matrix T−1

L

are non-negative (the diagonal entries are strictly positive).3

Summing up the rows in (6), we get:
∑K

k=1
tr
(

α2
kGkGH

k

)

=
∑K

k=1
tr
(

P kP H
k

)

. (7)

We see that there is always a strictly positive4 solution
vector

[

α2
1, . . . , α

2
K

]T
, such that the uplink system can be

transformed into an equivalent downlink system with the same
individual MSEs using the same sum power (due to Eqn. 7).

B. Downlink to Uplink Transformation

Conversely, it can be shown by the same reasoning that
every downlink system can be transformed into an equivalent
uplink system with the same individual MSEs and with the
same sum-powerPtr. The uplink transceivers are

P k = ᾱkG
DL,H
k , Gk =

1

ᾱk
P

DL,H
k . (8)

ᾱ2
1 to ᾱ2

K satisfy the following system of equations:

T̄ L







ᾱ2
1
...

ᾱ2
K






= σ2

n











tr
(

P DL
1 P

DL,H
1

)

...

tr
(

P DL
K P

DL,H
K

)











, (9)

where the strictly (column) diagonally dominant real-valued
matrix T̄ L has a similar structure asT L in (6). Thus, a
strictly positive solution to (9) exists and the downlink can
be transformed into an uplink with the same sum power and
the same individual user-wise MSEs.

IV. OPTIMAL RECEIVER

To design the system, we first derive the optimum receive
matrices, assuming all transmittersP k to be fixed. Then, we
deal with the difficult part, i.e., the derivation of the optimum
transmit matrices.

For given precodersP k and a cost function which is
increasing in every MSEεk, the optimum linear receiverGk

detecting the symbol vectorsk of userk turns out to be the
MMSE receiver minimizing the MSEεk individually:

Gk =P H
k HH

k T−1 =P H
k HH

k (HkP kP H
k HH

k +Rk)−1, (10)

with the substitutions

T =
∑

i
HiP iP

H
i HH

i + σ2
nI ,

Rk =
∑

i6=k
H iP iP

H
i HH

i + σ2
nI .

(11)

2
TL,k,k >

P

j 6=k

˛

˛TL,j,k

˛

˛ ∀k.
3The proof follows from considering the explicit formula of the adjoint

matrix.
4We assume that allPk 6= 0, since we have to consider only the active

users. For the other users, the duality is evident. Therefore, αk > 0 ∀k.



The MSE of userk then reduces to

εk = tr(Ek) = tr(I − P H
k HH

k T−1HkP k). (12)

Here,Ek denotes the error covariance matrix of userk.
Since the cost functions considered in the following are
increasing in every MSEεk, the MMSE receivers are always
optimum, and we can plug (10) into our optimizations to end
up with problems depending only on the precodersP k.

V. WEIGHTED SUM-MSE OPTIMIZATION

Our goal is to design the precoder matrices for the downlink
that minimize aweightedsum of the MSEs, namely

∑

k wkεk

with positive scalarswk under a sum power constraint.
The introduction of weighting scalars enables us to consider
different design criteria such as an MMSE design, QoS based
design, or equal user MSEs (fairness). Using the duality, this
is equivalent to solving the same optimization problem in the
dual uplink:

min
{P 1,...,P K}

∑

k

wkεk s.t.:
∑

k

tr(P kP H
k ) ≤ Ptr. (13)

Using (12), the KKT conditions of the weighted sum-MSE
minimization read as:

µP k
!
= HH

k T−1(wkT − S)T−1HkP k, (14)

where
S =

∑

i
wiH iP iP

H
i HH

i , (15)

and the Lagrangian multiplierµ ∈ R with µ ≥ 0. If we
multiply (14) for eachk with P H

k from the left and take
its trace, we observe that the weightingwk satisfies nearly
the same linear system of equations as the scalarsαk of
the uplink/downlink transformation (cf. Eq. 5) except for a
constantµ/σ2

n (cf. Eq. 6).5 We get the following relation:

α2
1

w1

!
=

α2
2

w2

!
= · · · !

=
α2

K

wK
. (16)

Thus, all αk are equal for the special case of sum-MSE
minimization (wk = const∀k). Hence, they can be computed
directly with minimum complexity from the transmit power
constraint, which is the big advantage of our duality compared
to the one given in [3] and [7].

In order to solve constrained optimization problems, the
standard unconstrained gradient algorithm can be modified
to take into account the constraints. The modified gradient
algorithm is called theprojectedgradient algorithm and its
iteration is defined as follows [11]:

P (ℓ+1) = [P (ℓ) − ηM−1∇∗f(P (ℓ))]⊥, (17)

where∇ corresponds to the matrix valued nabla operator
(Jacobianmatrix), [.]⊥ denotes the projection operator onto
the hypersphere with radius

√
Ptr, η is the step size, andM

represents a preconditioning matrix, which is chosen to be
M−1 =

√

Ptr

‖∇f‖2
F
I . In this way, the speed of the algorithm

becomes almost independent from the SNR.6

Algorithm 1 shows the pseudo-code of the iterative gradient
projection solution. The iteration is divided into two parts: In
part one (steps 4 to 6), the standard gradient is computed,

5Remember thatGk = P
H

k H
H

k T
−1

6The function is nearly flat for a high SNR. Thus, the Jacobian has a small
Frobenius norm, which makes this scaling important.

Algorithm 1 MIMO Weighted Sum-MSE Algorithm

1: Initialize: P
(0)
k (1 : Bk, 1 : Bk)←

√

Ptr
P

Bk
IBk
∀k

d← 2, l ← 0
2: repeat
3: ℓ← ℓ + 1
4: T (ℓ) ← σ2

nI +
∑

k HkP
(ℓ−1)
k P

(ℓ−1),H
k HH

k

5: S(ℓ) ←∑

k wkHkP
(ℓ−1)
k P

(ℓ−1),H
k HH

k

6: Gradient update forP (ℓ−1)
k

∀k : δP
(ℓ)
k ←HH

k T (ℓ)−1(wkT (ℓ)−S(ℓ))T (ℓ)−1HkP
(ℓ−1)
k

∀k : δP
(ℓ)
k ←

√

Ptr
P

i

‚

‚

‚
δP

(ℓ)
i

‚

‚

‚

2

F

δP
(ℓ)
k (scaled gradient)

∀k : P
(ℓ)
k ← 1

dδP
(ℓ)
k + P

(ℓ−1)
k

7: ∀k : P
(ℓ)
k ←

√

Ptr
P

i

‚

‚

‚
P

(ℓ)
i

‚

‚

‚

2

F

P
(ℓ)
k (projection)

8: if
∑

k wktr(E(ℓ)
k ) >

∑

k wktr(E(ℓ−1)
k ) then

9: d← d + 1, ℓ← ℓ− 1
10: end if
11: until desired accuracy forEk is achieved
12: Uplink/downlink conversion:

α0 ←
√

Ptr
P

i tr(wiP
H
i

HH
i

T −2HiP i)

13: for k = 1, . . . , K do
14: αk ← α0

√
wk

15: GDL
k ← 1

αk
P H

k , P DL
k ← αkT−1HkP k

16: end for

whereas in part two (step 7), the projection onto the constraint
set is done. Steps 12 to 16 perform the uplink/downlink
conversion. The convergence of this algorithm is proved by
means of a descent argument [11]:

Theorem 2: Supposef is bounded below and Lipschitzian
with the Lipschitz constant L, and0 < η < 2/L. The
sequence generated by the gradient projection algorithm then
converges. Furthermore, the limit point of this sequence
satisfies the first order KKT optimality condition. In particular,
if f is convex then the algorithm converges to the global
minimum.

Proof: See [11].
The parameterη ensures the convergence of the algorithm. It
is determined by successive reduction, i.e.,η = 1/d whered is
initialized with 2 and is incremented as soon as the objective
tends to increase.
This approach features excellent convergence properties (see
Fig. 3) compared to alternating optimization of receivers
and transmitters. Moreover, this algorithm presents interesting
properties from an implementation point of view, since it
requires only one inverse in each iteration (computational
complexity isO(M3)).

For the case of sum-MSE minimization (wk = 1 ∀k), the
cost function simplifies to

∑

k
εk =

∑

k
Bk −M + σ2

ntr(T−1), (18)

which is jointly convex with respect to allQk = P kP H
k .

Hence, Algorithm 1 converges to the global optimum in this
case due to Theorem 2. The KKT conditions then read as:

µP k
!
= σ2

nHH
k T−2HkP k ∀k. (19)

In the following section, we derive an efficient algorithm that
solves the KKT conditions in (19) for the MISO case with
very low complexity.



Algorithm 2 MISO Sum-MSE Minimization

1: Initialize: p
(0)
k ← 0 ∀k, ℓ← 1

2: repeat
3: T (ℓ) ← σ2

nI +
∑

k p
(ℓ),2
k hkhH

k

4: Water-filling: Sort users decreasing in‖R(ℓ),−1
k hk‖2.

k0 ← K + 1
5: repeat
6: k0 ← k0 − 1

7: µ−1/2 ← Ptr+
Pk0

k=1(h
H
k R

(ℓ),−1
k

hk)−1

σn

Pk0
k=1

‚

‚

‚
R

(ℓ),−1
k

hk

‚

‚

‚

2
(hH

k
R

(ℓ),−1
k

hk)−1

8: until (µ−1/2σn‖R(ℓ),−1
k0

hk0‖2−1) ≥ 0

9: p̄
(ℓ+1),2
k ← 1

hH
k

R
(ℓ),−1
k

hk

(µ−1/2σn‖R(ℓ),−1
k hk‖2−1)+

10: if ℓ < 5 then
11: p

(ℓ+1),2
k ← p̄

(ℓ+1),2
k , ∀k

12: else
13: p

(ℓ+1),2
k ← 1

K p̄
(ℓ+1),2
k + K−1

K p
(ℓ),2
k , ∀k

14: end if
15: ℓ← ℓ + 1
16: until |∑k ε

(ℓ+1)
k −∑k ε

(ℓ)
k | < ǫ

17: α←
√

Ptr
P

p2
k
hH

k
T −2hk

18: gDL
k ← pk

α , pDL
k ←αT−1hkpk

VI. SUM-MSE MINIMIZATION FOR THE MISO SYSTEM

In the equivalent SIMO uplink, the precoders are simple
scalarspk. The resulting system of nonlinear equations can
be solved iteratively using the Jacobi method by computing
pk via (19) for k = 1, . . . , K in a parallel fashion (assuming
the other precoders to be fixed). Then, (19) reduces to

µ

σ2
n

= hH
k T−2hk, (20)

and applying the inversion lemma toT = Rk + hkhH
k p2

k

yields

T−1 = R−1
k −

R−1
k hkhH

k R−1
k

p−2
k + hH

k R−1
k hk

. (21)

The right hand side expression from (20) can then be com-
puted to be

hH
k T−2hk = ‖T−1hk‖22 =

∥

∥

∥

∥

∥

R−1
k hk

1 + p2
khH

k R−1
k hk

∥

∥

∥

∥

∥

2

2

=
1

(

1 + p2
khH

k R−1
k hk

)2

∥

∥R−1
k hk

∥

∥

2

2
.

(22)

The Jacobi iteration for stepℓ+1 follows from plugging (22)
into (20) and solving it forp2

k:

p̄
(ℓ+1),2
k =

1

hH
k R

(ℓ),−1
k hk

(

σn√
µ

∥

∥

∥
R

(ℓ),−1
k hk

∥

∥

∥

2
−1

)

+

, (23)

where µ is chosen to satisfy the transmit power constraint
and (x)+ denotesmax(x, 0). Note that p̄(ℓ+1),2

k minimizes
β(p) =

∑K
k=1 tr[(σ2

nI + p2
khkhH

k +
∑

i6=k p
(ℓ),2
i hih

H
i )−1]

under the constraint‖p‖22 ≤ Ptr. Thus, β(p̄(ℓ+1)) ≤
β([p

(ℓ)
1 , . . . , p

(ℓ)
K ]T), wherep̄(ℓ+1) = [p̄

(ℓ+1)
1 , . . . , p̄

(ℓ+1)
K ]T.

Above iteration doesn’t necessarily converge. However, the
following scaled version converges to the global minimizer:

p
(ℓ+1),2
k ← 1

K
p̄
(ℓ+1),2
k +

K − 1

K
p
(ℓ),2
k . (24)

Again, K is the number of users.
Proposition 1: The sequence

∑

k ε
(ℓ)
k generated by the

scaled Jacobi iteration in (24) is monotone decreasing inℓ
and converges to the global minimum, independently of the
initialization.

Proof: The sum-MSE is given by (18), thus we have:

tr(T (ℓ+1),−1) = tr

[

(

σ2
nI +

∑

i

p
(ℓ+1),2
i hih

H
i

)−1
]

= tr





(

σ2
nI +

∑

i

(K − 1

K
p
(ℓ),2
i +

1

K
p̄
(ℓ+1),2
i

)

hih
H
i

)−1




= tr





(

1

K

∑

k

(

σ2
nI + p̄

(ℓ+1),2
k hkhH

k +
∑

i6=k

p
(ℓ),2
i hih

H
i

)

)−1




≤ 1

K

∑

k

tr





(

σ2
nI + p̄

(ℓ+1),2
k hkhH

k +
∑

i6=k

p
(ℓ),2
i hih

H
i

)−1





≤ 1

K

∑

k

tr

[

(

σ2
nI +

∑

i

p
(ℓ),2
i hih

H
i

)−1
]

= tr(T (ℓ),−1),

(25)
where the first inequality follows from the convexity of
tr(A−1) and the second one from the Jacobi iteration in (23).
Therefore every iteration step given by (24) decreases the
MSE. Due to the non-negativity of the cost function, the
sequence generated by the algorithm converges to a limit
point from the Heine Borel covering theorem. Moreover, since
the limit point of this sequence surely satisfies the KKT
conditions and since the problem is convex, the algorithm
converges to the global optimum.
The iterative solution of the sum-MSE minimization is sum-
marized in Algorithm 2. Lines 4 to 8 describe thewater-filling
procedure that determines the Lagrangian multiplierµ. To
speed up the algorithm, the first four iterations are directly
performed by the Jacobi iteration (23), which approaches
the optimal solution rapidly but doesn’t ensure convergence.
Then, we switch to the scaled iteration from (24), which
guarantees the convergence to the optimum. The divergence of
the unscaled Jacobi iteration in (23) was observed for a high
number of users (K > 100). Even in those cases, the first
iterations directly performed with the Jacobi variant deliver
an excellent starting point for the scaled iteration. Note that
the matricesR−1

k can all be computed fromT−1 using the
matrix inversion lemma, i.e.,

R−1
k = T−1 + p2

k

T−1hkhH
k T−1

1− p2
khH

k T−1hk

. (26)

Finally, the uplink to downlink conversion takes place in
Lines 17 and 18. Simulations show that this combination
converges very quickly (only 2 or 3 iterations are needed),
independently from the number of users and antennas. Thus,
it is more efficient and faster than the interior point approach
suggested in [3] (see Fig. 4).

We can generalize this algorithm to the MIMO case by
decomposing the filtersP k into V kΣk, whereV k has unit
norm columns andΣk is diagonal. A new update forV k

is found using the gradient projection method explained in
the previous section and the power matricesΣk are updated
similarly to the MISO iteration in (23). Due to the lack of
space, this approach will be not discussed in details.
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VII. Q OS OPTIMIZATION

The multi-user MISO QoS/fairness problem has already
been solved in the context of SINR optimization in [2].
The general MIMO case has been studied in [12] but only
for fixed receivers. Two problems have been investigated:
The first one consists of minimizing the total transmission
power while satisfying a set of SINR constraints. The second
one seeks to maximize the jointly achievable SINR margin
under a total sum power constraint. We are interested in
achieving different QoSs among the users rather than among
subchannels separately. The user-wise QoS formulation is
especially attractive if the subchannels of each individual user
are jointly encoded and decoded. A possible metric for this
problem is the mutual informationIk, which can be tightly
related to the users’ MSEs by means of the approximation

Ik = −log2|Ek| ' Bklog2(Bk/εk), (27)

where we used the arithmetic-geometric sum inequality (for
the eigenvalues ofEk). A strict equality holds forBk = 1.
Thus, for the QoS/fairness problem, we useBk

εk
− 1 as the

metric which is identical to the SINR in the single-stream
case. We formulate the power minimization problem (28) and
power assignment problem (29) as follows:

min
{P 1,...,P K}

∑

ktr(P kP H
k ) s.t.: Bk

εk
− 1 ≥ γk, ∀k (28)

max
{P 1,...,P K ,γ0}

γ0 s.t.:
∑

ktr(P kP H
k ) ≤ Ptr, and

Bk

εk
− 1 ≥ γ0γk, ∀k,

(29)

where γk, k = 1, . . . , K are given. Although these prob-
lems are non-convex, we note that the KKT conditions are
sufficient. Consequently, they can be solved using nonlinear
programming methods. First, we derive a fixed point iterative
solution for the MISO case, which is numerically more
efficient than the one in [2] and prove its convergence. Then,
an algorithm for the general MIMO case is proposed. By
means of our approach, it is possible to guarantee fairness
not only among the users, but also among all subchannels.

A. QoS fixed point solution for MISO (Bk = 1 ∀k)

1) Power minimization problem (28):It can be easily
seen that the constraints in (28) are fulfilled with equality,
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Fig. 4. Convergence of the MISO sum-MSE minimization algorithm; M = 3

transmit antennas,K = 3 users, SNR = 6dB.

otherwise we could decrease the powerpk related with
inactive constraints and thus decrease the objective [2], [12].
Therefore, the optimal solution is given by

1/εk − 1 = γk, ∀k. (30)

From Section IV we know that, the optimal receiver is the
MMSE receiver (Wiener filter) and that the MMSE of each
user has then the following form (see Eqn. 12 and Eqn. 21):

εk =
1

1 + p2
khH

k R−1
k hk

. (31)

With the QoS constraints in (30) and the MMSE in (31), we
get a system of non-linear equations:

p2
k =

γk

hH
k R−1

k hk

= fk({p2
i , i 6= k}). (32)

Obviously, this a fixed point problem. The functionsf =
{fk} can easily be shown to satisfy the condition of [13], i.e.,
they are positive, monotone increasing, and concave (see the
Jacobian off in Eqn. 35). Thus,f has at most one fixed point,
i.e., there is at most one solution. For the caserank(H) = K,
whereH = [h1, · · · , hK ], there is always a unique solution
(see [12]).

Assuming that the problem is feasible, i.e., there is a
unique solutionp̄2

1, . . . , p̄
2
K , we desire to solve this system

using a fixed point technique (also known as Picard-iteration
method or direct iteration method). This method generates
new updatesp(ℓ+1),2

1 , . . . , p
(ℓ+1),2
K by evaluating the functions

with their old argumentsp(ℓ),2
1 , . . . , p

(ℓ),2
K . In other words, the

fixed point iteration for our problem is

p
(ℓ+1),2
k =

γk

hH
k R

(ℓ),−1
k hk

=
γkp

(ℓ),2
k

1

ε
(ℓ)
k

− 1
. (33)

For the starting point, we usep(0),2
k = fk(0, . . . , 0) =

γkσ2
n

hH
k

hk
.

This fixed point method is summarized in Algorithm 3. The
non-feasibility of the problem is detected by checking if the
sum power exceeds a maximum powerPmax. We see that
this algorithm needs only an inverse per iteration, all other
computations have a lower order of complexity.

We now prove that this fixed iteration is locally contractive
and thus converges. If the problem is feasible, i.e., there exist



Algorithm 3 MISO Power Minimization Algorithm

1: Initialize: p
(0)
k ←

√

γkσ2
n

hH
k

hk
∀k, ℓ← 1

2: repeat
3: P (ℓ)←diag{p(ℓ)

k }Kk=1

4: E(ℓ)←
(

I + 1
σ2

n
P (ℓ)HHHP (ℓ)

)−1

5: p
(ℓ+1)
k ←

√

γkE
(ℓ)
k,k

1−E
(ℓ)
k,k

p
(ℓ)
k , ∀k

6: ℓ← ℓ + 1
7: until

∣

∣

∣
p
(ℓ+1),2
k − p

(ℓ),2
k

∣

∣

∣
< ǫ, ∀k or

∑

k p
(l+1),2
k > Pmax

8: G← PHH
(

HP 2HH + σ2
nI
)−1

9: Compute the downlink transceivers using the up-
link/downlink transformation (5)

a unique fixed point̄p2
k = fk(p̄2

1, . . . , p̄
2
K), and the starting

point is chosen sufficiently close to the fixed point, then the
following condition is sufficient to guarantee the convergence:

ρ(J̄) = sup{|λ| : λ eigenvalue of̄J} < 1. (34)

ρ is the spectral radius of the Jacobian matrixJ̄ of f evaluated
at the fixed point. To verify this, we calculate the Jacobian
matrix:

Jk,i =
∂fk

∂(p2
i )

=

{

γk
h

H
k R

−1
k

hih
H
i R

−1
k

hk

(hH
k

R
−1
k

hk)2
> 0 if k 6= i

0 else,
(35)

which means that everyfk is increasing in each argument
pi, i 6= k. Evaluating the Jacobian at the fixed point we obtain
for the off-diagonal elements by means of (32)

J̄k,i = p̄2
k

hH
k R̄

−1
k hih

H
i R̄

−1
k hk

hH
k R̄

−1
k hk

. (36)

To prove the convergence we make use of
Theorem 3 (Perron-Frobenius Theorem, 1912 [14]):

If all elements ai,j of an irreducible matrix A are
nonnegative, thenR = minθ Mθ is an eigenvalue ofA
and all the eigenvalues ofA lie on the disk |λ| ≤ R,
where, if θ = [θ1, . . . , θK ]T is a set of nonnegative
numbers (which are not all zero simultaneously),
Mθ = inf

{

µ : µθk ≥
∑K

j=1 ak,jθj , 1 ≤ k ≤ K
}

, and

R = minθ Mθ = ρ(A) is the biggest eigenvalue and also
the spectral radius ofA.

For θ we use the vector̄θ = [p̄2
1, . . . , p̄

2
K ].

K
∑

i=1

J̄k,ip̄
2
i =

p̄2
k

hH
k R̄

−1
k hk

hH
k R̄

−1
k (
∑

i6=k

p̄2
i hih

H
i )R̄

−1
k hk =

p̄2
khH

k R̄
−1
k (I − σ2

nR̄
−1
k )hk

hH
k R̄

−1
k hk

=

(

1− σ2
n

hH
k R̄

−2
k hk

hH
k R̄

−1
k hk

)

p̄2
k,

(37)
where the last step follows from the definition ofRk (see
Eqn. 11). We obtain:

Mθ = inf

{

µ : µp̄2
k ≥

(

1− σ2
n

hH
k R̄

−2
k hk

hH
k R̄

−1
k hk

)

p̄2
k, 1 ≤ k ≤ K

}

= sup

{

1− σ2
n

hH
k R̄

−2
k hk

hH
k R̄

−1
k hk

, 1 ≤ k ≤ K

}

< 1.

(38)
Thus convergence is guarateed, asρ(J̄) = minθ Mθ < Mθ̄.

Algorithm 4 MISO Power Allocation Algorithm

1: Initialize: p
(0)
k ←

√

Ptr
γk

hH
k

hk
/
√

∑

i
γi

hH
i

hi
∀k, ℓ← 1

2: repeat
3: P (ℓ)←diag{p(ℓ)

k }Kk=1

4: E(ℓ)←
(

I + 1
σ2

n
P (ℓ)HHHP (ℓ)

)−1

5: γ
(ℓ+1)
0 ← Ptr/

(
∑

i

γiE
(ℓ)
i,i

1−E
(ℓ)
i,i

p
(ℓ),2
i

)

6: p
(ℓ+1)
k ←

√

γkγ
(ℓ+1)
0 E

(ℓ)
k,k

1−E
(ℓ)
k,k

p
(ℓ)
k ∀k

7: ℓ← ℓ + 1
8: until

∣

∣

∣
p
(ℓ),2
k − p

(ℓ−1),2
k

∣

∣

∣
< ǫ, ∀k

9: G← P HH
(

HP 2HH + σ2
nI
)−1

10: Compute the downlink transceivers using the up-
link/downlink transformation (5)

2) Power allocation problem (29):For the same reasons as
in the previous subsection, the constraints in (29) are fulfilled
with equality. Therefore, we can adjust the previous algorithm,
so thatγ0 is determined iteratively to satisfy the sum power
constraint, i.e.,

γ
(ℓ+1)
0 ← Ptr/

(

∑

i

γiε
(ℓ)
i

1− ε
(ℓ)
i

p
(ℓ),2
i

)

(39)

The powersp2
k are then updated in a similar way as in the

power minimization problem. The resulting Algorithm 4 also
converges, since the projection on the hypersphere with radius
Ptr is a non-expansive operation.

B. QoS Iterative Solution for MIMO

As stated in the beginning of this section, we define the
QoS problem user-wise, since it is easier to tackle then.
Nevertheless in some applications it might be important to
assure different SINR constraints among the streams. We
show that under a user-wise QoS solution, some degrees of
freedom always remain for each user in order to achieve
restricted QoS constraints among its streams. In fact, user
k can multiply its precoderP k with a unitary matrixUk

from the right side without any influence on the other users.
We see from (12) that this operation conserves the trace and
the eigenvalues of the error covariance matrixEk, but its
diagonal elements will be changed. In particular, this rotation
matrix Uk can be chosen such thatEk has identical diagonal
elements (fairness). An algorithm that computes such a matrix
Uk is given in [15]. The same observation was done for the
single user case in [16].

However, the distribution of each user’s MSE on its streams
cannot be done arbitrarily. The maximum”unfairness” that
can be achieved is given by the eigenvalues ofEk. This is
a result of the Schur-Horn theorem [17] stating that a matrix
with given eigenvaluesλ and diagonal elementsd can be
constructed if and only ifλ weakly majorizesd. In other
words (ascending order sortedλj and sorteddj assumed now)

K
∑

j=i

λj ≤
K
∑

j=i

dj , ∀ 1 ≤ i ≤ K. (40)

We see that the solutions of (28) and (29) satisfy only the first
equation of (40) wherei = 1. Therefore it is a necessary con-
dition for the stream-wise QoS problems but not a sufficient



one. For the fairness problem, both formulations (user- and
stream-wise) are equivalent except that we need to do compute
the rotation matrixUk explained above. Allocating different
MSEs for the individual streams lying between maximum
’unfairness’ and complete ’fairness’ can be achieved by the
generalized Bendel-Mickey algorithm from [18].

Now, we derive an iterative solution for the power assign-
ment problem (29) with a sum-power constraint. As stated
earlier the first order conditions are sufficient, i.e., there is
only a single local minimum which is the global optimum.
The proof of this proposition is omitted due to the lack of
space. Now, the KKT conditions for the problem (29) read
as:

P k
!
= HH

k T−1(wkT − S)T−1HkP k,

εk ≤
Bk

1 + γ0γk
, ∀k, and

tr(
∑

k

P kP H
k ) ≤ Ptr,

(41)

where S is defined in (15). We see the similarity to the
weighted sum-MSE minimization problem in (14). But now,
the scalarswk are Lagrangian multipliers, that must be
determined, and are not fixed parameters as in (14).

The proposed iterative solution in Algorithm 5 for solving
this problem works as follow. The filtersP k are decomposed
into V kΣk, whereV k has unit norm columns andΣk is
diagonal. For fixedV k, Line 4 updates the power matrices
similarly to the MISO iteration in Algorithm 4. Next, assum-
ing V kΣk to be fixed, the Lagrangian multiplierswk are
computed by solving the linear system of equation in (41); a
new update forV k is then found using the gradient projection
method explained previously (Lines 5 to 13). Since both steps
are contractive as we have seen in the previous sections, the
algorithm converges to the optimum.

VIII. S IMULATION RESULTS

In our channel model, the entries ofHk are complex-valued
realizations of independent zero-mean Gaussian random vari-
ables. For each channel realization, 100 16QAM modulated
symbols are transmitted, and the bit error rates are averaged
over 1000 channel realizations.

In Fig. 5, we compare the sum-MSE transceiver with the
TxWF of [1], where all users apply the same scalar at the
receivers. We choose a MISO system (one antenna per user),
whereK = 3 users are served byM = 3 transmit antennas.
Furthermore, the user’s channels do not have the same average
power, i.e., E[‖h3‖22] = 9E[‖h2‖22] = 100E[‖h1‖22], as for
identical average powers only small gains can be achieved by
extending the receivers toward different scalars. The stronger
user (cross marker) dramatically benefits, whereas the weaker
user (diamond marker) sees only few improvement. Thus the
overall efficiency of the system slightly improves.

The comparison between the performance of the sum-MSE
and the QoS transceivers is shown in Fig. 6 for a three user
MIMO system (16QAM), where theaveragechannel power
of user 2 and 3 is four times stronger than that of user 1.
The QoS transceiver features fairness among all subchannels
(γk = 1, ∀k → minimizing the maximumεk,q), thus it
assures equal BERs to all users (dashed lines). The sum-MSE
transceiver has a better overall efficiency for low and middle
SNR, but user 1 with the weak channel is disfavored compared
to the others (solid lines). Nevertheless, the QoS transceiver,

Algorithm 5 MIMO Power Allocation Algorithm

1: Initialize: σ
(0),2
k,q ← Ptr

P

Bk
, V

(0)
k (1 : Bk, 1 : Bk) ← IBk

,

ComputeE
(0)
k with (12), ∀k∀q, d← 2, ℓ← 0

2: repeat
3: ℓ← ℓ + 1

4: γ
(ℓ)
0 ← Ptr/

∑

k,q
γkE

(ℓ−1)
k

(q,q)

1−E
(ℓ−1)
k

(q,q)
σ

(ℓ−1),2
k,q ,

σ
(ℓ)
k,q←

√

γkγ
(ℓ)
0 E

(ℓ−1)
k

(q,q)

1−E
(ℓ−1)
k

(q,q)
σ

(ℓ−1)
k,q ,∀k, q (power allocation)

Σ
(ℓ)
k = diag{σ(ℓ)

k,q}Bk

q=1

5: T (ℓ) ← σ2
nI +

∑

k HkV
(ℓ−1)
k Σ

(ℓ),2
k V

(ℓ−1),H
k HH

k

6: Computew
(ℓ)
k andE

(ℓ),temp
k with (41) and (12)

7: S(ℓ) ←
∑

k w
(ℓ)
k HkV

(ℓ−1)
k Σ

(ℓ),2
k V

(ℓ−1),H
k HH

k

8: Gradient Update forV (ℓ)
k with fixed Σ

(ℓ)
k , w

(ℓ)
k (∀k):

δV
(ℓ)
k ←HH

k T (ℓ),−1(w
(ℓ)
k T (ℓ)−S(ℓ))T (ℓ),−1HkV

(ℓ−1)
k

δv
(ℓ)
k,q ←

δv
(ℓ)
k,q

‚

‚

‚
δv

(ℓ)
k,q

‚

‚

‚

2

, ∀q (scaled gradient)

9: V
(ℓ)
k ← 1

dδV
(ℓ)
k + V

(ℓ−1)
k , v

(ℓ)
k,q ←

v
(ℓ)
k,q

‚

‚

‚
v

(ℓ)
k,q

‚

‚

‚

2

, ∀q

10: ComputeE
(ℓ)
k , ∀k

11: if
∑

k w
(ℓ)
k tr(E(ℓ)

k ) >
∑

k w
(ℓ)
k tr(E(ℓ),temp

k ) then
12: d← d + 1; goto line 9
13: end if
14: until desired accuracy forEk is achieved
15: GDL

k ← 1
αk

ΣkV H
k , P DL

k ← αkT−1HkV kΣk

whereαk ←
√

wkPtr
P

tr(wkΣkV H
k

HH
k

T −2HkV kΣk)

which guarantiesfairnessamong all streams, outperforms the
sum-MSE transceiver for high SNR, due to the fact that the
performance of the system in this SNR range strongly depends
on the stream with the worst SINR. The choice of the optimum
design thus depends on the application and the SNR range. In
Fig. 7, we compare our sum-MSE transceiver with existing
MIMO approaches in the literature, in particular the block
diagonal approach (also known aszeroforcingZF) [19], [20].
Note that the algorithm in [19] requires that the number of
transmit antennas must be greater than or equal to the total
number of receive antennas in order to satisfy the null-space
criterion. Therefore, we chose a system withM = 6 transmit
antennas andK = 3 users withNk = 2 receive antennas and
Bk = 2 streams each. It is not surprising that the sum-MSE
THP clearly outperforms thezeroforcingtransceiver. The main
advantage of the sum-MSE design is also its robustness with
respect to rank deficient channels.

IX. CONCLUSION

We addressed the problem of jointly designing the linear
transmitter and receivers for a multi-user MIMO system.
Thanks to a general form of duality between downlink
and uplink, we formulated all optimization problems in the
equivalent uplink, and solved the KKT conditions iteratively.
Several design criteria have been considered. Examples arethe
weighted sum-MSE minimization, the QoS, and thefairness
optimization problems, for which we have provided algorith-
mic solutions. The choice of a certain criterion depends on the
properties of the channel and the application. The presented
algorithms have good convergence properties compared to al-
ternating optimization of transmitter and receivers. Moreover,
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Fig. 6. QoS and sum-MSE design;M = 8 transmit antennas,K = 3 users,
Nk = 2 receive antennas,Bk = 2 streams,∀k; averagechannel power of
user 2 and 3 is four times that of user 1.

they show interesting properties from an implementation point
of view. Thanks to the joint optimization of the transmitters
and receivers, our transceivers, which have no requirements on
the dimensions of system (as opposed to the ZF approaches),
outperform the existingzeroforcingsolutions and offer excel-
lent performance in different scenarios of the MIMO channel.
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