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Abstract

This thesis presents a novel virtual reality (VR) training concept that integrates the
trainer or the trainer model into training sessions. As an extension to conventional VR
training systems that rely only on realistic interaction, the students are given the chance to
be corrected by the trainer in a multi-user schema. The trainer is connected to the same
virtual environment as the student via an individual haptic display. As an alternative,
task performing skill of the trainer is captured with hybrid identification methods and
the trainer is replaced with the identified model allowing for a single-user training schema.
Two different identification approaches are successfully applied and presented in this thesis:
The weighted K-means clustering-based method and the stochastically switching dynamics
method. Observations and corrections of the trainer or trainer model are multi-modal, i.e.
can be represented in the form of visual, acoustic and/or haptic signals. The combination
of these possible signals allows for the definition of different training strategies. Enhancing
the training systems with extra features that are not available in a real task is investigated
as well. Two different VR scenarios are developed as test-beds: A bone drilling medical
training system and a push button system. The efficiency of the different training strategies
is checked through a series of user tests. To assess the training results objectively, a metric
depending on the distance between the trainer and student in n dimensional Euclidean
space is introduced and applied. The results validate the efficiency and usability of the
training strategies and hybrid identification methods.

Zusammenfassung

Vorliegende Dissertation stellt ein neuartiges Virtual Reality (VR) Trainingkonzept vor,
das den Trainer oder ein Modell des Trainers in eine Trainingssitzung integriert. Als
Erweiterung zu klassischen VR Trainingssystemen, die nur auf realistischer Interaktion
basieren, haben die Studenten die Möglichkeit vom Trainer bzw. vom Trainermodell ko-
rrigiert zu werden. In sogenannten Multi-User Szenarien sind Trainer und Schüler durch
zwei individuelle haptische Displays mit der virtuellen Umgebung verbunden. Die senso-
motorische Fähigkeit des Trainers wird mittels der Methode der hybriden Identifikation
erfasst. In dieser Arbeit werden zwei unterschiedliche Ansätze vorgestellt und erfolgreich
angewendet: Die sogenannte gewichtete K-means Clustering Methode und die stochastisch
umschaltende Dynamik Methode. Nachdem das hybride dynamische Modell des Trainers
entworfen worden ist, besteht die Möglichkeit den Trainer durch das Modell zu ersetzen.
Beobachtung und Korrektur durch den Trainer bzw. das Modell erfolgen multimodal,
d.h. in Form von visuellen, akustischen sowie haptischen Signalen. Die Kombination
dieser Signale ermöglicht die Konzeption unterschiedlicher Trainingsstrategien. Desweit-
eren wird die Erweiterung der Trainingssysteme durch zusätzliche Funktionen, die in reellen
Systemen nicht existieren, diskutiert. Zwei VR-Szenarien werden als Testumfeld verwen-
det: Das Bohren von Knochen im Rahmen eines medizinischen Trainingssystems sowie
das Betätigen virtueller Knöpfe. Die Wirksamkeit der Trainingsstrategien wird durch eine
Reihe von Benutzerstudien untersucht. Um die Ergebnisse objektiv zu bewerten, wird
eine Evaluierungsmethode eingeführt, die auf einem Maß im n dimensionalen Euklidischen
Raum basiert, das die Distanz zwischen Trainer und Schüler beschreibt. Die Ergebnisse
bestätigen die Effizienz und Anwendbarkeit der in dieser Dissertation vorgestellten Train-
ingssysteme.

iii



“The mythical story of Icarus and Daedalus is usually related to a warning about flying
too high because the heat of the sun would melt the glue used to hold together the feathers

of the wings - this is probably not a correct interpretation of the warning. The more
probable warning was about the danger of flying too high before adequate training...”

Ray L. Page
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Notations

Abbreviations

AABB Axis-Aligned Bounding Boxes
BD-MTS Bone Drilling Medical Training System
BST Binary Search Trees
DoF Degree(s) of Freedom
EE-CS End-Effector Coordinate System
FD Force Demonstrating Method
FEM Finite Element Modeling
FVL Force/Velocity Leading Method
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HIP Haptic Interface Point
HIDP Hybrid Identification Problem
HMM Hidden Markov Model
HVO Haptic Visual Observation
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W-CS World Coordinate System
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Conventions

Trainer and Expert are used as synonyms.
Trainee and Student are used as synonyms.
Scalar shown human - virtual reality interaction parameters underline that the interaction
is possible or assumed to be 1D.

Scalars, Vectors, and Matrices

Scalars are denoted lower case letters in italic type. Vectors are denoted by lower case
letters in boldface type, as the vector x is composed of elements xi. Matrices are denoted
by upper case letters in boldface type, as the matrix A is composed of elements aij (i-th
row, j-th column).
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1 Introduction

1.1 Problem Definition and Motivation

It is of crucial importance to enhance theoretical teaching with practical applications in the
education of occupations that require high sensorimotor skills. However, there are many
occupations that offer limited practicing chances. The only way to acquire experience in
these fields is to carry the real tasks through, depending on the theoretical knowledge
and the observations. In some cases, this is a normal procedure to train, not bearing any
potential problem. If one is interested in producing earthenware pottery, after getting
instructions and observing a skillful pottery producer, nothing more is needed, but baked
clay and a turntable. It is highly unlikely that the pottery making student puts any life
into danger, or causes any drastic environmental, physical, and/or financial damages.

Nevertheless, this assumption is not valid if the human is training for medical operations,
becoming a pilot, or carrying out safety-related tasks in a nuclear plant etc. In such
cases, any small mistake may cause fatal results, not mentioning other possible damages.
Therefore, it is absolutely essential to offer alternative training possibilities in these areas.
One method to satisfy this need is to create so called simulators, which try to replicate the
real cases with high-fidelity to the original task. The history of simulators starts with flight
simulators, and dates back to the beginning of the 20th century. The first examples, like
“Sanders Teacher” and “Eardly-Billing Oscillator” were replicas of complete aircrafts that
were mounted on a universal joint and facing into wind that excites pitch, roll, and yaw
movements [45]. Today’s simulators exhibit a broad range from system trainers for home
computers to the 6 degrees-of-freedom motion simulators, in which the flight equations of
motion and realistic aerodynamic forces are implemented in a digital environment [93].

Beyond question, an important field with a need and potential for simulators is medicine.
A classical way of surgery training is to observe experienced surgeons during operations.
Rembrandt’s famous painting “The Anatomy Lesson of Dr. Nicolaes Tulp” dated 1632,
shows how the expert, Dr. Tulp, explaining human anatomy on a cadaver to his students.
It is also possible to assume that the scene from the painting shown in Figure 1.1 is an
operation conducted on the arm of a patient by an expert while students are observing him.
This observation-based method is still valid today and undoubtedly useful for the novices.
However, students cannot acquire any hands-on experience only through observations.
Especially, if one considers that the word “surgery” derives from Greek “cheirourgia”, and
means “hand work”, the deficiency of the observation method becomes obvious. Thus,
experiments on cadavers or animals, whose roots date back to ancient Egypt, become an
important replica for real operations. Nevertheless, strict ethical rules in many countries
limit such experiments or even completely forbid them. Additionally, the characteristics
of cadaver or animal tissue differ from the characteristics of a living human body, i.e.
the reliability of surgery training on cadavers or animals is questionable. Thus, artificial
human organs and mock-ups have been considered as alternative training tools. Today,
there is a large market for such mock ups varying in quality, reliability and price. The
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high quality types are mostly used by experienced surgeons to plan important operations.
Allowing students to practice operations with such models is not affordable. Moreover,
such mock-ups lack modularity, i.e. different pathological and patient specific cases cannot
be demonstrated [99].

Figure 1.1: Rembrandt (1606-1669), The anatomy lesson of Dr. Nicolaes Tulp, 1632. Canvas,
169.5 × 216.5 cm, Royal Picture Gallery Mauritshuis, The Hague.

Starting from the 1980’s, a new dimension was brought to the medical training: Virtual
Environments (VEs). Simulating a surgical case and human organs in digital environments
opened new doors in the education of medical operations. While the first examples relied
only on realistic visualizations, starting from the 90’s multi-modal Virtual Reality (VR)
systems began to appear. At that time, the real breakthrough came with the inclusion of
haptic feedback in the VR systems. Therewith, it became possible to interact with the
virtual organ models via force feedback devices, and realize a surgical operation in a VE.
In the last decade, researchers have intensively been working on creating multi-modal VR
systems that exhibit high-fidelity force, visual and acoustic feedback concerning the surgery
case in focus. It is still a challenging research area that yields many interesting problems
such as modeling and simulating human organ deformations, calculating response forces
of organs when they are interacted with, fast and reliable collision detection and haptic
rendering techniques etc. The main aim of all these works is to make such simulators
as realistic as possible, so that the students can transfer the experience they gain from
simulators to real cases. Additionally, experienced surgeons may prepare themselves for
extraordinary surgical cases [99].
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1.1 Problem Definition and Motivation

State of the art in medical simulators and VR training systems is presented in Section 1.2.
To this end, it is necessary to clarify the terminology and underline the difference between
a simulator and a training system. A simulator is a mock-up or digital environment
that replicates original tasks as realistically as possible. On the other hand, a training
system concept includes a simulator, but additionally pays special attention to how to
train a novice, and focuses on the issues such as training strategies, skill transfer from an
expert and objective evaluation of the student’s skill improvement.

In this sense, a large amount of previous works in the area should rather be called
simulators. Considering the potential risks of gaining experience directly on real tasks, it
is straight-forward to conclude the necessity and the importance of the practical training
on VR simulators before performing the real tasks. In our work, the key question that
we raise is whether or not it is sufficient to have a VR system that provides realistic
interactions for an adequate training. In other words, does a simulator suffice for a novice
to train for real tasks? Our short answer to this question is “no” and the research focus
lies behind this answer. Undoubtedly, it is useful to have a simulator for a certain task
and experience the interaction awaiting in the real operation. However, in this case, there
is little chance to learn how the correct operation should be carried out. Thus, it is
necessary to have a tutoring structure to observe, warn, correct and lead the student to
perform the task in a correct way. Especially in medicine such a tutoring structure is
very important. Consequently, a VR training system must firstly aim at teaching students
how to realize the task, and then check the skill improvement via realistic interactions.
Thus, we focus on creating a training system, introducing novel training strategies and
performance evaluation methods. A special focus in this thesis is on force skill training,
which is a barely investigated topic.

Beyond question, an important factor during practical trainings is the trainer. How the
trainer himself/herself realizes the task plays a key role, since a well-trained student should
be realizing the task on the same level as the trainer. This is an underestimated point,
and neglected in currently available training systems. Few works concern multi-user VR
training systems, in which the trainer is connected to the same virtual scene as the student
to teach him/her [86,89]. However, none of the research groups has established a detailed
investigation of methods to correct and teach the student. In this work, we present a
general multi-user VR training concept that offers many different ways of interaction be-
tween the student and the trainer. Moreover, we introduce a unique training concept that
includes not the trainer himself/herself, but the model of him/her. Previously, there have
been investigations on modeling human skill for programming-by-demonstration applica-
tions with robots, or for robots to assist and to cooperate with humans [65, 116, 121,138].
However, no previous work is known to us that integrates trainer skill models into the
VR training systems. Moreover, many previous human skill modeling efforts were based
on stochastic methods, using hidden Markov models (HMMs) [53, 136] or neural networks
(NNs) [7, 87] to represent human skill. Few deterministic modeling approaches exist in
the literature, but they tend to be heuristic [55, 65, 81]. In this work, we present hybrid
dynamic modeling of the human skill and its integration into the VR training systems.
Although it is not discussed in the frame of this thesis, as an add-on, such a structure has
the potential of storing the skill of an extraordinarily skillful trainer to be transfered to
future generations.

Inspired by Dr. Tulp’s anatomy lesson, our concept for VR training systems is depicted
in Figure 1.2. The students are interacting with the virtual human model via a haptic
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Figure 1.2: Training in VEs concept including the trainer or the model of the trainer, inspired
by Dr. Tulp’s Anatomy Lesson.

display, which is operated by a student to control the virtual medical tool in the virtual
scene. When the tool and the human organ collide, the student starts realizing a surgical
task, during which he/she feels the appropriate forces, sees matching visual changes, and
hears the suitable sound. In other words, the interaction is multi-modal, and as realistic as
possible. At the same time, the trainer, Dr. Tulp himself or his model is integrated into the
system. In the first case, a multi-user scheme is constructed so that the trainer connects
to the training environment via his individual haptic display. He has a chance to observe
and correct the student haptically. If his model is used, the same observation/correction
task is then realized by the model.

Note that our training system concept includes, but is not limited to medical training
applications. It aims to serve as a basis for any VR training system that incorporates force
skill training. Our application examples presented in this thesis are a virtual push-button
task teaching and a bone drilling medical training system. The former one allows for testing
different modeling methods and training strategies, whereas the latter one, together with
verifying the success of modeling and training strategies, offers a setup that allows for
assessment of the skill improvement of students by proposed methodologies.

1.2 State of the Art

1.2.1 Medical Simulators with Haptics

Developing a complete VR simulator is a complex process that requires interdisciplinary
work. The involved disciplines range from medicine, biomechanics, computer science to
mechatronics, control engineering, psychology and psyhophysics. Therefore, the develop-
ment process is a research team work, combining diverse professions.
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1.2 State of the Art

Over the last decade there has been a growing interest in simulating the surgeries in
a VE. As a result, grouping and classifying the previous and on-going research is rather
challenging. In a general manner, we divide the simulators into three groups based on the
surgery technique that was simulated: Minimally Invasive Surgery (MIS) simulators, Open
Surgery (OS) simulators, and cutting / suturing simulators.

There exist a significant amount of active research work to create MIS simulators.
Kühnapfel created the 3D graphical simulation program KISMET in 1991 [66]. Using
KISMET, Kühnapfel et al. developed a VR endoscopic training simulator including de-
formable tissue simulation [67]. The simulation is applied in gynecology and laparoscopy.
Later on, the simulator was further refined by paying the attention to elastodynamically
deformable tissue models and adding the pulse palpation feature with a force feedback
device [68]. Basdogan et al. developed a similar surgical training concept [11]. One of the
recent works belongs to Papadopoulos et al. and concerns a urological operation training
simulator [94]. Since MIS simulators introduce interaction with soft tissues, there are many
research works incorporating deformable body simulations [9,16,35,129]. In Chapter 2, we
will return to this point and give an insight into deformable object simulation in VEs.

Open Surgery (OS) procedures are much more complex to simulate than MIS proce-
dures. As a result, there are fewer works dealing with OS simulation in comparison with
MIS simulation. The exception is in orthopedy that yields many intriguing operations to
simulate which are non-invasive. Sourina et al. describe a pipeline from a CT scanner,
3D visualization of the VE, collision detection through a Unix-workstation to the personal
computer for a virtual orthopedy surgery training system [114]. Riener et al. introduce
a knee simulator for training by using a bio-mechanical model of the knee [51, 52, 100].
Agus et al. work on bone dissection and they present haptic and visual simulation of the
process [3]. They mainly focus on reliable bone-burr interaction modeling. Some other
works concerning orthopedical operation simulation are [58, 110].

Simulation of the cutting/suturing procedures deserves special attention, because of
the topology change in the cut/sutured object. It means that the stiffness matrix of the
deformable object model has to be adapted in real-time. Moreover the change in the
topology of the object has to be visualized. Two example systems are worth consideration:
Webster et al. present a prototype haptic suturing simulator [131], whereas Okamura
et al. discuss a haptic tissue cutting problem using their unique device haptic scissors
[133]. Berkley et al. present a new real-time methodology based on linear finite element
analysis that is appropriate for a wide range of surgical simulation applications, especially
for suturing procedures [13]. The main advantages of their methodology are high model
resolution, low preprocessing time, unrestricted multi-point surface contact, and adjustable
boundary conditions.

Some other works that do not fall into the categories described above are injection
simulators [25, 122], and the work of Obst et al. about a VR training system for baby
delivery help with haptic feedback [91].

Above mentioned state of the art should be considered as some chosen examples of the
latest medical simulators. There are many others to be found in the literature. In Chapter
2 and 3, we refer to some of these works. A detailed survey on surgical simulation can be
found in [74]. Multi-modal VR medical training systems and their main components were
discussed in [99]. For information on robotics for surgery and tele-surgery applications,
refer to [78, 101].
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Note that although many of the above mentioned works contain the word “training
system” in their title, they do not present detailed investigation about the components of
surgical skills and training appropriate to these skills. Thus, following our terminology,
they shall be called simulators.

1.2.2 VR Training Systems with Haptics

Although visual feedback has been accepted to be dominant in comparison with haptic
feedback, Ernst et al. underline that the dominance is defined by the statistical reliability
of the available sensory information. This definition suggests that if the visual information
is less reliable to realize a task, than haptic cues play a more important role in motor skill
learning procedures [29]. Nevertheless, there are very few works concerning the role of
haptic feedback on training.

Jiang et al. investigate how to improve learning rates by haptic feedback for military
and emergency personnel. They indicate that VEs do not need to be entirely realistic for a
successful training. As in many other works, Jiang et al. also define a performance criterion
and compare the training result with and without haptic feedback. They underscore that
the personnel who trained with haptic feedback made fewer procedural errors [57].

One of the research efforts towards understanding the perceptual-motor skills and cogni-
tive process involved in a surgical operation is given by Tendick et al. [120]. In the context
of their training system for laparoscopic surgical skills, they indicate that it is essential
to study technical and training aspects simultaneously in order to develop a VE training
system. It was emphasized that the realism of the VE plays an important role, but under-
standing how surgeons perform tasks is no less important to develop training systems. In
their work, the surgical skill is divided into two groups: perceptual motor skills and spatial
skills. Simple VR scenarios are developed to train these skills. Another important issue
they underline is that trying to simulate complete surgical cases realistically is not possible,
moreover not necessary. Their idea is to create a training system only for critical steps of
a surgical procedure. This work was later on extended for tele-surgery [19]. Schijven et al.
introduce a basic surgical skill course [109]. Their work aims to train surgeons for particu-
lar psychomotor skills of an MIS procedure (laparoscopy). The authors mainly define some
criteria to evaluate the level of training. But they neither investigate a human-machine
interaction model, nor look for mathematical and generic training algorithms. Another
important work that has to be mentioned is from Hayward et al., who give a detailed anal-
ysis of haptic signals during surgical cutting. They also discuss measuring and displaying
techniques of haptic signals [43].

An important work on the role of haptics in training belongs to Feygin et al., who have
introduced the Haptic Guidance method, and investigated the role of haptic and visual
training comparatively on learning a complex 3D trajectory [38]. They define the haptic
guidance paradigm as “the physical guidance of the subject through the ideal motion by the
haptic interface, giving the subject a kinesthetic understanding of what is required”. The
results indicate that haptic guidance can improve performance, especially for the temporal
aspects of the task. However they have not discussed cases, when not only the motion
tracking, but force itself is to be trained. Also, they assume that the student does not
introduce any force himself/herself and freely allows to be guided by the reference haptic
signal. Prada et al. also implement haptic guidance, in which the trainees are guided in
a soft tissue cutting simulator by virtual fixtures to assist the training with graphic and
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haptic feedback [95]. The guidance is implemented by point-attraction type fixtures that
pull the avatar point to a special point to guide. As an extension, reactive type fixtures are
used as well, in which the fixtures only constrain movements, but there is no guiding. The
deficiencies mentioned above also exist in this example. Srimathveeravalli et al. introduce
a new strategy for providing haptic assistance when training for a motor skill in a VE [115].
Their method is based on haptic record and replay fashion. The first question they ask is
whether it is possible to capture the skill of an expert in this fashion and then transfer it
to a student. The authors record the haptic profile of an expert writing a letter in a local
Indian language called Tamil. Then, while a student writes the same letter, they compare
student’s haptic profile with teacher’s. The error between profiles is scaled and returned
to the student. This novel approach lacks some important relevant features: For each new
task new expert data needs to be recorded, moreover each expert might perform the task
in a different way, i.e. it is not possible to generate a common expert data. Moreover
the known problem of not being able to control force and position at the same time is
not referred to. It is assumed by the authors that the trainee and the expert have similar
haptic profiles, so that the force profile of the expert can be replayed without taking the
position trajectory into account. Since the haptic profiles are recorded on time axis, if the
student is slower or faster than the trainer in writing, following the trainer would not make
sense anymore. Yokokohji et al. have outlined several methods to show the correct force to
a trainee for a virtual task in a single-user training scenario [139]. They have recorded the
force and position information of an expert, and tried to replay them on a trainee using
different approaches. However, they did not obtain any clear result, which is probably due
to their application example.

All works referenced above investigate training strategies on single-user cases. Recently,
there has been an increasing research interest in multi-user virtual training environments.
The haptic guidance method has been implemented by a few researchers in a way that the
remote trainer guides the student via his/her haptic display. For example, Morris et al.
suggest a collaborative virtual training environment [86]. Their system allows two users
to connect with the surgical scene, where one of the users (the expert one) monitors the
performance of the other one (the trainee) and interactively provides feedback. A similar
architecture is proposed by Niemeyer et al. [89]. By using tele-robotics principles, they
enable a teaching surgeon to control a regular training procedure of a novice surgeon. Nev-
ertheless, in both of these works, the authors limit themselves to mentioning the existence
or the possibility of tele-haptic guidance. Unfortunately, no information is given on how
to realize it. Gunn et al. investigate the use of collaborative haptics for surgical training
as well [44]. In their work, two users, the teacher and the student, are located on different
continents. Their sampling frequency for force is around 400 Hz, and they claim that it
is sufficient. However, there is no evidence for this statement. The users had to fill in a
questionnaire which indicated that the remote teaching was found very good or excellent.
El-Far et al. discuss a tele-surgery multi-user training application in a collaborative VE,
but only a conceptual overview is given in this work [28]. The expert does not seem to
have a chance to affect the trainee haptically. Matsumoto et al. discuss network issues
and the problems concerning network latency for haptic collaboration in shared VEs [77].
Rodriguez et al. discuss the components and the necessity of a collaborative virtual train-
ing system that contains haptic feedback [103]. Rossi et al. have recently released a pilot
study on collaborative haptics [130] that enables haptic interaction of two users through
a virtual object, putting the focus on time delay compensation. One of the latest works
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of Morris et al., discuss haptic tutoring as a novel training strategy. This is the only pa-
per known to us, which discusses the difficulty of guiding both force and position at the
same time, and suggests a solution for this problem [85]. They bind the tool position of
the student to that of an instructor’s, and via a low-gain spring they added forces to the
playback forces. The method is very interesting, however, it is not discussed how to choose
the spring coefficient. The cognition of the student has not been validated either. Last but
not least, note that the student is passive in all haptic guidance based strategies, which is
a perceived drawback. Modeling of trainer skill is required as a part of our VR training
concept. Refer to Chapter 3 for the state of the art in human skill modeling.

1.3 Main Contributions and Outline of the Thesis

To bring our VR training concept into life, there are three main tasks to accomplish.
First, VR training scenarios have to be generated that incorporate realistic interactions.
Secondly, expert interaction with these VEs needs to be identified in order to establish a
trainer model. Last, but not least, training strategies, which aim at force skill transfer
from an expert or expert model to the trainee, have to be developed and implemented.
Figure 1.3 illustrates these main tasks and research focal points. Integration of these points
gives rise to the complete training system structure. Consequently, the organization of this
thesis is based on these centers of attention.

Creating

VEs

Human Skill
Modeling

Training in VE

Training
Strategies

Figure 1.3: The research triangle and the target.

Chapter 2 presents the fundamental software and control engineering works necessary
to generate a realistic VE. Some of the discussed issues are ray-based collision detection,
principles of physically deformable objects and a multi-user VR system structure to be used
for training purposes. Two VR applications, the bone drilling medical training system and
a push-button training system, and their key principals are introduced. These examples
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represent a test-bed for the developed skill modeling and skill transfer methods, and they
are referred to throughout the thesis.

In Chapter 3, a novel representation of trainer skill based on hybrid identification meth-
ods is introduced. A competent trainer undoubtedly plays an important role in skill train-
ing procedures. Thus, integrating a trainer into VR training systems is a desirable exten-
sion. Recently, there have been a few works that investigate these issues in the frame of
collaborative VEs as mentioned in Section 1.2. However, it is not always possible to assure
the existence of an expert during training - learning activities. Therefore, in this work, we
identify a hybrid dynamic model of the trainer, and integrate this model into the training
systems, as an alternative to integrating the trainer himself/herself. This novel approach
brings in many advantages. Since a multi-user scheme is not necessary anymore, hardware
costs are reduced by half. More importantly, the modeled skills of a late expert can be used
to train new generations. Likewise, extinct skills for specific tasks can be re-animated. It
should be added here that having a possibility to train alone would provide the student
with a more relaxed training environment. For hybrid identification of the trainer model,
two different methods, one based on weighted K-means data clustering and the other one
on stochastically switching principles are explained, compared with each other and ap-
plied to developed training systems. The identification methods need a proper regression
matrix having position, velocity and/or acceleration as parameters, and an output vector
that consists of measured force data. Having this information, the methods define the
number of discrete states, impedance model parameters for each state and the switching
conditions between the states. Thus, the trainer model is acquired as a set of switching
generalized impedances. To speed up the identification process and for having physically
interpretable clusters and discrete states, an intensity analysis is introduced. Additionally,
for the stochastically switching impedances method, a criterion depending on the minimum
model error is presented in order to define the optimal state sequence.

Chapter 4 summarizes broadly investigated force skill training strategies in VEs. Start-
ing with classical VR simulator structure, first it is discussed how to enhance such a
simulator in order to create a training system from it. In addition to visual and acous-
tic enhancement, a novel haptic enhancement principle is presented. This method should
be considered as haptic cues that warn the student haptically, if he/she deviates from
the force that should be applied. It is especially advantageous to train tasks, which do
not have reliable visual information and are realized by mostly relying on haptic sense
as in many surgical operations. Following enhanced training methodologies, attention is
paid to multi-user training schemes, in which the trainer and the student connect to the
same VR and interact with the VR and with each other through their individual haptic
displays. Three main training schemes are outlined: Haptic Visual Observation (HVO),
Force Demonstrating (FD) and Force/Velocity Leading (FVL). The first one enables an
expert to observe the student not only visually, but also haptically, whereas the second one
works mainly vice versa, i.e. the student observes the trainer. If one keeps in mind that
one of the main deficiencies in classical surgery training is the lack of haptic feeling when
observing an expert surgeon in an OP room, the developed strategies are very favorable.
The last one, FVL, aims at providing a kind of haptic tutoring to the student. An impor-
tant advantage of the method is that the student is active, i.e. he/she realizes the task
himself/herself. Thus, an important drawback of the haptic guidance based methods is
eliminated by the FVL method. Additionally, taking into account the difficulties to show
correct force and velocity of a task to a student synchronously, presented methods offer an
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interesting and new perspective in VR training. Afterwards, the usage of these schemes is
explained when instead of the trainer himself/herself, his/her model is integrated into the
training loop. Only few works discuss recording the force applied by an expert and later
on replaying them on students [115, 139]. However, there is no other work known to us,
which integrates the trainer model into the force skill training procedures. Last but not
least, an adaptiveness concept of the training structures depending on the reaction of the
student to the training signals is addressed in this chapter.

Chapter 5 is the integration of the concepts presented in Chapters 2, 3 and 4. This
integration allows a complete representation of our VR training concept. Following that,
organization of the user tests that were performed in order to assess the efficiency of the
concept, and their results are presented. An objective evaluation criterion depending on the
distance between the student and trainer in n dimensional Euclidean space is defined and
used to assess the results of the user tests. This method provides a consistent assessment
of the performance improvement of students. The user test results indicate the benefit of
using the proposed training methods comparatively.

A conclusion, main results and future work are represented in Chapter 6. In the ap-
pendix, other available VR applications and a GUI developed during this thesis work are
presented.
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2 Virtual Environments for Training

A virtual environment (VE) training system has to stimulate all necessary human sensory
modalities as realistically as possible, i.e. it has to be multi-modal. As it is given in
Figure 2.1, visual, acoustic, and haptic feedback are essential in many virtual reality (VR)
applications. In addition to them, some applications may require olfactory and gustatory
modalities to be excited as well. Immersion of the users into the VE is only then possible,
when all this information is provided to the users with high-fidelity.

Since there is an inevitable trade-off between the realism of the created VE and the com-
puting time, it is essential to create high-fidelity approximations of real physical behav-
iors. Especially for force feedback such approximations are necessary because of the high
refresh-rate needed (ca. 1 kHz). Simulation of deformable objects, such as human organs
for medical simulators, requires simplified calculations, because the high non-linearities and
complex continuous models of the organs cannot be processed in real-time by currently
available computers.

This chapter aims at presenting general principles to create high-fidelity VEs, putting the
focus on collision detection and haptic rendering issues. Following the state of the art on
these issues, their principles are summarized in Section 2.2. Section 2.3 gives an overview
of our multi-user VE concept, which has crucial importance for collaborative task realiza-
tions and multi-user training strategies. In the frame of this work a Bone Drilling Medical
Training System (BD-MTS) is developed. Section 2.4 explains the fundamental compo-
nents of this training system, which is used as the main application scenario throughout
this thesis. Another training scenario, a push-button training system, is briefly introduced
in Section 2.5.

Creating

VEs

Visualization

Haptic
RenderingCollision Detection

Collision Response

Acoustic
Feedback

Figure 2.1: Main modalities and rendering issues explored in this work to create a VE.
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2.1 State of the Art

2.1.1 Collision Detection

The state of the art in collision detection is considered only with respect to haptic rendering
issues. Therefore, computer graphics works from the late 70s concerning the collision of
3D objects are not taken into account.

Since the famous God Object Method [142] was published by Zilles and Salisbury in
1995, collision detection and haptic rendering in a VE have been widely investigated by
many researchers. The God Object Method implies a point that represents the user’s hand
in the VE. In this method, the fact that the avatar is just a point causes some drawbacks
(e.g. avatar falls into gaps between polygons of the collided object). Consequently, the God
Object is redesigned as a sphere and called virtual proxy by Khatib et al. in 1997 [106,107].
However, in many real applications, the tool in use is neither a point nor a sphere. It is a
shaped object and it has more than one contact point when collided with another object.
That introduced the need of shaped proxies which were developed by Srinivasan et al. [48].
The approach defines the proxy as a point ray and looks for the collision between this ray
and the virtual object. The work’s contribution to the haptic community is remarkable,
especially in the virtual reality minimally invasive surgery simulators. Thanks to the
development of ray-based haptic rendering technique, surgical tools and their collision
with human organs can be simulated realistically.

There are still many on-going research activities in the field of collision detection.
Niemeyer et al. have introduced the concept of dynamic proxies recently [90]. They
discuss zero-, first- and second-order dynamics of a virtual proxy which traditionally had
no dynamics. All of the above mentioned methods are discrete. Kheddar brings in a con-
tinuous collision detection algorithm [59]. It is based on arbitrary motion interpolation
between two successive time steps. In the frame of our work, deformable object princi-
ples are applied to the proxy, in order to investigate tool deformations. Kheddar et al.
contribute to the deformable proxy field as well [1].

Point Avatar

Virtual Proxy

Shaped Proxy

Deformable Proxy Dynamic Proxy

Figure 2.2: Evolution of representing the human hand in VEs.

Collision detection has to be as fast as possible, i.e. computing time must be short. This
achieved, there is enough time for haptic rendering and for a reliable, high-fidelity haptic
feedback to the user. Especially the collision check between a virtual proxy and an object
with many polygons is hectic. An efficient OBB-Tree (oriented bounding box) solution for
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this problem was proposed by Gottschalk et al. in 1996 [42], which was followed by the
AABB-Tree (axis aligned bounding box) method for complex deformable models developed
by Van den Bergen in 1998 [127]. Both methods depend on pre-computed hierarchical vol-
ume representation of an object with many polygons. The collision check is done between
the avatar and the boxes that bound the polygons of the object. Using a binary search tree
(BST), the space is divided into smaller regions, which provides eliminating unnecessary
collision checks [10]. Some recent works concerning to shortening the computing time for
collision detection are related to collision prediction. Kim et al. propose that following
the trajectory of the user’s hand holding a haptic display in freespace, it is possible to
predict the mean tool direction. Thus, the possible collision points between an object in
the virtual scene and the virtual avatar can be foreseen [61, 62]. Lombardo et al. realize
the collision detection with the graphic hardware [75]. The method basically depends on
specifying an OpenGL camera that has a viewing volume corresponding to the tool shape,
and rendering the main object (e.g. the organ in surgical simulations) relatively to this
camera. If nothing is visible, there is no collision.

In our application examples, the virtual avatar was either sphere-like as in the push
button scenario, or it was a shaped-proxy as in the bone drilling scenario. For the former
one, we have implemented a simple point-triangle collision check, whereas for the latter
one a ray-based collision check, using AABB and BST. Both cases are explained in Section
2.2.1 in detail.

2.1.2 Haptic Rendering

Salisbury et al. define the rendering as “the process by which desired sensory stimuli are
imposed on to the user to convey about a virtual haptic object” [108]. Haptic rendering is
the procedure of calculating the force response that results from interaction in a VE and
sending the response information to the user.

There have been many works concerning haptic rendering from different perspectives
which makes it difficult to classify them. Following their God Object Method, Zilles and
Salisbury published the fundamental ideas of haptic rendering in 1995 [142]. Basdogan et
al. summarized the haptic rendering methods and classified them in 2001 [12]. One of the
latest contributions for such a general overview is from 2004 and belongs to Salisbury et
al. [108]. Most often haptically rendered object is virtual wall. The basic idea is to model
the wall as a spring which has a large spring coefficient. Modeling a rigid wall introduces
the stability problem. When the stiffness of the wall increases, the sampling time has to
be decreased to keep the system stable. Therefore, the virtual wall is used in studying
haptic stability such as in [2]. Stable and realistic haptic interaction with VEs remains a
challenging research problem to solve. Some recent efforts are presented in [76, 98].

A commonly accepted method to calculate collision response is so called penalty-based
haptic rendering. After the collision is detected, the penetration depth of the avatar
(point, sphere, or ray) into the virtual object, i.e. the distance between haptic interface
point (HIP) and God Object, is penalized by a linear spring and a damper. For more
interesting impressions, non-linear stiffness can be used [142].

Especially in surgery simulation the realistic interaction with soft tissue has crucial im-
portance. Consequently, numerous researches investigate haptic rendering and visualiza-
tion of deformable models. Cotin et al. investigate modeling the RT elastic deformations
for surgery simulations [24]. We will follow the way of Basdogan et al. and divide the hap-
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tic rendering algorithms for soft tissue interaction into two groups: geometrically-based
methods and physically-based methods.

Geometrically-based algorithms (GBA): This group can be further divided into
several subgroups, such as vertex based, or spline based approaches. Geometrically-based
algorithms are fast, result in smooth visual deformation, but exclude the underlying de-
formation mechanics. To compute forces, a second model has to be employed [94].

Physically-based algorithms (PBA): Calculated forces and the object deformations
as collision response with PBA are more realistic in comparison with GBA, because the
physical property of the collided objects and interaction dynamics are taken into account.
The PBA can further be divided into three subgroups: Particle-based, mesh-based and
meshless methods.

Particle-based models are basically mass-spring networks. The virtual object is divided
into vertices and each vertex is represented by a mass. Afterwards, the vertices are con-
nected to each other by spring elements. When there is an external stimuli, using the
Newton’s 2nd Law, the differential equation of the system dynamics is written. The equa-
tion is solved in RT using numerical integration techniques. Mass-spring networks are easy
to build and easy to solve in RT. However, they can only approximate the real physics of
the object [4,8]. It is difficult to define correct spring coefficients and masses that represent
the object characteristics. Interesting deformation effects can be succeeded by torsional
and angular springs. Laugier et al. suggest using non-linear spring coefficients to model
the incompressibility of the deformable objects, but they indicate that the choice of coef-
ficients remains black art [70]. Bourguignon et al. deal with this problem and introduce a
method that enables controlling the anisotropy in mass-spring networks [14]. In the same
work they prove that their model is also able to provide with volume preservation of the
deformable object. Another work, which investigates the volume preservation problem in
mass-spring networks, is given in [129].

Mesh-based models are obtained by dividing an object into a set of surface or volume
elements, and approximating the continuous equilibrium equation over each element [70].
Most widely investigated mesh based modeling method is Finite Element Modeling (FEM),
which is computationally very expensive method, but physically very realistic. Bro-Nielsen
introduced using fast finite element models in 1996 [15,16]. First, he created a volumetric
model of an object, then applied condensation techniques and calculated only the deforma-
tion of the surface nodes. Later on, James et al. used boundary element models (BEMs).
They used pre-computed Green’s functions for global deformations, and looked for bound-
ary value problem solution, whereas boundary conditions were known [56]. Basdogan uses
modal analysis method, which enables to decouple the vibration modes of the object and
then choose the most significant ones to compute the deformation in real-time (RT) [9].
In the same work he suggests an alternative method, which is the spectral Lanczos de-
composition to obtain the explicit solutions of the finite element equations that govern the
dynamics of the deformations. In one of his other works, Basdogan also indicates that
FEMs present good results for linear elasticity, but they have less accuracy for non-linear
elasticity problems [11]. Another mesh-based method is Long Element Modeling (LEM),
which was introduced by Mendoza et al. [82]. The model is described by Pascal’s principle
and the conservation of the volume. The advantages of the method are given by the authors
as quasi dynamic behavior, realistic and stable simulation possibilities. Non-homogeneous
or even composite materials can be presented by LEM. No pre-calculation or condensation
is necessary. The complexity is generally one order of magnitude less than FEM. The
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system is solved numerically by using any standard numerical method. LEM is only valid
for small deformations.

Kim et al. work in the meshless modeling area. They use meshless finite spheres tech-
nique [62]. In this technique, when tool-tissue interaction occurs, nodal points are sprinkled
around the tool-tissue contact point locally and interpolation is performed by shape func-
tions that are compactly supported on spheres surrounding the nodal points [61].

Apart from the methods above, there are many other deformable object simulation
methods. For example, Corso et al. use medial axis transform method [23], whereas
Radetzky et al. model elastic tissues by using a neuro-fuzzy system [97]. Additionally,
there are hybrid modeling approaches that combine different haptic rendering methods in
order to balance visual fidelity of the object deformation, physical meaning of the haptic
feedback and computing time. For example, Kim uses a linear elasticity model for global
deformations, and a non-linear one for local deformations. Basdogan uses hybrid modeling
to model the virtual organ with FEM, and the medical tool with mass-spring network in
his medical training simulator for laparoscopic common bile duct exploration [11]. Another
important haptic rendering method is haptic replay [12, 43].

In our application examples, haptic rendering is mostly penalty-based, as in push button
scenario. Two example scenarios that introduce deformable object interaction are summa-
rized in Appendix B, one of which is realized by using a mass-spring network, and another
one using FEM are developed. In the latter one, we deform the avatar, which is a surgi-
cal tool, not the object. Deforming the avatar is not a widely investigated topic, but we
think that it has a crucial importance. For example, in bone sawing surgical procedures,
the deformation of the saw may lead to irreparable damages. Therefore, it is essential to
model the tool deformation to simulate such an operation. Section 2.2.3 summarizes the
fundamentals of mass-spring networks and FEM for modeling deformable object interac-
tion. The BD-MTS relates the force to the drilling velocity, and it is discussed in Section
2.4.3.

2.2 General Principles of VR Development

2.2.1 Collision Detection and Haptic Rendering

Haptic interaction with the virtual objects is realized in two steps. At first, collision
between the avatar (human hand in VE) and the virtual objects has to be detected.
Accordingly, this step is called collision detection, which has to be followed by haptic
rendering, in other words collision response. In this step, depending on the collision
situation, forces to reflect to the users are calculated. The collision detection methods
for the graphics and haptics are the same, but the collision response is different, since no
interaction forces are calculated for graphics. The principles of collision detection and
response in haptics are explained below.

God Object, Virtual Proxy and Point-Based Collision Detection
The end effector of the haptic display can be represented as a point, HIP, in the VE.
This point is used to interact with virtual objects. Initial haptic rendering algorithms
use directly the penetration of the HIP, i.e. they one-to-one map the position in space
to force. Zilles and Salisbury extended these methods by introducing the “God Object”,
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which is a constrained, virtual location of the haptic interface, [142]. In the freespace the
HIP and God Object are collocated, but after the collision the God Object stays on the
surface, whereas the HIP penetrates into the object. God Object moves on the surface
in such a way that the distance to the HIP is minimized. Depending on this distance, a
penalty-based haptic rendering strategy is applicable.

In case of using HIP, the collision detection problem is to find the collision of a point and
polygonal objects in 3D space. Assume that the object has one triangle, as it is sketched
in Figure 2.3. The position p of the HIP and of triangle corners p0,p1,p2 are known, as
well as the normal vector nt of the triangle. From the corner points, assume that p0 is
chosen.

p

p0
p1

p2

nt

Figure 2.3: Collision detection between a point and a polygonal object in 3D space.

The distance vector r between the end-effector position p and corner position p0 is

r = p0 − p.

If the vectors r and nt are perpendicular to each other, it is concluded that the end effector
point and the triangle are on the same plane in 3D space, i.e.

rnt = 0. (2.1)

The equation (2.1) is the necessary condition for the collision, but it is not sufficient. From
the corner points of the triangle, maximum and minimum position limits of the triangle
on each axes have to be defined. If the point avatar finds itself in these limits, then the
collision is determined.

Because of the previously mentioned drawbacks of representing the human hand as a
point in VEs, the point avatar is extended to a sphere, i.e. to a virtual proxy. In this
case, the collision detection algorithm needs to check the collision of a sphere and a ray
in 3D space. Van den Bergen explains the details of this procedure [128]. Basically, the
sphere can be thought of as a point with a margin equal to the radius of the sphere in
collision detection procedures.

Ray-Based Collision Detection
In many cases, the avatar is neither a point nor sphere, but a geometric tool. For example,
in a virtual bone drilling operation, the avatar is the medical drill. The collision between
the drill and bone does not only occur on the drill tip, but also on the other places of the
drill bit. Therefore, both virtual object and avatar have many polygons, e.g. triangles.
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That means the collision detection problem is to find whether two triangles in 3D space
intersect or not. At first, it is needed to detach one edge from one of the triangles, and
consider it as a ray. Then, one looks for a ray-triangle intersection, as it is shown in Figure
2.4.

p

p0
p1

p2

l1

l2

nt

Figure 2.4: Ray-triangle collision detection in 3D space.

The point p can be defined with respect to edge points of the triangle as below:

p = µ0p0 + µ1p1 + µ2p2, (2.2)

where µ0, µ1, µ2 are barycentric coordinates and µ0 + µ1 + µ2 = 1, µi ≥ 0. Replacing µ0

with µ0 = 1 − µ1 − µ2 results in

p = p0 + µ1(p1 − p0) + µ2(p2 − p0). (2.3)

On the other hand, if one takes the ray l1l2 from Figure 2.4 into account, the point p can
be written as:

p = l2 + ρ (l1 − l2) , (2.4)

where 0 ≤ ρ ≤ 1.
We first define l = l1 − l2, d1 = p1 − p0, and d2 = p2 − p0, and then (2.3) and (2.4) are

compared with each other. The normal of the triangle is nt = d1 ×d2. This analysis gives
the following result: If lnt �= 0, 0 ≤ ρ ≤ 1 and µ1 + µ2 ≤ 1 whereas (µ1, µ2) ≥ 0, then
the ray intersects the triangle. Note that the case where a ray that lies in the triangle’s
plane intersects the triangle is ignored. Bergen discusses this theorem in detail and gives
an algorithm to program it [128].

Penalty-Based Haptic Rendering
Haptic rendering concerns the collision response, i.e. calculation of the reaction force f r.
Hooke’s Law is widely used in order to appoint this force. After the collision is detected,
the penetration depth xp of the avatar (point, sphere, or ray) into the virtual object, i.e.
the distance between HIP and God Object, is penalized by a linear spring k, so that the
force to reflect is f r = kxp.

In many cases, an addition of damping is required to improve the stability of the system
and of the perception of rigidity. In Section 2.2.4, this situation is discussed in detail. The
stiffness and damping can vary between different objects, or across an object to represent
different material characteristics. For more interesting impressions, non-linear stiffness can
be used [142].
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2.2.2 Bounding Boxes and Binary Search Trees

Since the minimum required refresh rate for high-fidelity force feedback is ca. 1 kHz,
the collision between avatar and virtual objects has to be detected as quickly as possible.
Checking the collision analytically, as described above, turns to be inapplicable in prac-
tice, especially for the VEs consisting of complicated geometrical objects. Therefore, such
analytical collision analysis is used only for a limited number of triangles, if the possibility
of the avatar-object intersection is very high.

A practical solution for this problem is defining bounding volumes for the virtual objects.
Then a hierarchical search tree is created and the collision of the bounding volumes is
investigated, not anymore the avatar-object collision.

The bounding volumes can have different shapes, such as AABBs and OBBs. Both cases
are shown in Figure 2.5. While it is easy and fast to implement AABB, OBB gives more
precise results since the bounding volume fits the model tighter. Both of them are used
in a binary search tree (BST) structure for hierarchical search, and they are constructed
top-down by recursive subdivision.

(a) (b)

Figure 2.5: Bounding volumes for an eliptic object: (a) AABB (b) OBB.

In Figure 2.6 top-down construction process of an AABB tree is shown. At first, an
AABB for the whole object is defined as in Figure 2.6(a). Then, the center of mass of
the polygons is found as in (b), and the first child of the tree is created. The first child
divides the first AABB into 8 AABBs as in (c) by taking the mass point into account.
This procedure goes on until in one AABB there is only one triangle. As it is given in (d),
if there are n steps in the procedure, 8n AABBs are generated. The first collision check is
done between the avatar and the most outer AABB. If there is no collision detected, the
collision check is finished in one step. Otherwise, one proceeds to the first child for collision
check. More detailed information on how to create AABBs, OBBs and hierarchical search
trees can be found in [42, 127, 128].

2.2.3 Physically Deformable Objects

Many VR training applications require interaction with the deformable objects, e.g. min-
imal invasive surgery simulators and training systems. As long as only visual deformation
is needed and underlying physics of the deformations is not important, geometrically-based
deformation modeling methods, such as vertex or spline manipulations, can be used to
simulate the deformations. To obtain more realistic visual deformations and, in addition,
to reflect forces related to deformations, physically-based deformation methods are
needed. Since complicated continuous and non-linear deformation models are not suitable
for real-time interactions, discrete particle or element based approaches are used to ap-
proximate the deformations. Working principles of mass spring networks (particle-based)
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(a) (b)

(c) (d) Main Model

Child-1

Child-2

Child-n

1-AABB

8-AABBs

82-AABBs

8n-AABBs

Figure 2.6: Top-down construction of AABBs. (a) The most outer AABB (b) Finding the
center of mass of the polygons (c) AABBs in the first child (d) Relation between number
of children of a BST and number of AABBs.

and finite element method (element-based) are summarized below. For both approaches
an example object deformation is generated in this work, and they are given in Appendix
B. Consequently, explanations below show the way that the methods are used in this thesis.

Mass-Spring Networks
The deformable object to be modeled is divided into vertices (nodes) and polygons and
each vertex is represented by a mass. Along the edges of the polygons, spring-like elements
are defined. Afterwards, the deformation of the object, i.e. displacement of the nodes, is
defined via Newton’s 2nd Law as follows:

mir̈i + di
uṙi + ki

uri =
∑

j

f ij + f i
e, (2.5)

where

mi : mass of node i,
ri, ṙi, r̈i : position, velocity, and acceleration of node i respectively, and ri ∈ R3,
f ij : internal force on node i through the spring between node i and j,
f i

e : external force on node i,
ki

u, di
u : constants for spring and damping elements respectively that take place

between the original position of node i and its current position after the
deformation.
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By defining f i
u = −ki

uri, (2.5) can be reformed as:

mir̈i + diṙi =
∑

j

f ij + f i
e + f i

u. (2.6)

The equation (2.6) is solved using numerical integration. First of all, the order of the

differential equation is reduced by defining ṙi =
δri

δt
= vi. Then the explicit one-step

Euler integration method is applied to find the nodal displacements when external forces
are applied by users.

Mass-spring networks are rather easy to generate, implement and simulate in real-time.
However, it is difficult to approximate the desired material characteristics with such a
network. The main difficulty is in defining the model parameters. More information
concerning mass-spring networks can be found in [8, 14, 70]. An application example is
given in Appendix B.

Finite Element Models (FEMs)

FEMs divide the object into several elements and approximate the continuous model of
the deformable object by minimizing the potential energy for each element when subjected
to external forces. The elements can be surface or volume elements, i.e. 2D or 3D. They
may have different shapes as well, e.g. triangle, quadrilateral as surface elements and
tetrahedral as volume elements.

Consider a simple geometric object that is divided into four quadrilateral elements as it
is given in Figure 2.7. The aim is to calculate the global stiffness matrix Kg that belongs
to the object. First of all, the stiffness matrix of an element Ke has to be figured out.
Therefore, the first element e1 is separated from the object and investigated closely.

1

1 2

2

3

34

4

e1
e1 e2

e3 e4

ξ, x

η, y

Figure 2.7: A simple geometric object divided into four quadrilaterals.

In the figure (ξ, η) represent the natural (quadrilateral) coordinates that both have values
in the range [−1,+1]. The Cartesian coordinates are (x, y). The element is a square and
the length of the one edge is a. The material matrix E for the element is

E =
Eym

1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ , (2.7)
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where Eym is Young’s modulus, and ν is Poisson’s ratio. The shape functions of the element
are:

N1 = 0.25(1 − ξ)(1 − η), (2.8)

N2 = 0.25(1 + ξ)(1 − η), (2.9)

N3 = 0.25(1 + ξ)(1 + η), (2.10)

N4 = 0.25(1 − ξ)(1 + η). (2.11)

Shape functions relate the node deformations to the element deformation in Cartesian
coordinates. It is necessary to define a Jacobian matrix J that enables transformation
between the differentials of Cartesian coordinates and natural coordinates. This Jacobian
is given by

J =

[
∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

]
, (2.12)

where
∂x

∂ξ
=

4∑
i=1

∂Ni

∂ξ
xi and so on. Therefore the Jacobian J e1 of the element e1 is:

J e1 = 0.5a

[
1 0
0 1

]
. (2.13)

The determinant and the inverse of the J e1 are:

det(J e1) = Je1 = 0.25a2, (2.14)

J e1
−1 =

1

0.5a

[
1 0
0 1

]
. (2.15)

The next step is defining the relation between the strain and the displacement of the
object. To achieve this aim, it is necessary to define the derivatives of the shape functions
with respect to Cartesian coordinates. This is given in (2.16).[

∂Ni/∂x
∂Ni/∂y

]
= J e1

−1

[
∂Ni/∂ξ
∂Ni/∂η

]
. (2.16)

Now, it is possible to create the strain-displacement matrix Be1 as a function of natural
coordinates as follows:

Be1(ξ, η) =

⎡
⎣ ∂N1/∂x 0 . . . ∂N4/∂x 0

0 ∂N1/∂y . . . 0 ∂N4/∂y
∂N1/∂y ∂N1/∂x . . . ∂N4/∂y ∂N4/∂x

⎤
⎦ (2.17)

Consequently, the matrix Be1 relates the strain vector ee1 =
[
exx eyy 2exy

]T
to the

displacement vector ue1 =
[
ux1 uy1 · · · ux4 uy4

]T
as ee1 = Be1ue1.

The element stiffness matrix Ke1 is

Ke1 =

∫ 1

−1

∫ 1

−1

Je1Be1
T EBe1dξdη. (2.18)

Using Gauss numerical integration method, (2.18) can be re-written as

Ke1 =

4∑
p=1

wpJe1Be1
T EBe1(ξp, ηp). (2.19)
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Table 2.1: The numerical integration points and weights

point ξp ηp wp

1 -1 /
√

3 -1 /
√

3 1

2 1 /
√

3 -1 /
√

3 1

3 1 /
√

3 1 /
√

3 1

4 -1 /
√

3 1 /
√

3 1

The numerical integration points (ξp, ηp) for the element e1 and their weights wp are given
in Table 2.1.

Ke1 obtained in (2.19) is a 8 × 8 matrix, relating the deformations of nodes 1, 2, 3
and 4 in x and y directions to the forces applied to these nodes. Since the object is
homogeneous, the other element matrices Ke2, Ke3 and Ke4 are equal to Ke1. The global
stiffness matrix Kg is the sum of these four element matrices. As a result, the equations

of object dynamics are f e = Kgug, where ug =
[
ux1 uy1 · · · ux9 uy9

]T
is the 18× 1

nodal displacement vector. The dimension of Kg is 18 × 18.

After the collision test, using penalty-based methods, the forces f e affecting the object
can be calculated. Therefore, the object deformation is obtained by ug = Kg

−1f e.

FEMs present more realistic deformations of objects in comparison with mass-spring
networks, i.e. they represent the physics behind the deformations better. Main drawback
of the FEMs is high-computational time, thus difficult to achieve an acceptable real-time
performance. Especially if the deformations of the object are plastic, the topology of the
object has to be changed. As a result, the system global matrix has to be updated and
then inverted in real-time. There are several works concerning finite element modeling of
deformable objects, problems to occur and their solutions. Some of the important works
are [9, 15, 16, 70]. As an application example, deformations of a saw blade are modeled
using FEM in the frame of this work. Refer to Appendix B for details.

2.2.4 Stability of Interaction with Virtual Environments

The forces to reflect are calculated by haptic rendering, but there are different limitations
to display these forces exactly to the user. One reason for such limitations is hardware
related, i.e. the mechanics of haptic display devices (force limits, friction, inertia etc.)
restrict the applicable forces. On the other hand, the limitations may be caused by the
nature of the VEs. Since a VE is a digital medium that works in discrete-time, it is an
active environment, i.e. touching a virtual object extracts energy from it [108]. This extra
energy may cause instabilities during interactions.

One way to avoid such instabilities is limiting the maximum stiffness of the virtual
objects. Colgate et al. proved the stability of the interactions if the following holds:

bmd >
KmaxT

2
+ |Bdg| , (2.20)
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where Kmax is the maximum achievable stiffness, bmd is the inherited mechanical damping
of the haptic display, T is the refresh rate period, and Bdg is the added digital damping. It
implies that for large stiffness, small T is required. Thus, a method to achieve high stiffness
is multi-processing or multi-threading. That means to separate the force calculations
(haptic loop) from other VE loops such as visualization or VE dynamics, simplify the
force calculations and run the haptic loop in a low refresh rate period. This method is
used in many applications successfully, especially for medical simulators. Increasing the
inherited damping bmd seems to be a solution as well. While this solution helps to increase
the maximum impedance to display, it also increases the impedance of the haptic display.
Thus, the minimum displayable impedance increases. Since one wishes to demonstrate the
dynamics of the VE, not that of the haptic display, increasing bmd is not desirable.

VE

Virtual Coupling

Haptic Interface

Haptic

Display
Human

ẋ∗vr ẋh

Fvr
∗ Fh

++

−−

Figure 2.8: Two-port structure of impedance-type human-VE communication via a haptic
interface. (∗) indicates the discrete variables, index h stands for human and vr for VR
data.

Another method to assure the stability of interactions is virtual coupling, proposed by
Colgate et al. [22]. Virtual coupling is a spring-damper connection element, which takes
place between the VE and the haptic display as it can be seen in Figure 2.8. Virtual
coupling enables to develop VEs without bothering about the stability of the complete
system, while by limiting the maximum impedance that the haptic display exhibits, virtual
coupling assures the stability. However, it does not help to increase the level of stiffness
to display [108]. Adams et al. prove the unconditional stability of the two port structure
with virtual coupling using Llewellyn’s criteria [2], assuming that human behavior is always
passive. Then they conclude that if the VE is also passive, it is possible to find a virtual
coupling network that guarantees the unconditional stability of the interaction.

In our work, a combination of both approaches explained above is used. Haptic servo-
loop is always separated from other VE loops and a direct virtual coupling is used for
force calculation. It means that the force calculations are realized in the haptic interface’s
control loop without delay, i.e. in RT.

2.3 Multi-User Virtual Environments

Haptic VEs explained above can be extended for multi-user purposes in such a way that
two or more users can explore a haptic virtual object, they may deform-modify the object
and even they can interact with each other simultaneously. Depending on the type of the
interaction of the users with each other and with the object, Buttolo et al. classify the
multi-user VR environments under three major groups: Static environments, collaborative
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2 Virtual Environments for Training

environments and cooperative environments [18]. In our work, the developed scenarios aim
at interaction of two users with each other directly or through a virtual object. Thus, fol-
lowing the Buttolo’s classification, cooperative environments (CEs), especially for training
procedures, are on the focus.

The major problem in CEs is the latency. Due to the latencies in the communication
network, delays occur in the haptic loop that calculates the appropriate force information
for each user. Since the haptic interaction is a kind of energy exchange between the human
and the haptic-device, such delays may cause instabilities. Therefore, a small refresh period
for the haptic loop and a small communication delay are essential for stable, high-fidelity
multi-user applications. Remember that increasing period or delay would decrease the
maximum displayable stiffness.

Bearing this difficulty in mind, a network architecture of three computers to establish
CE applications is suggested, as in Figure 2.9. While Computer-I is reserved for the
visualization and collision check, in Computer-II and -III haptic loops are run in real-time
with 1 kHz sampling rate. The resulting outputs, which can be force or velocity depending
on the type of the VE, are fed as reference signals to the robot inner control loops. The key
issue is that for one user, the control loop and the haptic loop run in the same computer
with the same sampling rate. The users’ measured position and force data are sent to the
common VR scene and to the corresponding real-time computers. In addition to that, the
data is interchanged between two haptic loops in order to minimize the communication
delay. In this architecture, maximum measured delay between the real-time computer in
one direction is 1 ms.

Visualization

Coll. Detection Haptic

Haptic

Loop

Loop

Robot

Robot

Control

Control

Computer-I

Computer-II (RT)

Computer-III (RT)

User-1

User-2

Meas. Data

Meas. Data

Figure 2.9: Multi-user VR concept: Main elements and the data flow.

The example multi-user VR systems that are developed in the frame of this work can
be found in Appendix B. These examples represent the haptic communication of two
users through a virtual object. In addition to these, training applications are designed
and implemented that allow a trainer and a student to connect to a common VE, each
having a separate haptic display. The important issue here is that the expert has a chance
to observe the student not only visually and acoustically, but also haptically. Parallel to
that, the expert can influence the student and correct him/her in several different ways.
These issues are discussed in detail in following chapters in the frame of the BD-MTS and
virtual push button training examples. This structure is extended by one more computer
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2.4 Bone Drilling Medical Training System

during the training scenarios in order to provide the expert with additional information
concerning trainee’s performance.

2.4 Bone Drilling Medical Training System

Bone drilling is needed prior to many orthopedical operations, such as pin or screw inser-
tion to the bone and it requires a high surgeon skill. The main problem of a bone drilling
operation is heat generation. The friction that occurs during a bone drilling process pro-
duces high temperature which may cause irreparable damages to the bone. If the drilling
time is long, then the produced temperature will be high, i.e. for an ideal drilling, the
feeding velocity has to be as large as possible. The feeding velocity is directly related to
the applied thrust force. Large feeding (axial) velocities require large thrust (axial) forces.
The other main influencing factors of the axial drilling force are cutting speed and drill
tip angle, where the effect of cutting speed is negligibly small. It is possible to state out
the core skills for bone drilling procedures as: Recognizing the drilling end-point; applying
constant, sufficient but non-excessive thrust force and feeding velocity.

Mihoci et al. proved experimentally that the effect of the cutting speed on the axial
force is negligible in comparison with the effects of the drill tip bit angle and the axial
velocity [123]. Their work concludes that if a big drill bit angle (e.g. 2.1 rad) is used, the
necessary axial force for a fast drilling process increases dramatically up to 200 N. Malkin
et al. proved experimentally that the specific cutting energy Eu increases when feeding
velocity v of the drill decreases. Applied thrust force f is directly related to v, so that a
larger thrust force f results in a larger feeding velocity v. These cases are formulated as

Eu = H1v
−h1, (2.21)

v = H2f
h2, (2.22)

where H1, h1, H2 and h2 are experimentally determined constants [134].
There are rather limited classical methods for novice surgeons to train bone drilling,

and these methods show some deficiencies. For example, artificial bone models are too
expensive to use for training purposes, therefore they are only used by experienced surgeons
for operation planning. Observing an expert surgeon during drilling is not as efficient as
hands-on training methods such as training on cadavers, which in turn brings in ethical
problems. Thus, it is necessary to introduce new training possibilities for such surgical
cases.

Taking this necessity into account, a BD-MTS is developed in our laboratories. This
section gives an overview of the main components of BD-MTS, together with collision
detection and haptic rendering principles. Throughout this work, three main versions
of BD-MTS have been developed. Sections 2.4.1, 2.4.2 and 2.4.3 explain the technical
background of these versions chronologically.

2.4.1 Bone Drilling with a Pedal-Like Haptic Display

In this first version of BD-MTS, a pedal-like haptic display that allows 1D interactions has
been used. It is a 1-DoF electromechanical device that contains a PWM amplifier and a
DC motor as actuator. As it can be seen in Figure 2.10(a), the display has a lever as end-
effector, whose position is measured by a digital encoder (1024 pulses per round). Applied

25
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forces are measured via strain gages. Maximum motor output moment is τMmax = 0.11
Nm, gain and efficiency of the gearing system are kD = 66 and η = 0.7 respectively.
The length l of the lever is 0.2 m. With respect to these characteristics, the maximum
applicable force is Fmax = τMmaxkDη/l = 25.4 N. Experimentally maximum applicable
force is measured around 28 N. The working area of the haptic display is limited to ±1.0
rad.

An appropriate 1-DoF visualization of the drilling has been created as seen in Figure
2.10(b). The visual scene contains simple geometrical objects, and the visualization is
programmed in C++ under Linux environment using OpenGL library [30].

Mainly, enhanced training issues and related control problems are addressed in this
version. Therefore, haptic and visual enhancement features have been added to the scene.
The latter one is a visual indicator that informs the student about the force he/she applies
as depicted in Figure 2.10(b). The former one introduces haptic cues that constrain the
movement of the haptic display, if improper forces are applied. In Chapter 4, the enhanced
training strategies are explained in general.

(a) (b)

less ok large

Figure 2.10: Bone drilling with a pedal-like haptic display: (a) The haptic display, (b) visual-
ization.

2.4.2 Bone Drilling with ViSHaRD3

The haptic device ViSHaRD3 has been developed in our laboratories [40]. The main
features of this 3-DoF device are given in Table 2.4. The first two links of ViSHaRD3 are
designed in SCARA configuration. While these two links provide the movement in x − y
directions, the third rotational link changes the end-effector position in z direction. Each
joint has a DC electrical motor (Maxon RE40) together with an encoder (Maxon HEDL
5560) and a harmonic drive gear (HFUC-2UH-17). The contact force between the finger
of the operator and the manipulator is measured by a force-torque sensor (JR3), which is
placed between the last link and the end-effector. For measurement data acquisition and to
control the PWM amplifier, an I/O card developed in our laboratories is used. ViSHaRD3
is shown in Figure 2.11(a).

The visual scene contains 3D objects and simulates 3D interactions. Some simple geo-
metric objects representing a bone and a medical drill are used in the VE, as depicted in
Figure 2.11(b). When the trainee moves the end-effector of the haptic display, the medical
drill model in the GUI moves as well. If there is a collision between the drill model and
the box, the trainee feels the reaction force. Again haptic and visual enhancements were
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2.4 Bone Drilling Medical Training System

implemented. However, not only a force indicators, but also a velocity bar graph, an ac-
celeration bar graph, and a drilling end-position warning signal were added to the system.
The GUIs are programmed in C++ with Open GL in a Linux environment [31–34].

(a) (b)

less ok large

Force Indicator

Velocity Bar

Acceleration Bar

Figure 2.11: Bone drilling with ViSHaRD3: (a) ViSHaRD3, (b) visualization.

In this version, also an acoustic enhancement is enabled. Three different drilling sounds
(low freq., middle freq., high freq.) are integrated to the drilling system. The sound files
are 2D, which are available in many web pages as sound effects. The sounds are played
appropriate to the applied force of the trainee, i.e. the trainee hears either the sound of
too small force, drilling force and excessive force. The acoustic feedback is programmed
in C++ using FMOD acoustic library. In Figure 2.12, a flow chart of acoustic feedback
creation is given.

Table 2.2: Specifications of ViSHaRD3.

Active DOF 3

Passive DOF 3

Workspace (Width X Depth X Height) 0.6 × 0.25 × 0.4 m

Peak force 86 N

Translational velocity 1 m/s

Maximum payload 6.5 kg

Mass of moving parts ≈ 5.5 kg

2.4.3 Bone Drilling with ViSHaRD10

The concept of the BD-MTS is presented in Figure 2.13. The VE contains a skull and a
medical drill model. The student interacts with the VE via the hyper-redundant haptic
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Collision Detected?

Force Correct? Force Too Large?

forceless.wav

drilling.wav forcelarge.wav

YESYES

YES NO

NO

NO

Figure 2.12: Flow chart for acoustic feedback

display ViSHaRD10 [124–126]. Translational and rotational movements of the haptic dis-
play and the measured force are transferred to the VE, and the virtual drill model is moved
appropriately. If the drill model collides with the skull model, the student feels a resistance
in the direction of the collision. From then on, the drilling task is realized with a thrust
velocity related to the applied force. An appropriate sound feedback is provided as well.
The system is extended by a suitable training strategy during the training sessions. The
strategies affect the output of the VE, i.e. they change the desired signal for the human
operator.

In general, a network of two computers is used for BD-MTS. One computer is responsible
for the visualization and collision detection (2.6 MHz, AMD Athlon XP 2600+), whereas
the other one for haptic rendering and the control of the haptic display (RTAI Linux).
For multi-user training cases, the network is extended with two more computers to control
the second haptic display, and to provide the second user (expert user) with additional
information that is not available for the first user.

ẋm,fmẋ∗
m,fm

∗

fm,xm, ẋm
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Figure 2.13: The concept of BD-MTS. (∗) indicates the discrete variables, index m stands
for measured data, d for desired data, and vr for VR output data. In freespace VE is
impedance like. After collision, VE is admittance like. Tc

∗ represents the influence of the
trainer model.

Main features of the BD-MTS, such as visualization, acoustic feedback, collision
detection, haptic rendering, stability and control issues are summarized in this section.
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Visualization
The latest version of the BD-MTS has a skull model in the virtual scene. The CT-data
of a skull is triangulated and a surface model is created. The model data can be saved in
different formats, e.g. *.wrl, *.iv, *.stl. The saved data is then visualized using OpenIn-
ventor library1 in C++ Linux environment. The scene contains a 1:1 model of a medical
drill as well. This model is designed using SolidWorks software. It is possible to add it to
the virtual scene by saving it in one of the above mentioned formats. The dimension and
number of polygons of the models are given in Table 2.3. The BD-MTS contains visual,
haptic and acoustic enhancements as in the previous versions.

Table 2.3: Attributes of skull and drill models

Drill Skull

Num. of Polygons 4288 48752

Num. of Vertices 2175 40561

width [cm] 5.74 19.21

depth [cm] 2.68 24.20

height [cm] 25.04 32.25

Collision Detection and Haptic Rendering
As long as the VE is built using simple non-deformable geometric objects like in Figures
2.10(b) and 2.11(b), and a point-based collision detection is satisfying, it is rather straight
forward to detect the collision of the virtual objects. In this case, the virtual-drill tip is
defined as a virtual proxy, and using the point-based collision detection principles explained
in Section 2.2.1, the collision check problem is easily implemented in real-time.

However in the BD-MTS version, whose concept is given Figure 2.13, the virtual scene
contains objects made of many polygons. Therefore, a ray-based collision detection al-
gorithm using the AABB and BST techniques explained in Section 2.2.2 is implemented.
For this purpose, SOLID C++ collision detection library is used [128]. In SOLID collision
detection software, it is only necessary to define the triangle vertices and normals of the
models appropriately. An abstract of the programming code is given in Appendix A.

Following (2.22), the collision response of the virtual bone is calculated via following
non-linear relation:

v = Λf 2sgn(f), (2.23)

where Λ is a constant, and it is chosen in such a way that when the student applies correct
force, the drilling is realized with a correct thrust velocity. The velocity along and about
the axes that are perpendicular to the direction of the collision is set to zero. Thus, the
student can move the haptic display only in the direction of the collision. The velocity
has always the same sign as the force, therefore sgn(f) term is needed. All the movements
in other directions are blocked, independent of the applied force in these directions. As
(2.23) suggests, the VE behaves admittance like, i.e. the input of the VE is the force f
and the output is the velocity v.

1http://oss.sgi.com/projects/inventor/
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Since the aim of the training system is to teach the relation between the force and
velocity during drilling operations, the parameters that need to be pre-defined are set in
such a way so that the forces are as large as possible and the duration of the process is
long enough to check the constancy of the velocity. Thus, the focus is put on this issue,
more than creating 1:1 copy of a bone drilling procedure. Consequently, the correct force
range is defined as 37 − 44 N and it is aimed that in this force range, the velocity is ca. 1
cm/s. Thus, Λ = 5.67 · 10−6 is defined, so that the haptic rendering results in the desired
velocity, when the applied thrust force is 42 N. In Figure 2.14, the force - velocity relation
during the haptic rendering process, and the pre-defined correct ranges are shown.

0 20 40 60 80
Force [N]

1

2

3

V
el

o
ci

ty
[c

m
/s

]

Figure 2.14: The relation between the input force and output velocity of the haptic rendering
process and the pre-defined correct ranges.

In this last version of BD-MTS, the hyper-redundant haptic display ViSHaRD10 has
been used, which is shown in Figure 2.15(a). In Table 2.4 general specifications of
ViSHaRD 10 are given. Main attractive features of the redundant kinematical design in
comparison with classical haptic displays are: increased workspace, improved dynamic
properties, high-output capability, and possibility of collision avoidance. Technical
details of the devices, including the control strategies are widely published by Ueberle
et al. [124–126]. The visual scene including skull and medical drill models are given in
Figure 2.15(b).

Table 2.4: Specifications of ViSHaRD10

Workspace Cyl. φ1.7m × 0.6m × 360◦ for each rotation

Peak force 170 N

Peak torque Pitch, yaw: 13 Nm

Translational velocity > 1 m/s

Maximum payload 7 kg

Mass of moving parts ≈ 23 kg
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(a) (b)

less ok large

Figure 2.15: Bone drilling with ViSHaRD10. (a) ViSHaRD10 (b) Visualization

Stability of the Non-Linear VE
A strong tool to check the stability of the VEs is the passivity theorem, which says that
a system is passive, when the energy flow through a system is more than the net energy
stored by the system, i.e. initially stored energy needs to be subtracted from the final
stored energy. The theorem is formulated as follows:∫ t

0

y(τ)u(τ)dτ + V (x(0)) ≥ V (x(t)), ∀t ≥ 0, (2.24)

where u,y are the input and output signals, V is the energy storage function and x is
the state vector. This definition of the passivity applies both to linear and non-linear
behaviors.

In the BD-MTS, whose governing equation for haptic rendering is (2.23), there is no
energy storing element and initially stored energy is zero. The VE is a SISO system where
the input is force (u = f) and the output is velocity (y = v). Consequently, (2.24) can be
modified for the current problem as follows:∫ t

0

v(τ)f(τ)dτ ≥ 0, ∀t ≥ 0. (2.25)

Inserting (2.23) into (2.25) results in:

Λ

∫ t

0

f 3(τ)sgn(f(τ))dτ ≥ 0. (2.26)

It is clear that the term in the integral is always positive, since the sign of the force and
the sign of the cubic force are always the same. Therefore, for any Λ ≥ 0, the VE for
BD-MTS is passive, thus stable.
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If the discrete-time character of the VE is taken into account, the integral in the (2.25)
has to be replaced with a sum. Thus, the passivity condition for the given problem in
discrete time is:

n∑
k=1

v(k)f(k) ≥ 0. (2.27)

Clearly, in the discrete-time domain the VE is passive as well. As human is accepted
to behave passive, this result means that it is always possible to assure the unconditional
stability for the BD-MTS by an appropriate virtual coupling, whose parameters are related
to the mechanical characteristics of the haptic display.

There are several works concerning the analysis of the passivity and stability of haptic
interactions with VEs including the sampling, numerical integration and zero-order hold
effects [2, 20–22, 83]. Especially the dissertation of Brown represents a very detailed and
clear analysis concerning the passive implementation of haptic-multibody simulations [17].

VR Independent Control

A virtual scene can be modeled either as impedance or as admittance. In the impedance
model, the VR takes the robot position xm and/or velocity vm as inputs, and gives reference
force f d as output, whereas the admittance model works vice versa. For some practical
reasons, it might be necessary to switch between these models during a simulation process.
For example, it is easy to implement freespace movements in impedance mode, whereas
the collision response can be represented in admittance mode more appropriately. The
problem is that switching between two models changes the reference signal from velocity
vd to force fd. That results in a need to change the robot’s inner control strategy whenever
switching occurs.

To prevent that, an adaptation is created. If the impedance model is used, the desired
force signal f d is converted to the desired position signal xd by multiplying the force fd

with a minimum admittance Y . If the admittance model is used, the VR output velocity
signal vd is integrated to end up with xd. Thanks to this adaptation, robot inner control
can be realized independent of the developed VE model.

As it is seen in Figure 2.16, there are three main blocks in the system control structure:
control in VR, switching, and robot inner control. Currently, a task space position control is
used as robot (ViSHaRD10) inner control structure. The desired Cartesian space position
xd is transferred to the task space, i.e. to the link angles qd, through Inverse Kinematics
(IK) equations.
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Figure 2.16: Three main blocks of the control structure and the connection between them.
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2.4.4 Kinematics Mapping

To be able to control the movements of the virtual medical drill model via haptic display
ViSHaRD10, it is necessary to map the kinematics of the ViSHaRD10 end-effector and
the virtual drill. Thus, orientation and position of them match with each other. Another
issue is the direction fixing after the collision, which needs to be clarified via the haptic
display kinematics.

Orientation and Position Matching
From haptic display end-effector to virtual drill, there are four main coordinate systems,
as shown in Figure 2.17. On both haptic display and virtual scene parts, there is a world
coordinate system (W-CS) and an end-effector coordinate system (EE-CS). The initial
rotation matrix evReh between the ViSHaRD10 EE-CS and the virtual scene EE-CS is
known, since initially both haptic device and virtual drill model have fixed coordinate
systems in the space. Using the chain-rule, it can be represented as:

evReh = evRwv
wvRwh

whReh, (2.28)

where the rotation evRwv is from virtual scene W-CS to EE-CS and its inverse is the
rotation matrix that we look for, wvRwh is from haptic device W-CS to virtual scene W-
CS and it is known while both coordinate systems are fixed. whReh is from haptic device
EE-CS to W-CS, and it is also known via the device kinematics. Thus:

evRwv = evReh

(
whReh

−1
) (

wvRwh
−1
)
. (2.29)

Since it is necessary to define the rotation of the virtual drill in the W-CS of the virtual
scene, the inverse of the matrix given in (2.29) needs to be calculated:

wvRev = wvRwh
whReh

ehRev. (2.30)

It must be noted that OpenInventor graphic library needs rotations to be defined in the
transpose form to interpret them correctly. Therefore, the rotation of the virtual drill in
the virtual scene is defined as follows:

wvRev
T =
(

wvRwh
whReh

ehRev

)T
. (2.31)

Velocity Fixing
As it is explained in Section 2.4.3, after the collision between the virtual drill and the skull
model occurs, the drilling is possible only in the direction of the collision, i.e. along the
z axis of the haptic display’s end-effector. Along other axes, the velocity is set to zero.
Therefore, using (2.23), Cartesian translational drilling velocity vector on the EE-CS of
the haptic display can be written as:

veh =
[

0 0 Λf 2
z,ehsgn(fz,eh)

]
, (2.32)

where fz,eh shows the force applied along the z axis of the haptic display end-effector.
By integrating veh, the end-effector position peh is defined. Afterwards, using (2.28) the
orientation in the virtual scene is fixed.
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Figure 2.17: Coordinate systems for the haptic display ViSHaRD10 and the virtual scene.

2.5 Push-Button Training System

In order to crosscheck the methods and ideas concerning the VR training systems, another
training application for pushing virtual buttons is developed. This application is mainly
used as a test-bed to implement and examine the ideas. If successful, they are applied to
the BD-MTS and training procedures are performed.

Button-1 Button-2 Button-3

x(t)

k1

k1

k1

d1

d1

d1k2

k2

d2

d2

avatar

Figure 2.18: Virtual push-button task. Button-1 is used for impedance identification, whereas
Button-2 and Button-3 are used to test the identified impedances.

The push-button virtual scenario is also developed in C++ in Linux environment using
OpenInventor graphics and SOLID collision detection libraries. To interact with the scene,
ViSHaRD10 is used as the haptic interface. The control of haptic display is realized in
RTAI Linux using Simulink and Real-Time Workshop Toolboxes of Matlab.
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A sketch of the scenario is given in Figure 2.18. The user can move the avatar through
a haptic display in 3-DoF. Button-1 and button-2 have two layers, whereas button-3 has
only one layer. The collision response of the buttons is defined by virtual springs and
dampers, and the buttons are massless. In Table 2.5, the spring and damper coefficients,
and corresponding places of the layers are given. The indices i = 0 and i = 3 represent
the freespace and the wall respectively.

Table 2.5: The parameters for virtual push-button application

i ki [N/m] di [Ns/m] interval [cm]

0 - - 0 − 4

1 500 50 4.1 − 7

2 1000 100 7.1 − 10

3 50000 5000 > 10

Note that the button-1 and button-2 layers have the same coefficients in reversed order.
Thanks to that, the results of the identification problem explained in Chapter 3 can be ver-
ified. Button-1 is used to identify the motion impedances, whereas Button-2 and Button-3
are used to test the identified impedances. Another important remark is that a blocking
mechanism is assumed to exist between layers. Thus, the layers are not coupled. Until the
first layer of a button is pushed a certain amount, the second layer does not move. From
this certain point on, only second layer is pushed.

2.6 Summary

In this chapter, key collision detection and haptic rendering issues to create high-fidelity
VEs were discussed. A multi-user VR concept, which enables a direct exchange of haptic
rendering data between two users, was presented. Developed multi-user scenarios let two
users interact with each other via a virtual object. The principles of main training ap-
plications were introduced. One of the applications is the BD-MTS. After the collision is
detected between the virtual skull and medical drill models, the force response of the inter-
action is calculated via a non-linear relation between the applied thrust force and velocity.
The other application is a push-button training system, where simple linear spring-damper
elements are used to characterize haptic rendering. While the latter application allows to
verify the adequacy of the developed training and identification methods to be explained
in the next chapters, the former one enables to create a complete training system that
integrates the research work performed.
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3 Trainer Skill as a Hybrid Dynamical System

Gaines describes the human being as “a very complex organism whose range of behavior
encompasses not only skilled control tasks, but also instinctive and emotional reactions”
[41]. Coming up with a model that describes this complex manifold of behavioral patterns
is a very challenging and complicated task. A possible solution is to split the behavior into
several categories such as conditioning, problem-solving, verbal behavior, perceptual and
sensorimotor skills [41]. In this way, the task is narrowed down to a specific behavioral
range in question, which then can be modeled in depth. We direct our attention to the
last category, sensorimotor skills. It should be noted that the categorization of the human
behavior given above neglects possible cross-correlation between categories. Additionally,
it is doubtful that each of these categories can be represented by one deterministic function.

This chapter starts with the state of the art, summarizing the methods given in the
literature to capture and model human sensorimotor skill. Main methods to model human
skill are illustrated in Figure 3.1. Following an overview of the data clustering algorithms,
a closer look into the hybrid identification methods that are used in this work is given, and
our approach to describe the sensorimotor skill of a human being as switching generalized
impedances is introduced. Section 3.4 clarifies the stability conditions for hybrid skill
models. Section 3.5 is devoted to two application examples. Since the main goal is to
model the trainer skill in order to use it later on in VR training scenarios, interactions
of an expert person with BD-MTS and push-button training systems are identified and
results are discussed.

Human Skill
Modelling

Linear, Non-linear Models

Hybrid AutomataClustering Based Methods

Stoc. Switching Dynamics Stochastic Models

Skill Primitives

Figure 3.1: Main methods to model human skill.

3.1 State of the Art: Methods to Model Human Skill

Capturing the human sensori-motor skill has attracted many researchers’ attention. Early
works, mostly performed by control engineering theoreticians, rely on fundamental linear,
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3 Trainer Skill as a Hybrid Dynamical System

non-linear, continuous or discrete time modeling principles. Later on, robotics researchers
have investigated human skill in order to transfer this skill to the robots and realize an
extension to the programming by demonstration methods. Nevertheless, trainer skill mod-
eling with the goal to transfer his/her skill to novice users is rather an untouched topic. In
this work, we contribute to this issue, using hybrid identification principles. Consequently,
a closer look to these techniques is given in section 3.3 individually.

3.1.1 Linear and Non-linear Modeling Methods

Starting from the 40’s, there have been several studies to describe human perceptual mo-
tor skill as a linear model. An overview of such methods is given by Gaines [41]. The
experimental studies generally depend on tracking a reference signal r(t) displayed on a
screen through an interface device such as a joystick. Then, a linear transfer function G(s)
between the operator’s output m(t) and the error signal e(t) is defined. In general, this
transfer function contains time delay and phase-lag elements that reflect the dynamics of
central nervous system. One of the latest works in this area belongs to Tsuji et al. [121],
in which human operator’s tracking characteristics are defined according to the impedance
parameters of the robot that is used as the interface. They measure the force as the oper-
ator’s output, and extend the linear transfer function with a phase-lead element which is
caused by the human arm impedance.

Several other researchers worked on non-linear modeling of the human controller. For
example, Smith [113] and Wilde & Wescott [135] described the movements of human
limb by a bang-bang controller, which switches between two values of force in order to
minimize the position error. Young & Meiry supported the bang-bang controller theory
by showing that human movements are time-optimal and minimize the error as quickly
as possible [141]. After the introduction of sampled-data systems, some researchers also
represented human as a discrete, sample-data model [69]. Another theory set up by Hogan
is that the coordination of arm movements is jerk-optimal [39].

The methods concerning linear, non-linear, and optimal modeling of human sensorimotor
characteristics are not further described in this work. For more information and detailed
overview refer to [26, 41, 92].

3.1.2 Skill Segmentation and Skill Primitives

In programming-by-demonstration (PbD) methods, a human demonstrates a skillful task
and a learning algorithm captures this task realization, which is later on used to control a
robotic manipulator. Individual tasks can be taught to the robot via human demonstration,
or they can be defined as a combination of previously known sub-tasks.

Yang et al. save the human demonstration data from a deburring task, and through
the acquisition and interpretation of the human linguistic data, the skill is transferred
to the robot [138]. In low-level, their control structure contains linear functions that
represent the arm posture, and in high-level, there is a decision making algorithm that
enables switching between linear models. This high-level controller is derived from human
linguistic information. In a previous work, Yang et al. attain a human deburring expert’s
skillful manipulation strategies. They process the sensor signals using pattern recognition
techniques in order to define switching conditions between different control signals. Linares
et al. employ a similar structure. However, their high-level skill acquisition depends on an
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image processing algorithm [73]. In another work of the same research group, Zölner et al.
investigate the fine manipulation [143]. They measure position and force during grasping
tasks using a data glove, magnetic trackers and force sensors, and classify the dynamic
grasps via support vector machines.

Mayer et al. partitions the demonstrated task data using spline feature and 3D chain
decoding methods [80]. This way, they create skill primitives, and collect these primitives
in a skill database. Each new demonstration of human is first tried to be represented by
the primitives that already exist in the database. For the missing parts, a new primitive is
defined, so that the database is extended. In a consecutive work, they represent a detailed
overview of human skill capturing works in literature for PbD applications [79].

3.1.3 Stochastic Methods

Stochastic models map the system input to the system output depending on probabilistic
rules. Most commonly used stochastic modeling method for human skill is based on Hidden
Markov Models (HMMs). To fully describe an HMM model λ, one needs to know the state
transition probability distribution A that is related to the switching conditions between
discrete states; the observation probability distribution b that is related to the output
of the states; and the initial state distribution π that indicates which state is the most
probable initial state. As a result, an HMM can be represented in a compact notation as
λ = (A, b,π).

Xu et al. first classify skills as action and re-action skills, and then they model both types
via an HMM [136]. Similarly, Hovland et al. represent assembly skill using HMMs [53],
so do Dong et al. [27]. The method is also relevant in medical simulators. For example,
Rosen et al. define laparoscopic surgery skills via HMMs [104,105].

Another stochastic representation of human skill is realized via neural networks (NNs).
To use in their deburring robot, Asada et al. acquire human skill via NNs [7]. Nechyba et
al. define a balancing inverted pendulum task, and model an expert via NNs. Later on,
they use this model to give on-line visual advice to inexperienced users.

The main disadvantage of such stochastic identification processes is that they do not
give any physical explanation about the system. Thus the system, in this case human
skill, remains a “black box”. It is neither possible to make any interpretation of the
human skill, nor to answer the question how humans realize a skillful task. However,
Suzuki et al. made an important contribution, which eliminates the above mentioned
disadvantage [54, 63, 117, 118, 137]. In their HMMs representing human skill, the states
are not black boxes anymore, instead they are deterministic models, such as impedance
models. Defining the observation probability vector b as the Gaussian distribution of the
model error, the HMM iterations not only result in identification of the switching points,
but also identification of the parameters of the impedance models. The principles of this
method are used in the frame of our work. Therefore, a detailed discussion is given in
section 3.3.4.

3.1.4 Representing Skill as Impedance and Hybrid Automata

A number of researchers focus on representing human skill as dynamic, deterministic func-
tions. A common approach is to find a functional relation between force, position and
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position derivatives, i.e. an impedance model. This approach commences a general con-
cept which can be applicable to different task realizations only by identifying appropriate
impedance parameters. Other important advantages of impedance models are their being
linear and time-invariant.

Asada et al. are pioneers in this area. They model human grinding skill as an impedance,
and then use it as a reference model for controlling a manipulator arm to replicate the
expert motion. The whole process is represented by one impedance model, i.e. by iden-
tifying one mass, one damper and one spring coefficient. Some of the similar works
are [64, 112, 119,140].

An extension of this work is to represent human skill as switching impedances. The
resulting structure is a hybrid automaton, in which an event observer estimates the state
change and switches between dynamic equations appropriately according to the task state.
The compliant motions of the human are divided into discrete states and each state is
represented by an impedance model. This strategy is mainly applied to peg-in-hole tasks,
in which the contact states, i.e. switching conditions are known beforehand [55, 65, 81].
Hirana et al. apply the same strategy to the manipulation of deformable objects, namely
to hose insertion tasks [47].

Since a hybrid automaton comprises both the human discrete decision making mech-
anism and the continuous skillful movement dynamics, it is hypothesized that such an
automaton is suitable to describe human skill. However, the approaches given above as-
sume that the switching conditions are known, i.e. the applications are heuristic and
limited to the individual tasks. Our goal is to be able to describe a human demonstration
in a hybrid automaton structure, even though it is not known what the demonstrated task
is. In other words, not only the dynamic skill models, but also switching conditions are
unknown. The solution for this problem is solved via hybrid identification methods, which
are explained in section 3.3. Before that, the idea of data clustering, as well as principles
of the main methods used in this work are briefly presented in section 3.2.

3.2 Human Demonstration Data Clustering

Data clustering methods aim to classify the experimental data in an optimal way, i.e. via
minimizing a cost function. After introducing K-means clustering, this section discusses
the algorithm that is applied in the frame of our work in detail. An overview of several
other available clustering methods is given as well.

3.2.1 K-Means Clustering

K-means clustering is based on Radial-Basis-Functions, and it is one of the most common
clustering algorithms. The idea is to randomly initialize as many centers as the number
of clusters, which is previously known, and then assign the data points from a data set to
the closest center point. Let the data set be X ∈ 	n×r, and randomly initialized center
points for X be µ̂i, where i = 1, 2, · · ·s and s is the number of clusters. Each one of the r
columns of X contains a different system parameter and each row represents a data point,
where the total number of data points is n.
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3.2 Human Demonstration Data Clustering

The K-Means clustering algorithm aims to minimize the following cost function:

JC =
s∑

i=1

∑
xj∈Di

‖xj − µ̂i‖2 , (3.1)

where xj is the jth row of X, and Di is the ith cluster. The function JC collects the data
points, whose closest center point is µ̂i into the subspace Di. After that, the center points
are renewed so that

µ̄i =
1

ni

∑
xj∈Di

xj , (3.2)

where ni is the number of data points in the ith cluster. Then, the clustering function
is applied again using the new centers. The loop ends when the centers do not change
anymore. Because of the fact that K-Means clustering algorithm may finish in a local min-
imum instead of the global minimum, it is recommended to repeat the K-Means algorithm
several times using different initial center points.

Once all clusters Di, i = 1, 2, · · · , s are defined, unknown parameters of the models
representing the dynamics of each cluster can be identified using an optimization technique,
e.g. least squares.

Important drawbacks of this method are its high sensitivity to outliers and noise, and
the non-scaled (or not normalized) regression matrix. In addition, poor initializations are
likely to cause ending up in a local minimum. An improvement of the method, which
alleviates the mentioned drawbacks is discussed below.

3.2.2 Weighted K-Means (WKM) Clustering in Parameter Space

The quadratic Euclidean norm given in (3.1) checks the distances without scaling and
rotating the axes. It is easy to imagine that this might lead to wrong clustering of the
data, if the parameters in the data set X are heterogeneously scaled, e.g. if the first data
column has a range ±103, whereas the second data column range is ±10−3.

To overcome these drawbacks, it is necessary to weight the Euclidean norm as follows:

JC =
s∑

i=1

∑
xj∈Di

‖xj − µ̂i‖2
Σ−1 , (3.3)

where Σ is the weighting matrix. If

Σ = var(X) = diag(σ2
i ), (3.4)

where σ2
i is the variance of the ith column parameters of the X , then the distance mea-

surement is the standardized Euclidean norm and the data set X is scaled. If

Σ = cov(X), (3.5)

then it is Mahalanobis distance, and the data set is not only scaled, but also rotated.
In this work, following Trecate et al., first it is switched to the parameter space from the

data space, and then weighted K-means algorithm using Mahalanobis distance is applied to
cluster the data set [36]. This algorithm filters the data noise by switching to the parameter
space and enables to use not only one scaling for the whole data set, but different scalings
for different data sections. Another advantage is being able to distinguish the clusters that
have the same dynamic model, but are spaciously separated from each other.
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The steps of the algorithm are summarized below:

Step-1:Creating Local Models:
Each data point in the data set is associated to a local model, so that a local dataset Cj

collects the data point xj and its c − 1 neighboring points. At the end, one has n local
datasets, and each set has c data points. For each local data set Cj, a parameter vector

θ̂j is estimated. The vector θ̂j does not contain any information about the sparsity of the
data points of Cj. Because of that, if there are two or more clusters that have the same
model parameters, it is not possible to differentiate them. Therefore, mean value x̄j of the
regressors data points xi, where xi ∈ Cj has to be taken into account for each subset Cj:

x̄j =
1

c

∑
xi∈Cj

xi, (3.6)

where j = 1, 2, · · · , n.
Now, a feature vector ξj bearing the information about the local model parameters and

spatial localization of the parameters can be written as

ξj =
[

θ̂
T

j x̄j

]
. (3.7)

If the constant c is too big, then there will be local datasets that contain data from
different clusters, which is not desired. If it is too small, then the created local models
will have little amount of data points, and as a result, they will be very sensitive to the
noise. Trecate et al. discuss the importance of the parameter c throughly in [37]. We
introduce an intensity analysis, which is partly a remedy to choose c. The details of this
analysis is given in section 3.3.3.

Step-2:Weighted Clustering of the Local Models
The local datasets Cj, j = 1, 2, · · · , n, are going to be divided into s clusters, using the
K-means clustering principle. After defining the initial centers, (3.1) is re-defined using
Mahalonobis norm:

JC =

s∑
i=1

∑
ξj∈Di

∥∥ξj − µ̂i

∥∥2

Rj
−1 , (3.8)

where matrix Rj contains the parameter covariance matrix V j and the scatter matrix Qj

that are defined below:

V j = cov(θ̂j) = σj
2
(
X j

TXj

)−1
, (3.9)

Qj = (Xj − x̄j)
T (X j − x̄j), (3.10)

Rj =

[
V j 0
0 Qj

]
, (3.11)

where Xj represents the data points matrix belonging to the local model Cj, and σj
2 is the

variance of noise. While noise cannot be measured, empirically it is possible to calculate
its variance using the error signal, so that:

σ̂2
j =

ej
T ej

c− nm + 1
, (3.12)

≈
yj

T
(
I − Xj

(
X j

T Xj

)−1
Xj

T
)

yj

c− nm + 1
, (3.13)
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where nm is the model order. The denominator in (3.12) and (3.13) represents the DoF of
residuals [88]. After dividing the data set into the subspaces using (3.8), new centers are
calculated by the following formula:

µ̃i =

∑
j,ξj∈Di

wjξj∑
j,ξj∈Di

wj
, (3.14)

where wj is the weighting factor. The peak of the Gaussian centered in ξj and with
covariance Rj is a measure for the weights. This step is repeated by assigning µ̂i = µ̃i in
(3.8) until µ̃i does not change anymore.

Step-3:Define Final Models
The classification of the data performed in Step-2 allows for collecting data points xj

under the ith subset Di, as long as ξj ∈ Di applies. After that, for each subset Di, a pa-
rameter identification method can be applied in order to define unknown model parameters.

3.2.3 Overview of Other Clustering Methods

In addition to the above given methods, there are several other ones to cluster and classify
the experimental data for further investigations. It is neither possible to mention all of
these methods here, nor is it the aim of this work. Thus, this section is confined to brief
summaries of two further principles. More information on the topic can be obtained
in [49, 88].

Principal Component Analysis (PCA)
PCA is a way to identify the pattern in data via transforming the coordinate axis to
the optimal axis according to the maximum variance and dimensionality reduction. PCA
implies that the direction with the highest data variance is the most important and the
direction with the smallest data variance is the least significant [88].

Assume the regression matrix is X ∈ 	n×r where n is the number of data points and r is
the input space dimension. First, it is assured that the data has zero mean by subtracting
the mean of the data from each data point. The covariance of E {X} = XT X is calculated
and normalized. Eigenvectors of this normalized covariance matrix represent the optimal
axis and eigenvalues represent the variances along these optimal axis. Arranging the eigen-
values in a descending order enables one to distinguish “least significant” directions and
eliminate them, if needed.

It should be noted that instead of clustering, PCA reduces noise and compresses the
data. However, it is a matter of discussion why the input signals having the least variance
should have the least importance as well.

Self Organizing Maps (SOMs)
The idea of SOM was introduced by Kohonen in 1989. It is a neural network approach
to clustering, using vector quantization principles. The method is highly related to the
K-means clustering, where clusters are replaced by neurons and each neuron has weights
that are related to the initial centers.
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The self-organizing map is a single layer feedforward network. SOMs are mainly used
for dimensionality reduction rather than clustering. For more information refer to [88].

3.3 Hybrid Identification of the Trainer Skill

In general, there are four features of a hybrid system that have to be identified in order to
obtain a complete representation of the system:

1. Number of discrete states s.

2. Switching conditions between states swij. i, j = 1, 2, · · · , s

3. Model parameters θi, i = 1, 2, · · · , s.

4. Model order nm.

It is expected that a hybrid identification method determines all of these features for given
input and output data of the system. Since our aim is to represent the skill of a trainer as
switching impedances, the model order nm is fixed and known.

3.3.1 Skill as Switching Generalized Impedances

Human discrete decision making and continuous task execution mechanism suggest that
sensorimotor skills can be represented as a hybrid automata, i.e. as a set of switching
dynamic equations. In such a representation, each discrete state can be considered as a
skill primitive.

Keeping this in mind, this work aims to capture the human skill as switching generalized
impedances. A generalized impedance model relates the position and its derivatives to the
force. The concept of the trainer skill as switching impedances is given in Figure 3.2.
Explicitly, the ith generalized impedance model is as follows:

Position Force

TRAINER

Model-1

Model-2

Model-3

Model-s

Switch

Figure 3.2: Trainer skill as switching impedances.

f̂i(k) = miẍ(k) + diẋ(k) + kix(k) + fi,0, (3.15)

44



3.3 Hybrid Identification of the Trainer Skill

where f̂i(k) is the model output force, ẍ(k), ẋ(k), x(k) are acceleration, velocity and posi-

tion at time point k, respectively, and θi =
[
mi di ki fi,0

]T
is the parameter vector

of the ith model with the elements mass, damping, stiffness and offset force, respectively.
The number of data samples is n, so that k = 1, 2, · · · , n. If the number of discrete states,
i.e., the number of models is s, then i = 1, 2, · · · , s. Thus, the hybrid identification prob-
lem (HIDP) to define human skill as switching impedances aims at determining following
parameters:

HIDP :

⎧⎪⎪⎨
⎪⎪⎩

θi =
[
mi di ki fi,0

]T
i = 1, 2, · · ·s

swij i, j = 1, 2, · · · s
s

(3.16)

3.3.2 Least Squares Optimization for Impedance Models

After the data points are clustered using the unsupervised learning algorithm WKM, a
supervised learning technique is used to identify θi for each cluster i. The identification of
θi is a linear optimization problem. Least squares (LS) is a well-known method to solve
such problems.

The regression matrix X for impedance identification problem is

X =
[

ẍ ẋ x 1
]
, (3.17)

where x, ẋ, ẍ,∈ 	n×1, are position, velocity and acceleration column vectors. The last
term 1 is also a column vector, the elements of which are equal to 1, and it is needed to
identify the model offset.

Thus, (3.15) can be re-written as follows:

ŷi = Xθi, (3.18)

where ŷi is the model output force. The model error ei is

ei = yi − ŷi = yi − Xθi. (3.19)

where yi is the measured output, i.e. the measured force vector. The cost function JC

defining the least squares problem is

JC,LS(θi) =
1

2
eT

i ei. (3.20)

To minimize the cost function JC,LS(θi), its gradient with respect to the parameter vector
θi is set to zero. As a result, the unknown parameters can be estimated as

θi = (XT X)−1XT yi. (3.21)

Note that in the equations above, the index i is not shown for the regression matrix to
simplify the notation.
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3.3.3 WKM-Based Approach

The regression matrix X and the output vector y are built from the recorded data or from
the time derivatives of the recorded data of the system to be modeled as a hybrid dynamic
model. The first step is to split the regression space into adequately small pieces, so that
each piece can be described as an impedance model. Following the performance of the
user, it might be possible to realize this division manually. However, it is aimed to have a
generic method, i.e. for any input - output data the division should be done automatically
in an optimal way.

This division can be achieved by implementing a WKM-based approach in parameter
space. The fundamentals of the method were explained in section 3.2.2. After creating
the local data sets and transferring from data space to parameter space, the clustering
algorithm is performed using the cost function given in (3.8).

Defining Number of States
The number of clusters s has to be known beforehand in order to perform a WKM cluster-
ing. At the same time, it is one of the hybrid system features that needs to be identified.
Therefore, to define an optimal “s”, the clustering is performed several times in our work,
starting from s = 2 and then increasing s each time by one. After clustering, LS opti-
mization is applied to each subset, and by the help of 3.21, generalized impedance model
parameters are identified. Consequently, the sum of absolute hybrid model errors is calcu-
lated and normalized as follows:

ēs =

s∑
i=1

ni∑
k=1

|yi(k) − ŷi(k)|
n

, (3.22)

where ni is the number of data points in the cluster i, and
s∑

i=1

ni = n. If

ēs < εERR (3.23)

is satisfied and ēs does not change anymore for increased number of states, then the
iterations are stopped. εERR is a pre-defined error threshold. Following that, a closer
investigation on the hybrid models passing the threshold should be performed in order
to deduce physical explanations of defined clusters. Among other benefits, the intensity
analysis introduced below provides a possibility of such close investigations.

Define Switching Conditions: Intensity Analysis
The problems concerning the choice of parameter c (number of data points in one local
dataset) in WKM clustering algorithm were outlined in section 3.2. To eliminate the
undesired effects of the mixed local datasets and define physically interpretable switching
conditions, an intensity analysis on the clustered data points is proposed in this work. It
is expected that the data points that are close to each other in time belong to the same
cluster. Thus, the suggested intensity analysis uses data windows, each with a range of
h data points that are consecutive in time, i.e. if the number of total data points is n, a
number of n/h windows are generated. In each data window, the distribution of the data
points to the clusters hdw,i is checked. The cluster that contains most of the data points,
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i.e. most intensive cluster, is then taken as the cluster representing all data points in this
data window. The intensity Idw,i of cluster i in data window dw is:

Idw,i =
hdw,i

h
, (3.24)

where
s∑

i=1

Idw,i = 1. (3.25)

Before proceeding to another hybrid identification method, it should be noted that
depending on the problem, it might be necessary to define hyperplanes that divide the
data space appropriately after performing the clustering. Such a division can be achieved
by applying Support Vector Machines (SVM). Detailed information on SVM can be found
in [111].

3.3.4 Stochastically Switching Impedances (SS-Imp) Approach

In order to achieve a deterministic description of human skill, stochastic identification
principles can be used to identify model parameters of a hybrid system.

Assume that a system is represented by a hidden Markov model (HMM) λ(A, b,π) with
s hidden states as in Figure 3.3. Following the work of Suzuki et al., it is possible to assign
a deterministic model to each discrete state [118]. In our work, each HMM state is rep-
resented by a generalized impedance model as in (3.15). Using classical HMM principles,
the switching between models, as well as model parameters are to be identified. Conse-
quently, the method presented in this section is called Stochastically Switching Impedances
(SS-Imp).

The complication that we face is an extension of the 3rd classical problem of HMMs given
by Rabiner [96]: Given an initial model λ, find a model λ̄ iteratively, so that the probability
P (O|λ̄) is maximized, i.e. the probability of observing the sequence O = O1, O2, · · · , On is
highest for the model λ̄. The extension in our case is that the HMM states are impedance
models, i.e. deterministic functions. Therefore, the observation probability distribution
b is defined in such a way that it contains model parameters, as given by Suzuki et
al. [118]. The procedure of developing a SS-Imp model is summarized by following 4 steps.

S1 S2 Si Ss

a11

a12

a22 aii ass

Figure 3.3: A left-to-right HMM, whose states are assigned to dynamic models.

47



3 Trainer Skill as a Hybrid Dynamical System

Step-1: Define States as Impedance Models
An impedance model is assigned to each state, so that ŷi = Xθi, i = 1, 2, · · · , s as
described in Section 3.3.2. Note that the regression matrix is our observation sequence for
the HMM. For the ith state, the generalized impedance equation is given in (3.15) explicitly.

Step-2: Initialize the HMM
To start the iterative identification process, the parameters A, b, and π of an initial HMM
λ(A, b,π) have to be specified. This can be done randomly for A and π, by taking into
account that

aij ≥ 0;
s∑

j=1

aij = 1, (3.26)

πj ≥ 0;

s∑
j=1

πj = 1, (3.27)

where aij ∈ A is the transition probability from state i to state j.
Following Suzuki et al. [118], the output probability bi(Ok) of state i at time point k is

defined via Gaussian distribution of the equation error:

bi(Ok) =
1√
2πσi

· exp

{
−(miẍ(k) + diẋ(k) + kix(k) + fi,0 − fm(k))2

2σi
2

}
, (3.28)

where fm(k) is the measured force at time instant k. In equation (3.28), the elements of

the parameter vector θi =
[
mi di ki fi,0

]T
, i = 1, 2, · · · , s and the variance σi

2 are
unknown. Therefore, the initial HMM is re-written as λ = (A, θ, σ2, π)

Step-3: The Forward Backward Procedure
Using the parameters of the initial HMM, it is evaluated how well the model matches the
given observation sequence O. To answer this question in a computationally feasible way,
it is necessary to define auxiliary variables that are the forward α and the backward β
variables.

The forward variable α(i, k) is the probability of being in state i at time k, and observing
the partial sequence O1, O2, · · · , Ok. Initializing the variable for k = 1 as α(i, 1) = πibi(O1),
the rest can be calculated in an inductive way as follows:

α(j, k + 1) =

[
s∑

i=1

α(i, k)aij

]
bj(Ok+1). (3.29)

This iteration is terminated by taking the sum of the last forward variables α(i, n), which
probabilistically shows how well the model matches the observation sequence:

P (O | λ) =

s∑
i=1

α(i, n). (3.30)

The backward variable β is defined in a similar manner, but it is initiated at time k = n
and the induction is backwards until k = 1. Refer to [96] or other HMM tutorials for a
detailed information on β.
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Step-4: Estimation of the HMM Parameters and Maximum Likelihood
Using the classical HMM definitions given by Rabiner [96] and the SS-Imp principles by
Suzuki [118], the new HMM parameters Ā, θ̄, σ̄2, π̄ are estimated as follows:

π̄i =
πibi(O1)β(i, 1)

s∑
j=1

πjbj(O1)β(j, 1)
. (3.31)

āij =

n−1∑
k=1

α(i, k)aijbj(Ok+1)β(j, k + 1)

s∑
l=1

n−1∑
k=1

α(i, k)ailbl(Ok+1)β(l, k + 1)

. (3.32)

θ̄i =

{
n∑

k=1

xk
T xkα(i, k)β(i, k)

}−1

×
{

n∑
k=1

xk
Tykα(i, k)β(i, k)

}
. (3.33)

σ̄2
i =

n∑
k=1

∣∣xkθ̄i − yk

∣∣2 α(i, k)β(i, k)

n∑
k=1

α(i, k)β(i, k)
. (3.34)

In these equations, xk refers to the kth row of X and yk is the kth value of the output
vector y that corresponds to fm.

It is expected that the new HMM λ̄ = (Ā, θ̄, σ̄2, π̄) maximizes Baum’s auxiliary function,
which is

Q(λ, λ̄) =
∑

U

P (U | O, λ)log[P(O, U | λ̄] (3.35)

where U = s(1), s(2), ..., s(n) is the state sequence, n is the number of observations, i.e.
the number of data points. Baum et al. proved that maximizing Q̄ increases the maximum
likelihood, i.e.

max[Q(λ, λ̄)] ⇒ P(O | λ̄) ≥ P(O | λ). (3.36)

The initial HMM λ is replaced by the new HMM λ̄, and the steps 2−4 are repeated, un-
til the probability P (O | λ̄) does not increase anymore, i.e. maximum likelihood is reached.

Numerical Instabilities, Scaling and Logarithmic Maximum Likelihood
The parameters A, b and π of an HMM contain elements that have values between 0 and
1. Actually, many of these elements tend to be zero. Considering (3.29) again, it is clear
that for each induction step, these elements are multiplied and summed with each other
in order to define the forward variable α. Thus, when the number of time points n, i.e.
the number of rows in the regression matrix, increases, α and β variables approach zero
exponentially. As a result, beyond a certain number n, the precision of any machine is
exceeded. In the literature, it is given that even double precision computers cannot process
if n ≥ 100 [96].

49



3 Trainer Skill as a Hybrid Dynamical System

To model human skill as switching impedances when he/she interacts with real or virtual
objects, the force measurement has to run at a high frequency, approx. 1 kHz. That means
1000 data points in one second at interaction. Since generally the time needed to realize
a task comprises several seconds, the data space to identify is very large. Therefore,
without scaling, generating an HMM for this problem would inevitably lead to numerical
instabilities. For HMMs, scaling is a kind of normalization that is independent of the state
i, but depends on time. The first scaling factor c(1) is:

c(1) =
1

s∑
i=1

α(i, 1)
. (3.37)

Consecutively, the scaled forward variable for k = 1 is:

α̂(i, 1) = c(1)α(i, 1). (3.38)

In an inductive way, the scaling of all α variables is done as below:

ᾱ(j, k + 1) =

[
s∑

i=1

α̂(i, k)aij

]
bj(Ok+1), (3.39)

c(k + 1) =
1

s∑
i=1

ᾱ(i, k + 1)
, (3.40)

α̂(i, k + 1) = c(k + 1)ᾱ(i, k + 1). (3.41)

To scale the backward variable β, the same scaling factor can be used, since the magnitude
of α and β is comparable. Thus, the scaled backward variable β̂ at time k is:

β̂(i, k) = c(k)β̄(i, k). (3.42)

In order to obtain numerically stable iterations, in equations (3.31)-(3.34), α and β have
to be replaced with α̂ and β̂ respectively.

Note that the probability P (O | λ) cannot be computed using (3.30) anymore, since the
forward variables are scaled. Thus, using the definition of the scaling factors, P (O | λ) can
be represented as:

P (O | λ) =
1

n∏
k=1

c(k)
. (3.43)

However, if one tries to implement equation (3.43) directly, numerical instabilities occur
again. To prevent that, it is necessary to move to the logarithmic scale, so that:

log[P(O | λ)] = −
n∑

k=1

log[c(k)]. (3.44)
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3.3 Hybrid Identification of the Trainer Skill

Best State Sequence Depending on the Viterbi Algorithm in Logarithmic Scale
The classical algorithm to find the best state sequence Sb, i.e. the switching points of an
HMM, is the Viterbi algorithm. This algorithm keeps track of the best score (highest
probability) δi,k along a simple path at time k, which accounts for the first k observations
O1O2 · · ·Ok and ends in state Si [96].

δi,k = max
s1,s2,··· ,sk−1

P [s1s2, · · · sk = i, O1O2 · · ·Ok | λ]. (3.45)

Since a scaling had to be applied, we do not have the information P (O | λ), but
log[P(O | λ)]. Therefore, the best score φi,k has to be defined in logarithmic scale sim-
ilar to δi,k as:

φi,k = max
s1,s2,··· ,sk−1

(logP[s1s2, · · · sk = i,O1O2 · · ·Ok | λ]) . (3.46)

In analogy to the calculation of α, the best score can be calculated in a recursive way after
initializing it as:

φi,1 = log(πi) + log[bi(O1)], (3.47)

ψi,1 = 0, (3.48)

where ψ is needed to track the argument that maximizes φ. The recursion step is:

φi,k = max
1≤i≤s

[φi,k−1 + log(aij)] + log(bj(Ok)) (3.49)

ψi,k = arg max
1≤i≤s

[[φi,k−1 + log(aij)] + log(bj(Ok))]. (3.50)

The most probable last state is given by:

Sn = arg max
1≤i≤s

[φ(i, n)]. (3.51)

Using Sn, the best state sequence is then determined via backtracking as:

Sk = ψi,k+1(Sk+1), (3.52)

where k = n− 1, n− 2, · · · 1.

Switching Depending on Minimum Model Error
There is no unique solution to define the best state sequence for a given observation array.
Since it is an optimization problem, there can be different solutions depending on the
optimality criteria. When Viterbi algorithm is applied, the iterations are continued as
long as the probability of observing the sequence O is bigger in the latest HMM λ̄ than
in the previous one λ, i.e. as long as equation (3.36) holds. In this case, a model that is
being better than another one can be expressed only comparatively. Therefore, the risk of
local maxima exists.

However, since the discrete states are represented by deterministic models in our HMMs,
it is possible to define another criterion, so that the HMM iterations are carried on until
a pre-defined minimum error is reached for each data point. If this condition is satisfied,
the switching points are determined via keeping at time point k the state i active, which
gives the minimum model error in comparison with other states.
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3 Trainer Skill as a Hybrid Dynamical System

The HMM parameter set after the estimation λ̄ = (Ā, θ̄, σ̄2, π̄) should minimize the
model error which is defined as follows:

errk = min
1≤i≤s

|y(k) − ŷi(k)| , (3.53)

Sk = arg min
1≤i≤s

|y(k) − ŷi(k)| , (3.54)

where y(k) is measured output signal and ŷi(k) is the model output of the ith state at time
point k. The iteration of the HMM parameters is continued until the following condition
is satisfied:

errk ≤ ε, ∀k = 1, 2, · · · , n (3.55)

where ε is a pre-defined maximum allowed model error.
Since this approach tries to minimize the model error at each data point, it is expected

that the best state sequence introduces redundant, noisy switchings. To prevent this, the
intensity analysis explained in section 3.3.3 should be applied to filter the unnecessary
switchings. One should be careful that this approach may lead to switchings that for the
given model are impossible to occur. Another solution for redundant switchings is applying
the logarithmic Viterbi algorithm to the latest HMM model, after the equation (3.55) is
satisfied. This solution also guarantees switchings to be possible.

It is credible to extend this approach by constraining the normalized squared sum of
hybrid model error instead of constraining the error at each data point.

3.3.5 Comparison of the Methods

A hybrid system that consists of switching autoregressive (ARX) models is generated as
in the equations (3.56) - (3.58) in order to check the reliability of the proposed methods.

Model − 1 : y(k) = 5x(k) + 2 + ν; x ∈ [−4,−1] (3.56)

Model − 2 : y(k) = −2x(k) + ν; x ∈ (−1, 2) (3.57)

Model − 3 : y(k) = x(k) + 7 + ν; x ∈ [2, 4], (3.58)

where ν is Gaussian noise, and k = 1, 2, ..., 50, i.e. the number of data points is n = 50.
The elements of x(k) are randomly defined in the range of [−4, 4] and then sorted in the
ascendant order.

As illustrated by Figure 3.4, K-means algorithm divides the data into 3 clusters using the
equation (3.1). The switching between clusters highly depends on the data distribution,
i.e. the algorithm is very sensitive to noise and outliers. Two data points shown in a circle
in Figure 3.4 originally belong to the first cluster, but K-means algorithm assigns them to
the second cluster. Therefore, the parameters of the second model that were identified by
using LS optimization, differ from the original model given in (3.57). All model parameters
identified by K-means algorithm are given in Table 3.1.

The same hybrid system is identified again using WKM algorithm. As it can be seen
from Figure 3.5, the algorithm fits the 3 clusters to the data better than the normal K-
means algorithm. The two encircled points are correctly grouped in cluster 1. Thanks
to that, the identified model parameters presented in Table 3.2 are very close to the ones
defined by (3.56)-(3.58). The constant c in (3.6) is chosen as 10 to reach this results, and
it is obtained through a trial-and error approach.
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Figure 3.4: The data clustered by the K-means algorithm. Two encircled data points are
wrongly clustered.

Table 3.1: Identified models using K-means clustering and LS optimization.

Model-1 ykm(k) = 4.90x(k) + 1.77

Model-2 ykm(k) = −0.85x(k) − 1.19

Model-3 ykm(k) = 1.01x(k) + 6.96

Lastly, the identification of the hybrid system is realized by the SS-Imp method. As the
parameters to identify are not impedance parameters, this application here should rather
be called SS-ARX as it was done by Suzuki et al. [118]. As in the case of using WKM,
SS-ARX method clusters the data points correctly. Therefore, Figure 3.5 can be referred
to for this method as well. A critical issue in the performance of SS-ARX method is the
iteration and switching dependency. If the classical way is used, i.e. maximum likelihood
and Viterbi algorithm, then the method highly depends on the initialization of the HMM
λi, especially it is very sensitive to σi and θi. Assigning these parameters randomly causes
the HMM to be numerically unstable or not to converge to the correct model parameters
and switching conditions. However, the method developed in this work, i.e. switching

Table 3.2: Identified models using weighted K-means clustering and LS optimization.

Model-1 ykm(k) = 4.94x(k) + 1.88

Model-2 ykm(k) = −1.97x(k) + 0.02

Model-3 ykm(k) = 1.01x(k) + 6.96
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Figure 3.5: The data clustered by the weighted K-means algorithm. Two encircled data points
are correctly clustered. The same clustering performance is also obtained by using SS-IMP
method.

depending on the model error, is highly robust against initial conditions. By observing
the change in the model error after each iteration, it is possible to follow the whether the
desired pre-defined error is converged or not. The identified model parameters via SS-ARX
principles using equation (3.33) are given in Table 3.3.

Table 3.3: Identified models using HMM.

Model-1 ykm(k) = 4.94x(k) + 1.92

Model-2 ykm(k) = −1.96x(k) + 0.04

Model-3 ykm(k) = 1.05x(k) + 6.86

A comprehensive discussion on the WKM and SS-Imp methods is given in section 3.6.

3.4 Stability of the Hybrid Models

Special attention has to be paid to the stability of the switching (hybrid) systems. That
is mainly because of the known fact that a switching system may become unstable, even
though all the sub-systems are stable. Stability analysis for different switching cases that
occur in our problems is outlined below.

Only Left-to-Right Switching Systems
If the state transitions are in a left-to-right manner as in Figure 3.3, after having switched
from state i to i+ 1, there is no return to state i. In this case, for the switching system’s
stability, it is necessary and sufficient that all sub-systems are stable. Assume that the

54
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Lyapunov function for the state i is Vi(x). Then, stability is assured by:

V̇i ≤ 0 ∀x, i = 1, 2, · · ·s. (3.59)

Common-Lyapunov Functions
If the switching between states is arbitrary, then the stability condition given in equation
(3.59) is not valid anymore. However, if it is possible to define a common Lyapunov
function Vc, which is a Lyapunov function for all subsystems, then the necessary and
sufficient condition for stability is:

V̇c ≤ 0. (3.60)

Multiple-Lyapunov Functions
If the switching between states is arbitrary, and it is impossible to define a common Lya-
punov function, then the stability analysis depends on the individual Lyapunov function
Vi, and its relative value with respect to the time points of switching to the state i.

Assume that the state i is entered at time point tk. For any later time instant tl, the
relative value of Vi must be smaller. The necessary and sufficient condition for stability is:

Vi(tk) − Vi(tl) ≥ 0, ∀ i, i = 1, 2, · · · s (3.61)

∀ l > k.

Refer to [72] for comprehensive information on the stability of switching systems.

3.5 Applications

3.5.1 Hybrid Trainer for a Bone Drilling Medical Training System

Hybrid Identification Problem
Main principles and the technical background of the bone drilling MTS are given in section
2.4. In this section, the hybrid identification of the interaction of an expert with BD-MTS
is investigated. The aim is to describe the interaction as switching generalized impedances
in the form given by (3.15). Known and unknown elements of the hybrid identification
problem are given below:

Known: Model orders.
Unknown: Number of sub-spaces (discrete states) s, parameters θi of the models, switch-

ing conditions swij.
For this problem, the regression matrix is X =

[
ẍfil ẋfil x 1

]
, where x is the mea-

sured position, and ẋfil and ẍfil are derived and low-pass filtered velocity and acceleration
signals respectively. The measured output vector is yid = fm.

Thus, the hybrid identification problem (HIDP) for BD-MTS aims at finding the follow-
ing parameters:

HIDPBD−MTS :

⎧⎪⎪⎨
⎪⎪⎩

θi =
[
mi di ki fi,0

]T
i = 1, 2, · · · s

swij i, j = 1, 2, · · · s
s

(3.62)
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3 Trainer Skill as a Hybrid Dynamical System

The identification problem is first solved using the WKM approach and then using the
SS-IMP approach. The results are discussed and compared with each other.

The Model Using WKM-Based Approach
The regression matrix has n rows and 4 columns, i.e. X ∈ 	n×4. By trial-and-error, the c
constant for the moving window in the regressors space is chosen as 1000. Thus, n local
data groups LDj j = 1, 2, · · · , n are generated, each having 1000 data points. For each
local data group LDj, LS optimization is applied. As a result, n local models are identified.
The clustering is then performed on these local models.

The data range is chosen in such a way that it enables to model the trainee’s approach
and starting phases of drilling, together with the routine drilling phase. The resulting data
has 14000 data points, i.e. n = 14000. The weighted K-means clustering algorithm followed
by LS optimization for parameter identification is repeated several times by keeping all
system parameters constant, but increasing the number of discrete states. After assigning
an error tolerance of εERR = 3.5 N, the constrained sum of the absolute model error
ēs criterion given by equations (3.22 - 3.23) is implemented, in order to define s. In
Figure 3.6, ēs is given for s = 1, 2, 3, 4, 5, 10, 13. As can be seen, increasing the number
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Figure 3.6: Comparison of the normalized sum of the absolute model errors for the increasing
number of discrete states.

of discrete states decreases the error index ēs. However, an increased number of states
implies more complicated switching structure between models and less physical meaning
of the clusters. Therefore, a small error index cannot be the only criterion to choose the
number of discrete states. Thus, a closer investigation of the hybrid models passing the
threshold εERR is performed. The current problem allows models with at least 3 discrete
states to be qualified for further investigations. The intensity analysis given in section 3.3.3
is used for investigations on s = 3, 4, 5 discrete states cases, and the results are depicted
in Figure 3.7. The number of data points in one data window is set to h = 100. Since the
total number of data points is n = 14000, there are 140 data windows (dw). For example,
the 32nd dw contains data points in the interval 3101 − 3200. At first glance, 3 main
intervals are recognizable in Figures 3.7(a),(b) and (c) independent of the total number
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of clusters (discrete states). The first interval contains data windows 1 − 13, the second
one 14 − 81 and the third one 82 − 140. Since there are 3 physically assumable states in
BD-MTS, namely freespace movements, first contact and approaching, and drilling with a
correct velocity and force, these three intervals match the assumption. As it is illustrated
in the Figure 3.7(b) and (c), while s = 4 and s = 5, the fourth cluster introduces an extra
interval around 80 − 90 dws, i.e. the drilling step is divided into two clusters. However,
as can be seen in Figure 3.7(c), the fifth cluster does not bring any extra dw interval,
rather some dw points. One should extract from this figure that increasing the number
of clusters naturally reduces the number of data points per cluster. Consequently, some
clusters contain very few data points and it is very difficult to find physical meaning of
these clusters, that is, it is rather hard to associate such clusters with any skill states. In
our analysis, we chose the number of states by taking the maximum number of clusters,
when all represented by an interval of dw. Thus, for the current problem, the number of
discrete states to represent trainer skill is chosen as s = 4.
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Figure 3.7: Intensity analysis results for (a) 3 clusters, (b) 4 clusters, (c) 5 clusters.

Since the number of states is defined as s = 4, different expert performances are di-
vided into four clusters via WKM method. In general, three phases of drilling procedure,
“freespace”, “approach” and “drilling”, are very clearly outstanding. Mostly drilling phase,
but sometimes freespace phase, is divided into two clusters. Applying the LS optimization
for each cluster, four impedance parameter vectors are identified for each expert trial. The
parameter vectors for individual expert trials are grouped under the phases mentioned
above, and for each phase a characteristic feature represented by impedance parameters is
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3 Trainer Skill as a Hybrid Dynamical System

looked for. The ones which establish common characteristics are put together and depicted
in Figure 3.8. It was expected that it would be difficult to determine characteristic behav-
iors in freespace phase. The reasons for this expectation are that the user is not constricted
with an environment and there is no rule to move in freespace. Additionally, in freespace
haptic display’s eigen dynamics play an important role. However, it is possible to conclude
some characteristic features. As it can be seen in Figure 3.8(c), mass mfs is always positive
and insignificant in comparison with spring kfs and damping dfs coefficients. The range
of kfs is [110, 450] N/m, and dfs limits are [−140,−450] Ns/m, when the only trial (first
bar) that does not fit into this schema is neglected.
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Figure 3.8: Different expert trials and resulting mass m, damping d spring k coefficients and
offset o for freespace, approach and drilling phases.

There are distinguishing features for “approach” and “drilling” phases. Note that in
both of these phases, the interaction is already defined by the non-linear relation between
the velocity and the force. As a result, identified damping coefficient d that relates velocity
to the force plays the most important role. In the approach phase, d is identified varying
around 3000. The mean value is d̄app = 3232 Ns/m. Mass and spring coefficients are much
less powerful than damping coefficient. Mass has always a positive value and a mean of
m̄app = 18.9 kg. Spring coefficient kapp changes in a range of [−20, 150], with a mean value
k̄app = 36.4 N/m.

The drilling phase parameters can be interpreted in a similar way. Again, damping coef-
ficient plays the most important role, but has smaller amplitude than the approach phase
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values. Additionally, there is not only one, but two different drilling characteristics that
can be deduced from the Figure 3.8(b). The first group (first four bars) has a dominating
damping coefficient ddr,1 in comparison with mass mdr,1 and spring kdr,1 coefficient. The
mean values in this drilling case are d̄dr,1 = 1332, k̄dr,1 = −9 and m̄dr,1 = 7. The second
group (last two bars) has still damping as the largest parameter, but it is not as indicative
as first group parameter. Additionally, spring also plays a significant role to define the
characteristic of drilling. In this case, the mean values are d̄dr,2 = 180, k̄dr,2 = 52 and
m̄dr,2 = 1. Note that the ratio k̄dr,2/d̄dr,2 is much higher than the ratio k̄dr,1/d̄dr,1. Because
of this situation in drilling, it is not improper to consider that there are two types of
experts and they are differentiated from each other with their drilling performance.

Since the results of the experts are similar in cluster switching points and identified
model parameters are reasonably in a certain range, any expert result can be chosen as
the trainer model. In our work, a trainer model is chosen with positive coefficients. This is
important for stability issues, which were explained in section 3.4. It is possible to define
each discrete state with a second order transfer function, since impedance models are linear
2nd order dynamic equations. Thus, equation (3.15) can be re-written as:

Gi(s) =
Xi(s)

Fi(s)
=

1

mis2 + dis+ ki
. (3.63)

Stability of each subsystem individually is assured if the parameters mi, di, ki are positive,
which explains the reason of choosing a trainer model with positive parameters. Note that
it is not possible to have all parameters positive for the freespace phase. Therefore, in the
case of only left-to-right switching, the complete switching system is stable, if the freespace
state is left out.

In addition to the stability, passive behavior of the models is desirable as well. The
storage function for each state can be defined as:

Vs,i =
1

2
k̃ix1,i

2 +
1

2
x2,i

2, (3.64)

where k̃i = ki/mi. It is clear that each discrete state, except the freespace state, is passive
regarding velocity x2,i = ˙x1,i as the input and force fi as the output, since they satisfy
following condition:

V̇s,i ≤ x2,i · fi. (3.65)

Consecutively, the resulting chosen parameters are given in Table 3.4. Now, it is inter-
esting and necessary to show how well the identified model represents the expert, and how
well the identified switching conditions match the physically assumed switching points of
BD-MTS. Figure 3.9 shows the clustered data groups for position, velocity, acceleration
and force, whereas Figure 3.10 compares the output force of the hybrid trainer model and
the measured force when trainer performs a task in BD-MTS. It is clearly determined that
first switching occurs, when the drill and bone model are collided. Sudden decrease in the
velocity and constant position are clear indicators for this statement. Thus, WKM clearly
identifies the point, where freespace finishes and approach phase starts. Second switch-
ing occurs, when velocity increases to the expected drilling velocity and is kept constant.
Thus, the transition from approach phase to drilling phase is clear as well. The division
of drilling phase into two states and switching between these states are not as clear as
the previous switching conditions. However, it is possible to deduce that the first drilling
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Figure 3.9: Identified clusters using WKM algorithm. (a) Position, (b) velocity, (c) accelera-
tion, (d) force.
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Figure 3.10: (a) WKM model output force vs. measured force. (b) WKM model error.

state concerns the situation when the trainer starts drilling by applying the force and the
velocity in the correct range, but still slightly increasing them. The second state occurs,
when both are constant.
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Note that although the LS optimization is applied to the clusters defined by WKM
algorithm to define unknown model parameters, the switching conditions are defined
following the intensity analysis. This results in increased model errors, especially in
freespace. Since freespace is not considered as a part of trainer model, and normalized
error for one data point is in the acceptable range, the model is satisfying. As an
alternative, it is also possible to apply LS optimization after intensity analysis, i.e. after
switching conditions are clarified.

Table 3.4: Identified models and position based switching conditions, obtained by using WKM
clustering with 4 states and LS optimization for BD-MTS.

Parameters ki di mi f0,i swij

Model-1 449.1 −259.9 1.9 −33.5 init. state

Model-2 154.5 3528.3 17.8 −13.1 sw12 : Collision point
x = 12.4cm, v ≈ 0 cm/s.

Model-3 31.3 251.5 1.2 32.3 sw23: Drilling-A
x = 15.3cm, v ≈ 1 cm/s, f ≈ 37N

Model-4 72.1 108.1 0.5 26.1 sw34: Drilling-B
x = 16.2cm, v ≈ 1 cm/s, f ≈ 37− 42N

The Model Using SS-Imp Approach and Comparison

Taking the WKM results into consideration, the number of discrete states is accepted to
be known as s = 4 for SS-Imp approach. Therefore, the HMM is initialized with 4 discrete
states, and randomly chosen parameters. While the number-of-data points is quite high
(n = 14000), the forward and backward variables have to be scaled as explained in section
3.3.4, in order to avoid numerical instabilities. As introduced in the same section, the HMM
iterations can be carried on either depending on classical maximum likelihood principle,
or minimum absolute model error principle introduced in this work.

The latter approach is implemented by setting the error threshold as ε = 4 N. The
iterations are continued until the condition given in equation (3.55) is satisfied. Only 7
iterations were needed to satisfy the condition, which was completed in around 10 seconds.
The iterations return the switching positions and impedance parameters for 4 discrete
states. However, the switching conditions are very noisy as given in Figure 3.11(a), which
causes that they are not convenient, and even not actually realizable by the HMM. Thus,
it is necessary to apply our intensity analysis to filter the switchings appropriately. Setting
the data window (dw) width h = 100, 140 dws are generated. Figure 3.11(b) shows the
intensity I of the clusters distributed to each dw. Choosing the cluster with maximum
intensity as the active cluster, the switching conditions are filtered out, and results are
depicted in Figure 3.11(c).

The classical maximum likelihood approach is also implemented, which needed more
or less the same time to complete the iterations. Switching conditions are defined via
logarithmic Viterbi algorithm and they are depicted in Figure 3.11(d). As one can see, the
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Figure 3.11: Switching condition obtained by using SS-Imp model error in BD-MTS. (a)
switchings depending on absolute model error principle (b) switchings after intensity anal-
ysis (c) results of intensity analysis (d) switching following viterbi algorithm.

switching conditions obtained via both approaches are very close to each other. But, if the
maximum likelihood criteria is used, the identified model parameters highly depend on the
initial conditions. That is because the model’s fidelity is judged only comparatively after
each iteration step. However, model error based approach works until a satisfying model
error is reached. Consequently, it is robust against initial conditions. Instead of defining
the switchings on each data points, than applying intensity analysis, viterbi algorithm can
be used to define the switching conditions as well. This guarantees that switchings are
realizable by the HMM.

Identified model parameters are given in Table 3.5. Note that the same expert trial,
whose results were discussed for WKM approach, is used to reach these results. The data
points that are put to the same discrete states by HMM iterations are shown in Figure
3.12 for position, velocity, acceleration and force. Note that they do not exactly match the
clustered data points in WKM, thus physically assumed states. Especially, from freespace
to the approach phase the transition occurs later than expected, which results in difference
in identified model parameters. Difference between measured force and model output force,
i.e. model error, is given in Figure 3.13.

In the following chapters, results obtained from WKM clustering and LS optimization
are used to represent the trainer skill. Physical interpretation possibility of the switching
conditions, robustness against initial conditions of the hybrid identification process, and
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satisfying model accuracy have played important role for the choice. Computing time
should be once more underlined as the biggest disadvantage of the method in comparison
with SS-Imp algorithm. However, the intensity analysis introduced in this thesis is partly
a remedy for this problem. It allows us to sort out the mixed data points in clusters. Thus,
it is not necessary to apply trial-and-error approach many times to define the parameter c
in WKM method, in order to find a suitable c that minimizes the mixed local data sets.
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Table 3.5: Identified model parameters obtained by using SS-Imp with 4 states for BD-MTS.

Parameters ki di mi f0,i

Model-1 2.3 −21.4 0.5 1.1

Model-2 992.8 3270.3 17.8 −116.7

Model-3 39.5 1749.9 8.8 16.2

Model-4 72.0 169.3 0.9 25.6

3.5.2 Hybrid Trainer for a Push-Button Training System

Hybrid Identification Problem
The push-button training system explained in section 2.5 is used as a second test-bed
to verify the WKM and SS-Imp hybrid identification methods. HIDP for push-button is
simplified by neglecting the effect of the acceleration and mass. The main reason for this
simplification is to reduce the dimension of regression matrix, which comes down to fasten-
ing the identification processes. Since the acceleration signals are double derivatives of the
measured time, they are noisy, although low-pass filtered. Additionally, the buttons are
massless, so it is assumed that mass parameter does not play an important role. Therefore,

the parameters vectors θi have three elements, i.e. θi =
[
di ki fi,0

]T
, and regression

matrix is only built of position and velocity so that X =
[

ẋ x 1
]
. While buttons have

two layers, and before interacting with the buttons there is a freespace part, the number
of states s is fixed to 3. In general, known and unknown elements of the identification
process are given below:

Known: Number of sub-spaces (discrete states), model orders.
Unknown: Parameters θ of the models, switching conditions swij .
Therefore the hybrid identification problem for push-button process is aimed at finding

following parameters:

HIDPPB :

⎧⎨
⎩θi =

[
di ki fi,0

]T
i = 1, 2, 3

swij i, j = 1, 2, 3
(3.66)

The virtual push-button task is realized several times, position x and force f data are
measured and saved. From the position data velocity ẋ is derived. The noisy velocity
data is low pass filtered, the resulting velocity ẋfil is used in regressors X id. Thus, the
regression matrix for identification is X id =

[
ẋfil x 1

]
and the output vector is

yid = fm.

The Model Using WKM-Based Approach
Applying equation (3.8) as the cost function to the regression matrix X id, the data is
divided into 3 clusters. It should be kept in mind that the K-means clustering algorithms
depend on the initial conditions, and they may end up in local minimums. Therefore, the
clustering process has to be repeated several times, and it should be guaranteed that the
minimum cost is reached several times. In our work, the clustering algorithm was applied
200 times, and the one that gives the minimum cost is chosen for further investigations.
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It is assured that the minimum cost was reached several times as it is depicted in Figure
3.14. The number of data points in local data set, i.e. the parameter c, is set to 250.
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Figure 3.14: Costs of clustering attempts with different initial centers.

As one can imagine, there is no actual expert for a process like pushing buttons. For
this reason, it is necessary to define an expert. This can be done by checking the timing
of task completion. In other words, the choice of the expert can depend on how fast the
pushing is. As a result, the trials that finish between 4.5 and 6 seconds are accepted as
the expert performance.

Hence, individual expert trials are identified by WKM method. Identified model param-
eters for these trials are grouped under the phases “freespace”, “Layer-1” and “Layer-2”,
and are shown in Figure 3.15. Note that these phases represent physical states. It is very
clear to deduce characteristic features for individual phases from Figure 3.15. Freespace
spring coefficient kfs is in the range [−45,−32] N/m, whereas damping coefficient dfs

range is [21, 27] Ns/m. Layer-1 parameters vary in a very small interval as well. Namely,
kl1 is located in [491, 514] N/m and dl1 in [42, 85] Ns/m. Similarly, Layer-2 consists of
certain impedance model parameters that characterize the interaction in this phase. The
narrow band for kl2 is [1012, 1023] and for dl2 is [83, 131]. Offset values increase when it is
switched from one state to another. Thus, they have the lowest values in freespace phase
and largest values in Layer-2 phase. This is expectable, because when a new state starts,
it has implicitly the force offset in itself from the previous state.

If one compares the Figures 3.8 and 3.15, it is understood that in both cases, the hybrid
identification via WKM method affirms characteristic impedance features. However, the
results for push-button example are more precise than BD-MTS example. The identified
parameters for different expert trials are closer to each other and they are non-ambiguous.
Most important reason for that lies in the nature of the task. Virtual push-button process
is defined via linear spring and damper elements. Thus, the success of modeling the task as
switching linear impedance models is an anticipated result. The comparison of the figures
yield another interesting result. The sign of the identified freespace spring parameters is
always opposite to the sign of damping parameters. While moving in freespace, ideally, it
is expected that no resistance force is experienced. In our opinion, the opposite sign is an
outcome of this expectation. The spring and damper elements are working against each
other to neutralize the force information.

Since all expert models have very similar switching conditions and impedance model
parameters, any of them can be chosen as the trainer model to be used for further investi-
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Figure 3.15: Different expert trials and resulting mass damping d, spring k coefficients and
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gations. In Table 3.6., the parameters and the switching conditions for the chosen trainer
are given.

Table 3.6: Identified models and switching conditions using weighted K-means clustering and
LS optimization.

Parameters ki di f0,i swij

Model-1 −32 22 0 Init. model

Model-2 498 61 −20 sw12, x = 0.037m

Model-3 1012 121 −55 sw23, x = 0.070m

Identified data clusters belonging to the chosen trainer are shown in Figure 3.16. The
switching between the states most clearly occurs depending on the position signal. On
certain positions switching happens, which is expected since the collision with the virtual
button occurs on a certain position, and the button’s two layers are separated from
each other on a certain position as well. The detected switching conditions match these
designed VR positions. Appropriately, measured force signal also indicates clear switching
points. A closer look into the velocity signal clarifies that the movements in the first
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Figure 3.17: WKM model error in push-button system.

cluster related to freespace are fastest, whereas the third cluster related to the button
layer with large spring and damping constant slowest. The model error is shown in Figure
3.17.

The Model Using SS-Imp Approach and Comparison
The SS-Imp method is applied to the virtual push-button task. The HMM model is ini-
tialized with 3 states by randomly chosen parameters. 4 iterations were necessary for
algorithm to converge to the pre-defined absolute error limit εERR = ±3. The result-
ing clusters on position and switching conditions are shown in Figure 3.18. The model
parameters calculated by using equation (3.33) are given in Table 3.7.
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The identified model by using SS-Imp method follows the measured output in an error
range of ±2.5N as it is shown in Figure 3.19.
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Figure 3.18: Switching on position signal obtained by SS-Imp method for push-button example

Table 3.7: Identified models using SS-Imp

Parameters ki di f0,i

Model-1 189 −100 2

Model-2 406 190 −18

Model-3 979 203 −53

0

−2

2

0 1 2 3 4 5 6

Time [s]

E
rr

or
[N

]

Figure 3.19: SS-Imp model error in push-button example
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The problem with SS-Imp is that it is difficult to give physical meaning to the switching
conditions. Therefore, it is not possible to use the same identified model for button-2
and button-3. On the contrary, WKM clearly defines 3 states that can be physically
interpreted as ’Freespace’, ’Button Layer-1’ and ’Button Layer -2’. Thus, it was possible
to use the same model to represent other virtual buttons which have the same spring and
damper coefficients, but in different orders. A big disadvantage of the WKM method is the
computational time. Especially, the clustering time increases with the increasing number
of data. If the data increase rate is g, the time would increase with g2. In the current
push-button example, around 2 hours were necessary to create local data sets and clusters,
where the number of data was ca. 6000. On the other hand, SS-Imp is a very fast method.
For the same problem, around 1 minute was needed to obtain switching conditions and
model parameters.

Both methods are sensitive to the initial conditions. But the cost function used in WKM
is a good measure to decide on the final model. Repeated clustering approaches should
indicate the global minimum which gives the minimum value for the cost function, and is
reached several times. Thus, the identification process can be started from any randomly
chosen initial conditions, whereas for SS-Imp the initial condition needs to be defined with
a pre-knowledge about the system. However, using error based switching method and
then applying intensity analysis enables one to chose the initial conditions randomly and
eliminate unnecessary switchings. Nevertheless, still the switching conditions obtained via
WKM are simpler and physically clearer. If the physics of the interacted system is known
beforehand, it would help to have meaningful initial estimates. But this causes the used
method to be heuristic.

Taking into account these benefits and drawbacks, the WKM method result is chosen
for “Push-Button Hybrid Trainer” model and it is used for the further investigations given
in this work.

3.6 Discussion

This chapter starts with an overview of the state-of-the-art methods to capture human
skill. As a follow-up, the representation of the skill as a hybrid dynamic system based on
hybrid identification techniques has been investigated. On one hand, a weighted K-means
(WKM) clustering has been implemented in parameter space, followed by LS optimization.
On the other hand, parameters of switching dynamic models and switching conditions are
defined stochastically, based on HMMs (SS-Imp).

Conventional K-means methods check the Euclidean distance between data points and
they are inadequate to cluster the human demonstration data appropriately, because of
being very sensitive to noise, outliers and initial conditions. As it was demonstrated, even
in a small data space that contains data points from different first order ARX models,
K-means clustering is unsuccessful. To overcome such problems, the distance check for
clustering has to be performed after scaling and rotating the data axes in the data space.
Thus, a Mahalanobis norm, which weights the data regression matrix with its covariance
matrix, is used. A data point j and its c − 1 neighboring data points have been assigned
to a local data set, and a local parameter vector has been identified for each set using
LS optimization to begin with. Following that, the clustering analysis is moved from
data space to parameter space. It is a natural consequence that the parameters of the
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local data sets that belong to the same mode are closer to each other. Thus, the data
points in parameter space are better separated from each other which provides a more
suitable basis for clustering. Together with the parameter vectors, information about the
spatial position of the parameters is included to form the regression matrix. In order to
perform WKM clustering, s has to be known beforehand. We have introduced an error
analysis, which enables to define s in a systematic way. The analysis is based on repeating
the clustering and parameter identification each time for different s. Following that, the
absolute model errors are compared with each other. Defining maximum allowed model
error as a threshold allows for determining the minimum s to reach to the threshold. Note
that increasing the number of the states, decreases the model error. The error analysis
is followed by an intensity analysis. It is expected that the data points that are close to
each other on time axis belong to the same cluster. The intensity analysis generates data
windows on time axis and finds out the most intensive cluster, i.e. the cluster containing
highest amount of data points, in each window individually. Then, all data points in each
window are assigned to the most intensive cluster of the window. As a result, convenient
clustering of the demonstration data and physical interpretation of the switching conditions
between clusters were possible. However, the WKM in parameter space yield two important
disadvantages. Firstly, the number of data points c in one local data set is defined in a
trial-and-error manner. Higher number of c enables to identify a parameter vector that
represents the mode it belongs to properly. However, at the same time, it increases the
risk of having mixed data points, i.e. points from different modes, in one local data set.
For each new c to try, the whole clustering process has to be re-started. Second hindrance
is the computing time. Creating local data sets is very time consuming and related to the
number of data points geometrically. If the number of data points increases with a rate
g, the time needed for creating local data sets increases with g2. The intensity analysis
introduced in this chapter is partly a remedy for this problem. It allows to sort out the
mixed data points.

Hidden Markov modeling is a stochastic method, matching the input and output sig-
nals of a system probabilistically, and leaving the system itself as a black box. However,
assigning a deterministic function to each state of an HMM and defining the observation
probability distribution b as a product of the function parameters, provides with an insight
look to the system as well. To avoid numerical instabilities, a scaling of HMM forward
and backward algorithms is necessary. Note that the higher the number of data points is,
the more possible it is to face numerical instabilities. We have introduced an algorithm
to define the switching conditions between the discrete states depending on the minimum
model error. First, the HMM iterations are carried on, until at least one of the states
satisfies the pre-defined, maximum allowable model error for all data points. Then, at
time point k, it is switched to the state that yield the minimum error. Following that, in
order to filter out unnecessary switchings, the intensity analysis is applied. Alternatively,
it is possible to apply logarithmic Viterbi algorithm to define the optimal state sequence
after the iterations are completed. It is achieved to converge to the model parameters
representing each discrete state with randomly chosen initial conditions. However, it is
not possible to reach to the desired model error for any initial setting. Therefore, it might
be necessary to repeat the SS-Imp several times, each time with different initial centers.
Additionally, a physical interpretation of the switching conditions is not always possible.

Representing human skill as switching impedances is appropriate for the tasks involving
human hand (with or without a tool) and object interaction, during which human needs
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to vary the force. Tasks like in our application examples: bone drilling and push-button,
or others like: peg-in-hole, hose insertion or grinding, have in their nature the potential to
relate the force to position and position derivatives. Tasks introducing highly non-linear
interactions, as in the interaction with a human organ during a medical operation, are not
suitable to be approximated by switching impedances, since for a good approximation the
number of the discrete states needs to be very high and switching between them would
be stochastic. This would restrain the ability of interpreting the physical meaning of the
states. Additionally, each interaction would lead to another model. Thus, neither would it
be possible to label any of the models as the model of the expert, nor to use this models to
train a novice. Freespace movements of arm, like carrying a glass of water from one point
to another, are more likely to be represented as a jerk optimization problem, following the
theory of Hogan [39].
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4 Training Methods to Transfer Human Skill via
Virtual Environments

In the last decade, there have been numerous research works and developments in the field
of multi-modal virtual reality (VR) systems that provide human with a better immersion
to virtual environments (VEs). Consequently, the number of realistic virtual simulators
that aim at training novices has been increasing rapidly. Nevertheless, less attention has
been paid to the training strategies and to the function of a trainer in training processes.

Many procedures such as cutting, suturing, drilling in medical operations incorporate
following a certain position trajectory by applying a certain force. Mainly, the training
strategies given in the literature neglect the force training and concentrate on only position
trajectory teaching [38, 80, 132]. One of the main reasons for this situation is the known
fact that it is not possible to teach both force and position synchronously. In order to
demonstrate the force to the student, the simulation has to be paused. This idea was
proposed by Yokokohji for single user record and replay based training structure [139]. In
our work, this concept has been extended to multi-user cases, in which the expert has a
chance to show the student the correct force to apply. This is achieved by not allowing
the student to interact with the VE himself/herself, but just playing the interaction forces
of the trainer on him/her. The method is called Force Demonstrating (FD) and explained
in detail in Section 4.2.3. The same principle is also implemented by replacing the expert
with a hybrid model of the expert. This situation is discussed in Section 4.3.2.

However, this method bears an important disadvantage since it is unnatural to stop sim-
ulation during a training session. Thus, haptic guidance based methods offer an interesting
alternative. As Feygin et al. describe, haptic guidance refers to guiding a student on a
trajectory via a haptic display [38]. One disadvantage of this method is that the student
is passive, i.e. the task is not realized by him/her. Additionally, at the end, not the force
to apply, but the trajectory is learned by the student. Thus, we introduce a method, in
which the student realizes the task himself/herself, and is observed by a trainer in a multi-
user scheme. If the student deviates from the expected force, the expert warns verbally
or corrects haptically. This unique approach allows us to train the force without stopping
the simulation. A similar approach was presented by Morris et al., by binding the haptic
interface points of the expert and the student via a soft spring in a collaborative VE [85].
However, neither details on how to choose the spring coefficient were given, nor was the
efficiency of the training discussed. Their method includes a remote-trainer, i.e. it is a
multi-user training strategy. Srimathveeravalli et al. define “haptic attributes” that relate
a unique haptic profile to tasks performed by using motor skills [115]. Then, while the
student is following a trajectory, his/her haptic profile is compared with the expert’s and,
depending on the difference, the student’s force is either augmented or decreased. However,
the method does not concern the relation between the visual and haptic feedback, i.e. even
when the trainee follows a wrong trajectory, he/she keeps on feeling the force that expert
would feel. Thus, the authors assume that expert and student have similar haptic profiles,
consequently trainee naturally follows a path closer to the expert’s. In addition to that,
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their application concerns calligraphy, in which the force to apply is almost orthogonal to
the position trajectory. The authors do not discuss, whether it is possible to apply this
method to other example where a change in position along the force direction occurs. They
did not find any important benefit of using haptic for force skill training. Last but not
least, all works of haptic guidance in literature are either in multi-user schema, or related
to record and replay fashion. None concerns using a trainer skill model. Therefore, we
discuss teaching the force in our Haptic/Visual Observation (HVO) and Force/Velocity
Leading (FVL) methods, where the former one can be considered as “Verbal Tutoring”
and the latter one as “Haptic Tutoring”. Both methods are implemented in multi-user
cases, as well as single-user cases using a hybrid dynamic model of the expert. It should
be underscored that the expert or the expert model intervenes the trainee’s performance,
only if the student deviates from the expected force. The correction signal is deactivated
as soon as the student corrects himself/herself. Please refer to Section 1.2.2 for a more
detailed insight into the state of the art in VR training systems.

Since the emphasis is on the force skill training, the trajectory to follow is assumed to
be correct or visually available to the user. Thus, we concentrate on training to apply the
correct force and realize tasks with correct velocity and timing along these trajectories.
In Section 4.4, we discuss the reason of these constraints and the possibility of using the
training strategies for scenarios with a broader scope.

This chapter is a classified collection of the training strategies, developed for VR training
systems. The classification of the strategies is depicted in Figure 4.1.

Training

Strategies

Multi-User Training

Training with

Trainer Model

Enhanced VEs

HVO
FD

FVL

Adaptive Training

Figure 4.1: Main training strategies applied in this work.

Sections 4.1-4.3 comprehensively explain the developed enhanced, multi-user and with
a trainer model training strategies. Simulation and real-time (RT) results of training via
a hybrid dynamic model strategies are presented in Section 4.3. Consecutively, the adap-
tiveness of the training strategies with respect to the student’s psychology is questioned in
Section 4.3.5. The chapter ends with a discussion.

74



4.1 Enhanced Training Methods

4.1 Enhanced Training Methods

As underlined before, the main difference between a simulator and a training system (TS)
is that a TS can be enhanced with extra features which do not exist in the real process,
whereas a simulator tries to replicate the process as realistically as possible. Such extra
features can be in a signal enhancement form that inform the trainee of his/her perfor-
mance, and lead him/her by stimulating an appropriate modality of the human sensory
system.

4.1.1 Visual and Acoustic Enhancement

Conventionally, the stimulation is carried out in a visual form. For tasks, such as trajectory
following, it is common to show the path to be followed to the trainee. Virtual fixtures are
also useful tools that mark the path to follow and change colors depending on the following
performance.

Similar structures can be used to train the student about the force. If the haptic display
includes a force sensor, it is rather straight-forward to implement visual indicators about
the applied force. Such indicators can be exact numerical displays, or color maps that
relate the level of the force.

Assume that there is a path to follow, and during this task the applied force f should
be in a certain range, i.e. fmin ≤ f ≤ fmax. In this case, the student can be informed
by visual force indicators that show whether the applied force is correct, too large or too
small, as in Figure 4.2. It is possible to include other indicators for velocity, acceleration
etc.

The biggest advantage of visual enhancement is the clarity of the information. Paying
attention only to the visual information, the trainee realizes the task very successfully.
However, in many cases, such as in surgical operations, there is no visual information
about the force available. The operations are realized entirely by relying on the haptic
sense. As Ernst et al. underscore, haptic cues play more important role in motor skill
learning procedures, if the visual information is less reliable to realize a task [29]. Thus,
for such cases, a visually enhanced training is degrading the quality and reliability of
training.

A similar statement can be made for acoustically enhanced training systems. Instead
of visual cues, it is possible to create acoustic cues, which inform the student about the
applied force. If you consider the example given above, three different acoustic signal, e.g.
one low, another one middle, and the last one having high frequency, can be generated to
inform the student, whether the applied force is in the pre-defined range or not.

Thus, for an inadequate training, the signal enhancement of the VR training system
should have the same modality of the signal to learn. Consequently, to learn force, we
introduce a haptic enhancement technique.

4.1.2 Haptic Enhancement

Following the statement of Ernst et al. mentioned above, it can be concluded that to
teach a task, which is realized by relying on haptic cues, it is more convenient to provide
a haptic enhancement. Although there are several training systems providing with visual
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Force

less ok large

Velocity

Acceleration

Figure 4.2: A training system for drilling with visual enhancement

enhancement, as a novel approach, haptic enhancement is added to our training systems.
It is felt by the user in the form of an additional force depending on his/her performance.

The haptic enhancement we propose has the following structure:

vref =

{
v = f (f ) if fmin ≤ f ≤ fmax

0 otherwise.
(4.1)

The equation above states that the trainee cannot move his/her haptic display, if the
applied force is less than fmin or more than fmax, which are pre-defined minimum and
maximum forces respectively. This is achieved simply by setting the reference velocity
vref to 0, which enables to fix the reference position to a certain point for the position
controller of the haptic display.

A similar idea was presented by Prada et al., who suggest using reactive virtual fixtures
with haptic cues together with haptic guidance. However, they inform the student hapti-
cally if a trajectory to follow is left by constraining the movements. In other words, not
the force, but the position is aimed to be taught to the student.

The strong characteristic of our haptic enhancement is that it is applicable to problems,
where there is a relation between force and velocity along the direction of the interaction.
Note that it can also be applied if there is a force profile to follow independent of the
velocity. Then, instead of defining the reference velocity as a function of the force v = f (f ),
it can be set to a constant value v = v′, and otherwise to zero. A disadvantage of this
method is that the student does not know if he/she applies too small or too large force.
The only haptic information is that the force is wrong. However, changing the force and
finding the point where the haptic display moves, is observed to be efficient in teaching
the force. Results of some user tests are discussed in Chapter 5.

4.2 Multi-User Training Methods

Collaborative VEs allow two or more users to realize a task in a VE together. When
haptics included, such a collaborative work can be considered as haptic communication of
users via a common virtual object. Some example scenarios developed in our laboratories to
demonstrate human-virtual object-human haptic communication, such as “tug-of-war” and
“load transportation”, are summarized in Appendix B. Below, the usage of collaborative
VEs for training is discussed.
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The potential of using VEs for training has been long accepted and numerous simulators
and training systems have been developed by many researchers. Nevertheless, no strong
attention has been paid to haptic influencing of a student by a trainer in a multi-user
scheme. Thus, we set our goal as “defining training strategies that enable a trainer to
observe the student in all possible sense modalities, and to influence him/her verbally
and/or haptically”. The replay methods developed by Yokokohji et al. [139] are taken as
a base, and they are extended for multi-user training cases in our work. Main difficulty in
such methods is that it is not possible to “replay” on the trainee both position/velocity and
force/torque information gathered from an expert synchronously. A compromise has to be
found between them for an efficient training. Kikuuwe et al. tried to solve this problem by
developing a new hardware [60]. But the results are not very satisfactory, because the new
hardware can give effective results for basic experiments, and reveals some limitations. In
Chapter 1, Introduction, a broader overview of the works concerning multi-user training
in VEs [28, 44, 77, 86, 89, 103, 130] was given. To briefly repeat the main deficiencies of
these works, generally just a conceptual overview is given and/or haptic guidance based
techniques were used in which the student is passive and not the force but position is aimed
to be trained. Except these few works concerning haptic guidance in a multi-user scheme,
there is no classical or modern training system that enables an expert to observe a trainee
and intervene in his/her performance haptically. Therefore, it is undoubtedly helpful and
necessary to extend currently available virtual training systems in this direction.

4.2.1 Overview

Keeping the difficulties and necessities given above in mind, three main multi-user training
methods are developed in this work to teach : Haptic and Visual Observation (HVO), Force
Demonstrating (FD) and Force/Velocity Leading (FVL) methods. In all of these methods,
there is one common virtual scene that is available both for the expert and for the trainee.
They both have a haptic display to interact with the virtual scene, and/or with each other
haptically. The first two are associated with Yokokohji’s stop-simulation method, whereas
the latter one is related to haptic guidance based methods. The general concept of the
multi-user VR training environment is given in Figure 4.3.

Visualization

Coll. Detection Haptic

Haptic

Rendering

Rendering

Robot

Robot

Control

Control

Computer-1 (RT)

Computer-2 (RT)

Computer-3

User-1

User-2

Meas. Data

Meas. Data

Figure 4.3: Training in a multi-user manner: User-1 represents the student, whereas User-2
represents the expert. During the training sessions, this structure is extended by one more
computer which displays the student’s performance on-line for trainer.
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4.2.2 Haptic-Visual Observation (HVO), Verbal Influencing

In one of the few works concerning force skill training, Yokokohji underlines that stopping
the simulation and replaying on the student previously recorded expert force data can be
treated as a method to teach the force. However, the unnatural stop / start structure is
degrading the efficiency of the training.

We propose a multi-user approach that allows the trainer to follow on-line the interaction
of the student via his/her haptic display. The implementation of the method is quite
straightforward: The student interacts with the VE in a conventional way. The visual
scene is also available to the remote trainer for visual observations. Additionally, the
forces that the student applies are sent to the haptic device of the trainer. Keeping his/her
haptic display tight, the trainer has a chance to observe the student also haptically. The
expert cannot intervene in the performance of the trainee haptically, but he/she has a
chance to do that verbally. In Figure 4.4 the implemented control scheme is shown, when
the VR is admittance type. Note that the method can be applied for an impedance type
VR as well. The training structure can be outlined as below:

• The student performs a task. The force he/she applies to realize the task is f s. The
dynamics of the VE is represented by the function f(·).

• Synchronously, the student force is sent to the expert’s haptic display. Thus, the
expert feels the force f e = f s, as long as he/she does not move his/her haptic
display, i.e. keeps the position xe and orientation oe of the haptic diplay constant.

• Feeling the force that student applies and observing him/her visually from the virtual
scene, the trainer can verbally warn the student to change the force appropriately,
or the trainer can confirm that the force is correct.

f(·) vs,ref

f e,ref
mapping

mapping
qs,ref

qe,ref

qs

qe

student

expert

control

control

V R

+

+

−

−

−1

f s f s

Figure 4.4: HVO method control scheme.

This training structure does not bear the disadvantages of the conventional stop simu-
lation method, since the student continues to realize the task without a break. The verbal
warning about the force from the trainer is very clear, and student is very quick to react
and correct himself / herself. The efficiency of the method is confirmed by user tests, which
is discussed in Chapter 5.
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4.2.3 Force Demonstrating (FD) Method

FD-Version 1
As an extension to the HVO method, the FD method aims to give a chance to the expert
to show (demonstrate) the applicable force to the trainee. In fact, FD is the inverted
implementation of the HVO strategy: The expert performs the virtual task, and the
student follows him/her visually and haptically. If one keeps in mind one of the main
deficiencies in classical surgery training, that is missing haptic feeling when observing an
expert surgeon in an OP room, the developed strategy here is very promising. Since this
implementation of FD is very similar to the HVO method, one can refer to Figure 4.4
and the steps given related to this figure to understand how the method functions. The
only necessary additional interpretation is to replace the student with expert and vice versa.

FD-Version 2
In this version, the aim is to demonstrate to the student force variations around a reference
force. Apart from HVO and FD Version-1, both student and expert needs to constraint
the movement of their haptic display along and/or about the axes, which are actively used
to apply forces and torques to realize the tasks. The main restriction of the method is that
it can only be used maximum 3 dimensional. For example only for the forces along x, y, z
axes, or only for the torques along these axes.

To clarify this version of FD implementation, consider the training structure given in
Figure 4.5 for 1-D interaction. The trainee needs to balance the reference (initial) force f0

pressing against him/her, so that his/her haptic display does not move. The expert follows
the force applied by the student haptically by restricting the movemement of his/her haptic
display along the direction of this force. The expert is able to move his/her haptic display
in a direction that is perpendicular to the direction of the force pushing against him/her.
Theoretically, visual feedback is not necessary for this method, since neither the student
nor the trainer performs the task. However, a synchronized visual feedback indicating in
which phase of the virtual task the trainee should apply the force he/she currently feels,
assists the student in understanding the correlation between visual and haptic feedback.

fs,ref

fe,ref

mapping

mapping
qs,ref

qe,ref

qs

qe
β

f0

student

expert

control

control

V R

∆y

+
+

+

+

−

−−1

fs fs

Figure 4.5: FD method control scheme.
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The method is summarized below for 1-D interaction case given in Figure 4.5.

• A reference force f0 presses against the student in x direction, i.e. fs,ref = f0. The
student should balance this force by applying fs = f0. In this case the student’s
haptic display does not move.

• The expert feels the force fs pushing against him/her so that fe = fs.

• The expert can change the reference force f0 by moving his/her haptic display in a
direction, e.g. y direction, that is perpendicular to the direction of the force fe. The
translation ∆y of the expert’s haptic display in y direction is then multiplied with a
scaling factor β.

• New reference force fs,ref = f0+β∆y is felt by the student in x direction. The student
should balance this new reference force by applying fs = fs,ref . The student’s haptic
display does not move.

Main deficiency of the FD methods is student’s being passive. The student cannot realize
the task himself/herself, just balances the force pushing against him/her. Thus, a method
that corrects the student haptically while he/she is actively realizing the task is investigated
and discussed below.

4.2.4 Force/Velocity Leading (FVL) Methods

The main impediment of the previously explained methods is that HVO only allows a
haptic observation, but not a haptic tutoring. On the other hand, FD methods require the
simulation to be stopped for the student, thus he/she is passive during a training session.
Therefore, another method is desired, which enables the trainer to observe and influence
the student haptically and on-line, i.e. without stopping the simulation.

Our FVL methods are developed to indulge this requirement. The methods basically aim
at force training via influencing either force or velocity reference signals for the student.
It is necessary to keep in mind that it is not possible to affect force and velocity at the
same time. The main principle is actually a combination of HVO and FD Version-2, and
relates to the haptic guidance methods given in the literature. However, note that in haptic
guidance methods, the student is passive and position is trained rather than force. Thus,
our FVL method is one of the few works which aims at teaching force, without stopping
the simulation and keeping the student active. The other related works, such as Haptic
Tutoring [85] or Haptic Profile [115] have been discussed previously in Section 1.2.2 in
detail together with their deficiencies.

If the task in focus suggests that the applied force is related to the velocity, then it is
convenient to develop an admittance type VE. Different tasks, such as peg-in-hole, push
a box in a labyrinth, medical drilling, cutting operations can be interpreted in this way.
In this case, it is more suitable that FVL method enables expert to influence the trainee’s
performance by changing his/her velocity. The trainer observes the student haptically
as in the FD Version-2. Consequently, the observation is limited to 3-DoF, e.g. along
x, y, z axes. The rest 3-DoF, e.g. about x, y, z axes is used to send to the student the
correction signals. The trainer intervenes in the performance of the student haptically,
only if the force that the student applies along the current trajectory is wrong. The haptic
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intervention is in the form of changing the velocity of the student that results in change in
the resistance that student feels.

For 1-D interaction, the implementation of the method is sketched in Figure 4.6 and the
steps to follow are given below:

• The student applies the force fs, and moves with the velocity vs,ref = f(fs) in the
direction of the force. The expert feels fs pushing against him, i.e. fe = fs.

• The expert changes the velocity by moving his/her haptic display along the y direc-
tion. The change ∆y in the y position of the haptic display is scaled with the factor
γ to relate the change in position to the change in velocity vc, so that vc = γ∆y.

• The velocity vs,ref = vc + f(fs) is applied to the student. The student has to adapt
his/her force, until he/she finds back the correct velocity and force.

f(·)

vs,ref

fe,ref

mapping

mapping
qs,ref

qe,ref

qs

qeγ

student

expert

control

control

V R

∆y

+
+ +

+

−

−−1

fs fs

Figure 4.6: FVL method control scheme

It has to be noted here that it is possible to derive several variations of this method
depending on the choice of factor γ. For example, if the γ is positive, the trainer lets the
student’s haptic display move faster, i.e. pulls the student along the trajectory. On the
other hand, if the γ is negative, then the trainer slows down the student’s haptic display,
consequently the force pushing against student increases. In either way, as long as the
student finds back the correct force to apply, the trainer lets the student realize the task
himself/herself, without interrupting or guiding. Moreover, if an impedance type VR is
in use or the force is just a function of time, the method can be implemented in such a
way that not the velocity, but the force is enhanced or degraded by the trainer as in our
push-button example. However, we confine ourselves to explanations above and presume
that the variations can be extracted from these explanations.

Since this method allows an on-line haptic correction of a student’s performance, it
exhibits a unique and novel training structure. However, it is more complex in comparison
with HVO and FD methods, and the training signal is not as clear as in HVO and FD
methods. Thus, students need longer time to adapt themselves and understand the way
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the training functions. Knowledge about the task beforehand, especially either about the
force or velocity to apply, is an advantage to the meaning of the correction signals. In
Chapter 5, this issues are investigated via user tests and results are discussed.

4.3 Training via a Trainer Model

It is not always possible to assure the existence of an expert during training - learning
activities. However, if a model of the trainer exists, there is a potential that the training
procedure is checked / corrected by this model. Such a training structure that involves
a trainer model brings in many advantages. Since a multi-user scheme is not anymore
necessary, the hardware costs are reduced to half. More importantly, the modeled skills of
a late expert can be used to train new generations. Likewise, no longer existing skills for
specific tasks can be recreated. It should be added here that having a possibility to train
alone would provide the student with a more relaxed training environment.

This section summarizes our contribution to extend VR training systems with a model
of the trainer. There is no other work known to us that integrates a trainer skill model
into the training systems.

4.3.1 Overview

Trainer skill has been identified as a hybrid dynamic system, which has switching
impedances structure, as it was explained in Chapter 3. The knowledge of this modeling
and identification work is not desired in order to follow the training strategies explained
below. Suffice to assume that a trainer model exists in the form of switching impedances.
Combining such a model with HVO, FD, and FVL training strategies introduced above in
multi-user training concept establishes unique and novel VR training strategies.

The concept block diagram of “training via a trainer model” is given in Figure 4.7.
Reference velocity and position trajectories are defined for the trainer model appropriately
to the observed interaction of the trainer with the virtual task. When the training starts,
the trainer model calculates the force f t that trainer would apply along these trajectories.
Then, depending on the training strategy an appropriate correction signal Tc is fed to the
student. Main working principles of HVO, FD, and FVL methods with a trainer model are
introduced in Section 4.3.2. Sections 4.3.3 and 4.3.4 indicate simulation and RT experiment
results of the training models respectively. An important issue concerning the adaptiveness
of the trainer model is examined and investigated in Section 4.3.5.

4.3.2 HVO, FD and FVL Methods using the Trainer Model

In the implementation of the HVO method with a trainer model, the observation of the
student’s force f s is necessary. The method is sketched in Figure 4.8(a). The hybrid
dynamic trainer model block is expanded in Figure 4.8(b) to show how the observation and
visual/acoustic influence principle functions in order to understand the training structure
better. According to the trainer reference velocity, switching impedances hybrid model
defines the trainer output force f t. Collision information from the VR is used to start the
trainer model, i.e. to switch from freespace state to the first state of the task realization.
This force is then compared with f s. The correction signal generated by the training
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Figure 4.7: The concept of the VR training system including hybrid dynamic trainer model.

system is in the form of a visual and/or acoustic warning. A database is created, which
contains different visual or acoustic warning messages. Depending on the magnitude of the
force difference |f t − f s|, a decision is made which warning signal is to be played. If the
warning is visual, a trainer comment appears on the visual scene. This implementation
is advantageous, since the student is actively realizing the task. However, it bears in its
nature the disadvantages of visual and/or acoustic enhanced training: to teach the force,
the student is informed using other modalities. This is a hindrance for the tasks, where
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Figure 4.8: (a) HVO training method including the trainer model. (b) Insight of the hybrid
dynamic trainer model.
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the visual or acoustic information is not reliable, and the task is realized mainly depending
on haptic cues. Hence HVO method can also be called “Visual Tutoring”.

Another way of implementation of the trainer model in trainings is to demonstrate to
the student complete task using the model (FD approach). For this purpose, it is possible
to use the model as a guide, which leads the student on the position trajectory haptically.
However, in this case, not the force itself, but the trajectory is the issue to train. Since we
aim at force skill training, our implementation requires the student not to move his/her
haptic display. The task is realized by the trainer model, a trainer force f t is fed to the
student. Visualization is synchronized with f t by sending the trainer position pt and
orientation ot to the VE, and move the avatar appropriately. Thus, the student has a
chance to visually observe the moving avatar and at the same time feel the corresponding
force, i.e. haptically observe the trainer. The construction of the FD training loop via a
hybrid dynamic trainer model is shown in Figure 4.9. The method enables to student to
associate certain phases of the task with appropriate forces and torques. As in multi-user
FD cases, student’s being passive is apparently the biggest disadvantage of this method.
Additionally, the forces felt by a person are related to the arm posture. In this method,
the trainee needs to have a constant arm posture, and feel all the forces in this posture.

pt
mapping

qs,ref qs
Control

Hybrid Dynamic
Trainer Model

VE

+

Student

f t

Figure 4.9: FD training method including the dynamic trainer model.

FVL method is the same as HVO method for the observation. But it differs from HVO
in the sent correction signal. To overcome the main deficiency of HVO or similar methods,
FVL method aims at training the student’s force skill haptically, while the student is
actively realizing the task. Thus, it is a kind of “Haptic Tutoring” strategy.

Principally FVL methods allow student to realize the virtual task himself/herself. At
the same time, the trainer model simulates the interaction of the trainer with the VE in
the background. If there is a deviation between this simulation and the performance of the
student, first the trainer model pauses the simulation, and then it modifies the reference
signal for the student in such a way that the student is expected to correct himself/herself.
If this correction happens, the trainer model goes on with the simulation from the point
that was paused, and keeps on checking for deviations. This procedure is repeated, until the
task is completed. The time that the trainer model simulation spends in pause, is a good
measure on student’s success: The longer the pause, the worse the student’s performance.
In Figure 4.10(a) working principle of the FVL method is shown. An insight look into the
hybrid dynamic trainer model is given in Figure 4.10(b).
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Figure 4.10: (a) FVL training method including the trainer model. (b) Insight of the hybrid
dynamic trainer model.

The correction signal Tc of the FVL methods including hybrid trainer can be written as
follows, if the interaction is 1D:

vt(t) =

{
0 if |ft − fs| ≥ ftol

vt,ref(t) otherwise.
(4.2)

Tc =

{
{γ1, γ2} · (ft − fs) if |ft − fs| ≥ ftol

0 otherwise,
(4.3)

where vt is trainer reference velocity, ftol is pre-defined maximum allowable force deviation.
If the correction signal Tc is force fc, then the constant γ1, if it is velocity vc, then the
constant γ2 is used to scale the force difference between trainer and student, i.e. ft − fs.

Before we proceed to the simulation and RT experiment results while using hybrid
trainer, a careful discussion on the switching conditions of the trainer model is needed for
HVO and FVL methods. As explained above, the switching between states is defined by
the trainer reference. It is paused if the student deviates from the expected force, and stays
paused until the student correct his/her force. If the interaction force is defined by a spring
like element along the trajectory, i.e. force and position is coupled, then correcting the
force would automatically suggest correcting the position, like in our push-button example.
In scenarios, where the force and position are perpendicular, like in drawing or calligraphy,
there is a chance to correct the force with these methods on each position. Thus, defining
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the switching positions by trainer model does not bring any problems. If the switchings
occur velocity based, not position based, in the direction of the applied force, as in the
bone drilling example, then it is acceptable to switch depending on the trainer reference,
since we would like the trainee to realize the task with the velocity and force, exactly as
the trainer would do. That is why we do not let him go to the next state, if he/she does
not follow the trainer’s velocity. However, if there is a 3D trajectory to follow and on
some certain points of this trajectory switching occurs, it may happen that the student
already moves to the next state without correcting himself/herself, and the trainer model
still wants to teach the force from the previous state. There can be different approaches
to come over such cases. First of all, the switchings of the trainer model can be realized
on the basis of student position, not trainer reference. However, we cannot guarantee that
in each individual state the student manages to realize the task correctly. On the other
hand, it is possible to constraint the student, so that it is not possible to go to the next
step, before the applied force is corrected. For this aim, virtual haptic fixtures constraining
the movement can be implemented. Another solution is to join FVL method with haptic
guidance. In this case first the student is brought to the point where trainer would be
via haptic guidance method, keeping the student passive. From then on, FVL method is
applied to train the student. In order to stick to the FVL method only, without switching
between methods, it is also possible to assume that the student does not introduce abrupt
changes, and follows closely the trainer. Thus, the correction is in small range, and followed
by the student properly. In other words, the student manages to correct himself/herself
before switching to the next state or the switching is not related to the position, only to
the velocity. Consequently, switching depending on the trainer reference is accepted to be
satisfactory.

4.3.3 Simulation of FVL Method Including Trainer Model

It is a very difficult task to simulate a training process. The VE, student’s behavior and
his/her interaction with the VE, trainer model, robot’s inner dynamics and the control of
the robot have to be simulated synchronously. Moreover, the trainer model should observe
the student’s interaction, and send a correction signal appropriate to the training strategy.

Push-button VE system offers a more suitable platform for simulations than BD-MTS,
because of the simple linear spring-damper structure of the VE. Since the trainer interaction
is previously observed, the reference velocity vt followed by trainer is known. Using this
velocity as input to the hybrid trainer model, we can simulate the trainer force. To start
with, it is assumed that the student realizes the task with a wrong velocity, which is
obtained by scaling the reference velocity of the trainer. So that vs = αvt. This velocity is
integrated and noise ν is added to it to define the position of the student as ps =

∫
vsdt+ν

Then, the student’s interaction with the VE is simulated by defining this velocity as the
input of the VE, and the output of the VE is the force obtained from haptic rendering of
the virtual scene. Consequently, we can simulate the student’s and trainer’s interaction
with VE individually as given in Figure 4.11(a)-(c).

Accordingly, it is aimed at simulating how the trainer model corrects the performance
of the student. At the beginning, the hybrid trainer model is used in such a way that it
does not take into account whether the student is correcting his/her performance or not
(feed-forward way). Depending on the difference between forces ft and fs, the correction
signal Tc is defined by the equation (4.3). The bottleneck of the simulation is the mapping
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part. VR output, which is force, plus the correction signal has to define the reference
position. However, the position had to be pre-defined as a reference signal for interaction
with VR. As a solution for this bottleneck, we let the correction signal affect the position
of the student directly, instead of the force. This position signal is then sent to the VE.
Consequently, it is observed that the output VR force follows the desired expert force. Note
that the mapping is skipped, and the student’s force is taken as the VR output force plus
noise. The results of this simulation are given in Figure 4.11(d)-(f). Following that, the
simulation is repeated while pause/play technique is in use. That is, after the correction
signal is sent to the student, the trainer model simulation is paused and suspended until
the student corrects his/her force (feedback way). If the difference between the trainer ft

and student fs forces are more than the pre-defined acceptable force tolerance ftol, then
the trainer switches his/her reference velocity to zero as in Figure (h), i.e. stops pushing
process and fixes his/her force, and then sends a correction signal to the student. This
signal can be velocity or force, depending of the type of the VE. Unless the student corrects
his/her performance, and the force difference is again in acceptable range, the trainer model
stays fixed in zero velocity. The results are depicted in 4.11(g)-(i).
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Figure 4.11: (a)-(c) Generated reference position and velocity, and calculated force signals
for student and trainer. (d)-(f) Trainer model corrects the student, but does not have
pause/play structure (feed-forward way). (g)-(i) Trainer model corrects the student and
includes pause/play structure (feedback way).

A closer look to the Figures (f) and (i) is given in Figure 4.12. It can be clearly seen that
when the trainer stops and sends the correction signal to the trainee, and waits until the
student corrects himself/herself, the squared sum of error between student and trainer is
lower. But, in return, the simulation time gets longer. If you again refer to Figure 4.11(f)
and (i), at the end of the simulation, using feedback way it is reached to only ca. 35 N,
whereas using feed-forward way to ca. 45 N, which is the expected end of the pushing
process.
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Figure 4.12: Error comparison when the FVL trainer is in feed-forward and feedback way.

As it can be seen, the simulation of such a training structure is very complicated. Many
assumptions and simplifications have to be done and the efficiency of the training with
a trainer model is restricted to these assumptions. In comparison with the simulation,
performance of RT experiments is more straight-forward. Next section summarizes the
results of these experiments.

4.3.4 Real-Time Experiment Results of Trainer-in-the-Loop

The training strategies involving a hybrid dynamic trainer model are implemented in RT,
both for push-button training system and BD-MTS. Experiments are performed to check
how the trainer model functions and influences the student. The results presented in this
section account only for these points. The efficiency of the overall training system and the
ways of improving the student’s skill via proposed methods are investigated in Chapter 5.

Push-Button Trainer in Loop: FD Results
As it is depicted in Figure 4.9, trainer force is sent to the student, who has to balance this
force, whereas trainer position is sent to the VE in order to visualize the push-button task.

In Figure 4.13(a), the trainer position is shown. As in the real case, pushing is
performed with a constant velocity. The task is finished when the button is pushed 10
cm. The resulting trainer force, that is output of the switching impedance model, is given
in Figure 4.13(b), together with the student’s measured force. Trainer force shows two
different slopes during the pushing process, which is expected since the button has two
different layers. Student’s force smoothly follows the trainer force. The visible deviations
are due to student’s moving his/her haptic display, i.e. not keeping it constant. Following
the visual scene and feeling the appropriate forces, the trainee can observe the whole
process. The final force that is around 45 N is fed to the student until he/she correctly
reacts and balances it.
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Figure 4.13: FD training via trainer model for push-button task. (a) Trainer position that is
sent to the VR. (b) Comparison of the trainer force and student force

Push-Button Trainer in Loop: FVL Results

In Figure 4.14(a) the observation of student’s force by trainer model is given. When the
trainer model determines that the deviation of the student force is more than the pre-
defined error tolerance, a force correction signal fc is sent to the student. The trainer
model freezes and waits until the student reaches the correct range again. Figure 4.14(b)
shows the “pauses” of the trainer reference velocity. It is simply set to zero in case of
deviation, so that the position is also kept constant as it can be seen in Figure 4.14(c).
Note that the pause signal is also sent to the switching impedances model.

When the FVL method is used, the biggest advantage for the student is that he/she
can realize the task himself/herself. Trainer model intrudes only when the student’s task
realization deviates from the trainer’s. However, the student has difficulties to differentiate
the correction force from his/her interaction force. Thus, there are long “pause” periods
that result in longer duration of task realization.

BD-MTS Trainer in Loop: FD Results
Similar to the push-button case, the trainer position given in Figure 4.15(a) is sent to
the VR to visualize the virtual task. The student has to balance the trainer force, which
is depicted in Figure 4.15(b). Appropriately to the real drilling case, the trainer model
starts the drilling as soon as possible after collision, and then keeps the force and velocity
constant. Except the small deviations that are caused by student’s not being able to
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Figure 4.14: FVL training via trainer model for push-button task. (a) Comparison of the
trainer force and student force (b) Trainer velocity (c) Comparison of the trainer position
and student position

keep his/her haptic display exactly constant, the student can balance the trainer’s force
smoothly.

BD-MTS Trainer in Loop: FVL Results
Since in BD-MTS the VR is admittance type, the correction signal sent from the trainer is
velocity vc. Following the equation (4.3), vc is calculated depending on the force difference
between the student and the trainer.
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In Figure 4.15(c), the velocity that the student tends to use, the correction vc on this
velocity and the consequent drilling velocity are given. As it can be seen in Figure 4.15(d),
when the force difference is beyond a certain amount, a correction signal is sent to the
student. Otherwise vc is zero.

4.3.5 Including Student Psychology: Adaptive Trainer Model

Human behavior as a whole is very complex to model. To model this complicated organism,
it is first needed to split the behavior into smaller categories and then focus on one of these
to model. Our identification and modeling effort is focused on sensorimotor skills category.
The model, which represents the trainer sensorimotor skill, is then used in VR training
systems as an observer and controller of student’s performance.

However, as Gaines underlines, the dissection of human behavior does not exclude
cross-correlation between categories [41]. This argument causes the following questions for
us to arise: “How is the student’s progress assessed by the trainer? What is the trainer’s
cognition on the student’s reaction to the teaching signals? How does the trainer change
the training strategy depending on his/her cognition?”. These questions are not so trivial
to answer. However, it is expected that a good trainer adapts himself/herself depending
on the student and would find the best way to train each particular student. Although
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the cross-correlation effects are not the main focus of this thesis, it is essential to discuss
whether they can be taken into account in the proposed training strategies.

The Reaction of the Student to the Action of the Trainer
As it is explained throughout this chapter, the training systems mostly aim to correct the
student, when his/her performance deviates from the trainer’s performance. The correction
stimulates acoustic, visual and/or haptic senses of the student in different forms. It is
expected that the reaction Sr of the student to the correction signal Tc differs from one
student to another. Assuming the relation between Sr and Tc as a P-controller, the reaction
can be formulated as

Sr = Kp · Tc, (4.4)

where Kp is the controller gain of the student. A possible way to alternate the training
strategy is to adapt Tc depending on Kp representing the student.

Below, a summary of the adaptation possibility of the training strategies and, if
possible, the realization of the adaptation for individual training strategies are given.

Adaptiveness of HVO Methods
As it was depicted in Figure 4.8(b), the correction signal in HVO training is a visual
warning that is chosen from a database depending on the deviation between the student
and the trainer. Duration of the correction signals Tc is directly related to the gain Kp.
If “Apply Larger Force” visual command is given by the trainer, the student, who finds
the correct force range in the shortest time, has the biggest proportional gain. On the
contrary, if the warning signal stays for long time on, it indicates a small gain.

Thus, if repeated trials of a student establish a characteristic Kp feature, the database
can be adapted. For example, for a student, who presents small Kp gains, “Apply Larger
Force” command can be replaced by “Apply Much Larger Force” and so on.

A comparison of two different users, who are trained with HVO method and show
different Kp features, is given in Figure 4.16(a). If the difference between student and
trainer is more than +3 N “Apply Less Force”, if it is less than −3 N “Apply Larger Force”
command is given by the training system. In the beginning, both users are applying much
smaller force than expected. Consecutively, “Apply Larger Force” command is announced
by the trainer model for both. In return, Student-A, finds the correct force within 1
second. However, Student-B needs 4 seconds, although the force difference for A and B
was more or less the same before the command. In this case, if Student-B has a gain
equal to KP,B, the gain of the Student-A is KP,A = 4KP,B. If the further performance of
the same students are observed, the tendency of Student-A is always to answer with a big
gain, i.e. very quick, which results in jumping from “Apply Larger Force” to “Apply Less
Force” command as shown in Figure 4.16(b). Thus, for Student-A the training commands
can be scaled down, whereas for Student-B it is necessary to scale up the command in
order to fasten his/her reaction.

Adaptiveness of FD Methods
In FD methods, the students do not actively realize the virtual task. They only follow
the trainer visually and balance the force applying against them. Since it is not pos-
sible to check the reaction of the student, FD training methods do not allow an adaptation.
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Figure 4.16: Comparison of proportional gains of two different students trained in BD-MTS
using HVO method. (a) Reaction of students when both have ca. ∆f = −12 N deviation
from the teacher and both get the same correction signal Tc. (b) General progress of
students’ reaction after finding back the correct force.

Adaptiveness of FVL Methods
In FVL method, the student is realizing the task himself/herself. If the deviation between
the trainer and student is more than a pre-defined limit, then the deviation is scaled with
a factor γ1 or γ2 depending on the VR type, as it was given in the equation 4.3.

If the student’s proportional gain is Kp, the factor γ1 or γ2 can be adapted as given
below:

γ̄1,2 =
Kp,refγ1,2

Kp

, (4.5)

where Kp,ref is reference gain, which is the gain that belongs to one of the students. For
the other students, the gain Kp ca be defined relative to Kp,ref .

In Figure 4.17(a) the force deviation ∆f between the trainer and student is sketched
for two different students, who were trained in BD-MTS by a FVL method. Student-A
reacts on the correction signal quickly and within 1 s he/she is back in acceptable force
deviation range. We assign his/her proportional gain as Kp,A = Kp,ref . However, Student-
B’s reaction is much slower. He/she needs 5 s to correct himself/herself. Respectively,
his/her gain is less, i.e Kp,B = 0.2Kp,ref . The adapted scaling factors are:

γ̄2,A =
Kp,nomγ2

Kp,nom

= γ2, (4.6)

γ̄2,B =
Kp,nomγ2

0.2 ·Kp,nom
= 5 · γ2. (4.7)

Note that the correction signal is velocity, when the FVL method is used in BD-MTS.
Therefore, in (4.6) and (4.7) γ2 is used. In Figure 4.17(b), the correction signals for both
students are given. As one can see, after 1 s, there is not anymore a correction signal for
Student-A, whereas for Student-B, it continues for 5 s.
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for students A and B.

Beyond P-Controller
The reaction of the student formulated by (4.4) as a P-controller is undoubtedly a gross
approximation. As Tsuji et al. and many others suggest, the model of human tracking
control should include the dead time τ and a phase lag element with time constant Ts.
Thus, the reaction can be specified again as follows:

Sr(s) =
Kp

1 + Ts · se
−τs · Tc(s). (4.8)

On the other hand, another possible way is to follow the theory of Hogan et al. [39] and
look for a jerk optimal model of student arm movement with respect to the training signal.

As it was stated out before, these points are beyond the scope of this thesis, but they
yield interesting and challenging research issues.

4.4 Discussion

In this chapter, results of a large investigation on training strategies and possibilities of
force skill transfer via VEs were presented. While there are numerous training systems
aiming at position and 3D trajectory learning, very few works concern force skill train-
ing. A perceived reason for this situation is the difficulty to teach position and force
synchronously. Another reason is that visual modality had been considered to be more
dominant than haptic modality concerning perceptual motor skills [102]. However, as Ernst
et al. underline, if the visual information is less reliable to realize a task, than haptic cues
play more important role in motor skill learning procedures [29]. Many surgical operations,
such as cutting, drilling, suturing incorporate such situations and they are realized by sur-
geons mainly by relying on haptic cues. Moreover, in such cases, applying excessive force
causes irreparable damages. Thus, even if the visual information is available, applying
correct force on these trajectories plays a crucial role for a successful operation.
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In order to achieve this aim, three groups of strategies were proposed: Enhanced training,
multi-user training and training via a hybrid dynamic trainer model. Below, we first
compare the methods with each other and underline their main features. Then, their
possible usage in different application configurations is discussed.

4.4.1 Comparison of the Methods

Enhanced training methods augment the VEs by extra features that are not available in
real tasks. In our methods, these extra features are visual, acoustic or haptic warning
signals that inform the student about the force he/she applies. The biggest advantage of
visual enhancement is the clarity of the information sent to the student. However, in many
cases, such as in surgical operations, no visual information about the force is available.
The operations are realized entirely by relying on the haptic sense. Thus, for such cases,
visual enhancement is degrading the quality and reliability of the training. We concluded
that for an inadequate training, the signal enhancement of the VR training system should
have the same modality of the signal to learn. Consequently, to learn force, we introduced
a haptic enhancement technique, which is in the form of an additional, constraining force
that is felt by the user depending on his/her performance. The strong feature of the haptic
enhancement is that it is applicable for the problems, where there is a relation between
force and velocity along the direction of the interaction, as well as if there is a force profile
to follow independent of the velocity. A disadvantage of this method is that the student
does not know if he/she applies too small or too large force. The only haptic information
is that the force is wrong.

Multi-user methods integrate the trainer into the trainings. Unique training structures
arise, when Yokokohji’s “stop-simulation to feel the force” principle is inserted into multi-
user schemes. On one hand, we can ask the trainer to realize the task and the student
to observe (FD method). However, this observation is not only visual, but also haptic,
which is achieved by sending the trainer forces to the student. Note that the student has
to keep his/her haptic display on a fixed point in space and balance the force that presses
against him/her. If one keeps in mind one of the main deficiencies in classical surgery
training, that is missing haptic feeling when observing an expert surgeon in an OP room,
the developed strategy here is very promising. Main disadvantage of the FD method is
student’s being passive. The student cannot realize the task himself/herself. Thus, other
multi-user training methods were considered, which inversely give the observation duty to
the trainer and task realization duty to the student. The trainer can send either verbal
(HVO method) or haptic correction signals (FVL method). Implementation of the HVO
method is straight-forward. It is a unique method that gives the trainer a chance to feel
the forces that student applies and to warn the student verbally to correct them. Since this
verbal information is very clear, the student skill training with multi-user HVO method
turned out to be very efficient. These issues are discussed again in Chapter 5. Another
important feature of this method is that even if the student follows wrong trajectory, he/she
can be warned about this by the trainer. In case of FVL method, the trainer augments
or decreases the interaction force or velocity of the student in order to correct him/her.
This is a kind of haptic tutoring approach, which aims to make student feel exactly what
expert would feel on a certain position on the trajectory. However, since it is not possible
to control force and position at the same time, the difference between forces is scaled,
and presented as an additional resistance to the student. It is expected that the student
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finds the correct force and position, because only then the additional resistance would
disappear. Although the method is unique, a priori knowledge of the student about the
task is essential. Otherwise, the student might have difficulties to interpret the correction
signals coming from the trainer.

Training via a hybrid dynamic trainer model functions almost the same as multi-user
trainings. The main difference is that instead of the trainer himself/herself, his/her model
is integrated into the training structure. The same methodologies, i.e. HVO, FD and FVL
trainings were implemented. There is no other work known to us that integrates trainer
model in the force skill training procedures. Note that it is not always possible to assure
the existence of an expert during training - learning activities. However, if a model of the
trainer exists, there is a potential that the training procedure is checked and corrected by
this model. Training structure involving a trainer model can be very advantageous. Since
a multi-user scheme is not anymore necessary, the hardware costs are reduced. What is
more, future generations can make use of the maoeled skills of late experts. In this way,
extinct skills for specific tasks can be re-animated. It should be added here that having a
possibility to train without the presence of the expert would provide the student with a
more relaxed training environment.

4.4.2 Application of the Methods in VR Training Systems

All of the proposed methods are based on modifying or enhancing the VR interaction
signals to bring a training effect. Thus, theoretically, the training methods are applicable
to any VR training system, such as drilling, sawing, peg-in-hole or grinding that aims at
force learning. However, there are different limitations that constraint the range of the
applications.

Multi-user FVL method requires the trainer to restrict the movements of haptic display
for observations. Consequently, the DoF that the trainer can use to send the correction
signals are restricted as well. The trainer can use maximum 3-DoF of the device for
observations, so that the remaining 3-DoF can be used for corrections. For example, the
trainer can observe the forces along the x, y, z directions, by keeping the robot position
fixed in the Cartesian space. The remaining 3-DoF, i.e. rotation along x, y, z axes, are
then used to send correction signals. Using the model of the trainer to observe and correct
the student eliminates this restriction. Nevertheless, the training relies on the fidelity
of the trainer skill model. As it was discussed before, the tasks introducing freespace
hand movements and high non-linear objects to be interacted cannot be represented by
switching impedances. However, assuming that a perfect trainer model exists, FVL method
is a unique solution for the training systems, since it enables the student to experience
the correct haptic information without stopping the simulation. Note that for multi-user
FVL, hybrid trainer FVL and hybrid trainer HVO methods, it is assumed that the student
follows the correct position trajectory, however deviates from the correct velocity or force
on this trajectory. An additional assumption for hybrid trainer FVL and HVO methods
is that the student does not proceed to the next phase, before correcting himself/herself.
To eliminate these assumptions, the methods can be combined with a haptic guidance
strategy. So that if the student is on the wrong trajectory, first he/she is brought back
to the correct trajectory via haptic guidance. Then it is switched to the FVL or HVO
method to train force.
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FD methods neither yield such a DoF limitation, nor do they require the trajectory to be
known by the student. However, they stop the simulation and keep the student passive. As
a consequence, the arm posture of the student is different during the training sessions than
while he/she realizes the task himself/herself. Enhanced methods are easily implementable.
Their biggest deficiency is that such features do not exist in a real operation. Thus, it is
questionable whether the skills learned from the enhanced VE are transferable to the real
operations or not. Especially, if the modalities are changed, e.g. if the student was informed
about the haptic interactions visually, our experiments underscore very bad performances
when the visual enhancement is turned off.

4.4.3 Application of the Methods in Telepresence

The training methods developed in this work are explicitly considered for VR applications.
However, the potential of the methods to be used in telepresence applications should be
emphasized.

In a telepresence application, the VE is replaced by a remote environment. The telep-
resence operator controls a remote robotic manipulator (slave robot) via his/her haptic
display (master robot) in order to carry through tasks in remote environments. Our HVO
and FD multi-user training methods yield appropriate features to train novices for such
tele-manipulation tasks. The novice user can be connected to the tele-manipulation en-
vironment via his/her own haptic display. The visual feedback that the expert gets from
the slave robot can also be made available for the novice user. In the implementation
of the FD method, the expert tele-operator realizes the remote task and the force that
he/she applies is sent to the haptic display of the novice. By keeping the display tight,
the novice has a chance to observe the experienced tele-operator haptically as well. Multi-
user HVO method is implemented inversely, so that the novice user actively realizes the
tele-manipulation task, whereas expert operator observes and warns the student verbally.
Similarly, FVL method can be used to bring the training effect. In this case, the force
that the novice applies is degraded or augmented by the expert. The limitations explained
above for multi-user FVL applications in VR training systems are also valid here. Re-
member that VEs are passive, whereas remote environments are active. Hence, the direct
modification of the force that student exerts may cause instabilities.

It is known that tele-presence newcomers need training and time to adapt themselves in
the specific way of using a tele-presence system. Therefore, integrating a trainer in such
a training procedure of a newcomer has the potential of improving the tele-manipulation
skills rapidly and reducing the time needed for adaptation. As explained above, using FD
techniques, the student can observe the expert tele-operator haptically and visually. Addi-
tionally, the newcomer can be led through the trajectory using haptic guidance techniques.
Joining these haptic guidance and FD methods can make it possible to demonstrate to the
newcomer different phases of the manipulation task.

If a hybrid trainer model exists, it is possible to run a robotic manipulator using the
model as a reference generator. Thus, it can be assumed that the robotic manipulator is
the expert. In this case, the tele-operator can be trained by the robotic manipulator using
FD principles. It is not possible to apply HVO or FVL method in such a configuration.

In addition, the trainer model can be used for intention detection. Assume a box-
carrying tele-operation task. The tele-operator first performs “grip the box” task, than
“carry the box while keeping the force constant” task and finally “release the box” task.
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The model of the trainer would allow the robotic manipulator to estimate the current
phase of the task. Consequently, even if there are communication network or tele-operator
related disturbances, the manipulator would keep on performing the task correctly.

As the last point, we would like to remind that multi-user VR schemes can also be
considered as tele-presence systems that enable two or more persons to communicate with
each other haptically via a common VE. The communication may aim at training, but does
not have to be limited to it. For example, interactions in applications such as tug-of-war
or carrying a table are implemented successfully, and they are summarized in Appendix
B.
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Training systems are conventionally assessed through subjective evaluation methods. For
example training can be observed and graded by a trainer. However, the grading of different
trainers on the same task may vary from one another. The students can also be asked to
fill in a questionnaire and assign notes to different questions after trainings. Nevertheless,
the questions in the questionnaire might be directing the students.

Contrary to the classical training, VR training systems offer a possibility to record
various interaction data during the training process. Using this opportunity, quantitative
evaluation metrics can be defined.

This chapter is considered as an integration chapter. After discussing the objective
evaluation metrics for VR training systems, previously investigated topics from Chapters
2, 3, and 4 are harmonized and a complete virtual training via a hybrid trainer model
concept is presented in Section 5.2. This is followed by experimental investigations on the
efficiency of different training strategies via user tests. Consequently, the results of the
user tests are discussed in Section 5.4.

5.1 Evaluation Methods

If the number of works concerning the development of VR training systems is compared
with the number of works referring to objective evaluation of the training systems, it is
not improper to say that evaluation is a rather untouched research topic.

A method proposed in the literature is the assessment of the laparoscopic surgical skills
using hidden Markov model distances [105]. The method is later on used by others for
different applications, e.g Hirana et al. implements a deformable hose insertion task based
on switching impedance controller, which is evaluated through HMM distances as well [46].
In order to apply this method, a HMM for a trainer λt, and another one for student λs have
to be at hand. The distance D(λt, λs) between these two HMMs is a statistical measure
showing how close two stochastic models are quantitatively. It was defined by Rabiner as
follows:

D(λt, λs) =
1

Ns
[logP(Os|λt) − logP(Os|λs)], (5.1)

which indicates how well model λt matches observations Os generated by model λs, rel-
ative to how well model λt matches observations Os generated by model λs. Num-
ber of observations for model λs is Ns. This distance definition is not symmetric, i.e.
D(λt, λs) �= D(λs, λt). Therefore, average of these two distances is used as a measure:

D̄ =
D(λt, λs) +D(λs, λt)

2
. (5.2)

Another objective evaluation method is defining individual factors for a specific task,
and observe, evaluate and compare improvement in these factors [84]. Similar to this
approach, we propose to define some skill levels that are related to the important features
of the task, in order to have an objective assessment on skill improvement.
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However, in our opinion, the evaluation of the trainings should be based on deterministic
functions rather than statistical ones, such as HMM distances. Consequently, we define a
weighted Euclidean distance principle to evaluate training procedures.

5.1.1 Using Pre-defined Skill Levels

Our first approach for objective evaluations is defining some skill levels, that are related
to measurable or derivable student-VR interaction data. The levels can be characterized
depending on the information obtained from literature or directly from experts.

The pre-defined level Lst can reflect just one parameter such as position, force or time, as
well as a combination of parameters. It is accepted that a student reaches to the “skillful
level” L, when

Lst ≥ L, (5.3)

where Lst is the skill level of the student.
Although this method does not give a detailed insight into the student’s performance,

it is quick and reliable to have the first impression. Especially, it is useful to decide
whether to continue or finish the training sessions. It is used exactly for this purpose in
our applications. In experimental investigations section, this method is referred to again
to clarify the evaluation criteria.

5.1.2 Euclidean Distances Between Trainer and Student

Distance Between Measured/Derived Interaction Parameters
We define the trainer skill as a point pt in an n dimensional Euclidean space. The dimension
of the space is defined by the number of all available (measured or derived) interaction
parameters. In other words, the more parameters there are, the larger Euclidean space
defining pt is.

In this case, a skill level for the student can be assigned via an Euclidean distance. Similar
to the trainer, if the student is represented as a point ps in n dimensional Euclidean space,
then his/her skill level is defined by:

Dts = ‖pt − ps‖ , (5.4)

where Dts is the Euclidean distance in an n dimensional space.
It is desired that the distance Dts gets shorter with increasing number of trainings as

it is depicted in Figure 5.1. In other words, it is expected that the trainings should bring
the trainee point in Euclidean evaluation space closer to the corresponding trainer point.
After final training, it is expected that

Dts < ε, (5.5)

where ε ∈ 	n is the maximum allowable deviation of the student from the trainer.
Explicitly,

pt =
[
pt,1 pt,2 · · · pt,n

]
, (5.6)

ps =
[
ps,1 ps,2 · · · ps,n

]
, (5.7)
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Figure 5.1: Expected change of the distance Dts between the student and the trainer in
Euclidean evaluation space.

where indexes 1, 2, · · · , n refer to different measured/derived interaction parameters such
as position, velocity, time or force. Indexes t and s indicate the trainer and the student
respectively. If the initial (first trial) value of the ith parameter for the student is ps,i(1),
then the normalized individual distance of this parameter to the trainer’s ith parameter
pt,i is:

D̄ts,i(1) =
|pt,i − ps,i(1)|

|pt,i| , (5.8)

where i = 1, 2, · · · , n. Each individual distance is a measure for the importance of the
parameter. Bigger values of D̄ts,i(1) indicate an important parameter for the skill to be
improved, whereas the smaller values designate insignificance of the parameter for training.
Note that, instead of the very first trial value for one certain student, mean value of the
first training period trials and/or mean value of the different student’s first trial is more
reliable to use for this parameter importance analysis. In addition to that, it should be
checked that large values of D̄ts,i(1) decrease while training continues and should reach to
a minimum around the last trial.

An important outcome of this approach is that it is possible to weigh the Euclidean
distance to define the skill level of the student. For each parameter pi, a weighting factor
wi is defined as follows:

wi =
D̄ts,i(1)

n∑
i=1

D̄ts,i(1)
. (5.9)

As a result, weighted n dimensional Euclidean distance is an objective assessment of the
student skill. It is formulated below:

Dts =

√√√√ n∑
i=1

wi

∣∣∣∣pt,i − ps,i

pt,i

∣∣∣∣
2

. (5.10)
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Alternatively, the weighted sum of absolute distances between student and trainer can be
used to assess the training:

Dts =

n∑
i=1

wi

∣∣∣∣pt,i − ps,i

pt,i

∣∣∣∣ . (5.11)

Distance Between Hybrid Skill Model Parameters
If the student skill is also modeled as switching impedances like the trainer model, there is a
possibility to compare the parameters of both models in order to find the distance between
two hybrid models. It is expected that throughout the training sessions, the student’s
parameters go closer to the expert’s parameters, and when the training is completed, they
are closest.

To check this distance, number of states and the order of the student model have to
be the same as for the trainer’s model. Assume that the parameters of student model
for the jth state are θs,j =

[
ms,j ds,j ks,j

]
, whereas trainer model parameters are

θt,j =
[
mt,j dt,j kt,j

]
. The Euclidean distance between the model parameters is:

Dts,statej =
√

(mt,j −ms,j)2 + (dt,j − ds,j)2 + (kt,j − ks,j)2. (5.12)

5.2 Integration of Virtual Environments, Hybrid Skill
Identification and Training Methods

As it was stated before, individual works explained in previous chapters are joined together
in this chapter and our VR training system involving different training strategies is accom-

Creating
VEs

Human Skill Modeling

Training in VE

Training
Strategies

fV R

∆f

+
+

mapping

Figure 5.2: Integration of virtual environments, human skill modeling and training strategies
into VR training system concept.
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plished. The integration is depicted in Figure 5.2. This structure of VR training system
offers a broad range of training possibilities from classical ones to unique techniques.

Several user tests are performed to examine the efficiency of this integrated structure.
Using the objective measures explained above, effectiveness of each training strategy is
indicated quantitatively. However, it is rather impossible to carry out user tests for all
kind of combinations of the VR types, skill modeling methods and training strategies.

Consequently, we concluded to achieve and evaluate user tests on one training system,
which is our BD-MTS, for all of the different training strategies listed in Chapter 4. By
performing these user tests, our aim was to find the effectiveness of the different methods
in comparison with each other and establish guidelines for further investigations on these
strategies.

5.3 User Tests

Parallel to the developments in BD-MTS, user tests are performed with different intervals.
The first group of tests is carried through for enhanced training strategies. This is fol-
lowed by tests on multi-user methods, and finally on training systems including a hybrid
dynamic trainer model. Each of these tests, their organization and results are individu-
ally discussed. Before that, some common issues concerning experimental conditions and
evaluation criteria are reported.

5.3.1 Experimental Conditions

User Profile
Users are mostly students who study technical subjects. The age group is 20-30. Both
male and female users take part in the tests, and gender effect is not investigated.

Appropriate to the training strategies, the participants are divided into several groups.
A “control group” always exists, whose members do not acquire any training. Depending
on a theoretical basis about the application and following a demonstration of the trainer,
they try to realize the drilling task. This group’s results are needed in order to assess the
competency of the training methods comparatively.

An expert user is present during the experiments. His/her task is to give theoretical
information concerning the BD-MTS task realization, and how the training works before
the beginning of the experiments. The expert user also demonstrates a correct drilling
on BD-MTS before tests start. Finally, the expert defines and follows the course of the
training sessions.

Sensorimotor Coordination Test
In order to prevent an unequal distribution of the naturally skilled or unskilled users into
different training groups, applying sensorimotor coordination tests are essential. Thus, the
people in each group have on average the same ability regarding sensorimotor skills.

As a test-bed, Vienna Test System from Schuhfried GmbH is used1. The test person
should correct the occurring deviations between the target value and the actual value of
a gyroscopic virtual object via a joystick-like input device. This task is easy to explain
and the participant’s ability can be only minimally influenced by previous experience.

1http://www.schuhfried.at/
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With this test two abilities of the participant are assessed: On one hand, the ability to
maneuver an element to a pre-set goal, referring to the sensorimotor coordination ability;
on the other hand, the ability to react to an element’s unpredictable changes of direction
and size, revealing the ability to anticipate movements. The test system is depicted in
Figure 5.3.

(a) (b)

Figure 5.3: (a) Screenshot of the Sensomotor Coordination Test c©Schuhfried. (b) Input
device of Vienna Test System c©Schuhfried.

Although Vienna Test System is a clear indicator for sensorimotor skills, it is time
consuming to use it. The users have to finish this coordination task first, which takes ca.
20 min, then they start with the drilling training that requires ca. 1 − 1.5 hours. Since
the long duration of the experiment causes concentration loss, as an alternative to the
Vienna Test System, the drilling task itself is used as an indicator to group the users.
The average of the first three experiments following the instructions of the expert, is used
to have an idea on the student’s skill. Consequently, they are assigned to the training
groups.

General Procedure
Although there are slight dissimilarities between different training strategies, the general
procedure of user tests can be summarized in 3 steps:

Step 1 - “Beginning Trials”: The task is explained to the trainee, then an example drilling
procedure is conducted by the expert user, allowing the trainee to visually observe what a
correct drilling should look like. After that the trainee is asked to make trials depending
on his/her observations.

Step 2 - “Training”: One of the training strategies is applied to the user for a certain
number of training sessions. Control group students skip this step.

Step 3 - “Checking”: The student is asked to perform the drilling task himself/herself, i.e.
the training strategy is turned off during these tests. The students repeat the task for a
certain amount of times. Then, his/her success is checked with the pre-defined evaluation
criteria. If successful, the training procedure is stopped, if not the student is sent back to
the step-2.

During the “training” step, as an addition to the GUIs, the trainee is informed about
his/her performance by Figure 5.4. It is presented to the trainee with periodic intervals.
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Figure 5.4: Graph presented to the trainees.

From the figure, he/she has a chance to see the comparison of forces from his/her previous
and last trials. Resulting drill positions are also presented. A bar chart is used to show
the trainee the history of all trials. It indicates the success percentages of the trainee from
the first experiment to the last one.

Evaluation Criteria
The objective evaluation of the user tests’ results has a crucial importance to determine
the efficiency of the training process. Therefore, in this work neither a questionnaire to the
users is applied, nor their subjective opinions are taken into account for evaluations. Our
evaluation criterion depends on measuring the distance between the expert’s performance
and student’s performance as Euclidean distance in n dimensional space as explained in
Section 5.1.2. While the Euclidean distance method enables us to conduct a detailed
analysis of the student’s progress, a quick indicator is needed to decide whether to finish
or continue training process.

Consequently, applied force of the student and the drilling end position during a trial
on MTS are used as these quick indicators to decide how successful the training is. The
percentage of applied correct force represents how close the performance was to the expert’s
performance. Applying 90% or more of the simulation time the correct force is accepted
as the level of “skillful trainee”. Additionally, if a trainee misses the point that he/she has
to stop drilling, the trial is counted as a failure, i.e. he/she gets 0% success. The trainee
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has limited time to finish the task, i.e. the simulation time is constrained. In terms of
equation (5.3), the pre-defined skill level for BD-MTS is L = 90%.

5.3.2 Tests on Enhanced Training Methods

In this section, visually, acoustically and haptically enhanced training applications on
BD-MTS and their results are discussed. Note that except the haptic enhancement, the
other enhancements are only available during the “training step”. To check the skill
improvement, they are turned off, and the student’s performance is observed.

User Tests with Haptic and Visual Enhancements, using 1-DoF Haptic Device
Early tests are carried out by using pedal like haptic display as the input device. Both
visual and haptic enhancements are provided to the users. For the experiments, taking the
device capabilities into account, applicable force range is set to 17 − 19 N and resulting
thrust velocity is set to ca. 1 cm/s. The drilling task is completed when the measured
angle of the device is between 0.62 and 0.64 rad.

The “skillful trainee level” L = 90% is determined by taking the defined narrow force
band (17 − 19 N) into account. It is experimentally observed that, e.g. hand tremors of
the trainee may cause small oscillations in the force, which may cause the applied force to
be out of pre-defined range up to app. 10%. It is known that there are auxiliary systems
available that eliminate the hand tremor of a surgeon during a surgery. If a trainee misses
the point that he/she has to stop drilling, the trial is counted as a failure, i.e. Lst = 0%
The trainee has 25 seconds to finish the bone drilling task. If he/she completes the task
successfully earlier, he/she stops applying the force. However, in this case, the results are
evaluated as if he/she was applying the correct force during the remaining time.

The experiments are applied to 8 different users. The same skill improvement tendency
is observed for all of the trainees. An example skill improvement of a trainee is shown
in Figure 5.5. In the first trial the trainee has 17% success. Observations provide the
trainee with a slight skill improvement, but he/she is still far from the “skillful trainee”
level. During the training period the trainee’s skill improved gradually. After a period
of training, the trainee manages to satisfy the requirement given in “Step-3: Checking”.
In the last three trials, the success is 90%, 90% and 95%. The trainee needed 53 trials
on BD-MTS to obtain this result. He/she had additional 22 trials, where the visual force
indicator was in use. Because of the necessity of high concentration, whenever the trainee
asked, a break was given between trials.

In Figure 5.6(a), applied forces during the first and last trials are compared. An example
of the applied force from early training (trial no. 13) and another one from late training
(trial no. 46) are also added to the figure. In the first trial, although the trainee increases
the force slightly, he/she cannot reach the minimum required force for the drilling process.
In the early training, the trainee manages to exert more than the minimum required force,
but it is obvious that he/she does not have the correct haptic feeling yet. As a result,
there are force oscillations with big amplitudes that continue till the end of the trial. In
the late training, the trainee quickly understands if he/she is out of the correct force band.
He/she reacts rapidly and returns to the correct band, i.e. keeps on drilling. There are
still oscillations in the force, but the amplitude is small and the trainee manages to find
back the correct force band. A “skillful trainee” applies sufficient, but non-excessive force
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Figure 5.5: Skill improvement of a trainee in a haptically and visually enhanced training
environment.

in the “beginning” period of drilling and then he/she keeps the force constant until the
end of the drilling process. The last trial (#53) of the trainee is an example of this case.
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Figure 5.6: Comparison of the (a) applied forces and (b) resulting positions while training
session is in progress. The first trial is indicated by #1 and the last one by #53.

The comparison of drill positions with respect to time is given in Figure 5.6(b).
Appropriate to his/her applied force, in the first trial, the trainee is almost not able to
move the drill into the bone at all. During early training, rarely does the trainee get
into the correct force band and manage to drill only halfway. The late training indicates
that the trainee is mostly applying the correct force. Therefore, he/she manages to finish
drilling process. In the last trial, the trainee starts and completes the drilling task by
reaching the drilling end-position successfully in 14.4 seconds. This result is very close to
the performance of the expert user.

User Tests with Haptic, Visual and Acoustic Enhancements, using 3-DoF Hap-
tic Device
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The next version of BD-MTS uses 3-DoF haptic display ViSHaRD3 as input device, which
not only provides more DoF, but also the possibility of larger applicable forces. Conse-
quently, the applicable force range is set to 40− 45 N. In addition to the haptic and visual
enhancements, also acoustic enhancement is included to the training system.

In Figure 5.7(a), success percentages of 3 trainees versus the number of trials are
sketched, when acoustic enhancement is turned off. L = 90% is emphasized by a dashed
bold line. At first sight, it is possible to see that the success percentage of trainees increase
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Figure 5.7: Skill improvement using 3-DOF BD-MTS: (a) haptic and visual enhancement, (b)
haptic, visual and acoustic enhancement

with increased number of trials until they reach to the Lst. Another important information
that can be obtained from Figure 5.7(a) is that the number of trials needed to reach the Lst

varies for each trainee. That is a result of the natural skill of the trainee. It also depends
on the concentration of the trainee during a drilling process.

User tests are expanded by adding the acoustic feedback to the MTS. Skill improvement
of the trainees is checked when the acoustic feedback is on and results are sketched in Figure
5.7(b). Comparing the Figures 5.7(a) and 5.7(b) gives two important results: Firstly, in
less than 20 trials all trainees are able to reach the Lst when the acoustic feedback is on.
Therefore, it is possible to say that having acoustic feedback speeds up the skill training
process. Additionally, the number of trials that are necessary to reach the Lst does not
vary largely for each trainee. The second important result is that the trainee is able to
reach the high success levels very quickly, i.e. in around 5 trials. This effect can be seen
more clearly in Figure 5.8(b). A bad trial B3 when acoustic feedback is on is compared
with the bad trial B1 when the acoustic signal is off. With sound, the trainee reacts much
faster. Therefore, applied thrust force has smaller amplitudes around the correct force
range.

To see the skill improvement more clearly, experimental results of trainee #2 are
focused on and two bad trials of the trainee are compared with each other. The first
bad trial B1 is chosen from the “first trials” period and the second one B2 from “last
trials”. As it is shown in Figure 5.8(a), in trial B1, the trainee applies too large force,
but cannot notice that. Therefore, first he/she reaches to a force around 100 N which is
high above the maximum allowed force. Then the student decreases the force and after
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that even exert larger forces. This tendency goes on until the end of the trial. In trial B2,
although the trainee again cannot manage to find the correct force range, he/she produces
oscillations around the correct range with much smaller amplitudes. It means, he/she
knows whether the applied force is too large or too small and by changing it in small
amounts, tries to get into the correct force range. A successful drilling trial S1 is also
added to the Figure 5.8(a). It shows that in the last trials, the trainee applies correct force
with a good timing, i.e. keeps the velocity constant and finishes the drilling in 16 seconds.
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Figure 5.8: Comparison of bad and successful trials from Figure 5.7 (a) points B1, B2 and S1

(b) points B1 and B3

Concluding Remarks
These user studies suggest that the proposed enhanced training strategies can be a powerful
tool for teaching certain skills to students via VEs. It is indicated that additional visual
indicators, i.e. visual enhancements, are helpful for teaching only temporarily. They are
good for giving the first idea about the correctness of applied force and velocity, but after a
while they cause the trainee to lose his/her concentration on haptic feedback. It is observed
that adding acoustic feedback to the created VE increases the performance of users and
accelerates the skill training process. A trainee who finished his training with sound
feedback can also realize a trial when sound was off with a high success percentage. After
trainee #4 reached the Lst 3 times sequentially, he/she was asked to go on making trials,
but this time the acoustic feedback was turned off. The trainee performed 4 trials and in
all of these trials managed to have more than 90% success, i.e. he/she was always above
the Lst. It means that, in comparison to using visual enhancement, acoustic enhancement
does not cause the trainee to lose his/her concentration on haptic feedback. Moreover, it
accelerates the learning process of applying a correct and constant thrust force and thrust
velocity.

It is observed that, because of the dominance of visual feedback, if trainee uses the
visual enhancement more often, it causes his/her loss of concentration on haptic feedback.
Therefore, visual enhancement is mostly used at the beginning period to get the first idea
about the applied thrust force or in between unsuccessful checking trials, when the trainee
wants to be sure about his/her mistakes.
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5.3.3 Tests on Multi-User Training Methods

For the following user tests, ViSHaRD10 is used as input device. The applicable force
range is set to 37 − 44 N. The thrust drilling velocity in this range is adjusted as ca. 1
cm/s through the equation (2.23).

First, a sensorimotor coordination test is applied to the trainees using Vienna Test Sys-
tem, and according to the results of this test trainees are distributed into 4 groups related
to our training strategies: Control (C), Force/Velocity Leading (FVL), Force Demonstrat-
ing (FD), and Haptic Visual Observation (HVO) groups. Based on applied thrust force, a
skillful trainer level is defined in order to have a quick check on student’s skill improvement.

C-group trainees start performing the drilling task directly by taking the explanations
and expert’s demonstration into account. No training is applied. The members of FD,
FVL and HVO groups are trained 5 times using the corresponding multi-user training
method. Then they are asked to perform the drilling task alone. If a trainee shows a
bad performance in drilling consecutively, the trainer repeats the training sessions. If the
trainee reaches to the successful trainee level 3 times sequentially, the training experiments
are completed. The drilling should be finished in 60 s, otherwise the training is accepted
as unsuccessful.

The multi-user training structure depicted in Figure 4.3 is extended with one more
computer. On this extra computer, the student’s performance is visualized only for the
trainer. It is needed in order to standardize trainer’s influence for each student.

Euclidean Space for Evaluation
The dimension n of the Euclidean evaluation space is defined by the number of important
parameters characterizing the interaction with BD-MTS. Force, velocity and time are three
main features that are measured during the interactions and play an important role in the
success of training. Different parameters can be derived from these three features. In Table
5.1, a list of possible parameters is given.
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Figure 5.9: Parameter distances between the expert and the student

At first, the values of the parameters in the Table 5.1 are calculated from the trainer’s
performance. Average of different experts performances is used to figure out these param-
eters. Following that, the same parameters are defined for each trial of every students.
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Table 5.1: Possible parameters to define the Euclidean evaluation space.

Feature Parameter Symbol

FORCE mean value for whole duration F̄w

mean value for correct forces F̄cor

mean value for drilling period F̄dr

VELOCITY mean value for whole duration v̄w

mean value for correct forces v̄cor

mean value for drilling period v̄dr

TIME whole duration Tw

duration of correct forces Tcor

duration of drilling period Tdr

simulation start time Tsimstart

drilling start time Tdrillstart

simulation stop time Tsimstop

Consequently, the change in 1D Euclidean distance for each parameter is observed for
individual students. This leads to distinguishing the parameters that play an important
role from the others. Figure 5.9 represents obtained results for one of the students. Note
that similar results are observed for other students. The distances are calculated by using
equation (5.8), not only for the first trial but also for the rest of the trials.

A clear indication for the importance of a parameter is the normalized distance to the
expert in the first trial: Higher first trial value of a certain distance indicates a more
important parameter, since at this point student is furthest to the trainer. In other words,
there is a potential of improvement for this point. On the contrary, low values underline
that at this parameter student is from the beginning on close to the trainer, so it should
not be expected to see any improvement on this parameter throughout trainings. Another
important indicator is the constancy or unexpected changes in a certain distance. This
effect also underlines a parameter that does not have a significant role in training process.

Following this analysis, the Euclidean space is defined as n = 7 dimensional, and pa-
rameter vector is defined as:

p =
[
F̄w F̄dr v̄w v̄dr Tw Tcor Tdr

]
. (5.13)

Via equation (5.9), the weighting factors for the Euclidean distances are computed as
given in Table 5.2.

Evaluation Results
The user tests are evaluated using the weighted n dimensional Euclidean distance calcula-
tion given in equation (5.10). Figure 5.10 exhibits distance samples that belong to different
training groups. As it can be seen from the Figure 5.10(a), control group students have
relatively large initial distances, and there are cases that they cannot manage to achieve
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Table 5.2: Parameters of the Euclidean evaluation space and their weighting factors

Parameter Weight wi

F̄w 0.0801

F̄dr 0.0774

v̄w 0.1669

v̄dr 0.1670

Tw 0.1140

Tcor 0.2845

Tdr 0.1099

performing a good skill, even when maximum number of trials (40) is reached. Figure
5.10(b) clearly attests that HVO-group members’ distance to the expert quickly decreases.
Even first trials after the training are not far from expert’s performance. FD-training
results are presented in Figure 5.10(c). Although not as rapidly as in HVO, the students’
skill converge to the trainer’s skill after regular training sessions. Last but not least, re-
sults obtained from FVL group students are depicted in Figure 5.10(d). Still better than
C-group members, the skill improvement for FVL students is slower than for students
who are trained via HVO and FD methods. An important case for the FVL methods
is that the trainer should improve his/her way of applying the methods as well, should
adapt himself/herself. The second example in Figure 5.10(d) is obtained when the trainer
is changing the velocity of the student very rapidly. As a result, student is not able to
react properly and understand the relation between the force and speed. Thus, this is an
example, which should be referred to as trainer mistake, or expressed differently, “trainer’s
training”. Consecutievely, results of this test are excluded from further evaluation of the
methods.

A general look at the Figure 5.10 as a whole, allows to come to conclusion that similar
characteristics of distance change is recognizable. In general, first trial distances are very
high, whereas middle of the trainings the distances are on an average level, and finally,
towards the end of the trainings, the distance is very low, i.e the student is very close to
the trainer.

Note that during the multi-user training, following the expert’s demonstration at the
beginning, the training sessions start directly. Therefore, the skill improvement curves
shown in Figure 5.10 do not include any trials before the training sessions. This appeared
to weaken the analysis of the results, because it is not possible to evaluate what the
first training session would bring to the student. Another omission was irregular training
periods. Only the first training sessions were equal for all trainees (5 trials), but then the
course of the training was defined by the trainer, appropriately to the performance of the
student. Both deficiencies are corrected during the user tests performed for “training with
a hybrid trainer” strategies.

As it can be seen from the Figure 5.11, in the first trial after the first training session,
the training group members already perform better than C-group members. Although the
students are not able to stay in the correct force range, which is showed by dotted lines,
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Figure 5.10: Example evaluation results.(a) Control group examples (b) HVO group examples
(c) FD group examples (d) FVL group examples.

they are in a close vicinity to it. It is remarkable how HVO group member realizes the
task skillfully. This result matches with the results given in Figure 5.10 that is very low
first distance values of HVO trainers in comparison with other training group members.

Figure 5.12 shows the sorted success graph of trainees. Trainee #1 is the student,
who showed the worst performance for each group. This figure also clearly indicates that
all training group members perform better than C-Group, whereas the best performance
is obtained after HVO-training. Early experimental results suggest that the multi-user
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training methods discussed in this paper improve the learning process. The HVO method
is the most promising one, whereas FVL method is quite complex and students need longer
time to understand it.
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Figure 5.11: Comparison of the first trials after the first training session.

N
u
m

b
er

of
T
ri

al
s

Number of Trainees

C-Group
FD-Group

FVL-Group

HVO-Group

40

30

20

10

0
8642

Figure 5.12: Number of trials needed by trainees to succeed in the drilling task.
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5.3.4 Tests on Training via a Hybrid Trainer Methods

The experimental conditions that are set for multi-user trainings are untouched. Namely,
the applicable force range is 37 − 44 N, for this range drilling velocity is 1 cm/s, and
maximum allowed duration of one trial is 60 s.

Instead of Vienna Test System, first trials of the students are used to check the senso-
rimotor coordination skill. Consequently, the students are divided into 4 groups: C, FVL,
FD and HVO groups. Since the C-group here and in multi-user tests is exactly the same,
just a few users are assigned to C-group. The rest are distributed to FD, FVL and HVO
groups.

The Euclidean evaluation space is also the same as in multi-user case. Thus, it is 7
dimensional and contains the same parameters as in (5.13). For the weighting factors,
refer to Table 5.2.

Evaluation Results

1.01.0

1.01.01.01.0

1.0

0.80.8

0.80.80.80.8

0.8

0.80.8

0.80.80.8

0.70.7

0.70.70.7

0.60.6

0.60.60.60.6

0.6

0.60.6

0.60.60.6

30202020

20202020

202020

10101010

10101010

10101010

Number of Trials Number of Trials Number of TrialsNumber of Trials

(a)

(b)

(c)

Figure 5.13: Example evaluation results while hybrid trainer model influences students. (a)
HVO group examples (b) FD group examples (c) FVL group examples.
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For being able to compare the methods with each other, trainings are applied with the
same periods. The user tests start with 3 trials without any training, which is followed
by 6 training - 6 checking period. From the checking tests, the worst trial is neglected,
and the average success rate Lavg for the rest 5 is checked. If Lavg = 80% or more, the
training is finished after the 27th trial. If not, the period is set as 3− 6, and the trainings
continue until the pre-defined skill level is satisfied. Maximum number of trials is 54, i.e.
independent of the student’s success, the trainings are finished at the 54th trial.

In Figure 5.13(a), (b) and (c) example student performances, i.e. change in Euclidean
distance between the trainer and the student throughout the training sessions, for HVO,
FD and FVL training methods is given respectively. General tendency is that the distance
Dts gets smaller, when the student proceeds with trainings.

Since the training is applied to the students periodically and with the same period for
each, checking the results after certain training sessions allows to interpret the efficiency
of the methods comparatively. In Figure 5.14, average skill improvement of the HVO, FD
and FVL group members is displayed, and the ranges belonging to before training and
after the 1st, 2nd, 3rd and 4th training sessions are highlighted. For each highlighted
part, the mean value of the distance for all trials and for all trainees is used. After the
2nd session, if any student reaches the desired Lavg , then the experiments are finished for
him/her. Thus, the distances Dts for this student after the 3rd and 4th are taken as zero.
The best improvement in the skill can be observed after first training session for all cases.
FVL keeps on improving the skill steadily, whereas the elevation brought by FD and HVO
is rather irregular. The 2nd training session does not provide any improvement as far as
FD is concerned. HVO’s contribution in this session is less than FVL’s. However, FD
and HVO students reach to desired Lavg faster. Consequentially, in the Figure 5.14, rapid
improvements can be seen after the 3rd and 4th sessions.
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Figure 5.14: Average skill improvement for different training cases

It is also interesting to see how students change the force they apply after trainings.
This is illustrated for HVO, FD and FVL in Figures 5.15, 5.16 and 5.17 respectively. In
all of these figures, (a) shows the trials before training session, (b) displays results from
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trials after beginning training sessions, and (c) exhibits applied forces after late training
sessions. Pre-defined correct force range is indicated as black lines.

Figure 5.15(a) clearly shows that before any training, the student is very far from the
skillful force range. First HVO trainings bring him/her quickly around the acceptable
for range, but he/she cannot repeatedly stay in this range as indicated in Figure 5.15(b).
However, after last trainings, the student stays in the correct range in all trials.
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Figure 5.15: Skill improvement via hybrid trainer model and HVO training strategy (a) Before
trainings (b) After first training sessions (c) After late training sessions.

The same analysis is done for FD training and the results are depicted in Figure 5.16(a).
They yield similar characteristics as in HVO case. Bad performances before training are
improved after first trainings (5.16(b)), and finally late trainings enable the student to
stay in the correct range. One can see from the comparison of Figures 5.15 and 5.16 that
trials of the HVO students are closer to each other, i.e. they are around a mean value with
small variances. However, the trials of FD students are more distributed, i.e. have larger
variances.

The same examination is conducted on the trials of a FVL student. As Figure 5.17(a)
indicates, this student cannot apply the correct force before trainings. However, he/she
is closer to the correct range in comparison with HVO and FD students. It is possible
to deduce that this student has a better sensorimotor skill than others discussed above.
Similarly, after first trainings, the student manages to get into correct force range.
Adversely, he/she does not deviate from the correct force range a lot, although still the
skillful level is not reached (5.17(b)). Last trainings enable the student to stay in the
correct range constantly (5.17(c)).
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Figure 5.16: Skill improvement via hybrid trainer model and FD training strategy (a) Before
trainings (b) After first training sessions (c) After late training sessions.
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Figure 5.17: Skill improvement via hybrid trainer model and FVL training strategy (a) Before
trainings (b) After first training sessions (c) After late training sessions.
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Distance Between Impedance Parameters
Another way to assess the training results is to check the progress of the impedance model
parameters. It is expected that throughout the training process, the student learns to
realize the task like the trainer would do. If the last trials of the student are clustered and
modeled as switching impedances, the identified impedance parameters should be similar
to the trainer parameters.

However, a distance check between parameters via equation (5.12) introduces some prob-
lems. First of all, the first trials of the student are naturally very far from trainer’s per-
formance. If such a performance is clustered, resulting clusters and switchings between
them are different from expert results. Thus, comparing the impedance parameters for
the clusters that do not coincide does not bring any logical conclusion. It is possible that
the clusters are different, but model parameters are similar. Undoubtedly, this would lead
to a misinterpretation of the student’s success, if the distance between model parameters
is checked. Another problem is that the impedance parameters in one cluster have differ-
ent levels of importance. Consequently, they have to be weighted, before the distance is
measured.

It is more convenient to identify the model parameters for the students only for their last
trials. This does not only provide comparable results, but also saves time. Remember that
weighted K-means clustering process and following parameter identification need around
one day to be accomplished for one trial. Applying it to a series of trials for only one user
needs around one month computing time. Moreover, it is not difficult to presume that this
identification process would not lead to any concrete result.

In Figure 5.18 identified damping parameters of the impedance models for three different
students who are trained with HVO, FD and FVL methods are shown. Note that the trials
that are used for identification are performed by students after the last training session. If
the parameters are compared with the expert parameters that were given in Figure 3.8, it is
deduced that the trainings bring the impedance parameters of the student interaction closer
to the expert interaction. Similar tendency is observed for spring and mass parameters.
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Figure 5.18: Different student trials after last training session and resulting damping d coef-
ficient for (a) approach and (b) drilling phases.

It is also possible not to apply any clustering to the student trials, but define the clusters
and switching points as close as possible to the expert cluster and switching points. This
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allows us to see the progress in student parameters at a glance. However, such an analysis
is not very reliable. The main problem is that in the beginning trials, it is not possible to
set switching points like that of the expert, as they simply do not exist. For example, the
expert switches from approach case to the drilling case when he/she reaches the correct
force and velocity and keeps them constant. Such a performance is not observable in the
beginning trials. Without getting into details, it is possible to say that such an analysis
indicates much larger spring coefficients in the approach phase during the first trials.
Offset values vary largely. Damping is mostly the same, rarely larger values observed. In
the drilling phase, the most distinguishing parameter is offset. This is kind of expected as
long as the student applies larger or smaller, but constant forces.

5.4 Discussion

This chapter joined VR development principles, trainer skill modeling and training strate-
gies together, in order to accomplish our training system concept. Several user tests were
performed in BD-MTS to evaluate the developed concept. An objective evaluation met-
ric based on n dimensional Euclidean distances between the trainer and the student was
introduced and used to assess the skill improvement of the students.

Haptic enhancement strategies provide a natural way of informing the students about
the force they apply. Our haptic enhancement not only restricts the movements when the
student tends to leave the correct trajectory, but also stops the student completely if the
applied force is not in the expected range. Unless the student corrects himself/herself,
the simulation cannot be continued. The results of the user tests state that when haptic
enhancement is combined with visual enhancement, the trainee realizes the task success-
fully paying attention only to the visual information. It is observed that because of the
dominance of visual cues, frequent usage of the visual enhancement causes the loss of con-
centration on haptic feedback. As a result, when the visual enhancement is turned off,
the trainee has difficulties to demonstrate the expected force skill. Therefore, the trainee
improves the force skill, when only haptic enhancement is available, because he/she concen-
trates only on the haptic cues and force to apply. A drawback of the haptic enhancement is
that the only haptic information the student receives is that the force is wrong or correct.
The quantity of the force is not available. Therefore, visually enhanced trainings should
be considered as auxiliary systems to inform students about the task temporarily and give
the first idea about the correct force range. Then the trainings should be performed only
relying on haptic enhancement as long as the student feels confident. In our work, visual
enhancement was mostly used at the beginning period to provide the first idea about the
applied thrust force, or in between unsuccessful checking trials, when the trainee wanted
to be sure about his/her mistakes. As Ernst et al. underscore, if the visual information is
less reliable to realize a task, then haptic cues play a more important role in motor skill
learning procedures [29]. Depending on this statement and the results of our user tests, we
conclude that if the actual task bears mainly haptic cues, then the enhanced VR training
should have only extra haptic features, not visual ones. It is observed that adding acoustic
feedback increases the performance of the users and accelerates the skill training process.
A trainee, who finished the training with sound feedback, could also realize a trial success-
fully when sound was off. It is discovered that in comparison to using visual enhancement,
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acoustic enhancement does not cause the trainee to lose his/her concentration on haptic
feedback.

The results of the user tests on multi-user training methods indicate that all methods,
i.e. HVO, FD, FVL, speed up the convergence of the skill of the student to that of the
trainer. The n dimensional Euclidean assessment was a clear indicator for this statement.
It appeared that HVO was the most, and the FVL was the least efficient method. The
principal reason for this situation is the clarity of the verbal training signals in HVO
method. However, the correction signals in FVL method augment or decrease the resistance
that the student feels. Thus, the student is the one to deduce at which points he/she was
imprecise and what to correct. Nevertheless, it must be underlined that FVL method
presents an important and unique feature, which is the possibility of teaching the velocity
and force on a trajectory to the student synchronously using only haptic signals.

The results obtained from trainings via a hybrid dynamic trainer model establish similar
characteristics as in multi-user tests. All approaches bring the student in Euclidean evalua-
tion space close to the trainer. However, none of the methods is superior to the others, the
results are comparable. FVL method bears the same drawback as mentioned for multi-user
case above. HVO method is not as efficient as multi-user HVO. That is because of the
fact that the HVO method with trainer model provides visual and discrete warnings about
the force that student applies. Consequently, the method inherits the drawbacks of the
visually enhanced trainings. Instead of visual warnings, using acoustic warnings might be
a solution for this problem, since they can be interpreted as verbal warnings, similar to the
warnings in multi-user HVO. The last performances of the students from each group were
modeled as switching impedances using WKM clustering method. It was found out that
the identified impedance parameters of the students were in the vicinity of the parameters
that were identified for expert trials.

A global comparison of the results of the user tests illustrates that the most efficient
training method is multi-user HVO. This method eliminates the drawbacks of classical
training methodologies. It enables the student to actively realize the task and receive
verbal warnings of a trainer, who observes his/her performance not only visually, but also
haptically.

As a concluding remark it is worth noting that since numerous training methods were
introduced, it has not been feasible to perform detailed and systematic user tests on these
methods. The results rather give the preliminary idea on the efficiency and applicability
of the training methods. It is undoubtedly useful to extend the application examples and
apply systematic user tests with large number of participants.
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6.1 Concluding Remarks

Undoubtedly, the best way to learn a specific task that requires high sensorimotor skills,
is to carry through the task itself. However, many tasks, such as flying a plane, making a
surgical operation or assuring safety in a nuclear plant, need an adequate training before the
real task is carried out. In order to satisfy this need, simulators that replicate the actual
tasks and their operational conditions as realistically as possible have been developed
and produced since the beginning of the 20th century. Last two decades, following the
advances in computer and electronic technologies, virtual reality (VR) simulators that
provide high-fidelity visual, acoustic and haptic feedback have been constructed. While
many researchers have been working on increasing the realism of such virtual environments
(VEs), less attention has been paid to the training procedure itself.

This thesis describes a VR training system concept that not only includes realistic
interactions with VEs, but also integrates the trainer or the model of the trainer in the
control loop paying special attention to the training strategies. The main goal was to
develop generic force skill training methods. In order to bring such a VR training concept
into life, three main tasks were accomplished. First of all, fundamental VR engineering
problems, such as collision detection and haptic rendering, were investigated and different
VR training scenarios were generated. Secondly, the methods to capture sensorimotor skill
of a trainer via hybrid identification methods were researched and applied to interaction
of experts with developed VR scenarios. On top of that, force skill training strategies
in VEs were widely explored. Results of these investigations were joined together in
order to create the complete VR training concept. User tests were organized and per-
formed. Using objective metrics, the results of the user tests were assessed. With respect
to these research focal points, the main contributions of the dissertation are outlined below.

Creating Realistic Virtual Environments
Several VR applications were developed in the frame of this thesis. These applications are
mostly benchmark tests, allowing to examine our training strategies and haptic hardware
in our laboratories. While developing the bone drilling medical training system (BD-
MTS), some fundamental VR engineering problems were solved, such as ray-based collision
detection between polygonal virtual objects, axis-aligned bounding boxes and binary search
trees to speed up the collision detection. In this application, haptic rendering relates the
force applied by the student to the velocity of the drilling via a non-linear equation, which
is given in the biomechanics literature. Depending on the two-port network theory, it
was assured that maintenance of the unconditional stability of the interaction via virtual
coupling principles was possible.

Special attention was paid to multi-user VEs. A concept that minimizes the communi-
cation delay by exchanging the haptic rendering data directly between two real-time (RT)
computers was proposed and applied. Maximum delay measured in this structure was 1
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ms. Two different scenarios, “tug-of-war” and “load transportation” were developed. They
enable two persons to communicate with each other through a virtual object haptically.

A deformable box depending on the mass-spring network was implemented. In another
application, FEM was used in order to realize the object deformations. Unconventionally,
we aimed at deforming the avatar, i.e. the virtual tool. This work presents some
fundamental issues of a bone sawing simulator for further investigations.

Capturing Trainer Skill via Hybrid Identification Methods
In this work, it was investigated to represent the trainer skill as a hybrid dynamical sys-
tem. The discrete decision making and the continuous task realization of the human being
suggest the success of such an approach. In general, there are four unknowns of a hybrid
identification problem: Number of discrete states s, switching conditions swij, model pa-
rameters θi and model orders n, where i, j = 1, 2, · · · , s. Following the works in the 80s
and the 90s concerning human skill modeling for programming by demonstration appli-
cations, generalized impedance models were sought for each discrete state in this thesis.
Therewith, the model orders were fixed and number of unknowns was reduced to three.

Our target was to have a generic method, which identifies all unknowns for any ap-
plication deterministically for given input and output data of the system. Two different
hybrid identification methods were successfully used for this purpose. The first method
(WKM) depends on data clustering by weighted K-means algorithm, whereas the second
method (SS-Imp) enables to define deterministic model parameters via stochastic switching
principles based on hidden Markov models.

In order to perform WKM clustering, s has to be known beforehand. We have introduced
an error analysis, which enables to define s in a systematic way. The clustering is performed
several times starting from s = 2 and then increasing s each time by one. After clustering,
LS optimization is applied for each subset and generalized impedance model parameters
are identified. Following that, sum of absolute hybrid model errors is calculated. Increasing
the number of the states, decreases the model error. Thus, if the desired model error is
defined in advance as a threshold, it is possible to find the minimum necessary s to reach
this threshold. The models that satisfy the error threshold should be further investigated
by the intensity analysis introduced in this work. It is expected that the data points that
are close to each other on time axis belong to the same cluster. Thus, for the suggested
intensity analysis data windows are used, each of which has data points that are consecutive
in time. In each data window, the distribution of the data points to the clusters is checked.
The cluster that contains the most of the data points, i.e. most intensive cluster, is
then taken as the cluster representing all data points in this data window. Applying the
intensity analysis leads to defining the final number of clusters and physically interpretable
switchings between these clusters. With these extra analyses, WKM clustering and LS
optimization provide a reliable hybrid identification. However, WKM method yields two
important drawbacks. Since it is necessary to divide the data points into local data sets
before the clustering, it is necessary to choose the parameter c that is the number of data
points in one local data set. Higher number of c enables to identify a parameter vector
that represents the mode it belongs to properly. However, at the same time, it increases
the risk of having mixed data points, i.e. points from different modes, in one local data set.
For each new c to try, the whole clustering process has to be re-started. Second hindrance
is the computing time. Creating local data sets is very time consuming and related to the
number of data points geometrically. If the number of data points increases with a rate
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g, the time needed for creating local data sets increases with g2. The intensity analysis
introduced in this chapter is also partly a remedy for the problems connected to choice of
c, since it allows to sort out the mixed data points.

SS-Imp method allows to assign a deterministic function to each state of a hidden Markov
model (HMM) and to define the observation probability distribution b as a product of
the function parameters. Consequently, HMM iteration does not only provide maximum
likely switching conditions between the states, but also deterministic model parameters.
The biggest advantage of this method is its speed of convergence. To identify a hybrid
model for BD-MTS, the WKM method needed around 12 hours, whereas SS-Imp only a
few minutes. An important drawback of the method is that if the classical way is used
to define the end of iterations and switching conditions, i.e. maximum likelihood and
Viterbi algorithm, then the method highly depends on the initialization of the HMM λ,
it is especially sensitive to the initial variance σ and model parameters θ. Assigning
these parameters randomly causes HMM not to converge to the correct model parameters
and switching conditions. Using the fact that deterministic models for the states were
identified, we introduced an algorithm to define the number of iterations and switching
conditions between the discrete states depending on the minimum model error. First, the
HMM iterations are carried on, until at least one of the states satisfies the pre-defined,
maximum allowed model error. Then, at time point k, it is switched to the state that
exposes the minimum error. Following that, the switchings between states are filtered
using the intensity analysis. Via this algorithm, the convergence to the model parameters
representing each discrete state with randomly chosen initial conditions is achieved. A
disadvantage of this model error-based approach is that it might end up with switching
between clusters, which is actually not possible. Therefore, resulting state sequence has to
be checked by taking the transition probabilities matrix An into account. Alternatively,
it is possible to apply logarithmic Viterbi algorithm to define the optimal state sequence,
following the error analysis. The resulting identification method is very fast in comparison
with WKM, however the problem with initial parameters has not been completely solved.
It is not possible to reach to the desired model error for any initial setting. Therefore,
it might be necessary to repeat the SS-Imp several times, each time with different initial
centers. Additionally, a physical interpretation of the switching conditions is not always
possible. Another problem with SS-Imp is the numerical instabilities. To avoid them,
scaling of HMM forward and backward algorithms is necessary. Note that the larger the
number of data points is, the more possible it is to face numerical instabilities.

Representing human skill as switching impedances is appropriate for the tasks involving
human hand (with or without a tool) and object interaction, during which human needs
to vary the force. Tasks like in our application examples: bone drilling and push-button,
or others like: peg-in-hole, hose insertion or grinding have in their nature the potential to
relate the force to position and position derivatives. Tasks introducing highly non-linear
interactions, as in the interaction with a human organ during a medical operation, are
not suitable to be approximated by switching impedances, since for a good approximation
the number of the discrete states needs to be very high and switching between them
would be stochastic. This would hinder the ability of interpreting the physical meaning
of the states. Additionally, each interaction would lead to another model. Thus, neither
would it be possible to label any of the models as the model of the expert, nor to use this
models to train a novice. Freespace movements of arm, like carrying a glass of water from
one point to another, are more likely to be represented as a jerk optimization problem,
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following Hogan’s theory [39].

Training Strategies and Their Efficiency
In this thesis, training strategies and possibilities of force skill transfer from an expert to
a novice via VEs were widely investigated. Three groups of methods have been outlined:
Enhanced training, multi-user training and training via a hybrid dynamic trainer model.

Enhanced VEs contain some features that do not exist in real procedures. Visual, acous-
tic and haptic enhancements were proposed and used in our applications. Visual enhance-
ment is in the form of discrete signals that warn the student about his/her performance.
Although the student easily interprets the meaning of correction signals, the dominance
of such signals degrades haptic understanding of the tasks. This is an important draw-
back, since we aim at force skill training. Consequently, we have introduced the haptic
enhancement that incorporates haptic cues to train the student. Basically, this approach
constraints the movements of the student haptically, if the students tends to leave the
correct trajectory or applies not desired forces. Note that concerning the applied force, the
only haptic information the student receives is that the force is wrong. The quantity of
the force is not available. The user studies suggest that the proposed haptically enhanced
training strategies can be powerful tools for teaching certain skills to students via VEs.
It is indicated that additional visual indicators, i.e. visual enhancements, are helpful for
teaching only temporarily. They are good for giving the first idea about the correctness
of applied force and velocity, but after a while they cause the trainee to lose his/her con-
centration on haptic feedback. With reference to the effect of acoustic enhancement, we
conducted rather fewer user tests. Their results suggest that acoustic enhancement enables
a faster skill improvement.

Multi-user training systems either enable the trainer to observe the student and to correct
him/her, or they let the trainer demonstrate the task to the student. Multi-user training
methods have been divided into three main groups: Haptic and visual observation (HVO),
force demonstrating (FD), and force/velocity leading (FVL) methods. In FD method,
the trainer performs the task and the student observes the trainer visually and haptically.
This is achieved by sending the interaction forces of the trainer to the haptic display of
the student. Note that the student has to keep the haptic display tight, i.e. should not let
it move. Thus, the student balances the force pressing against him/her. If one considers
the main drawback of the classical surgery training, which is missing haptic observation of
the trainer, the proposed strategy is very promising. However, the fact that the student
does not realize the task himself/herself has a degrading effect for trainings. Therefore, we
propose two more multi-user training structures, in which the task is realized by the student
and the trainer observes and corrects the student. The observation is exactly the same
as in FD case. HVO method gives the trainer the chance to verbally inform the student
depending on the observations. On the other hand, the expert influences the performance
of the student by modifying his/her axial force or velocity in FVL method. Performed
user tests suggest that all of the proposed multi-user training methods help in improving
the student skill. However, the most efficient one is HVO, since the correction commands
from the trainer are very clear. For the same reason, FVL method is the least efficient
one. Nevertheless, it must be underlined that FVL method presents a very important and
unique feature, that is the possibility of teaching the velocity and force to the student
synchronously using only haptic signals. Note that for FVL training it is assumed that
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the student stays on the correct trajectory, but applies wrong force or velocity on this
trajectory.

Training via a hybrid dynamic trainer model functions similarly to the multi-user train-
ings. The main difference is that instead of the trainer personally, his/her model is in-
tegrated into the training structure. The same methodologies, i.e. HVO, FD and FVL
trainings were implemented. There is no other work known to us that integrates trainer
model in the force skill training procedures. Since the presence of an expert during train-
ing - learning activities is not always guaranteed, the existence of a trainer model creates
a potential that the training procedure is checked and corrected by this model. Such a
training structure that involves a trainer model brings in many advantages. First of all, a
multi-user scheme is not anymore necessary, the hardware costs are reduced to half. Fur-
thermore, the modeled skills of a late expert can be used to train new generations. Thus,
reconstruction of specific defunct tasks can still be possible. It should be added here that
the prospect of training in the absence of the expert would provide the student with a
more relaxed training environment. User tests on BD-MTS indicate that the skill of the
students gets closer to the skill of the expert after each training session.

Although the strategies summarized in this work have explicitly been considered for
VR training systems, there is a potential to use them in tele-presence applications. The
main potential is using the FD-based methods to train novices for some tele-manipulation
tasks or to fasten the adaptation period of telepresence newcomers. These issues were
discussed in detail in Section 4.4.3.

Objective Evaluation Methods for User Tests
Assessing the skill improvement of the students objectively is as important as developing
the training system. In this work, the expert is defined as a point in n dimensional
Euclidean space. The dimension n is the number of important, measurable or derivable
interaction parameters. After each trial, a point in this space can also be defined for the
student. The distance between these two points is a very strong indicator of the skill of the
student. It has been observed that increasing number of trainings makes the n dimensional
Euclidean distance between the expert and the student shorter. Additionally, defining a
skill level that is related to one or more interaction parameters enables a quick decision on
whether to finish or continue training sessions.

6.2 Future Work

In this dissertation, several training strategies have been proposed for force skill training in
VEs. Due to the large number of methods, it has not been feasible to perform comprehen-
sive user tests for all of the methods and for different applications. Therefore, the results
of the user tests given in this work rather give the preliminary idea on the efficiency and
applicability of the training methods. It is undoubtedly useful to extend the application
examples and apply systematic user tests with large number of participants.

The trainer skill has been identified as a set of switching generalized impedances. Al-
though a variety of applications can be considered, such as drilling, sawing, grinding and
peg-in-hole, freespace movements and interaction with highly non-linear objects cannot be
represented as switching impedances. Therefore, for complicated tasks different identifi-
cation approaches should be used. For example, the task can be represented as switching

127



6 Conclusions and Future Work

impedances after a collision occurs. Before that, freespace movements can be considered
as a jerk optimization problem [50].

The application of the methods presented in this work was limited to VR. However, they
can be potentially used in tele-presence scenarios. An example scenario can encompass
the expert tele-operator demonstrating a tele-manipulation task, while a tele-presence
newcomer observes him/her visually and haptically.
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“TriangleCallbackFunction” of OpenInventor C++ visualization library is used in our
work to read in the model data and divide them into triangles in the format that can be
used with SOLID.

in the main function mySkull.openFile("skull2-by82000.iv") read-in skull data.
triCBASkull.apply(mySkull) Send the skull data to the triangle callback function.

in the triangle callback function.
SoPrimitiveVertex *v1, *v2, *v3 Vertices for the corners of a triangle.
SbVec3f vtx[] = {v1 → getPoint(), v2 → getPoint(), v3 → getPoint()}
vtx is a 3 × 3 matrix defining a triangle.
modelData→vertexPositions[modelData→vertexCounter][x] = vtx[..][x]

Define the complete model matrix in a form that SOLID can read it.

back to the main function.
initSOLID() call the SOLID initialization function.
in the SOLID initialization function.
SolidSkull.verts [n] .xyz [i] = drillData → vertexPositions [n] [i]
Define vertices for SOLID.
SolidDrill.baseHandle =
NewVertexBase(SolidDrill.verts [0] .xyz, sizeof(vertexStruct))
Define SOLID vertex base.
SolidDrill.shapeHandle = DTNewComplexShape(SolidDrill.baseHandle)

Define that skull is a complex object made of many triangles. So that SOLID applies AABB and BST
methods for collision detection.

back to the main function.
...
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B Overview of Other Developed Virtual Reality
Applications

B.1 Saw Blade Deformations Using FEM

From the technical point of view, bone sawing presents an interesting and original problem.
Although many researchers have worked on modeling and haptic rendering of deformable
objects, there are very few works that concentrate on the deformation of the surgical
tool. The available works are limited to the deformation of the needle during epidural
injection processes [5], or during endodontic surgery simulations [71]. The saw blade, the
deformable proxy, can be modeled very realistically using FEM, because of the known
material characteristics. There is no up-to-date bone sawing VR simulator or training
system known to us.

B.1.1 Saw Blade FE Model

The saw blade is modeled with CATIA, and the model is saved in *.stl and *.wrl formats.
The file is read in C++, and the blade is visualized by using OpenInventor. The defor-
mation of the saw blade is simulated in real-time by applying force on one certain node.
Quadrilateral elements are chosen for finite element modeling.

B.1.2 Finite Element Deformation of Quadrilaterals

Using the FEM method explained in Section 2.2.3, a deformable saw blade is generated.
The haptic rendering is done using virtual coupling principles. In Figure B.1, the modeled
saw blade and its deformation when force is applied on its upper right corner is shown.

Figure B.1: Deformation of a saw blade using FEM.

131



B Overview of Other Developed Virtual Reality Applications

B.2 Deformable Box Using Mass-Spring Network

A deformable box is modeled and programmed in C++ language. For visualization Open-
Inventor, for collision detection SOLID 3.6 libraries are used. Three visible surfaces of the
box are divided into triangles. The avatar is defined as a sphere that enables to realize the
collision detection algorithms based on virtual proxy.

Using appropriate classes of SOLID library, collision between the deformable object and
the avatar is checked. If there is a collision, SOLID returns penetration depth x ∈ R3 of
the avatar. Using virtual coupling, external force f e effecting on the deformable object is
calculated as f e = kvcx, where kvc is a virtual spring between the surface of the deformable
object and the centre of the avatar. Depending on this force, the deformation of the box
is realized through a mass-spring network as it is explained in section 2.2.3. The resulting
object deformations are shown in Figure B.2.

Figure B.2: Deforming a virtual box using mass-spring network.

B.3 Rigid Wall - Virtual Stairs

A VR system is developed to check the haptic interaction with rigid walls and to feel the
sharp edges. A virtual stair is created by using simple geometrical objects. The avatar
is again a virtual proxy. If the avatar collides with the stairs, then the resulting force is
calculated as:

f = ksxs + bsvs, (B.1)

where ks, bs are spring and damping coefficients of the stairs respectively. The penetration
depth of the avatar into the stairs is xs and the avatar velocity is vs. Addition of the
damping element is necessary to manage high stiffness of the stairs. The important point
is, when the user changes the direction and wants to leave the stairs, bs has to be set to
zero. Otherwise the avatar sticks to the virtual stairs. The virtual scene of “stairs” is
shown in Figure B.3.
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Figure B.3: Virtual stairs.

B.4 Multi-User VR Scenarios

B.4.1 Pull a Spring

The virtual scene consists of a spring model with hooks at each end as it is shown in
Figure B.4. The spring is pulled by two users through two ViSHaRD10 haptic interfaces
against each other. The force caused by the deformation of the spring is felt by the
users appropriately. The calculation of the force f corresponds to Hooke’s law, so that
f = k(∆x1 − ∆x2), where ∆x1,∆x2 are distances from original positions to the actual
positions of the end-effector of the first and second haptic displays respectively. The spring
coefficient is k.

X1X2

Figure B.4: A virtual task for two users: pulling a spring.

B.4.2 Load Transportation

The “pull a spring” application enables only 1-DoF interaction between users. Therefore
another scenario is developed, in which the users can move a load in a 5-DoF space and
they both feel the weight of the load, appropriately to its position, as a three dimensional
force vector. The VR is modeled as admittance. In order to get a proper physical model
of carrying a load, the forces in every state of the load have to be calculated.
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G

α

F1

−Fx1

y1

−Fz1

Fx2
y2

−Fz2

Figure B.5: Collaborative load transportation. Load when tilted along y axes with angle α.

In Figure B.5, the force F1 acting to the load and reaction forces when the table is tilted
around y axes with an angle α are shown, together with the coordinate systems. If the
system is frozen on this position, the reaction force are calculated as follows:

Fx1 = Fx2 = −1

4
G sin(2α),

Fz1 =
1

2
G(1 − sin2(α)), Fz2 =

1

2
G(1 + sin2(α)).

While the load is free movable, the sum of the forces in x direction is Fx = F x
u1 +

F x2
u2 +Fx1 +Fx2, where F x

u1 and F x2
u2 are the forces applied in x direction by user-1 and

user-2 respectively. Then velocity vx in x direction is calculated as a linear function of the
force Fx, so that vx = µFx, where µ is a pre-defined constant. The velocity vx is applied
to both robots as vx1 = vx2 = vx, so that they both move in the same direction with the
same velocity. The modeling of the movements in y and z directions are done accordingly.
If one of the users keep the haptic display tight, while the other one is moving, then the
load visually rotates. The rotations are possible only around y and z axes.

To limit the workspace, invisible virtual walls are constructed. Although traditionally
rigid walls are modeled using an impedance scheme [126], making use of the force sensor
of our haptic display, an admittance scheme is used in this work. Thus, when the robot’s
end-effector is pressed into the virtual wall, the velocity of the robot in the direction of the
applied force is set to zero.

B.5 A Graphical User Interface for VR Applications

All VR applications are collected under a graphical user interface (GUI). The GUI allows
the user to choose one of the available VR applications, run the application, initialize and
run the haptic interface, parameterize the chosen VR scenario etc. The GUI is created
using Qt library in Linux. It is possible to extend and add new VR scenarios to the
VR-GUI. Figure B.6 shows the main window. For detailed information and user’s manual
please refer to [6].
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Figure B.6: Graphical user interface for VR applications.
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