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Abstract— We present linear and non-linear robust transmit
zero-forcing filters for the downlink of multi-user multiple-input
single-output (MU-MISO) time-division-duplex (TDD) systems
which are robust with respect to errors in the channel state
information (CSI) arising from channel estimation and time lags
in mobile communications. Based on a set of estimated CSI of
previous uplink slots, we apply a conditional mean to the cost
function underlying the respective filter for the current downlink
slot resulting in channel prediction for the CSI and robust filter
structures. Thus, the respective transmit filters are less sensitive
to imperfect channel knowledge and show dramatic performance
improvements compared to their non-robust counterparts. Our
approach can be interpreted as a joint optimization of channel
prediction and preequalization. Additionally, we point out the
relation of the presented approach to another robust technique
named stochastic programmingand show the analogy to a
regularization approach.

I. I NTRODUCTION

Due to the reciprocity of the channel in TDD systems,
channel equalization can be transferred from the receiver to
the transmitter since uplink and downlink alternate in the
same frequency band. Thereby, complexity of the mobile
stations can be reduced dramatically, since channel estima-
tion, equalization, and FIR filtering drop out at the receiver
side. If both transmitter and receiver are calibrated correctly,
instantaneous CSI is available to thebase station(BS) to
a certain degree. Most of the existing transmit filters are
based upon perfect CSI, which unfortunately is not available
because of channel estimation on the one hand, but mainly
due to the movement of the mobile stations on the other
hand [1], [2]. Not surprisingly, the performance of these filters
rapidly degrades with increasing inaccuracy of the CSI. Our
contribution is to develop robust transmit filters which take
into account, that the CSI is imperfect. To this end, we
modify the cost function underlying the conventional non-
robust filter replacing the deterministic channel matrix of
the current downlink slot by its respective matrix of random
variables and afterwards minimizing theconditional meanof
the cost function given a set of noisy channel coefficients
of all receivers and antennas from previous uplink channel
estimations. Interestingly, this robust approach reduces to a
conditional mean prediction(CMP) of the channel matrix and
its Gram. Thereby, the deterministic channel matrix is replaced
by its Wiener prediction, whereas the Gram is replaced by the
Gram of the Wiener predictionplus a regularization term.

This paper is organized as follows: In Section II, we explain
the system and channel model, Section III describes the
robust transmit filter including theconditional mean channel
prediction. We show analogies to other robust techniques in
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Fig. 1. Downlink for Multi-User System (MU-MISO)

Section IV and present simulation results in Section V. The
sensitivity of the new approach with respect to errors in the
temporal auto-correlation function of the channel is discussed
in Section VI. After the evaluation of a similar heuristic robust
approach in Section VII, this paper finally concludes with
Section VIII.

II. SYSTEM AND CHANNEL MODEL

Deterministic vectors and matrices are denoted by lower and
upper case italic bold letters, whereas the respective random
variables are sans serif. The operatorsE[•], EH[•], (•)T, (•)∗,
(•)H, andtr(•) stand for expectation with respect to symbols
and noise, expectation with respect to the channel, transpose,
complex conjugate, Hermitian transpose, and trace of a matrix,
respectively. The scalar elementab,c of the matrixA in row b
and columnc is denoted by[A]b,c, and IK stands for the
K × K identity matrix. Additionally, we make use of the
Kronecker-Deltaδa,b, which vanishes fora 6= b and returns1,
if a = b.

Fig. 1 shows the downlink of the frequency flat MU-MISO
TDD system. Such a scenario is commonly termed as a system
with broadcast channel [3] or asdecentralized receivers(e.g.
[4], [5], [6]). We use s[n] ∈ CK , η[n] ∈ CK , β(m) ∈ R+,
P (m) ∈ CNa×K , and

H(m) = [h(m)
1 ,h

(m)
2 , . . . ,h

(m)
K ]T ∈ CK×Na

for then-th symbol vector, the noise vector, the scalar weight
for the receivers, the transmit filter, and the channel matrix
of time slot m, respectively. Each of theK receivers is
equipped with a single antenna, whereasNa antenna elements



are deployed at the BS. Furthermore, we assume the channel
to have a temporally correlated block fading, which means
that the realizationH(m) of the random channel matrixH(m)

for time slotm is assumed to be constant within this slot. To
simplify notation, the elementsh(m)

k,a = [H(m)]k,a of H(m) are
zero-mean independent complex Gaussian random variables
with

h
(m)
k,a ∼ CN

(
0;σ2

hk

)
∀a ∈ {1, ..., Na} ∀m ∈ Z, (1)

the varianceσ2
hk

being defined by

σ2
hk = EH

[
|h(m)
k,a |2

]
. (2)

Moreover, we assume a Jakes power density spectrum, leading
to a temporal auto-correlation function for receiverk, which
reads as [7], [8]

EH

[
h

(m−`)
k,a h

(m)∗
k,a

]
= σ2

hk
J0

(
2π

fDk

fslot
`

)
, (3)

for all antennasa, with J0(•) denoting the Bessel function of
the first kind of order zero,fDk being themaximumDoppler
frequency of receiverk, and fslot denoting the slot rate de-
pending on the frame format,fslot = 1500 Hz is assumed for
the simulations. We focus on a frame format, where uplink and
downlink slots are alternating, i.e. no two successive uplink
or downlink slots exist. The BS cannot access the estimated
channel coefficientŝH(m−1) of the directly preceding uplink
slot since the channel estimation has not been performed yet.
Only CSI from slotsm − 3, m − 5, m − 7 and so on is
available [2], which corresponds to the worst-case processing
delay. Due to the alternating slots within one frame, these
distances̀ (cf. Eq. 3) stay constant for allm.

III. ROBUST TRANSMIT FILTERING

Before introducing and deriving the robust version (RTxZF)
of the linear transmitzero-forcingfilter and the robust ver-
sion (RTxZF THP) of the non-linear transmitzero-forcing
filter with spatialTomlinson-Harashima Precoding(THP), we
briefly review the non-robust versions, i.e. the TxZF and the
TxZF THP, for a better understanding of the modified cost
function.

A. Conventional Linear Transmit Zero-Forcing Filter

The conventional linear TxZF assumes perfect CSI and
results from the minimization of themean square error(MSE)

ε(P , β) = E
[
‖s[n]− β−1(H(m)P s[n] + n[n])‖22

]
(4)

constrained to the removal of the completemultiple access
interference(MAI). Moreover, the emergingaveragetransmit
power E[‖P s[n]‖22] = tr(PRsP

H) may not exceed the
limit Etr [9], [10], since only finite transmit power is available:

{P (m)
ZF , β

(m)
ZF } = argmin

P ,β
ε(P , β)

s. t. : β−1H(m)P = IK and tr(PRsP
H) ≤ Etr,

(5)

whereRs = E[s[n]sH[n]]. Note that the MSE reduces to
β−2 tr(Rn) when we insert the first constraint of (5) into (4),

andRn = E[n[n]nH[n]]. Equivalently, we could minimizeβ−2

constrained to the removal of the complete MAI and to the
limited average transmit power, since dropping the constant
scalar factortr(Rn) in the cost function does not change the
optimum solutionP (m)

ZF andβ(m)
ZF . Solving (5) yields

P
(m)
ZF = β

(m)
ZF H

(m) H
(
H(m)H(m) H

)−1

∈ CNa×K , (6)

and β
(m)
ZF is chosen to fulfill the equality of the power

constraint in (5), i.e.

β
(m)
ZF =

√√√√ Etr

tr
(

(H(m)H(m) H)−1Rs

) ∈ R+, (7)

so the maximum valueEtr is dissipated on average.

B. Robust Linear Transmit Zero-Forcing Filter

Since the channel is not perfectly known in practice for the
reasons mentioned in Section I, the MAI cannot be suppressed
completely and the first constraint in (5) cannot be fulfilled
any longer. Therefore, we try to reject the MAI as good as
possible which corresponds to the main idea of thezero-
forcing approach. Unfortunately, we cannot applŷH(m−1) to
the solution in (6) and (7) because the channel estimation has
not been performed yet. According to the frame structure, time
slot m − 2 is allocated to the downlink leading to the fact,
that no information about the channel is present. Non-robust
transmit filters therefore would have to access estimated CSI
from time slotm− 3. But instead of employing the estimated
channel coefficientsĤ(m−3) for the filter in (6) and (7) as
if they perfectly described the transmission over the channel
for time slotm, we first storep preceding estimated channel
coefficients inĤ(m). Then, we set up a new metric

ε′(P , β) = EH

[
E
[
‖s[n]− β−1H(m)P s[n]‖22

] ∣∣∣Ĥ(m)
]
, (8)

which is a measure of interferenceon averageand is similar
to theaveragedeviation of thezero-forcingconstraint in (5),
but now we allow for a bias. In [11], Rey et al. proposed
a similar approach for joint transmitter and receiver MMSE
optimization in OFDM systems where they exploited the cor-
relations between different subcarriers to reduce uncertainties
in CSI. Contrary to the approach of the conventional TxZF
in (5), we neglect the noise contributions at the receivers (cf.
the definition ofε(P , β) in Eq. 4), but add an expectation
with respect to the channel given the set of observed channel
coefficientsĤ(m) motivated by the robustleast squares(LS)
solution in [12]. The desired linear robust transmitzero-forcing
filter can then be found solving

{P (m)
RZF, β

(m)
RZF} = argmin

P ,β
ε′(P , β)

s. t. : tr(PRsP
H) = Etr.

(9)

Different from (5), the equality of the power constraint already
has to be enforced as part of the optimization, otherwiseβ

(m)
RZF

would only be upper bounded but would not have a unique
solution (inserting the optimum solutionP (m)

RZF into (8) will



finally reveal, thatε′(P , β) does not depend onβ). Note that
theconditional meanin the new cost functionε′(P , β) reduces
to a CMP for the channel matrixH(m) and its Gram, which
becomes clear, if we express (8) by

ε′(P , β) = tr(Rs)

− β−1 tr
(
RsP

HEH

[
H(m) H

∣∣∣Ĥ(m)
])

− β−1 tr
(

EH

[
H(m)

∣∣∣Ĥ(m)
]
PRs

)
+ β−2 tr

(
EH

[
H(m) HH(m)

∣∣∣Ĥ(m)
]
PRsP

H
)
.

(10)

For the computation of theconditional mean, we make the
simplifying assumption, that all channel coefficients are un-
correlated. Thus, we only have to focus on a single coefficient
h

(m)
k,a = [H(m)]k,a from antennaa to receiver k repre-

sentative for all antennasa ∈ {1, . . . , Na} and all receivers
k ∈ {1, . . . ,K}. We storep preceding estimated channel
coefficients in

ĥ
(m)
T,k,a = [ĥ(m−3)

k,a , ĥ
(m−5)
k,a , . . . , ĥ

(m−2p−1)
k,a ]T ∈ Cp,

which is part ofĤ(m). The estimated vector̂h(m)
T,k,a can be

expressed by the sum of the original channel coefficients plus
an error due to imperfect channel estimation (as in a LS
channel estimation for example), i.e.ĥ(m)

T,k,a = h
(m)
T,k,a+η(m)

p,k,a.
We assume a joint multivariate complex Gaussian probability
density function forh(m)

k,a andĥ
(m)
T,k,a = h

(m)
T,k,a + n

(m)
p,k,a, which

reads as (cf. Eq. 3)[
h

(m)
k,a

ĥ
(m)
T,k,a

]
∼ CN

(
0;σ2

hk

[
1 rH

k

rk Rk

])
, (11)

where rk = EH[h(m)
T,k,ah

(m)∗
k,a ]/σ2

hk
denotes the normalized

correlation between the channel coefficient of time slotm
and p preceding channel realizations (h

(m)
k,a and n

(m)
LS,k,a are

uncorrelated and zero-mean). Furthermore,

Rk = EH[(h(m)
T,k,a + n

(m)
p,k,a)(h(m)

T,k,a + n
(m)
p,k,a)H]/σ2

hk
∈ Cp×p

denotes the normalized covariance matrix of the (noisy) uplink
estimates. Applying the rule of Bayes to (11), theconditional
distribution ofh(m)

k,a given the observed valueŝh
(m)
T,k,a = ĥ

(m)
T,k,a

again has a complex Gaussian probability density function,
whose mean value now does not vanish [13]:

h
(m)
k,a

∣∣∣ĥ(m)
T,k,a ∼ CN

(
h

(m)
k,a ; ζk

)
. (12)

The conditional meanh(m)
k,a is defined by

h
(m)
k,a = EH

[
h

(m)
k,a

∣∣∣ĥ(m)
T,k,a

]
=rH

kR
−1
k ĥT,k,a, (13)

and equals the Wiener prediction for the channel coeffi-
cienth(m)

k,a , since we assumed zero-mean Gaussian pdfs. With
(2), the varianceζk of the conditional pdf is defined by the
Schur complement ofσ2

hk
and reads as [13]

ζk=EH

[
|h(m)
k,a − h

(m)
k,a |2

∣∣∣ĥ(m)

T,k,a

]
=σ2

hk(1− r
H
kR
−1
k rk). (14)

The CMP for |h(m)
k,a |2 is simply the sum of the conditional

varianceζk and the magnitude of the squared conditional

mean |h(m)
k,a |2. Generalizing these results for the multi-user

and multi-antenna case, we obtain by means of the matrix
ζ = diag{ζk}Kk=1 ∈ RK×K

EH

[
H(m)

∣∣∣Ĥ(m)
]

= H(m), (15)

EH

[
H(m) HH(m)

∣∣∣Ĥ(m)
]

= H(m) HH(m)

= H(m) H H(m) +INatr(ζ).
(16)

The matrixH(m) simply consists of the predicted entries of

H(m), i.e. [H(m)]k,a = h
(m)
k,a . The conditional meanof the

GramH(m) HH(m) of H(m) leads to the Gram ofH(m) plus
a scaled identity matrix, since the main diagonal consists of
squared magnitudes of the channel coefficients, i.e.

[
H(m) HH(m)

]
a,a

=
K∑
k=1

|h(m)
k,a |2 ∀a ∈ {1, . . . , Na}. (17)

The error variance in (12) only has to be taken into account if
indicesk, l anda, b are identical, i.e.k = l anda = b, since
different channel coefficients are assumed to be uncorrelated
in our scenario:

EH

[
h

(m)
k,a h

(m)∗
l,b

∣∣∣Ĥ(m)
]

= h
(m)
k,a h

(m)∗
l,b + δk,lδa,bζk. (18)

Inserting (15) and (16) into (10) and solving (9) forP , we find
the solution for therobust linear transmitzero-forcingfilter

P
(m)
RZF =β

(m)
RZF

(
H(m) H H(m)+INa tr(ζ)

)−1

H(m) H, (19)

where β(m)
RZF is again chosen to meet the power constraint.

From (19) we can conclude, that the RTxZF filter is similar in
structure to the conventional transmit Wiener filter [9], [14].
Hence, the uncertainty in CSI can be regarded as an equivalent
noise source.

s[n]
v[n]

η[n]
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Fig. 2. Downlink for THP MU-MISO System



C. Conventional Non-Linear Transmit Zero-Forcing Filter
with Tomlinson-Harashima Precoding

Different from the originally intended purpose of the
Tomlinson-Harashima Precoding in [15], [16], where
intersymbol-interference in asingle-user single-input single-
outputsystem is eliminated by a non-linear recursive structure
at the transmitter, this approach can also be applied to a MU-
MISO system in the frequency flat case. For THP systems,
both transmitter and receivers have to be equipped with a
non-linearmodulodeviceM(•), which on the transmitter side
prevents from a power increase and finally revokes the modulo
operation of the transmitter at the receivers. Unfortunately,
this operation at the receivers leads to an infinite repetition of
the signal constellation in the complex plane and implicates
the generation of new neighbours [5], [6], [17]. Thus, noise
contributions cause an increasedbit error probability in
zero-forcingsystems for lowsignal-to-noise ratioscompared
to the linear precoder.

Fig. 2 shows the downlink of the MU-MISO TDD sys-
tem, when THP is used. In addition to themodulo de-
vice M(•), the transmitter is extended by a spatial feedback
filter F (m) ∈ CK×K , which feeds back the already precoded
symbolsvi[n] = [v[n]]i,1 ∈ C. Since only already precoded
symbolsvi[n] can be fed back, the structure ofF (m) has to
be lower triangular with zero main diagonal, as we assume
an ordered channel matrix for the derivation. An attractive
sub-optimum approach for the sorting order of the precoding
can be found in [17] and will be used for the simulations.
Because of themodulooperation at the transmitter, the statistic
of the precoded symbolsvi[n] differs from the statistic of the
data symbolssk[n] (e.g. [5], [6], [17], [18]) and the emerging
averagetransmit power reads asE[‖P v[n]‖22] = tr(PRvP

H),
whereRv ∈ RK×K has diagonal structure and[Rv]1,1 =
[Rs]1,1 and [Rv]i,i = M

M−1 [Rs]i,i ∀i ∈ {2, . . . ,K}. Here,
M denotes the cardinality of the modulation alphabet (e.g.
M = 4 for QPSK,M = 16 for 16-QAM). In order to be able
to apply the framework of linear algebra as we did for the
linear TxZF, we define the optimization criterionin front of
the modulooperation at the receivers. Thus, themean square
error reads as

ε(P ,F , β)=E
[
‖d[n]− β−1(H(m)P v[n] + n[n])‖22

]
, (20)

where we replaced the data symbol vectors[n] by the desired
symbol vectord[n] = (IK − F )v[n] and by the precoded
symbol vectorv[n], respectively (cf. Fig. 3). The TxZF THP
then follows from the following optimization (sorted channel
matrix assumed):

{P (m)
ZF ,F

(m)
ZF , β

(m)
ZF } = argmin

P ,F ,β
ε(P ,F , β)

s. t. : β−1H(m)P = IK − F , and

tr(PRvP
H) ≤ Etr, and

F lower triangular, zero main diagonal.

(21)

With Lagrangian multipliers, we find the solution

P
(m)
ZF = βZF

K∑
k=1

H(m)ST
kA

(m)−1
k,ZF Skeke

T
k ,

F
(m)
ZF =

K∑
k=1

(ek −H(m)H(m) HST
kA

(m)−1
k,ZF Skek)eT

k ,

(22)

where βZF is chosen to meet the equality of the power
constraint andA(m)

k,ZF = SkH
(m)H(m) HST

k ∈ Ck×k. The
k-th column of theK ×K identity matrixIK is denoted by
ek, andSk = [Ik,0] ∈ {0; 1}k×K is a selection matrix. For
a detailed description, see [17].

s[n]

a[n]

d[n]

F (m)

v[n]

Fig. 3. Linear representation of themodulodevice: the signala[n] is added
to restrict the real and imaginary part ofv[n] to the interval specified by the
modulooperation

D. Robust Non-Linear Transmit Zero-Forcing Filter with
Tomlinson-Harashima Precoding

For the robust version of thezero-forcingTHP filter, we
proceed in the same manner as we did for the linear filter. To
this end, we replace the cost functionε(P ,F , β) by our new
metric ε′(P ,F , β) (see also Eq. 8):

ε′(P ,F , β)= EH

[
E
[
‖d[n]−β−1H(m)P v[n]‖22

]∣∣∣Ĥ(m)
]

(23)

The minimization of this metric has again to be done con-
strained to a maximum average power emission and the lower
triangular structure ofF with zero main diagonal:

{P (m)
RZF,F

(m)
RZF, β

(m)
RZF} = argmin

P ,F ,β
ε′(P ,F , β)

s. t. : tr(PRvP
H) = Etr, and

F lower triangular, zero main diagonal.

(24)

The solution of (24) reveals, that therobustversion of the non-
linearzero-forcingTHP filter again resembles the structure of
the non-linear Wiener THP filter, where the loading term for
the noise at the receivers is again replaced by a loading which
depends on the uncertainties of CSI.

P
(m)
RZF = βRZF

K∑
k=1

A
(m)−1
k,RZFH

(m) Heke
T
k ,

F
(m)
RZF =

K∑
k=1

(ST
kSk − IK)H(m)A

(m)−1
k,RZFH

(m) Heke
T
k .

(25)

In turn, βRZF has to fulfill the first constraint in (24) and
A

(m)
k,RZF = H(m) HST

kSkH
(m) +INa tr(ζ) ∈ CNa×Na . Since

the feedback and the feedforward filter in (25) are different
from those in (22), the sub-optimum ordering strategy may
also lead to a different precoding order.



IV. CLASSIFICATION OF THEPRESENTEDROBUST

APPROACH AND ITSRELATIONSHIP TO OTHERROBUST

TECHNIQUES

From the point of view of the transmitter the channel
H(m) is a random variable. He has access to its out-dated
realizationH(m−`) via pilot symbols received from the uplink.
Modeling the channel as a random variable instead of known
deterministic parameter results in a random cost function and
stochastic linear equalities aszero-forcingconstraints (Eq. 5
and 21). Obviously, completezero-forcingcannot be achieved
if perfect CSI is not available, and strict “zero-forcing” based
on imperfect CSI is not desired. Thus, the constraint should
be relaxed, i.e. some interference may be allowed. One way to
achieve this is via worst case constraints as in [19] or [20] for
a deterministic error modelH(m) = Ĥ(m−`) +E(m). Alter-
natively, for a stochastic error modelH(m) = Ĥ(m−`) + E(m)

the principle of chance programming can be employed [21],
which allows a certain deviation from the exact equality
with an a priori chosen probability. The weakness of both
approaches is that a heuristic is required to choose the new
free parameters a priori. These approaches typically result in a
significantly increased complexity compared to the non-robust
design.

Our approach formulates the relaxation of thezero-forcing
constraint in the cost function̄ε(P , β,H(m)) = E[‖s[n] −
β−1H(m)P s[n]‖22] itself, which is now a random variable
in the unknown channel. Thus, we allow for a minimum
amount of interference. Solving this optimization problem
for a given channel realizationH(m) yields an “ill-posed”
problem, i.e. the solution is not unique [22]. Ill-posed problems
are commonly solved bringing additional side information
into the formulation of the problem. This is done in (8)
and (23) following the Bayesian philosophy: Interference is
minimized on average given the knowledge about the channel
from previous channel estimates. The conditional mean in (8)
and (23) yields a well-posed problem with a unique solution.
It adds a regularization term to the cost function, e.g. as in (8)

ε′(P , β) = ε̄(P , β,H(m)) + tr(ζ)β−2tr(PRsP
H)︸ ︷︷ ︸

regularization term

, (26)

reducing the Frobenius norm of the solutionβ−1P . The
second summand in (26) regularizes the solutionβ−1P in the
sense of Tikhonov [22], which results in a diagonal loading
of the standard zero forcing solution with optimum loading
factortr(ζ) (regularization parameter) given by the model (cf.
Eq. 19). This decreases the sensitivity of the cost function w.r.t.
parameter uncertainties [23], [24], i.e. a more robust solution
is obtained.

The advantage of our approach is that the error model
is given by the second order statistics of the error in (12)
and (14). Thus, the robust precoder can be adapted to the cur-
rent scenario. This way we avoid a performance degradation
of the robust design in the nominal case [24], [25].

Given the robust solutions (19) and (25), the problem state-
ment (9) and (24), respectively, can be interpreted as a joint

optimization of the predictor and precoder (transmit filter).
Alternatively, we could assume a stochastic error model

H(m) = Ĥ(m−`) + E(m) and take the expected value w.r.t.
the errorE(m) instead of the conditional mean (e.g. Eq. 8),
which is a standard method in static stochastic programming
[21]. This cost function for linear ZF

EE[ε̄(P , β,H(m) + E(m))] = ε̄(P , β,H(m))

+ β−2tr(REHPRsP
H)

(27)

is identical to (26) if an LMMSE predictor as in (15) is
used a priori for prediction. The error covariance matrix is
REH = EE[E(m)HE(m)] = INatr(ζ) for the simplifying as-
sumptions from Section II, but the equivalence holds for the
general case, too.

V. SIMULATION RESULTS

Figs. 4 and 5 show the uncodedbit error ratio (BER)
averaged over 10000 channel realizations and averaged
over all receivers versus thetransmit signal-to-noise ratio
Etr/E[nH[n]n[n]], which is identical to the ratioES/N0 of
the averagetransmit symbol energyES to the noise power
density N0. The BS hasNa = 4 antennas, 100 symbols
are transmitted per receiver and channel realization. The
modulation alphabet is QPSK and the prediction filter is
of length p = 5. The LS channel estimation is based on
256 pilots at an uplink signal-to-noise ratio of 3 dB. We
assume a Jakes power density spectrum and each receiver
has a maximum Doppler frequency offDk = 100 Hz (app.
54 km/h at 2 GHz). The non-linearzero-forcingTomlinson-
Harashima-Precoder (TxZF THP) and the linearzero-forcing
filter (TxZF) have dashed lines, whereas their respective robust
counterparts (RTxZF THP and RTxZF) are represented by
solid lines. Both figures show dramatic improvements of the
robust filters with respect to their non-robust versions which
are also based on the predicted channel (i.e. in (6) and (7),
H(m) is replaced byH(m)), since we do not want to show the
effect of channel prediction but the impact of robust filtering.
Especially in theK = 4 receivers scenario (Fig. 5), the
robust filters show superior performance, since there is no
degree of freedom left for the TxZF to reduce the noise at
the receivers. Theloading in (19) prevents the RTxZF from
removing interference erroneously based on imperfect CSI.
Moreover, the non-linear filter experiences a larger gain than
the linear filter in both scenarios. But as we mentioned before,
the THP filters exhibit a point of intersection with the linear
filters and offer larger BERs than their linear counterparts for
smallES/N0 values. Fortunately, this point of intersection has
a smallerES/N0 value for the robust filters compared to the
ES/N0 of the intercept point for the non-robust filters making
robust THP systems very attractive.

VI. SENSITIVITY OF THE PRESENTEDAPPROACH WITH

RESPECT TOERRORS IN THETEMPORAL

AUTO-CORRELATION FUNCTION OF THECHANNEL

One argument, that - at first glance - might speak against
the procedure illustrated above, is, that the problem of uncer-
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Fig. 5. Robust linear TxZF (RTxZF) and Robust non-linear TxZF THP
(RTxZF THP) vs. Conventional TxZF and Conventional TxZF THP with
predicted CSI (K = 4 receivers,Na = 4 antennas)

tainties in CSI has been solved by the exact knowledge of
the temporal auto-correlation function in (3). As it seems, the
performance gains are bought by knowledge, which in practice
is inaccurate. On the one hand, this objection is partially true,
since errors in the auto-correlation function will definitely
degrade the efficiency of the robust filters, but on the other
hand, the conventional non-robust filters will degradein the
same way, since they are also based on predicted CSI in our
simulations and will therefore suffer from imperfect prediction
as well. If the auto-correlation function is not perfectly known,
then robust transmit filters have to be appliedmore than ever,
since the circumstance of imperfect knowledge could be taken
into account during the filter design. Due to larger errors, this
would lead to aloadingby a scaled identity matrix, which has
a larger (e.g. Frobenius-) norm than the one in (19).

Nevertheless, we investigate the impact of an erroneous tem-
poral auto-correlation function by assuming a constantpower

density spectrumof the fading process within the interval
[−fDk ; fDk), despite it has Jakes form. This leads to the sinc-
function instead of the Bessel function for the auto-correlation
function. Fig. 6 shows the influence of the imperfect auto-
correlation function on the performance of both the robust
and non-robust linear TxZF filter forK = 3 receivers and
Na = 4 antennas. We observe, thatboth the robustand
the non-robust version show a degradation of the BER in
the interference dominated region, i.e. for large SNRs. But
since there are more antennas than receivers, the impact of
the imperfect auto-correlation function is not that severe as it
would be in aK = 4 receivers scenario.
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VII. E VALUATION OF A SIMILAR HEURISTIC ROBUST

APPROACH

Another robust approach one might think of results from
directly starting with the solution of theconventionalfilter
in (6) and applying theconditional meanto the individual
components instead of starting with the cost function in (8).

A. Derivation of the Heuristic Robust Transmit Zero-Forcing
Filter

For the derivation of theheuristic robust TxZF, the de-
terministic channel matrices in (6) are replaced by their
respective random variables and afterwards, the matrix product
H(m)H(m) H inside the inverse operator and the matrixH(m) H

in front of the inverse are replaced by theirconditional
meanvalues. Due to the reversed order of the matrix pro-
duct H(m)H(m) H compared to (16), this approach will lead
to different results in the majority of the cases. To illustrate
this circumstance, we take a look at the main diagonal entries
of H(m)H(m) H (since only channel coefficients with same
indices are correlated in our scenario). Different from (17),[

H(m)H(m) H
]
k,k

=
Na∑
a=1

|h(m)
k,a |2 ∀k ∈ {1, . . . ,K}, (28)



and thus, theconditional meannow reads as

EH

[
H(m)H(m) H

∣∣∣Ĥ(m)
]

= H(m)H(m) H

= H(m) H(m) H +Naζ,
(29)

whereas (15) is still valid. Theheuristic robust filter can then
be expressed by

P
(m)
HRZF = β

(m)
HRZFH

(m) H
(
H(m) H(m) H +Naζ

)−1

, (30)

andβ(m)
HRZF is again chosen to meet the power constraint. By

means of the inversion lemma [13], (19) can be transformed
into a similar structure:

P
(m)
RZF = β

(m)
RZFH

(m) H
(
H(m) H(m) H+IK tr(ζ)

)−1

. (31)

Comparing (31) with (30), equality of both algorithms holds,
if Naζ = IK tr(ζ) which obviously becomes true, if all
receivers have the same Doppler frequencyfDk and the same
average channel powerσ2

hk
. But this configuration is very

unlikely in a multi-user communication environment, since
the Doppler frequencies are directly related to the speed of
the receivers. In cases, where (30) and (31) are different, the
heuristic approach is outperformed by the algorithm starting
with the new cost function in (8) in terms of interference
suppression. Under the assumption, that the received signals
of all users are perturbed by noise with the same average
power, all receivers should eventually exhibit the same raw
BER (because of the same scaling factorβ−1 for all receivers),
if interference was completely removed. The following simu-
lation results demonstrate, that this goal is achieved best by
the robust filter in (19) (or equivalently Eq. 31).

B. Simulation Results for the Heuristic Approach

In Figs. 7 and 8, the Doppler frequencyfD1 of receiver1
is reduced from100 Hz to 20 Hz, whereas receivers2 and3
still have Doppler frequencies offD2 = fD3 = 100 Hz. All
other parameters are left unchanged. From this fact, we can
conclude that receiver1 will finally show a smaller BER than
the other receivers due to the reduced uncertainty in CSI.

Fig. 7 shows the BERaveraged over all receiversversus
ES/N0 for the conventional TxZF, the robust TxZF and the
heuristic robust TxZF. Compared to Fig. 4, we observe a
small performance improvement for both the RTxZF and
the TxZF because of the smaller CSI error of receiver 1.
For ES/N0 values smaller than 11 dB, theheuristic robust
approach outperforms the conventional TxZF, but shows worse
performance ifES/N0 is above 11 dB. In contrast, the RTxZF
offers a smaller BER than itsheuristic counterpart for the
completeES/N0 range.

Fig. 8 shows the BER versusES/N0, where allreceivers are
resolved. We observe, that theheuristicrobust filter facilitates
a BER for receiver 1, which is smaller than the BER of the two
other filter types. At the same time, the BERs of receivers 2
and 3 are considerably larger than those of the robust (RTxZF)
filter and for largeES/N0 values even larger than those of the
conventional non-robust TxZF. The structure of the RTxZF

curves is similar to the structure of the TxZF curves, but
smaller BERs are achieved, especially for largeES/N0 values.
For these reasons, the RTxZF meets the desired behaviour of
interference removal best, since it offers low BERs and tries
to make equal BERs of all receivers possible, even if their
uncertainties in CSI are of different size.
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Fig. 7. Robust TxZF (RTxZF) vs.Heuristic Robust TxZF (HRTxZF) vs.
Conventional TxZF (TxZF) with predicted CSI (K = 3 receivers,Na = 4
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receivers,Na = 4 antennas)

VIII. C ONCLUSION

In this paper, we addressed the impact of uncertainties in
the CSI resulting from channel estimation and time lags in a
TDD system with transmit processing and presented arobust
version of the linear and non-linear THP transmitzero-forcing
filter for the downlink. The robust versions clearly outperform
their non-robust counterparts in terms of bit error ratio without
increasing the computational complexity. Even if the temporal
correlation of the fading process is not perfectly known, robust
filters exhibit superior performance and are therefore essential



since complete CSI is never available. For notational sim-
plicity, we restricted ourselves to uncorrelated and frequency
flat Rayleigh fading channels during the derivation of the
robust filters, but the extension towards correlated, frequency
selective, and non-zero-mean channels is straightforward.
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