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Abstract—We present linear and non-linear robust transmit é N( M ) .
zero-forcing filters for the downlink of multi-user multiple-input t>> > >{>_'>51[n]
single-output (MU-MISO) time-division-duplex (TDD) systems (m) T f ﬁ(m)—l
which are robust with respect to errors in the channel state hy" n|n)
information (CSI) arising from channel estimation and time lags
in mobile communications. Based on a set of estimated CSI of ] S j[> M ;{>_>§ in]
previous uplink slots, we apply aconditional meanto the cost o o 2
function underlying the respective filter for the current downlink pm (m)T |: \r gm=1
slot resulting in channel prediction for the CSI and robust filter h; || ma[n]
structures. Thus, the respective transmit filters are less sensitive

to imperfect channel knowledge and show dramatic performance MmN .
improvements compared to their non-robust counterparts. Our QD = '{>_’5K[”}
approach can be interpreted as a joint optimization of channel h(m)T \r ﬁ(m)—l
prediction and preequalization. Additionally, we point out the K

relation of the presented approach to another robust technique - AN [n]/ \ J
named_ stqchastlc programmingand show the analogy to a o™ nln] 3[n]
regularization approach.

|. INTRODUCTION Fig. 1. Downlink for Multi-User System (MU-MISO)

Due to the reciprocity of the channel in TDD systems,

channel equalization can be transferred from the receiver3ection IV and present simulation results in Section V. The
the transmitter since uplink and downlink alternate in th@nsiti\/ity of the new approach with respect to errors in the
same frequency band. Thereby, complexity of the mobilemporal auto-correlation function of the channel is discussed
stations can be reduced dramatically, since channel estiraSection VI. After the evaluation of a similar heuristic robust

tion, equalization, and FIR filtering drop out at the receivefpproach in Section VII, this paper finally concludes with
side. If both transmitter and receiver are calibrated correctigection VIII.

instantaneous CSI is available to thase station(BS) to

a certain degree. Most of the existing transmit filters are Il. SYSTEM AND CHANNEL MODEL

based upon perfect CSI, which unfortunately is not available Deterministic vectors and matrices are denoted by lower and

because of channel estimation on the one hand, but maitigper case italic bold letters, whereas the respective random

due to the movement of the mobile stations on the othe@riables are sans serif. The operat®fe|, Eule], (o)", (o)*,

hand [1], [2]. Not surprisingly, the performance of these filter®)", andtr(e) stand for expectation with respect to symbols

rapidly degrades with increasing inaccuracy of the CSI. Oand noise, expectation with respect to the channel, transpose,

contribution is to develop robust transmit filters which takeomplex conjugate, Hermitian transpose, and trace of a matrix,

into account, that the CSI is imperfect. To this end, weespectively. The scalar element. of the matrix A in row b

modify the cost function underlying the conventional norand columnc is denoted by[A], ., and I stands for the

robust filter replacing the deterministic channel matrix of’ x K identity matrix. Additionally, we make use of the

the current downlink slot by its respective matrix of randori{ronecker-Delta, ;, which vanishes fou # b and returnd,

variables and afterwards minimizing tieenditional mearof if a = b.

the cost function given a set of noisy channel coefficients Fig. 1 shows the downlink of the frequency flat MU-MISO

of all receivers and antennas from previous uplink channEPD system. Such a scenario is commonly termed as a system

estimations. Interestingly, this robust approach reduces tovih broadcast channel [3] or akecentralized receiverg.g.

conditional mean predictiofCMP) of the channel matrix and [4], [5], [6]). We use s[n] € CX, n[n] € CK, ™ € Ry,

its Gram. Thereby, the deterministic channel matrix is replacdd™ € CN-*X, and

by its Wiener prediction, whereas the Gram is replaced by the Hm [h(m) Rm) h(m)]T c CKxNa

Gram of the Wiener predictioplus a regularization term. Lo e K
This paper is organized as follows: In Section Il, we explaifor the n-th symbol vector, the noise vector, the scalar weight

the system and channel model, Section Il describes tfur the receivers, the transmit filter, and the channel matrix

robust transmit filter including theonditional mean channel of time slot m, respectively. Each of the< receivers is

prediction We show analogies to other robust techniques equipped with a single antenna, wher@gsantenna elements



are deployed at the BS. Furthermore, we assume the chararel R, = E[n[n]n"![n]]. Equivalently, we could minimizg—>

to have a temporally correlated block fading, which meam®nstrained to the removal of the complete MAI and to the
that the realizatiodd ™ of the random channel matrbd™  limited average transmit power, since dropping the constant
for time slotm is assumed to be constant within this slot. Tscalar factortr(R,) in the cost function does not change the
simplify notation, the elements,” = [H™)],., of H™ are optimum solutionP{™ and 3™ Solving (5) yields
zero-mean independent complex Gaussian random variables

-1
with P(ZTS) — ggF”)H(m)H (H(m)H(m)H) c (CN'“‘XK, (6)
(m) . 2
hia ~CN (050y,) Va € {1,...Na} YmeZ, (1) and gY7" is chosen to fulfill the equality of the power
the variances;, being defined by constraint in (5), i.e.
o = En [|h§;j;>|2] . @) o) _ B cR. @)

(m) g (m) Hy—1
Moreover, we assume a Jakes power density spectrum, leading tr ((H H ) RS)

to a temporal auto-correlation function for receiverwhich
reads as [7], [8]

Bw [0 0] = o do (27r o

slot

so the maximum valué’;, is dissipated on average.

) B. Robust Linear Transmit Zero-Forcing Filter

@) Since the channel is not perfectly known in practice for the
reasons mentioned in Section I, the MAI cannot be suppressed

. . : ) ) completely and the first constraint in (5) cannot be fulfilled
the first kind of order zerofp, being themaximumbDoppler any longer. Therefore, we try to reject the MAI as good as

frquency ofhre(f:elvek,f and fso denoting the slot ratz ?e— possible which corresponds to the main idea of Hego-
pending on the frame formafyoc = 1500 Hz is assumed for fooing annroach. Unfortunately, we cannot apdi ™ to

the simulations. We focus on a frame format, where uplink angle 5jtion in (6) and (7) because the channel estimation has
downlink slots are alternating, i.e. no two successive uplini, peen performed yet. According to the frame structure, time
or downlink slots exist. The BS cannot access the estimaigd; ,. _ 5 is allocated to the downlink leading to the fact
chanqel coefficientﬂ(m_l') of j[he directly preceding uplink w5 g information about the channel is present. NOI’I—I’Obl:ISt
slot since the channel estimation has not been performe_d X¥Rinsmit filters therefore would have to access estimated CSI
Only CS| from slotsm — 3, m — 5, m — 7 and S0 0N IS f4m ime slotm — 3. But instead of employing the estimated
available [2], which corresp_onds to the_ WOrst-case processifih nal coefficientdI -2 for the filter in (6) and (7) as
d?'ay- Due to the alternating slots within one frame, the?ﬁthey perfectly described the transmission over the channel
distanced (cf. Eq. 3) stay constant for ath. for time slotm, we first storep preceding estimated channel
I1l. ROBUST TRANSMIT FILTERING coefficients in(™). Then, we set up a hew metric

for all antennas, with Jy(e) denoting the Bessel function of

Befor_e mtroducmg_and derlv_lng _the robust version (RTxZF) (P, ) = En [E[Hs[n] - ﬁ—lH(m)Ps[n]Hg} ‘r’f‘(m):| . (8)
of the linear transmitzero-forcingfilter and the robust ver-
sion (RTxZF THP) of the non-linear transmaero-forcing which is a measure of interferenoa averageand is similar
filter with spatialTomlinson-Harashima Precodin@HP), we to the averagedeviation of thezero-forcingconstraint in (5),
briefly review the non-robust versions, i.e. the TxZF and tHaut now we allow for a bias. In [11], Rey et al. proposed
TxZF THP, for a better understanding of the modified cost similar approach for joint transmitter and receiver MMSE
function. optimization in OFDM systems where they exploited the cor-
. . . . ) relations between different subcarriers to reduce uncertainties
A. Conventional Linear Transmit Zero-Forcing Filter . .
i ] in CSI. Contrary to the approach of the conventional TxZF
The conventional linear TxZF assumes perfect CSI angl (5) we neglect the noise contributions at the receivers (cf.
results from the minimization of thevean square errofMSE)  the definition of=(P, 3) in Eq. 4), but add an expectation
_ 1 a=l/xp(m) 2 with respect to the channel given the set of observed channel
s(P.f) =E [”s[n] A= (H™ Psin] + n[n])M “) coefficients (™) motivated by the robudeast squaregLS)
constrained to the removal of the completriltiple access solution in [12]. The desired linear robust transee@to-forcing
interference(MAI). Moreover, the emergingveragetransmit filter can then be found solving

power E[||Ps[n]||3] = tr(PRsP") may not exceed the (m)  a(m)y _ o
limit E¢, [9], [10], since only finite transmit power is available: {Przr: Orav} = arlg:;’ngms (P, 5) ©)
(P, B} = argmine(P, 3) s.t.: tr(PRPY) = E,.
P,
’ ®) Different from (5), the equality of the power constraint already

. p-lggm)p _ H
st fTHTP = Ik and tr(PRPY) < By, has to be enforced as part of the optimization, other\ﬂ@%
where R; = Els[n]s"![n]]. Note that the MSE reduces towould only be upper bounded but would not have a unique
B2 tr(R,) when we insert the first constraint of (5) into (4)solution (inserting the optimum SO|uti0ﬁ’§{er)F into (8) will



finally reveal, that’(P, 5) does not depend ofi). Note that The CMP f0r|h(m |2 is simply the sum of the conditional
theconditional mearin the new cost functioe’ (P, 3) reduces variance ¢, and the magnitude of the squared conditional
to a CMP for the channel matrid"") and its Gram, which mean |hy")|>. Generalizing these results for the multi-user

becomes clear, if we express (8) by and multi-antenna case, we obtain by means of the matrix
e'(P,B) = tr(Rs) ¢ = diag{Ci}i, € RF*F

— 3t (RoPPEW [HOH |3 )
— B (EH [H“") 'ﬂ(”ﬂ PRS)
4 2 (EH {HWHH(’") ’7%“”)} PRSPH) .

) Ew[HC™) (ﬂ“’”] — H, (15)

EH[

} — gmHEgm)

For the computation of theonditional meanwe make the HH 7 g (0 (16)

simplifying assumption, that all channel coefficients are un- Na '

correlated. Thus, we only have to focus on a single coefficient

h(j';) = [H™)],, from antennaa to receiverk repre- The matrix H ™ simply consists of the predicted entries of

sentative for all antennas c {1,...,N,} and all receivers H™), i.e. [H™];, = h{"”. The conditional mearof the

E e {1,...,K}. We storep precedlng estimated channelgram ™ HH™ of H™ |eads to the Gram off ™ plus

coefficients in a scaled identity matrix, since the main diagonal consists of
h‘(ka)a _ [}AL(WL_B), ;L(m—5)7 o ;L(@—2p—1)]T ecr, squared magnitudes of the channel coefficients, i.e.

which is part of £(™). The estimated vectcm(qf’ﬁc) can be (m) Hyyq(m) ) 9

expressed by the sum of the original channel coefficients plus[|-I H } Z |h Va € {l,...,Na}. (17)

an error due to imperfect channel estimation (as in a LS

channel estimation for example), ife{", , = h(ka) a+771()"?a The error variance in (12) only has to be taken into account if
We assume a joint multlvarlate complex Gaussian probabiliiydicesk,! and a, b are identical, i.ek = [ anda = b, since

density function forh and h(ka o= h(ka)a + “;,k),a: which  different channel coefficients are assumed to be uncorrelated

reads as (cf. Eq. 3) in our scenario:
hgz) e [0 62 1 TE 11 [h(m h(m H(m)} h(m) h(m)* + 0,100 (18)
hf(rmk)a ~ 3 Ohy, r. Ry ) ( ) ka "1b k,19a,b5k -
where 1, — [h(ka)ah(m ]/Uh denotes the normalizedlnsertmg (15) and (16) into (10) and solving (9) B, we find

correlation between the channel coeff|C|ent of time stot the solution for theobustlinear transmitzero-forcingfilter

(m)

and p preceding channel realizationk ’C andng; , are

- ,17
uncorrelated and zero-mean). Furthermore, Py =05 (H(m)H H"™ 4Ty, tr(C)) H™H, (19)
Ry, = En(hy, + 00 ) (W, + )" of, € Co

where ﬁRZF is again chosen to meet the power constraint.
denotes the normalized covariance matrix of the (noisy) uplifitom (19) we can conclude, that the RTxZF filter is similar in
estimates. Applymg the rule of Bayes to (11), thmdltlonal structure to the conventional transmit Wiener filter [9], [14].
distribution ofhk"fl given the observed valuhéi”) = hT k) . Hence, the uncertainty in CSI can be regarded as an equivalent
again has a complex Gaussian probability densny functiomise source.

whose mean value now does not vanish [13]:

A~ N (h ( ;“;>,gk). (12)

)
hgjjl

s[n]

The conditional meam(m) is defined by

h) = [

Tka}frkR 1tha; (13)

and equals the Wiener prediction for the channel coeffi-
C|enth , since we assumed zero-mean Gaussian pdfs. With
(2), the vanance{,C of the conditional pdf is defined by the
Schur complement ofr2 and reads as [13]

Fig. 2. Downlink for THP MU-MISO System

~(m)

Ce=Bu [ — h{™ 2[R a} =02 (1—rHR;'ry). (14)




C. Conventional Non-Linear Transmit Zero-Forcing FiltetWith Lagrangian multipliers, we find the solution
with Tomlinson-Harashima Precoding

K
m m m)—1
Different from the originally intended purpose of the P(ZF) :5ZFZH( )SEAI(c,Z)F Srerey,
Tomlinson-Harashima Precoding in [15], [16], where x =1 (22)
intersymbol-interference in aingle-user single-input single- (m) m) gr(m)H qT 4 (m)—1 T
outputsystem is eliminated by a non-linear recursive structureFZF N Z(ek - HWH™TS, Apzr Sker)er,
at the transmitter, this approach can also be applied to a MU- , ,
MISO system in the frequency flat case. For THP systeM@bere ﬁ_ZF IS C*(‘g)se” to me(?nt) th(em)elgua%hty Ofk t?e power
both transmitter and receivers have to be equipped withgnstraint andA, 7. = S H™ H "™ "S); € C*". The
non-lineamodulodeviceM(s), which on the transmitter side k-th column of thek™ x K |dekntgy.matr|xIK is denoted by
prevents from a power increase and finally revokes the mod@e @145k = [Ix, 0] € {0; 1}"*™ is a selection matrix. For
operation of the transmitter at the receivers. Unfortunatefy,detailed description, see [17].
this operation at the receivers leads to an infinite repetition of

the signal constellation in the complex plane and implicates . din] wln]
the generation of new neighbours [5], [6], [17]. Thus, noise j?%
aln]
Fm)

k=1

contributions cause an increasdyt error probability in
zero-forcingsystems for lowsignal-to-noise ratioxompared
to the linear precoder.

Fig. 2 shows the downlink of the MU-MISO TDD Sys-rig 3. Linear representation of tieodulodevice: the signak[n] is added
tem, when THP is used. In addition to thmodulo de- to restrict the real and imaginary part ofn] to the interval specified by the
vice M(e), the transmitter is extended by a spatial feedbagkdulooperation
filter F(™) ¢ CX*K  which feeds back the already precoded
symbolsv;[n] = [v[n]];1 € C. Since only already precodedD. Robust Non-Linear Transmit Zero-Forcing Filter with
symbolsuv;[n] can be fed back, the structure 5£™ has to Tomlinson-Harashima Precoding
be lower triangular with zero main diagonal, as we assumerq the robust version of thezero-forcing THP filter, we

an ordered channel matrix for the derivation. An attractiv&oceed in the same manner as we did for the linear filter. To

sub-optimum approach for the sorting order of the precoding;g end, we replace the cost functietP, F, 3) by our new
can be found in [17] and will be used for the Simmaﬂonﬁ’netricE’(P F, ) (see also Eq. 8):

Because of thenodulooperation at the transmitter, the statistic A
of the precoded symbols[n] differs from the statistic of the &(P, F, 3)= EH[E[Hd[n]—ﬁ_lH(m)Pv[n]||%”H(m)} (23)
data symbols;;[n] (e.g. [5], [6], [17], [18]) and the emerging

averagetransmit power reads || Pv[n]||2] = tr(PR,PY), The_ minimization of this metric has again to be done con-
where R, € RE*K has diagonal structure andt,];; —= strained to a maximum average power emission and the lower

[Ri):.1 and [Ry]i; = Mj\fl[Rs]i,i Vi € {2,...,K}. Here, triangular structure o with zero main diagonal:
M denotes the cardinality of the modulation alphabet (e.g. (p(m) p(m) g0m)y — yomine/ (P, F, B)
P.F.3

M = 4 for QPSK, M = 16 for 16-QAM). In order to be able fARs T Ram PRy
to apply the framework of linear algebra as we did for the g .. tr(PRvPH) = E,, and (24)
linear TxZF, we define the optimization criterion front of

the modulooperation at the receivers. Thus, timean square _ _
error reads as The solution of (24) reveals, that thebustversion of the non-

linear zero-forcingTHP filter again resembles the structure of
e(P,F,B3)=E||d[n] — 8~ (H"™ Pv[n] +n[n))|3|, (20) the no_n-linear Wiengr THP filter., where the loading term fqr
2
the noise at the receivers is again replaced by a loading which
depends on the uncertainties of CSI.

F lower triangular, zero main diagonal.

where we replaced the data symbol vedatior] by the desired

symbol vectord[n| = (I'x — F)v[n] and by the precoded _ K W ey i
symbol vectorv[n|, respectively (cf. Fig. 3). The TxZF THP PRy = Brar ZAX?{ZF H™ erey,
then follows from the following optimization (sorted channel k=1 (25)

matrix assumed): . K .
) F%Z)F :Z(Sr]gsk _ IK)H(M)AI(C,R)ZF}H(M)Hek’e;cr-
k=1

P F™ 3IMY — aremine(P, F,
P oy P’y p%p,g ( b) In turn, Brzr has to fulfill the first constraint in (24) and
s.t: BT H™P =T — F, and (21) Afﬂgzp = H™USTS, H™ Iy, tIT(C) € CNaxNa, Since
Hy o the feedback and the feedforward filter in (25) are different
tr(PR"P_) < Lor, and o from those in (22), the sub-optimum ordering strategy may
F lower triangular, zero main diagonal. also lead to a different precoding order.




IV. CLASSIFICATION OF THEPRESENTEDROBUST optimization of the predictor and precoder (transmit filter).
APPROACH AND ITSRELATIONSHIP TO OTHERROBUST Alternatively, we could assume a stochastic error model
TECHNIQUES H™ = Hm=0 4 E™ and take the expected value w.rt.

, , : (m) j iti
From the point of view of the transmitter the channéf€ €rmorE™™ instead of the conditional mean (e.g. Eq. 8),
H(™) is a random variable. He has access to its out-dat&fich is a standard method in static stochastic programming

realizationH ™~ via pilot symbols received from the uplink.[21]- This cost function for linear ZF
Modelir_wg_ the channel as a rand_om variable instead of_ knoerE[g(P’@WJr E(m))] — &P, 5, W)
deterministic parameter results in a random cost function and 5 o
stochastic linear equalities agro-forcingconstraints (Eq. 5 + 07 tr(Ren PRsP™)

and 21). Obviously, completgero-forcingcannot be achieved is identical to (26) if an LMMSE predictor as in (15) is
if perfect CSl is not available, and strictéro-forcing based used a priori for prediction. The error covariance matrix is
on imperfect CSI is not desired. Thus, the constraint shouRks = Eg[E™HE™)] = Iy tr(¢) for the simplifying as-
be relaxed, i.e. some interference may be allowed. One waystamptions from Section II, but the equivalence holds for the
achieve this is via worst case constraints as in [19] or [20] fgeneral case, too.

a deterministic error modet (™) = H(m=0 1 E(™) Alter-
natively, for a stochastic error modl™ = H (m— 4 g™
the principle of chance programming can be employed [21], Figs- 4 and 5 show the uncodéit error ratio (BER)
which allows a certain deviation from the exact equalitpveraged over 10000 channel realizations and averaged
with an a priori chosen probability. The weakness of bo®Ver all receivers versus th&ansmit signal-to-noise ratio
approaches is that a heuristic is required to choose the nbw/E[n"[n]n[n]], which is identical to the ratidZs /Ny of

free parameters a priori. These approaches typically result if§ @veragetransmit symbol energy’s to the noise power
significantly increased complexity compared to the non-robudgnsity No. The BS hasN, = 4 antennas, 100 symbols

(27)

V. SIMULATION RESULTS

design. are transmitted per receiver and channel realization. The
Our approach formulates the relaxation of trevo-forcing Modulation alphabet is QPSK and the prediction filter is
constraint in the cost functioa(P,3,H'™) = E[||s[r] — ©f lengthp = 5. The LS channel estimation is based on

571H(m)ps[n]|@] itself, which is now a random variable 256 pilots at an uplink signa_l—to-noise ratio of 3 dB. We_
in the unknown channel. Thus, we allow for a minimunfSsume a Jakes power density spectrum and each receiver
amount of interference. Solving this optimization probler}@s @ maximum Doppler frequency @b, = 100 Hz (app.

for a given channel realizatiod "™ vyields an “ill-posed” °% km/h at 2 GHz). The non-lineaero-forcing Tomlinson-
problem, i.e. the solution is not unique [22]. lll-posed problenfdarashima-Precoder (TxZF THP) and the linearo-forcing

are commonly solved bringing additional side informatiofilter (TXxZF) have dashed lines, whereas their respective robust
into the formulation of the problem. This is done in (gfounterparts (RTxZF THP and RTxZF) are represented by
and (23) following the Bayesian philosophy: Interference golid lines. Both figures show dramatic improvements of the
minimized on average given the knowledge about the chanf@pust filters with respect to their non-robust versions which
from previous channel estimates. The conditional mean in @y &/s0 based on the predicted channel (i.e. in (6) and (7),
and (23) yields a well-posed problem with a unique solutiodd "™ is replaced byH ™)), since we do not want to show the

It adds a regularization term to the cost function, e.g. as in (@ffect of channel prediction but the impact of robust filtering.
Especially in the K = 4 receivers scenario (Fig. 5), the

£'(P,B) = &P, B, H™) + tr(¢)5 *r(PRsP™), (26) robust filters show superior performance, since there is no
degree of freedom left for the TxZF to reduce the noise at
_ ) ) the receivers. Théoading in (19) prevents the RTxZF from
reducing the Frobenius norm of the solutigim'P. The removing interference erroneously based on imperfect CSI.
second summand in (26) regularizes the 30'“’30'1'13 in the  Moreover, the non-linear filter experiences a larger gain than
sense of Tikhonov [22], which results in a diagonal loadinge |inear filter in both scenarios. But as we mentioned before,
of the standard zero forcing solution with optimum loadinghe THP filters exhibit a point of intersection with the linear
factortr(¢) (regularization parameter) given by the model (Cjjters and offer larger BERs than their linear counterparts for
Eq. 19). This decreases the sensitivity of the cost function w.gkna|| £ /N, values. Fortunately, this point of intersection has
parameter uncertainties [23], [24], i.e. a more robust solutignsmaller £ /N, value for the robust filters compared to the
is obtained. FEs /N, of the intercept point for the non-robust filters making

The advantage of our approach is that the error modghyst THP systems very attractive.
is given by the second order statistics of the error in (12)

and (14). Thus, the robust precoder can be adapted to the cu¥.!- SENSITIVITY OF THE PRESENTEDAPPROACH WITH
rent scenario. This way we avoid a performance degradation RESPECT TOERRORS IN THETEMPORAL
of the robust design in the nominal case [24], [25]. AUTO-CORRELATION FUNCTION OF THE CHANNEL
Given the robust solutions (19) and (25), the problem state-One argument, that - at first glance - might speak against
ment (9) and (24), respectively, can be interpreted as a jothe procedure illustrated above, is, that the problem of uncer-

regularization term



density spectrunof the fading process within the interval
[—fp,; fp, ), despite it has Jakes form. This leads to the sinc-
function instead of the Bessel function for the auto-correlation
function. Fig. 6 shows the influence of the imperfect auto-
correlation function on the performance of both the robust
and non-robust linear TxZF filter fol = 3 receivers and
N, = 4 antennas. We observe, thboth the robustand
the non-robust version show a degradation of the BER in
the interference dominated region, i.e. for large SNRs. But
since there are more antennas than receivers, the impact of
'_:3; ;%'QJHP the imperfect auto-correlation function is not that severe as it
—=— RTXZF THP 1 would be in aK = 4 receivers scenario.

uncoded BER

-x- TxZF

_3 L L L
10—10 -5 0 5. 10 15 20
ES/NO indB

Fig. 4. Robust linear TxZF (RTxZF) and Robust non-linear TxZF THP
(RTxZF THP) vs. Conventional TxZF and Conventional TxZF THP with
predicted CSI I = 3 receivers,N, = 4 antennas)

uncoded BER

-%x- TxZF perf. ACF

@ -v- TxZF imperf. ACF
L —— RTxZF perf. ACF
g _,|| =& RTxZF imperf. ACF
5] lo T T T 1
B -10 -5 0 5. 10 15 20
o EJ/N_indB
c S0
S
-x- TxZF Fig. 6. Robust (RTxZF perf. ACF) and Conventional TxZF (TxZF perf. ACF)
-8- TXZF THP with perfect auto-correlation knowledge vs. Robust (RTxZF imperf. ACF)
—— RTXZF and Conventional TxZF (TxZF imperf. ACF) witimperfectauto-correlation
073 —& RTXZE THP knowledge K = 3 receivers,N, = 4 antennas)
l T T 1
-10 -5 15 20

0 5 10
E./N_indB
s o VIl. EVALUATION OF A SIMILAR HEURISTIC ROBUST
Fig. 5. Robust linear TxZF (RTxZF) and Robust non-linear TxZF THP APPROACH
(RTXZF THP) vs. Conventional TxZF and Conventional TxZF THP with Another robust approach one might think of results from
predicted CSI k¢ = 4 receivers,N, = 4 antennas) directly starting with the solution of theonventionalfilter
in (6) and applying theconditional meanto the individual

components instead of starting with the cost function in (8).
tainties in CSI has been solved by the exact knowledge of

the temporal auto-correlation function in (3). As it seems, tH%_' Derivation of the Heuristic Robust Transmit Zero-Forcing
performance gains are bought by knowledge, which in practiEgter
is inaccurate. On the one hand, this objection is partially true,For the derivation of theheuristic robust TxZF, the de-
since errors in the auto-correlation function will definitelyerministic channel matrices in (6) are replaced by their
degrade the efficiency of the robust filters, but on the othegspective random variables and afterwards, the matrix product
hand, the conventional non-robust filters will degradahe H"H"™ ™ inside the inverse operator and the matix™ "
same waysince they are also based on predicted CSI in olir front of the inverse are replaced by theionditional
simulations and will therefore suffer from imperfect predictiomeanvalues. Due to the reversed order of the matrix pro-
as well. If the auto-correlation function is not perfectly knowrguct H™M ) | compared to (16), this approach will lead
then robust transmit filters have to be appliadre than ever to different results in the majority of the cases. To illustrate
since the circumstance of imperfect knowledge could be takétis circumstance, we take a look at the main diagonal entries
into account during the filter design. Due to larger errors, thif H™H™ ™ (since only channel coefficients with same
would lead to doadingby a scaled identity matrix, which hasindices are correlated in our scenario). Different from (17),
a larger (e.g. Frobenius-) norm than the one in (19).

Nevertheless, we investigate the impact of an erroneous tem-[H(m) H(™) H}

poral auto-correlation function by assuming a consgawer

NEL
kk:2|h;f;>|2 Vke{l,...,K}, (28)
’ a=1



and thus, theconditional meamow reads as curves is similar to the structure of the TxZF curves, but
N — smaller BERs are achieved, especially for lafgg N, values.
(m)(m) H |95 (m)| _ gr(m) gr(m)H ; .
En [H "HM ’H( )} =H"H (20) For these reasons, the RTXZF meets the desired behaviour of
— H™ gmE L N ¢ interference removal best, since it offers low BERs and tries

to make equal BERs of all receivers possible, even if their
whereas (15) is still valid. Thieeuristicrobust filter can then yncertainties in CSI are of different size.

be expressed by

—1
Pgrl;L)ZF = gg)ZFH(m)H (H(m) HmH JrNaC) , (30)

and 61({"&1: is again chosen to meet the power constraint. By
means of the inversion lemma [13], (19) can be transformed
into a similar structure:

1
Pk = B HV T (HO) HO R I w(Q)) . (3D)

uncoded BE

Comparing (31) with (30), equality of both algorithms holds,
if N.¢ = Igtr(¢) which obviously becomes true, if all

; -x- TxZF
receivers have the same Doppler frequefigy and the same — RTxZF
average channel power; . But this configuration is very || === HRTxzZF

unlikely in a multi-user communication environment, since 10_10 5 0 5 10

the Doppler frequencies are directly related to the speed of ES/N,indB

the receivers. In cases, where (30) and (31) are different, the

heuristic approach is outperformed by the algorithm starting9- 7- Robust TxZF (RTxZF) vsHeuristic Robust TxZF (HRTXZF) vs.
. . . . . onventional TxZF (TxZF) with predicted CSK( = 3 receivers,N, = 4

with the new cost function in (8) in terms of interferencegcnnas)

suppression. Under the assumption, that the received signals

of all users are perturbed by noise with the same average

power, all receivers should eventually exhibit the same raw

BER (because of the same scaling fagtor for all receivers),

if interference was completely removed. The following simu-

lation results demonstrate, that this goal is achieved best by 10

the robust filter in (19) (or equivalently Eq. 31).

-1

B. Simulation Results for the Heuristic Approach

In Figs. 7 and 8, the Doppler frequendy, of receiverl
is reduced froml00 Hz to 20 Hz, whereas receiveis and3 b TxZF User 2/3
still have Doppler frequencies of,, = fp, = 100 Hz. All . R’}XzF fgerl
other parameters are left unchanged. From this fact, we can —%— RTXZF User 2/3

——

V¥

1072l -<4- TXZF User 1

uncoded BER

conclude that receiver will finally show a smaller BER than HRTXZF User 1

the other receivers due to the reduced uncertainty in CSI. 107 HRTXZF User 2/3
Fig. 7 shows the BERaveraged over all receivergersus -10 -5

Es /N, for the conventional TxZF, the robust TxZF and the

heuristic robust TXZF' Compared to Fig. 4, we observe Eg. 8. Robust TxZF (RTxZF) vsHeuristic Robust TxZF (HRTXZF) vs.

small performance improvement for both the RTxZF andonventional TXZF (TxZF) with predicted CStegeivers resolvgdK = 3

the TxZF because of the smaller CSI error of receiver feceivers,N. = 4 antennas)

For Es/Ny values smaller than 11 dB, theeuristic robust

approach outperforms the conventional TxZF, but shows worse

0 5 10
ES/NO indB

performance ifEs /N is above 11 dB. In contrast, the RTXZF VIII. CONCLUSION
offers a smaller BER than itheuristic counterpart for the In this paper, we addressed the impact of uncertainties in
completeEs /N, range. the CSI resulting from channel estimation and time lags in a

Fig. 8 shows the BER versuss /Ny, where allreceivers are TDD system with transmit processing and presentedbast
resolved We observe, that thieeuristicrobust filter facilitates version of the linear and non-linear THP transmeto-forcing
a BER for receiver 1, which is smaller than the BER of the twfilter for the downlink. The robust versions clearly outperform
other filter types. At the same time, the BERs of receiverstBeir non-robust counterparts in terms of bit error ratio without
and 3 are considerably larger than those of the robust (RTxZRgreasing the computational complexity. Even if the temporal
filter and for largeEs /N, values even larger than those of theorrelation of the fading process is not perfectly known, robust
conventional non-robust TxZF. The structure of the RTxZfters exhibit superior performance and are therefore essential



since complete CSI is never available. For notational sirfe5] A. A. Kassam and H. V. Poor, “Robust Techniques for Signal Processing:
plicity, we restricted ourselves to uncorrelated and frequency A Survey.” Proc. IEEE vol. 73(3), pp. 433-481, March 1985.

flat Rayleigh fading channels during the derivation of the

robust filters, but the extension towards correlated, frequency

selective, and non-zero-mean channels is straightforward.
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