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ABSTRACT 

Utilizing adaptive antenna arrays at the base sta- 
tions of next generation mobile communication systems 
has been proposed as a promising approach to meet 
future requirements, e.g. spatio-temporal filtering 
techniques benefit from the detailed knowledge of 
the directional channel parameters. Unfortunately, in 
parameter estimation the computation of the signal 
subspace often turns out to be the most time-consuming 
part. However, the computational complexity of the sub- 
space estimation can be significantly reduced by means 
of tracking. To this end, we propose a new technique 
which is merely based on the projector representation 
of the subspace. The presented results are based on the 
DSP implementation of two algorithms for tracking the 
azimuthal and elevation angles of impinging wavefronts 
in an alternating mobile communications system. 

I. INTRODUCTION 

Third and fourth generation mobile radio communica- 
tions systems will be characterized by a growing number 
of more sophisticated services including multi-media 
applications [ l ,  2, 31. This leads to increased data rates 
as well as the asymmetric distribution of the traffic con- 
cerning the uplink and downlink connection. Adaptive 
antennas can be deployed to meet the future high spec- 
tral and quality requirements of the demanding 3G/4G 
mobile communication systems. Adaptive antennas ex- 
ploit the inherent spatial diversity structure of the mobile 
radio channel, provide antenna gain, and enable interfer- 
ence suppression [4]. 
The performance of spatio-temporal downlink process- 
ing is substantially based on channel estimation includ- 
ing the estimation of spatial characteristics of the mo- 
bile radio channel. Furthermore channel estimation has 
to meet real-time requirements in order to cope with the 
time-varying scenarios in mobile communications sys- 
tems. To this end, the use of tracking algorithms often 
offers a crucial alternative to standard methods in pa- 
rameter estimation and system identification. 
This work is especially devoted to tracking algorithms 
for the estimation of signal subspaces. Whereas the 
tracking of the orthonormal basis of the signal subspace 
is subject of a number of papers in the past, the immedi- 
ate tracking of the unique projection matrix of the signal 
subspace has not been proposed yet. In [5] the author 
presents a thorough overview of most of the adaptive 
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algorithms for subspace tracking. Thus, the subspace 
tracking techniques can be grouped into three families: 
(1) classical eigenvalue decomposition (EVD) and sin- 
gular value decomposition (SVD) methods modified for 
use in adaptive processing, (2) variations of rank-one 
updating algorithms, and (3) algorithms that consider 
the eigenvalue/singular value decomposition as a con- 
strained or unconstrained optimization problem which 
can be adaptively processed by means of gradient based 
methods. 
In this work, we extend the variety of approaches by a 
tracking method which directly operates on the unique 
projection matrix onto the signal subspace instead of 
tracking its orthonormal basis. This new projection 
based algorithm is motivated by the PAST algorithm [5 ] .  
The PAST belongs to the type of methods which con- 
sider the EVD/SVD as an optimization problem. It has 
recently been subject of a real-time implementation of 
algorithms for a GSM base station [6].  Consequently, 
the presented simulation results provide a comparison 
between both algorithms in terms of computational com- 
plexity and estimation error. 

11. SYSTEM STRUCTURE 

The performance evaluation of the proposed algorithm 
is based on the DOA (direction of arrival) estimation by 
means of ESPRIT [7].  Hereby, the signal subspace es- 
timation has been of particular interest, since this step 
of ESPRIT-like methods generally turns out to be the 
most time-consuming part. In order to get close to real 
systems, a DSP served as the hardware processor. Im- 
plementation is done on the (26701 32-bit floating point 
DSP from TEXAS INSTRUMENTS with a clock rate of 
150 MHz [8]. The supported very long instruction word 
technique (VLIW) enables the DSP to address its mul- 
tiple hardware units simultaneously and to carry out up 
to eight instructions per clock cycle. The source code is 
completely written in C and represents an implementa- 
tion of 2D-Unitary ESPRIT [9]. Thus, two parameters 
of each of the impinging wavefronts at a uniform rectan- 
gular antenna array (URA) can be resolved, the azimuth 
cp and the elevation 6 angles of the DOAs. 
Since the DSP is not part of a real communication sys- 
tem, the input data of 2D-Unitary ESPRIT is generated 
by MATLAB. Thereby the transmission medium is sup- 
posed to be isotropic and linear. The noise is modeled 
as a complex, zero-mean white Gaussian process. Un- 
der the assumptions of narrowband and farfield signals, 
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Step of Unitary ESPRIT 
Signal Subspace Estimation 
Solution of Invariance Equations 
Eigenvalue Calculation + Pairing 

Numerical method 
Modified Jacobi method, PAST, or projector tracking 
Least Squares algorithm 
OR algorithm 

the complex baseband measurements of the kth antenna 
element can be described as 

d 
x k ( t )  = E &  . s i ( t ) ~ - ' ~ ( e ( ' p i ~ S i ) ~ T k '  + n k ( t ) ,  (1) 

i=l 

1 5 k 5 M ,  where the (pi, Si) refer to the DOA pa- 
rameters of the ith wavefront and e(cpi, Si) and r k  de- 
note the unit vector steering in direction of (pi, Si), and 
the coordinate vector of the kth antenna element within 
the array of size M .  The n k ( t )  is the additive white 
gaussian noise and [ k  is the complex response of the lcth 
sensor element. The d indicates the number of imping- 
ing wavefronts. The si(t)  are the complex envelopes of 
the impinging signals, which are BPSK-modulated with 
no oversampling. Calculating the X k  for all M sensor el- 
ements and collecting the data over N snapshots yields 
the data matrix X serving as input for Unitary ESPRIT. 
2D-Unitary ESPRIT itself can be divided into three ma- 
jor steps [9]. At first, the real-valued signal subspace 
is estimated. Subsequently, two independent invariance 
equations are formed and solved. Finally, the eigenval- 
ues of the solution matrices of the second step lead to 
the desired DOA parameters. 
Table 1 lists the numerical methods used when imple- 
menting each step of Unitary ESPRIT. Subject to per- 
formance comparispn are the three signal subspace es- 
timation schemes. In order to save runtime, the Jacobi 
Method has been modified [lo]. The basic idea is to 
concentrate the data relevant for the signal subspace in a 
preprocessing step and then perform the Jacobi method 
with a smaller matrix. 

111. PROJECTOR TRACKING 

In the PAST algorithm (projector approximation sub- 
space tracking), the cost function 

J(W) = E(ll2 - WWT211;}, (2) 

W E R M x d ,  with the matrix-valued argument W is 
considered [5, 111. The 2 and the R,, denote the re- 
ceive vector of the antenna array and the covariance ma- 
trix of X, respectively. It can be shown that Wopt = 
EsQ is a global minimizer of J(W).  In that case, the 
column space of Es spans the desired real-valued sig- 
nal subspace [5]. The Q E Rdxd  denotes an arbitrary 
orthogonal matrix. 
Now consider a matrix Pw which defines the projection 
onto the real-valued signal subspace: Pw = EsE: = 
E ~ Q Q ~ E :  = E ~ Q ( E ~ Q ) ~  = WoptWoTpt. This 

motivates to replace WWT in J (  W )  by the matrix ar- 
gument P E R M x M  yielding a new cost function in 
terms of P [12, 131 

J ( P )  = E{lla: - P.113, (3) 

P E R M x M .  It can be shown that Popt = E s E z  is 
a global minimizer of J(P)  with the first d columns of 
Popt spanning the desired signal subspace [12]. Com- 
puting Popt leads to a constrained minimization prob- 
lem, as P is a projector and has to maintain its rank d. 
Unlike in PAST, a brute force approach to the tracking 
of the projection matrix by applying a matrix calculus 
to the scalar objective function with matrix argument 
fails since the non-full rank property of the projector 
prohibits gradient based approaches [ 121. 
An update algorithm which maintains the rank of P is 
the update via rotations of the form 

P k  = Q P k - i Q T ,  (4) 

where Q is an orthogonal matrix and k denotes the index 
of the iteration step [ 131. The data of each slot serves for 
a single iteration step. Therefore, k also denotes the slot 
index. 
The Q can now be expressed as a product of elementary 
rotation matrices Q ( d p q ) .  Each of them is completely 
characterized by a single parameter, the elementary rota- 
tion angle dpq,  with + being the vector of all elementary 
rotation angles dPq.  
The optimization problem now is to find a + such that 
J(Q(+)PQT(+))  attains a global minimum. Note that 
J ( P )  is parameterized by 4. This advantageous param- 
eterization is the'main difference to the PAST algorithm. 
The solution to this optimization problem leads to a gra- 
dient decent method: for each slot k, the gradient V+ J 
of J(+) with respect to + is calculated. Consequently, 
the calculation of the incremental rotation angles Adpq 
can be written as [ 131 

Pq 

Adpq = -26 ( P p i i - % z , k , ( p )  - P F ? l % z , k , ( q ) )  7 

( 5 )  
with (.)(z) denoting the ith row vector and ( o ) ( i )  denot- 
ing the ith column vector of a matrix. The update of P 
can be computed with 

'd 1 5 p 5 M - 1,p + 1 5 q 5 M ,  (cf. [13]). The 
initialization of P is equally to a matrix which is sparse 
and only contains entries (e.g. ones) in its first d diag- 
onal elements and zeros elsewhere. Alternatively, the 
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Est. scheme real add. real mult. 

(2N - 1) M(t+l) . Calc. of Rk, N M ( M  + 1) 
Mod. Jacobi O W 3 )  
PAST 6MNd 6MNd 

initial computation of Es  is provided by means of the 
eigenvalue decomposition based on the received input 
data from the first slot and PO = EsEz .  
Although the projector tracking within Unitary ESPRIT 
requires only real-valued data processing, the approach 
is also applicable in complex-valued scenarios by con- 
sidering rescaling factors [ 131. 

IV. PERFORMANCE EVALUATION 

The performance of the 2D-Unitary ESPRIT implemen- 
tation is evaluated by means of cycle counts during pro- 
gram execution. Figure 1 shows the total execution time 
of 2D-Unitary ESPRIT and its decomposition into the 
particular steps in a scenario with d = 4 impinging 
wavefronts and N = 140 snapshots subject to the num- 
ber of antenna elements M in the URA. It is evident 
that the signal subspace estimation is the most time- 
consuming part, especially when large URAs are used. 
In the following the results of the execution time com- 
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Figure 1 : Execution time of 2D-Unitary ESPRIT and its 
composition subject to the number of antenna elements 
M 

Table 2: Computational complexity of the signal sub- 
space estimation schemes 

faster for small N or large M ,  whereas projector track- 
ing achieves a better result for large N or small M .  This 
is due to the different dependency of the computational 
complexity on the parameters M and N (c.f. Table 2).  
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Figure 2: Execution time of the modified Jacobi method, 
PAST and projector tracking, depending on the number 
of antennas M 

In Table 3 the scenario used for performance evaluation 
is presented. 
With respect to the accuracy of the estimated DOAs, the 
RMSE has been taken as a measure of accuracy. It reads 

parison of the three signal subspace estimation methods, 
namely the modified Jacobi method, PAST, and projec- 
tor tracking, are presented. Table 2 lists an assessment 
of the computational complexity of the schemes sub- 
ject to M ,  N ,  and d.  Note that PAST directly operates 
on the real-valued data matrix, whereas the two other 
mshods need the estimation of the covariance matrix 
RZz.  Therefore the E m b e r  of calculations needed for 
the computation of R,, has to be added to the execu- 
tion times of Jacobi and projector tracking in order to 
get comparable results. The Figures 2 and 3 illustrate 
the results of DSP simulations. Execution times of the 
subspace estimation subject to A4 are shown in Figure 2, 
subject to N in Figure 3, respectively. As easily can be 
seen, the tracking schemes are able to reduce the com- 
putation time of the signal subspace significantly com- 
pared to the modified Jacobi method. With respect to 
each other, either PAST or projector tracking achieves 
a better performance, depending on the number of an- 
tenna elements and snapshots, respectively. PAST works 

where n denotes the number of averaging trials. The 8est 
{p,,,} and 29 {cp} are the estimated and the actual vec- 
tors of angles of the instantaneous DOAs, respectively. 
In most scenarios (different SNR and change of DOAs 
per slot) the RMSE difference of projector tracking and 
PAST is less than 0.1, as the right diagram of Figure 4 
shows. Compared to subspace estimation via eigenvalue 
decomposition and without the use of forgetting factor 
techniques, both tracking schemes achieve more accu- 
rate results in scenarios with low SNRs (cf. left diagram 
of Figure 4). This is due to the fact that both methods 
inherently perform averaging as the subspace is tracked. 
Because noise is modeled as zero-mean, its influence is 
reduced. Note that tracking accuracy decreases in sce- 
narios with rapid changes of the DOAs from slot to slot. 
However, in both schemes accuracy depends to a great 
extend on a carefully chosen step size. 
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Table 3: Scenario for comparing the signal subspace estimation schemes 

Scenario 
URA with M y  = M,  = 4 
N = 140 snapshots (variable) 
d = 3 impinging wavefronts 
100 slots 
10 averaging trials 
change of the DOAs from slot to slot: 0.1" 

(variable) 

(100 x I 0  in Figure 4)  
(0.0" . . .0.2" in Figure 4 )  

from (initial slot): I9 = [15" 40" 75'1 ~p = [-40" 0" 40'1 
to (last slot): I9 = [25" 50" 65'1 ~p = [-30" - 10" 50'1 

BPSK modulation with noise-modeling as additional white gaussian 
SNR = 9 dB 
no spatial smoothing 

(-5 dB . . .30 dB in Figure 4 )  

$0 40 60 so lbo 120 I40 160 
number of snapshots 

Figure 3: Execution time of the modified Jacobi method, 
PAST and projector tracking, depending on the number 
of snapshots N 

V. CONCLUSIONS 

We presented projector tracking as a new approach for 
subspace tracking. In order to evaluate the performance 
of projector tracking, we successfully integrated it in 
a 2D-Unitary ESPRIT implementation on a DSP. From 
our results we conclude that 

0 the signal subspace estimation is the most time- 
consuming part of parameter estimation 

0 the investigated tracking schemes PAST and pro- 
jector tracking significantly reduce the computa- 
tional complexity of subspace estimation 

0 depending on the scenario either PAST or projec- 
tor tracking achieves the better performance 

0 in realistic scenarios with N >> M projector 
tracking works faster compared to PAST at com- 
parable accuracy. 

A result of the latest research has been that the projec- 
tor tracking scheme can be modified for processing the 
antenna array data directly instead of operating on the 

covariance matrix. In that case, each snapshot receiver 
vector x incrementddecrements the parameter of a sin- 
gle elementary rotation matrix separately and leads to 
an update of the projector matrix P .  The computation 
of the incremental rotation angle then reads as 

where the zp(q) denotes the p(q)th component of the re- 
ceive vector. In each update step, only one elementary 
rotation is performed. The complexity for processing 
one slot of data consisting of N snapshots amounts to 
8 N M  real multiplications and 4 N M +  2 N ( M  - 1) real 
additions. Figure 5 shows the number of floating point 
operations (FLOPS) required in projector update with di- 
rect direct data processing divided by the FLOPS nec- 
essary when working with the covariance matrix in per 
cent subject to M and N .  Especially for small N andor 
large M ,  this modification promises a significant perfor- 
mance gain, however, the direct data processing version 
of projector tracking increases the estimation errors by 
up to a factor of 3, especially in noisy and fast changing 
scenarios. 
Note that the snapshot-wise data processing is an inher- 
ent property of the PAST algorithm too[5], which un- 
fortunately can not be exploited for the bursty data in 
slotwise structured data channels. 
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