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Plastic Shape Functions of Plate Systems –
Reducing modal DOF for stochastic nonlinear dynamics

of large scale plate systems

Abstract

Plate systems which excited by stochastic dynamic loadings with the consideration
of the material non-linearity is investigated. To describe the arisen plastifications,
a 2D hysteretic material model is used. In order to reduce the number of modal
degrees of freedom in the numerical analysis within the time domain as by the elastic
dynamics, the plastic shape functions are introduced, which are specifically fitted to the
plastic parts of curvatures resulted from the yielding and are systematically developed
by means of the FEM. Due to the high reduction capability, 10, 000 Monte-Carlo-
Simulations can be performed for instance on a flat slab with about 30, 000 FE-DOF.

Keywords

Plate system, flat slab, 2D hysteretic material model, FEM, BFS/Schäfer plate element,
modal extension, Plastic Shape Function, stochastic dynamics, Monte Carlo Simulation

Plastische Formfunktionen der Plattensysteme –
Reduzieren modale DOF für stochastische nichtlineare Dynamik

der großen Plattensysteme

Zusammenfassung

Untersucht werden Platten unter stochastischen dynamischen Anregungen mit Berück-
sichtigung der Material-Nichtlinearität. Zur Beschreibung der auftretenden Plastizierun-
gen wird ein 2D hysteretisches Materialmodell verwendet. Um die Anzahl der modalen
Freiheitsgrade der numerischen Analyse im Zeitbereich ähnlich wie in der elastischen
Dynamik reduzieren zu können, werden “Plastische Formfunktionen” eingeführt, die
speziell den plastischen Krümmungsanteilen angepasst sind und mittels FEM syste-
matisch entwickelt werden. Das hohe Reduktionspotential ermöglicht z.B. 10.000
Monte-Carlo-Simulationen an einer Flachdecke mit ca. 30.000 FEM-Freiheitsgraden.

Schlüsselwörter

Plattensystem, flache Decke, 2D hysteretische Materialmodell, FEM, BFS/Schäfer
Plattenelement, modale Erweiterung, Plastische Formfunktionen, stochastische Dy-
namik, Monte Carlo Simulation
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Chapter 1

Introduction

1.1 Motivation

From ‘Empire State Building’ to ‘Taipei 101’, from ‘Golden Gate Bridge’ to ‘Akashi-
Kaikyo Bridge’ and from ‘Aswan Dam’ to ‘Three Gorges Dam’, the dimension of the
civil engineering constructions expands rapidly in the last century. On the other hand,
the natural disasters, especially the earthquakes like [18] – 1908 Messina (Italy); 1976
Tangshan (China); 1994 Northridge, California (USA); 1995 Kobe (Japan); 1999 Chi-
Chi (Taiwan) [49] and 2004 India Ocean earthquake & tsunamis, have never stopped
to attack the havings of the civilization. As a result the risk of our society increases
constantly regarding the nature disasters. Therefore there are urgent needs to reduce
such risks with all possible efforts. From the aspect of structural engineers the most im-
portant thing to do is to ensure that the constructions, no matter whether in existence
or in plan, should be able to sustain the trials of nature, such as strong earthquakes
mentioned above.

In regard to the extreme seismic excitations, the structures may undergo during the
quake the overstepping of the material elastic limit. Therefore it is important for the
engineers to be able to realize the seismic behaviors of the constructions through non-
linear dynamic analyses. Furthermore, with the understanding of nonlinear system
responses it is also possible to control the critical state of structures near collapse in a
planned way by applying the Capacity Design concept, so that the seismic resistance
of constructions can be ensured on the one hand, and on the other hand constructions
can be designed more efficient and more economical than in the past.

For nonlinear dynamic analyses the mathematical nonlinear material model has a very
important role. With acceptable accuracy this model should factually rebuild the real
stress-strain relations in the material especially beyond the elastic limit. Because closed
analytical solutions of complex constructions are generally unavailable even under elas-
tic considerations, this nonlinear material model should also be suitable to be easily
introduced into the common numerical solution’s algorithms – the FEM for example,

1



1.2. PREVIOUS RESEARCH 2

so that it can be applied to the practical uses.

Another nature of the seismic excitations to be considered is its random characteristics.
As a result the system responses, which the engineers deal with, are also random and
belong to the subjects of nonlinear stochastic dynamics (NSD), which represents an
integral part of the reliability analysis of constructions. By the reliability analysis a
correct representation of the seismic input, i.e., a sensible generation of pseudo random
signals, is indispensable for making a reasonable prognosis about the failure probability
of structural systems. Besides the random inputs, the uncertainty of the system para-
meters, e.g., damping or stiffness, can also have influence on the structural reliability
analysis. But if the wind or seismic loading is concerned as the excitation, which has
wide-band spectrum density, the system responses are comparatively less sensitive to
the uncertain system characteristics, so that these uncertainties can be neglected for
simplification of such reliability analysis.

After establishing the mechanical model the most crucial question is how to solve the
NSD problems, which require highly theoretical and numerical efforts. Such efforts
are especially extreme by the reliability analysis, since an explicit determination of
the probability of critical system responses, which lie at the tail of the probability
density, is necessary. In the last three decades the NSD has become a significant branch
of structural dynamics , and various procedures have been developed to predict the
response of nonlinear systems under stochastic non-parametrical external excitations.
Progresses of NSD come not only from the earthquake engineering but also from other
specific fields, such as the offshore platform engineering, the aeronautical engineering,
etc., which can be found in numerous publications [3], [55].

In comparison with the deterministic consideration the computational complexity of
nonlinear stochastic dynamic problems is excessively high, therefore most of the proce-
dures suggested for the NDS problems are limited to small systems with fewer degrees of
freedom and a direct application of them for the engineering practice is still restricted.
In order to diminish the gradually increasing risks of civil constructions facing the
natural disasters, there are insistent needs to develop an algorithm, which can signifi-
cantly reduce the computational complexity, especially for systems with large scale in
nonlinear stochastic dynamics.

1.2 Previous Research

As mentioned above three major subjects, which are listed in the following, have to be
handled by establishing and solving the NSD problems.

• Proposal of nonlinear material model

• Strategy for stochastic analysis

• Procedure of reducing system DOF
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In the coming subsections a brief overview of the developing history and the current
stand of these three subjects is given.

1.2.1 Nonlinear Material Model

The first research of the nonlinear material behaviors was done by Tresca (1864), who
proposed the yielding condition of metals [41] [16]. The constitutive law of yielding
was first postulated by Saint-Venant in 1870 for the two-dimensional stress state, in
which the proportionality between the stress and strain in Hook’s law was replaced by
the relation between the derivative of stress and strain. This constitutive postulate
was then extended by Levy in the same year for the three-dimensional stress state.
Levy’s constitutive equation is only valid for fictive, the so-called rigid-plastic material
without elastic strains, since it is an equation of relations between principal stresses
and total strains [64].

A further impetus for the development of a general theory in the classical plasticity
was given by von Mises with his works in 1913, which are the well known “ von Mises
yielding criterion ” and the “ Levy-Mises constitutive postulate ” (this name comes
from the conformation of the independent works from Levy and from von Mises re-
spectively). The nonlinear stress-strain relation was then extend by Prandtl (1924)
and Reuss (1930) for more general uses by means of considering the Hooke’s elastic
strains. Since then much research was done and various theories were proposed; a
detailed developing history of the classical plasticity theory can be found in [41].

Following another independent line the hysteretic material model was developed to
give a direct description of the nonlinear force-displacement relationship. Two of the
simplest hysteretic models are to note, namely the bilinear model [37] and the smooth
Ramberg-Osgood model [38], which have different formulations of the nonlinear force-
displacement relationship for loading and unloading states, respectively. Because their
incoherence under a circular loading, analytical solutions of these models are difficult
to find.

The hysteretic bilinear model with a closed mathematical formulation was suggested by
Suzuki and Minai in 1985 [91] through the introduction of the Heaviside function as the
mechanism of distinguishing the loading states. Consequently this hysteretic model is
directly integrable and can be easily added to the common differential equations. But
even earlier Bouc proposed in 1967 the continuous smooth hysteretic model, which can
better indicate the nonlinear material behaviors under circular loadings. In 1976 Wen
extended the work of Bouc in a general form by including a new power index, so that the
hysteretic model is more flexible and is able to describe the macro force-displacement
relationship of various materials beyond yielding. Because its applicability and flexi-
bility a lot of attention was given to the so-called Bouc-Wen hysteretic model. Based
on this model several developments were made for different needs, such as hysteretic
for degrading systems - Baber and Wen (1981), biaxial hysteretic model - Park et al.
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(1986), hysteretic in tensor form - Casciati (1989) and Simulescu (1989), etc.. A brief
review of the various hysteretic models can be found in [101] and [96].

1.2.2 Algorithms of NSD Problems

The procedures of solving the NSD problems can be roughly classified into the analyt-
ical, the approximated and simulation methods. Generally NSD problems can not be
solved exactly because of their complexity. Until now the analytical methods, which
base on the Fokker-Planck equation and the theory of Markov-Process, are still limited
to simple, particular cases, such as SDOF systems or weakly nonlinear MDOF systems.
Therefore various approximation procedures have been developed for engineering uses.

One of the approximated solutions to mention, which is the most widely applied in
practice, is the Equivalent Statistical Linearization (ESL) proposed by Caughey [15].
Because this method is easy to deal with and is very useful for the pre-study by con-
struction designs, enormous literature about ESL are available and a comprehensive
introduction of ESL can be read in [65]. The basic concept of ESL is to determine the
linearization coefficients by minimizing the mean square error between the linearized
system and the original nonlinear system. To simplify the mathematical evaluation,
the standard ESL assumes a normally distributed response of the nonlinear system,
which, however, is not necessarily true. Therefore, further extensions of ESL to assume
non-Gaussian properties of the response have been achieved, e.g., by Pradlwarter and
Schuëller [59]. A short review of various approximated procedures and the comparison
of ESL with other methods can be found in the benchmark study [75].

For the application of systems with arbitrary characters and loading conditions, the
only thing to fall back on, which is also the simplest one in concept, is the simulation
method, i.e., the direct Monte Carlo Simulation (MCS), which is also used to pro-
vide the reference solutions in [75]. The accuracy of the direct MCS is in principle
independent of the system non-linear type and its dimensionality, but depends on the
number of realizations. Therefore the major disadvantage of direct MCS is the unprac-
tical requirement of large sample sizes to estimate the low probability regions, which
are important for reliability analyses. To raise the the accuracy of MCS on the tail of
probability distribution with feasible sample sizes, the advanced MCS, e.g., importance
sampling [66], adaptive and selective sampling [56] [57], and MCS combined with the
Controlled Simulation Techniques, such as Double and Clump [60], Russian Roulette
and Splitting [58], etc., have been developed.

1.2.3 Reduction Strategies of System DOF

All the algorithms for NSD problems introduced above, no matter whether analytical,
approximated or simulated, have a difficulty in common, namely the difficulty to be
performed on systems with a large number of degrees of freedom, which are familiar in
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the engineering practices. This is because, - as the yielding occurs - correspondingly
there will be enhanced deformations, i.e., discontinuity of the deformation derivatives,
concentrated locally at the yielding locations. In contrast to elastic dynamics, by which
the system responses can be accurately enough approximated through only a few eigen-
vectors, the plastic deformations resulted from yielding have to be formulated through
the superposition of high frequency modes according to the modal analysis method.
In other words, all the eigenmodes, whose number conforms to the system degrees of
freedom, have to be used in the classical modal analysis of a dynamic, physically non-
linear system.

To overcome this drawback and make the stochastic analysis also feasible for large scale
systems, some reduction strategies of the modal bases for nonlinear systems have been
developed. For example:

• The Static Correction Procedure and the Mode Acceleration Method [17], which
consider the nonlinear part of system responses as quasi-static and determine
them statically through the geometrical, time invariant function of the loading as
the superposition of high frequency modes. Then this static mode will be multi-
plied with the time variant function of the loading and added as the correction
into the elastic dynamic solutions resulted from the lower modes. This method
is applied to the nonlinear problems by Schuëller, Pradlwarter and Schenk in
the works [61], [74] and [69], in which the internal hysteretic restoring forces are
treated as external loadings.

• The Nonlinear Galerkin Method, which can be derived from the concept “slaving
principle” after [35]. In this procedure the higher modes will be replaced by static
shape functions, whose time variant weighting coefficients are assumed to be a
function of the elastic responses resulted from the lower modes. If this function
were linear, then this method is the same as the static correction procedure,
otherwise it is generally called nonlinear Galerkin method. The determination of
such nonlinear weighting coefficients can be found in [46] and the variance of this
method, the so-called “postprocessed” Galerkin method is proposed in [11].

• The Component Mode Synthesis (CMS) method [76], [62], which divides the large
system into small components, so that the eigenvalue problem with enormous
degrees of freedom (DOF) can be reduced to several eigenvalue problems with
less DOF. According to the yielding locations, sub-systems will be separated
by introducing rigid boundary conditions at the cutting off positions and the
corresponding eigenforms will be determined. The entire system will be composed
together through the CMS-matrix with consideration of the nonlinear equations.

Instead of using corrections or assumptions to approach the contributions of the high
frequency modes to the nonlinear system responses, a completely new concept, the
Plastic Mode was first suggested by Grundmann in [31]. Under the concept of Plastic
Mode, which is also called the Plastic Shape Function (PSF) in the present work or
“Plastische Formfunktion” in German literature, the contributions of all the higher
eigenmodes will be ’freezed’ into only a few particular shape functions according to the
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yielding locations, and such plastic shape functions can be directly added in the re-
duced modal bases as their extensions for the common modal analysis methods. In this
way the system DOF, no matter how large it is originally, can be extremely reduced
to only a small number of eigenmodes for the description of elastic system responses
plus a few plastic shape functions for particular yieldings.

In [31] and [27] the concept of PSF for the shear beam system, which is simulated as the
discretized swing mass chain, is introduced and the investigation with corresponding
examples is assembled in [26]. The further development of PSF for continuous bending
beam is achieved in [42]. The application of PSF to hysteretic 2-D frame system can
be found in [32] and further, in [33], the nonlinear dynamic analysis of 3-D large frame
system under stochastic excitations is also performed through the utilization of PSFs.

1.3 Objectives and Scope

As already exhibited in the various research mentioned above, the plastic shape func-
tion can efficiently reduce the system dimensions by replacing the high frequency eigen-
modes in the modal analysis without significant loss of accuracy. Therefore it is worth
and necessary to do further research about the plastic shape functions, so that this
procedure can be generalized for more extensive applications on various constructions.

The further development of the PSF, which is also the objective of this work, is its
application for flat-plate systems, which is a basis and a gateway to more complicated
surface structures, e.g., lateral loaded walls, shells and membranes. For this purpose a
systematical derivation of the PSFs relying on the foundations of the Finite Element
Method (FEM) is very important, since the FEM is the most general and useful nu-
merical tool for the analysis of large scale systems. In other words, a general principle
should be proposed and by following it compatible PSFs for most kind of plate elements
utilized in the FEM should be derived.

Besides the development of PSFs, a directly applicable nonlinear material model for
the plane stress state based on the Bouc-Wen hysteretic model, with its noticeable
absence in literature, still has to be derived and implanted efficiently into the finite
element representation of the entire system. In this part of work the stiffness matrix
of the yielding related plate elements will be split into an elastic and a plastic one,
while the former is the weighted common stiffness matrix corresponding to the nodal
deformations, the latter is a curvature related stiffness matrix for hysteretic variables.
Considering the consistency of the virtual energies the plastic stiffness matrix should
be compatible with the usual elastic stiffness matrix, so that the entire virtual works
resulting from these two parts wouldn’t be falsified under elastic unloading states.

The entire nonlinear mechanical model will be built on the mathematical language
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software “MATLAB”, which serves as the system platform in this work. For solving
the nonlinear differential equation of examples in this work the package of differential
equation solvers in MATLAB will be used, especially the solver “ode15s” [77] [78],
which is based on the numerical differentiation formulas (NDFs) and the backward
differentiation formulas (BDFs, or called as Gear’s method).

The stochastic seismic excitations will be considered as the filtered Gaussian White
Noise using the Kanai-Tajimi-Model [39], [94] and applied to an RC slab with a large
number of DOF. To predict the probabilistic values of this nonlinear dynamic system,
such as the mean value, the standard deviation of the nonlinear responses or the prob-
abilistic distribution of the maximal curvatures at the yielding locations, the direct
Monte Carlo Simulation - which has no further technic of raising the efficiency - will
be utilized, so that the performance of the PSFs can be realized in a straightforward
manner, since a large sample sizes of the direct MCS are needed for a convincing result.

1.4 Outline

This work is composed of three major subjects, i.e., the nonlinear material model, the
modified FE representation, the development of PSFs, and of two numerical examples.
The three major subjects, discussed in chapter 2, 3, and 4. respectively, are on the
one hand connected together in the numerical examples, but on the other hand they
are also independent with each other according to their individual concepts and can
be read separately. A preview of each chapters is given in the following.

Chapter 2.

First, two major subjects of the classical theory of plasticity, namely the yielding crite-
ria and the constitutive equation of hardening materials, will be introduced. Reviews of
the von Mises criterion and the Ziegler’s kinematic hardening model are given. Accord-
ing to the work of Park (1986) and of Simulescu (1989), a two-dimensional hysteretic
model in the principal stress plane (2D-HMiPSP) is derived as the basis of the non-
linear plate element utilized in chapter 3. To verify the validity of the 2D-HMiPSP, it
will be compared with the model of classical plasticity theory based on the von Mises
yielding criteria and the Ziegler’s constitutive equation. Through numerical examples
the results of the classical and hysteretic models, i.e., the yielding boundaries and the
hardening characteristics, are compared.

Chapter 3.

This chapter begins with a brief introduction of the ‘Kirchhoff Plate Theory’, which
is adopted in this work to simplify the considerations of the nonlinear stress-strain re-
lationship, since a directly applicable hysteretic material model for neither the Kirch-
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hoff’s nor the Mindlin’s plate theory has been found by the author in the literature.
Applying the ‘Principle of Virtual Work’, which is generally used in the FEM to derive
the elementary equilibrium equations, the internal virtual works of a plate element are
separated into an elastic and a plastic part by introducing the hysteretic variables.

For the sake of building the finite element model of the global system a translation
of the hysteretic variables from the principal stress plane to the Cartesian coordinate
system is performed and verified through a control example. Further the stress-strain
relation has to be translated to the moment-curvature relation through the integra-
tion across the plate section, which means that the same modification of the nonlinear
variables in the Cartesian coordinate system should also also be done. But because
an analytic integration of the hysteretic variables relying on the stress-strain level is
impossible without extensive mathematic support, a hysteretic moment-curvature re-
lation of plate is postulated. This assumption is then certified through the comparison
with the nonlinear fiber model.

Corresponding to the hysteretic moment equations, which have two bending and one
twisting curvatures as independent variables, the compatible rectangular 4-nodes Schäfer
plate element (or known as BFS-element) with 4 DOF (1 vertical deflection, 2 rotation
angles and 1 twisting angle) per node is chosen in this work. According to these de-
grees of freedom, 16 bi-cubic deformation shape functions and the corresponding elastic
stiffness matrix can be determined. Since a bi-cubic deflection distribution is selected,
an equivalent representation of the curvature fields is imperative, so that the consis-
tency of the virtual works can be ensured. Consequently for the hysteretic variables
of moment-curvature relations (Y-variables), the additional interpolation functions,
which are compatible with the second derivatives of deformation shape functions, are
derived. Based on these interpolation functions of Y-variables, the curvature related
stiffness matrices (also named as stiffness matrices of hysteresis in this work) can be
established. These matrices are not only indispensable for establishing the nonlinear
differential equations but are also the kernels for the development of PSFs.

In the last section of this chapter some reduction strategies of the system DOF in the
literature are reviewed. In order to avoid the unnecessary evaluations of the Y-variables
under the consideration that yielding occurs only at some particular locations in the
entire system, the Patch and Split methods are proposed. The original concept of
the PSF, which is also a possibility of reducing the DOF of plate system, is briefly
described at the end.

Chapter 4.

The basic considerations and requirements of the plastic shape function are intensively
discussed at the beginning of this chapter by means of a most simple example – the
elongating bar. A verification of the accuracy of PSFs, which simulate the contributions
of high frequency eigenmodes, is also performed on this example. Although the PSFs of
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discretized bending beam are already suggested in [42], the development of such PSFs
is illustrated again in the second part of this chapter, but according to the new concept
of the curvature related stiffness matrices. Since the same PSFs are derived as from
previous works, proof of validity through numerical examples is abolished. With the
experiences of the bending beam the development of PSFs for laterally loaded plate is
then proposed in the last section.

Chapter 5.

This chapter serves as the essential verifications of the accuracy and efficiency of PSFs
for flat-plate system. Various examples of different yielding conditions are illustrated
with a simple supported rectangular steel plate. On this small plate structure reference
solutions, resulted from the application of all eigenmodes, can be earned and direct
comparisons of the PSF applied solutions with them are made.

Chapter 6.

In the first section of this chapter a brief review of the stochastic mechanics is given
at the beginning. Then two procedures of estimating the stochastic system responses,
namely MCS and ESL, are discussed with indications of corresponding literature. At
the end of this section the generation of White Gaussian Noises is explicitly interpreted
for further modifications.

In the second part of this chapter the FE model of a large RC flat slab is built.
Vertical seismic excitations considered as the filtered Gaussian White Noises after the
Kanai-Tajimi-Model are put on this system. While investigating the nonlinear system
responses by one single random process, unexpected high divergences of the twisting
curvature at the corner of the column support between the solutions with or without
applying PSFs are detected. Therefore an independent inspection of this phenomenon,
which is named as the nonlinear column support effects, is supplemented through a
small system with reference solutions. Relying on this independent certification, Monte
Carlo simulations with 10, 000 sample sizes are performed on the large RC slab to show
the remarkable efficiency achieved by this procedure.



Chapter 2

Elasto-Plastic Material Behavior

Under the objectives of present work, the first step is to find a reasonable mathemati-
cal model to describe the phenomenological macroscopic nature of plastically deformed
materials, and this model should be able to be modified for further applications of flat
slabs. The commonly used materials in the engineering constructions are concrete and
steel, whose plastic behavior differ widely from each other; the former has the nature
of strain softening (brittle) while the latter has the strain hardening character (duc-
tile). In order to avoid a suddenly collapse of the structure, by designing of reinforced
concrete structures the reinforcement steel is demanded to yield before the concrete
fails, i.e., the so-called secondary compression failure is required. Consequently the
ductile characteristic of steel dominates the plastic behavior of the RC constructions.
Therefore in the present work the consideration of elasto-plastic material behavior will
focus on the construction steel.

2.1 Classical Theory of Plasticity

To certify the validity of the hysteretic model derived in the present work (cf. 2.3.1),
the following constituents of the classical plasticity theory, i.e., the yielding criterion
and the constitutive equation of kinematic hardening materials, are used as references.
Details of the classical plasticity theory can be found in [41], [16] and a brief introduc-
tion about this theory is given in the appendix A.

2.1.1 von Mises Yielding Criterion

The material considered in this work is assumed to be isotropic, as a result the yielding
is independent of the direction of the principal stresses. According to the von Mises
criterion (1913), the distinction between the elastic and the plastic material behavior
can be formulated as

F (σij) = J ′2 − k2

{
= 0 for yielding or plastic deformation
< 0 for elastic deformation

, (2.1)

10
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(a) Deviatoric Stress Plane (b) Principal Stress Plane

Figure 2.1: von Mises Yielding Criterion

where F (σij) is the yield function, J ′2 is the second invariant of the deviatoric stress
tensor S and k2 is a critical value of the material.

For the yielding state this expression can be rewritten in terms of principal stress
components as

J ′2 = 1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

= k2 . (2.2)

Through a simple tension test or a pure shear test, the value of k in (2.2) can be
determined as

k =
σY√

3
= τY . (2.3)

Under the condition of plane stress (σ3 = 0), equation (2.2) can be reduced to

σ2
1 − σ1σ2 + σ2

2 = 3k2 . (2.4)

A graphical representation of the von Mises yield locus on the deviatoric stress plane,
which is perpendicular to the hydrostatic pressure axis (σ1 = σ2 = σ3), is given in
Fig. 2.1 (a). The von Mises ellipse on the two-dimensional principal stress plane is
represented in Fig. 2.1 (b).

2.1.2 Constitutive Equation of Ziegler’s Hardening Model

In order to have a comparison with the post-yielding stiffness defined in the hysteretic
material model, the kinematic hardening rule is utilized, whose yield function can be
generally expressed as

F (σ,αh) = f(σ −αh)− k̃ = 0 , (2.5)

where αh is a tensorial hardening parameter (the so-called back stress) and k̃ is a ma-
terial constant. Through αh and k̃ the geometrical center and the size of the yield
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surface can be determined respectively.

According to the kinematic hardening model proposed by Ziegler in 1959, the increment
of the hardening parameter is formulated as

dαh = (σ −αh)dµ , (2.6)

where dµ is a proportional scalar constant determined by the yield criterion. Con-
sequently, the moving direction of the yield surface is assumed to be parallel to the
vector σ − αh in the Ziegler’s hardening model. The graphical representation of this
hardening rule can be found in Fig. A.2.

Using the consistency assumption proposed by Prager (s. (A.28)) the proportional
scalar dµ and the derivative of the hardening parameter dαh can be evaluated as

dµ =
∂f/∂σ : dσ

∂f/∂σ : (σ −αh)
(2.7a)

and

dαh =
(σ −αh)

∂f/∂σ : (σ −αh)
l , (2.7b)

with

l =
∂f

∂σ
: dσ .

By introducing the associated flow rule, the plastic strain rate ε̇p can be determined as

ε̇pij = λ̇
∂F (σij)

∂σij
, (2.8)

where λ̇ is a proportional positive scalar factor.

On the other hand, if the normality condition of the associated flow rule is considered,
dεp is then parallel to the component, which is normal to the yield surface, of stress
increment dσ, and can be formulated as

dεp =
1

KP
(n : dσ)n =

1

KP

l

∂f/∂σ : ∂f/∂σ

∂f

∂σ
. (2.9)

where n is the normal vector of yield surface and KP > 0 is a proportional factor.

Comparing (2.8) with (2.9) the proportionality parameter dλ can be determined as

dλ =
1

KP

l

∂f/∂σ : ∂f/∂σ
. (2.10)

Applying the von Mises yield criterion the parameter KP can be calculated through
the uniaxial tension test as [41]

1

KP
=

3

2
(

1

Et
− 1

E
) , (2.11)

where E is the Young’s modulus and Et is the tangential stiffness, i.e., the post-yielding
strength for linear hardening. And KP is considered as plastic modulus.
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2.2 Hysteretic Model in 2D Principal Stress Plane

One of the basic assumptions of Kirchhoff’s plate theory is the neglection of deforma-
tions due to transverse shear stresses, which means that the transverse shear has no
influences on the lateral deflection(details about the plate theory s. section 3.1). The
consequence of this assumption is that the shear stress, which is perpendicular to the
middle plane, has no effects on the yielding of plate and can be neglected by the limit
analysis, if the the plane stress state is considered [68].

This postulate can also be found in reference [16], in which the interaction between
the shear force and bending moment for the yielding of beam is also demonstrated.
Through the illustrations of beam element in [16], the following two conclusions can
be made, with which the limit analysis of plate can be understood better.

• under the state of contained plastic flow (the cross-section is only partially
yielded) the vertical shear stress is merely distributed in the region of the elastic
normal stress. Therefore the yielding of the outer fibers is determined only by
the normal stress.

• for the entire cross-section the effect of shear force V on the yielding is negligible
when the length of the beam is more than 10 times its height, for which the
Bernoulli beam theory is valid.

Therefore it is reasonable to assume that the yielding of plate is dominated by the
plane stresses, i.e., by normal stresses in x- and y-direction corresponding to bending
moments and by the in-plane shear stress resulted from twist moment. Furthermore,
the plane stresses can be translated into the principal stresses, which means that only
two additional hysteretic variables are needed for describing the yielding of a plate.

To establish the hysteretic model with two variables for the plate, the work of Park et
al. [53] and the work of Simulescu et al. [88] are used as the bases. A more detailed
exposition of the hysteretic model and its developments can be found in appendix B.

In [53] the biaxial hysteretic equations of the two-dimensionally excited column are
proposed by Park as

żx = A u̇x − β |u̇x zx| zx − γ u̇x z2
x − β |u̇y zy| zx − γ u̇y zx zy

ży = A u̇y − β |u̇y zy| zy − γ u̇y z2
y − β |u̇x zx| zy − γ u̇x zx zy ,

(2.12)

where zx, zy are hysteretic variables, ux, uy are displacements and A, β, γ are material
constants.

The total restoring forces can be expressed in the matrix form as

[Q] = α [K] [u] + (1− α) [K] [z] , (2.13)
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where [K] is the initial stiffness matrix and [Q], [u] and [z] are vectors.

If A = 1 and β = γ is assumed, the following equation can be derived (cf. appendix
B.3):

β =
1

2
(

1

zL
)2 , (2.14)

where zL is the plastic limit of the deformation.

In [88] the hysteretic constitutive equation for the three-dimensional continua in ten-
sorial level is suggested by Simulescu as

σij = λ
[
α∗ εkk + (1− α∗) ξkk

]
δij + 2µ

[
αij εij + (1− αij) ξij

]
, (2.15)

where λ and µ are the Lamé’s constants, δij is the Kronecker’s delta and the term
αij is a symmetric tensor with the definition of α∗ = α11 = α22 = α33. The Einstein
summation convention is also applied in this equation. The hysteretic variable ξij in
this equation is then proposed as

ξ̇ij = −bij ε̇ij − cij|ε̇ij| |ξij|nij−1 ξij − dij ε̇ij |ξij|nij , (2.16)

where bij, cij, dij and nij ≥ 1 are material constants.

Under the plane stress condition (σ33 = 0) the equation (2.15) can be rewritten as

σ1 = α E
1− ν2 (ε1 + ν ε2) + (1− α) E

1− ν2 (ξ1 + ν ξ2)

σ2 = α E
1− ν2 (ν ε1 + ε2) + (1− α) E

1− ν2 (ν ξ1 + ξ2) ,
(2.17)

As the aim of this work is not to propose a new hysteretic material model, but to develop
a reduction strategy of modal dimensions for the large scale FEM system, therefore
a simplified two-dimensional hysteretic equations in the principal stress plane, which
bases on the tensorial formulation (2.16) and the biaxial model (2.12), is suggested by
the author for the further applications in the present work as

ξ̇1 = ε̇1 − β |ε̇1 ξ1| ξ1 − β ε̇1 ξ2
1 − β |ε̇2 ξ2| ξ1 − β ε̇2 ξ1 ξ2

ξ̇2 = ε̇2 − β |ε̇2 ξ2| ξ2 − β ε̇2 ξ2
2 − β |ε̇1 ξ1| ξ2 − β ε̇1 ξ1 ξ2 ,

(2.18)

with the assumptions of the material constants in equation (2.12) that A = 1 and
β = γ. Consequently through equation (2.14) is

β =
1

2
(

1

εY
)2 =

1

2
(
E

σY
)2 , (2.19)

in which the yield strain εY = σY /E takes the place of the yield limit zL.

The equation (2.18) together with the equation (2.17) is named as the two-dimensional
hysteretic model in principal stress plane – 2D-HMiPSP.
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2.3 Comparison between Classical Theory and 2D-

HMiPSP

In this section two essential perspectives, namely the yield criterion and the hardening
behavior, will be used to give comparisons between the classical plasticity theory and
the 2D-HMiPSP.

First the graphical representation of the yield boundary of the two-dimensional hys-
teretic model will be performed (which is absent in the most literature), to have a
comparison with the von Mises’s yield ellipse in the principal stress plane. Then the
hardening characteristic of the hysteretic model, i.e., the translation of the yield bound-
ary, will be studied in comparison with the Ziegler’s hardening models.

2.3.1 Yield Boundary of 2D-HMiPSP

In order to find the yield boundary of the 2D-HMiPSP set α = 0 in equation (2.17),
which gives the elastic perfectly-plastic principal stress like

σ1 = E
1− ν2 (ξ1 + ν ξ2)

σ2 = E
1− ν2 (ν ξ1 + ξ2) .

(2.20)

Since the yield boundary can be found only the under loading state, the symbol of
absolute value in equation (2.18) can be neglected. By using ξ̇1 = 0 and ξ̇2 = 0 as the
yield conditions of the 2D-HMiPSP it follows

ε̇2
ε̇1

=
1− 2 β ξ2

1

2 β ξ1 ξ2
=

2 β ξ1 ξ2
1− 2 β ξ2

2

(2.21a)

and leads to the yield criterion of 2D-HMiPSP

(1− 2 β ξ2
1) (1− 2 β ξ2

2)− (2 β ξ1 ξ2)
2 = 0 . (2.21b)

To simulate the quasi-static non-cyclic loading, the controlled principal strain rate is
defined as

ε̇1 = C cos θ and ε̇2 = C sin θ , (2.22)

in which the amplitude C is a small constant and denotes the monotonic increase of
strain. The ratio of ε̇1 to ε̇2 is then given by θ. In the procedure of determining the yield
stress couple the strains will keep increasing until the fulfillment of the yield criterion
(2.21b) is made sure. In such procedure is θ a constant and a particular couple of yield
stress can be determined. As θ changes from 0 to 2π the corresponding yield boundary
can be found, and it is shown in Fig. 2.2 for various Poisson’s ratio ν in comparison
with the von Mises’s yield ellipse.
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It can be seen in this figure that the yield boundary of the two-dimensional hysteretic
model (2.18) extends in the 45o direction as the Poisson’s ratio ν increases. With
ν = 0.3, which is about the Poisson’s ratio of steel, the yield locus is quite similar to
the von Mises yield ellipse.

Figure 2.2: von Mises Ellipse and Yield Boundary of 2D-HMiPSP

2.3.2 Hardening Characteristics

With this point of view, the main difference between the hysteretic model and the
classical plasticity theory is that the former has no explicit definition of the onset of
yielding, because of its smooth transition from elastic to plastic region. Therefore, the
yielding onset of the 2D-HMiPSP is defined in this work at the points, which are the
affine positions of the corners in the corresponding bilinear models. For example, using
(2.22) with monotonic increasing C and θ = 30o, Fig. 2.3 shows the yielding onset
points A and B for σ1 and σ2 of the 2D-HMiPSP respectively. The points A and B are
defined on a same vertical line, because the hysteretic model is symmetric with respect
to ξ1 and ξ2.

The next to establish is a mathematical criterion, which should represent the yielding
onset defined above. Suppose that points A and B in Fig. 2.3 have the values ξ̇1 = C1 ε̇1
and ξ̇2 = C2 ε̇2, in which C1 and C2 are nonzero constants, and setting them in the
equation (2.18), so that similar to the equation (2.21b) the following expression can be
derived

(1− 2 β ξ2
1) (1− 2 β ξ2

2)− (2 β ξ1 ξ2)
2 = C2 (1− 2 β ξ2

1) + C1 (1− 2 β ξ2
2) 6= 0 . (2.23)

Using the same procedure of determining the yield boundary in section 2.3.1, this crit-
ical value of (2.23) at the yielding onset point, which is called the yielding determinant
of the 2D-HMiPSP, can be evaluated through interpolation under variant θ values.
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Figure 2.3: Definition of Yielding Onset Point of 2D-HMiPSP with θ = 30o

Fig. 2.4 shows the yielding determinants depending on the θ values. It can be seen
that this figure is symmetric to the axes of θ = 45o, 135o, 225o and 315o. These values
spread in a quite small range between 0.42 to 0.43 and are numerically very sensitive,
therefore the mean with 0.424 is used as the yielding onset value for the following
examples in this section. Together with the equation (2.21b) it can be concluded that
the value of the yielding determinate (VYD) has the following indication

VYD = (1−2 β ξ2
1) (1−2 β ξ2

2)−(2 β ξ1 ξ2)
2 =

{
0 , limit values of yielding

0.424 , onset of yielding
(2.24)

Figure 2.4: Yielding Determinants of 2D-HMiPSP

With these preparations the comparison of hardening characteristics between the clas-
sical theory and the hysteretic model will be first performed on a simple example. In
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this example the cyclic input is defined through the given strain rate, in which ε̇1 is
a sine-like function of time and ε̇2 = −ν ε̇1. The factor of post-yielding stiffness is set
as α = 0.05. For the numerical evaluation with the classical theory the equations in
section 2.1.2 are used. For the hysteretic model the rate of the hardening parameter
α̇h and of the plastic strain ε̇p, which are not explicitly indicated in the literature, are
defined here as

α̇h1 = H(0.424− VYD)H(ε̇1 ξ1)H(ε̇2 ξ2)α
E

1−ν2 (ε̇1 + ν ε̇2)

α̇h2 = H(0.424− VYD)H(ε̇1 ξ1)H(ε̇2 ξ2)α
E

1−ν2 (ν ε̇1 + ε̇2)
(2.25a)

and
ε̇p1 = ε̇1 − (σ̇1/E − ν σ̇2/E)

ε̇p2 = ε̇2 − (−ν σ̇1/E + σ̇2/E)
(2.25b)

In Fig. 2.5 the results of stress is shown at the top, results of the hardening parameter
is given in the middle and results of the plastic strain locates at the bottom.

Figure 2.5: Comparison of Classical Theory to Hysteretic Model under Cyclic Loading
with ε2 = −ν ε1 and ν = 0.3

In this case (ε2 = −ν ε1) it is to expect that σ2 should be nonzero under the plastic
deformation. Because under the plastic deformation is ε2 = −ν εe1 − 1

2
εp1 6= −ν ε1 ,
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and since ε2 is given/constrained, the resistance stress will arise. But this effect is not
observed in the hysteretic model, as its σ2 is always equal to zero. This deficiency
comes from that the Poisson’s ratio ν in the equation (2.17) is being unchanged during
the elasto-plastic deformations, which means the hysteretic model doesn’t obey the
associated flow rule. Besides, because the bilinear and the smooth transition models
have very different characters, the results of σ1 and αh between these two models are
not identical. With further investigations σ1 of the hysteretic model in this example will
be closer to the results of the classical theory as the power number n in the hysteretic
model increases. Generally the accuracy of the hysteretic model is still acceptable,
since it follows different considerations.

In the next example the strain rate ε̇1 and ε̇2 are both given as sine-like functions of
time with arbitrarily selected amplitudes and frequencies respectively. The results of
the stress, the hardening parameter and the plastic strain are represented in Fig. 2.6
(a), (b) and (c). It is explained in appendix A.3 that the classical theory can not pre-
dict the elasto-plastic behaviors well under cyclic loadings. Therefore the frequencies
of the designated strain rate should keep small, otherwise the divergence between the
classical and hysteretic model is to expect.

It can be read directly in Fig. 2.6 (b) that the hardening behaviors of these two models
are quite different. The first reason is that the yielding ellipse will not move until its
boundary is touched according to the classical theory, while by the hysteretic model the
yielding boundary starts to move at the begin of the smooth elastic-plastic transition
(s. Fig. 2.3). The second reason is that the translation direction of the yield boundary
in the hysteretic model is a function of σ̇ according to the equation (2.25a), while
it is a function of σ − αh in the classical theory according to the equation (2.6).
Nevertheless, the resultant total stresses and the plastic strains of the hysteretic model
are quite similar to those of the classical theory. Besides, the hysteretic model has also
following advantages:

• adaptability for various materials

• prediction of the cyclic loading effects

• mathematical compatibility, which makes it easy to be placed in the differential
equations and reduces the numerical computing efforts.

Therefore this hysteretic model is convincing enough for the needs of this work.

It is to remind that in this chapter only a simply modified, but not a new hysteretic
model is suggested for this work, since this model is merely requested to represent the
yielding characters of the plate reasonably, so that the nonlinear dynamic equations
for developing the PSF can be established. This hysteretic model can be replaced by
a better one, if available, at any time.
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(a) Stress

(b) Hardening Parameter

(c) Plastic Strain

Figure 2.6: Comparison of Classical Theory to Hysteretic Model under Arbitrary Cyclic
Loading



Chapter 3

Mathematical Model of Plates with
Hysteresis

3.1 Kirchhoff Plate Theory

3.1.1 General Assumptions and Sign Conventions

The structure concerned in the present work is the Stiff Plate, which is a thin plate
with flexural rigidity that carry loads two-dimensionally by bending moments, torsional
moments and transverse shears. In the following ‘plate’ is understood to mean the stiff
plate, unless otherwise specified. Since this work extends the idea of the plastic shape
function, which will be explained in detail in Chapter 4, of the Bernoulli beam in [33]
and [42], the Kirchhoff plate theory is chosen to serve as the contrast. The main
assumptions of the Kirchhoff plate theory are [93]:

1. The thickness of the plate is small compared to its other dimensions, which are
at least ten times larger than the its thickness.

2. The deflections are small compared to the plate thickness. The maximum deflec-
tion is about 1/10 to 1/5 of the thickness.

3. Straight lines perpendicular to the middle surface before deformation remain
straight after deformation.

4. transverse normals remain perpendicular to the middle surface after deforma-
tion. (Together with point 3. the deformations due to transverse shear will be
neglected.)

5. The deflection of the plate is produced by the displacement of the middle surface
in the normal direction to its initial plane.

6. The stresses normal to the middle surface are negligible (σz = 0) and the trans-
verse normals do not experience elongation (εz = 0).

21
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(a) Stress (b) Stress Resultants/unit length

Figure 3.1: Positive Definition of Stresses and Stress Resultants

The difference between the Kirchhoff’s and the Reissner-Mindlin’s theory is that the
latter considers the transverse shear deformation, i.e. without the assumption 4. listed
above. The primarily linear elastic assumed material behavior in the plate theory will
be modified through the hysteretic model.

In the Cartesian coordinate system the positive stress resultants are so defined that
on the positive cutting surface the stresses of fibers, which have positive z coordinate,
point toward the positive coordinate directions. According to this the stresses and
the stress resultants per unit length are plotted in Fig. 3.1 (a) and (b) respectively, in
which σx and σy are the normal stresses due to bending moments mx and my; τxy and
τyx are the shear stresses due to torsional moments mxy and myx; τxz and τyz are the
shear stresses due to transverse shear forces qx and qy.

3.1.2 Static Equilibrium and Kinematics of Plate Elements

To establish the basic differential equation of the plate element, the force equilibriums
will be used. By considering the equilibrium of shear forces

∑
V = 0 (s. Fig. 3.2

(a)) and the equilibrium of moments
∑
Mx = 0,

∑
My = 0 (s. Fig. 3.2 (b)) at the

infinitesimal element the differential equation of plate can be derived as [93]

∂2mx

∂x2
+
∂2(mxy +myx)

∂x ∂y
+
∂2my

∂y2
= p (x, y) . (3.1)

The deformations of plates can be described through the deflection w(x, y) and the
rotation angles ψx(x, y) and ψy(x, y). The deflection is positive defined in the positive
z-direction and the positive rotation angles are counterclockwise defined (s. Fig. 3.3).

According to the shear-rigid assumption are γxz = 0 and γyz = 0, therefore the rotation
angles of the plate cross section are functions of the deflection, which are

ψx = − ∂w
∂x

and ψy = − ∂w
∂y

, (3.2)
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(a) shear forces equilibrium (b) moments equilibrium

Figure 3.2: Equilibrium of Infinitesimal Plate Element

Figure 3.3: Positive Definitions of Deflection and Rotation Angles

so that the only degree of freedom of Kirchhoff’s plate theory is the deflection w(x, y).

The curvatures are defined as

κx =
∂2w

∂x2
= − ∂ψx

∂x
, κy =

∂2w

∂y2
= − ∂ψy

∂y
, and κxy =

∂2w

∂x ∂y
= − ∂ψx

∂y
= − ∂ψy

∂x
.

(3.3)
Similar to the Bernoulli beam theory the elastic moment-curvature relations of plate
can be expressed as

mx = − E h3

12 (1− ν2)
(κx + ν κy)

my = − E h3

12 (1− ν2)
(ν κx + κy) ,

(3.4a)

where h is the thickness of plate. Due to the equilibrium the adjacent twisting moments
across the corner of the infinitesimal element are of the same magnitude (mxy = myx).
The elastic twisting moment can be formulated as

mxy = − E h3

12 (1− ν2)
(1− ν)κxy (3.4b)

Putting (3.4) in (3.1), the differential equation of plate element can be rewritten as

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4
= p(x, y)/Kb , (3.5)

where Kb = (Eh3)/(12 (1− ν2)) is the bending stiffness of plate.
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With using of the kinematic relations defined above the strains of plate can be expressed
through the curvatures as

εx =
∂u(x, y, z)

∂x
= z

∂ψx
∂x

= −z ∂
2w

∂x2
= −z κx

εy =
∂v(x, y, z)

∂y
= z

∂ψy
∂y

= −z ∂
2w

∂y2
= −z κy

γxy =
∂u

∂y
+
∂v

∂x
= z (

∂ψx
∂y

+
∂ψy
∂x

) = −2 z
∂2w

∂x ∂y
= −2 z κxy ,

(3.6)

where u(x, y, z) and v(x, y, z) are the elongations in x- and y-direction respectively.

3.2 Principle of Virtual Work

To establish the dynamic differential equation of the plate element, the principle of
virtual work is utilized, which states

δW = δWi + δWe = 0 , (3.7)

where δW , δWi and δWe are the total, internal and external virtual work respectively.

Generally the external virtual work δWe results from four external loadings, which are
the body force fB, the surface load fS, the single load Fi and the D’ALEMBERT’s
inertial force fT . And δWe can be evaluated as [54], [7]

δWe =

∫
V

δUTfB dV +

∫
S

δUT
S fS dS +

∑
i

δUT
i Fi −

∫
V

δUTfT dV , (3.8)

where δU is the vector of the virtual displacements, which are small, compatible and
hold the fundamental boundary conditions. The lower indexes S and i denote the
virtual displacements on the surface and on the single points respectively.

By using the Kirchhoff plate theory the only degree of freedom is the deflection
w(x, y, t), therefore δU in the equation above can be substituted by δw. Further-
more it will be assumed that there are no body forces and no single loads, which can
result in singularity on plate, so that the first and the third term on the right hand
side of equation (3.8) will be eliminated.

The internal virtual work, which is always negative, is formulated as

δWi = −
∫
V

δεTσdV , (3.9)

where δε is the vector of the virtual strain corresponding to the virtual deflection δw.
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The hysteretic material behavior can be taken into consideration, if the internal virtual
work is formulated in the principal direction by using (2.17) as

δWi =−
∫
V

(δε1σ1 + δε2σ2)dV

=− α
∫
V

[ δε1 δε2]
E

1− ν2

[
1 ν
ν 1

] [
ε1
ε2

]
dV

− (1− α)

∫
V

[ δε1 δε2]
E

1− ν2

[
1 ν
ν 1

] [
ξ1
ξ2

]
dV ,

(3.10)

where the auxiliary hysteretic equations (2.18) are required for ξ1 and ξ2.

It can be seen that (3.10) is not directly suitable for the general kinematic formula-
tions of the Kirchhoff plate theory and is not convenient for applying the finite element
method (FEM). Therefore (3.10) should be rewritten in the Cartesian coordinate sys-
tem and the auxiliary hysteretic equations (2.18) have to be correspondingly modified.
This modifications are performed in the next section.

3.2.1 Hysteretic Model of Plates in Cartesian Coordinates

According to the transformation rules of the plane stress state the principal stresses σ1

and σ2 can be derived from the plane stresses σx, σy and τxy as

[
σ1

σ2

]
=

 1 + cos 2θ

2

1− cos 2θ

2
sin 2θ

1− cos 2θ

2

1 + cos 2θ

2
− sin 2θ


 σx
σy
τxy


= Tθ

 σx
σy
τxy

 , with tan 2θ =
τxy

(σx − σy)/2
.

(3.11a)

The principal strains ε1 and ε2 can be obtained from the plane strains εx, εy and γxy as

[
ε1
ε2

]
=

 1 + cos 2θ̃

2

1− cos 2θ̃

2

sin 2θ̃

2
1− cos 2θ̃

2

1 + cos 2θ̃

2

− sin 2θ̃

2


 εx
εy
γxy


= Tθ̃

 εx
εy
γxy

 , with tan 2θ̃ =
γxy

εx − εy
.

(3.11b)

Considering a plate element, if the material behaves purely elastic, the principal stress
angle θ will coincide with the principal strain angle θ̃. But according to the loading
history dependency of the plastic deformations these two angles are generally different
to each other under plastic material behaviors. These angles overlap only exceptionally,



3.2. PRINCIPLE OF VIRTUAL WORK 26

i.e., as the stresses of the plate element are proportional to each other all the time, so
that the principal stress angle keeps a constant. Consequently there is no shear strain
on this principal direction during the whole loading history. But with the studies made
in chapter 2. it can be concluded that the hysteretic equations (2.17) are still suitable
to describe the plastic constructive relations between the principal stresses and strains
directly, even when θ 6= θ̃ under general loadings.

According to (2.15), the constitutive equations of plane stresses in the Cartesian coor-
dinate system can be formulated as

σx = α
E

1− ν2
(εx + ν εy) + (1− α)

E

1− ν2
(ξx + ν ξy)

σy = α
E

1− ν2
(ν εx + εy) + (1− α)

E

1− ν2
(ν ξx + ξy)

τxy = α
E

2(1 + ν)
γxy + (1− α)

E

2(1 + ν)
ξxy .

(3.12)

Instead of directly applying (2.16), which is too general to use, the still unknown dif-
ferential equations of the hysteretic variables ξx, ξy and ξxy above will be derived from
(2.18).

In order to establish the hysteretic model of the Cartesian coordinate system, an inverse
transformation of strains from the principal space to the Cartesian coordinate system
is needed, which is

 εx
εy
γxy

 =


1 + cos 2θ̃

2

1− cos 2θ̃

2
1− cos 2θ̃

2

1 + cos 2θ̃

2
sin 2θ̃ − sin 2θ̃


[
ε1
ε2

]
= T ′

θ̃

[
ε1
ε2

]
. (3.13)

It is to note that for (3.13) the angle θ̃ has to be known, while in (3.11b) the information
about θ̃ is already included in the vector [ εx εy γxy ]T . In the practices the inverse
transformation matrix T ′

θ̃
can always be determined, since the strains εx, εy and γxy are

always calculated first. Differentiating (3.13) with respect to time its rate form can be
expressed as  ε̇x

ε̇y
γ̇xy

 = T ′
θ̃

[
ε̇1
ε̇2

]
+ Ṫ ′

θ̃

[
ε1
ε2

]
. (3.14)

Multiplying (2.18) by T ′
θ̃

on both sides and rewriting in vector form it follows

T ′
θ̃

[
ξ̇1
ξ̇2

]
= T ′

θ̃

[
ε̇1
ε̇2

]
− β(|ε̇1ξ1|+ |ε̇2ξ2|)T ′θ̃

[
ξ1
ξ2

]
− β(ε̇1ξ1 + ε̇2ξ2)T

′
θ̃

[
ξ1
ξ2

]
,
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then applying (3.14) in this equation, so that

T ′
θ̃

[
ξ̇1
ξ̇2

]
= T ′

θ̃

[
ε̇1
ε̇2

]
+ Ṫ ′

θ̃

[
ε1
ε2

]
− β(|ε̇1ξ1|+ |ε̇2ξ2|)T ′θ̃

[
ξ1
ξ2

]
− β(ε̇1ξ1 + ε̇2ξ2)T

′
θ̃

[
ξ1
ξ2

]
− Ṫ ′

θ̃

[
ε1
ε2

]

=

 ε̇x
ε̇y
γ̇xy

− β(|ε̇1ξ1|+ |ε̇2ξ2|)T ′θ̃

[
ξ1
ξ2

]
− β(ε̇1ξ1 + ε̇2ξ2)T

′
θ̃

[
ξ1
ξ2

]
− Ṫ ′

θ̃

[
ε1
ε2

]
.

(3.15)

Because ξ1 and ξ2, which have no physical meanings, are auxiliary hysteretic variables
of ε1 and ε2, and generally is θ̃ 6= θ, therefore the values of ξ1 and ξ2 should also be
transformed with the matrix T ′

θ̃
into the Cartesian coordinate. As a result the trans-

formation T ′
θ̃

[ξ1 ξ2]
T can be seen in (3.15). In order to derive the unknown hysteretic

equations in the Cartesian coordinate system, the new hysteretic variables ξx, ξy and
ξxy are defined according to this transformation as ξx

ξy
ξxy

 = T ′
θ̃

[
ξ1
ξ2

]
, (3.16a)

which leads to

T ′
θ̃

[
ξ̇1
ξ̇2

]
=

 ξ̇x
ξ̇y
ξ̇xy

− Ṫ ′
θ̃

[
ξ1
ξ2

]
, (3.16b)

where

Ṫ ′
θ̃

= 2 ˙̃θ


− sin 2θ̃

2

sin 2θ̃

2
sin 2θ̃

2

− sin 2θ̃

2
cos 2θ̃ − cos 2θ̃

 (3.17a)

with

2 ˙̃θ =
d arctan (γxy/εx − εy)

dt
=
γ̇xy(εx − εy)− (ε̇x − ε̇y)γxy

(εx − εy)2 + γ2
xy

. (3.17b)

Introducing then this definition in (3.15), the hysteretic equations in the Cartesian
coordinate system can be derived as ξ̇x
ξ̇y
ξ̇xy

 =

 ε̇x
ε̇y
γ̇xy

− β(|ε̇1ξ1|+ |ε̇2ξ2|)

 ξx
ξy
ξxy

− β(ε̇1ξ1 + ε̇2ξ2)

 ξx
ξy
ξxy

− Ṫ ′
θ̃

[
ε1 − ξ1
ε2 − ξ2

]
.

(3.18)
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In (3.18) ε̇1 and ε̇2 can be calculated through the first derivative of (3.11b) as[
ε̇1
ε̇2

]
= Tθ̃

 ε̇x
ε̇y
γ̇xy

 + Ṫθ̃

 εx
εy
γxy


= Tθ̃

 ε̇x
ε̇y
γ̇xy

 + 2 ˙̃θ

 −sin 2θ̃

2

sin 2θ̃

2

cos 2θ̃

2
sin 2θ̃

2
−sin 2θ̃

2
−cos 2θ̃

2


 εx
εy
γxy


= Tθ̃

 ε̇x
ε̇y
γ̇xy

 + 2 ˙̃θ

[
γ12

−γ12

]
= Tθ̃

 ε̇x
ε̇y
γ̇xy

 + 2 ˙̃θ

[
0
0

]

= Tθ̃

 ε̇x
ε̇y
γ̇xy

 .

(3.19)

In comparison with (3.14), the reason for the absence of the term Ṫθ̃ [ εx εy γxy ]T in
(3.19) is that the vector [ εx εy γxy ]T includes already the information about the prin-
cipal strain angle θ̃, whereas the vector [ ε1 ε2 ]T in (3.14) does not.

According to the definition (3.16a) the ξ1 and ξ2 of (3.18) can be determined as[
ξ1
ξ2

]
= Tθ̃

 ξx
ξy
ξxy

 . (3.20)

To verify the validity of (3.18), a numerical example with predefined plane strain rates
ε̇x, ε̇y and γ̇xy, which are sine-like functions with arbitrary amplitudes and frequencies
for each, is performed. In this example two independent calculation procedures are
done. The first one determines the plane stresses σx, σy and τxy through (3.12) with
(3.18), (3.19) and (3.20) directly from the given strain rates ε̇x, ε̇y and γ̇xy. Then the
corresponding principal stresses σ1 and σ2 will be calculated through the stress trans-
formation (3.11a). And the so-called principal hysteretic variables ξ1 and ξ2 will be
evaluated according to (3.20). Results of this procedure are shown in Fig. 3.4 with the
red dashed line and denoted as ‘Trans.-Hy.’.

In the second procedure the principal strain rates ε̇1 and ε̇2 will be first determined
through (3.19) from the given plane strain rates. Then the principal stresses will be
calculated by using (2.17) and (2.18). The results of the principal stresses and the
hysteretic variables are shown in Fig. 3.4 with the blue solid line and denoted as ‘2D-
HMiPSP ’.

It can be seen that the results from these two processes are almost identical, so that
the hysteretic material model in Cartesian coordinate system for the plane stress state
is established for further application.
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(a) Principal Hysteretic Variables

(b) Principal Stresses

Figure 3.4: Comparison of 2D-HMiPSP with Transformed Plane Stress Hysteretic
Model

The internal virtual work can be formulated now as

δWi =−
∫
V

(δεxσx + δεyσy + δγxyτxy)dV

=− α
∫
V

[ δεx δεy δγxy]
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εx
εy
γxy

 dV
− (1− α)

∫
V

[ δεx δεy δγxy]
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 ξx
ξy
ξxy

 dV .

(3.21)

After the elastic theory the next step is to perform the integration of the internal vir-
tual work in the z-direction with using of the kinematic relations (3.6). But obviously
it is difficult to perform the analytical integration of the hysteretic variables ξ in (3.21).
Therefore it is necessary to derive a multi-variables hysteretic moment-curvature rela-
tion.
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3.2.2 Hysteretic Moment-Curvature Relations

Since the stresses (3.12) have elastic and hysteretic components, it is reasonable to
assume that the moments of the cross-section per unit length, which are the stress
resultants, are also composed of an elastic and a hysteretic parts and can be expressed
as

mx =

∫ h/2

−h/2
σx z dz ' α

−Eh3

12(1− ν2)
(κx + ν κy) + (1− α)

−Eh3

12(1− ν2)
(Yx + ν Yy)

my =

∫ h/2

−h/2
σy z dz ' α

−Eh3

12(1− ν2)
(ν κx + κy) + (1− α)

−Eh3

12(1− ν2)
(ν Yx + Yy)

mxy =

∫ h/2

−h/2
τxy z dz ' α

−Eh3

12(1− ν2)
(1− ν)κxy + (1− α)

−Eh3

12(1− ν2)
(1− ν)Yxy ,

(3.22)
where Yx, Yy and Yxy are defined as the hysteretic variables of moment.

The nonlinear equations for these hysteretic variables of moment are assumed to have
the same form as (3.18) like Ẏx
Ẏy
Ẏxy

=

 κ̇x
κ̇y
κ̇xy

−βM(|κ̇1Y1|+|κ̇2Y2|)

 Yx
Yy
Yxy

−βM(κ̇1Y1+κ̇2Y2)

 Yx
Yy
Yxy

−Ṫ ′κ[ κ1 − Y1

κ2 − Y2

]
,

(3.23)
where βM is a unknown parameter concerning with the curvature yielding limit.

According to the kinematic relations (3.6) and the transformation equation (3.13) the
following relations can be derived

 κx
κy
κxy

 = T ′κ

[
κ1

κ2

]
with T ′κ =


1 + cos 2θ̃

2

1− cos 2θ̃

2
1− cos 2θ̃

2

1 + cos 2θ̃

2
sin 2θ̃

2
−sin 2θ̃

2

 , (3.24a)

where

tan 2θ̃ =
γxy

εx − εy
=

2κxy
κx − κy

and 2 ˙̃θ =
2κ̇xy(κx − κy)− (κ̇x − κ̇y) 2κxy

(κx − κy)2 + (2κxy)2
. (3.24b)

So that Ṫ ′κ in (3.23) is

Ṫ ′κ = 2 ˙̃θ


− sin 2θ̃

2

sin 2θ̃

2
sin 2θ̃

2

− sin 2θ̃

2
cos 2θ̃

2

− cos 2θ̃

2

 . (3.25)
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(a) Ideal (b) Linear Equivalent

Figure 3.5: Ideal / Equivalent Plastic Limit of Moment

Setting (3.6) in (3.11b) it follows

[
κ1

κ2

]
=

 1 + cos 2θ̃

2

1− cos 2θ̃

2
sin 2θ̃

1− cos 2θ̃

2

1 + cos 2θ̃

2
− sin 2θ̃


 κx
κy
κxy

 = Tκ

 κx
κy
κxy

 . (3.26)

And similar to (3.19) the relation below can be found[
κ̇1

κ̇2

]
= Tκ

 κ̇x
κ̇y
κ̇xy

 . (3.27)

From (3.11b) and (3.20) it can be seen that the same transformation matrix is used
both for strains εi and for their corresponding hysteretic variable ξi. Analogically it
is assumed that the Y-variables have also the same transformation relations as the
curvatures, so that Y1 and Y2 can be evaluated as[

Y1

Y2

]
= Tκ

 Yx
Yy
Yxy

 . (3.28)

The last unknown in (3.23) is the yielding parameter βM . According to the limit
analysis mentioned in the appendix B.2 the maximal carrying moment of the cross-
section is the plastic limit M̃p , by which the whole section is loaded with the yield
stress σy. Correspondingly the ideal plastic limit of moment per unit length is

m̃p =
σyh

2

4
, (3.29a)

which is schematically illustrated in Fig. 3.5 (a). In Fig. 3.5 (b) an equivalent plastic
limit of curvature κ̄p , which has a linear strain distribution and has the same magnitude
of plastic moment m̃p , can be determined as

κ̄p =
mp

EI
=

σyh
2/4

Eh3/12
=

3σy
Eh

(3.29b)
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(a) Whole Section Model (b) Fiber Model

Figure 3.6: Hysteretic Cross-Section Moments

Using (2.19) and exchanging the yield strain εY by κ̄p, the material parameter βM is
determined as

βM =
1

2
(

1

κ̄p
)2 =

1

2
(
Eh

3σy
)2 . (3.30)

In order to verify the hysteretic moment-curvature relation (3.22) and (3.23), two inde-
pendent procedures are performed on a fictive plate element with a thickness of 40mm
to give comparisons. In the first procedure the moments mx, my and mxy are deter-
mined from the given curvature rates κ̇x, κ̇y and κ̇xy by using (3.22) and (3.23). This
procedure is schematically shown in Fig. 3.6 (a).

In the second procedure the fiber model of the plate cross-section is built, in which the
cross-section is divided into 100 fibers and the derivative of fiber strains is calculated
through the differentiation of (3.6) using the same curvature rates as in the first pro-
cedure. For each fiber the corresponding stress is determined after (3.12) and (3.18)
and the cross-section moment is then the resultant of all fiber forces Fi. This model is
schematically represented in Fig. 3.6 (b).

The numerical results for the 1-dimensional case, in which κ̇y = −ν κ̇x and κ̇xy = 0 are
assumed, is shown in Fig. 3.7 (a). In this figure the result of the hysteretic moment-
curvature model (3.22) is indicated with the red dashed line and denoted as ‘Whole
Section’. The blue solid line, which denoted as ‘Fiber Model ’, is the result of using
the hysteretic stress-strain relation (3.12). The black dotted line is the elastic limit of
moment, by which the most outer fiber just reaches the yield stress. It can be seen that
for the fiber model the nonlinear moment appears above the elastic limit, as part of the
section yields (Fig. 3.6 (b)) . For the whole section model, although the smooth hys-
teretic model is used, its shape is more angular at the elastic-plastic transition region
than the fiber model. This is because that the assumption of the linear distributed κ̄p
in the cross-section is adopted and consequently the moment in the transition region is
overestimated. But the maximum stresses of these two models match with each other
quite well; the error of the maximum stress is about 0.7 %.
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(a) 1-Dimensional Case

(b) Arbitrary Plane Stresses Case

Figure 3.7: Comparison of Whole Section Model with Fiber Model

To have a general comparison of these two models, Fig. 3.7 (b) shows the results of
another example, in which the arbitrary amplitude and frequency of κ̇x, κ̇y and κ̇xy are
applied. From the good acceptable results the hysteretic moment-curvature relation
is verified. And consequently the internal virtual work of the plate element can be
further developed in the moment-curvature expression as

δWi =−
∫
V

(δεxσx + δεyσy + δγxyτxy)dV

=− α
∫
A

[ δκx δκy 2 δκxy]
Eh3

12(1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 κx
κy

2κxy

 dxdy
− (1− α)

∫
A

[ δκx δκy 2 δκxy]
Eh3

12(1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 Yx
Yy

2Yxy

 dxdy .
(3.31)
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3.3 FEM – Curvature related Stiffness Matrix

To be able to solve the complex nonlinear dynamic problems numerically, the Finite El-
ement Method (FEM) is chosen, with which the continuous functions will be discretized
through the nodal degree of freedoms with corresponding interpolation functions (also
called as shape functions). According to the kinematic relations (3.3) the curvatures
can be expressed as the second derivatives of the deflection w(x, y), therefore the dis-
cretization will be performed on the plate deflection function.

3.3.1 BFS/Schäfer Plate Element

To develop the Plastic Shape Function of plates, which is the main objective of this
work, the compatible 4-nodes rectangular plate element with 16 DOF, i.e., BFS- or
Schäfer-element [8], is chosen for the system discretization, so that a convenient adop-
tion of the Kirchhoff plate theory can be achieved. Each node of the Schäfer-element
has four degrees of freedom, which are the deflection w, the rotation angles ψx and ψy,
and the twisting curvature ψxy = − ∂2w/∂x∂y as shown in Fig. 3.8 (a).

The field of the deflection is then described as a bi-cubic function with the polynomial
terms given in Fig. 3.8 (b) and can be written as [103]

w(x, y) = a1 + a2 x+ a3 y + a4 x
2 + a5 xy + a6 y

2 + a7 x
3 + a8 x

2y + a9 xy
2

+ a10 y
3 + a11 xy

3 + a12 x
3y + a13 x

2y2 + a14 x
2y3 + a15 x

3y2 + a16 x
3y3 .

(3.32)

The deflection function w(x, y) can be further discretized as the linear combination of
the nodal deformations multiplied with the shape functions like

w(x, y) = N1(x, y)w1 +N2(x, y)ψx1 +N3(x, y)ψy1 +N4(x, y)ψxy1

+N5(x, y)w2 +N6(x, y)ψx2 +N7(x, y)ψy2 +N8(x, y)ψxy2

+N9(x, y)w3 +N10(x, y)ψx3 +N11(x, y)ψy3 +N12(x, y)ψxy3

+N13(x, y)w4 +N14(x, y)ψx4 +N15(x, y)ψy4 +N16(x, y)ψxy4

=
16∑
i=1

Ni(x, y)we,i ,

(3.33)

where Ni(x, y) are the shape functions corresponding to the unit deformation of each
nodal degrees of freedom respectively. The details about the shape functions Ni can be
found in appendix C.1. The we,i are the components of the nodal deformations vector,
which is

we = [w1 ψx1 ψy1 ψxy1 w2 ψx2 ψy2 ψxy2 w3 ψx3 ψy3 ψxy3 w4 ψx4 ψy4 ψxy4 ]T . (3.34)
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(a) DOF (b) Bi-cubic Polynomials

Figure 3.8: Schäfer Plate Element

Setting (3.33) in (3.3) the curvatures can be formulated as

κx(x, y) =
16∑
i=1

Bx,i(x, y)we,i , κy(x, y) =
16∑
i=1

By,i(x, y)we,i

and κxy(x, y) =
16∑
i=1

Bxy,i(x, y)we,i ,

(3.35a)

where

Bx,i =
∂2Ni

∂x2
, By,i =

∂2Ni

∂y2
and Bxy,i =

∂2Ni

∂x∂y
. (3.35b)

The interpolation functions of curvatures Bx,i , By,i and Bxy,i are given in appendix
C.1 in detail.

With (3.35) the elastic part of (3.31) can be discretized. For the nonlinear part of the
internal virtual work it was suggested in [33] that a discrete formulation is more ad-
vantageous than a continuous one of the hysteretic variables, as long as an appropriate
interpolation function of the hysteretic variable is chosen and the size of the discrete
element is also small enough. Therefore the key point is to find out what kind of in-
terpolation functions should be used for the Y-variables in (3.31), as the deformation
shape functions are already selected.

3.3.2 Interpolation Functions of Y -Variables

The requirement of the interpolation function of Y-variables is that it must be com-
patible with the second derivatives of the shape function Ni, i.e., the curvature shape
functions in (3.35b), because as the system elastically behaves, is Y (x, y) ' κ(x, y) and
(3.31) should be able to return into pure elastic formulation in view of the consistency of
virtual works. The variable Y can be actually treated as a kind of hysteretic curvature
which has the upper and lower yielding bound.
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(a) κex / Yex Itp. Nodes (b) κey / Yey Itp. Nodes (c) κexy / Yexy Itp. Nodes

Figure 3.9: New κ / Y Interpolation Nodes

Considering the function Bx of the curvature κx for example, it can be seen from (C.2a)
that under the use of the bi-cubic deformation shape function is Bx linear in the x-
direction and cubic in the y-direction. The field of κx can be expressed generally with
8 polynomial terms as

κx(x, y) = a1 + a2 x+ a3 y + a4 x y + a5 y
2 + a6 x y

2 + a7 y
3 + a8 x y

3 . (3.36)

This curvature field can be discretely formulated through at least 8 nodal curvatures
multiplied with corresponding interpolation functions, which are linear independent
with each other, as

κx(x, y) = Ñ∗
x,1κex,1 + Ñ∗

x,2κex,2 + · · ·+ Ñ∗
x,8κex,8

=
8∑
i=1

Ñ∗
x,i κex,i ,

(3.37)

where Ñ∗
x,i are the new unknown interpolation functions for κx(x, y). The κex,i is the

curvature value of the node i, which is defined in Fig. 3.9 (a).

Using (3.35a) the curvature of node i in Fig. 3.9 (a) can be calculated as

κx,i = κx(ηi, ζi) =
16∑
j=1

Bx,j(ηi, ζi)we,j , (3.38)

where ηi and ζi are the natural coordinates of the node i.
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Setting (3.38) in (3.37) it follows

κx(x, y) = Ñ∗
x,1(

16∑
j=1

Bx,j(η1, ζ1)we,j) + Ñ∗
x,2(

16∑
j=1

Bx,j(η2, ζ2)we,j) + · · ·

· · ·+ Ñ∗
x,8(

16∑
j=1

Bx,j(η8, ζ8)we,j)

=
8∑
i=1

Ñ∗
x,i

[ 16∑
j=1

Bx,j(ηi, ζi)we,j
]

=
16∑
j=1

[ 8∑
i=1

Ñ∗
x,iBx,j(ηi, ζi)

]
we,j .

(3.39)

Under the condition of compatibility setting (3.39) equal to the expression of κx(x, y)
in (3.35a) and the following equation can be found

8∑
i=1

Bx,j(ηi, ζi) Ñ
∗
x,i(x, y) = Bx,j(x, y) . (3.40)

These equations can be collected in the matrix form as
Bx,1(η1, ζ1) Bx,1(η2, ζ2) . . . Bx,1(η8, ζ8)
Bx,2(η1, ζ1) Bx,2(η2, ζ2) . . . Bx,2(η8, ζ8)

...
...

. . .
...

Bx,16(η1, ζ1) Bx,16(η2, ζ2) . . . Bx,16(η8, ζ8)


16×8


Ñ∗
x,1

Ñ∗
x,2
...

Ñ∗
x,8


8×1

=


Bx,1

Bx,2
...

Bx,16


16×1

(3.41)

Since κx(x, y) is a polynomial with 8 terms, the maximum number of the linear inde-
pendent functions of Bx,i should also be 8. From (C.2a) it can be found that the linear
independent functions of Bx,i are

Bx,2 , Bx,4 , Bx,6 , Bx,8 , Bx,10 , Bx,12 , Bx,14 and Bx,16 . (3.42)

So that (3.41) is reduced to
Bx,2(η1, ζ1) Bx,2(η2, ζ2) . . . Bx,2(η8, ζ8)
Bx,4(η1, ζ1) Bx,4(η2, ζ2) . . . Bx,4(η8, ζ8)

...
...

. . .
...

Bx,16(η1, ζ1) Bx,16(η2, ζ2) . . . Bx,16(η8, ζ8)


8×8


Ñ∗
x,1

Ñ∗
x,2
...

Ñ∗
x,8


8×1

=


Bx,2

Bx,4
...

Bx,16


8×1

=⇒ [
BxM

]
8×8
·
[
Ñ∗
x(x, y)

]
8×1

=
[
B∗x(x, y)

]
8×1

(3.43)

It is to note that [BxM ] is a scalar matrix as [Ñ∗
x(x, y)] and [B∗x(x, y)] are vectors of

function.
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Finally the compatible interpolation functions can be determined as[
Ñ∗
x(x, y)

]
=

[
BxM

]−1 [
B∗x(x, y)

]
. (3.44)

Considering the dependency of Yx(x, y) on κx(x, y) given in (3.23), it is reasonable also
to use Ñ∗

x(x, y) as the interpolation function of Yx(x, y), so that the hysteretic variable
Yx(x, y) can be discretized as

Yx(x, y) = Ñ∗
x,1Yex,1 + Ñ∗

x,2Yex,2 + · · ·+ Ñ∗
x,8Yex,8

=
8∑
i=1

Ñ∗
x,i Yex,i ,

(3.45)

where Yex,i are the values of Yx on the nodes defined in Fig. 3.9 (a).

Similarly for κy(x, y), its compatible interpolation functions Ñ∗
y,i(x, y) can be calculated

according to the nodes defined in Fig. 3.9 (b) as[
Ñ∗
y (x, y)

]
8×1

=
[
ByM

]−1

8×8

[
B∗y(x, y)

]
8×1

, (3.46a)

with [
Ñ∗
y (x, y)

]
=

[
Ñ∗
y,1(x, y) Ñ∗

y,2(x, y) · · · Ñ∗
y,8(x, y)

]T
, (3.46b)

and [
B∗y(x, y)

]
=

[
By,3 By,4 By,7 By,8 By,11 By,12 By,15 By,16

]T
, (3.46c)

which is the vector composed of the linear independent functions of By,i . The corre-
sponding scalar matrix is

[
ByM

]
=


By,3(η1, ζ1) By,3(η2, ζ2) . . . By,3(η8, ζ8)
By,4(η1, ζ1) By,4(η2, ζ2) . . . By,4(η8, ζ8)
By,7(η1, ζ1) . . . . . . By,7(η8, ζ8)

...
...

. . .
...

By,16(η1, ζ1) By,16(η2, ζ2) . . . By,16(η8, ζ8)

 . (3.46d)

It is to emphasize that the nodal coordinates (ηi, ζi) used in the matrix [ByM ] are de-
fined according to Fig. 3.9 (b). Then the hysteretic variable Yy(x, y) can be discretized
as

Yy(x, y) = Ñ∗
y,1Yey,1 + Ñ∗

y,2Yey,2 + · · ·+ Ñ∗
y,8Yey,8

=
8∑
i=1

Ñ∗
y,i Yey,i ,

(3.47)

where Yey,i are the values of Yy on the nodes defined in Fig. 3.9 (b).
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Under the bi-cubic deflection approach the twisting function κxy(x, y) is bi-quadratic,
which means that 9 independent, compatible interpolation functions Ñ∗

xy corresponding
to the nodes defined in Fig. 3.9 (c) can be found. And the 9 linear independent functions
of Bxy,i are

Bxy,1 , Bxy,2 , Bxy,3 , Bxy,4 , Bxy,6 , Bxy,8 , Bxy,12 , Bxy,15 and Bxy,16 . (3.48)

So that Ñ∗
xy,i(x, y) can be determined as[

Ñ∗
xy(x, y)

]
9×1

=
[
BxyM

]−1

9×9

[
B∗xy(x, y)

]
9×1

, (3.49a)

with [
Ñ∗
xy(x, y)

]
=

[
Ñ∗
xy,1(x, y) Ñ∗

xy,2(x, y) · · · Ñ∗
xy,9(x, y)

]T
, (3.49b)

and[
B∗xy(x, y)

]
=

[
Bxy,1 Bxy,2 Bxy,3 Bxy,4 Bxy,6 Bxy,8 Bxy,12 Bxy,15 Bxy,16

]T
(3.49c)

The corresponding scalar matrix is

[
BxyM

]
=



By,1(η1, ζ1) By,1(η2, ζ2) . . . By,1(η9, ζ9)
...

...
. . .

...
By,4(η1, ζ1) . . . . . . By,4(η9, ζ9)
By,6(η1, ζ1) . . . . . . By,6(η9, ζ9)

...
...

. . .
...

By,16(η1, ζ1) By,16(η2, ζ2) . . . By,16(η9, ζ9)


. (3.49d)

Similarly the hysteretic variable Yxy(x, y) can be discretized as

Yxy(x, y) = Ñ∗
xy,1Yexy,1 + Ñ∗

xy,2Yexy,2 + · · ·+ Ñ∗
xy,9Yexy,9

=
9∑
i=1

Ñ∗
xy,i Yexy,i ,

(3.50)

where Yexy,i are the values of Yxy on the nodes defined in Fig. 3.9 (c).

The detailed functions of Ñ∗
x,i, Ñ

∗
y,i and Ñ∗

xy,i are given in appendix (C.3a), (C.3b) and
(C.3c) respectively.

It can be seen from Fig. 3.9 that because of the different distribution characters of
κx, κy and κxy, the discrete nodes needed for a compatible interpolation of Yx, Yy and
Yxy are not unitary. Such inconsistency of the nodal nets will give rise to difficulties
by applying the FEM. On the other hand these three hysteretic variables are coupled
together according to (3.23), which means all these three values have to be calculated
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Figure 3.10: Common nodal Net of Yx, Yy and Yxy

for every single node appearing in Fig. 3.9 (a) to (c). Therefore a unified nodal net for
Yx, Yy and Yxy is advantageous and defined in Fig. 3.10. This unified nodal net will
called as the Y-nodal net in following.

Corresponding to the Y-nodal net the original interpolation function groups Ñ∗
x,i(x, y),

Ñ∗
y,i(x, y) and Ñ∗

xy,i(x, y) have to be expanded to Ñx,i(x, y), Ñy,i(x, y) and Ñxy,i(x, y) re-

spectively, so that each of them has 16 linear dependent components. Taking Ñ∗
x,i(x, y)

for example, two additional nodes for each row (x-direction), i.e., totally 8 additional
nodes, have to be included to establish Ñx,i(x, y) in regard to nodes defined in Fig. 3.10.
This means that for each row of Fig. 3.9 (a), the linear function of η will be described
through 4 nodal values with 4 dependent interpolation functions, as the part of the ζ
polynomial remains unchanged.

Considering a linear function of η expressed as

f(η) = a1 + a2 η

= f(0)(1− η) + f(1) η
(3.51a)

and introducing the following relations of nodal values that

f(0) = 2 f(1/3)− f(2/3)

f(1) = −f(1/3) + 2 f(2/3) ,
(3.51b)

since f(1/3) and f(2/3) should be added into the interpolation.

So the linear function f(η) can be decomposed for example as

f(η) = f(0)(1− η) + f(1) η

= f(0)
1− η

2
+ f(0)

1− η
2

+ f(1)
η

2
+ f(1)

η

2

= f(0)
1− η

2
+ (2 f(1/3)− f(2/3))

1− η
2

+ (−f(1/3) + 2 f(2/3))
η

2
+ f(1)

η

2

= f(0)
1− η

2
+ f(1/3)

2− 3 η

2
+ f(2/3)

−1 + 3 η

2
+ f(1)

η

2
.

(3.51c)
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Consequently, for the interpolation functions

Ñ∗
x,1 = (1− η)(1− 5.5 ζ + 9 ζ2 − 4.5 ζ3)

Ñ∗
x,2 = η (1− 5.5 ζ + 9 ζ2 − 4.5 ζ3) ,

(3.52a)

which are on a same row, the linear function 1−η and η will be split up into 4 dependent
functions according to (3.51c) and each of them will multiply with the same polynomial
of ζ to produce 4 new interpolation functions like

Ñx,1 = (1− η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,5 = (2− 3 η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,6 = (−1 + 3 η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,2 = η (0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3) ,

(3.52b)

which belong to the Y-nodal net.

Finally the hysteretic variables Yx(x, y), Yy(x, y) and Yxy(x, y) will be discretized ac-
cording to Fig. 3.10 as

Yx(x, y) =
16∑
i=1

Ñx,i Yex,i , Yy(x, y) =
16∑
i=1

Ñy,i Yey,i

and Yxy(x, y) =
16∑
i=1

Ñxy,i Yexy,i .

(3.53)

The complete Ñx,i(x, y), Ñy,i(x, y) and Ñxy,i(x, y) for i = 1 . . . 16 are given in appendix
(C.4), (C.5) and (C.6), in which the expansion procedure of Ñ∗

xy,i(x, y) to Ñxy,i(x, y) is
illustrated in detail.

3.3.3 Differential Equation of Motion with Hysteresis

Local Equation of Element

With use of (3.35) and (3.53) the continuous formulation of the internal virtual work
of a plate element (3.31) can be discretized according to FEM as

δWi =− δwT
e

(
α

∫
A

BT DB dxdy

)
we

− δwT
e

(
(1− α)

∫
A

BT DÑx dxdy

)
Yex

− δwT
e

(
(1− α)

∫
A

BT DÑy dxdy

)
Yey

− δwT
e

(
(1− α)

∫
A

BT DÑxy dxdy

)
Yexy ,

(3.54a)
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where

B =

 ∂2N1/∂x
2 ∂2N2/∂x

2 ∂2N3/∂x
2 · · · ∂2N16/∂x

2

∂2N1/∂y
2 ∂2N2/∂y

2 ∂2N3/∂y
2 · · · ∂2N16/∂y

2

2 ∂2N1/(∂x∂y) 2 ∂2N2/(∂x∂y) 2 ∂2N3/(∂x∂y) · · · 2 ∂2N16/(∂x∂y)


3×16

D =
Eh3

12(1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2


3×3

Ñx =

 Ñx,1 Ñx,2 Ñx,3 · · · Ñx,16

0 0 0 · · · 0
0 0 0 · · · 0


3×16

; Yex =


Yex,1
Yex,2
Yex,3

...
Yex,16


16×1

Ñy =

 0 0 0 · · · 0

Ñy,1 Ñy,2 Ñy,3 · · · Ñy,16

0 0 0 · · · 0


3×16

; Yey =


Yey,1
Yey,2
Yey,3

...
Yey,16


16×1

Ñxy =

 0 0 0 · · · 0
0 0 0 · · · 0

2Ñxy,1 2Ñxy,2 2Ñxy,3 · · · 2Ñxy,16


3×16

; Yexy =


Yexy,1
Yexy,2
Yexy,3

...
Yexy,16


16×1

.

(3.54b)

It is to note that the elastic curvature κ(x, y) is discretized with the nodal degrees
of freedom defined in Fig. 3.8 (a), while the discretization of the hysteretic variable
Y (x, y) is achieved according to a different nodal net defined in Fig. 3.10. It can be
seen that the total degrees of freedom of Y is 3 × 16 = 48, which will raise certain
complexities in the numerical computing. But the use of the Y-nodal net can ensure
the compatibility between κ(x, y) and Y (x, y) and also improves the accuracy of the
interpolation of Y (x, y) with the nodes inside the plate element.

To establish the differential equation of motion, the external virtual work will be taken
into consideration now. For a plate element, if the body force and the single load,
which will cause singularity, are neglected, its external virtual work is resulted from
the distributed area load and the d’Alembert’s inertia force and can be expressed
according to (3.8) as
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δWe =

∫
A

δw(x, y) p̄(x, y, t)dxdy −
∫
V

δw(x, y) (ρ ẅ(x, y))dV

= δwT
e

(∫
A

NT p̄(x, y, t) dxdy

)
− δwT

e

(
ρ h

∫
A

NT N dxdy

)
ẅe ,

(3.55a)

where p̄(x, y, t) is the dynamic area load, ρ is the density, ẅe is the vector of nodal
accelerations and

N =
[
N1 N2 N3 · · · N16

]
1×16

(3.55b)

Setting (3.54a) and (3.55a) in (3.7) and eliminating wT
e , since the virtual nodal de-

formations are arbitrary and unequal zero, the differential equation of motion can be
formulated as

Me ẅe + αKewe + (1− α)(KexYex + KeyYey + KexyYexy) = P̄e(t) , (3.56a)

plus the auxiliary vectors of hysteretic equations

Ẏex = Hex(κ̇ex, Yex), Ẏey = Hey(κ̇ey, Yey) and Ẏexy = Hexy(κ̇exy, Yexy) , (3.56b)

where

Me = ρ h

∫
A

NT N dxdy

Ke =

∫
A

BT DB dxdy

Kex =

∫
A

BT DÑx dxdy

Key =

∫
A

BT DÑy dxdy

Kexy =

∫
A

BT DÑxy dxdy

P̄e(t) =

∫
A

NT p̄(x, y, t) dxdy .

(3.56c)

According to (3.23) each discrete node defined in Fig. 3.10 has three coupled hysteretic
equations for Yex,i, Yey,i and Yexy,i . These hysteretic equations are separately collected
in the vectors Hex, Hey and Hexy, which are therefore also coupled together and each
of them has the dimension of 16 × 1. The same as in the elastic dynamics, Me is the
mass matrix, and Ke is the stiffness matrix, which is related to the nodal deformations.
P̄e(t) is the so called equivalent element nodal forces.

In contrast with the elastic dynamics the differential equation (3.56a) are equipped
with the curvature related matrices Kex, Key and Kexy, i.e., the stiffness matrices of
hysteresis, which are based on the nodal curvatures instead of the nodal deformations.
The differential equation self remains linearly formulated, while the nonlinear proper-
ties are collected in the auxiliary equations of hysteresis (3.56b).
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If the damping nature of the material is considered, e.g., the viscous damping, the
differential equation of motion can be formulated as

Me ẅe + Ce ẇe +αKewe + (1−α)(KexYex + KeyYey + KexyYexy) = P̄e(t) , (3.57a)

where

Ce = æ

∫
A

NT N dxdy is the viscous damping matrix (3.57b)

and æ is the element damping coefficient [7].

Global Equation of System

For the entire plate structure the corresponding damped differential equation of motion
can be built through the global nodal forces equilibrium and expressed as

Mẅ + Cẇ + αKw + (1− α)(KgxYgx + KgyYgy + KgxyYgxy) = P̄(t) , (3.58a)

with

Ẏgx = Hx(κ̇gx, Ygx), Ẏgy = Hy(κ̇gy, Ygy) and Ẏgxy = Hxy(κ̇gxy, Ygxy) , (3.58b)

where all the vectors and matrices are related to the global degrees of freedom.

In the practice it is difficult, if not impossible, to determine the element damping coeffi-
cient æ for an arbitrary element-grouping, especially because the damping’s magnitude
is frequency-dependent. Therefore the global damping matrix C will not be established
through the summation of the element damping matrix Ce, but through the applica-
tion of the global mass matrix M and the stiffness matrix K in conjunction with the
experimentally determined values of damping [7]. The determination of matrix C will
be described in section 3.4.2.

3.4 Reduction Strategies of Differential Equations

To analyze the dynamic responses of a system with hundreds of thousand DOF, an
appropriate reduction’s strategy of the system dimension is indispensable. In the fol-
lowing strategies of reducing the number of the hysteretic variables, which demand
the most computing efforts, will be first proposed. Then the methods of reducing the
deformation degrees of freedom in the literature and the concept of the plastic shape
function will be briefly introduced.

3.4.1 Patch & Split Methods

According to (3.53) each plate elements has 48 Y-variables, hence for a complex plate
structure the number of the hysteretic variables in (3.58a) is enormous and unaccept-
able. Fortunately, not all of the Y-variables are really nonlinear in a large scale system,
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since generally the plastifications occur on only a few locations, while the most parts
of the structure behave elastically. The following two methods can be used to reduce
the number of the Y-variables in the system.

Patch Method

If the yielding locations in a finite element mesh are identified through a pre-analysis
or are known because the pre-damages of the structure, the original yielding related
element, which has only the elastic stiffness matrix Ke, will be replaced by the elastic-
plastic patch element with additional hysteretic stiffness matrices Kex, Key and Kexy

during the establishment of the global differential equation. The global nodal degrees
of freedom can be therefore sorted in an elastic group wa and a plastic group wb, so
that the global differential equation can be written as[

Maa Mab

Mba Mbb

] [
ẅa

ẅb

]
+

[
Caa Cab

Cba Cbb

] [
ẇa

ẇb

]
+

[
Kaa Kab

Kba Kbb

] [
wa

wb

]

− (1− α)

[
0 0
0 Kbb

] [
wa

wb

]
+ (1− α)

[
0 0 0

Kbx Kby Kbxy

] Ybx

Yby

Ybxy

 =

[
P̄a(t)
P̄b(t)

]
(3.59a)

with

Ẏbx = Hbx(κ̇bx, Ybx), Ẏby = Hby(κ̇by, Yby) and Ẏbxy = Hbxy(κ̇bxy, Ybxy) . (3.59b)

The subindex a denotes the affiliated matrices or vectors of the elastic nodal degrees of
freedom, while subindex b is for the plastic ones. With this method, if the total number
of the yielding related elements is n, the maximum number of hysteretic variables to
be concerned is then 48× n.

This idea is applied in [33] for the elastic-plastic frame structure under the condition
that the yielding locations are predefined. As a result the unknowns in the global
differential equation keep unchanged during the whole analysis procedure. But if the
yielding locations are identified within the calculation process instead of previously
defined, the patch method has difficulties to catalogue the hysteretic variables by pro-
gramming, since they are not always present in the differential equation. With the
split method described below this drawback can be overcome.

Split Method

Considering that each of the vectors Ygx, Ygy and Ygxy in (3.58a) has the dimension
NY , which is the total number of curvature degrees of freedom and is generally unequal
to the number of deformation degrees of freedom N . Actually in these Y-vectors only
the components, which correspond directly to the yielding nodes, have to be considered
as hysteretic, while the others are equal the elastic curvatures κi , since the yielding
appears only on certain nodes. Therefore the vector Y for the entire system can be
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split up into a pure hysteretic and a pure elastic vector.

For example, if two yielding nodes, e.g. j and k, are identified in the system, i.e.,
np = 2, the vector Ygx can be split as

[
Ygx

]
NY ×1

=



0
...

Ygx,j
...

Ygx,k
...
0


+



κgx,1
...
0
...
0
...

κgx,NY


= TsYx + (Iy −TsT

T
s )κgx

= TsYx + (Iy −TsT
T
s )Bgxw

(3.60a)

where

Ts =



0 0
...

...

1
...

...
...

... 1

...
...

0 0


NY ×np

← j-row

← k-row

, Yx =

[
Ygx,j
Ygx,k

]
, Iy = identity matrix (NY ×NY ) .

(3.60b)

κgx is the assembling vector of the elastic curvatures κgx,i, which are determined on
the nodes according to the global numbering of Ygx,i (i = 1 . . . NY ).
And κgx = Bgxw, where Bgx is the summation of the local curvature determination
matrix Bex.

According to (3.35a), Bex satisfies

κex = Bexwe with Bex, ij = Bx,j(ηi, ζi) , (3.60c)

where κex is the vector of the local curvatures corresponding to the nodes defined in
Fig. 3.10. In (3.60c) the subindex i = 1 . . . 16 denotes the node number, as j = 1 . . . 16
denotes the curvature shape function.

Similarly the hysteretic vectors Ygy and Ygxy can be also split as

Ygy = TsYy + (Iy −TsT
T
s )Bgy w

Ygxy = TsYxy + (Iy −TsT
T
s )Bgxy w

(3.60d)
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The prerequisite of applying this method is the compatibility described in section 3.3.2,
otherwise the potential energy calculated through the nodal curvatures is unequal the
one through the nodal deformations, i.e., Kewe 6= αKewe+(1−α)(Kexκex+Keyκey+
Kexyκexy).

A disadvantage of this method is the large dimension of the matrices Bgx, Bgy and Bgxy,
which will occupy additional working memories of the computer. But if the yielding
locations are predetermined the patch method can be first used to filter out the yielding
related elements, then the split method can be further applied on these elements, so
that the number of the hysteretic variables and the dimension of the corresponding
matrices can be minimized. Such applications will be illustrated in chapter 5.

3.4.2 Modal Transformation

The next step of reducing the size of the differential equation will be undertaken with
deformation degrees of freedom w, which is fixed by the physical arrangement of the
structure; in general all of these degrees of freedom would be involved in the static
analysis. On the other hand, not all of them need to be considered as independent
variables in the response analysis of an arbitrary dynamic loading [17].

Using the discrete FE-formulation, the eigenvectors can construct a multidimensional
modal space, in which all kind of deformation figures (limited by the FE-discretization)
can be represented as the linear combination of the basic vectors, no matter whether
the material behavior is elastic or plastic. Therefore the modal analysis, which has the
following advantages, is chosen as a foundation of reducing the DOF :

1. Orthogonality - The elastic parts of the differential equations will be decoupled
because of the orthogonality of the mode shapes.

2. Efficiency - Under equally distributed loadings, which are the most cases in dy-
namics, the elastic system responses can be described with sufficient accuracy by
employing only a few modal degrees of freedom.

With the modal transformation the geometrical deformation vector w can be expressed
through the linear combination of all eigenvectors φi as

w = φ1w
∗
1 + φ2w

∗
2 + · · ·+ φN w

∗
N = Φw∗ , (3.61)

where N is system degrees of freedom, Φ is the mode-shape matrix, whose i column is
the eigenvector φi, and w∗ is the vector of the generalized degrees of freedom w∗i .

The eigenvalues and eigenvectors will be determined from the general eigenvalue prob-
lem

Kφi = λiMφi , (3.62)
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where K and M are symmetric, positive definite, N ×N system matrices. The natural
frequency of the system is ωi =

√
λi .

If the eigenvectors are normalized according to M, the following orthogonality can be
found

φTi Mφj = δij and φTi Kφj = λi δij , (3.63)

where δij is the Kronecker delta.

Setting (3.60a), (3.60d) and (3.61) in (3.58), then multiplying the whole differential
equation from left by ΦT , the following equation can be derived(

ΦTMΦ
)
ẅ∗ +

(
ΦTCΦ

)
ẇ∗ + α

(
ΦTKΦ

)
w∗

+ (1− α)
(
ΦTKgx(Iy −TsT

T
s )BgxΦ

)
w∗ + (1− α)

(
ΦTKgxTs

)
Yx

+ (1− α)
(
ΦTKgy(Iy −TsT

T
s )BgyΦ

)
w∗ + (1− α)

(
ΦTKgyTs

)
Yy

+ (1− α)
(
ΦTKgxy(Iy −TsT

T
s )BgxyΦ

)
w∗ + (1− α)

(
ΦTKgxyTs

)
Yxy = ΦT P̄(t)

=⇒
M∗ẅ∗ + C∗ẇ∗ + αK∗w∗ + (1− α)(K∗

rx + K∗
ry + K∗

rxy)w
∗

+ (1− α)(K∗
Y xYx + K∗

Y yYy + K∗
Y xyYxy) = P̄∗(t)

(3.64a)

with the auxiliary vectors of nonlinear equations

Ẏx = Hx(κ̇x, Yx), Ẏy = Hy(κ̇y, Yy) and Ẏxy = Hxy(κ̇xy, Yxy) , (3.64b)

where the definitions of the generalized (∗) matrices are

M∗ = ΦTMΦ C∗ = ΦTCΦ K∗ = ΦTKΦ P̄∗(t) = ΦT P̄(t)

K∗
rx = ΦTKgx(Iy −TsT

T
s )BgxΦ K∗

ry = ΦTKgy(Iy −TsT
T
s )BgyΦ

K∗
rxy = ΦTKgxy(Iy −TsT

T
s )BgxyΦ

K∗
Y x = ΦTKgxTs K∗

Y y = ΦTKgyTs K∗
Y xy = ΦTKgxyTs

(3.64c)

According to (3.63) M∗ is an identity matrix and K∗ a diagonal matrix of the
eigenvalues λi. In order to avoid the complexity of the damping nature the Rayleigh
damping matrix, i.e., proportional to mass- and stiffness-matrix,

C = aM + bK (3.65)

is introduced, where a and b are constants. This leads to the diagonalization of the
generalized damping matrix C∗. On the other hand, with the definition of the modal
damping C∗i = 2ωi ζiM

∗
i the damping ratio of the Rayleigh damping is

ζi =
a

2ωi
+
b ωi
2

. (3.66)
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As a result the material constants a and b can be evaluated in the practices by two
measurement data pairs of (ζ, ω) from the system.

In contrast with the elastic dynamics there are two significant disadvantages in the
nonlinear differential equation (3.64):

• Totally decoupling of this differential equation through the modal transformation
is not available.

Although the correction matrices of the elastic curvatures K∗
rx, K∗

ry and K∗
rxy

are N ×N square, but in general they are off-diagonally populated. Besides, the
modified stiffness matrices of hysteresis K∗

Y x, K∗
Y y and K∗

Y xy are non-square and
have the dimension N × np, where np is the number of the yielding nodes.

But as long as the system responses can be reasonably simulated by a few modal
coordinates, i.e., if the modal degrees of freedom can be reduced, the numerical
computing costs resulted from this shortcoming is not intolerable.

• A simple modal reduction used in the most elastic cases, i.e., the approximation
of the system responses through the few low frequency modes according to the
frequency and the distribution of the external excitations, is not adequate for
this nonlinear equation.

As pointed out in [33] concerning the physically nonlinear dynamic system of 3-
D frame, when the yielding occurs, the locally enhanced curvature distributions
will arise, which can not be accurately described by the few low frequency modes.
The internal hysteretic forces generate responses in high frequency range. The
same phenomenon can also be expected in the plate structure.

Consequently, the number of modal degrees of freedom involved in a dynamic analysis
of a complex plate structure with nonlinear material properties are enormous and a
common numerical calculation is infeasible under this circumstance.

3.4.3 Correction’s Method of Higher Modes

Before introducing the correction’s methods, it should be recalled that the entire dy-
namic analysis procedure involves two basic approximations:

• The selection of the finite element and the corresponding mesh, which approxi-
mates the true strain distribution only in a virtual work sense.

• The modal transformation and reduction, which approximate the physical defor-
mations of the large number of a finite-element system.
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If the full set of modal coordinates is included in the modal-superposition, it will give an
exact solution within the limits of the finite-element assumptions; in other words, the
differential equation (3.64) can be solved exactly by superposing all the mode shapes,
if possible. Otherwise, the modal truncation errors should be considered and corrected,
as the contributions of the higher modes to the system response are no more negligible.

In the literature several methods can be found, in which static deformation figures are
added to the superposition of the eigenvectors, to decrease the truncation errors by
using the reduced modal basis. One of these methods is briefly interpreted below.

Static Correction Procedure

With the study of modal contributions it can be concluded that, for the higher modes
of the system, the resistance tends toward purely static behavior and inertial effects are
negligible [17]. Therefore the dynamic system response can be approximately divided
into a dynamic part wd, which is the sum of the lower mode contributions, and a
quasi-static part ws, which is the superposition of the remaining higher modes, as
following

w(t) ' wd(t)+ws(t) =

nred∑
i=1

φiw
∗
d,i(t)+

N∑
i=nred+1

φiw
∗
s,i(t) = Φr w

∗
d(t)+Φhw∗

s(t) , (3.67)

where nred is the number of the reduced mode shapes. The reduced modal basis is so
chosen that the lowest frequency of the neglected modes is wide beyond the highest
frequency of the excitations.

Applying this procedure in the nonlinear model established previously the system dy-
namic response can be determined by using the reduced modal basis through the dif-
ferential equation

M∗ẅ∗
d + C∗ẇ∗

d + αK∗w∗
d + (1− α)(K∗

rx + K∗
ry + K∗

rxy)w
∗
d

+ (1− α)(K∗
Y xYx + K∗

Y yYy + K∗
Y xyYxy) = P̄∗(t)

(3.68)

with the auxiliary nonlinear equations (3.64b). It is to note that all the generalized
matrices are now calculated through the reduced mode-shape matrix Φr instead of Φ
after (3.64c).

Then the system response is corrected by adding the quasi-static part, whose modal
coordinates can be obtained by ordinary static analysis as

w∗s,i(t) =
P̄ ∗i (t)

K∗
i

=
φTi P̄(t)

ω2
i

, so that ws(t) =
N∑

i=nred+1

φi φ
T
i

ω2
i

P̄(t) . (3.69)

To avoid the evaluation of the higher mode shapes, this quasi-static part can be ex-
pressed through the total static response given by all modes and subtracting the static
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response developed in the first nred modes as

ws(t) = K−1 P̄(t)−
nred∑
i=1

φi φ
T
i

ω2
i

P̄(t) . (3.70)

This concept is adopted in [61] and [74], in which the internal nonlinear restoring
forces, comparable with the Y terms in (3.68), are moved to the right hand side of the
equation and treated as the external loadings.

Another methods such as the Mode Acceleration Method [17], which is similar to the
Static Correction Procedure but was developed several decades earlier following a differ-
ent line of reasoning, and the Modal Augmentation Method [36] serve also the purpose
of avoiding certain higher mode errors. A discussion of them can be found in [33].

3.4.4 Plastic Shape Function

The methods mentioned in previous section have one thing in common – the contribu-
tion of higher modes is statically approximated, i.e., their inertia and damping effects
are neglected. But generally the inertial and damping forces will arise from the dispro-
portionately increased curvature under yielding.

In order to make the evaluation of the higher mode contributions in a nonlinear dynamic
analysis more accurately and more efficiently, the concept of Plastic-Shape-Function
(PSF) was first proposed by Grundmann [31], who suggests that the locally amplified
curvature distribution and its corresponding deformation figure resulted from yielding
could be condensed within particular PSFs in accordance with the plastification loca-
tions . So that the few PSFs can replace the higher eigenmodes in the modal analysis
and be added on the reduced modal bases as extended modes. Until now this concept
is already successfully applied on the nonlinear 3-D frame structure. About the devel-
oping history of the PSF is reported in section 1.2.

Therefore the other possibility to reduce the degrees of freedom of (3.64) for a nonlinear
plate system and to maintain the accuracy of solutions at the same time is to extend
the reduced basis, which is used in elastic dynamics, with the adaptable PSFs for the
plate structure. The quality of solutions depends then directly on how well the PSF can
reproduce the curvature distribution of yielding, i.e., how well the PSF can simulate
the contribution of higher eigenmodes. The basic considerations, the requirements and
the evolution of the plastic shape function is illustrated in the next chapter.



Chapter 4

Development of
Plastic-Shape-Functions

4.1 Basic Requirements and Concept

In order to ensure that the PSF can reasonably substitute the higher modes needed
in the modal analysis of a nonlinear system and provide a reliable solution, the PSF
should satisfy the following basic requirements:

• Satisfaction of the boundary conditions – the PSFs should fulfill the essential and
the natural boundary conditions of the system, since they are used as the modal
vectors to build the virtual displacement, which corresponds to the test function
in the Galerkin Method.

• Reconstruction of the curvature distribution – the PSFs should be able to describe
the local curvature distribution specific to the yielding.

• Orthogonality – the PSFs should be orthogonalized with respect to the lower
modes, which are used for the elastic part of the system responses, so that they
can serve as independent new bases to expand the modal space for the nonlinear
dynamic problems.

The basic concept of PSF is : Under the dynamic process, the yielding specific de-
formation and the corresponding stress distribution of a part of the system can be
described as the multiplication of a time-variant amplitude with a basic geometrical
figure, which has a unit plastic deformation. This basic deformation figure can be used
as a kind of modal vector and its time-variant amplitude is then the generalized degree
of freedom. And this basic deformation figure is the so-called Plastic Shape Function.

To illustrate this concept, taking a one-side restrained elongating bar as an example.
Considering that this bar has a weak zone ‘b1’, which has a lower yield limit σY,b1 and
a post-yielding stiffness αE, as the others ‘b2’ have the same material properties but a

52
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higher yield limit σY,b2. The system and the σ − ε diagram, which is simplified as the
bi-linear hardening model, are shown in Fig. 4.1 (a) and (b).

Supposed that at a particular time the bar has the internal stress σn, which is smaller
than σY,b2 but higher than σY,b1, that just the weak zone ‘b1’ yields and has a unit plas-
tic strain εp,b1. The corresponding stress and strain distribution is shown in Fig. 4.1 (c).

(a) System

(b) Material Properties

(c) Stress / Strain

Figure 4.1: Elongating Bar
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The total strain and stress in zone ‘b1’ and ‘b2’ are separately{
εb1 = εY,b1 + εp,b1
σb1 = E εY,b1 + αE εp,b1 = σn

{
εb2 = εe,b2 + 0 = εn
σb2 = E εe,b2 + 0 = σn

(4.1)

Separating out the plastic strain and the post-yielding stress, the corresponding dis-
tributions as given in Fig. 4.2 are what the PSF should simulate in this particular
example. It is to note that this PSF can be further normalized, so that various plastic
strains, as long as the size and the position of the weak zone remains the same, can be
simulated by the normalized PSF together with a weighting coefficient.

Figure 4.2: Post-Yielding Stress / Pl. Strain

To reproduce this strain distribution and to find its static deformation figure, imagining
that only the part ‘b1’ of the same bar has an elastic strain with the magnitude εp,b1
under a particular circumstance. This part ‘b1’ will be cut off and loaded by fictive
external compression forces Np = −EAεp,b1 as shown in Fig. 4.3, so that its strain
reduces to zero. Then the clipped ‘b1’ will be put back on the system. Subsequently
the whole system will be released and loaded by the fictive reaction forces.

Figure 4.3: Reproduction of pl. Strain

This statically loaded system in Fig. 4.3 has then the same strain distribution as the
plastic portion shown in Fig. 4.2 (b). The next question: does this system also provide
the exact stress distribution as given in Fig. 4.2 (a) ? At first sight the fictive reaction
forces result in the elastic stress Eεp,b1, which is unequal to the desired post-yielding
stress αEεp,b1, in the yield zone ‘b1’.

But actually, as the part ‘b1’ yields, the stress inside ‘b1’ will be evaluated according
the hysteretic equation:

σ = αEε+ (1− α)E ξ , (4.2)

therefore the post-yielding stress distribution is also correct. In other words, the plastic
part of the strain distribution is indeed calculated linear elastically, but its correspond-
ing stress distribution is determined nonlinearly.
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Satisfying the distribution of the plastic strain and the post-yielding stress, the defor-
mation figure that resulted from the statically loaded system given in Fig. 4.3 is the
plastic shape function needed for this example. Normalizing this plastic shape func-
tion and equipping it with a weighting coefficient, then it can serve as a kind of modal
vector for the dynamic analysis.

4.1.1 Elongating Bar

To verify this derivation, a numerical analysis of the system given in Fig. 4.1 (a) is
performed. It is assumed that the steel bar has the length Lb = 1 [m] and is discretized
in 100 elements with a element length of Le = 0.01 [m]. The other material and system
constants are defined as:

E = 2.1·105 [N/mm2], σY = 240 [N/mm2], A = 100 [mm2] and µ = 0.008 [kg/m] .

The bar is loaded in the horizontal direction on the 76′th to 81′th elements by the
distributed load p(t) shown in Fig. 4.4, in which H(t) is the Heaviside function. The
total loading time is tmax = 16 [s], the sampling time span is ∆t = 1/32 [s] and the
loading frequency is ω = 0.4 [rad/s].

Figure 4.4: System / Loading Function of Elongating Bar

The weak zone ‘b1’ is set on the element Nr.40, which has a ten times lower yielding
strain εY,40 = (σY /E)/10 than the other elements to emphasize the yielding. In this
discrete system the internal element elongation is assumed to be linear and can be
interpolated as

ue(x) = (1− x/Le)ue,l + (x/Le)ue,r = N1 ue,l +N2 ue,r , (4.3)

where ue,l and ue,r are the nodal displacements.
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Under this assumption, the strain is constant inside the element, hence only one hys-
teretic variable ze according to the Bouc-Wen’s model (B.4) is needed per element and
the compatible interpolation function of ze is then Ñ = 1. Using the principle of virtual
work the local differential equation can be formulated as

Meü+ Ce u̇+ αKe u+ (1− α)Kex ze = P̄e(t) (4.4a)

where

Me = µ

∫ [
N1

N2

] [
N1 N2

]
dx

Ke = EA

∫ [
∂N1/∂x
∂N2/∂x

] [
∂N1/∂x ∂N2/∂x

]
dx

Kex = EA

∫ [
∂N1/∂x
∂N2/∂x

] [
1

]
dx

Ce = Ke/500 P̄e(t) =

∫ [
N1

N2

]
p(t) dx .

(4.4b)

Considering the force equilibrium the global system matrices, i.e., M, C, K, Kgx and
P̄ can be established. Then applying the modal transformation the global differential
equation in modal space can be written as

M∗ü∗ + C∗ u̇∗ + αK∗ u∗ + (1− α)K∗
rx z = P̄∗(t) (4.5a)

where u∗ is the modal coordinate and according to section 3.4.2, the generalized system
matrices are defined as

M∗ = ΦTMΦ C∗ = ΦTCΦ K∗ = ΦTKΦ

K∗
rx = ΦTKgx(Iy −TsT

T
s )BgxΦ P̄∗(t) = ΦT P̄(t) .

(4.5b)

As the reference solution all eigenvectors are used in the mode-shape matrix Φ and
the strain distribution at time point t = 10.75s is given as the red solid line in the
upper part of Fig. 4.5. Analyzing the modal coordinate values at this moment, which
is shown in the second part of Fig. 4.5, it can be seen that the first 8 modal shapes
almost dominate the system reaction. Therefore the result of using the first 8 modes,
which are collected in the reduced basis matrix Φred to replace Φ as commonly applied
in elastic dynamics, is also performed and indicated by the green dashed line. As
expected, it can be seen that the locally raised strain due to the yielding can not be
covered by the reduced modal basis.

According to the method mentioned in previous section the PSF – ψp needed for this
example can be calculated through the force vector P̄p , which has only two opposite
single loads ±Np on the left and right nodes of the element Nr.40 as shown in Fig. 4.3,
under the global degrees of freedom as

ψp = K−1 P̄p . (4.6)

To ensure the orthogonality of the PSF with the reduced bases, the contributions of
the reduced bases have to be subtracted from the PSF, since it can be formulated
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Figure 4.5: Strain Distribution and Modal Contributions of Elongating Bar

as the linear superposition of all the eigenmodes. According to [42] or the so-called
Gram-Schmidt method in [17] the orthogonalized PSF can be determined as

ψ̃p = ψp − Φred(Φ
T
redMψp) . (4.7)

In Fig. 4.6 the PSF, which is merely normalized with respect to the mass matrix but
unmodified, and the further orthogonalized PSF with respect to the reduced bases Φred

are represented.

Figure 4.6: Unmodified / Orthogonalized PSF of Elongating Bar

Then the reduced modal space will be extended by adding the PSF in it as

Φ̃red =
[
φ1 φ2 . . . φ8 ψ̃p

]
. (4.8)

Replacing Φ in (4.5) by Φ̃red, the results of applying the PSF in comparison with the
reference solution by different observation time is given in Fig. 4.7. It can be seen that



4.1. BASIC REQUIREMENTS AND CONCEPT 58

no matter the displacement or the strain are well rebuilt by using of the PSF under
yielding. With only a slight loss of accuracy in comparing to reference solutions, the
total modal degrees of freedom is strongly reduced from 100 to 8 and the spending
time of numerical evaluation is about 6-times compressed.

(a) Displacement

(b) Strain

Figure 4.7: Reference / PSF Applied Solutions of Elongating Bar

Conclusion:

• The Plastic-Shape-Function can be found by the statically deformation analysis
of the original system loaded by a force group, which is the opposite of the force
group needed for counteracting a unit plastic deformation of the yield zone.

• Only the pure geometrical deformation figure of such static analysis is adopted
as the PSF; the internal stresses of the PSF will be determined according to the
elastic-plastic constructive material law.

• The PSF can only replace the higher mode contributions which resulted from
yielding. The other factors that excite the higher modes, such as the unequally
distributed loading, single loads or impulse loading, need to be treated especially.
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4.2 PSF of FE Discrete Bending Beam

To extend the concept of the PSF for a general finite element system and to show
the systematic determination of the force group needed for producing the PSF, the
bending beam is considered in this section. Although the PSF of bending beam has
been already developed in [42] and extended for 3-D framework in [33], at this place
the PSF of bending beam will be derived from a different way, i.e., from the curvature
related stiffness matrix.

Under the ultimate state the beam cross section is fully yielded and forms a hinge with
the moment capacity M̃p after the theory of plastic hinge. According to this assumption
there is a discontinuity of the curvature at the yielding location and the idealized plas-
tic curvature is schematically represented as the dashed line in Fig. 4.8 (a). Depending
on the system (statically determinate or indeterminate) and on the loading property
(static or dynamic) the enhanced curvature of the plastic hinge can be finite or infinite.

Figure 4.8: pl. Curvature Distribution

In a discrete finite element system this locally concentrated curvature distribution can
only be simulated through the derivatives of the deformation shape functions. With
the Bernoulli beam theory the typical deformation shape function is the Hermite’s in-
terpolation function, which is a third order polynomial. Its second derivative for the
curvature is then linear. Therefore the idealized curvature distribution will be approx-
imated through the triangle as shown with the solid line in Fig. 4.8 (a) in a FE-system.
It is also to note that in the discretized system the plastic hinge always locates on the
nodal point, since the element internal values can only be interpolated, and the minimal
detectable yielding zone is the discrete element length. Consequently, the enclosed area
of the discretized plastic curvature is overestimated, which is an inevitable shortcoming
of the FE-discretization, in comparison with the idealized plastic curvature distribution.

The accuracy of this approximation depends on the quality of the deformation shape
function and on the fineness of the discretization. Therefore within the limit of the
FEM the PSF should and can only reproduce the discretized curvature distribution,
but not the ‘exact’ one. It can be seen from Fig. 4.8 (a) that two adjacent elements are
involved with the plastic hinge and have the mirrored plastic curvature distribution of
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right triangle form. Hence only one element has to be considered to develop the half
PSF.

According to the conclusion made in previous section, the normalized curvature dis-
tribution as shown in Fig. 4.8 (b) can be reproduced by a force group, whose opposite
results in a negative unit curvature on the left node of the yielding related element
on the right hand side. To determine such force group, the concept of the curvature
related stiffness matrix introduced in the subsection 3.3.3 can be very useful.

With use of the Hermite’s interpolation function the compatible interpolation functions
of the curvature κx(x) = Ñx,1 κx(0) + Ñx,2 κx(le) are

Ñx,1 = 1− x

le
and Ñx,2 =

x

le
, for 0 ≤ x ≤ le , (4.9)

where le is the element length. And comparing with (3.56c), the curvature related
stiffness matrix of the bending beam can be evaluated as

Kex =

∫
BT

4×1(EI) Ñx,1×2 dx =
EI

le
3


−le2 le

2

le
3 0

le
2 −le2

0 −le3

 , (4.10)

where Ñx,1×2 = [ Ñx,1 Ñx,2 ] and B1×4 is the matrix of the second derivatives of the
deformation shape function as given in (D.2b).

As a result the force group P̄p,r, which produces the wished nodal curvature [−1 0 ]T ,
can be evaluated as

P̄p,r = Kex

[
−1
0

]
=
EI

le
3


le

2

−le3
−le2

0

 . (4.11)

It can be proved that this force group can also be obtained through the multiplication
of the deformation stiffness matrix Ke (s. (D.3)) with one of various nodal deformation
sets, such as [ 0 −le

3
0 le

6
]T , which can also produce the same nodal curvature [−1 0 ]T .

But such combinations of nodal deformations are not unified and can not be directly
embedded in the global system to find the PSF, especially when the system is statically
indeterminate.

For the element on the left hand side of the plastic hinge the corresponding force group
can be found as P̄p,l = Kex[ 0 − 1 ]. Combining the opposite of P̄p,r and the opposite
of P̄p,l as the external forces P̄p acting on the beam, which is a vector under the global
degrees of freedom as shown in Fig. 4.9, the complete Plastic-Shape-Function ψp can
be determined through the static analysis as

ψp = K−1P̄p , (4.12)
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Figure 4.9: Force Group of Producing the PSF of Beam

where K is the global stiffness matrix of the entire system. The orthogonal PSF ψ̃p
with respect to the reduced modal bases can be found analogically as (4.7).

In [42] identical PSFs of bending beam as derived in this section are also developed but
following different considerations and the numerical examples of this work have veri-
fied the accuracy of such PSFs. Examples of the 3-D frame structure by using similar
concept of PSF, which show especially the efficiency of PSF, can be found in [33].

Conclusion:

• Within the finite element system the idealized plastic curvature distribution can
only be discretely approximated through the second derivatives of the deforma-
tion shape function.

• The exact extent of yielding, in which the plastic limit moment M̃p is reached,
is not explicitly defined. The yielding can only be distinguished on the element
nodes and the yielding range inside the element will be linear interpolated (s. [33]).
To overcome this deficiency, the FE-net has to be refined around the yielding
nodes.

• According to this discrete formulation a chain of plastic hinges will form as the
yielding zone incessantly expands.

• Only if the curvature related stiffness matrix Kex is determined by using the
compatible interpolation functions, is the potential energy of yielding exactly
formulated within the limit of FEM.

• The force group needed to produce a unit curvature on the left or right element
node can be read directly from the corresponding column of the curvature related
matrix Kex.

• This method of developing the PSF can be applied not only on the statically
determinate system but also on the indeterminate system, since the force group
is obtained from the cutting-off element but acts on the complete system, i.e., the
boundary conditions of supports are always considered. So that the effects of re-
dundant forces in the statically indeterminate system are automatically included
in the PSF.
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4.3 PSF of Laterally Loaded Plate

With use of the Kirchhoff plate theory the yielding involves with three curvatures,
namely κx, κy and κxy. At the yielding location these curvatures have a certain inter-
relationship depending on the loading condition and the material property, but on the
other hand these three curvatures have their own distribution function and are from this
point of view independent of each other.Therefore it is assumed in the present work
that there exist three independent plastic shape functions for simulating the plastic
curvatures κx,p, κy,p and κxy,p, which are defined as the portion of curvatures beyond
the yielding limit by the strain-hardening material.

Because of the two-dimensional nature of plate and various combinations of the yield-
ing stresses, it is not easy to represent the real distribution of the plastic curvatures
graphically. But similar to the concept of the plastic hinge, the yielding zone of plate
can be idealized as a concentrated small point at the beginning. As a result,depending
on the principal stress direction, each of the plastic curvatures κx,p, κy,p and κxy,p under
this idealization could have a peak-shaped distribution.

As mentioned in the previous section the yielding can only be described discretely and
starts from a node in the FE formulation. For example it can be the joint node of
four adjacent elements, and is enclosed by them, while the other elements still behave
elastically. To illustrate such discrete simulation, Fig. 4.10 shows the plastic curvature
κx,p of a yielding element corner node. It can be seen that under the use of bi-cubic
deformation shape function, the discrete κx,p is linear in x- and cubic in y-direction
and is also symmetric with respect to these to axes.

Figure 4.10: Discretized Plastic Curvature κx,p

To rebuild the curvature distribution given in Fig. 4.10 through the PSF, only one of the
four yielding related elements has to be considered by using the symmetry conditions.
Taking the element Nr.1 in Fig. 4.11 (a) as example, the PSFs of this element should
have a unit curvature at the local node Nr.3 with corresponding distributions for κx,p,
κy,p and κxy,p respectively, which are shown in Fig. 4.11 (b)∼(d).
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(a) Local Node Nr. / Element Nr.

(b) κx,p (c) κy,p (d) κxy,p

Figure 4.11: Nodal Plastic Curvatures of One Single Element

According to the conclusion made in section 4.2, the static force group needed to create
such compatible unit curvature distribution can be determined through the stiffness
matrix of hysteresis. It can be read from Fig. 4.11 (b) that the nodal curvature values
are κx,p3 = 1, κx,p9 = 2/3 and κx,p10 = 1/3, by which the numeral index is the node
number, as the other nodal values are equal to zero. Collecting these nodal curvatures

in the vector κu3 =
[

0 0 1 0 0 0 0 0 2/3 1/3 0 0 0 0 0 0
]T

, so that
the force group P̄xp,u3, which has the dimension of 16× 1, for a unit curvature at node
Nr.3 of element Nr.1 can be determined as

P̄xp,u3 = Kex κu3 , (4.13)

where Kex comes from (3.56c).

The curvature interpolation functions derived from section 3.3.2 have the following
relationship

Ñx,3 +
2

3
Ñx,9 +

1

3
Ñx,10 = 2 Ñx,3 = η (ζ − 4.5 ζ2 + 4.5 ζ3) , (4.14)

since κx is linear in the x-direction. Therefore the columns of the matrix Kex are also
dependent on each other corresponding to the relation of curvature interpolation func-
tions Ñx,i. It can be verified that the force group P̄xp,u3 is equal to two times of the
3rd column of Kex, which is the force vector corresponding to the single unit curvature
of node Nr.3. This indicates that each column of Kex can serve directly as the static
force group needed for producing the PSF of the corresponding node, because only the
geometrical figure is relevant for the modal vector.
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To rebuild the discretized plastic curvature κx,p as shown in Fig. 4.10 and to find its
corresponding PSF – ψxp , the 3rd, the 4th, the 1st and the 2nd columns of Kex have
to be used as the loading vectors on the element Nr.1, Nr.2, Nr.3 and Nr.4, which
are according to the element numbering given in Fig. 4.11 (a), respectively. So that a
global loading vector P̄xp will be established and the PSF can be determined as

ψxp = K−1P̄xp , (4.15)

where K is the deformation stiffness matrix of the global system.

Beside the PSF ψxp for the plastic curvature κx,p the other two PSFs ψyp and ψxyp,
which are corresponding to κy,p and κxy,p, should also be determined, since the yielding
of plate involves with these three curvatures. Similarly the PSFs ψyp and ψxyp will
be created by setting the force groups, which can be read directly from the hysteretic
stiffness matrix Kex and Kexy in (3.56c) respectively, on the corresponding elements to
form the global force vectors P̄yp and P̄xyp, and then can be evaluated statically as

ψyp = K−1P̄yp and ψxyp = K−1P̄xyp . (4.16)

The orthogonal PSFs ψ̃xp, ψ̃yp and ψ̃xyp with respect to the reduced modal bases Φred

can be determined analogically according to (4.7).

Because of the curvature interpolation nodes defined in Fig. 3.10, the yielding can be
distinguished not only on the corner nodes, whose PSF has been developed above, but
also on the nodes on the edges and inside the element. The PSFs for the latter two
cases can also be developed by applying the same procedure illustrated in this section.
It is to note that the yielding on the element edge involves two elements, while the
internal yielding node concerns with only one element.

Conclusion:

1. Under the FE-formulation of the plate each discrete node has three indepen-
dent PSFs, which are corresponding to the plastic curvature κx,p, κy,p and κxy,p
respectively.

2. The static loading group needed to create the local PSF for a particular node of
a single element, i.e., the local force group, is the node number coincident column
vector of the hysteretic stiffness matrices κx,p, κy,p or κxy,p, depending on which
PSF is looked for.

3. According to the location of the yielding node, i.e., on the corner, on the edge or
inside of the element, different local force groups obtained from point 2. will be
put on the corresponding elements to establish the complete force vector of the
global system. Then the PSF of the global system can be determined through
the static analysis by using the stiffness matrix K.
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4. Because of the nature of the curvature interpolation functions Ñ(x, y), not all the
local PSFs are linear independent with each other. For example, ψxp,n5, which is
the PSF corresponding to κx,p for the local node Nr.5, can be expressed through
the combination of ψxp,n1 and ψxp,n2, which are PSFs for node Nr.1 and Nr.2
respectively. And for the twisting curvature κxy,p are the PSFs: ψxyp,n5 = ψxyp,n6,
ψxyp,n13 = ψxyp,n14 = ψxyp,n15 = ψxyp,n16, . . . and so forth.

Detailed investigations of applying the PSFs for the nonlinear dynamic analysis of plate
will be given in chapter 5 by means of various numerical examples.



Chapter 5

Numerical Verification of PSFs

In order to verify the accuracy and the efficiency of applying the plastic shape functions,
the nonlinear dynamic analysis of a rectangular steel plate under harmonic loading with
considerations of various yielding conditions will be illustrated in this chapter.

5.1 System and Loading

As represented in Fig. 5.1 the rectangular plate is assumed to be simple supported at
its four sides. This plate system discretized in a 10× 10 finite element net, which has
totally 400 degrees of freedom by using the Schäfer plate element introduced in section
3.3.1.

Figure 5.1: Simply Supported Plate System / FE Discretization

The system dimensions and material parameters, i.e., construction steel ‘S 235’ after
the norm [1], are

Lx = 2.0 [m], Ly = 1.2 [m], h = 0.002 [m], nx = 10, ny = 10

E = 210 · 106 [kN/m2], σY = 235 · 103 [kN/m2], ν = 0.3, ρ = 78.5 [kN/m3]

66
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This plate system is oscillated by a uniformly distributed harmonic loading over the
entire area, which is formulated as

p̄(x, y, t) = Pa sin(2πft)
[
0.5

(
1− cos(

4πt

tmax
)
)
H(−t+

tmax
4

) +H(t− tmax
3.9999

)
]
, (5.1)

where Pa is the maximal loading amplitude, f is the loading frequency, tmax is the
loading duration and H(.) is the Heaviside function. This loading function with Pa =
2.5 [kN/m2], f = 0.9 and tmax = 16 [sec.] is schematically illustrated in Fig. 5.2.

Figure 5.2: Harmonic loading

5.2 Reduced Nonlinear Differential Equation

Generally, if any node in the FE model is considered as possible to yield, then each
node has three nonlinear variables, i.e., Yx, Yy and Yxy, and the maximal number of
the Y-variables of the system defined above is 2759, when the Y-nodal net of the ele-
ment is specified after Fig. 3.10. Such number of Y-variables is much higher than the
deformation DOF (N = 400) to be calculated by a commercial PC. But fortunately
not all the nodes have to be calculated nonlinearly, since only a part of them will yield
even under the limit state of the plate.

In the following studies of different yielding conditions it is always assumed that the
locations of the yielding nodes are known and the number of the additional nonlinear
differential equations for the hysteretic variables will be correspondingly reduced. First
the patch method will be applied to establish the global stiffness matrix. With this
method only the yielding related elements will be equipped with elastic and hysteretic
stiffness parts as

αKewe + (1− α)(KexYex + KeyYey + KexyYexy) , (5.2)

while the unmodified stiffness matrix Ke is used for the other purely elastic elements.
This procedure of the patch method is represented schematically in Fig. 5.3.

According to (3.59a), the global nonlinear differential equation of motion can be sim-
plified as

Mẅ + Cẇ + Kmodw + (1− α)(KbxYbx + KbyYby + KbxyYbxy) = P̄(t) , (5.3)
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Figure 5.3: Patch Method

where Kmod is the modified elastic stiffness matrix of the system and

Kmod = K− (1− α)KPsub

=

[
Kaa Kab

Kba Kbb

]
− (1− α)

[
0 0
0 Kbb

]
,

(5.4)

in which K is the usual elastic stiffness matrix of the global system and KPsub is the
elastic sub stiffness matrix of the yielding related elements.

It is to note that the dimension of Y-variable vectors, e.g., Ybx, is NY × 1. If the
yielding related elements are defined as in Fig. 5.3, then is NY = 49. Although the
number of the hysteretic variables is reduced from 2759 to 49× 3, the reduction is still
not optimal, since not all 49 nodes equipped with Y-variables in the yielding related
elements really behave nonlinearly.

Therefore the split method can be added on these hysteretic vectors to reduce the
dimension of the hysteretic part in (5.3) again. For example the vector Ybx can be
split up according to (3.60) as

Ybx = TsYx + (Iy −TsT
T
s )κbx

= TsYx + (Iy −TsT
T
s )Bbxw ,

(5.5)

in which Ts is after (3.60b) and Yx has the dimension of np× 1, e.g., np = 4 according
to Fig. 5.3.

Similarly Yby and Ybxy will also be split up into pure elastic and pure hysteretic vectors.
Further applying the modal transformation w = Φw∗ the global differential equation
(5.3) can be developed as(

ΦTMΦ
)
ẅ∗ +

(
ΦTCΦ

)
ẇ∗ +

(
ΦTKmodΦ

)
w∗

+ (1− α)
(
ΦTKbx(Iy −TsT

T
s )BbxΦ

)
w∗ + (1− α)

(
ΦTKbxTs

)
Yx

+ (1− α)
(
ΦTKby(Iy −TsT

T
s )BbyΦ

)
w∗ + (1− α)

(
ΦTKbyTs

)
Yy

+ (1− α)
(
ΦTKbxy(Iy −TsT

T
s )BbxyΦ

)
w∗ + (1− α)

(
ΦTKbxyTs

)
Yxy = ΦT P̄(t) ,

(5.6a)
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together with the auxiliary vectors of nonlinear equations

Ẏx = Hx(κ̇x, Yx), Ẏy = Hy(κ̇y, Yy) and Ẏxy = Hxy(κ̇xy, Yxy) , (5.6b)

whose components come from (3.23). It is to note that in the following study cases the

principal strain angle θ̃ is time invariant under the harmonic loading, i.e., ˙̃θ = 0. By

numerical simulations ˙̃θ is never exactly equal to ‘0’ but equal to a very small num-
ber, which would result in numerical instabilities in trigonometric functions, therefore
the last term of (3.23) on the right hand side is neglected in the following numerical
examples.

5.3 Numerical Examples of Different Yielding Con-

ditions

In this section cases of different yielding locations in the plate will be studied to certify
the validity of the plastic shape function. If it isn’t especially mentioned, the loading
for each cases is assumed to have Pa = 2.5 [kN/m2], f = 0.9 [Hz] and tmax = 16 [sec] af-
ter (5.1). For the numerical integration the discrete time step ∆t = 1/32 [sec] is chosen.

The solution of using the extended modal bases (plastic shape functions included)

Φ̃red =
[
φ1 φ2 . . . φnred

ψ̃xp,1 ψ̃yp,1 ψ̃xyp,1 . . . ψ̃xyp,np

]
, (5.7)

taking the place of Φ in (5.6a), will be compared with the reference solution, for which
all eigenvectors are utilized in the mode-shape matrix Φ of (5.6a). In order to control
the approximation error of the reduced modal bases on the elastic system response and
to show the error part of PSFs properly, a pre-study of pure elastic system responses
is performed and the number of the adopted eigenmodes nred = 20 is selected.

As shown in Fig. 5.4 the difference of the elastic curvatures between the reference
solution (400 modes) and the reduced modal solution (20 modes) is about 3.3% for κx
and 1.5% for κy in the plate middle under the maximal deflection. Such error ratio is
defined as

Error(i, j) =
∣∣∣Rs(i, j)− As(i, j)

Rsmax

∣∣∣× 100% , (5.8)

where Rs(i, j) is the discrete reference value, As(i, j) is the approximated value and
Rsmax is the maximal reference value. It is to note that by using the deformation FE
method the accuracy of the deformations is much better than that of the curvatures,
since the curvatures are the second derivative of the deformations, and the error ratio of
the deformations is generally smaller than 0.5% for this elastic case except the twisting
angle at the corners.

Fig. 5.5 shows the different plastification conditions investigated in the following and
the yielding nodes defined in each case are nodes with lower yield stress of σY /10. For
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the group A the yielding related elements locate on the centrum of the plate, where
the bending moment dominates. In each subcase of this group, i.e., A.1, A.2 and A.3,
it is assumed that the number of the yielding nodes is 1, 2 and 4 respectively, which
develops along the x-direction. For the group B the yielding related elements are then
located near the corner on the diagonal. In each subcase B.1, B.2 and B.3 the number
of the yielding nodes is also assumed to be 1, 2 and 4, but developed in the diagonal
direction.

(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.4: Error Ratio of Curvatures – 20-modes/reference by Pure Elastic Case

Figure 5.5: Study Cases
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5.3.1 Case A.1 - One yielding node in plate middle

In this subcase it is assumed that there is only one yielding node locating at the
cross point of four yielding related elements in the middle of the plate. In Fig. 5.6
the curvatures and the moments of the reference solution along the section A − A
and B − B, which are defined in Fig. 5.5, is given at the time t = 8.625 sec. of the
maximal deflection. It can be seen that the curvatures increase locally. And there are
discontinuities in the curvature distribution near the yielding node because of reaching
the moment capacities.

Figure 5.6: Curvatures and Moments of Section A-A/B-B at t = 8.625 sec

Just as expected the solution of applying merely 20 eigenmodes can not represent the
enhanced curvatures at the yielding location. To show the improvement achieved by
PSFs, it is necessary to interpret the error between the reference solutions and the
results of the first 20 eigenmodes. The distribution of the curvatures of the reference
solution and the error ratio of the 20-modes solution with respect to them is repre-
sented in Fig. 5.7, which correspond to the maximal deflection at t = 8.625 sec. All the
following demonstrations are relating to this time point, unless additionally specified.
In comparison with Fig. 5.4 it can be recognized that the error ratio increases several
times around the yielding point.

Now the solution will be improved by applying the PSFs developed in section 4.3.
For one yielding node three independent plastic shape functions are needed and the
reduced modal bases is extended with these PSFs as

Φ̃red =
[
φ1 φ2 . . . φ20 ψ̃xp,1 ψ̃yp,1 ψ̃xyp,1

]
, (5.9)

which has a total dimension of 23. Similar to Fig. 5.7 the error ratio of the curvatures
between the reference and the PSFs applied solutions is given in Fig. 5.8. It can be
seen that the error of the curvatures near the yielding point is significantly reduced
with this procedure and has about the same level as by the elastic case.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.7: Reference Curvatures and Error Ratio – 20-modes/reference by Case A.1

To have more aspects of the improvement of PSFs, some other results are also repre-
sented. Fig. 5.9 shows the comparison of κx, κy along the section A − A and the κxy
along the diagonal at t = 8.625 sec between the reference, 20-modes and the PSFs ap-
plied solutions. The comparison of the moment time histories, i.e., Mx(t) and My(t), of
the yielding node between these three solutions is demonstrated in Fig. 5.10. The error
ratio of the deformations between the reference and the PSFs applied solutions is also
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(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.8: Error Ratio of Curvatures – (20-modes+PSFs)/reference by Case A.1

Figure 5.9: Comparisons of κx, κy on Section A− A and κxy on Diagonal, A.1
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given in Fig. 5.11 out of the interest. These error ratios are generally smaller than 0.5%
of the pure elastic case except the twisting angle at the corner, whose error is inherited
from the approximation of the elastic system responses by using the first 20 eigenmodes.

Figure 5.10: Comparison of Mx and My of the Yielding Node – Case A.1

(a) Error of deflection w[%] (b) Error of angle ψx[%]

(c) Error of angle ψy[%] (d) Error of twist ψxy[%]

Figure 5.11: Error Ratio of Deformations – (20-modes+PSFs)/reference – Case A.1
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The accuracy of the PSFs has been exposed by these demonstrations, but the most
significance lies in the efficiency of the PSFs. By using the same computer it needs
about 3000 sec. to carry out the calculation of the reference solution, i.e., calculation
of 400 linear plus 3 nonlinear differential equations. To perform the PSFs applied so-
lution, i.e., evaluating 23 linear and 3 nonlinear differential equations, the calculation
time is about 100 sec., which is only 3.33% of the cost of the reference solution.

This efficiency will be even higher when the system dimension expands. For example,
if the FE net of this case is extended to 20×20, which has a total DOF of 1600, and the
yielding condition remains the same, i.e., only one yielding node locates on the middle
point of the plate, the curvature distributions of the reference solution under the same
loading are represented in Fig. 5.12 (a)-(c). It is interesting to find that the enhance of
the curvature at the yielding node is very small, i.e., only a slight plastic deformation
occurs. This is because the total area of the yielding related elements reduces to 1/4
under the 20× 20 FE net, so that the portion of the plastic deformation energy is also
reduced. Under this circumstance the curvatures will be overestimated by using the
PSFs as shown in Fig. 5.12 (d)-(f). It is to mention that the first 40 eigenmodes plus
three PSFs are used in this case for the PSF applied solution, since the FE resolution
is increased.

In order to emphasize the yielding phenomenon the loading of this 20 × 20 FE sys-
tem is five times increased and the reference curvatures is shown in Fig. 5.13 (a)-(c).
As expected, the enhance and the discontinuity of the curvatures around the yielding
node are more apparent under the increased loading. This reference solution will be
approached by the extended modal bases (first 40 eigenmodes plus three PSFs) and
the error ratio of the curvatures is given in Fig. 5.13 (d)-(f), which is much better than
that by small plastic deformation. It should be noted again that even under the 5 times
loading the plate behaves elastically except the one single yielding node as assumed.

The key point of these two examples with refined FE net is to realize the efficiency of
the PSFs. While the calculation time of the reference solution with 1600 DOF raises to
about 8.3×104sec., the time needed for the PSF applied solution is only about 615sec.
under the same computational conditions. This means the efficiency of the PSFs is
about 135-fold. From these examples the following two conclusions can also be made:

• The number of the required plastic shape functions is independent of the system
dimension. The PSF can provide a reliable approximation, even when the system
dimension is too huge to obtain a reference solution.

• The PSF simulates merely the curvatures resulted from the yielding. By using
the PSFs the plastic deformations will be overestimated when they are too small,
but the estimation is still on the safe side for the engineering application.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.12: Reference Curvatures and Error Ratio – (40-modes+PSFs)/reference of
20× 20 FE Net under Original Loading
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.13: Reference Curvatures and Error Ratio – (40-modes+PSFs)/reference of
20× 20 FE net under 5 Times Loading
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5.3.2 Case A.2 - Two yielding nodes in plate middle

In this subcase two yielding nodes are defined in the middle of the plate as shown in
Fig. 5.5. This assumption causes higher discontinuity and asymmetry of the curvature
distribution in x-direction as shown in Fig. 5.14 (a)-(c). As expected, the error of the
approach with merely 20 eigenmodes is much larger than that of case A.1 especially
by κx. It is to note that the z-scale is up 50% in Fig. 5.14 (d)-(f).

The results will be improved by extending the reduced modal bases, i.e., the first 20
eigenmodes, with 3 PSFs for each of the yielding nodes 1. and 2. while solving (5.6),
so that the reduced modal system has a total of 26 DOF. The calculation time of this
reduced system is about 5.38% of the time needed for the reference solution. Although
this time-spending ratio is a little higher than that in case A.1, since three more PSFs
and three more Y-variables are required, the improvement of the curvatures error ratio
is much more significant than that in case A.1, which can be observed directly by com-
paring Fig. 5.14 and Fig. 5.15. For this purpose 50% is selected also as the maximal
z-scale in Fig. 5.15. The average error ratio around the yielding elements is about 3.5%
for κx, 3% for κy and 3.5% for κxy under applications of the PSFs in this study case.

Fig. 5.16 represents the comparison of κx, κy on the cross-section A−A and the com-
parison of κxy along the diagonal under the maximal deflection between the reference,
20-modes and the PSFs applied solutions. It can be seen that the discontinuity of κx
and κy can not be simulated by the lower frequency modes at all. And the comparison
of the moment time history of Mx and My for the yielding node 1. and 2. is given in
Fig. 5.17 (a), (b) respectively.

The the error ratio of the deformations between the reference and PSFs applied solution
is then represented in Fig. 5.18. Obviously the error ratio of the twisting angle ψxy
is relative higher than the other deformations, whose error ratios are less than 0.5%.
But the two peaks in Fig. 5.18 (d) do not locate on the assumed yielding positions and
are actually inherited from the approximation of first 20 eigenmodes, if Fig. 5.14 (f) is
reviewed.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.14: Reference Curvatures and Error Ratio – 20-modes/reference – Case A.2
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(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.15: Error Ratio of Curvatures – (20-modes+PSFs)/reference – Case A.2

Figure 5.16: Comparison of κx, κy on Section A− A and κxy on Diagonal – Case A.2
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(a) Yielding Node Nr.1

(b) Yielding Node Nr.2

Figure 5.17: Comparison of Mx and My of Yielding Nodes – Case A.2

(a) Error of deflection w[%] (b) Error of angle ψx[%]

(c) Error of angle ψy[%] (d) Error of twist ψxy[%]

Figure 5.18: Error Ratio of Deformations – (20-modes+PSFs)/reference – Case A.2
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5.3.3 Case A.3 - Four yielding nodes in plate middle

In this study case four yielding points as defined in Fig. 5.5 are assumed. For these four
yielding nodes there are totally 3(PSFs)× 4(nodes)− 1 = 11 PSFs needed, since the
plastic shape function for κxy of the node Nr.2 and Nr.3 are identical. Extending the
first 20 eigenmodes with these PSFs the reduced system has then a dimension of 31.
In Fig. 5.19 (a)-(c) the reference curvatures by the maximal deflection (t = 8.625 sec)
is given and (d)-(c) shows the error ratio of the curvatures between the reference and
the PSFs applied solution directly, since it is clear that merely the first 20 eigenmodes
can not correctly represent the locally enhanced curvatures.

Again it can be seen that the curvatures around the yielding nodes are well approxi-
mated through the PSFs. The moment time history of Mx and My for the four yielding
nodes are represented in Fig. 5.20, from which it can be verified that the hysteretic
variables of these two solutions are almost identical, since they are functions of curva-
tures and the error ratio of the curvatures is about 2% averaging on the yielding nodes.

According to the definition given in Fig. 3.10 it is possible to determine the yielding
not only on the element corner nodes but also the nodes on the edge and inside of
the element. This benefit of a finer yielding resolution will turn into a disadvantage
when the number of the yielding nodes increases, i.e., the system dimension will be
overloaded by the required PSFs and the corresponding hysteretic equations. Therefore
it will be attempted to reduce the number of the required PSFs. Considering that the
plastic shape function of Yx for the yielding node Nr.2 and Nr.3 in Fig. 5.5 are linear
dependent on that of node Nr.1 and Nr.4 (s. section 3.3.2 and section 4.3), an other
approximation with 9 PSFs, which are listed in the following, is also performed.

• 3× 2 PSFs, which correspond to Yx, Yy and Yxy, for yielding node Nr.1 and Nr.4
respectively.

• 2× 1 PSFs of Yy for yielding node Nr.2 and Nr.3 respectively.

• 1 PSF of Yxy for both yielding node Nr.2 and Nr.3, since their PSFs of Yxy are
identical.

The error ratio of the curvatures by applying these 9 PSFs is given in Fig. 5.21. It
can be seen that the error ratio of κx around the yielding nodes is increased. This is
because of the PSFs used on node Nr.1 and Nr.4 are the summation of four sub-PSFs
of four elements around the yielding node. Therefore the curvature κx between node
Nr.1 and Nr.4 is bounded with the parts on the left of node Nr.1 and the right of Nr.4,
so that it can not be correctly regulated. However this increased error is still acceptable
when considering its improved efficiency under large number of yielding nodes.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.19: Reference Curvatures and Error Ratio – (20-modes+11 PSFs)/reference
– Case A.3
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(a) Yielding Node Nr.1 (b) Yielding Node Nr.2

(c) Yielding Node Nr.3 (d) Yielding Node Nr.4

Figure 5.20: Comparison of Mx and My of Yielding Nodes – Case A.3

(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.21: Error Ratio of Curvatures – (20-modes+9 PSFs)/reference – A.3
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5.3.4 Case B.1 - One yielding node at plate corner

In the subcase group B the yielding nodes are assumed to be located near the corner of
the plate, where the twisting moments dominate the yielding occurrence. As defined in
Fig. 5.5, case B.1 has only one yielding node, which locates at the cross point of the four
yielding related elements. Because only one single yielding node is assumed near the
plate corner instead of several nodes, which can build a yielding zone, the discontinuity
of curvatures is insignificant under the equally distributed loading. Therefore the load-
ing amplitude is raised to Pa = 12.5 [kN/m2] to emphasize the yielding phenomenon
near the plate corner. Although the loading concentrating on a small area can produce
locally enlarged curvatures, such loading could also result in undesired curvature jumps
around the loading bounds, therefore the concentrated loading is inappropriate for the
use of this example. Since the purpose of this example is to verify the pure performance
of PSFs for the yielding on a single node, which is dominated by the twisting moments,
it is necessary to raise the loading without considering the reality. The curvatures of
the reference solution by the maximal deflection at t = 8.625 sec. is given in Fig. 5.22
(a)-(c), and the error ratio of the curvatures between the reference and the errors of
the first 20-modes solution is also represented in (d)-(f) to serve as a control.

To improve the curvature errors resulted from the yielding, the reduced modal bases
of the first 20 eigenmodes will be enlarged by three PSFs corresponding to the given
yielding node like (5.9). The curvature errors of the PSF applied solution with respect
to the reference solution is demonstrated in Fig. 5.23.

Obviously, the PSFs adjust the curvatures near the yielding node quite well, while
the error ratios outside this region remain the same level as by the 20-modes solution.
Then the moments variation of the yielding node are compared between the reference,
the 20-modes and the PSF applied solution in Fig. 5.24.

The error ratio of the deformations between the reference and the PSF applied solution
is shown in Fig. 5.25. In comparison with other deformations the twisting angle ψxy
has a higher error ratio of 1.8%. Part of this error is resulted from the existence of the
interactions between the plastic shape functions. In other words, by building the plastic
shape function ψ̃xp, which should merely approximate the plastic curvature κx,p , two
redundant curvature distributions κy,ψ̃xp

and κxy,ψ̃xp
will attach on this plastic shape

function and influence the approximation of κy,p and κxy,p. In the same way ψ̃yp and
ψ̃xyp have also undesired effects on the approximation of plastic curvatures belonging
not to themselves. But such interactions are not critical for the reliability of the PSFs
as can be verified from the results of this example.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.22: Reference Curvatures and Error Ratio – 20-modes/reference – Case B.1
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(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.23: Error Ratio of Curvatures – (20-modes+PSFs)/reference – Case B.1

Figure 5.24: Comparison of Mx, My and Mxy of Yielding Node – Case B.1
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(a) Error of deflection w[%] (b) Error of angle ψx[%]

(c) Error of angle ψy[%] (d) Error of twist ψxy[%]

Figure 5.25: Error Ratio of Deformations – (20-modes+PSFs)/reference – Case B.1

5.3.5 Case B.2 - Two yielding nodes at plate corner

Under this subcase one more yielding node is defined on the diagonal of the plate as
defined in Fig. 5.5 and a loading amplitude with Pa = 5 [kN/m2] is used, since a small
yielding zone can be built and the curvature discontinuity is more significant than
previous example. Again, in order to realize the performance of PSFs, the reference
curvatures and the error ratio of the 20-modes approach under the maximal deflection
is shown in Fig. 5.26 first. It is to note that the maximal z-scalar in Fig. 5.26 (d)-(f)
is up to 50%.

For this subcase six independent PSFs, i.e., three PSFs per yielding nodes Nr.1 and
Nr.2, are adopted in the reduced modal bases of the first 20 eigenmodes. The curva-
ture error ratios of the PSF applied solution with respect to the reference solution is
represented in Fig. 5.27 also with a maximal z-scalar of 50% to give a direct impression
of the remarkable improvements. The curvature error ratios near the yielding nodes
are generally under 5% by applying the PSFs. Not only the accuracy but also the
efficiency of the PSFs should be mentioned here – the computation time for the PSF
applied solution is just about 4% of the time needed for the reference solution.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.26: Reference Curvatures and Error Ratio – 20-modes/reference – Case B.2
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(a) Error of κx[%] (b) Error of κy[%]

(c) Error of κxy[%]

Figure 5.27: Error Ratio of Curvatures – (20-modes+PSFs)/reference – Case B.2

To gain more confidence of the PSFs, the time-variation of the moment of the yielding
nodes is controlled in Fig. 5.28 (a) and (b).

(a) Yielding Node Nr.1 (b) Yielding Node Nr.2

Figure 5.28: Comparison of Mx, My and Mxy of Yielding Nodes – Case B.2
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5.3.6 Case B.3 - Four yielding nodes at plate corner

In this subcase four yielding nodes are assumed to be located along the diagonal near
the plate corner as shown in Fig. 5.5 and loaded with Pa = 5 [kN/m2]. At this place
it is no more necessary to show the error of solutions using the first 20-eigenmodes,
since its poor approximation of the plastic deformations can be expected. Under this
yielding condition totally 3(PSFs)× 4(nodes)− 1 = 11 PSFs will be implanted in the
reduced modal bases of the first 20 eigenmodes, since the plastic shape function for κxy
of yielding node Nr.2 and Nr.3 are identical. As a result, a PSF applied modal system
with 31 DOF, which is smaller than 1/10 of complete modal space, is established. The
reference curvature distributions at t = 8.625 sec. of this subcase are represented in
Fig. 5.29 (a)-(c) and the error ratios of the PSF applied solution are given in (d)-(f).

It can be seen that the curvatures of the yielding nodes are well approximated by the
PSFs. Generally the curvature error ratios on the yielding nodes are smaller than 2.5%.
The relative higher error ratios on the edges of the plate are partially resulting from
the elastic approach with the first 20 eigenmodes, which can be realized from Fig. 5.4.
It should be noted that even the reference solution is only an approximation after all,
since the finite element method self is a numerical approach. For example, the analyt-
ical stress resultants, i.e., the curvatures, of the linear hinge supports should actually
equal zero, but they are not zeros in the reference solution, which is a shortcoming of
the FEM. On the contrary the curvatures of the hinge supports by the 20-modes and
the PSF applied solutions are more closer to zero. Therefore the higher error ratios on
the edges with respect to the reference solution don’t have to mean a poor approach
at this place.

With another aspect Fig. 5.30 (a)-(c) represent the plastic part of curvature distribu-
tions, which are contributed by the 21 to 400 eigenmodes, and (d)-(f) are curvatures
resulted merely from the 11 PSFs. It can be seen that the results of plastic curva-
tures of these two independent formulations are almost identical, especially around the
yielding zone. But the results of the high frequency modes are corrugated outside the
yielding zone, while the corresponding results are almost flat by the PSFs approach.
This is because that the PSFs are created by the concentrated force group, which is in
equilibrium, and their curvatures focus only on the yielding related elements. Besides,
it can be seen that the curvatures of the supports are closer to zero by the PSFs ap-
proach than the high frequency modes.
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(a) κx (d) Error of κx[%]

(b) κy (e) Error of κy[%]

(c) κxy (f) Error of κxy[%]

Figure 5.29: Reference Curvatures and Error Ratio – (20-modes+PSFs)/reference –
Case B.3
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(a) Rf. κx,p (d) PSF κx,p

(b) Rf. κy,p (e) PSF κy,p

(c) Rf. κxy,p (f) PSF κxy,p

Figure 5.30: Plastic Curvatures of 21-400 Modes and of 11 PSFs – Case B.3
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5.4 Example of Extreme Loading Conditions

In the previous sections the accuracy and the efficiency of the PSFs has been verified
under the condition of a predefined small number of yielding nodes. But in order to
have a more precise research of the subject it is necessary to put this plate system,
which is given in section 5.1, under an extreme loading without predefining locations
with lower yield stress, so that it can be verified if the development of the yielding
zones of this model conforms to the classic limit theory of plate [68] and to see if the
PSFs can still provide a reasonable approach under such extreme circumstances.

For this purpose a quasi-static loading distributing on a 4 × 4 elements area in the
middle of the plate is used. After (5.1) with Pa = 6 [kN/m2], f = 0.95/64 [Hz] and
tmax = 16 [sec] the loading function is shown in Fig. 5.31. All the material properties
and the geometrical boundary conditions of the system remain unchanged as in the
prior examples. The system is also discretized in a 10 × 10 FE net, which has 400
deformation DOF and 961 curvature nodes.

Figure 5.31: Quasi-static loading

As mentioned, no yielding nodes are predefined in this study case, therefore by each
calculation step every curvature node has to be judged whether it is over the elastic
limit κy. If any new yielding nodes are found in a particular calculation step, then
this step will be recalculated with additional nonlinear equations corresponding to the
new detected yielding nodes. Considering the time history dependency of the plastic
deformations once a curvature node reaches the elastic limit, its auxiliary hysteretic
equations, i.e., (3.23), have to be added in the differential equations and retained in
the equation system to the end of the calculation. Since the vectors of the hysteretic
variable Yx, Yy and Yxy are not invariant with respect to the integration intervals,
only the split method introduced in section 3.4.1, but not the patch method, can be
applied in this case to reduce the number of the nonlinear equations.

As the reference solution all the 400 eigenmodes are used from the beginning to the
end for the calculation and the number, i.e., the location, of the yielding nodes will
be automatic detected by the programming. Fig. 5.32 represents the development of
the yielding zones of the reference solution. Each color, symbol in this figure denotes
a yielding group belonging to a particular integration interval. It can be seen that
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the yielding starts from the middle of the plate; as the loading increases gradually the
yielding zone extends along the diagonal direction, then plate corners also yield. The
final yielding zone with a kind of double Y-shape matches the figure of the yielding
chain according to the limit load-carrying capacity theory of plate. Under this extreme
loading condition there are totally 567 yielding nodes found at the end, i.e., 59.0% of the
plate area is yielded. It is to note that by the last step of the numerical integration there
are 567×3 = 1701 nonlinear auxiliary equations besides the system differential equation
with 400 DOF to compute, and the total calculating time, which is performed on the
Linux cluster of the Leibniz-Rechenzentrum (LRZ) in Munich, is about 41921sec..

Figure 5.32: Ranking of the yielding zones

In Fig. 5.33 (a)-(c) the maximal curvature distributions at the time t = 16.0 sec. of
the reference solution are represented. It can be seen that in this case the curvature
distributions under yielding are not strongly discontinuous, i.e., there are no obvious
peaks in the curvatures, since a great successive part of the plate yields. Therefore the
error ratio of the curvatures resulted from the approach with the first 20 eigenmodes as
represented in Fig. 5.33 (d)-(f) is not very high in comparison with previous examples.

It is to mention that by the approach with the first 20 eigenmodes there are 585 yield-
ing nodes, which is 18 more than the reference solution, detected at the end of the
calculation. And its total computation time is about 23088sec., which is near 55.0%
of the time needed for the reference solution, although the modal DOF is reduced to
only 1/20. To realize why the calculation time is not proportionally decreased, as the
system DOF are reduced by the modal transformation method, the system differen-
tial equation set (3.64) should be reviewed. It can be seen that although main linear
differential equation (3.64a) and the nonlinear auxiliary equation (3.64b) are coupled
together through the Y-variables and have to be solved iteratively by using the numer-
ical method, the total computation time can still be roughly separated in two parts for
the linear and nonlinear equations respectively. While the computing time of (3.64a)
can be compressed by using the reduced modal bases, the time needed for (3.64b) are
unmodifiable with the dimension reduction strategies introduced in section 3.4.
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(a) κx (d) Error of κx [%]

(b) κy (e) Error of κy [%]

(c) κxy (f) Error of κxy [%]

Figure 5.33: Reference Curvatures and Error Ratio – 20-modes/reference under Ex-
treme Loading

In Fig. 5.34 (a) and (b) the computing time of a single integration interval of 1sec.
divided into 32 steps, which is performed on a commercial PC with 1.8 GHz CPU,
and the corresponding statistic fitting curve for different conditions are shown. The
former is the time–yielding nodes diagram computed with fixed 400 eigenmodes, whose
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quadratic fitting curve has the function f(x) = 0.009375x2 + 2.709x+ 56.61 with 95%
confidence bounds and has a root mean squared error of 8.449. The latter is the time–
eigenmodes diagram computed with fixed 103 yielding nodes, whose quadratic fitting
curve has the function f(x) = 0.0005571x2 + 0.5795x + 101.2 with 95% confidence
bounds and has a root mean squared error of 1.845. From these two figures it can
be seen that the increase of the computing time by a rising number of yielding nodes
is faster than that by a rising number of eigenmodes. Therefore, if the number of
yielding nodes is relative high with respect to the total system DOF, such as in this
case of study, there will be a great portion of computing time occupied by solving the
hysteretic equations, which can not be compressed by the modal reduction, so that the
efficiency of the modal transformation wouldn’t be so remarkable.

(a) Time – Yielding nodes (b) Time – Eigenmodes

Figure 5.34: Computing time of 1sec. integration interval

The approach with PSFs for this study case are also performed to improve the ac-
curacy of solutions. Generally each yielding nodes has three independent PSFs that
should be added as the modal vectors in the reduced bases. But considering the linear
dependency of the PSFs illustrated in section 4.3 and to reduce the number of modal
DOF, the PSFs of the yielding nodes inside the plate element, i.e., the node Nr.13 to
Nr.16 in Fig. 3.10, are neglected in the following calculations.

According to the creating procedure of PSFs introduced in section 4.3 the PSFs of the
corner nodes relate to four elements, while the PSFs of the edge nodes relate only to
two elements, therefore the PSFs of the corner and the edge nodes are actually inde-
pendent referring to the global system. But after various simulations it is found that
the PSFs of the edge nodes could cause a kind of numerical instability as the number of
used PSFs is too large and the edge node PSFs are numerically too close to each other,
so that even when the rank of the system matrices shows the independency of the PSFs
the numerical integration may not converge. To avoid this problem, the PSFs of the
edge nodes will be replaced by those of the neighbor corner nodes. The results of this
approach, i.e., the error ratio of the curvatures with respect to the reference solution,
is shown in Fig. 5.35. Clearly the accuracy of the results are improved by applying the
PSFs but the corresponding computing time costs about 32984 sec., which saves only
22 % computing time in comparison with reference solution. On the one hand this is
because of the large number of nonlinear equations, on the other hand 267 PSFs are
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needed for this approach in addition to the first 20 eigenmodes. Table 5.1 lines up the
modal DOF, the total number of detected yielding nodes and the computing time of
these three approaches for a direct comparison.

(a) Error of κx [%] (b) Error of κy [%]

(c) Error of κxy [%]

Figure 5.35: Error Ratio of Curvatures – (20-modes+PSFs)/reference under Extreme
Loading

applied Modes Yielding nodes Time [ sec.]
Reference 400 567 41921
Reduced 20 585 23088

PSFs applied 20+267 PSFs 573 32984

Table 5.1: Comparison of Reference, reduced Modal and PSFs applied Approaches
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With this investigation the following conclusions could be made:

• Accuracy – The PSFs can well simulate the contribution of high frequency eigen-
modes and provide a reasonable approximation. The improvement of accuracy
achieved by PSFs is only then significant, when the yielding zone is locally con-
centrated instead of overall distributed. Or it can be said that the more discon-
tinuous the yielding curvatures are, the greater is the improvement earned by the
PSFs.

• Efficiency – The PSFs can only raise the efficiency through the reduction of the
system dimensions, i.e., the modal DOF. When the proportion of the yielding
nodes to the total system DOF is too high, the saving time through PSFs can
not catch up the time consumed by calculating the nonlinear auxiliary functions,
so that the efficiency achieved by the PSFs is no longer significant. A problem of
this kind is not what the PSFs deal with. Such problem can perhaps be solved
by proposing a new nonlinear material model or introducing a new concept to
condense the number of yielding nodes.



Chapter 6

MCS of Large Scale Flat Slabs

6.1 Stochastic Mechanics

As a branch of the mechanics, the stochastic mechanics is concerned with the uncertain
properties in the structural analysis. In the past half century this subject has gained
more importance, since the risk of the civil engineering constructions rises gradually
with their expanding dimensions.

In reality, neither the system characteristics, such as the material property, the damping
character, the geometrical conditions . . . etc., nor the external excitations are determin-
istic. Such uncertainties have to be considered, if the reliability of the constructions is
relevant. Already 80 years ago, it was suggested that the uncertainties inherent in the
analysis and design of structures should be modeled by the probability theory [47]. And
A.M. Freudenthal has even envisaged, that “probabilistic reasoning and the applica-
tion of statistical methods must become an integral part of the procedures of structural
design and analysis” [24].

As mentioned in Chapter 1 only the random external excitations are considered in this
work to simulate the stochastic property of a dynamic system. Two methods of solving
the NSD problems are introduced in the following section, in which the MCS is adopted
in the present work. Further expositions about the definition and the representation
of stochastic processes are given in appendix E.

6.1.1 Estimation of Stochastic System Responses

Generally it is impossible to find the analytical solution of stochastic responses for
nonlinear systems. In such cases the solution strategies are classified into two groups,
i.e., the simulation and the approximation methods. In the benchmark study [75] it
is shown that most of the computational methods developed in stochastic structural
dynamics are quite limited with respect to the dimension of the problem and conse-
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quently are not suitable to be applied to engineering problems of larger scale. Methods,
such as numerical solutions based on the Fokker-Planck equation by path integration,
increase in complexity at least exponentially with the system dimension.

It appears that the Monte-Carlo simulation and the Equivalent Statistical Lineariza-
tion, which belong to simulation and approximation methods respectively, are more
applicable to nonlinear dynamic systems with large size. Therefore these two methods
are discussed briefly in the following. An overview and the comparison of them can be
found in [73], [63].

Monte-Carlo Simulation (MCS)

In the publications [80] and [87] the Monte-Carlo simulation was first applied in sto-
chastic structural mechanics. With this procedure, as its name indicates, the stochastic
system response will be estimated through simulations. In other words, a collective of
realizations of the input, which approximate the loading process with given statistic
properties, will be generated independently and by using them the probability char-
acters of the response will be determined such as the game of chance. This simplest
form of MCS is also denoted as direct Monte-Carlo Simulation (DMCS). With the
following benefits is the MCS certainly the most general approach among all available
procedures [71].

1. Generality – MCS is applicable to linear and nonlinear problems in the same way,
i.e., no distinction is required between linear and nonlinear problems.

2. Adaptability – All well developed deterministic procedures are adaptable to eval-
uate the system response by the MCS. Since each realization of the random
process, which is a (deterministic) function of random numbers obtained from
random number generator, is treated as the input of a deterministic calculation.

3. Dimension Independency – Contrary to other procedures, the accuracy of MCS
is independent of the dimensionality of the problem. The influence factors of
the accuracy are the sample size Ns and the capability of the random number
generator to produce pseudo-statistically independent and equally distributed
sets of random variables. The DMCS has an absolute estimation error that
decreases with N

−1/2
s , independently of the system dimension N , whereas all

other approaches have errors which decrease with N
−1/N
s at best [22].

Therefore the MCS is especially suitable for analyzing large and strongly nonlinear
structure systems, discretized by FE-models, under stochastic excitations. Gener-
ally a sample size of few hundred independent realizations is sufficient to obtain the
basic information of the response distribution, e.g., the mean and variance values.
For the reliability assessment, which requires the failure probabilities in the range of
10−7 < pf < 10−4, the DMCS is inadequate to provide the needed information in the
low probability tails of the distribution, unless the sample size Ns is greater than 106
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(s. [73]).

Obviously such a large number of simulations is only performable for small and simple
systems, since the dimension of the system, the complexity of the nonlinear structural
models and especially the dynamic analysis will extremely increase the computational
burdens. To improve the computational efficiency of the MCS, i.e., to reduce the
sample size but keeping the accuracy, the so-called “variance reduction” methods were
developed, e.g., importance sampling, adaptive sampling and controlled Monte-Carlo
simulation [66], [57], [58]. These procedures can be summarized as methods that focus
the analysis in the important domain, i.e., increase the sampling density in the low
probability domain, where the realizations contribute most to the failure probability.

Equivalent Statistical Linearization

Contrary to the simulation method the equivalent statistical linearization (ESL), ab-
breviated as EQL in the literature, is certainly the most widely applied method to de-
termine the response of nonlinear system under stochastic excitations approximately.
As bases of the standard ESL technique, the work of Kazakov [40], Caughey [15] and
Atalik Utku [4] are worth mentioning.

In the procedure of ESL the original nonlinear differential equation, e.g., (B.4), will be
replaced by a approximate linear differential equation such as [101]

ż(t) = C1(t) ẋ(t) + C2(t) z(t) + C3(t) , (6.1)

where C1(t), C2(t) and C3(t) are linearization coefficients. These coefficients are de-
termined according to the criterion that the error of the approximation ε(t), i.e., the
difference between the original and the linearized equation, is minimized in mean square
sense

E{ε2(t)} → min . (6.2)

Under the stationary zero-mean Gaussian excitation the linearization coefficients C1

and C2 are independent of time and C3 = 0. The determination of C1 and C2 for the
one-dimensional Bouc-Wen hysteretic model can be found in [100] and [6]. For two-
and three-dimensional cases the ESL procedure can be read in [53] and [88] respectively.

Already in [14] Caughey applied the ESL to analyze the single mass-spring system with
bilinear hysteresis under white noise excitation. Recently the application of ESL for
nonlinear 3-D framework is performed in [33]. The evolution of ESL, applying to various
engineering problems, can be found in [98]. A detailed introduction of the ESL method
and the hysteretic material behavior is given in the book by Roberts/Spanos [65].
An overview of this method can also be read in the work of Socha/Soong [90]. The
comparison between the ESL approximation and the Monte-Carlo simulation is carried
out in [63].
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6.1.2 White Gaussian Noise

Usually the computational costs of determining the stochastic nonlinear responses of
large FE systems by the direct Monte-Carlo simulation are so huge that such a job
is not affordable for commercial PCs, although the direct MCS can provide a better
solution than other approximate methods. Just for this reason, the direct Monte-Carlo
simulation is chosen in the present work to demonstrate the tremendous efficiency ob-
tained directly from the application of plastic shape functions in large nonlinear FE
systems under stochastic excitations.

The first step of the MCS is to establish the realizations, which approximates the sto-
chastic loading process, since they are the foundation of the simulation. The white
noise spectrum, which is an idealized mathematical model due to its unbound spectral
density function S(ω), is chosen as a basis to represent the stochastic excitations. As
indicated in [43] the white noise spectrum can well approximate the actual excitation
spectral density, as long as it is wide-band in comparison with the system transfer
function |H(ω)2|. Furthermore it is assumed that the loading process is Gaussian, so
that the realizations can be created by the spectral method. In other words, the re-
alization will be obtained from the discrete inverse Fourier transformation (DIFT) of
its spectral signals. And such spectral signals are formulated as the multiplication of
spectral amplitudes with random phase angles, which are equally distributed between
[0..2π] and can be created by a random number generator.

The magnitude of the discrete spectral amplitude in time average – 〈
∣∣P̃m∣∣〉, can be

determined from the power spectral density as

〈
∣∣P̃m∣∣〉 =

√
2π Sm/ Tp =

√
Sm ∆ω , (6.3)

where Sm is the coefficient of the Fourier expansion of the periodic autocorrelation
function R̃per(τ) (cf. (E.9b)), and Tp = 2π/∆ω is the period of loading according to
the discretized frequency ωm = m∆ω, m = 0, 1, 2 · · · . The detailed explanation of
deriving this equation is given in appendix E.3.

For the general white noise signals is the power spectral density Sxx(ωm), i.e., Sm, a
constant. For the filtered white noise, e.g., the ground motion considering the layer
of earth, the well known Tajimi-Kanai spectrum [39], [94] can be used, which is intro-
duced in section 6.2.2.

With (6.3) the spectral amplitude Pm of the periodic random loading p̃per(t) can be
written as

Pm = 〈
∣∣P̃m∣∣〉 eiθm , (6.4)

where θm is the equally distributed random phase angle between [0..2π].
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Through the discrete inverse Fourier transformation the random loading can be recon-
structed as

p̃per(t) =
∞∑

m=−∞

√
Sm ∆ω ei(ωmt+θm) . (6.5)

To apply the numerical integration method, the time axis is also discretized, such that
tn = n∆t for n = 0, 1, 2 . . . N and N = Tp/∆t = 2π/(∆t∆ω). Under this discretization
is the sampling angular frequency ωsmp = 2π/∆t = N∆ω, and the maximal cutting-
off frequency is defined as ωcut = m∆ω. According to the Nyquist-Shannon sampling
theorem [51], [79] the following criterion should be hold

ωsmp ≥ 2ωcut , (6.6)

in order to avoid the aliasing effect. This leads to m ≤ N/2. Therefore the discrete
loading signals can be determined as

p̃per(tn) =

N/2∑
m=−N/2

√
Sm ∆ω ei(ωmtn+θm)

= 2
√
Sm ∆ω

[ 1

2
+

N/2∑
m=1

[
cos(

2π

N
mn) cos(θm)− sin(

2π

N
mn) sin(θm)

]]
.

(6.7)

6.2 Seismically Loaded RC Slab

Based on the project of a apartment building in Munich – Arnulfpark München MI 1,
whose construction is designed by the engineering consultant “Henke & Rapolder In-
genieurgesellschaft mbH”, a model of reinforced concrete slab is created in this section
and loaded by a vertical seismic acceleration. Because of the limitation of computa-
tional capacities only about one-third of the actual floor slab is modelled with certain
idealizations as the example used here. However, the purpose of this example is not
to analyze a ‘real’ construction but to show the capability of the PSF applied method.
Since for such a large model the nonlinear Monte Carlo Simulation of the seismic re-
sponses is inexecutable on commercial PCs because of the enormous degrees of freedom,
if the general modal analysis is used.

6.2.1 Model of the RC Slab

Fig. 6.1 represents the model of slab with necessary information for the analyses such
as dimensions, boundary conditions and reinforcement, etc.. According to the static
analysis made by the engineering office a finite element with a size of 10 cm× 10 cm is
chosen for the stress concentrating areas and a size of 20 cm×20 cm is used for the fields.
Because the limitation of the rectangular Schäfer element applied in this work, two
transition elements of 10 cm× 20 cm and 20 cm× 10 cm are required, which inevitably
cause curvature discontinuities at the transition boundary lines. The corresponding
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FE discretization is represented in Fig. 6.2. This FE model has totally 7416 elements
and 29536 DOF.

Figure 6.1: Model of RC Slab

Figure 6.2: Finite Element Discretization

The construction materials used are C30/37 for concrete and BSt 500 S for reinforce-
ment after the code [2]. The RC slab is assumed to be homogeneous and isotropic,
so that the depth of concrete section under compression is about 6.5 cm by the “state
II” (cracks in concrete) [107] and the plastic limit of curvature is κ̃p = 0.0106 as the
reinforcement yields at the tension side.
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Fig. 6.3 shows the static deformation and the corresponding curvatures distribution
under a uniformly distributed loading of 5.0 kN/m2. Obviously there are stress con-
centrations at the corners of the slab and around the column supports.

Considering the limitation of the computational memory capacity (1Gb RAM) it is
necessary to indicate the yielding related elements, so that the number of the hysteretic
variables can be confined by using the patch method. According to this static analysis
40 elements near the corners and column supports are regarded as elastic-plastic and
48 nodes in them could reach the yielding limit during the calculation.

(a) Static Deflection (b) κx

(c) κy (d) κxy

Figure 6.3: Static Deflection and Curvatures under 5.0 kN/m2 Loading

6.2.2 Formulation of Seismic Loadings

The time variance of the vertical seismic acceleration is formulated as the filtered
Gaussian White Noise. The simplest filter model to approximate the characters of
layered, depth dependent half-space is the Kanai-Tajimi-Model, which considers the
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top layer of underground as a single oscillator excited from its bottom, so that the
following differential equation can be built [39], [94].

ü1(t) + 2 βg Ωg u̇1(t) + Ω2
g u1(t) = −ü0(t) , (6.8)

where βg, Ωg are underground’s damping and eigenfrequency values. And ü0 is the
seismic excitation.

When ü0 is a stationary White Noise, the power spectrum of the acceleration in free
field, i.e., the Kanai-Tajimi-Spectrum, can be formulated according to the random
vibration theory as [48]

SKT (ω) = S0

Ω4
g + 4 β2

g Ω2
g ω

2

(Ω2
g − ω2)2 + 4 β2

g Ω2
g ω

2
, (6.9)

where S0 represents the strength of the earthquake.

Since the intensity of the seismic energies changes during the earthquake, the filtered
acceleration signals are modulated with a intensity function I(t), which can be consid-
ered to have a constant equivalent intensity for about 1/3 of the excitation time Td and
a short increasing but long decay stage for practical applications. These three stages
can be for example defined as following

t < 0.15Td : I(t) =
( t

0.15Td

)2

0.15Td < t < 0.45Td : I(t) = 1

0.45Td < t : I(t) = e−c(t−0.45Td) ,

(6.10)

so that ü(t) = I(t) ü1(t).

If the central-European earthquake with underground class ‘M’ is considered, the fol-
lowing parameters of the Kanai-Tajimi-Spectrum can be used [48].

βg = 0.7 ; Ωg = 15 [rad/s] ; Td = 9 [sec.] ; c = 0.4 . (6.11)

With S0 = 0.5221 [m2/s3], which corresponds to the MSK-Intensity scale ‘X’, the cor-
responding Spectrum and the intensity function used are shown in Fig. 6.4 (a), (b)
respectively.

Replacing the constant power spectrum amplitude Sm in the first equation of (6.7)
with the Kanai-Tajimi-Spectrum (6.9), by which a cutting off frequency fcut = 32 [Hz]
is used, then producing θm with a random number generator, so that the filtered white
noise signals of seismic acceleration can be produced as shown in Fig. 6.5.
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(a) (b)

Figure 6.4: Kanai-Tajimi-Spectrum & Intensity function

Figure 6.5: Pseudo Seismic Acceleration Signals

6.3 Numerical Results of One Single Random Process

Only the first 400 eigenmodes of the system are calculated because of the limitation of
computational capacities (1Gb RAM). Before performing the Monte Carlo simulations
some results of a single realization using the excitation as given in Fig. 6.5 still have to
be discussed. In Fig. 6.6 the linear-elastic deformations resulted from the first 20 and
400 eigenmodes respectively are represented. According to the observation points A,
B, C and D defined in Fig. 6.1, the figure 6.7(a) shows the twisting angle ψxy at the
left under corner of the north column, 6.7(b) gives the max. deflection w of the north
free edge, 6.7(c) indicates the rotation angle ψx at the northeast corner of the slab and
6.7(d) illustrates the rotation angle ψy in the middle of the simple supported edge.

It can be seen that the first 20 eigenmodes can well simulate the elastic system re-
sponse, since the cut off frequency of random excitation lies on 32 [Hz] and the 20’th
eigenfrequency is about 115 [Hz].

With the same random loading used above, the hysteretic material model (3.23) will
be applied on this system with βM = 4450.0 and with the post-yielding stiffness ratio
α = 0.1. A constant damping ratio of this system with ζ = 0.865% is also assumed.
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(a) ψxy at point A (b) w at point B

(c) ψx at point C (d) ψx at point D

Figure 6.6: Comparison of Elastic Deformations – 20/400 eigenmodes (ref. Fig. 6.1)

Three approaches, namely the approach with the first 20 eigenmodes, with the first 400
eigenmodes and with 20 eigenmodes plus 72 PSFs, are performed to give comparisons.
Since the yielding locations are locally concentrated in small regions, the difference of
deformations between the pure elastic and the elasto-plastic responses is insignificant
in the global system. The distinction between these approaches is then obvious if the
curvature distributions are considered, such as in Fig. 6.7 the curvature differences
between the elastic solution with 400 eigenmodes and plastic solution with 20 modes
+ 72 PSFs are represented.

It can be seen clearly from this figure that the nonlinear behaviors locate on the sin-
gle column corners, especially on the north column, and on the corner of the internal
jointed support wall.

Fig. 6.8 (a)-(c) shows the curvature difference between the 20 modes and the 400 modes
approaches under plastic system responses. When comparing this difference with the
difference between the 20 modes and the 20 modes + 72 PSFs approaches, which is
represented in Fig. 6.8 (d)-(f) and has a much larger z-scale (30%), under the same
loading conditions, it is reasonable to use the first 20 modes as the reduced modal
bases, so that the computing costs can be reduced several times without significant
loss of accuracy in comparison of using 400 modes.
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From Fig. 6.8 (d)-(f) it can be seen that there are two substantial yielding locations
at the corner of the north column and of the internal support wall. Considering the
“punching shear failure” of the flat slab system it is necessary to take a further inves-
tigation at the north column in this study case. Fig. 6.9 (a) gives a detailed sketch
of the north column, which has 9 yielding related elements and 16 yielding nodes, in
which are only 6×3 PSFs for the yielding corner nodes used as modal vectors. Fig. 6.9
(b)-(f) compare the time variance of the curvatures κx and κxy between the 20 modes
and the PSFs applied solutions for the points A, E, F, G and H respectively.

Just as already shown in Fig. 6.8 (d) and (f) the difference of κxy between the 20 modes
and the 20 modes + 72 PSFs solutions is clearly higher than that of κx. With detailed
analyses at the north column remarkable observations were found that, the twisting
curvature κxy of the point A and H have a completely reverse sign as shown in Fig. 6.9
(b) and (f). This is because that, as the edge at the right hand side of the north column
yields, the yielding enhances the change of the rotation angle ψx on this edge. Clearly
the first 20 eigenmodes can not describe such plastic deformations with the result that
the twisting angle ψxy can not be evaluated correctly. Such phenomenon is called as
the Nonlinear Column Support Effect in the following.

(a) Difference of κx (b) Difference of κy

(c) Difference of κxy

Figure 6.7: Difference of curvatures – (el. 400 modes)/(pl. 20 modes + 72 PSFs)
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(a) Diff. of κx 20 mod./400 mod. (d) Diff. of κx 20 mod./(20 mod.+72 PSFs)

(b) Diff. of κy 20 mod./400 mod. (e) Diff. of κy 20 mod./(20 mod.+72 PSFs)

(c) Diff. of κxy 20 mod./400 mod. (f) Diff. of κxy 20 mod./(20 mod.+72 PSFs)

Figure 6.8: (a)-(c) Difference of Curvatures between pl. Solutions with 20 modes and
with 400 modes. (d)-(f) Difference of Curvatures between pl. Solutions with 20 modes
and with (20 modes + 72 PSFs)
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(a) Detail of North Column (b) comparison of curvatures at point A

(c) comparison of curvatures at point E (d) comparison of curvatures at point F

(e) comparison of curvatures at point G (f) comparison of curvatures at point H

Figure 6.9: Comparison of κx, κxy between Solutions with 20 modes and with (20
modes + 72 PSFs) on Points A, E, F, G, H of the North Column
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6.3.1 Verification of Nonlinear Column Support Effects

The pure mechanical explanation of the nonlinear column support effects mentioned
above doesn’t seem to be persuasive enough to declare that such a great improvement
can be achieved by the PSFs. Therefore it is necessary to verify this revelation on a
independent system, on which a reference solution resulted from the utilization of all
the eigenmodes can be earned and the approach of the PSFs can be compared with it.
Fig. 6.10 shows the plate system to be investigated for this purpose. The steel plate
is assumed to be 5mm thick and has the material properties of ‘S 235’. This plate is
simply supported at the right hand side through a linear hinge and has a fixed column
support near the top left corner. A finite element with the dimension of 10 cm× 10 cm
is chosen for the discretization, which results in a numerical model of 320 elements
with 1366 DOF. To simplify the calculation, a harmonic loading formulated by (5.1)
with Pa = 1.0 [kN/m2] and f = 0.9 is used for this example.

Figure 6.10: System for Investigating the Nonlinear Column Support Effects

According to the pre-studies 13 yielding nodes (5 corner nodes plus 8 edge nodes) are
defined on the edges of the column as represented in the detail sketch of Fig. 6.10. As
shown in Fig. 6.11 for an elasto-plastic analysis, there is also an extreme difference, i.e.,
a reverse sign, of the twisting angle κxy on the point I and point J in this case between
the solution of the first 20 eigenmodes and that of 20 eigenmodes plus 18 PSFs, which
are the PSFs of the yielding corner nodes only. By contrast, the curvatures κx and κy
of the points I and J match quite well between the solutions with or without PSFs.
It is to note that three PSFs, which are combined together for the yielding related
elements (2 or 3 elements in this case), are generally applied on a particular yielding
corner node, but for the point J totally six PSFs separated in two groups has to be
used because of the discontinuity of curvatures in the y-direction at this corner.

To verify the accuracy of the PSFs applied solution and to see if the PSFs really can
simulate the plastic deformations around the column support, which have to be for-
mulated through the high frequency modes by the classical modal analysis, Fig. 6.12
shows the comparison between the reference solution (1366 eigenmodes) and the solu-
tion with 20 eigenmodes + 18 PSFs.
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(a) comparison of curvatures at point I (b) comparison of curvatures at point J

Figure 6.11: Comparison of Curvatures between Solutions with 20 modes and with (20
modes + 18 PSFs) on Points I, J defined in Fig. 6.10

(a) comparison of curvatures at point I (b) comparison of curvatures at point J

Figure 6.12: Comparison of Curvatures between Solutions with (20 modes + 18 PSFs)
and Reference Solutions (1366 modes) on Points I, J defined in Fig. 6.10

With Fig. 6.12 it can be concluded that the plastic deformation of the slab at the
column support can only be formulated through the entire eigenvectors by the classical
method, which costs about 16703 sec. in this case. And such nonlinear column sup-
port effects can be approached advantageously through the PSFs, since their solution
accuracy is very high and the most important benefit of all is the efficiency of PSFs –
for the PSFs applied solution (20 eigenmodes + 18 PSFs) the computing time is only
about 80 sec..

The last thing to note for this case is that the accuracy of the PSFs applied solution
can even be further improved, if the PSFs of the yielding edge nodes are also included
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in the modal space. In this case there are 4 yielding related elements and each of
them has 2 yielding edge nodes with 5 independent PSFs, because the PSFs of κxy for
these two nodes are identical. At first sight 20 additional PSFs should be used in the
calculation, but actually 2 of them are linear dependent with the others because of the
nature of the linear-cubic curvature distribution. Therefore 20 eigenmodes + 18 PSFs
of the yielding corner nodes + 18 PSFs of the yielding edge nodes are used for the
new approach, whose results in comparison with the reference solution is represented
in Fig. 6.13.

(a) comparison of curvatures at point I (b) comparison of curvatures at point J

Figure 6.13: Comparison of Curvatures between Solutions with (20 modes + 36 PSFs)
and Reference Solutions (1366 modes) on Points I, J defined in Fig. 6.10

Comparing with the reference solution the absolute error ration of maximal κxy is from
about 5 % of the 18-PSFs solution to 1.5 % of the 36-PSFs solution reduced, but the
calculating time for the latter is double increased and an extra work to distinguish the
linear independency of PSFs is also needed. Therefore for large systems it is suggested
only to use the PSFs of the element corner nodes.

6.4 Results of Monte Carlo Simulations

After the verification of the nonlinear column support effects through an independent
system in previous section the accuracy of the PSFs is again ensured. With this confi-
dence the nonlinear stochastic analyses of the large RC flat slab are directly performed
by using 20 eigenmodes plus 72 PSFs as the extended modal bases without further
control through the reference solutions, since reference solutions are infeasible on the
commercial PC of nowadays for systems with such a large DOF.

In order to present the unmanipulated efficiency achieved by PSFs, the direct Monte
Carlo Simulation, i.e., without any reduction technics, is chosen to predict the prob-
abilistic characteristics of the nonlinear system responses under seismic excitations
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generated in section 6.2.2. As indicated in [22] large sample sizes are necessary by
the direct Monte Carlo Simulation to obtain reasonable prognoses at the tail of the
probability distribution, which is essential for the reliability analysis. Therefore 10,000
simulations are accomplished for this example to show that the procedure proposed in
this work is sustainable for such a large number of simulations.

Because the limitation of the PC memory sizes (RAM sizes) and of the large solution
data to be saved, only the first 8 seconds of the seismic accelerations, in which the
maximal value occurs, are analyzed with a sampling frequency of 64 [Hz], i.e., 512
numerical integration steps for a single realization. With the same reasons only the
nonlinear responses, i.e., the curvatures and the hysteretic Y-variables, of the column
corner point A (s. Fig. 6.9 (a)) are recorded for the further statistical postprocessing.
The computing time of one single simulation of the reduced system with 92 DOF and
144 auxiliary nonlinear equations is about 2 minutes on a commercial PC (AMD 64
Dual-Core 3.8 GHz CPU, 2 GB RAM), namely about 14 days are needed for 10, 000
simulations. Although it sounds to take a very long time but at least it is still feasible.
With a rough assumption that the computing time is proportional to the system DOF,
then for the unreduced system with 30000 DOF the entire simulations need more than
12 years to be performed on the same PC.

First the mean values and the corresponding standard deviations of the curvatures and
the hysteretic Y-variables on point A from 0−8 seconds are represented in Fig. 6.14. It
can be seen that the standard deviation increases with the seismic accelerations and has
a similar shape like the intensity function of the excitations (s. Fig. 6.4 (b)) as expected.

By considering the maximal curvatures Fig. 6.15 represents the probability histogram
resulted from the Monte Carlo simulations together with the approximated Normal-
distribution and Gumbel-distribution respectively. The Gumbel-distribution, which is
developed from the extreme value theory, is suggested in [33] to approach the statistic
characters of the nonlinear system responses and its probability density fG(x) is defined
as [34]

fG(x) =
1

βG
exp

(µG − x
βB

)
exp

(
− exp

(µG − x
βB

))
, (6.12a)

with the coefficients

βG = σS

√
6

π
, (6.12b)

and
µG = µS − βb · Euler-Mascheroni Constant

' µS − βG · 0.5772156
(6.12c)

where µS, σS are the mean and the standard deviation of the probability distribution
and can be estimated from the simulations.

Fig. 6.15 (a)-(c) represent the statistic results of maximal curvatures estimated from
merely 1000 simulations. Under such a ‘small’ number of simulations it is difficult to
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tell that to which analytic distribution is the system response more similar. Contrarily
a better match of the Gumbel-distribution with the nonlinear system response can be
concluded by Fig. 6.15 (d)-(f), which are resulted from 10, 000 simulations. At the
region of higher curvatures apparent probabilities can also be determined under such
enormous simulations, as a result it is possible to make a reasonable prognosis about
the failure probability of structure systems according to particular criteria.

(a) statistic results of κx (d) statistic results of Yx

(b) statistic results of κy (e) statistic results of Yy

(c) statistic results of κxy (f) statistic results of Yxy

Figure 6.14: (a)-(c) Mean and Standard Deviation of Curvatures, (d)-(f) Mean and
Standard Deviation of Y-Variables, Resulted from 10, 000 Realizations
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(a) statistic results of max. κx (d) statistic results of max. κx

(b) statistic results of max. κy (e) statistic results of max. κy

(c) statistic results of max. κxy (f) statistic results of max. κxy

Figure 6.15: (a)-(c) Histogram, Estimated Normal and Gumbel Density of Maximal
Curvatures from 1000 Simulations, (d)-(f) Histogram, Estimated Normal and Gumbel
Density of Maximal Curvatures from 10,000 Simulations



Chapter 7

Summary and Conclusions

Achievements

In the present work the procedure of reducing the DOF of flat plate systems for nonlin-
ear dynamic analyses through the application of Plastic Shape Functions is established.
With this method it is possible to solve the stochastic nonlinear dynamic problems of
large scale plate structures through the direct Monte Carlo Simulation even on a com-
mercial PC. The kernel of this procedure, i.e., the Plastic Shape Function, is developed
systematically basing on the common Finite Element Method and can be easily adopted
in the numerical FE-programs.

As the theoretical constituents of this work the following subjects are handled:

• Hysteretic material model – Relying on the original Bouc-Wen model and its
extensions, especially the works of Park (1986) and Simulescu (1989), a two-
dimensional hysteretic model in the principal stress plane (2D-HMiPSP) is de-
rived. To verify the validity of this model, it is compared with the von Mises
yielding criteria and the Ziegler’s hardening model through numerical exam-
ples with a good agreement. In order to be implanted in the FE formulation
the 2D-HMiPSP is analytically translated to the Cartesian coordinate system
and numerically proofed. Further the translated hysteretic model relying on
the stress-strain level is turned into a hysteretic moment-curvature relation by
proposing the Y-variables, which are then compared with results of the nonlinear
fiber model.

• Curvature related stiffness matrix – By establishing the FE model according to
the Principle of Virtual Work a nonlinear part of internal virtual works is intro-
duced by using Y-variables, which have the same unit as curvatures. Additional
interpolation functions, which have to be compatible with second derivatives of
the bi-cubic deformation shape functions of the selected 4-nodes Schäfer plate
element, are derived for the Y-variables, so that the consistency of the virtual
works is ensured. Based on these compatible interpolation functions, the so-called
curvature related stiffness matrices corresponding to the hysteretic Y-variables
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are established. These curvature-based stiffness matrices are also the foundation
of the development of plastic shape functions.

• Reduction of nonlinear equations – Usually the yielding occurs only on small
regions or particular nodes in a discretized system. Therefore not all the nodes
and elements have to be considered as yielding related. To reduce the number
of the auxiliary nonlinear equations, which can dominate the entire computing
time upon a certain proportion, the Patch and Split Method are proposed in the
global differential equation system.

• Development of Plastic Shape Function – Using the column vectors of curvature
related stiffness matrices as global loadings and together with applying the FEM
based static analyses, the systematic development process of plastic shape func-
tions is established. The plastic shape function approximates directly the nonlin-
ear system response, which is the linear superposition of numerous eigenmodes
in the classical way. Only a few low frequency modes are retained to simulate the
elastic deformations, while all other eigenmodes are replaced by some particular
plastic shape functions. As a result the system DOF, independent of its original
size, are dramatically reduced to a feasible small number for the direct Monte
Carlo Simulation.

With all the theoretical preparations this procedure is first realized on a rectangular
steel plate with a small number of DOF, so that the validity of this procedure is
controlled by comparing it with the reference solutions (or the ‘exact’ solutions within
the maximal accuracy bounds of the FE discretization), which are resulted from the
utilization of the entire modal DOF. Then this procedure is further applied on a large
scale RC flat slab, which is excited by vertical seismic accelerations, to perform 10, 000
times Monte Carlo simulations. In between the ‘nonlinear column support effects’ are
verified on a additional independent system to sustain the RC slab example with the
lack of reference solutions.

Accuracy

The basic assumption - which is also the approaching target - of the plastic shape
function is the existence of the particular, locally concentrated, discontinuous curva-
ture distribution parts which resulted from the yielding (or called as plastic parts of
curvatures). Consequently the plastic shape function has these yielding specific curva-
ture distributions in nature, although with the first sight it is merely a modal vector
of static deformations, and its accuracy arrives the level of curvatures with the help of
the compatible interpolation functions of Y-variables.

As represented in examples of various yielding conditions, the reference solutions can be
very well approximated by the solutions resulted from the reduced modal bases which
extended by the plastic shape functions. The curvature error ratios between the refer-
ence and the plastic shape function applied solutions is about 3% to 5%. These errors
come from two major parts: (1) The simulation of elastic system responses through
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the few low frequency modes. (2) The interactions of plastic shape functions, which
produce locally undesired redundant curvatures. The former effect can be recognized
by the almost unchanged error ratios of elastic regions between solutions with or with-
out applying plastic shape functions. The error part (2) can be realized through the
local analyses of the yielding related elements and it can be found that the error ratios
are lower on the yielding nodes than on the nodes around them.

The accuracy of the plastic shape function is certified again through the study case
of nonlinear column support effects. In this example it is even found that the non-
linear plate behaviors at the corners of the single column support will be critically
miscalculated if only a few eigenmodes, as in the elastic dynamics, are considered.

Efficiency

The efficiency of this procedure is directly dependent on the proportion of the number
of plastic shape functions to the system DOF. The smaller this proportion is, the more
efficient is this procedure, since a huge part of the modal DOF, needed for describing
the nonlinear deformations, can be replaced by plastic shape functions. An other in-
fluence factor is the number of the auxiliary nonlinear equations attached to the global
differential equation system. When the number of these nonlinear equations is over a
certain amount, the computing time required for them, which is almost independent
of the size of the reduced modal space, can dominate the entire calculation costs and
lessen the efficiency achieved by the plastic shape functions.

Fortunately, in the engineering practices the proportion of the yielding zones to the
system scale will be limited under the critical state with the reason of structure safety.
And it is demonstrated in this work that for a system with about 30, 000 DOF and
with a yielding ratio of 1/600, this procedure is capable of performing 10, 000 Monte
Carlo Simulations for probability analyses directly on the commercial PC.

Flexibility

The major components of this work, i.e., the nonlinear material model, the curvature
related stiffness matrices and the plastic shape functions are independent from each
other according to their individual concepts. Therefore it is possible to replace the ma-
terial model with another one or to use different plate element in the FE formulation
for various study cases. But the principles of deriving the curvature related stiffness
matrices and developing the plastic shape functions will keep unchanged.

Besides the nonlinear material model, this procedure is built on the basis of FEM,
therefore it is absolutely compatible with the commercial FE programs. For exam-
ple, in the MSC-Nastranr the method of modal augmentation [36], which extends the
reduced modal bases with static shape vectors, has been suggested to increase the ac-
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curacy of modal analysis.

Another flexibility comes from the element-wise development of the plastic shape func-
tion. According to the boundary, material and support conditions the plastic shape
functions of one, or maximal of four yielding related elements can be arbitrarily com-
bined together to simulate all kinds of curvature distributions as illustrated in the
examples. Through the combination of plastic shape functions of adjacent elements
the reduced DOF can be condensed again.

Limitation and Prospect

The applicability of plastic shape functions is basically limited to the non-punctiform,
uniformly distributed loading with frequencies locating in a certain range, which are the
same limitations of linear modal analyses, since the plastic shape function is merely
developed to simulate the curvature discontinuity resulted from yielding. But it is
believed that with the elemental curvature figure of the plastic shape function, dis-
continuous curvature distribution of other reasons can also be simulated, just like the
‘M-Moden’ developed in [42] for the single moment load on a beam.

Another limitation of this procedure is the time consuming of solving the hysteretic
equations. In the example of Monte Carlo Simulation one single calculation process
costs about 2 minutes, if this computing time raises to 10 times because of the Size
Effect, e.g., proportional increasing of system DOF and number of yielding nodes, a
Monte Carlo Simulation might be no more feasible for the commercial PC even though
the modal DOF remain small against the total system DOF. For such problems the de-
velopment of more efficient nonlinear material models, numerical computing processes
(such as the advanced MCS) or mechanical treatment of yielding zones will be necessary.

This work is just a small contribution of the development of plastic shape functions.
Much more work needs to be done: Further condensation of plastic shape functions
for large yielding zones, development of plastic shape functions for shell structures, for
3D volumes, for combination constructions, or extension of this concept to geometrical
nonlinearity are all themes of the next step.



Appendix A

Introduction of the Classical
Plasticity Theory

As a branch of continuum mechanics, the origin of plasticity can be dated back to a
series of papers from 1864 to 1872, in which the first yield condition was proposed
by Tresca. That was based on his experimental results on extrusion of metals and is
regarded as maximum shear stress yielding [41] [16]. Since then, tremendous progresses
has been made by many researchers, such as Saint-Venant, Levy, von Mises, Prandtl,
Prager, Drucker. . . , etc, who have established the cornerstones for the plasticity theory.

The theory of plasticity, which is phenomenological in nature, deals with the stress-
strain or load-deflection relationships for a plastically deforming material or structure.
Therefore the mathematical formulation of these relationships should follow the exper-
imental observations, from which it can be concluded that plastic deformation has the
following features: [41]:

• Associating with the dissipation of energy, the plastic deformation is irreversible.

• Plastic deformation is history or path dependent due to its dissipation feature.

• The constitutive equations for plastic deformation are assumed to be invariant
with respect to the time scale, which means that the plastic deformation is rate
insensitive.

In other words, the plastic deformations are determined by nonlinear, time indepen-
dent constitutive equations in increment or rate form. With this consideration the
constitutive theory of plastic deformation should contain the following components

1. The initial yield stress σ0
Y or the initial yield surface (cf. Section A.1) should be

known. The general formulation of the yield surface in three-dimensional cases
can be represented through the yield function as

F (σ, σ0
Y ) = 0 , (A.1)
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where σ is the stress state tensor.

2. The criterion for loading or unloading should be specified (cf. Section A.1).
Because of the dependence on the stress history and state, the plastic behaviors
under the conditions of the elastic loading, of the plastic loading and of the
unloading, are different from each other. This is also the main distinction between
the nonlinear elasticity theory and the plasticity theory.

3. The constitutive equation for plastic deformation should be formulated. This
process is the center of the plasticity theory (cf. Section A.2, A.3).

4. Except for perfectly plastic material, or in the small region of plastic flow of mild
steel, the growth of subsequent yield surface should be known. The subsequent
yield surface defines the boundary of the current elastic region (cf. Section A.3).

A.1 Yielding Criteria

For the three-dimensional cases in general, the six independent stress components serve
as independent coordinate axes and establish a six-dimensional stress space, in which
a point specifies a stress state. All the possible stress states that cause yielding can be
imagined to constitute a closed hypersurface, which is called the yield surface.

The yield surface is the boundary between the elastic and the plastic deformation and
divides the stress space into to domains. In order to know if the stress state locates
in the elastic or the plastic deformation domain, in which the stress-strain relationship
is different from each other, it is necessary to determine the shape and position of the
yield surface in the stress space.

If the material is isotropic, which is the assumption of the present work, the yielding
depends only on the magnitudes of the principal stresses but not its orientation. The
yielding function can be represented therefore in the three-dimensional principal stress
space. Further, with the experimental evidence exposed by Bridgeman in 1952 [10],
it can be assumed that the hydrostatic pressure has no effect on plastic yielding for
metallic material. Accordingly the plastic yielding depends only on the deviatoric stress
tensor S and the yield function for isotropic metallic material can be written as

F (J ′2, J
′
3) = 0 , (A.2)

in which J ′2 and J ′3 are the second and the third invariants of the deviatoric stress tensor.
It is to note that equation (A.2) represents geometrically a cylinder with a general shape
of the surface in the principal stress space, whose center line is the hydrostatic pressure
axis (σ1 = σ2 = σ3). The projection of yield surface on the deviatoric plane, which
is perpendicular to hydrostatic pressure axis, will be illustrated according to the yield
criterion in the following.
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Tresca Criterion

In 1864 Tresca proposed that the plastic yielding will occur when the maxium shear
stress reaches the critical value k, which is a material constant. This criterion can be
written in terms of principal stress as [41]

max
[

1
2
|σ1 − σ2|, 1

2
|σ2 − σ3|, 1

2
|σ3 − σ1|

]
= k . (A.3)

From the uniaxial test or alternatively from the pure shear test this critical value can
be determined as

k =
σY
2

= τY , (A.4)

where σY and τY are yield stress under uniaxial tension and pure shear respectively.

von Mises Criterion

Later in 1913 von Mises suggested that the plastic yielding will occur only when the
second invariant J ′2 of the deviatoric stress tensor S reaches a critical value k2. The
von Mises yield criterion can be represented as

F (σij) = J ′2 − k2

{
= 0 for yielding or plastic deformation
< 0 for elastic deformation

(A.5)

or it can be rewritten in terms of principal stress components for the yielding as

J ′2 = 1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

= k2 . (A.6)

The material property k in equation (A.6) can be estimated by a simple tension test
or a pure shear test and results

k =
σY√

3
= τY , (A.7)

which is different from the critical value of Tresca’s in equation (A.4).

In the principal stress space the equation (A.3) from Tresca draws a regular hexagon
on the deviatoric plane, which has discontinuity at the corner, while equation (A.6)
from von Mises represents a smooth circular locus on it (s. Fig. A.1(a)). Under the
condition of plane stress (σ3 = 0), equation (A.6) can be reduced to

σ2
1 − σ1σ2 + σ2

2 = 3k2 . (A.8)

This equation represents the von Mises ellipse in the σ1 − σ2 plane (s. Fig. A.1(b)).

With the experimental investigations from, e.g., Lode (1925), Taylor & Quinney (1932)
and Lianis & Ford (1957), it can be concluded that the von Mises criterion is better
for predicting yielding of metals than the Tresca criterion.
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(a) Deviatoric Stress Plane (b) Principal Stress Plane

Figure A.1: Tresca and von Mises Yield Function

Loading and Unloading

As mentioned before the indication of loading or unloading is one of the bases of the
plasticity theory. It identifies whether the deformation is elastic or plastic. Rewriting
the general yield function as F (σ) = f(σ)− k0 = 0, the loading and unloading criteria
for work-hardening materials can be written as [41]

F (σ) < 0, (elastic deformation)

F (σ) = 0, dF = f(σ + dσ)− f(σ) =
∂f

∂σ
: dσ > 0 (loading)

F (σ) = 0, dF = f(σ + dσ)− f(σ) =
∂f

∂σ
: dσ = 0 (neutral loading)

F (σ) = 0, dF = f(σ + dσ)− f(σ) =
∂f

∂σ
: dσ < 0 (unloading)

(A.9)

In the stress space the vector ∂f/∂σ is the outer normal n to the yield surface. After
these criteria only the loading case can result in plastic deformation for the work-
hardening materials, i.e., only when dσ is directed outward to the yield surface. Ob-
viously by unloading, which dσ points inward from the yield surface, the deformation
is purely elastic. The reason why there is no plastic deformation during the neutral
loading - while dσ is tangential to the yield surface - is that the continuity in the
stress-strain relations should be satisfied.

It is to note that for the perfectly plastic material the initial yield surface keeps un-
changed during the plastic deformation. Therefore, by further loadings beyond yielding,
the stress point has to be on the yield surface and remain there, i.e., the stress incre-
ment dσ can only be tangential to the yield surface. Consequently, for the perfectly
plastic material the only loading case means dF = ∂f/∂σ : dσ = 0 mathematically.
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A.2 Constitutive Equation of Perfectly Plastic Ma-

terials

After pointing out the onset of plastic behaviors with the yield criteria, the next step
of establishing the plasticity theory is to formulate the stress-strain relationship under
yielding. First the constitutive equation for the perfectly plastic material will be in-
troduced in this section.

It is to emphasize that the following constitutive equations, because of the nature of
perfectly plastic materials, are one-way valid. That means, for a defined current stress
state σij with a given strain increment dεij the corresponding stress increment dσij
can be uniquely determined. But the magnitude of the strain increment cannot be
uniquely determined by the given current strass σij and the stress increment dσij from
the coming constitutive equations.

Levy-Mises Equation

Levy(1870,1871) and von Mises(1913) proposed independently a generalized consti-
tutive equation for three-dimensional plastic deformations by extending the work of
Saint-Venant(1870). With the following assumptions:

1. The elastic strain ε e is small and can be neglected. So the total strain ε is equal
to the plastic strain ε p.

2. The increment of strain dε or ε̇ is coaxial with the deviatoric stress S.

the Levy-Mises constitutive equation can be formulated as

ε̇ = λ̇S (A.10a)

or in terms of tensor components as

˙εij = λ̇Sij . (A.10b)

In equation (A.10) λ̇ is a proportionality parameter, which can be determined from
the yield criterion.

With the assumption of perfectly plastic material, i.e. σY is constant, and with use of
von Mises criterion (A.5), in which J ′2 = 1

2
Sij Sij is applied, the parameter λ̇ can be

calculated by squaring equation (A.10b) as

λ̇ =

√
3ε̇ij ε̇ij/2

σ2
Y

=
3

2

ε̇e
σY

, (A.11)
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where ε̇e is the equivalent of effective strain rate and is defined by

ε̇e =

√
2

3

[
(ε̇1 − ε̇2)2 + (ε̇2 − ε̇3)2 + (ε̇3 − ε̇1)2

]1/2

=

√
2

3
ε̇ij ε̇ij (A.12)

The Levy-Mises Equation (A.10) is usually called as flow rule of plasticity.

Prandtl-Ruess Equation

When the elastic strain ε e is comparable to the plastic strain ε p, the negligence of ε e will
result in a significant error. Considering this, Prandtl(1927) and Reuss(1930) proposed
a constitutive equation for the plastic strain rate similar to Levy-Mises equation as

ε̇ pij = λ̇Sij , (A.13)

where λ̇ is a parameter and can be determined by using the yield criterion. It is
assumed that, plastic deformations don’t result in volume changes, which means

ε pkk = ε pxx + ε pyy + ε pzz = ε p1 + ε p2 + ε p3 = 0 , (A.14)

thus the plastic strain rate ε̇ p in equation (A.13) is deviatoric in nature.

The shape change caused by the elastic deformation can be represented by the devi-
atoric elastic strain ε ′eij = Sij/2G , where G is the shear modulus, according to the
elasticity theory [30] . Differentiating the deviatoric elastic strain with respect to time
results it’s rate form, which is

ε̇ ′eij =
1

2G
Ṡij . (A.15)

The total rate of shape change, i.e. the total deviatoric strain rate, can be obtained by
adding equations (A.13) and (A.15) as

ε̇ ′ij =
1

2G
Ṡij + λ̇Sij (A.16)

Similar to the derivation of equation (A.11) the parameter λ̇ of Prandtl-Reuss equation
(A.13) can be expressed as

λ̇ =
3 ε̇pe
2σY

, (A.17)

where ε̇pe is the equivalent or effective rate of the plastic strain and is defined by

ε̇pe =

√
2

3

[
(ε̇p1 − ε̇

p
2)

2 + (ε̇p2 − ε̇
p
3)

2 + (ε̇p3 − ε̇
p
1)

2
]1/2

=

√
2

3
ε̇pij ε̇

p
ij . (A.18)

It is to note that the application of Levy-Mises or Prandtl-Reuss equation is not limited
to perfectly plastic materials. For example, instead of a constant, the yield strength σY
can be considered as a function of a certain hardening parameter(s) to generalize these
constitutive equations. For the hardening materials the determination of the parameter
λ̇ will be different from the equation (A.11) or (A.17) . It is to remind that not only
the strains mentioned above, but also the strains resulted from the hydrostatic stresses
still have to be considered to build the total strains.
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Plastic Potential Theory

In contrast with the empirical postulations, which base on experimental observations,
von Mises proposed in 1928 a general mathematical treatment of the constitutive equa-
tion for the plastic deformation or flow.

According to the method of potential energy in the elasticity theory the strain can be
determined as [67]

εij =
∂Uc
∂σij

, (A.19)

where Uc is the complementary strain energy. Applying this idea to plasticity theory,
von Mises proposed that the plastic strain rate ε̇pij could be related to the stress σij
through a plastic potential function Q(σij) and derived as

ε̇pij = λ̇
∂Q(σij)

∂σij
, (A.20)

where λ̇ is a proportional positive scalar factor and can be determined by yield criterion.

The key point of using the plastic potential theory is to determine the effective form
of the plastic potential function Q(σij) . A common approach in plasticity theory is
to assume that the plastic potential function Q(σij) is the same as the yield function
F (σij). Then equation (A.20) can be rewritten as

ε̇pij = λ̇
∂F (σij)

∂σij
(A.21)

It can be seen from equation (A.21) that the plastic strain ε̇pij relates to the yield func-
tion and is normal to the yield surface. Therefore it is called associated flow rule. If
Q 6= F , the flow rule is then called nonassociated. For metallic or nonporous material
the association of Q with F can be well verified from experiments. On the other hand,
it can be mathematically proved that if the material is stable according to Drucker’s
stability postulate, then the flow rule must be associated.

The Drucker’s postulate declares, if a material is stable, the following inequality must
hold [41]:

W =

∫
Cσ

∆σ : dε ≥ 0 , (A.22)

where W is the work done over a closed stress cycle Cσ . This fairly strong condition
(A.22) can only be satisfied by hardening materials. The Drucker’s stability postulate
leads to two general conclusions:

1. The yield surface is convex.

2. The plastic strain rate or increment is normal to the yield surface.
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By applying the von Mises yield criterion (A.5) in the equation (A.21) it becomes

ε̇p = λ̇
∂F

∂σ
= λ̇

∂J ′2
∂σ

= λ̇S , (A.23)

which is the Prandtl-Reuss equation (A.13).

A.3 General Constitutive Equation with Harden-

ing Rule

If the material has hardening behavior, i.e., the strength of material will increase even
though the initial yield stress is reached, then the subsequent yield point/surface, which
depends on the specific hardening parameter(s), has to be determined. The hardening
parameters indicate the extension (isotropic hardening), translation (kinematic hard-
ening), or distortion of the yield surface for each time step. Generally the yield function
with consideration of hardening character can be written as

F (σ, αhi ) = 0 (i = 1, 2, . . . , n) , (A.24)

where αhi are all possible hardening parameters, which can be scalars, vectors, or ten-
sors.

For the use of the present work only the kinematic hardening model, which can describe
the Bauschinger effect observed on the mild steel, will be explained in detail. Descrip-
tions of the other hardening models, e.g., isotropic, mixed, or nonuniform hardening,
can be found in the publications [41], [16], or [45].

Kinematic Hardening Rule

In order to describe the Bauschinger effect, in which the isotropic hardening model
fails, Prager introduced the kinematic hardening model. This model assumes that the
yield surface keeps its shape and size but translates in the stress space during the
process of plastic deformation [16]. The subsequent yield surface due to the kinematic
hardening can be formulated as

F (σ,αh) = f(σ −αh)− k = 0 , (A.25)

where αh is a tensorial hardening parameter, which is usually called the back stress,
and k is a material constant. αh and k in equation (A.25) represent geometrically the
center and the size of the yield surface respectively.

The main subject of the hardening model is to specify the evolution of αh. According
to the history-dependent nature of plastic deformation, it can be expected that αh will
be formulated in incremental form as a function of dεp, σ, or αh itself. Based on the
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(a) Deviatoric Stress Plane (b) Principal Stress Plane

Figure A.2: Prager and Ziegler Kinematic Hardening Model

experimental investigations, Prager(1955) proposed a linear constitutive equation for
the back stress αh as

dαh = c dεp , (A.26a)

where c is a material constant. By using associated flow rule (A.21), the Prager’s model
(A.26a) can be rewritten as

dαh = c dλ
∂F

∂σ
. (A.26b)

According to this model the yield surface is assumed to move in the direction of the
plastic strain increment, which is normal to the yield surface at the loading point
(s. Fig. A.2). Prager’s linear kinematic model is inconsistent for three- and two-
dimensional cases and has a transverse softening or hardening effect. Using Prager’s
model the yield surface will not only translate but also change its shape, which dose
not really represent a kinematic hardening rule as described earlier.

To overcome the deficiency of Prager’s linear kinematic model, Ziegler(1959) proposed
the following modified model:

dαh = (σ −αh)dµ , (A.27)

where dµ is a proportional scalar constant determined by the yield criterion. It can be
seen that under the Ziegler’s model the moving direction of yield surface is assumed
to be parallel to the vector σ − αh. It should be noted that by using the von Mises
criterion the moving direction of Prager’s model is the same as the one of Ziegler’s
model in three-dimensional cases (s. Fig. A.2(a)), but different in two-dimensional
cases (s. Fig. A.2(b)).

Plastic Stress-Strain Relations

Using the plastic potential theory with the associated flow rule, the plastic strain for
hardening materials can be expressed as equation (A.21), in which the yield function
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is replaced by equation (A.25). To determine the hardening parameter αh, the consis-
tency assumption proposed by Prager can be used, which is [41]

dF =
∂F

∂σ
: dσ +

∂F

∂αh
: dαh = 0 . (A.28)

For Ziegler’s hardening model setting equation (A.25) and (A.27) in equation (A.28)
it follows:

∂f

∂σ
: dσ +

∂f

∂αh
: (σ −αh)dµ = 0 . (A.29)

And according to the equation (A.25) is ∂f/∂σ = −∂f/∂αh, so that the proportional
scalar dµ can be determined by

dµ =
∂f/∂σ : dσ

∂f/∂σ : (σ −αh)
(A.30a)

and consequentially is

dαh =
(σ −αh)

∂f/∂σ : (σ −αh)
l , (A.30b)

where

l =
∂f

∂σ
: dσ .

In order to determine the plastic strain rate ε̇p, i.e., the proportional positive scalar
factor λ̇, the normality condition of associated flow rule is used, so that the component
of dσ in the normal direction to the yield surface is parallel to dεp. Mathematically it
can be formulated as

dεp =
1

KP
(n : dσ)n =

1

KP

l

∂f/∂σ : ∂f/∂σ

∂f

∂σ
. (A.31)

where n is the normal vector of yield surface and KP > 0 is a proportional factor.
Comparing this with equation (A.21) it follows

dλ =
1

KP

l

∂f/∂σ : ∂f/∂σ
. (A.32)

With use of von Mises yield criterion the parameter KP can be calculated under uni-
axial tension as [41]

1

KP
=

3

2
(

1

Et
− 1

E
) , (A.33)

where E is the Young’s modulus and Et is the tangential stiffness, i.e., the post-yielding
strength for linear hardening. And KP is considered as plastic modulus.

It should be mentioned that the classical isotropic hardening and Prager’s or Ziegler’s
kinematic hardening models can give a reasonable description of the elasto-plastic
behavior merely for monotonic loading cases, but not for the cyclic loading, in which
the material responses are more complex and have the features such as smooth elastic-
plastic transition, cyclic creep effect and stabilization of the isotropic hardening [20].
For cyclic loading cases further models were proposed [41], e.g. Mroz’s multi-surface
model, nonlinear kinematic hardening model or endochronic theory . . . , etc..



Appendix B

Hysteretic Model and its
Developments

For the engineering uses, the hysteresis of cyclic loading can be formulated through
the simple bilinear model [37] or through the smoothly distributed Ramberg-Osgood
model [38]. Both of them are case-distinguishing for loading or unloading, therefore a
discretization of the loading history is necessary. The analysis of the system response
with these models can be accomplished by means of a step-by-step numerical inte-
gration, but these models are difficult to put in mathematically convenient forms for
analytical solution.

Another method to formulate the hysteretic material behavior is the differential equa-
tion models, which are generally given in mathematically explicit form; consequently
an analytical solution of the response may be obtained. In this method additional
state variables were introduced and the force-displacement relationship is formulated
through nonlinear differential equations.

Considering a nearly elasto-plastic system with a linear pre-yielding restoring force and
a post-yielding stiffness, the total restoring force Q can be separated into an elastic
part Qel and a hysteretic part QH by introducing a state variable z as following

Q(x, ẋ, t) = Qel +QH

= α k x+ (1− α) k z ,
(B.1)

where x is the instantaneous displacement, k is the pre-yielding stiffness, α is the ratio
of post-yielding to pre-yielding stiffness and z characterizes the hysteretic component,
which is a function of the time history of x [101].

Two familiar models of the nonlinear differential equation of the hysteretic variable z
will be introduced in the following.

133
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B.1 Bilinear Model

With use of Heaviside function H(.), which is the mathematical expression of case
distinction, Suzuki and Minai [92] proposed a one-dimensional distributed bilinear
model for the hysteretic variable z in the equation (B.1), which satisfies

ż = ẋ [ 1−H(ẋ)H(z − xL)−H(−ẋ)H(−z − xL)] , (B.2)

where xL is the yielding limit of x.

Comparing this model with the classical plasticity theory, the multiplication of the two
Heaviside functions in equation (B.2) controls at the same time two criteria of deter-
mining the yielding, namely the yielding criterion through H(z − 1) and the loading-
unloading criterion through H(ẋ). The second multiplication of Heaviside functions
with the minus sign serves for the determination of yielding under compression.

The equation (B.2) alone describes the elastic perfectly-plastic material behavior. To-
gether with the elastic part as formulated in (B.1) the bi-linear hysteretic Model of
Suzuki-Minai is illustrated in Fig. B.1.

Figure B.1: Bilinear Hysteretic Model from Suzuki-Minai

B.2 Bouc-Wen Hysteretic Model

A smooth hysteretic material model, which can better indicate the features of mate-
rial response under cyclic loading, was first proposed by Bouc [9]. In his model the
hysteretic parameter z is formulated as

ż = A ẋ− β |ẋ| z − γ ẋ |z| , (B.3)

where A, β and γ are material constants.

Further, in [99] Wen generalized the Bouc’s model with an additional parameter n as
the power index and suggested that

ż =

{
A ẋ− β |ẋ| zn − γ ẋ |zn| for n is odd

A ẋ− β |ẋ| |z| zn−1 − γ ẋ zn for n is even.
(B.4)
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This nonlinear equation is usually called as the Bouc-Wen model.

The scale or the bound of the hysteretic loop is controlled by the parameter A, while
β and γ govern the shape or the volume of the hysteretic loop. The smoothness of
the elastic-plastic transition is then decided by n – as n increases the transition will
be sharper and by the limiting case n =∞ it is identical to an elastic perfectly-plastic
model. Usually these parameters are determined directly from the experiments of
materials. Owing to this flexibility various hardening systems, even softening systems,
can be represented easily by modifying these parameters. Further parameter studies
can be found in references [98], [26] and [33]. In Fig. B.2 the schema of Bouc-Wen’s
model with material constants A = 1, β = γ = 0.5 and n = 2 is shown.

Figure B.2: Smooth Hysteresis of Bouc-Wen Model (A = 1, β = γ = 0.5, n = 2)

It was pointed out by Wen [101] and also by Casciati [12] that the Bouc-Wen model
(B.4) doesn’t obey the Drucker’s stability postulate [41] when the displacement doesn’t
change its sign during the cyclic loading. This problem can be corrected by increasing
the power n in the governing equation, which will aggravate the numerical computing
work, or by adding a second hysteretic item [12]. But when the system is under random
excitations this deficiency is no more significant [101].

Although the disobeying of Drucker’s postulate under some cases, this model is widely
extended and applied in many fields because of its flexibility and variability. It was
extended by Baber and Wen in [6] for multi-degree-of-freedom (MDOF) systems with
degradation. In [5] Baber modified this model to consider the pre-damage of systems.
The further extensions of Bouc-Wen model for 2-D structures under biaxial excitations,
for 3-D frames and for biaxial plus torsional excitations, can be found in [53], [13] and
in [102] respectively. A tensorial expression of the smooth hysteretic model for the
application to the continua was also accomplished in [88], [12]. Pradlwarter, Schuëller
and Schenk proposed a hysteretic model, which combines the Suzuki-Minai’s model
with Bouc-Wen’s, so that it has a linear-elastic region with clear defined limits of elas-
ticity and plasticity [61]. About the detailed developments of Bouc-Wen model and its
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applications in various fields, the references [101] and [98] can be read.

With another aspect the smooth transition feature can also be explained by the limit
analysis of cross-section. Considering a rectangular cross-section under bending the
moment-curvature relation M −κ in elastic region can be expressed non-dimensionally
as

κ

κ̃y
=

M

M̃y

(0 ≤M ≤ M̃y) , (B.5)

where M̃y and κ̃y are the elastic limit of moment and curvature respectively, by which
the maximum stress in cross-section just reaches the yield stress σY . Beyond the
elastic limit M̃y part of the rectangular cross-section is loaded with σY , as the other
still behaves elastically. The M − κ relation is then nonlinear and the transition from
elastic- to plastic-limit is characterized by [28]

κ

κ̃y
=

1√
3− 2M/M̃y

(M̃y ≤M ≤ M̃p) , (B.6)

where M̃p is the plastic limit of moment (the whole cross-section is under the yield
stress σY ). This smooth elastic-plastic transition is plotted in Fig. B.3, to which the
Bouc-Wen model is very similar.

Figure B.3: Elastic-plastic M − κ Diagram for Rectangular Cross Section

B.3 Multi-variable Hysteretic Model

The first multi-variable hysteretic model was proposed by Park et al. [53] to describe the
biaxial hysteretic restoring forces of columns under stochastic two-dimensional earth-
quake excitations. The hysteretic components are modeled by two coupled nonlinear
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differential equations as

żx = A u̇x − β |u̇x zx| zx − γ u̇x z2
x − β |u̇y zy| zx − γ u̇y zx zy

ży = A u̇y − β |u̇y zy| zy − γ u̇y z2
y − β |u̇x zx| zy − γ u̇x zx zy ,

(B.7)

where ux, uy are the displacements and A, β, γ are material constants. The total
restoring forces can be expressed similar to equation (B.1) in matrix form as

[Q] = α [K] [u] + (1− α) [K] [z] , (B.8)

where [K] is the initial stiffness matrix and [Q], [u] and [z] are vectors.

It was also shown in [53] that the equation (B.7) can be drawn back to the one-
dimensional equation (B.4) with n = 2, when ux/uy is a constant. Consequently, the
equation (B.4) can be used to find the relation between the yield strength and the
material constants A, β and γ. By yielding is ż = 0 and z reaches its limit zL, which
is the corresponding elastic deformation of the yield strength. According to equation
(B.4) with n = 2 it gives

zL =
√
A/(β + γ) . (B.9a)

If A = 1 and β = γ is assumed, then it follows

β =
1

2
(

1

zL
)2 . (B.9b)

Later Simulescu et al. [88] developed a hysteretic model for three-dimensional continua
in a tensorial notation as follows

σij = λ
[
α∗ εkk + (1− α∗) ξkk

]
δij + 2µ

[
αij εij + (1− αij) ξij

]
. (B.10)

In this equation λ and µ are the Lamé’s constants, δij is the Kronecker’s delta and
the term αij is a symmetric tensor with the definition of α∗ = α11 = α22 = α33. The
Einstein summation convention is applied in this equation. If αij = 1, then equation
(B.10) reduces to the constitutive equation of elastic material behaviors. The hysteretic
variable ξ is suggested as

ξ̇ij = −bij ε̇ij − cij|ε̇ij| |ξij|nij−1 ξij − dij ε̇ij |ξij|nij , (B.11)

where bij, cij, dij and nij ≥ 1 are material constants. Under the plane stress condition
(σ33 = 0) the equation (B.10) can be rewritten with the principal stresses as

σ1 = α E
1− ν2 (ε1 + ν ε2) + (1− α) E

1− ν2 (ξ1 + ν ξ2)

σ2 = α E
1− ν2 (ν ε1 + ε2) + (1− α) E

1− ν2 (ν ξ1 + ξ2) ,
(B.12)

This hysteretic stress-strain relation (B.11) and (B.12) is similar to the Park’s biaxial
model (B.7) and (B.8), which is a hysteretic force-displacement relation and doesn’t
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include all the terms of tensor product suggested in Simulescu’s model.

Another hysteretic model expressed in a tensorial notation is proposed by Casciati
in [12]. It was derived from the von Mises yielding criterion (A.6) with adoption of
Prager’s hardening rule (A.26) and can be formulated with deviatoric variables as

ξ̇
′
= A ε̇ ′ − β |ε̇ ′ : ξ′| ‖ξ′‖n−2 ξ′ − γ (ε̇ ′ : ξ′) ‖ξ′‖n−2 ξ′ , (B.13)

where ε ′ is the deviatoric strain tensor and the hysteretic parameter ξ′ is defined as
the deviatoric stress minus the Prager’s hardening parameter ξ′ij = Sij − αhij . In this
model the hardening character is directly included.



Appendix C

Schäfer Plate Element

C.1 Deformation Shape Functions

The normalized deformation shape functions of the Schäfer plate element expressed
through the natural coordinates η = x/a and ζ = y/b, where a and b are the side
lengths of the plate element, are

N1(η, ζ) = 1− 3 η2 − 3 ζ2 + 2 η3 + 2 ζ3 + 9 η2ζ2 − 6 η3ζ2 − 6 η2ζ3 + 4 η3ζ3

N2(η, ζ) = a
(
− η + 2 η2 − η3 + 3 ηζ2 − 6 η2ζ2 − 2 ηζ3 + 3 η3ζ2 + 4 η2ζ3 − 2 η3ζ3

)
N3(η, ζ) = b

(
− ζ + 2 ζ2 + 3 η2ζ − ζ3 − 2 η3ζ − 6 η2ζ2 + 4 η3ζ2 + 3 η2ζ3 − 2 η3ζ3

)
N4(η, ζ) = a b

(
− ηζ + 2 η2ζ + 2 ηζ2 − η3ζ − 4 η2ζ2 − ηζ3 + 2 η3ζ2 + 2 η2ζ3 − η3ζ3

)
N5(η, ζ) = 3 η2 − 2 η3 − 9 η2ζ2 + 6 η3ζ2 + 6η2ζ3 − 4 η3ζ3

N6(η, ζ) = a
(
η2 − η3 − 3 η2ζ2 + 3 η3ζ2 + 2 η2ζ3 − 2 η3ζ3

)
N7(η, ζ) = b

(
− 3 η2ζ + 2 η3ζ + 6 η2ζ2 − 4 η3ζ2 − 3 η2ζ3 + 2 η3ζ3

)
N8(η, ζ) = a b

(
η2ζ − η3ζ − 2 η2ζ2 + 2 η3ζ2 + η2ζ3 − η3ζ3

)
N9(η, ζ) = 9 η2ζ2 − 6 η3ζ2 − 6 η2ζ3 + 4 η3ζ3

N10(η, ζ) = a
(
3 η2ζ2 − 3 η3ζ2 − 2 η2ζ3 + 2 η3ζ3

)
N11(η, ζ) = b

(
3 η2ζ2 − 2 η3ζ2 − 3 η2ζ3 + 2 η3ζ3

)
N12(η, ζ) = a b

(
− η2ζ2 + η3ζ2 + η2ζ3 − η3ζ3

)
N13(η, ζ) = 3 ζ2 − 2 ζ3 − 9 η2ζ2 + 6 η3ζ2 + 6 η2ζ3 − 4 η3ζ3

N14(η, ζ) = a
(
− 3 ηζ2 + 6 η2ζ2 + 2 ηζ3 − 3 η3ζ2 − 4 η2ζ3 + 2 η3ζ3

)
N15(η, ζ) = b

(
ζ2 − ζ3 − 3 η2ζ2 + 2 η3ζ2 + 3 η2ζ3 − 2 η3ζ3

)
N16(η, ζ) = a b

(
ηζ2 − 2 η2ζ2 − ηζ3 + η3ζ2 + 2 η2ζ3 − η3ζ3

)
.

(C.1)
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For the curvature κx the corresponding second derivations of the shape function N , i.e.
Bx,i = ∂2Ni/∂x

2 are

Bx,1 =
1

a2
(−6 + 12 η)(1− 3 ζ2 + 2 ζ3) Bx,9 =

1

a2
(6− 12 η)(3 ζ2 − 2 ζ3)

Bx,2 =
1

a
(4− 6 η)(1− 3 ζ2 + 2 ζ3) Bx,10 =

1

a
(2− 6 η)(3 ζ2 − 2 ζ3)

Bx,3 =
b

a2
(6− 12 η)(ζ − 2 ζ2 + ζ3) Bx,11 =

b

a2
(6− 12 η)(ζ2 − ζ3)

Bx,4 =
b

a
(4− 6 η)(ζ − 2 ζ2 + ζ3) Bx,12 =

b

a
(−2 + 6 η)(ζ2 − ζ3)

Bx,5 =
1

a2
(6− 12 η)(1− 3 ζ2 + 2 ζ3) Bx,13 =

1

a2
(−6 + 12 η)(3 ζ2 − 2 ζ3)

Bx,6 =
1

a
(2− 6 η)(1− 3 ζ2 + 2 ζ3) Bx,14 =

1

a
(4− 6 η)(3 ζ2 − 2 ζ3)

Bx,7 =
b

a2
(−6 + 12 η)(ζ − 2 ζ2 + ζ3) Bx,15 =

b

a2
(−6 + 12 η)(ζ2 − ζ3)

Bx,8 =
b

a
(2− 6 η)(ζ − 2 ζ2 + ζ3) Bx,16 =

b

a
(−4 + 6 η)(ζ2 − ζ3) .

(C.2a)

The second derivations By,i = ∂2Ni/∂y
2 for the curvature κy are

By,1 =
1

b2
(1− 3 η2 + 2 η3)(−6 + 12 ζ) By,9 =

1

b2
(3 η2 − 2 η3)(6− 12 ζ)

By,2 =
a

b2
(η − 2 η2 + η3)(6− 12 ζ) By,10 =

a

b2
(η2 − η3)(6− 12 ζ)

By,3 =
1

b
(1− 3 η2 + 2 η3)(4− 6 ζ) By,11 =

1

b
(3 η2 − 2 η3)(2− 6 ζ)

By,4 =
a

b
(η − 2 η2 + η3)(4− 6 ζ) By,12 =

a

b
(η2 − η3)(−2 + 6 ζ)

By,5 =
1

b2
(3 η2 − 2 η3)(−6 + 12 ζ) By,13 =

1

b2
(1− 3 η2 + 2 η3)(6− 12 ζ)

By,6 =
a

b2
(η2 − η3)(−6 + 12 ζ) By,14 =

a

b2
(η − 2 η2 + η3)(−6 + 12 ζ)

By,7 =
1

b
(3 η2 − 2 η3)(4− 6 ζ) By,15 =

1

b
(1− 3 η2 + 2 η3)(2− 6 ζ)

By,8 =
a

b
(η2 − η3)(−4 + 6 ζ) By,16 =

a

b
(η − 2 η2 + η3)(2− 6 ζ) .

(C.2b)
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And the second derivations Bxy,i = ∂2Ni/∂x∂y for the curvature κxy are

Bxy,1 =
1

a b
(6 η − 6 η2)(6 ζ − 6 ζ2) Bxy,9 =

1

a b
(6 η − 6 η2)(6 ζ − 6 ζ2)

Bxy,2 =
1

b
(1− 4 η + 3 η2)(6 ζ − 6 ζ2) Bxy,10 =

1

b
(2 η − 3 η2)(6 ζ − 6 ζ2)

Bxy,3 =
1

a
(6 η − 6 η2)(1− 4 ζ + 3 ζ2) Bxy,11 =

1

a
(6 η − 6 η2)(2 ζ − 3 ζ2)

Bxy,4 = (−1 + 4 η − 3 η2)(1− 4 ζ + 3 ζ2) Bxy,12 = (2 η − 3 η2)(−2 ζ + 3 ζ2)

Bxy,5 =
1

a b
(−6 η + 6 η2)(6 ζ − 6 ζ2) Bxy,13 =

1

a b
(6 η − 6 η2)(−6 ζ + 6 ζ2)

Bxy,6 =
1

b
(−2 η + 3 η2)(6 ζ − 6 ζ2) Bxy,14 =

1

b
(1− 4 η + 3 η2)(−6 ζ + 6 ζ2)

Bxy,7 =
1

a
(−6 η + 6 η2)(1− 4 ζ + 3 ζ2) Bxy,15 =

1

a
(6 η − 6 η2)(−2 ζ + 3 ζ2)

Bxy,8 = (2 η − 3 η2)(1− 4 ζ + 3 ζ2) Bxy,16 = (1− 4 η + 3 η2)(2 ζ − 3 ζ2)
(C.2c)

C.2 Compatible Interpolation Functions of Curva-

tures

The following interpolation functions Ñ∗
x , Ñ

∗
y and Ñ∗

xy are compatible with the shape
functions of curvatures – Bx, By and Bxy, respectively, which are the second derivatives
of the deformation shape function N under the use of the bi-cubic deflection approach.

The compatible interpolation functions corresponding to κx(η, ζ) are

Ñ∗
x,1 = (1− η)(1− 5.5 ζ + 9 ζ2 − 4.5 ζ3)

Ñ∗
x,2 = η (1− 5.5 ζ + 9 ζ2 − 4.5 ζ3)

Ñ∗
x,3 = η (ζ − 4.5 ζ2 + 4.5 ζ3)

Ñ∗
x,4 = (1− η)(ζ − 4.5 ζ2 + 4.5 ζ3)

Ñ∗
x,5 = (1− η)(−4.5 ζ + 18 ζ2 − 13.5 ζ3)

Ñ∗
x,6 = (1− η)(9 ζ − 22.5 ζ2 + 13.5 ζ3)

Ñ∗
x,7 = η (9 ζ − 22.5 ζ2 + 13.5 ζ3)

Ñ∗
x,8 = η (−4.5 ζ + 18 ζ2 − 13.5 ζ3)

(C.3a)
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The compatible interpolation functions corresponding to κy(η, ζ) are

Ñ∗
y,1 = (1− 5.5 η + 9 η2 − 4.5 η3)(1− ζ)

Ñ∗
y,2 = (9 η − 22.5 η2 + 13.5 η3)(1− ζ)

Ñ∗
y,3 = (−4.5 η + 18 η2 − 13.5 η3)(1− ζ)

Ñ∗
y,4 = (η − 4.5 η2 + 4.5 η3)(1− ζ)

Ñ∗
y,5 = (η − 4.5 η2 + 4.5 η3) ζ

Ñ∗
y,6 = (−4.5 η + 18 η2 − 13.5 η3) ζ

Ñ∗
y,7 = (9 η − 22.5 η2 + 13.5 η3) ζ

Ñ∗
y,8 = (1− 5.5 η + 9 η2 − 4.5 η3) ζ

(C.3b)

And the compatible interpolation functions corresponding to κxy(η, ζ) are

Ñ∗
xy,1 = (1− 3 η + 2 η2)(1− 3 ζ + 2 ζ2)

Ñ∗
xy,2 = (4 η − 4 η2)(1− 3 ζ + 2 ζ2)

Ñ∗
xy,3 = (−η + 2 η2)(1− 3 ζ + 2 ζ2)

Ñ∗
xy,4 = (−η + 2 η2)(4 ζ − 4 ζ2)

Ñ∗
xy,5 = (−η + 2 η2)(−ζ + 2 ζ2)

Ñ∗
xy,6 = (4 η − 4 η2)(−ζ + 2 ζ2)

Ñ∗
xy,7 = (1− 3 η + 2 η2)(−ζ + 2 ζ2)

Ñ∗
xy,8 = (1− 3 η + 2 η2)(4 ζ − 4 ζ2)

Ñ∗
xy,9 = (4 η − 4 η2)(4 ζ − 4 ζ2)

(C.3c)

According to (3.51) Ñ∗
x,i(η, ζ) will be expanded to Ñx,i(η, ζ) in regard to the interpola-

tion nodes defined in Fig. 3.10 as

Ñx,1 = (1− η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,2 = η (0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,3 = η (0.5 ζ − 2.25 ζ2 + 2.25 ζ3)

Ñx,4 = (1− η)(0.5 ζ − 2.25 ζ2 + 2.25 ζ3)

Ñx,5 = (2− 3 η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,6 = (−1 + 3 η)(0.5− 2.75 ζ + 4.5 ζ2 − 2.25 ζ3)

Ñx,7 = η (4.5 ζ − 11.25 ζ2 + 6.75 ζ3)

Ñx,8 = η (−2.25 ζ + 9 ζ2 − 6.75 ζ3)
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Ñx,9 = (−1 + 3 η)(0.5 ζ − 2.25 ζ2 + 2.25 ζ3)

Ñx,10 = (2− 3 η)(0.5 ζ − 2.25 ζ2 + 2.25 ζ3)

Ñx,11 = (1− η)(−2.25 ζ + 9 ζ2 − 6.75 ζ3)

Ñx,12 = (1− η)(4.5 ζ − 11.25 ζ2 + 6.75 ζ3)

Ñx,13 = (2− 3 η)(4.5 ζ − 11.25 ζ2 + 6.75 ζ3)

Ñx,14 = (−1 + 3 η)(4.5 ζ − 11.25 ζ2 + 6.75 ζ3)

Ñx,15 = (−1 + 3 η)(−2.25 ζ + 9 ζ2 − 6.75 ζ3)

Ñx,16 = (2− 3 η)(−2.25 ζ + 9 ζ2 − 6.75 ζ3)

(C.4)

Similarly will Ñ∗
y,i(η, ζ), which regards to Fig. 3.9 (b), be expanded to Ñy,i(η, ζ), which

regards to Fig. 3.10, as following

Ñy,1 = (0.5− 2.75 η + 4.5 η2 − 2.25 η3)(1− ζ)
Ñy,2 = (0.5 η − 2.25 η2 + 2.25 η3)(1− ζ)
Ñy,3 = (0.5 η − 2.25 η2 + 2.25 η3) ζ

Ñy,4 = (0.5− 2.75 η + 4.5 η2 − 2.25 η3) ζ

Ñy,5 = (4.5 η − 11.25 η2 + 6.75 η3)(1− ζ)
Ñy,6 = (−2.25 η + 9 η2 − 6.75 η3)(1− ζ)
Ñy,7 = (0.5 η − 2.25 η2 + 2.25 η3)(2− 3 ζ)

Ñy,8 = (0.5 η − 2.25 η2 + 2.25 η3)(−1 + 3 ζ)

Ñy,9 = (−2.25 η + 9 η2 − 6.75 η3) ζ

Ñy,10 = (4.5 η − 11.25 η2 + 6.75 η3) ζ

Ñy,11 = (0.5− 2.75 η + 4.5 η2 − 2.25 η3)(−1 + 3 ζ)

Ñy,12 = (0.5− 2.75 η + 4.5 η2 − 2.25 η3)(2− 3 ζ)

Ñy,13 = (4.5 η − 11.25 η2 + 6.75 η3)(2− 3 ζ)

Ñy,14 = (−2.25 η + 9 η2 − 6.75 η3)(2− 3 ζ)

Ñy,15 = (−2.25 η + 9 η2 − 6.75 η3)(−1 + 3 ζ)

Ñy,16 = (4.5 η − 11.25 η2 + 6.75 η3)(−1 + 3 ζ)

(C.5)

For the expansion of Ñ∗
xy,i(η, ζ) considering first a general quadratic function in x-

direction
f(η) = a1 + a2 η + a3 η

2 ,

which can be interpolated for example through the polynomials of η in the first paren-
theses of Ñ∗

xy,1(η, ζ), Ñ
∗
xy,2(η, ζ) and Ñ∗

xy,3(η, ζ) as

f(η) = a1 + a2 η + a3 η
2

= f(0)(1− 3 η + 2 η2) + f(1/2)(4 η − 4 η2) + f(1)(−η + 2 η2) .

Because the node Nr.2 in Fig. 3.9 (c) will be replaced by two nodes, i.e. Nr.5 and Nr.6
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in Fig. 3.10, the following relations are used

f(1/3) =
2

9
f(0) +

8

9
f(1/2)− 1

9
f(1)

f(2/3) = −1

9
f(0) +

8

9
f(1/2) +

2

9
f(1) ,

which lead to

f(1/2) =
9

8
f(1/3)− 1

4
f(0) +

1

8
f(1) and

f(1/2) =
9

8
f(2/3) +

1

8
f(0)− 1

4
f(1) .

Therefore the quadratic function can be decomposed for example as

f(η) = f(0)(1− 3η + 2η2) + 0.5f(
1

2
)(4η − 4η2) + 0.5f(

1

2
)(4η − 4η2) + f(1)(−η + 2η2)

= f(0)(1− 3η + 2η2) + (
9

16
f(

1

3
)− 1

8
f(0) +

1

16
f(1))(4η − 4η2)

+ (
9

16
f(

2

3
) +

1

16
f(0)− 1

8
f(1))(4η − 4η2) + f(1)(−η + 2η2)

= f(0)(1− 3.25 η + 2.25 η2) + f(
1

3
)(2.25 η − 2.25 η2)

+ f(
2

3
)(2.25 η − 2.25 η2) + f(1)(−1.25 η + 2.25 η2) .

Similarly for the y-direction the quadratic function can be interpolated with four nodes
as

f(η) = a1 + a2 η + a3 η
2

= f(0)(1− 3.25 η + 2.25 η2) + f(
1

3
)(2.25 η − 2.25 η2)

+ f(
2

3
)(2.25 η − 2.25 η2) + f(1)(−1.25 η + 2.25 η2) .

Therefore the 16 interpolation functions according to Fig. 3.10 are

Ñxy,1 = (1− 3.25 η + 2.25 η2)(1− 3.25 ζ + 2.25 ζ2)

Ñxy,2 = (−1.25 η + 2.25 η2)(1− 3.25 ζ + 2.25 ζ2)

Ñxy,3 = (−1.25 η + 2.25 η2)(−1.25 ζ + 2.25 ζ2)

Ñxy,4 = (1− 3.25 η + 2.25 η2)(−1.25 ζ + 2.25 ζ2)

Ñxy,5 = (2.25 η − 2.25 η2)(1− 3.25 ζ + 2.25 ζ2)

Ñxy,6 = (2.25 η − 2.25 η2)(1− 3.25 ζ + 2.25 ζ2)

Ñxy,7 = (−1.25 η + 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,8 = (−1.25 η + 2.25 η2)(2.25 ζ − 2.25 ζ2)
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Ñxy,9 = (2.25 η − 2.25 η2)(−1.25 ζ + 2.25 ζ2)

Ñxy,10 = (2.25 η − 2.25 η2)(−1.25 ζ + 2.25 ζ2)

Ñxy,11 = (1− 3.25 η + 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,12 = (1− 3.25 η + 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,13 = (2.25 η − 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,14 = (2.25 η − 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,15 = (2.25 η − 2.25 η2)(2.25 ζ − 2.25 ζ2)

Ñxy,16 = (2.25 η − 2.25 η2)(2.25 ζ − 2.25 ζ2)

(C.6)



Appendix D

Beam Element

D.1 Hermite’s Interpolation Function

Figure D.1: Beam Element

The deflection of the beam element by using the Hermite’s interpolation function can
be formulated as

w(x) = N1(x)wl +N2(x)ψl +N3(x)wr +N4(x)ψr , (D.1a)

with
N1(x) = 1− 3(x/le)

2 + 2(x/le)
3

N2(x) = −le
(
(x/le)− 2(x/le)

2 + (x/le)
3
)

N3(x) = 3(x/le)
2 − 2(x/le)

3

N4(x) = le
(
(x/le)

2 − (x/le)
3
)
.

(D.1b)

The curvature can be calculated as

κx(x) =
∂2w(x)

∂x2
= Bwe , (D.2a)

where wT
e = [wl ψl wr ψr] and

B =
[
∂2N1/∂x

2 ∂2N2/∂x
2 ∂2N3/∂x

2 ∂2N4/∂x
2

]
=

1

le
2

[
−6 + 12

x

le
le(4− 6

x

le
) 6− 12

x

le
le(2− 6

x

le
)

] (D.2b)

Consequently, the deformation stiffness matrix is

Ke =

∫
BT (EI)B dx =

EI

le
3


12 −6 le −12 −6 le
−6 le 4 le

2 6 le 2 le
2

−12 6 le 12 6 le
−6 le 2 le

2 6 le 4 le
2

 . (D.3)
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Appendix E

Stochastic Processes

E.1 Definition of Stochastic Processes

In the field of the civil engineering the uncertainties involved in the system characteris-
tics are small and are not the major issue in comparison with the external excitations,
such as the wind blasts, the earthquakes, the water waves, etc. Therefore the primary
incentive for the adaptation of probabilistic methods in structural dynamic analyses
are the random excitations.

To describe the time variance of the excitation in the dynamic analysis, the loading
will be formulated as a stochastic process, which is defined as [43]

A random process is a parametered family of random variables with the
parameter (or parameters) belonging to an indexing set (or sets).

In other words: the stochastic loading process is a sequence (family) of random vari-
ables p̃(t1), p̃(t2) . . . , in which p̃(ti) indicates the random input at time ti, and the
entire sequence is simply denoted by p̃(t). In context with finite element systems the
single stochastic process can be generally extended to a multi-dimensional vector of
stochastic processes p̃(t), whose components p̃N(t) correspond to each degree of free-
dom. Since the input, i.e., the loading, is a random process, it is to expect that the
interested output, i.e., the system response, will also be a random process.

The mathematical foundation of stochastic processes in terms of the application in the
stochastic dynamics can be found for example in [44] and [89] respectively. In view of
numerical treatment a comprehensive survey of the stochastic processes modeling and
probabilistic methods is given in [72].
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E.2 Representation of Stochastic Processes

By researching the system responses under random excitations, the first step is to es-
tablish the representation of the stochastic loading process. The requirement on such
mathematical model is the accurate reproduction of the probabilistic characteristics
residing in the process, which are known from various measurement and investiga-
tions in the past. The most common representations for stochastic processes are the
followings [70].

Spectral representation

Samples of the random process will be generated with specified spectral density in-
formation according to this procedure, which appears to be widely utilized in the
literature, e.g., [80], [86]. The simplest case, to which this representation applies, is
the White Gaussian Noise (WGN), which is a stationary ergodic process. In such case
the loading process is formulated as the sum of various independent random processes,
whose amplitude is resulted from the spectral density function and multiplied further
with a random phase angle, which has the unit probability density function from 0 to
2π. The resulted process will approach Gaussian under the consideration of the central
limit theorem.

Further advances are made for the generation of two- and three-dimensional homo-
geneous Gaussian stochastic fields using the fast Fourier transform technique, which
improves the computational efficiency (e.g., [81], [82], [83], [84], [85]). For the non-
stationary case this method can be extended to generate the stochastic waves [19] and
to comprise non-Gaussian stochastic fields [105] through a memoryless nonlinear trans-
formation together with an iterative procedure to meet the target spectral density. By
weighting of the constant spectral densities the shot noise can be generated.

Karhunen-Loève Representation

With this method the stochastic process will be formulated as the infinite series of de-
terministic orthogonal functions multiplied by random coefficients. The determination
of the stochastic process becomes then an incentive to solve the eigenvalue problem
of the covariance matrix of the process. For two reasons is this procedure quite often
utilized in stochastic mechanics. One of the reason is, the random coefficients of the
Karhunen-Loève expansion are uncorrelated for Gaussian stochastic processes. The
other reason is, the mean-square error resulting from a finite representation of a sto-
chastic process is minimized under applying the eigenfunctions of the Karhunen-Loève
expansion [70]. A generalization of the Karhunen-Loève expansion, which is denoted
as polynomial chaos expansion, for non-Gaussian process can be found in [29], [97]
and [21].
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Wavelets Representation

In comparison with the spectral representation by Fourier analysis is the wavelets rep-
resentation more suitable to describe the local feature of multi-dimensional inhomoge-
neous random fields [70]. For lots of stochastic problems, the wavelet representation
can be regarded as an approximate Karhunen-Loève expansion, and it is shown that the
wavelet analysis may be an advantageous approach for system identification and dam-
age detection purposes. Recently this method has been applied in stochastic mechanics
to represent, e.g., random sea motion [95] and random fields [106].

E.3 Generation of White Gaussian Noise Process

Considering a stochastic loading process p̃(t), whose Fourier transformation are defined
as

P̃ (ω) =

∫ ∞

−∞
p̃(t) e−iωt dt , with i =

√
−1

p̃(t) =
1

2π

∫ ∞

−∞
P̃ (ω) eiωt dω .

(E.1)

Through the autocorrelation function Rxx(ω), the Fourier transformed P̃ (ω), which is
also a random process, is associated with the power spectral density Sxx(ω) as showed
in the equations (E.2) to (E.6). For the stationary process, e.g., the Gaussian process,
the relations between Rxx(τ) and Sxx(ω) are formulated according to the Wiener-
Khintchine theorem [43] as

Sxx(ω) =
1

2π

∫ ∞

−∞
Rxx(τ) e

−iωτ dτ

Rxx(τ) =

∫ ∞

−∞
Sxx(ω) eiωτ dω .

(E.2)

Besides, instead of using the definition Rxx(τ) = E
[
p̃(t) p̃(t + τ)

]
via the ensemble

average, the autocorrelation function can be obtained with the assumption of an ergodic
process as [17]

Rxx(τ) = lim
z→∞

1

z

∫ z/2

−z/2
p̃(t) p̃(t+ τ) dt = 〈 p̃(t) p̃(t+ τ) 〉 , (E.3)

which is the time average of an arbitrary single realization.

Applying the second equation of (E.1) and its equivalent form

p̃(t) =
1

2π

∫ ∞

−∞
P̃ ∗(ω) e−iωt dω , (E.4)
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where P̃ ∗(ω) is the complex conjugate of P̃ (ω), in (E.3) so that the autocorrelation
function can be rewritten as [23]

Rxx(τ) = 〈 p̃(t) p̃(t+ τ) 〉

=
〈
(

1

2π

∫ ∞

−∞
P̃ ∗(ω′) e−iω

′t dω′)(
1

2π

∫ ∞

−∞
P̃ (ω) eiω(t+τ) dω)

〉
= (

1

2π
)2

∫ ∞

−∞

( ∫ ∞

−∞

〈
P̃ ∗(ω′)P̃ (ω)

〉
ei(ω−ω

′)t dω′
)
eiωτ dω ,

(E.5a)

which should be independent of t for a stationary process. This can be fulfilled, if〈
P̃ ∗(ω′)P̃ (ω)

〉
=

〈∣∣P̃ (ω)
∣∣2〉 δ(ω − ω′) (E.5b)

valid, so that (E.5a) is further modified to

Rxx(τ) =
1

2π

∫ ∞

−∞

〈∣∣P̃ (ω)
∣∣2〉 eiωτ dω . (E.5c)

Comparing (E.5c) with the expression in (E.2), the relation between P̃ (ω) and Sxx(ω)
can be derived as

〈
∣∣P̃ (ω)

∣∣〉 =
√

2π Sxx(ω) , (E.6)

where 〈
∣∣P̃ (ω)

∣∣〉 means the time average of the spectral amplitude magnitude of the
loading process.

For the digital treatment the frequency will be discretized as ωm = m∆ω with m =
0, 1, 2 · · · , which leads to the periodization of the loading p̃per(t) with a period Tp =
2π/∆ω. And the periodic loading process can be represented through the Fourier series
as

p̃per(t) =
∞∑

m=−∞

Pm e
iωmt with Pm =

1

Tp

∫ Tp/2

−Tp/2

p̃per(t) e
−iωmt dt . (E.7)

As shown in Fig. E.1, if the non-periodic process p̃(t) is bounded and the frequency
sampling ∆ω is fine enough, such that the repeated partial signals in p̃per(t) wouldn’t
overlap, the following relation can be found

P̃ (ωm) =

∫ Tp/2

−Tp/2

p̃per(t) e
−iωmt dt = Tp Pm . (E.8)

The discretization of frequency also causes the periodization of the autocorrelation
function, which is expressed as

R̃per(τ) =
∞∑

m=−∞

Sm e
iωmτ with Sm =

1

Tp

∫ Tp/2

−Tp/2

R̃per(τ) e
−iωmτ dτ , (E.9a)

and similarly it can be derived that

Sxx(ωm) = Tp Sm . (E.9b)
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Figure E.1: Non-periodic / Periodic Loading processes

Setting (E.8) and (E.9b) in (E.6) the following formulation of the discrete spectral
amplitude magnitude in time average, which is generally adopted in the literature,
e.g., [82], [98], can be achieved

〈
∣∣P̃m∣∣〉 =

√
2π Sm/ Tp =

√
Sm ∆ω . (E.10)

For the general white noise signals is the power spectral density Sxx(ωm), i.e., Sm, a
constant.

With (E.10) the spectral coefficients Pm of the random process p̃per(t) can be written
as

Pm = 〈
∣∣P̃m∣∣〉 eiθm , (E.11)

where θm is the equally distributed random phase angle between [0..2π].

Finally, the random process can be rebuilt through the discrete inverse Fourier trans-
formation as

p̃per(t) =
∞∑

m=−∞

√
Sm ∆ω ei(ωmt+θm) . (E.12)
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[59] H.J. Pradlwarter and G.I. Schuëller. Equivalent linearization - a suitable tool for
analyzing mdof-systems. Probabilistic Engineering Mechanics, 8:115–126, 1992.
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[61] H.J. Pradlwarter, G.I. Schuëller, and C.A. Schenk. A computational procedure
to estimate the stochastic dynamic response of large non-linear FE-models. Com-
puter methods in applied mechanics and engineering, 192(7-8):777–801, 2003.

[62] H.J. Pradlwarter, G.I. Schuëller, and G.S. Szekely. Random eigenvalue problems
for large systems. Computers & Structures, 80:2415–2424, 2002.

[63] C. Proppe, H.J. Pradlwarter, and G.I. Schuëller. Equivalent linearization and
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[73] G.I. Schuëller and H.J. Pradlwarter. The role of Stochastic Dynamics in Risk and
Reliability Assessment of Structures and Mechanical Systems. In Nonlinear Dy-
namics and Stochastic Mechanics, editors, W. Kliemann and Sri Namachchivaya,
pages 383–410, 1995.



BIBLIOGRAPHY 157
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