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Robust Design Optimization Based on Metamodeling Techniques

Abstract. In this thesis, the idea of robust design optimization is adopted to improve the

quality of a product or process by minimizing the deteriorating effects of variable or not ex-

actly quantifiable parameters. Robustness can be achieved via different formulations, which

are compiled and discussed in the present work. All of these formulations have in common

that they require many function evaluations throughout the optimization process. Espe-

cially in the growing field of computational engineering, the governing equations are typi-

cally not explicit functions but rather a nonlinear system of equations – for instance, derived

from a nonlinear finite element discretization. In this case, even pointwise solutions can

be quite expensive to evaluate. To reduce the tremendous numerical effort related to the

described robustness analyses, metamodeling techniques are used replacing the actual nu-

merical analysis codes by a simpler formulation. In this thesis, a method is proposed to se-

quentially augment the significance of metamodels for robust design optimization through

additional sampling at infill points. As a result, a robust design optimization can be applied

efficiently to engineering tasks that involve complex computer simulations. Even though

the suggested approach is applicable to many engineering disciplines, the present work is

focused on problems in the field of structural mechanics.

Robust Design Optimierung mit Hilfe von Metamodellierungs-

techniken

Zusammenfassung. In dieser Arbeit wird die Idee der Robust-Design-Optimierung aufge-

griffen, deren Ziel es ist, die Qualität eines Produktes oder Prozesses dadurch zu verbessern,

dass die störenden Auswirkungen von variablen oder nicht genau quantifizierbaren Pa-

rametern reduziert werden. Robustheit kann durch verschiedene Formulierungen erreicht

werden, die in dieser Arbeit zusammengetragen und diskutiert werden. Alle diese Ansätze

haben gemein, dass sie im Laufe der Optimierung viele Auswertungen der Systemgleichun-

gen erfordern. Insbesondere für das aufstrebende Gebiet des Computational Engineering ist es

typisch, dass das betrachtete System nicht durch geschlossen darstellbare Formeln beschrie-

ben wird, sondern vielmehr durch ein nichtlineares Gleichungssystem, wie es z.B. aus ei-

ner nichtlinearen Finite-Elemente-Diskretisierung entsteht. In einem solchen Fall sind meist

selbst punktweise Auswertungen der Systemgleichungen recht zeitaufwändig und damit

teuer. Um den numerischen Aufwand von Robustheitsanalysen dennoch überschaubar zu

halten, werden hier Metamodelltechniken verwendet, mit deren Hilfe das teure Original-

problem durch eine simplere Formulierung ersetzt wird. In dieser Arbeit wird eine Metho-

de vorgeschlagen, mit der die Aussagekraft von Metamodellen in Bezug auf die Robustheit

des Systems durch Hinzunahme von neuen Stützstellen sequentiell verbessert wird. Auf

diese Weise kann eine Robust-Design-Optimierung auch auf Ingenieurprobleme angewen-

det werden, die durch aufwändige Computersimulationen beschrieben werden. Das hier

vorgestellte Verfahren kann in vielen Feldern des Ingenieurwesens eingesetzt werden, im

Fokus der vorliegenden Arbeit sind jedoch strukturmechanische Problemstellungen.
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Chapter 1

Introduction

1.1 Motivation and Thematic Framework

In today’s engineering world, product development processes are strongly influenced by

computer simulations. These numerical simulations offer the possibility to study the char-

acteristics of engineering problems thoroughly before the actual product or a prototype is

manufactured. The importance of this process, which is typically referred to as virtual pro-

totyping, is constantly growing – driven by the demand for continually shortened devel-

opment cycles. A shrinking time span from conception to market maturity can result in

significant cost reduction due to the competitive edge conferred by up-to-date products.

Computer simulations allow for fast investigation of a large number of alternative designs,

thus reducing the time required for product development. Additionally, the more develop-

ment is made based on numerical analysis, the fewer “physical” prototypes are generally

required – a fact that may for itself considerably reduce development costs. Moreover, nu-

merical analyses of engineering problems (e.g. finite element analyses) provide a way to

process the data which is well-suited for the use of optimization techniques called mathe-

matical programming [Sch60].

As a result of the optimization process, a product is obtained that exhibits optimal prop-

erties with respect to the performance measure which has been utilized to assess the quality

of the design. Obviously, two key factors govern the usefulness of the attained result. First,

the numerical model used to describe the real physical behavior has to be adequate. In other

words, the main characteristics of the physical behavior have to be captured by the numer-

ical model. Poor approximations can lead to severe mistakes and wrong decisions. Second,

the optimization problem has to be formulated carefully. This means that the formulation

of the objective and – even more important – the constraints can have a tremendous impact

on the resulting design.

The optimized designs typically appear to be highly sensitive even to small changes in

the problem formulation. This effect directly results from the removal of all possible re-

dundancies and is hence an inherent character of optimized designs – in particular of con-

strained solutions. In this case, the optimum design is controlled by some restrictions (e.g.

maximum allowable stress or displacements) which constitute sharp borders between ad-

missible design and waste. In practice, however, variations and uncertainties inhere almost

all quantities that show up in engineering problems e.g. in form of dimensions of structural

1



CHAPTER 1 INTRODUCTION

members, material properties, or loadings. If the optimized product shows high sensitivities

concerning such inevitable imperfections or environmental variations, the product perfor-

mance in everyday use may be far from optimal.

In most of today’s engineering practice, the true effects of variations are typically ne-

glected for reasons of simplification and reduced numerical effort. Calculations are in gen-

eral performed based on deterministic values (statistical measures such as the mean or frac-

tiles) multiplied by some safety factors. In contrast to this approach, robust design methods

attempt to make a product or process insensitive to changes in the noise factors (representing

the source of variation) by choosing qualified levels of the controllable factors [FC95, Par96].

The concept of robust design, which is also referred to as quality engineering, is not address-

ing the possibilities to reduce the variance of the noise variables itself, it focuses on reducing

the effects of variations and uncertainties on the product (or process) performance [Pha89].

To achieve this goal, both mean value and variation of the performance measure have to be

considered in the formulation of the optimization problem.

The stochastic analyses, which are necessary to quantify the effects of varying param-

eters on the observed performance measure, are quite time consuming. Typically, several

analyses have to be completed before one design can be assessed. Furthermore, the desire

to produce high-fidelity approximations to the true physical behavior, the numerical analy-

ses themselves become more and more detailed and complex. During the last decades, the

remarkable gain in computing power was steadily compensated by the complexity of fea-

tures newly added to the computational engineering software. As a consequence, stochastic

analyses and optimization of stochastic problems are only viable if the extra effort com-

pared to a single (deterministic) evaluation can be reduced to a minimum. In this work,

a metamodel-based approach is presented to economize on necessary numerical analyses.

Here, a so-called metamodel is established based on selected computer simulations. During

the stochastic analyses, this approximation model can serve as a convenient surrogate for

the original (complex) computer software.

The range of possible applications for numerical analysis and optimization is enormous.

In classical engineering fields such as civil or mechanical engineering (including the automo-

tive and aerospace branches), various problems have been tackled effectively. But also in the

area of electrical engineering or biomechanics, successful applications have been reported

in many publications. In the present work, the focus will be on the solution of problems in

structural mechanics, typically based on finite element analyses [ZT05].

1.2 Literature Review

In this section, previous developments in the two fields which are of utmost importance for

this work will be described: robust design and metamodeling approaches. The list of references

herein is chosen to give an adequate picture of the respective advances and applications.

This section tries to offer a representative overview but due to the diversity within the indi-

vidual fields of research, the list cannot be complete.
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1.2.1 Robust Design

In the 1920s, SIR RONALD A. FISHER made some efforts to grow larger crops despite varying

weather and soil conditions [Fis66]. Founding on this research, he elaborated the basic tech-

niques of design of experiments (DoE) and analysis of variance (ANOVA) [Yat64, Box80],

which were enhanced afterwards by many statisticians. Based on this previous work, the

Japanese engineer GENICHI TAGUCHI worked on different techniques for quality improve-

ment of industrial products or processes in the 1950s and early 1960s. However, before the

1980s, his concept, which he called robust parameter design, was virtually unknown outside

Japan. This changed rapidly after Taguchi’s journey through the USA, where he visited

many companies such as Ford and AT&T [Kac85, Tag86, Pha89, Roy90].

In the framework of robust (parameter) design, a distinction is made between three types

of parameters. The controllable variables (also called control parameters) can be chosen or

controlled by the designer during the design process and the optimization. Noise parame-

ters represent the source of variation in the system. The variations cannot be controlled but

might be known to the designer and describable as by probability density functions. Fi-

nally, the fixed parameters or process constants describe deterministic characteristics of the

system. Accordingly, the robust design task is to determine control variable settings such

that the resulting process (or product performance) is robust (or insensitive) to the variation

originating from the noise parameters.

The robust design concept is based on classical DoE techniques with all design variables

being varied according to an orthogonal array (termed inner array). At each design variable

setting the noise variables are varied according to a second orthogonal array (outer array),

thus generating a crossed array. The response data gained at the different replications are

used to estimate the process mean and variance. Both statistics are then combined to a

single performance measure, the signal-to-noise-ratio (SNR). The resulting array of estimated

SNRs is used to perform a standard analysis of variance and those design variable settings

are identified that yield the most robust performance. More details are given e.g. in [Pha89].

TAGUCHI’s contributions started a process which made aware the importance of param-

eter variations to many design engineers and statisticians. His approach was reviewed,

criticized, and enhanced throughout the years. NAIR initiated a panel discussion and sum-

marized the main contributions with references to the original sources [Nai92]. The bone

of contention was the inefficiency of the approach, especially with respect to the number

of required experiments. In consequence, several publications introduced response sur-

face approaches for robust design optimization based on combined arrays [VM90, RSSH91,

MKV92, Kha96]. In [RBM04], the different approaches for solving robust design problems

based on polynomial response surface models have been reviewed.

The original robust design concept was developed for the experimental analysis of phys-

ical problems. Due to the enormous effort related to conducting physical experiments, the

approach disregarded any sequential layout. Additionally, for reasons of costs, the num-

ber of levels is typically limited in physical experimentation. However, modern computer

simulations can easily be used in a sequential manner and also the restrictions concerning
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the number of variable settings do not apply to computer simulations. By means of nu-

merical simulations, the stochastic properties of noise variables can be mapped onto the

response value, which also becomes a random variable. Commonly, sampling methods

or TAYLOR expansion approaches are used to determine the mean and variance of the re-

sponse. These statistics can then be used to formulate a robustness criterion, which serves

as objective function in a nonlinear optimization process. As a result, a robust design op-

timization can be performed analogously to the well-known numerical optimization meth-

ods [Vie94, RR96, Das97, Mar02].

For the definition of the stochastic optimization problem, the effects of noise variables on

both the objective function and the constraints have to be considered [PSP93, DC00, JL02].

Robust design optimization regarding the objective function makes the system performance

least sensitive to variation of noise variables. The fulfillment of the constraints subject to

noise governs the reliability of the process (sometimes called feasibility robustness). Relia-

bility analysis i.e. the question on the probability of failure developed as a separate field of

research and is not in the focus of this work.

The major drawback related to numerical optimization of stochastic problems is that

they need substantially more response evaluations compared to standard deterministic op-

timization problems. Hence, the numerical effort is significantly higher. In many cases, this

leads to the need for simpler approximation models (also called metamodels) to consider-

ably reduce computing time [TAW03]. The developments in the field of metamodels will be

discussed in the next section.

Over the past years, robust design methods have been successfully applied in many

fields of engineering. Industrial applications have been reported amongst others for router

bit life improvement [KS86], optimization of a rocket propulsion system [USJ93], shape

optimization of rotating disks for energy storage [Lau00], vibration reduction for an au-

tomobile rear-view mirror [HLP01], airfoil shape optimization [LHP02], vehicle side im-

pact crash simulation [KYG04], structural optimization of micro-electro-mechanical sys-

tems (MEMS) [HK04], fatigue-life extension for notches [MH04], and tuning of vibration

absorbers [ZFM05].

1.2.2 Metamodeling Techniques

The fundamental idea of the metamodeling concept is to find an empirical approximation

model, which can be used to describe the typically unknown relation between input vari-

ables and response values of a process or product. To adjust the chosen analytical formula-

tion to the problem under investigation, the original response values are evaluated at some

selected input variable settings, the so-called sampling points. Based on these input-output

pairs, free parameters in the model formulation are fit to approximate the original (training)

data in a best possible way. The approximation models can then be used to predict the be-

havior of the original system at “untried” input variable settings. Originally, the primary

application for this technique was the analysis of physical experiments.

The strength of the approximation concept and its straightforward applicability in op-

timization procedures was soon recognized [SF74]. In the following years, approximation
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concepts have proved to be an efficient tool for saving computation time in structural opti-

mization [Sva87, TFP93, RSH98]. In the optimization context, approximations either allow

for the analytical determination of the approximate optimum or they replace the original

functions within one or in the course of several iteration steps. In general, three different

categories of approximations can be distinguished dependent on their region of validity: lo-

cal, mid-range, and global approximations [BH93]. While local approximations are only valid

in the immediate vicinity of the observed point, mid-range approximations try to predict

the original functional response in a well-defined subregion of the design space. In contrast

to this, global approximations aim at predicting the characteristics of the functions over the

entire design space.

Local approximations are based on local information obtained at a single point only.

Hence, they are also called single point approximations. The more information is available

(e.g. by means of sensitivity analysis [Kim90, SCS00]) the better the fit will possibly be. Mid-

range approximations rely on information gathered from multiple points. Both local and

mid-range approximations form explicit subproblems (defined on a subregion of the de-

sign space) that can be solved analytically. Accordingly, an iterative optimization technique

is commonly applied where the area of model validity successively moves around in the

design space. For the present work, however, the emphasis is placed on global approxima-

tions.

In virtually all engineering fields, complex computer simulations are used to study be-

havior and properties of the engineered product or process. In many applications, a single

computational analysis can take up to several hours or even days. As a consequence, an ap-

plication of sequential optimization algorithms or stochastic analyses is practically impossi-

ble. In these cases, global approximation models are constructed to serve as a surrogate for

the original system under investigation. The resulting surrogate model is often called meta-

model indicating that a model of a model is determined. The main advantage of the meta-

modeling approach is that the training data to fit the surrogate model can be determined

in advance and in parallel, thus resulting in shorter analysis times. The response values for

untried designs which are actually required during the optimization process (or a stochastic

analysis) can then be predicted by the metamodel which is inexpensive to evaluate.

The probably most famous and best-established approximation model approach is the

response surface method (RSM) [BD87, MM02]. Here, user-determined polynomials are fit to

the training data by means of linear regression i.e. by choosing the free parameters such

that the sum of squared residuals becomes minimal [MPV01]. Usually, low order poly-

nomials are chosen to keep the number of free model parameters and hence the required

training data set as small as possible. To enhance the approximation quality, several vari-

able transformation techniques have been proposed, for instance logarithmic or reciprocal

transformations.

Computer simulations (sometimes also referred to as computer experiments) exhibit a ma-

jor difference compared to typical physical experiments: they have no random error asso-

ciated with the evaluated response values. In physical experiments, measurement errors

and environmental variances substantiate the assumption of a random error. The presence

of a random error, however, is a central point in the foundation of least-squares regression.
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Accordingly, the use of response surface models to approximate results of computer simula-

tions is questionable [SSW89, SPKA97]. As a consequence, a metamodel, which is intended

to replace a deterministic computer simulation, is expected to interpolate exactly all original

response values observed at the sampling points. This insight was the motivation for the

development of a metamodel formulation which is commonly termed DACE, derived from

the title of the original paper by SACKS et al. [SWMW89]. Often, the resulting metamodel

type is also called kriging, named after DANIEL G. KRIGE, who introduced the approach for

geostatistical analyses [Kri51].

Other metamodeling techniques have been developed to attain the desired interpo-

lating feature, for instance radial basis function models (RBF) [Pow92, Gut01, Kri03]. The

weighted polynomial regression technique [LS86, MPV01, TSS+05], which is also called

moving least-squares (MLS), can yield a better local approximation of the original obser-

vations or even an interpolative behavior depending on the chosen weighting formula-

tion. Furthermore, artificial neural networks (ANN), a technique originating from machine

learning and “artificial intelligence”, have been used as metamodels in optimization proce-

dures [CB93, CU93, PLT98]. Several survey papers have been published comparing accu-

racy and computational efficiency of the different approaches for some selected examples,

for instance [Etm94, SMKM98, JCS01, SPKA01, SBG+04].

A crucial factor for the performance of the respective metamodel types is the proper se-

lection of sampling points. These points should be chosen carefully, namely by means of

design of experiments (DoE) techniques, to get the maximum information with a minimum ef-

fort. To match the individual structure of the different metamodel formulations, customized

DoE methods have to be developed [SSW89, Mon01, SWN03].

Finally, the designing engineer should be aware of the fact that the solution of the ap-

proximated problem is only a estimate for the true optimum of the original system. To

obtain an accurate and reliable solution, the metamodels have to be validated and – if nec-

essary – updated successively. The update procedures again have to take into account the

special traits of each metamodel formulation. The validation and update process is cur-

rently an area of active research – with many recent publications e.g. [SLK04, JGB04, JHN05,

RS05, GRMS06]. However, in the literature, no update procedure is described so far that

accommodates for the peculiarities of stochastic optimization problems. For this purpose,

an adapted approach to fit for robust design problems is presented in this work. Here, the

update procedure is split into two parts: During the first part, the variety of possible designs

is explored to find promising candidates for a robust design. The second part investigates

the noise space to yield a more reliable estimation of the robustness criterion.

Metamodeling techniques have expanded into many industrial applications. Accord-

ing to an extract of recent publications, they have been successfully applied to combined

aerodynamic-structural optimization of a supersonic passenger aircraft [GDN+94], heli-

copter rotor blade design [BDF+99], aerospike nozzle design (rocket engine) [SMKM98,

SMKM01], vehicle crashworthiness studies [KEMB02, RGN04, FN05], internal combus-

tion engine design [GRMS06], conceptual ship design [KWGS02], embedded electronic

chip design [OA96], underwater vehicle design [MS02], roll-over analysis of a semi-tractor

trailer [SLC01], and the robust design of a welded joint [Koc02].
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1.3 Organization of this Thesis

The introductory Chapter 1, which presented the motivation for this work and a selective

overview over relevant and representative publications in the field of robust design and

metamodeling techniques, now concludes with an outline of this thesis.

Chapter 2 presents the field of structural optimization. This includes an introduction

to the terms and definitions commonly used in the optimization context. Furthermore,

the mathematical fundamentals are given to describe structural optimization problems and

suitable solution techniques. Subsequently, a general overview of numerical optimization

algorithms is given. The classification of algorithms is followed by a detailed description of

those optimization methods that have been used for the work described in this thesis. In this

chapter, only the case of deterministic optimization problems is considered, i.e. all decisive

quantities are regarded as deterministic.

Chapter 3 generalizes the view to the case where the investigated problem has stochastic

properties – more precisely, where the input variables may include random variables. The

chapter starts with an introduction to the basic statistical concepts and measures used to

characterize the problem. Hereafter, a general formulation for optimization problems in-

cluding random variables is presented. The core of this chapter is a detailed discussion of

different robustness criteria, which transform the stochastic optimization problem into a de-

terministic surrogate problem. In the remainder of this chapter, different methods to solve

stochastic optimization problems are detailed. At this point, reliability and robustness prob-

lems – two special cases of stochastic optimization problems – are distinguished and special

emphasis is placed on the solution of robust design problems.

In Chapter 4, metamodeling techniques are presented. Metamodels can be used to re-

duce the computational costs associated with the solution of stochastic optimization prob-

lems. After a general introduction to the metamodeling concept, the commonly used meta-

model formulations including polynomial regression models, moving-least-squares approx-

imations, kriging models, radial basis functions and artificial neural networks are detailed.

The chapter concludes with a comparison of the presented techniques with respect to ap-

proximation quality and computational issues.

Chapter 5 provides a review of the field “design of experiments”. To fit metamodels to

a specific problem, training data has to be provided. This data is gathered from so-called

sampling points. The question on how to choose the sampling point coordinates thus ensur-

ing a good and balanced predictive behavior of the approximation models is addressed in

this chapter. Here, special characteristics of the respective metamodel types are considered

to formulate customized experimental designs, for instance space-filling designs or Latin

hypercube designs.

The theoretical part of this thesis ends with Chapter 6. In this chapter, methods are

presented which allow for a reliable optimization process based on the metamodeling con-

cept. To assure a good predictive behavior of the metamodel especially in the proximity of

the predicted optimum, the metamodels have to be updated sequentially. Well-established

update procedures, that have been proposed in the literature, will be sketched first. Since

7



CHAPTER 1 INTRODUCTION

these methods have been developed to solve deterministic optimization problems, they are

in general not suited for the solution of robust design problems. Here, some minor changes

are proposed to fit the standard update procedures to the special case of stochastic optimiza-

tion problems. Furthermore, an approach is suggested which particularly elaborates on the

solution of robust design problems by means of interpolating metamodels.

In Chapter 7, the solution of robust design problems based on metamodeling techniques

is illustrated by numerical examples. Three different mathematical test problems are studied

to prove applicability and efficiency of the proposed method. This chapter concludes with

an industrial application example taken from the field of sheet metal forming.

Figure 1.1 on the facing page summarizes the suggested framework for metamodel-

based robust design optimization in a flowchart. The internal optimization loop is illus-

trated in more detail in Figure 1.2 on page 10.
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Update loop

Optimization loop

Problem description

Finite element
analysis for each
sampling point

Metamodel‐fitting
for system response

Optimization based
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Accuracy
sufficient? no
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Design of
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Figure 1.1: Proposed framework for metamodel-based robust design optimization.
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Optimization loop

For current design  x map
noise variation onto response

via metamodel

Optimal
robustness?no

yes

Select new design  x as per
optimization algorithm

Evaluate robustness  criterion
(e.g. Monte Carlo sampling
or worst‐case optimization)

Figure 1.2: Detailing of internal optimization loop performed on the metamodel.
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Chapter 2

Structural Optimization

The field of structural optimization and its historical developments have been reviewed in

many publications e.g. [Sch81, Van82], or more recently in [Van06]. Furthermore, excellent

textbooks [Aro89, HG91, Kir93] exists which present a comprehensive and detailed view

on the topic including a broad literature review. On this account, a thorough discussion is

omitted here and only a condensed introduction is given to familiarize the terminology and

notation used in the remainder of this text.

Accordingly, the theoretical basis, terms, and definitions for the field of structural op-

timization are summarized in this chapter, and a selection of common optimization algo-

rithms is presented. At this point, only the deterministic case is considered, where all cru-

cial parameters e.g. dimensions, material parameters, and loads can be described by unique

values, and the governing functional relationships are inherently deterministic i.e. the same

input will cause exactly the same output as structural response. Stochastic aspects will be

considered in Chapter 3.

2.1 Terms and Definitions in Structural Optimization

2.1.1 Design Variables

In structural optimization, the aim of the designing engineer is to optimize performance

of a structure within certain restrictions set e.g. by the manufacturing process, serviceabil-

ity, or safety of the structure. The parameters, the engineer can possibly use to alter the

structural design, are usually called design variables xi and are assembled into the vector

x = [x1, x2, . . . , xn]T for a convenient notation. The solution of the structural optimization

problem i.e. the vector of design variables describing the optimal design is denoted by x∗.

Common design variables in structural optimization problems are dimensions of structural

members (like beam length, plate thickness, and cross sections) or other attributes control-

ling the geometry and topology of the structure, respectively (e.g. holes, fillets, and stiffen-

ers) as well as material properties of different components (including reinforcement distri-

bution, etc.).

Design variables are either continuous or discrete. Continuous variables can take on any

real value within a given range characterized by so-called side constraints. In contrast to this,
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Figure 2.1: Discrete optimization problem and continuous surrogate.

discrete variables are restricted to a certain selection of admissible values or integer val-

ues e.g. in-stock cross sections, standardized material classifications, or number of welding

spots.

In most engineering problems the discrete features of design variables are neglected dur-

ing the optimization process and all variables are varied continuously. Based on the contin-

uous optimum design, the values of the inherently discrete variables are then adjusted to

the nearest feasible discrete value. This workaround is commonly adopted because solving

a continuous surrogate problem is generally easier than accounting for the discrete charac-

teristics during optimization. However, rounding off to the nearest allowable value might

introduce significant differences compared to the solution of the original discrete optimiza-

tion problem. This possible discrepancy has to be considered in particular if the admissible

values are located too far away from the continuous solution, or if the variation in the ob-

served quantity is very large (see Figure 2.1). In these cases special optimization techniques

have to be employed to find the true optimum e.g. [LD60, LW66, HL92, AHH94, KKB98].

2.1.2 Disciplines in Structural Optimization

Depending on the type of design variables, three different disciplines of optimization tasks

are distinguished within the structural optimization community, as depicted in Figure 2.2.

Sizing. An optimization problem with cross-sectional dimensions as design variables is the

simplest optimization task. For sizing, topology and geometry of the structure remain

fixed. A typical application for sizing is the determination of minimal cross-sectional

areas in truss structures.
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(b) Shape optimization

?

(a) Sizing

?

(c) Topology optimization

Figure 2.2: Disciplines in structural optimization.

Shape optimization. In shape optimization, geometrical parameters of the structure are de-

termined to optimize system performance. The topology of the system, e.g. the con-

nectivity, remains unchanged during optimization. As an example, the height of a

shell structure can be treated as design variable for shape optimization.

Topology optimization. In contrast to shape optimization, design variables in topology op-

timization describe the structural configuration. Due to the fact that a broad variety

of configurations might be possible, topology optimization is computationally expen-

sive. Hence, the application of topology optimization is often restricted to truss design

problems. In this special case, the idea of topology is very clear. The question to an-

swer is: where to add a new or remove an existing truss member in the truss structure.

In general, these three different classes of optimization problems do not appear separately

in engineering problems; combinations rather emerge frequently.
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2.1.3 Constraints

On top of the side constraints, which may impose lower and upper bounds on each design

variable (assembled in the vectors xL and xU , respectively) and thus define the design space

D, other restrictions to allowable or acceptable designs are possible. If a design complies

with all restrictions, it is called a feasible design. In the context of structural optimization,

these restrictions are called constraints. Constraints divide the design space into a feasible

domain (symbolized by C) and an infeasible domain.

Depending on their formulation, equality and inequality constraints are distinguished.

Some optimization algorithms are not able to handle equality constraints; in that case equal-

ity constraints are usually transformed into two inequality constraints defining a lower and

an upper bound with the same limit value. Throughout this text, equality constraints are

assumed to be transformed to the standard form h(x) = 0. Inequality constraints are re-

formulated to be satisfied if they are less than or equal to zero denoted by g(x) ≤ 0. In

some other texts, especially in the reliability community, the opposite convention is used

i.e. constraints are violated for values smaller than zero and satisfied otherwise. Inequality

constraints are commonly depicted by the contour g(x) = 0, which is called limit state. An

inequality constraint is called active if for a specific design x′ the constraint is fulfilled at

equality i.e. g(x′) = 0. If the strict inequality g(x) < 0 holds, the respective constraint is

inactive. For values g(x) > 0 a constraint is violated. An active constraint is termed redundant

if the resulting optimum does not change once this constraint is removed from the problem

definition.

2.1.4 Objective Function

In order to solve an optimization problem, the different possible designs have to be com-

pared and rated. Performance of each design is assessed by some merit function that is

formulated as a scalar valued function. This criterion, defining a ranking of the different de-

signs, has to be a function of the design variables in a way that ensures that different design

configurations may lead to different performance values. It is commonly referred to as ob-

jective function and represented by f (x). Representative examples for objective functions are

weight, stiffness, displacements, frequencies, or simply costs. Thus the objective function is

frequently termed cost function as well. Without loss of generality, the formulation of the

objective function is commonly chosen to define a minimization problem, an arrangement

also maintained throughout this text. This does not impose a restriction because a problem

description fmax(x) that intrinsically requires a maximization can easily be transformed into

a minimization formulation by f (x) = − fmax(x).

Optimization tasks where several criteria f(x) = [ f1(x), f2(x), . . . , fp(x)]T characterize

the performance of a design are termed multicriteria or multiobjective optimization problems.

As the system response is described by a vector of objective functions, the term vector op-

timization is used in some texts. In cases where some criteria are conflicting, there is no

general optimal solution. Each possible optimum will only be a compromise of the different

objectives. If the different criteria are compatible, consequently all functions are redundant

except for one.
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Figure 2.3: Multicriteria optimization with two conflicting objectives f1(x) and f2(x).

For the case of multiple conflicting objectives, two intuitive approaches are commonly

used to reduce the number of objectives to one. The first approach is to extract the most

significant one as the only objective function and to impose an upper bound value on the

unconsidered objectives. Hence, except for the so-called preference function all other objec-

tives are treated as constraints in the optimization process.

F(x) = f j(x) ; j ∈ {1, . . . , p} (2.1)

gi(x) = fi(x) − ci ≤ 0 ; i = 1, . . . , j − 1, j + 1, . . . , p

To transform an objective function fi into a constraint gi, an upper limit ci must be specified

to define the maximum allowable value for each individual objective.

The second straightforward approach to reduce the number of objective functions to a

single criterion compiles one composite function F(x) consisting of a weighted sum of the

different objective functions

F(x) =

p
∑

i=1

wi fi(x) . (2.2)

The choice of the individual weights wi should reflect the relative importance of each cor-

responding objective function fi(x). Determining the weights of the different objectives can

be a difficult task because the choice can severely affect the optimization result.

Example 1. To illustrate the approaches, consider the two conflicting objective functions

f1(x) = (3 − x)2 and f2(x) = (6.4 − 0.8x)2 (cf. Figure 2.3) with their individual minima at

x∗1 = 3 and x∗2 = 8, respectively.

Figure 2.4a depicts f2(x) as the dominant objective while the other objective f1(x) is

transformed into a constraint with an upper limit g1(x) = f1(x) − 10 ≤ 0. The resulting

optimum of this strategy is found to be x∗ = 6.16.
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Figure 2.4: Illustration of two approaches to handle conflicting objectives.
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Figure 2.5: PARETO-optimal set plotted (a) in design space and (b) in space of objective functions.

The conflicting objective functions can also be combined to one objective by the weighted

sum approach as demonstrated in Figure 2.4b. Different compromises can be found by

altering the weighting factors e.g. F1(x) = 0.9 f1(x) + 0.1 f2(x) or F2(x) = 0.5 f1(x) + 0.5 f2(x)

with their optima at x∗1 = 3.33 and x∗2 = 4.95, respectively. �

A systematic approach to handle multicriteria optimization is offered by the concept of

PARETO-optimality [Par06]. A design x∗ is termed PARETO-optimal if for any other choice

of x either the values of all objective functions remain unchanged or at least one of them

worsens compared to x∗. This definition covers the set of all possible compromises that can

be obtained by varying the weights in Equation (2.2). The set of PARETO-optimal points for

the presented example is illustrated in Figure 2.5. The PARETO-optimal part of the plot in
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Figure 2.6: Criteria for single optimum from PARETO-optimal set: (a) L∞ norm and (b) L2 norm of

the normalized distance di.

space of objective functions (cf. Figure 2.5b) is often called functional efficient edge.

One possible strategy to specify a distinguished point x∗ of the set of PARETO-optimal

solutions is based on the deviation from the individual minimum of each objective fi. Let

f ∗1 , f ∗2 , . . . f ∗p denote the results of the independent minimization of each individual objective

function fi(x), then the normalized distance di of a candidate point x from the individual

optimum f ∗i is defined as

di(x) =
fi(x) − f ∗i

f ∗i
; i = 1, 2, . . . , p . (2.3)

To avoid division by zero, the denominator of Equation (2.3) has to be replaced by a number

which represents a characteristic magnitude of the respective objective in case an individual

minimum is equal to zero.

Based on the normalized distance, one distinctive compromise setting can be found ei-

ther as the minimum of the largest deviation (L∞-norm) of the different objective functions

from their individual minima (cf. Figure 2.6a)

minimize max
i=1,...,p

{di(x)} (2.4)

or as the minimum distance (L2 or Euclidean norm) from the reference point f∗ =

[ f ∗1 , f ∗2 , . . . , f ∗p ]T

minimize

p
∑

i=1

(

di(x)
)2

. (2.5)

Further details about solution techniques in multicriteria optimization and some applica-

tions can be found in [EKO90].
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2.1.5 Standard Formulation of Optimization Problems

The introduced terms and definitions are summarized to form the standard formulation of

a structural optimization problem with continuous design variables:

minimize f (x) ; x ∈ R
n (2.6a)

such that gj(x) ≤ 0 ; j = 1, . . . , ng (2.6b)

hk(x) = 0 ; k = 1, . . . , nh (2.6c)

xL
i ≤ xi ≤ xU

i ; i = 1, . . . , n . (2.6d)

Combining Equations (2.6b-d), the feasible domain C is characterized by

C = {x ∈ R
n | gj(x) ≤ 0 ∧ hk(x) = 0 ∧ xL

i ≤ xi ≤ xU
i } . (2.7)

The set of points defined by Equation (2.6d) constitutes the design space D

D = {x ∈ R
n | xL

i ≤ xi ≤ xU
i } . (2.8)

In this thesis the objective function is always formulated to define a minimization problem.

All inequality constraints are transformed to the form given in Equation (2.6b). Multicriteria

optimization problems are solved either by forming one composite objective function or by

determining a preference function from the set of conflicting objectives. Hence, a unique

solution vector x∗, which defines the optimal design, will be obtained. This solution vector

may either describe a local or a global minimum depending on both the characteristics of the

objective and constraint functions and on the features of the optimization algorithm.

2.1.6 Special Cases of Optimization Problems

Constrained vs. unconstrained optimization. Optimization formulations containing nei-

ther equality nor inequality constraints are called unconstrained optimization problems, all oth-

ers are termed constrained optimization problems. For constrained optimization problems,

the number of equality constraints nh has to be less than or equal to the length of the design

variable vector n, which quantifies the number of degrees of freedom in the optimization

problem. If nh > n and no equality constraint is redundant, the system of equations is

overdetermined, and the formulation of the optimization problem becomes inconsistent i.e. no

solution of the optimization problem exists. There is no limit to the number of inequality

constraints in the formulation of the optimization task; the maximum number of active, non-

redundant constraints at the optimum, however, is limited to the number of design variables

n.

With many optimization algorithms only unconstrained problems can be solved, or un-

constrained problems are at least much easier to handle. Hence, the standard formulation in

Equations (2.6a-d) for constrained problems is often transformed to the unconstrained case

using the Lagrangian function. The formulation of a Lagrangian function will be explained in

detail in Section 2.2.
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Linear and quadratic programming. In cases where the functions f (x), gj(x) and hk(x)

describing the objective, inequality, and equality constraints, respectively, are linear and/or

quadratic functions only, the optimization problem can be solved very efficiently. On this

account, a distinction is drawn between linear programming

minimize f (x) = eTx ; x ∈ R
n (2.9)

such that gj(x) = A x + b ≤ 0 ; j = 1, . . . , ng

hk(x) = C x + d = 0 ; k = 1, . . . , nh

xL
i ≤ xi ≤ xU

i ; i = 1, . . . , n

and quadratic programming

minimize f (x) =
1

2
xTQ x + eTx ; x ∈ R

n (2.10)

such that gj(x) = A x + b ≤ 0 ; j = 1, . . . , ng

hk(x) = C x + d = 0 ; k = 1, . . . , nh

xL
i ≤ xi ≤ xU

i ; i = 1, . . . , n .

Because of their beneficial features, linear and quadratic programming schemes are often

used as formulations for sub-problems in sequential solution procedures. These solution

techniques are called sequential linear programming (SLP) or sequential quadratic programming

(SQP) methods, respectively.

Nonlinear problems. In general, the functions f (x), gj(x) and hk(x) are nonlinear in the

design variables x. If this is the case for at least one of these functions, the optimization

problem is called nonlinear.

Convex vs. non-convex problems. To distinguish convex and non-convex problems, the

concept of convexity has to be established for the set of feasible designs (feasible domain)

and for the objective function. A collection of points S is called a convex set if the line segment

joining any two points x1, x2 ∈ S lies entirely in S . This notion can be represented by

x1, x2 ∈ S ⇒ {α x1 + (1 − α) x2 | 0 < α < 1} ⊂ S (2.11)

or graphically as depicted in Figure 2.7.

A function f (x) is called a convex function if first, it is defined on a convex set x ∈ S ,

and second, it lies below the line segment linking any two points on f (x). This geometrical

characterization (cf. Figure 2.8) of a convex function can be formulated mathematically as

f
(

α x1 + (1 − α) x2
)

≤ α f (x1) + (1 − α) f (x2) ; 0 < α < 1 . (2.12)

In practice the fulfillment of the inequality in Equation (2.12) will be difficult to prove be-

cause an infinite number of combinations of two points has to be analyzed. Alternatively,

the convexity of a function can be checked using the Hessian matrix (or simply Hessian) of
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(b)(a)
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Figure 2.7: (a) Convex set and (b) non-convex set in 2D space.

the function f (x) if f (x) is twice differentiable. The Hessian H is a symmetric n × n ma-

trix containing the second derivatives of f (x) with respect to the independent variables xi.

Consequently, it is also denoted by ∇
2 f .

H(x) = ∇
2 f (x) =

























∂2 f (x)

∂x1∂x1

∂2 f (x)

∂x1∂x2
. . .

∂2 f (x)

∂x1∂xn

∂2 f (x)

∂x2∂x1

∂2 f (x)

∂x2∂x2
. . .

∂2 f (x)

∂x2∂xn
...

...
...

∂2 f (x)

∂xn∂x1

∂2 f (x)

∂xn∂x2
. . .

∂2 f (x)

∂xn∂xn

























(2.13)

It can be shown that f (x) is convex if and only if the Hessian is positive semidefinite for

every point x ∈ S .

The optimization problem in Equations (2.6a-d) is called a convex problem if both the

objective function and the feasible domain characterized by the constraints are convex. To
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Figure 2.8: (a) Convex and (b) non-convex function f (x) for a 1D problem.

20



2.2 Optimality Conditions
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Figure 2.9: Convex feasible domain defined by non-convex inequality constraints.

identify whether the feasible domain is a convex set, the following statements will be help-

ful:

⋄ If a function g(x) is convex, then the set S = {x ∈ R
n | g(x) ≤ 0} is convex.

⋄ If an equality is used to delimit a set of points S = {x ∈ R
n | h(x) = 0}, then S is

convex if and only if h(x) is linear.

⋄ A set defined as intersection of several convex sets is always convex.

Relating these statements leads to a possible identification of a convex optimization

problem: If a problem has a convex objective function f (x), convex inequality constraint

functions gj(x), and linear equality constraint functions hk(x), then it is a convex optimiza-

tion problem. This, however, is not a necessary condition for a convex problem because a

feasible domain defined by non-convex inequality constraints (cf. g1 and g2 in Figure 2.9)

can still be convex.

A convex problem has the important feature that it has only one minimum i.e. a local

minimum is also a global minimum. Although convex problems are rarely encountered in

engineering practice, this special trait is often used in solution techniques applying sequen-

tial (convex) approximations to the true optimization problem e.g. SQP. Further details on

optimization algorithms using convex approximations are given in Section 2.3.

2.2 Optimality Conditions

In this section, several criteria are discussed to decide whether an investigated point repre-

sents a local or a global minimum for the optimization problem. Apart from the obvious

requirement that the solution of the optimization problem x∗ must yield the lowest feasible

value for the objective function i.e. there is no other point x′ within the feasible domain C
resulting in a better objective value

f (x∗) ≤ f (x′) ∀ x′ ∈ C , (2.14)
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x
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Figure 2.10: Minimum (A), saddle point (B), and maximum (C) for a 1D problem.

further conditions for an optimum point can be identified which prove more helpful for

many solution techniques. But before these conditions are introduced, two different types of

optimal points are distinguished: global and local minima. The formulation in Equation (2.14)

describes a global optimum since no better solution can be determined within the entire

feasible domain C. If the condition only holds in a neighborhood N (x∗) of the candidate

point x∗

f (x∗) ≤ f (x′) ∀ x′ ∈ N (x∗) (2.15)

with N (x∗) = {x ∈ R
n | ‖x − x∗‖ < ε ∧ ε > 0} , (2.16)

the point x∗ is a local optimum. If strict inequality holds in Equation (2.14) or (2.15), the

respective minimum point is termed isolated (global or local) minimum.

In view of the strongly unequal complexity of the formulation of optimality criteria, two

different cases are distinguished in the following: unconstrained and constrained optimiza-

tion.

Unconstrained Problems. As a necessary condition for a point to be a candidate for a min-

imum, it must be a stationary point i.e. the gradient of the objective function evaluated at x∗

must vanish.

∇ f (x∗) = 0 (2.17)

with

∇ f (x) =
∂ f (x)

∂x
=

[

∂ f (x)

∂x1
,

∂ f (x)

∂x2
, · · · ,

∂ f (x)

∂xn

]T

(2.18)

Yet another condition must be fulfilled to exclude the cases of maxima or saddle points as de-

picted in Figure 2.10 – points that will also fulfill the necessary condition of Equation (2.17).

To identify the case of a minimum, information about the second partial derivatives at the

stationary points is used. If the Hessian, as defined in Equation (2.13), is positive definite at

a stationary point, this point marks a minimum. This is a sufficient condition for a minimum

of the unconstrained optimization problem.
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Figure 2.11: Geometrical interpretation of Equation (2.21).

Constrained Problems. For constrained optimization problems, the necessary condition

as formulated in Equation (2.17) may not hold if at least one constraint is active at the opti-

mum (cf. Fig 2.4a). Hence, a different necessary condition must be formulated for the con-

strained optimization case. The following requirements form the so-called KUHN-TUCKER

conditions, which represent the necessary conditions for a constrained optimum.

1. x∗ ∈ C (2.19)

2. λ∗
j gj(x∗) = 0 ; j = 1, . . . , ng (2.20)

3. ∇ f (x∗) +

ng
∑

j=1

λ∗
j ∇gj(x∗) +

nh
∑

k=1

µ∗
k∇hk(x∗) = 0 ; λ∗

j ≥ 0 (2.21)

As an obvious prerequisite, exclusively feasible designs are allowed as candidate points

for the optimum as formulated in Equation (2.19). According to Equation (2.20), the scalar

parameters λ∗
j are identically zero if the corresponding inequality constraint is not active

i.e. gj(x∗) < 0. After the following rearrangement

− ∇ f (x∗) =

ng
∑

j=1

λ∗
j ∇gj(x∗) +

nh
∑

k=1

µ∗
k∇hk(x∗) , (2.21’)

the third condition can be understood geometrically as depicted in Figure 2.11: The gra-

dients of all inequality and equality constraints, evaluated at a stationary point and scaled

with factors λ∗
j and µ∗

k , respectively, sum up to the negative gradient of the objective func-

tion. Only gradients of active constraints are included in the vector sum since the gradients

of inactive constraints are scaled to zero length by their corresponding λj as stipulated in

Equation (2.20). A closer look at Equation (2.21) reveals that this necessary condition for
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Figure 2.12: Stationary points for a non-convex problem.

stationary points is in fact also the gradient of a yet to determine function similar to Equa-

tion (2.17). The function corresponding to the objective f (x) of the unconstrained case is the

antigradient of Equation (2.21) with respect to the design variables x, termed the Lagrangian

function L

L(x, λ, µ) = f (x) +

ng
∑

j=1

λjgj(x) +

nh
∑

k=1

µkhk(x) (2.22)

with the so-called Lagrangian multipliers λj and µk. The Lagrangian function combines both

objective and constraint functions to a single function which has the same solution as the

original problem formulation since the terms added to the objective are all equal to zero

at the optimum. Furthermore the Lagrangian function transforms the constrained into an

unconstrained optimization problem.

The KUHN-TUCKER conditions are necessary conditions only under a certain restriction

called constraint qualification. The constraint qualification excludes those cases where non-

redundant active constraints are linearly dependent. In such cases, constrained minima

that do not fulfill the KUHN-TUCKER conditions are also possible. Even when constraint

qualification is ensured, the KUHN-TUCKER conditions are necessary, but in general not

sufficient for optimality as illustrated in Figure 2.12. Although all three points A, B, and C

fulfill the KUHN-TUCKER conditions, only points A and C are minima (a local and a global

minimum, respectively). For convex problems however, a point that fulfills Equations (2.19)-

(2.21) is a global minimum. Hence, the KUHN-TUCKER conditions are both necessary and

sufficient for a minimum of convex problems.

For the general case of non-convex problems, an additional criterion is needed as suf-

ficient condition for optimality. This sufficient condition for the constrained case is estab-

lished by use of the Hessian of the Lagrangian function in analogy to the procedure in un-
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constrained optimization.

∇
2L(x, λ, µ) = ∇

2 f (x) +

ng
∑

j=1

λj∇
2gj(x) +

nh
∑

k=1

µk∇
2hk(x) (2.23)

A point x∗ that satisfies the KUHN-TUCKER conditions is a minimum if

sT
[

∇
2L(x∗, λ∗, µ∗)

]

s > 0 (2.24)

for all s 6= 0 such that

sT
∇gj(x∗) = 0 for all active constraints with λ∗

j > 0 (2.25)

sT
∇gj(x∗) ≤ 0 for all active constraints with λ∗

j = 0 (2.26)

sT
∇hk(x∗) = 0 . (2.27)

Equations (2.25) through (2.27) determine the vectors s to be tangential to all active con-

straints at x∗. Hence, Equation (2.24) stipulates that the Hessian of the Lagrangian function

must be positive definite for all s lying in the hyperplane tangent to the active constraints

at the candidate point x∗. In this context, two special cases ought to be addressed: First,

the fact that Equation (2.24) is not met at a candidate point does not imply that this point is

not a minimum (like in case of a plateau at the minimum). However, the case of an isolated

minimum is ruled out. Second, if the total number of active constraints (incl. at least one

inequality) at a point that complies with the KUHN-TUCKER conditions is equal to the num-

ber of design variables n, the only solution to Equations (2.25) through (2.27) is s = 0 and

thus Equation (2.24) is not valid. Still, these points are (local or global) minima. An example

for this case is depicted in Figure 2.11, where the number of active constraints matches the

number of design variables n = 2.

2.3 Optimization Algorithms

The solution of optimization problems has been addressed by many contributions from dif-

ferent communities viz. mathematicians, engineers, computer scientists, and economists.

Consequently, the range of available algorithms is about as broad as their possible appli-

cations [Van84, Evt85, Min86, Fle87, BSS93, BGLS97, NW99]. Due to the conflicting needs

depending on the different problem types, there is no “one fits all” method that perfectly

suits all possible optimization tasks. The appropriate solution strategy must be chosen on

the basis of individual properties in distinctive features e.g. constrained vs. unconstrained,

convex vs. non-convex problem, discrete vs. continuous optimization, problem size (number

of design variables n), or simply the response values available for the governing functions

(objective and constraints). If these functions are known explicitly and they are twice differ-

entiable, the optimum points can be determined analytically using Equations (2.19) through

(2.21) and (2.24) through (2.27). If inequality constraints are present in the formulation of the

problem, the set of active constraints must be determined by means of a case differentiation.

In most engineering problems, however, the objective and constraints cannot be for-

mulated explicitly and thus can only be evaluated pointwise by solving a linear system of
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equations e.g. using the finite element method [ZT05]. In this case, the problem has to be

solved by some iterative optimization technique and the most suitable algorithm will de-

pend, amongst other criteria, on whether higher order information can be obtained for the

pointwise determined response values, namely first or second derivatives with respect to

the design variables (gradient vector and Hessian, respectively). Two fundamentally differ-

ent concepts can be distinguished:

⋄ A descent algorithm tries to find the optimum by descending to the lowest point in a

“local valley” (i.e. the convex neighborhood around the starting point). This search

involves the determination of a search direction s(l) at each current iterate x(l) along

which a new iterate x(l+1) is appointed by a line search i.e. a one-dimensional optimiza-

tion with α as independent variable.

x(l+1) = x(l) + α s(l) ; α > 0 (2.28)

This new design point x(l+1) is then investigated and a new search direction s(l+1)

is established. This iterative procedure is repeated until some stopping criterion is

fulfilled (e.g. the change in the design variables becomes very small or the objective

does not decrease in search direction). The diverse descent algorithms differ in the

way the search direction s is established and in the technique used to specify the step

size parameter α. This category of algorithms is in general very efficient if first, second,

or higher order information is available for determination of the search direction.

⋄ According to the second concept, algorithms sample a set of points simultaneously.

Based on this set of sampling points either the best element is picked to define the

optimum or approximation models (e.g. polynomial approximations) for the response

values are built. These approximations are used as surrogate for the original functions

to solve the optimization problem. Some algorithms of this class also allow for a se-

quential approach as well where further sets of sampling points are determined using

information gained from each previous set until a stopping criterion is met. Using this

second category of algorithms, a more global search is conducted – increasing chances

to find the global minimum even for non-convex problems.

Unfortunately, the choice of algorithms is often limited for the designing engineer since

commercially available program packages usually provide only a small selection of meth-

ods if there are any options at all. Additionally, the underlying analysis code (usually a

finite element code) will restrict the choice dependent on the available sensitivities as in-

dicated above. Often no more than zero-order information is available for the response

values. Hence, gradients would have to be determined through finite differences which sig-

nificantly increase computational effort (at least n + 1 analyses are needed to evaluate one

gradient vector).

In this text, a classification of optimization algorithms based on two characteristics is

introduced and depicted in the matrix of Table 2.1. On the one hand, the necessary or-

der of information (zero-order, first-order or second-order) allows for a proper categoriza-

tion of optimization algorithms depending on the code that is used to evaluate the system
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CHAPTER 2 STRUCTURAL OPTIMIZATION

characteristics. On the other hand, a distinction is drawn between solution techniques for

constrained and for unconstrained problems. The algorithms used for unconstrained prob-

lems are again subdivided into a class especially suited for 1D problems (i.e. problems with

only one unknown) and n-dimensional problems. Unconstrained optimization problems

with only one design variable are rarely encountered in engineering practice. However, this

special class of algorithms plays an important role in many solution techniques for multi-

dimensional problems using a line search during optimization. The related methods will

be particularized in the next section. Within the approaches used to solve constrained op-

timization tasks, primal and transformation methods are distinguished. Primal methods solve

the original optimization problem with only the design variables as independent variables

whereas transformation methods convert the original formulation into another type (usually

an unconstrained formulation) which is easier to solve but also introduces additional inde-

pendent variables to solve for. Details about the different transformations are given later in

the respective sections in which the key features of some preferred algorithms presented in

Table 2.1 are discussed.

As a consequence of the broad variety of algorithms presented in the literature, Table 2.1

can only present a selection of commonly applied optimization methods for engineering

problems. In the remainder of this section a short discussion of some basic features is given.

For an in-depth discussion of the algorithms addressed in this text and further numerical

optimization techniques, the reader is referred to the cited literature.

2.3.1 Direct Search Methods

Direct search methods use only zero-order information about the governing equations to

find the desired minimum. First, algorithms for 1D minimization will be presented followed

by search methods that apply to multidimensional problems.

Interval search. One example for the class of direct search methods is the interval search.

The basic idea is to gradually reduce the interval in which the minimum lies to a sufficiently

low width. If a function f (α) has only one minimum in the interval under investigation

(a unimodal function), interval search can be applied to reduce the possible range for the

minimum without any requirements on continuity or differentiability of the function. If

values for the objective function f have been computed at four different points α1, α2, α3, and

α4 of the interval [α1, α4], a subinterval can be determined that does not contain the minimum

and hence will be left out for subsequent investigations. As a consequence, the interval

containing the minimum is repeatedly scaled down by evaluating the function values at the

boundaries of each interval.

A very efficient way to choose each interval size can be derived using the golden sec-

tion method because each iteration to reduce the interval size requires only one additional

function evaluation. To achieve this favorable behavior the individual subinterval ranges

∆a = αa+1 − αa with a = 1, 2, 3 must fulfill the condition

∆1

∆2
=

∆3

∆2
= γ with γ =

√
5 + 1

2
≈ 1.618 . (2.29)
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For each iteration step, one subinterval of the previous segmentation can be “reused” and

only one additional intermediate point αx must be evaluated to regain three (smaller) subin-

tervals. Using this scheme for the subdivision of the intervals, the rate of interval sizes in

subsequent steps is 1/γ ≈ 0.618. Hence, the remaining range of uncertainty for the mini-

mum after m iteration steps can be computed in advance to be (1/γ)m relative to the initial

interval size.

Polynomial Interpolation. Another efficient technique for one-dimensional optimization

is to approximate the true objective function f (α) by a polynomial p(α). The minimum of

the approximation can be found analytically using the first and second derivative of the

polynomial. The procedure begins with evaluating f (α) at several points. The information

gained at these points (which can also include higher order information) is then used to

fit the polynomial. The optimum of this polynomial, which is used as an estimate for the

optimum of f (α), can be determined analytically.

To identify the optimum α∗ of the commonly applied quadratic polynomial p(α)

p(α) = c0 + c1 α + c2 α2 with
∂p(α)

∂α
= c1 + 2 c2 α (2.30)

∂p(α)

∂α

∣

∣

∣

∣

α∗
= 0 ⇒ α∗ = − c1

2 c2
, (2.31)

the parameters c1 and c2 must be determined. This can be realized with three responses of

the original function f1, f2, and f3 at α1, α2, and α3, respectively

c2 =

f3 − f1

α3 − α1
− f2 − f1

α2 − α1

α3 − α2
, c1 =

f2 − f1

α2 − α1
− c2 (α1 + α2) (2.32)

or two response values f1, f2 and one gradient f ′1 at α1 and α2, respectively

c2 =

f2 − f1

α2 − α1
− f ′1

α2 − α1
, c1 = f ′1 − 2 c2 α1 . (2.33)

For the parameter c0 no formulas are given because it does not influence the position of the

optimum α∗ as shown in Equation (2.31).

The polynomial interpolation method has the advantage of requiring only few function

evaluations. The quality of the obtained estimate for the minimum, however, strongly de-

pends on the accuracy of the approximation p(α) which can be quite poor especially for

highly nonlinear functions f (α). Although the procedure is not restricted to 1D minimiza-

tion, the number of function evaluations to determine the free parameters of multidimen-

sional polynomials rapidly increases with the number of design variables. While a quadratic

polynomial in 1D requires three response values to fit the free parameters, a fully quadratic

polynomial in 3D already needs ten function (or gradient) evaluations. For this reason, mul-

tidimensional problems are usually solved by other approaches.
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x2

x1

Result of grid search

Contours of objective

Figure 2.13: Grid search for an unconstrained 2D problem.

Grid search. This method is one of the simplest optimization schemes possible. The design

space is examined through evaluations of the objective and constraints at equally spaced

grid points. The point with the smallest sampled value for the objective that satisfies all

constraints is accepted as the best solution (cf. Figure 2.13). This method is computationally

very expensive and the effort required increases exponentially with the number of design

variables. If the points are not positioned on a grid but randomly spread over the design

space (Monte Carlo random search), the computational effort is decoupled from the number of

design variables. Despite the costs for both methods, the location of the optimum will only

roughly be assessed depending on the grid spacing or the number of Monte Carlo points,

respectively. Since these optimization schemes are not bound to a local “valley”, there is a

chance to find the global minimum – but at a high price.

DiRect algorithm. The name of this method is a shortening of the phrase “dividing rect-

angles” and already suggests the underlying idea. Similar to the interval search in 1D, the

DiRect algorithm of JONES et al. subdivides the n-dimensional design space into hyperrect-

angles of different sizes [JPS93]. One function evaluation is performed for each hyperrect-

angle at its center point. Then, the hyperrectangles are sequentially redivided according to

the following scheme (cf. Figures 2.14 and 2.15) until the algorithm converges to a solution.

In the figures, the current approximation for the minimum fmin after each iteration step is

marked with a white circle.

1. To start the algorithm, the originally hyperrectangular design space D as defined in

Equation (2.8) is normalized to form a unit hypersquare D̃ = {x̃ ∈ R
n | 0 ≤ x̃i ≤

1 ; i = 1, . . . , n} with center point c̃ as depicted in Figure 2.14.

The algorithm works in this normalized space, referring to the original space only
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x2

c̃

x1

x2

x1

Normalized design space

(1.) − (2.)

(4.) − (5.) (6.)

Additional points along

each dimension

x2

x1

x2

x1

Subdivision along i* Further subdivisions

(3.)

Contours of

objective

⅓ e1

⅓ e2

Figure 2.14: Initialization of the DiRect algorithm for a 2D problem.

when evaluating the objective function defined on D. Thus, the function call f (c)

denotes the evaluation of c ∈ D that corresponds to c̃ ∈ D̃.

2. Evaluate the objective function at the center point and set current minimum to fmin =

f (c).

3. Determine response values of the objective for all points defined by c̃ ± 1
3 ei where

ei are the n unit vectors of the normalized design space. As a result, two additional

sampled points are obtained along each dimension i. Store the smallest sampled value

as new current minimum fmin.

4. Based on the smaller value of the two additional functional responses per dimension

(Step 3), establish a ranking for the different dimensions, start with dimension i∗ that

contains the lowest sampled response fmin.

5. According to this ranking, subdivide the hypersquare into smaller hyperrectangles

starting in dimension i∗. Along this dimension, split the hypersquare into three
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x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

New subdivision Potentially optimal rectangles

After

initialization

Iteration 1

Iteration 2

Iteration 3

Figure 2.15: Iteration steps (6.) – (8.) of the DiRect algorithm for a 2D problem.
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equally sized hyperrectangles such that c̃ ± 1
3 ei∗ are the center points of the new hy-

perrectangles.

6. Continue to subdivide the central hyperrectangle, which still contains more than one

point, along the second dimension of the ranking. Repeat this procedure until the cen-

ter hyperrectangle has been divided along each dimension. Now, each hyperrectangle

contains only one point (located at its center point). After this initial segmentation of

the hypersquare, start the iteration.

7. For each iteration step, the DiRect algorithm will identify potentially optimal hyper-

rectangles for further subdivisions.

A hyperrectangle is potentially optimal if there is no hyperrectangle of the same size

or bigger with a smaller response value for its center point. According to [JPS93], the

size of a hyperrectangle is measured by the distance of its center point to the vertices.

Identify all potentially optimal hyperrectangles, and divide each of those into three

equally sized hyperrectangles. The division is executed only along the longest dimen-

sion(s) of the hyperrectangle. This restriction ensures that the rectangles will shrink

in every dimension. If the potentially optimal hyperrectangle is a hypersquare, then

divisions must be performed along all sides, as in the initial step.

8. Evaluate the objective function at the center points of all new hyperrectangles and

update fmin.

9. If the stopping criteria are not met yet, begin the next iteration step with identification

of potentially optimal hyperrectangles (Step 7).

x2

x1

Figure 2.16: DiRect algorithm after eight iterations and 85 function evaluations.
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Typical stopping criteria are a maximum number of iterations or function evaluations.

To stop the iteration if no change is obtained in fmin or in the corresponding design

variables from one iteration to the other, will in general not lead to the desired opti-

mum as the DiRect algorithm might behave “idle” during several iterations before a

new optimal point is detected.

Figure 2.16 shows the result after eight iterations of the example introduced in Fig-

ure 2.15. To find the approximation for the optimum (marked with a white circle), the

objective function was evaluated 85 times.

The set of potentially optimal hyperrectangles always includes the largest hyperrectan-

gle which will be split during the next iteration step. In case several hyperrectangles are

concurrently the largest, one of these hyperrectangles belongs to the potentially optimal set.

As a consequence, the DiRect algorithm converges to the global optimum at the expense of

an exhaustive search requiring many function evaluations. It is suitable for problems with

a highly nonlinear objective function for which zero order information is cheap to evaluate.

Further details about the DiRect algorithm can be found in [Jon01].

Evolutionary strategies and genetic algorithms. These stochastic optimization methods

imitate evolution in the biological sense and hence represent a numerical adoption of DAR-

WIN’s principle of “survival of the fittest”. The optimal design evolves by means of sequen-

tial selection, mutation, and recombination starting with an initial population of design points

that usually consists of randomly sampled individuals (cf. Monte Carlo random search). “Se-

lection” means that from each population a subset of individuals is chosen as archetypes for

the next generation. The terms “mutation” and “recombination” denote different methods

to form offspring for a selection of individuals.

Mutation diversifies a parent design by changing an arbitrary entry of its numerical de-

scription. This means that a randomly selected design information is spoiled. One example

for mutation, which is often applied to real-valued design vectors, is a random variation.

Typically, a Gaussian normal distribution with mean zero and different standard deviations

σi for each dimension of the design space is used.

x
(l+1)
i = x

(l)
i + N(0, σi) ; i = 1 . . . n (2.34)

As a consequence of this formulation, small mutations are more likely to occur than greater

changes.

For recombination, two selected parents x(l) and z(l) are both split at the same position j

and reassembled cross-over to form two new individuals x(l+1) and z(l+1).

x(l+1) =

























x
(l)
1
...

x
(l)
j

z
(l)
j+1
...

z
(l)
n

























; z(l+1) =

























z
(l)
1
...

z
(l)
j

x
(l)
j+1
...

x
(l)
n

























(2.35)
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The probability of “survival” of the newly generated individuals depends on their fitness

which takes into account the objective function and constraints. Accordingly, the fittest are

kept with high probability, the worst are rapidly discarded.

The basic difference between genetic algorithms and evolutionary strategies lies in the

description of each individual, the so-called gene. For genetic algorithms, each design is

coded in form of a binary string to allow “genetic” operators like mutation and recombi-

nation to apply to any part of the gene without any knowledge of its physical meaning. In

contrast, evolutionary strategies constitute their genes as a vector of real-valued parameters

which are altered primarily by mutation. This rather slightly perturbs the individual pa-

rameters of the genes in a useful way. Hence, evolutionary strategies are mostly applied to

continuous problems while genetic algorithms are a preferred tool for discrete optimization.

Many different configurations exist for both methods [BS93, BFM96]. The underlying

optimization scheme, however, is basically the same for all procedures:

1. Specify an initial population i.e. a set of np individuals xp with p = 1 . . . np in the

design space.

2. Evaluate the objective function and constraints at all points xp to assign their fitness

value.

3. Select members of the parent population with adequate fitness as archetypes for a

child population.

4. Create a child population xc with c = 1 . . . nc by means of reproduction and mutation.

5. Evaluate the fitness for all points xc.

6. Check stopping criterion. If it is not met, proceed with Step 3 to set up a new genera-

tion.

To assess this class of algorithms the following observations can be made. They need only

zero order information but require numerous function evaluations. They can easily handle

nonlinear problems even with functions of discrete variables and tend to detect the global

optimum after sufficient iterations. The problem is to specify a suitable stopping criterion

since the optimization might be stalling for several iterations before further improvement

is attained. Consequently, the only generally applicable stopping criterion is to limit the

number of iterations or evaluations.

When applied to multicriteria problems, evolutionary strategies and genetic algorithms

are capable of finding several points of the PARETO-optimal set during one optimization

run [Deb01]. These special traits make this class particularly suited for applications with

discrete design variables and for highly nonlinear problems. To assure that the computa-

tional effort remains within acceptable limits, response values have to be rather cheap to

evaluate.
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2.3.2 Gradient Methods

With the help of first order information for the objective and constraint functions, more

efficient algorithms can usually be formulated to find the solution of the optimization prob-

lem. If gradients are readily available, this will in general reduce the number of function

evaluations needed to solve the optimization task as already indicated for the polynomial

interpolation approach. But even if the first order information must be determined via fi-

nite differences, gradient methods still perform better than direct search methods in some

applications.

Steepest descent method. The most intuitive approach for descent methods is to use the

direction of the steepest descent (i.e. the opposite direction of the gradient of the objective) to

search for the optimum. Hence, the search direction s(l) in Equation (2.28) for each iteration

step l is calculated from

s(l) = −∇ f
(

x(l)
)

. (2.36)

The step size α is determined by a line search method. If the line search found the minimum

in the search direction s(l), the next search direction s(l+1) will be orthogonal to s(l). This

feature leads to a poor convergence rate of the steepest descent method when the underlying

problem is badly scaled (cf. Figure 2.17).

Conjugate gradient method. In order to overcome the aforementioned poor convergence

behavior of the steepest descent method, FLETCHER and REEVES developed the conjugate

gradient method [FR64] which requires only a minor change in the determination of the

search direction. The initial search direction s(0) is chosen to be the steepest descent direction

of Equation (2.36). All subsequent search directions are determined by

s(l+1) = −∇ f
(

x(l)
)

+ β(l) s(l) with β(l) =





∥

∥

∥
∇ f
(

x(l)
)

∥

∥

∥

∥

∥∇ f
(

x(l−1)
)∥

∥





2

, (2.37)

x1

Contours of objective

x2 Scaled x2

Scaled x1

Figure 2.17: Influence of scaling on convergence behavior of the steepest descent method.
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Figure 2.18: Feasible and usable search directions for a 2D problem with one active constraint.

where the direction of the previous step scaled by the factor β(l) is added to the current

negative gradient. The scaling factor is defined using the L2 norm of the gradients at the

current design point and the gradient from the previous iteration step. By means of this

enhancement, the conjugate gradient method finds the optimum of a quadratic function of

n design variables in n or fewer iterations.

Method of feasible directions. To allow for solution of constrained problems, an enhance-

ment of descent methods described earlier is presented next: the method of feasible direc-

tions. The initial design point is imposed to be a feasible design. As long as the iteration

remains inside the feasible domain, the search direction is determined as for the uncon-

strained case. If during the iteration a constraint j becomes active, the next search direction

s(l) must satisfy two conditions:

1. The search direction must be feasible i.e. it must point into the feasible domain.

∇gj

(

x(l)
)T

s(l) ≤ 0 (2.38)

2. The search direction must be usable i.e. the objective must be reduced in this direction.

∇ f
(

x(l)
)

s(l)
< 0 (2.39)

As a consequence, the new search direction must fall into the cone spanned by the tan-

gents to the active constraint and the contour of the objective as illustrated in Figure 2.18.

Search directions close to the constraint tangent are in general not advantageous because for
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nonlinear constraints even small steps in this direction would result in infeasible designs.

Consequently, a “push-off” factor θ > 0 is introduced to enhance the search direction.

∇gj

(

x(l)
)T

s(l) + θ ≤ 0 (2.40)

For further details on the choice of θ and its influence on convergence behavior of the

method, it is referred to [VM73]. An extension of the method to cope with initially infeasible

designs is described in [Van84].

2.3.3 NEWTON and Quasi NEWTON Methods

Newton methods use second order information to find the optimum. They are derived from

the linearization of the stationary condition in Equation (2.17). The linearized stationary

condition of the unconstrained case at some iterate x(l) reads

∇ f
(

x(l)
)

+ ∇
2 f
(

x(l)
)

d(l) = 0 with d(l) = x(l+1) − x(l) , (2.41)

where d(l) denotes the vector that describes the next iteration step. Solving Equation (2.41)

for the next iteration point x(l+1) yields

x(l+1) = x(l) −
[

∇
2 f
(

x(l)
)

]−1
∇ f
(

x(l)
)

, (2.42)

which represents the update formula for a classical NEWTON-RAPHSON method to find the

roots of Equation (2.17). Even if the Hessian for the objective ∇
2 f
(

x(l)
)

can be determined,

evaluating and inverting it for every iteration step is in general too expensive for practical

applications. Hence, an approximation is used in most cases e.g. by updating the Hessian

only every few iterations assuming that the second derivatives of the objective do not change

as fast as the corresponding zero and first order information. Another possibility to reduce

the computational effort in combination with NEWTON methods is the approximation of the

Hessian by means of first order information only. Due to the different possibilities of approx-

imating the Hessian or its inverse, this leads to a special class of algorithms, the so-called

quasi NEWTON methods. Two prominent members of this class are the DFP method (named af-

ter DAVIDON [Dav59], FLETCHER, and POWELL [FP63]) and the BFGS method (named after

BROYDEN [Bro70], FLETCHER [Fle70], GOLDFARB [Gol70], and SHANNO) [Sha70]. The DFP

method starts with an initial guess A0 for the inverse of the Hessian (usually the identity

matrix A0 = I) which is modified after each iteration step using two correction matrices B(l)

and C(l) such that

A(l+1) = A(l) + B(l) + C(l) (2.43)

with

B(l) =
d(l) d(l)T

d(l)T
y(l)

; C(l) = −A(l) y(l) y(l)T
A(l)

y(l)T
A(l) y(l)

; y(l) = ∇ f (x(l+1)) − ∇ f
(

x(l)
)

. (2.44)

The BFGS method updates an approximation Ĥ(l) for the true Hessian rather than its inverse

at every iteration, also starting with an initial guess which, in absence of more information,

is often estimated by the identity matrix Ĥ0 = I.

Ĥ(l+1) = Ĥ(l) + D(l) + E(l) (2.45)
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with

D(l) =
y(l) y(l)T

y(l)T
d(l)

; E(l) = − Ĥ(l) d(l) d(l)T
Ĥ(l)

d(l)T
Ĥ(l) d(l)

(2.46)

For both methods the matrices A and Ĥ, respectively, must remain positive definite during

the iteration process to allow for convergence of the algorithm. Since poor approximations

for the Hessian might lead to non-convergent behavior of the algorithm, a line search should

always be performed in combination with quasi-NEWTON methods. Derived from the up-

date direction of NEWTON methods

s(l) =
[

∇
2 f
(

x(l)
)

]−1
∇ f
(

x(l)
)

, (2.47)

the search direction for a line search during a quasi-NEWTON iteration can be deduced:

s
(l)
DFP = A(l)

∇ f
(

x(l)
)

; s
(l)
BFGS =

[

Ĥ(l)
]−1

∇ f
(

x(l)
)

. (2.48)

More details about quasi-NEWTON methods can be found e.g. in [Fle87, NW99, Van84].

2.3.4 LAGRANGE Methods

In order to solve constrained optimization problems, the aforementioned NEWTON meth-

ods can also be applied to the Lagrangian function instead of the objective function. The

Lagrangian function transforms the original constrained problem into an unconstrained

problem. The resulting unconstrained problem can then be solved using the techniques

described in the previous sections. Assuming that the set of active inequality constraints

has already been determined for the current iteration step, all active inequality constraints

can be treated as additional equality constraints

gj(x) = 0 ; j = 1 . . . na , (2.49)

where na denotes the number of active inequality constraints at point x. Constraints that are

inactive at the current iterate are neglected for the next step. Using the information about

the active set, the Lagrangian function reads

L(x, µ) = f (x) +

nh+na
∑

k=1

µk hk(x) (2.50)

The desired minimum must fulfill the stationary condition for the Lagrangian function i.e.

∂L(x, µ)

∂x
= 0 (2.51)

∂L(x, µ)

∂µ
= 0 (2.52)

Again, applying the NEWTON-RAPHSON method to find the roots of these equations yields

the linearized forms of Equations (2.51) and (2.52) which can be combined to








∇
2 f (x(l)) +

nh+na
∑

k=1

µ
(l)
k ∇

2hk(x(l)) ∇h(x(l))
T

∇h(x(l)) 0









[

d(l)

δ(l)

]

= −
[

∇L(x(l))

h(x(l))

]

(2.53)
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with

d(l) = x(l+1) − x(l) ; δ(l) = µ(l+1) − µ(l) (2.54)

In Equation (2.53), the different equality constraints hk(x) are assembled to the vector h(x)

and ∇h(x(l)) denotes the matrix that contains the partial derivatives of each hk(x) with

respect to the design variables x.

∇h(x) =

























∂h1(x)

∂x1

∂h1(x)

∂x2
· · · ∂h1(x)

∂xn

∂h2(x)

∂x1

∂h2(x)

∂x2
· · · ∂h2(x)

∂xn
...

...
...

∂hnh+na(x)

∂x1

∂hnh+na(x)

∂x2
· · · ∂hnh+na(x)

∂xn

























(2.55)

Equations (2.53) and (2.54) characterize an iterative optimization algorithm called sequential

quadratic programming (SQP) that will iteratively find a stationary point of L(x, µ), the so-

lution of the constrained optimization problem. After each step, the active set at x(l) must

be redetermined for the next iteration. To reduce the computational effort related to the

evaluation of the second derivatives in Equation (2.53), the approximation techniques for

the Hessian described in the preceding section can be applied in an analogous manner. The

only difference is that a line search on the Lagrangian function will not help to stabilize

because its stationary point is not a global minimum, but a saddle point (maximum with

respect to µ and minimum with respect to x). Hence, other techniques must be applied to

ensure convergence [NW99].

2.3.5 Penalty and Barrier Methods

Another possibility to solve a constrained optimization problem is to reformulate the objec-

tive such that the new objective worsens rapidly where constraints are violated. This can be

accomplished by adding a penalty or barrier function to the original objective

f̃ (x, r) = f (x) + P(x, r) , (2.56)

which is also a function of an additional scalar, called the penalty parameter r.

The basic difference between penalty and barrier methods is that the former penalize the

objective only if a constraint is violated (i.e. f̃ (x, r) = f (x) within the whole feasible domain)

whereas the latter do not allow for infeasible designs by means of a singularity at the limit

state gj(x) = 0. Consequently, barrier methods are applicable only to inequality constrained

problems.

A popular example for a penalty function is the quadratic loss function defined as

P(x, r) = r





ng
∑

j=1

(

g+
j (x)

)2
+

nh
∑

k=1

(

hk(x)
)2



 (2.57)
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Figure 2.19: Influence of penalty parameter r on approximation quality of (a) penalty and (b) barrier

methods.

with

g+
j (x) = max

{

0 ; gj(x)
}

. (2.58)

Commonly used barrier functions are the inverse barrier function

P(x, r) =
1

r

ng
∑

j=1

(

− 1

gj(x)

)

(2.59)

and the logarithmic barrier function

P(x, r) = −1

r

ng
∑

j=1

log
(

−gj(x)
)

. (2.60)

Similar to the LAGRANGE formulation, Equation (2.56) transforms the original con-

strained problem into an unconstrained problem. In contrast to the LAGRANGE method,

however, the solution of the penalty formulation in Equation (2.56) is in general not the

same as for the original formulation. If the true optimum lies on the boundary of the feasible

domain, penalty methods will typically yield “optimal” solutions that are located slightly

in the infeasible domain while barrier methods will “back off” into the feasible domain and

thus also miss the true optimum. The difference between the found optimum and the true

minimum strongly depends on the penalty parameter r. As illustrated in Figure 2.19, the

approximation ameliorates for increasing r. Extremely large values for r, however, lead to

numerical problems during optimization. A detailed discussion of advantages and disad-

vantages of both penalty and barrier methods are discussed for instance in [Aro89, BSS93].
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2.3.6 Approximation Concepts

Seizing the idea used for the method of polynomial interpolation, other approximations to

the original objective function or constraints can be established to find the optimum [BH93].

Dependent on their region of validity, local, mid-range, and global approximations are distin-

guished. While local approximations are only valid in the immediate vicinity of the ob-

served point, mid-range approximations try to predict the original functional response in

a well-defined subregion of the design space. In contrast, global approximations aim at

predicting the characteristics of the functions over the entire design space.

Local approximations are fit based on local information obtained at a single point such as

the functional value, gradient and curvature, respectively. Hence, they are also called single

point approximations. The more information is available (e.g. by means of sensitivity anal-

ysis [Kim90, SCS00]) the better the possible fit will be. Mid-range approximations rely on

information gathered from multiple points. Both local and mid-range approximations form

explicit subproblems (defined on a subregion of the design space) that can be solved analyt-

ically. Accordingly, an iterative solution technique is commonly applied where the solution

of one subproblem provides the expansion point for the next approximation. This iteration

is performed until convergence is achieved. Well-known local approximation methods are

the TAYLOR expansion and the method of moving asymptotes (MMA) [Sva87, Ble93]. A promi-

nent member of the mid-range approximation family is the so-called multipoint approxima-

tion [TFP93].

The simplest local approximation is the linear TAYLOR expansion about current design

x′. In this case, the TAYLOR series is truncated after the linear term. Applied to the objective

function f (x), the linear approximation reads

f̂ (x) = f
(

x′
)

+
n
∑

i=1

∂ f (x)

∂xi

∣

∣

∣

∣

x′
(xi − x′i) . (2.61)

If the quadratic terms of the TAYLOR series are included in the expansion, the approxima-

tion is improved at the price of requiring curvature information at x′, either determined

analytically or by means of finite differences. This additional computational effort makes

the quadratic Taylor approximation inapplicable to most structural optimization problems.

f̂ (x) = f
(

x′
)

+
n
∑

i=1

∂ f (x)

∂xi

∣

∣

∣

∣

x′
(xi − x′i) +

1

2

n
∑

i=1

n
∑

j=1

∂2 f (x)

∂xi ∂xj

∣

∣

∣

∣

x′
(xi − x′i)(xj − x′j) (2.62)

As a more general approach for local approximations, which also includes the linear

TAYLOR expansion as a marginal case, the MMA is discussed in brief. A thorough discussion

of MMA and enhanced approaches can be found in [Dao05]. The MMA approximation

f̂ (x) = r′ +
n
∑

i=1

(

pi

Ui − xi
+

qi

xi − Li

)

(2.63)

is convex within the range [Li, Ui] defined by an upper and lower asymptote Li and Ui,

respectively. The position of the asymptotes can be changed from one iteration step to the
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other, a feature motivating the name of this method. The coefficients of Equation (2.63) are

defined as

r′ = f
(

x′
)

−
n
∑

i=1

(

pi

Ui − x′i
+

qi

x′i − Li

)

(2.64)

pi =











(Ui − x′i)
2 ∂ f (x)

∂xi

∣

∣

∣

∣

x′
, if

∂ f (x)

∂xi

∣

∣

∣

∣

x′
> 0

0 , otherwise

(2.65)

qi =















0 , if
∂ f (x)

∂xi

∣

∣

∣

∣

x′
≥ 0

− (x′i − Li)
2 ∂ f (x)

∂xi

∣

∣

∣

∣

x′
, otherwise.

(2.66)

Mid-range and global approximations are based on evaluations of the original func-

tions at a set of points, called sampling points. To yield the best possible approximation,

the sampling points are carefully chosen according to design of experiments (DoE) tech-

niques [Mon01]. The resulting approximations can be used to efficiently study the behavior

of the problem replacing expensive evaluations of the original functions. These approxi-

mations models (also termed metamodels) and related DoE methods are a key issue of the

present work. Therefore, they are thoroughly discussed together with aspects related to

their use in optimization algorithms in Chapters 4, 5, and 6.
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Chapter 3

Stochastic Structural Optimization

The concepts introduced in Chapter 2 imply that all parameters involved are inherently de-

terministic i.e. known, determined, or produced to exactly the value used in the optimiza-

tion process. Obviously, this approach is an idealization of real-life processes, products, and

materials subject to environmental influences. The natural stochastic character is neglected

in most engineering problems for the sake of an easy implementation, reduced numerical

effort, or increased clarity in the problem formulation.

In the context of structural optimization, however, this approach may be very critical.

During optimization, existing redundancies are typically downsized or even eliminated

completely, since any redundancy is a potential source for further improvement. Finally,

the optimized design has no redundancies left to cover inherent uncertainties. In particular

constrained optima are highly sensitive even to small deviations in the governing parame-

ters because any variation in direction of the active constraint leads to an infeasible layout.

In contrast, a robust design, the goal of a stochastic optimization, is characterized by minimal

impact of variations on the system response.

Bearing the formulation of a stochastic optimization problem in mind, some major sta-

tistical measures are introduced first. Subsequently, several formulations for stochastic opti-

mization problems are discussed, followed by a presentation of solution techniques for this

class of problems.

3.1 Basic Statistical Concepts

A design variable or system parameter that exhibits stochastic properties is called a ran-

dom variable. Random variables are denoted by uppercase letters, such as X. All statistical

quantities and functions that characterize a particular random variable are indexed with the

respective uppercase letter. The corresponding lowercase letter x is used to denote a possi-

ble value of X. The set of possible outcomes for X are called the sample space Ω. Any subset

of Ω is called an event.

The character of a random variable X is specified by its probability distribution pX(x). If

X is a discrete variable, pX(x) is often called probability function or probability mass function.

In case of a continuous X, it is termed probability density function. Examples for possible

probability distributions are depicted in Figure 3.1.
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x x

aa b

p x( )
P X a p a{ } ( )= =

P a X≤b{ ≤ }

p x( )

(a) (b)

Figure 3.1: Probability distribution pX for (a) discrete and (b) continuous random variable X.

The probability distribution quantifies the probability P of a specific event to occur. It is

noteworthy that in the discrete case the value pX(a) represents the probability of the event

X = a whereas for continuous variables the integral over a range of X provides a measure

for probability. Consequently, for continuous X, the probability of occurrence of one distinct

X = a is zero. Probability distributions must have the following properties:

⋄ Discrete x: 0 ≤ pX(xi) ≤ 1 ∀ xi ∈ Ω (3.1)

P{X = xi} = pX(xi) ∀ xi ∈ Ω (3.2)
∑

i

pX(xi) = 1 (3.3)

⋄ Continuous x: pX(x) ≥ 0 (3.4)

P{a ≤ X ≤ b} =

b
∫

a

pX(x) dx (3.5)

∫

Ω

pX(x) dx = 1 . (3.6)

For the purpose of clarity, only the case of continuous random variables is further elabo-

rated, a detailed discussion on discrete random variables can be found e.g. in [MR03].

A fundamental function in statistics is the cumulative distribution function

C(x) = P{X ≤ x} =

x
∫

−∞

pX(u) du , (3.7)

which quantifies the probability of the event that a random realization of X is smaller than

the value x. Using the inverse of the cumulative distribution function, quantiles of X can

be specified i.e. values xq for which the probability of X being smaller than xq is equal to a

preset probability q

xq = C−1(q) . (3.8)
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Two important statistical measures are mean µ and variance σ2, respectively. The mean of a

distribution is also termed expected value and is a measure of its location (or central tendency)

while the variance is a measure of dispersion of a probability distribution.

E(X) = µX =

∫

Ω

x pX(x) dx (3.9)

V(X) = σ2
X =

∫

Ω

(x − µX)2 pX(x) dx =

∫

Ω

x2 pX(x) dx − µ2
X (3.10)

For engineering problems, the positive square root of the variance, called standard devia-

tion σ, is often the preferred measure for variability because it has the same dimension as

the corresponding random variable X. Additional measures of location and dispersion are

discussed in standard literature on statistics, for instance [Ros87, MR03, Sac04].

Only few probability distributions are needed to qualify almost any random variable

used in engineering problems. One of the most important distributions is the normal (or

Gaussian) distribution

pX(x) =
1

σX

√
2π

e
−

(x − µX)2

2 σ2
X (3.11)

which describes the statistical behavior of many natural processes. A normal distribution

with mean µ and variance σ2 is commonly abbreviated by N(µ, σ2). Accordingly, the nota-

tion X ∼ N(0, 1) describes a random variable X that is normally distributed with µX = 0

and σ2
X = 1.

The uniform distribution

pX(x) =











1

(b − a)
, a ≤ x ≤ b

0 , x < a ∨ x > b

(3.12)

is used to qualify random variables with equally likely occurrence of every x ∈ Ω with

Ω = [a, b]. A uniform distribution with lower bound a and upper bound b is commonly

abbreviated by U(a, b). Its mean and variance are computed according to Equations (3.9)

and (3.10) resulting in

µX =
a + b

2
(3.13)

σ2
X =

(b − a)2

12
. (3.14)

Other important distributions are WEIBULL, POISSON, exponential, or lognormal distributions

which can be helpful for many structural problems e.g. characterization of loads, stresses,

dimensions, and material parameters [TCB82, Vie94, Rei97]. Details on these distributions

can be found in statistical reference books e.g. [Ros87, MR03, Sac04].

In many engineering problems, several random variables occur simultaneously. For the

sake of a clear notation, they are commonly assembled into a random vector X. Analogously,

a vector of mean values µ for all components of X can be established:

µX = E(X) = [E(X1), E(X2), . . . , E(Xn)]
T = [µX1

, µX2
, . . . , µXn ]

T . (3.15)
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The counterpart of the variance for the multidimensional case is the covariance matrix which

is defined as

C = Cov(X, X) = E
(

(X − µX) (X − µX)T
)

. (3.16)

If all n random variables are mutually independent, the n-dimensional joint probability func-

tion pX(x) is characterized by the product of the individual probability density functions

pXi
(xi)

pX(x) =
n
∏

i=1

pXi
(xi) . (3.17)

For correlated random variables with arbitrary probability distribution, a joint probabil-

ity density function can be established by means of transformations which are given for

instance in [BM04, Vie94]. Because the random variables usually encountered in struc-

tural analysis (e.g. dimensions, loads and material parameters) are mutually independent

in many cases, a thorough discussion of possible transformations is omitted here.

3.2 Formulation of the Stochastic Optimization Problem

Random variables in optimization problems can either occur as system parameters Z or as

part of the design variables X. Examples for random system parameters are variable loads

(as for example wind loads) or material parameters. Typical design variables with stochastic

properties are dimensions of structural members or material strength. These design vari-

ables can be altered during the optimization process but only up to a certain precision with

corresponding tolerances or probability distributions. In case of steel, concrete, or timber,

the engineer can usually choose a suitable strength class for the design of a structure. The

strength class is identified by a nominal value (e.g. 5% quantile) for the underlying distri-

bution. For the solution of stochastic optimization problems such random design variables

are split into two parts: the nominal value x which is considered as a deterministic design

variable and a residual random part Z which is treated as a random system parameter with

corresponding probability distribution shifted by the nominal value x.

X = x + Z (3.18)

Design variables x System

Noise parameters Z

Fixed parameters s

(system constants)

Response values Y

Figure 3.2: Scheme of a typical system including random variables.
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Figure 3.3: Influence of a random variable Z with probability distribution pZ(z) on the distribution

pY(y) of a response value Y.

After this decomposition, the system under consideration can be depicted schematically as

in Figure 3.2. The design variables x are exclusively deterministic variables, and all ran-

dom variables (commonly referred to as noise parameters or simply noise) are combined to a

random vector Z. The system constants s noted in the scheme represent all deterministic

parameters that influence the system but are beyond control of the designer.

In optimization problems where noise parameters are present in the formulation of ob-

jective or constraints, Equations (2.6a-d) cannot be applied because the response values for

f , gj, and hk are not deterministic values but also random values Y with corresponding

probability distributions pY(y), as illustrated in Figure 3.3. The figure depicts the case of a

problem with one noise variable Z with the probability density function pZ(z). The distri-

bution pY(y) of the random response value Y is obtained by mapping Z onto the response

by means of the corresponding governing equation. In general, the probability distribution

of the response also depends on the settings of the design variables x. In the case of Fig-

ure 3.3, the governing equation is f (z). In a general optimization problem, objective f , and

constraint functions gj, and hk, respectively, map the random input variables onto random

response values. The shape of the resulting distribution density function pY(y) will strongly

depend on the form of the governing equation.

In order to solve the stochastic optimization problem with its random response values, a

substitute optimization problem must be established in which all response values are deter-

ministic. This is usually done by means of descriptive statistics, which extracts deterministic

quantities from random response values. Many different possibilities exist to transform the

original problem with stochastic response values into an optimization problem with de-

terministic output. Due to their different role in the optimization process, the stochastic

objective function, equality, and inequality constraints are typically replaced by particular

substitute formulations. In the present work, the discussion of possible approaches will be

restricted to commonly used and reasonable formulations.
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3.2.1 Equality Constraints Dependent on Random Variables

As soon as random variables influence the response values for equality constraints hk(x, Z),

the equality hk = 0 cannot be fulfilled for all z ∈ Ω. On this account, equality constraints

should be avoided in the configuration of optimization problems with random variables.

This can be accomplished by substituting the equality requirement into the formulation of

objective and inequality constraints. This approach is proposed for all constitutive equality

constraints such as the equilibrium condition in structural analyses [Das00]. If equality con-

straints depending on random variables cannot be evaded in the problem formulation, they

are in general only fulfilled in a mean sense by substituting Equation (2.6c) by

h̄k(x) = E
(

hk(x, Z)
)

= 0 . (3.19)

As another apparent alternative, the expected values for the random variables Z can be used

to evaluate the equality constraints

hk(x, Z̄) = hk

(

x, E(Z)
)

= 0 . (3.20)

In either case, however, the equality will be violated for most events z ∈ Ω, an inherent and

unavoidable fact related to equality constraints that depend on random variables.

3.2.2 Inequality Constraints Dependent on Random Variables

In stochastic optimization, inequality constraints can be met with 100% probability i.e.

P
{

gj(x, Z) ≤ 0
}

= 1 ∀ z ∈ Ω ; j = 1, . . . , ng (3.21)

only in some special cases, for instance if the distributions of all random variables are

bounded. In this case, the feasible design must back off the active constraints by a cer-

tain tolerance such that for all possible events z ∈ Ω the design x is always feasible. Con-

sequently, the worst case of all z ∈ Ω with respect to the constraint functions defines the

feasible domain.

gj(x, Z) ≤ 0 ∀ z ∈ Ω ; j = 1, . . . , ng . (3.22)

For a worst-case design, the probability distribution of the random variables within the

bounds is of no importance, only the tolerance range influences the solution of the opti-

mization problem. Hence, this formulation is often used if only vague (or even no) informa-

tion on the probability distributions involved can be obtained and only tolerance ranges are

dependably available.

In most engineering applications, there is no design x ∈ R
n which meets all constraints

with 100% probability. Thus, each design x will have a finite probability of failure PF, which is

defined by the probability of violating the constraints.

PF = P
{

gj(x, Z) > 0
}

∀ z ∈ Ω ; j = 1, . . . , ng (3.23)

Accordingly, the probability of failure can be computed by the integral of the (joint) proba-

bility density function over the infeasible domain U , as illustrated in Figure 3.4.
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Figure 3.4: Probability of failure as integral of the probability density function over the infeasible

domain for a 1D problem with one constraint.

P
{

gj(x, Z) > 0
}

=

∫

U

pZ(z) dz ; j = 1, . . . , ng (3.24)

with

U = {z ∈ Ω | gj(x, Z) > 0} (3.25)

The probability of failure can be used to reformulate the inequality constraints in Equa-

tion (2.6b) as

P
{

gj(x, Z) > 0
}

− Pmax ≤ 0 ∀ z ∈ Ω ; j = 1, . . . , ng (3.26)

using an additional optimization parameter Pmax, the maximum allowable probability of

failure. The complement of the probability of failure is the probability of safety (also called

reliability)

PS = P
{

gj(x, Z) ≤ 0
}

= 1 − PF ∀ z ∈ Ω ; j = 1, . . . , ng . (3.27)

Derived from the level of reliability that is predefined by the designer, this formulation of

the stochastic optimization problem is commonly termed reliability-based design optimization

(RBDO).

A more general approach to handle constraints subject to noise assigns an individual

cost function γ(y) to the possible violation of each constraint. Hence, the cost function γ(y)

assigns absolute costs to each possible state of the constraint y = g(x, z). In view of the

fact that an increasing violation of the constraint should be related to equal or higher costs,

these cost functions should be monotonically non-decreasing i.e. γ(a) ≤ γ(b) for a < b. The

expected cost for constraint violation can be restricted to a maximum allowable cost Γ by

transforming the condition in Equation (2.6b) into

E
(

γj

(

gj(x, Z)
))

− Γj ≤ 0 for each j = 1, . . . , ng . (3.28)

If the HEAVISIDE function (depicted in Figure 3.5 and sometimes also referred to as saltus

function)
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Figure 3.5: HEAVISIDE function.

γ(g) =







0 , g ≤ 0

1 , g > 0
(3.29)

is used to represent the costs of each constraint violation, Equation (3.28) turns out to be

equivalent to Equation (3.26).

E
(

γ
(

gj(x, Z)
))

=

∫

Ω

γ
(

gj(x, z)
)

pZ(z) dz =

∫

U

pZ(z) dz = P
(

gj(x, Z) > 0
)

(3.30)

Each of the proposed approaches to handle inequality constraints in the stochastic optimiza-

tion problem defines a new feasible domain C by means of Equations (3.22), (3.26), or (3.28),

respectively.

3.2.3 Objective Function Dependent on Random Variables

Due to the randomness in Z, the objective function f (x, Z) in Equation (2.6a) must also

be replaced by a deterministic substitute function ρ(x) that provides some representative

value for the random variable Y = f (x, Z) to find a minimum. In stochastic optimization

problems, a design x∗ is considered as optimal if it fulfills the relationship

f (x∗, Z) ≤ f (x, Z) ∀ x ∈ C ∧ z ∈ Ω (3.31)

i.e. if for this design the noise has no deteriorative (increasing) effect on the objective func-

tion and if there is no other design that results in a lower objective for any realization of

z ∈ Ω. A design x∗ that fulfills the relation in Equation (3.31) is called optimal robust design.

Figure 3.6 depicts a function f (x, Z) where the range of possible variations Z around the

design x∗ has no influence on the response y∗ = f (x∗, Z). Under each circumstance z ∈ Ω,

the value for the objective function is always minimal. Accordingly, x∗ is an optimal robust

design.

In the context of stochastic optimization, the term robustness has a distinctive definition:

A system is called robust if the effect of a noisy input on the system response is minimal. This

notion is illustrated in Figure 3.7 where the objective function f is dependent on one random
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Figure 3.6: Optimal robust design x∗.

design variable X. This design variable is separable in a deterministic part x (the mean of

X) and random variable Z with a normal distribution pZ(z) such that X = x + Z. The mean

of Z is fixed to zero and the variance σ2 is constant i.e. at every setting x, the probability

distribution has the same spread. For each design x, the distribution of the noise pZ(z) is

mapped onto the response by the functional relationship Y = f (X) = f (x + Z) resulting

in a distribution pY(y) for the (random) response Y. In general, this distribution changes in

position and shape dependent on the setting of the design variable. Hence, designs can be

identified that result in a narrow distribution, others yield a larger variation in the response.

Although design x1 yields a lower value for the objective in the deterministic case, design x2

is more robust in presence of noise because the variation of the resulting distribution pY(y)

is smaller. Thus, large deviations from the deterministic (or nominal) case are less likely to

occur.

For most engineering problems, there are no optimal robust designs x∗ ∈ C which mini-

mize f (x, Z) for each possible realization of z ∈ Ω (as for instance in the problem depicted

in Figure 3.7). To identify the best possible approximation is the central problem in statis-

tical decision theory [Fer67, Ber85, Lau05] which provides some effective substitute formu-

lations. Based on the information available for the random variables, two different types of

decision-theoretic approaches are distinguished [JZ72]:

Decisions under risk are made when probability densities for the random input variables Z

are available, and hence, probability distributions pY(y) for the response values can be

obtained.

Decisions under uncertainty subsume cases where only the possible range of each noise

variable is known. About the associated probability density, however, no information

is readily available. As a result, the set of possible output realizations can be deter-

mined but no distribution density can be assigned.

Each substitute formulation gains a scalar value from the originally random output Y of

the objective providing a deterministic measure to assess the merit of each design during

optimization. The proper choice for this so-called robustness criterion ρ is strongly problem
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Figure 3.7: Robust vs. non-robust settings for a 1D problem with one random design variable X.

dependent and essentially an engineering decision. It should be noted that all formulations

represent an approximation to the desired optimal robust case, and hence, imply some kind

of compromise loosening the condition in Equation (3.31).

Example 2. To illustrate the different approaches and to facilitate a direct comparison, this

example is used repeatedly for each robustness criterion. The objective function (see Fig-

ure 3.8)

f (x, z) = (2 − x) (0.1 − z − 0.1 x) + 0.3

for this example depends on one (deterministic) design variable x and one noise variable Z.

�

The discussion of commonly applied robustness criteria is started with decisions under

uncertainty:

Minimax principle. For some optimization tasks, a worst case scenario could be of interest,

which requires the random response to be bounded on Ω. In this case, the deterministic

substitute formulation ρ(x) for the stochastic objective function f (x, Z) reads

ρ(x) = sup
z∈Ω

f (x, z) . (3.32)

This formulation is also called minimax principle [vN28, Wal50]. For each setting of design

variables x, the effects of all possible events z ∈ Ω are scanned, and the outcome for the

worst case is taken as decisive gage to assess the robustness of the current design. This
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Figure 3.8: Objective function for Example 2 with one design variable x and one noise variable Z.

approach is also referred to as maximin principle for cases where the optimization problem is

formulated as maximization task.

The minimax principle ignores the possible range in the output. Instead, it identifies the

upper limit of the resulting range, and hence, it caps the deteriorative effects of the noise

parameters. This robustness criterion leads to very conservative designs as it is based upon

an extremely pessimistic attitude.

Example 2 [continued]. For the “decision under uncertainty” criteria, assume that the dis-

tribution of noise variable Z is unknown and only prescribed tolerances ±0.2 delimit Z.

Based on this assumption, the minimax principle in Equation (3.32) is applied to the above

introduced example.

Figure 3.9 depicts a projection of the objective function onto the x-y plane. Hence, it

shows the possible range of output realizations for each x and z ∈ [−0.2, 0.2]. The minimax

principle allocates the upper limit of this range for each x as robustness criterion yielding the

deterministic substitute function ρ(x) depicted in Figure 3.10. The minimum of ρ(x), which

represents the optimal setting for the design variable resulting from the minimax principle,

is located at x∗ = 2.0. �

Minimax regret criterion. The minimax regret criterion focuses on minimizing the maxi-

mum regret that may result from making non-optimal decisions i.e. choosing a non-optimal

design x. SAVAGE [Sav51] and NIEHANS [Nie48] define regret as opportunity loss to the deci-

sion maker if design x is chosen and event z ∈ Ω happens to occur. The opportunity loss is
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Figure 3.9: Projection of the objective function onto x-y plane.
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Figure 3.10: Surrogate function ρ(x) resulting from Figure 3.8 for minimax principle.

the difference in the objective between the best obtainable response f ∗

f ∗(z) = inf
x∈C

f (x, z) (3.33)

for each possible event z and the actual outcome f (x, z) resulting from choosing x

ρ(x) = sup
z∈Ω

(

f (x, z) − f ∗(z)
)

. (3.34)

To obtain f ∗(z), all possible events are investigated separately, and the optimal decision x∗

for each z ∈ Ω is evaluated assuming the underlying event occurs uniquely.

Another view at the minimax regret criterion would be that first, the best achievable

response value for each event z is subtracted from f (x, z), then the worst case is determined

as for the minimax criterion. As a result, the optimal design is identified as the one for

which the worst case has a minimal deviation from the theoretical optimum f ∗. Hence, the

minimax regret criterion also takes into account the range of possible response values as

opposed to the original minimax principle.
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Figure 3.11: Projection of the objective function onto z-y plane.

x

ρ x( )

Figure 3.12: Surrogate function ρ(x) resulting from Figure 3.8 for minimax regret criterion.

Example 2 [continued]. Referring to the assumption z ∈ [−0.2, 0.2], the minimax regret

criterion in Equation (3.34) can be evaluated for the established example. To find f ∗(z), the

objective function is projected onto the z-y plane as depicted in Figure 3.11. The lower bound

of the span (dashed line in Figure 3.11) represents f ∗(z). With f ∗(z), the opportunity loss

f (x, z) − f ∗(z) is determined for each combination of decision x and event z. The minimax

principle applied to the opportunity loss results in the deterministic substitute function ρ(x)

depicted in Figure 3.12. The optimal design characterized by this minimax regret criterion

is located at x∗ = 1.5. �

LAPLACE method. LAPLACE argues that for a serious assessment of a stochastic problem,

the designer should allot a probability distribution pZ(Z) to the noise. In absence of estab-

lished probability information for the noise, he suggests the use of the principle of insufficient

reason by BERNOULLI. It states that, if no probabilities have been assigned, there is insuf-
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ficient reason to indicate that any state for Z is more or less likely to occur than any other

state. Consequently, all events must be equally likely. Accordingly, a uniform distribution is

assigned to the noise variables. This assumption turns the problem into a “decision under

risk” problem. In this case, the assumed probability density function for the input allows

for an estimation of the output distribution.

With information about the distribution of the random response at hand – either based

on BERNOULLI’s argument or derived from probability distributions known in advance –

more detailed robustness criteria for the class of “decision under risk” problems can be for-

mulated. The question on how to find this distribution of the response when the probability

density of the noise parameters is known will be discussed in Section 3.3.

Quantile measures. Based on the probability density distribution of the output, a quantile

q (e.g. 90% quantile) of the random objective function can be used as robustness criterion in

analogy to the worst case.

ρ(x) = C−1(x, q) (3.35)

where C−1 denotes the inverse of the cumulative distribution function for the random ob-

jective Y = f (x, Z) as introduced in Equation (3.7). Here, C−1 is also a function of the design

variables x because generally the probability density pY of the response also depends on the

design variables.

For the resulting robust design x∗, the respective percentage of possible realizations z ∈
Ω will yield a value for the objective f (x∗, Z) that is equal to or smaller than ρ(x∗). Similar

to the worst case formulation, the quantile measure disregards the possible spread in the

random response.

Example 2 [continued]. For the evaluation of “decision under risk” criteria, a probability

distribution pZ(z) for the noise variable Z has to be specified. To illustrate the impact of the

probability distribution on the resulting optimal design, two different cases are studied for

this example:

⋄ a uniform distribution according to Equation (3.12) with aZ = −0.2 and bZ = 0.2 and

⋄ a normal distribution as defined in Equation (3.11) with µZ = 0.02 and σZ = 0.05

as depicted in Figure 3.13.

Evaluating Equation (3.35) based on the aforementioned probability distributions for the

noise variable Z and a 90% quantile results in the plots in Figure 3.14. The minimum for this

criterion is located at x∗unif = 1.9 and x∗norm = 1.72 for the uniform distribution and the

normal distribution, respectively.

If this criterion is evaluated for q = 1, the resulting substitute function ρ(x) for the uni-

form distribution is equal to the minimax principle. For the normal distribution, no substi-

tute function can be determined since the resulting distribution is essentially not bounded.

Hence, the criterion yields infinite values for ρ(x). �
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Figure 3.13: Probability distributions pZ(z) assumed for noise variable Z in Example 2.
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Figure 3.14: Surrogate functions ρ(x) based on the quantile criterion with q = 0.9 applied to Exam-

ple 2.

BAYES principle. For this criterion, the expected value for the random response Y =

f (x, Z) is evaluated.

ρ(x) = E
(

f (x, Z)
)

= µY(x) =

∫

Ω

f (x, z) pZ(z) dz (3.36)

Example 2 [continued]. The definition in Equation (3.36) constitutes the plots in Fig-

ure 3.15. The minimum mean value for the objective is obtained for designs x∗unif = 1.5

and x∗norm = 1.4, respectively. �

In general, taking into account only the mean value of the objective can result in a non-

robust design because it disregards the spread of the distribution. In other words, this crite-

rion makes no difference between a narrow response distribution pY(y) and a wide spread
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Figure 3.15: Surrogate functions ρ(x) based on the BAYES principle applied to Example 2.
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Figure 3.16: Probability distributions pY(y) with identical mean but unequal standard deviation.

distribution if both have the same mean value as exemplified in Figure 3.16. Hence, the

average performance of the design will be optimal but at the price of possibly large deviations

from the mean performance. Consequently, the BAYES principle is used in cases where the

good prospects of “beneficial deviations” due to noise balance the risks of “deteriorating

effects” of noise variables. In many engineering problems, this approach is not appropriate,

for instance a typical manufacturing process: beneficial deviations from the average perfor-

mance of the product usually do not generate higher profit for the individual item whereas

inferior goods surely entail additional costs for quality control and repair. In decision theory,

a distinction is drawn between three different situations or attitudes:

1. A decision maker that places more emphasis on the chances of beneficial deviations.

His behavior is called risk-taking.

2. A decision maker that ascribes equal weights to positive and negative deviations. His

behavior is called risk-neutral.
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3. A decision maker that lays stress on the deteriorative effects of variations. His behav-

ior is called risk-averse.

In comparison with the BAYES principle – the preferred strategy for the risk-neutral de-

signer – the substitute function of a risk-taker is smaller where significant variance exists.

The risk-averse designer will augment the substitute function in comparison to the mean

wherever the variance is large. The latter strategy leads to substitute functions ρ(x) for ro-

bust design optimization that yield robust designs in terms of the above given definition –

optimizing the overall performance while minimizing the variation due to noise.

Robustness criteria based on location and dispersion measures. Although all of the

aforementioned strategies surely have their suitable applications, a minimal variation in

the system performance proves to be beneficial for most stochastic optimization problems

in structural engineering. In these cases, a multicriteria optimization with two objectives is

necessary to characterize the optimum: to minimize the location and the dispersion of the

random response, for instance the mean and the variance. As described in Section 2.1.4,

several techniques are available to solve this multiobjective optimization problem.

If the composite function approach is used as introduced in Equation (2.2), the two ob-

jectives are combined to one robustness criterion by a weighted sum with user-specified

weighting factors w1 and w2. Since the location of extrema does not change if a function is

multiplied by a scalar (e.g. 1/w1), one weighting factor can be eliminated without changing

the resulting optimum design (the response value at the optimum, however, is modified by

this scalar multiplication). Here, the weighting factor for the mean is always fixed to 1.0

making the average performance of the system the gage which is adjusted by a multiple

(weight w) of the dispersion measure. Hence, the response values of the resulting substi-

tute functions have a plain meaning potentiating a straightforward comparison of different

“robustness measures”. In terms of decision theory, w = 0 corresponds to a risk-neutral

designer, w < 0 describes the preference of a risk-taker, and w > 0 expresses risk-aversion.

For the aim of robust design optimization (identifying a design x with minimal variance in

the response) only values w > 0 make sense.

ρ(x) = E
(

f (x, Z)
)

+ w V
(

f (x, Z)
)

= µY(x) + w
(

σY(x)
)2

= µY(x) + w

∫

Ω

(

f (x, z) − µY(x)
)2

pZ(z) dz .

(3.37)

To solve engineering problems, it is often more suitable to constitute the robustness criterion

using the standard deviation instead of the variance. As a result, both the measure of central

tendency and measure of dispersion and hence the resulting robustness criterion have the

same unit as the original objective function.

ρ(x) = E
(

f (x, Z)
)

+ w
√

V
(

f (x, Z)
)

= µY(x) + w σY(x)

(3.38)
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The signal to noise ratio (SNR) as introduced by TAGUCHI [FC95] is also a robustness cri-

terion based on the mean and the variance of a system response Y. Considering the case the

smaller – the better, TAGUCHI assumed zero as the minimal possible response value. Accord-

ingly, he formulated the following SNR as robustness criterion

SNR = 10 log10

(

µ2
Y + σ2

Y

)

. (3.39)

Since TAGUCHI performed a maximization of the SNR to find the optimum, his formulation

of the SNR has the opposite sign. The operator “10 log10” does not change the location of the

optimum, it simply transforms the magnitude of the robustness criterion into decibel units

(dB). To make this robustness measure comparable to ρ(x) in Equations (3.32) – (3.38), the

SNR is altered as follows

ρ(x) =
(

µY(x)
)2

+
(

σY(x)
)2

=
(

µY(x)
)2

+

∫

Ω

(

f (x, z) − µY(x)
)2

pZ(z) dz

=
(

µY(x)
)2

+

∫

Ω

( f (x, z))2 pZ(z) dz −
(

µY(x)
)2

=

∫

Ω

( f (x, z))2 pZ(z) dz = E
(

(

f (x, Z)
)2
)

.

(3.40)

Since a monotonic transformation of a function does not change the position of its extrema

but only the absolute value of the function (as the transformation 10 log10 above), such a

transformation can be applied to ρ(x). For a positive argument (·), the positive root
√·

is a monotonic transformation. After taking the positive root of the formulation in Equa-

tion (3.40), the resulting robustness criterion has the same unit as the original objective func-

tion. Additionally, a weighting parameter w is introduced to allow for individual emphasis

on the minimization of variations.

ρ(x) =

√

(

µY(x)
)2

+
(

w σY(x)
)2

(3.41)

To compare the robustness criteria in Equations (3.37), (3.38), and Equation (3.41), so-called

indifference curves are introduced. Originally developed for decision making in operations

research, indifference curves are in fact contour lines of a function Ψ(µ, σ) combining the

two objectives “mean” and “standard deviation” to one objective function. Each contour

marks all combinations of µ and σ that the decision maker would equate in his personal

preference i.e. between these µ-σ pairs, the decision maker is indifferent.

For a risk-neutral decision maker, the indifference curves are always parallel to the σ-

axis. If a risk-averse criterion is chosen, the indifference curves are strictly decreasing with

µ (∂σ/∂µ < 0) while for risk-takers they are strictly increasing (∂σ/∂µ > 0) as illustrated in

Figure 3.17. Since in most operations research texts the aim of the optimization is the max-

imization of the original objective function, the assignments of positive and negative slope

in the indifference curves to risk-taker and risk-averse decision maker are interchanged.
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Figure 3.18: Indifference curves for robustness criteria in Equations (3.37), (3.38), and (3.41).

Based on the graphs in Figure 3.18 displaying Equations (3.37), (3.38), and (3.41) with

w = 1, the difference between these robustness criteria can be evaluated. Compared to ρ(x)

in Equation (3.38), the robustness criterion in Equation (3.37) only slightly penalizes small

standard deviations (σ ≪ 1). This means that for exiguous variations (σ → 0), the decision

maker behaves almost risk-neutral (∂σ/∂µ → −∞). In contrast, large standard deviations

are severely penalized.

A special trait of Equation (3.41) is that with increasing mean the same standard devia-

tion is regarded as less critical. For constant σ and increasing µ the slope of the indifference

curves steepens. This can be useful in cases where the designer’s assessment of variation

is not fixed but relative to the absolute value of the mean. The main limitation of this for-

mulation is that the mean value is restricted to be larger than or equal to zero by definition.

Thus, this criterion can only be used if the objective function f (x, Z) cannot result in negative

values.

Based on the definition of indifference curves, the decision maker may additionally es-

tablish different functions Ψ(σ, µ) and thus custom-made robustness criteria to account for

an individual rating of different (µ, σ) pairs.

Example 2 [continued]. To illustrate the results of the composite function approach, the

shape of the two components must be introduced first. The mean µY(x) was introduced

earlier and is depicted in Figure 3.15. The standard deviation σY(x) for both probability
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Figure 3.19: Standard deviation σY of the resulting probability density pY(y) for Example 2.
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Figure 3.20: Surrogate functions ρ(x) for composite robustness criterion in Equation (3.37) with var-

ied weighting factor w.

distributions of this example is shown in Figure 3.19. Evaluating Equation (3.37) by choos-

ing w = 1 and w = 3 yields the substitute functions depicted in Figure 3.20. Compared to

the substitute function solely based on the mean, the composite function approach results

in designs with lower variation in the response. For w = 1, the minima are represented

by x∗unif = 1.559 and x∗norm = 1.415, respectively. If the designer’s emphasis is on designs

with lower variation in the objective, this intention can be expressed by increasing w. Ac-

cordingly, the optimum is shifted toward the minimum of the variance (located at x = 2).

Choosing w = 3 for instance, relocates the minima to x∗unif = 1.643 and x∗norm = 1.442,

respectively.

Figure 3.21 contains the graphs resulting from Equation (3.38). The optimal designs

based on this robustness criterion with w = 1 are found at x∗unif = 2 and x∗norm = 1.65,

respectively. Considering the case w = 3, the optimum for the uniform distribution remains

unchanged because the standard deviation at x = 2 is equal to zero. Thus, a higher penalty

factor on σ does not influence the optimum. For the normal distribution, the optimum is

moved to the minimum in the standard deviation, thus constituting the minimum for w = 3
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Figure 3.21: Surrogate functions ρ(x) for composite robustness criterion in Equation (3.38) with var-

ied weighting factor w.
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Figure 3.22: Surrogate functions ρ(x) for composite robustness criterion in Equation (3.41) with var-

ied weighting factor w.

at x∗norm = 2.

The robustness criterion formulated in Equation (3.41) is also evaluated for the two al-

ternative distribution functions and both weighting factor settings w = 1 and w = 3. In

Figure 3.22, the corresponding substitute functions are plotted and the resulting optimal

designs are indicated at x∗unif = 1.597 and x∗norm = 1.427 for w = 1, and x∗unif = 1.838 and

x∗norm = 1.578 for w = 3, respectively. �

As an alternative solution procedure for the multicriteria optimization involving both

mean and standard deviation as objective functions, the preference function approach can be

applied as well. In this case, either component can be chosen as preference function (the

actual objective function) while the other part is transformed into an additional constraint by

imposing a maximum permissible value (σmax or µmax) on the respective quantity. According

to Equation (2.1), the substitute formulation for the stochastic optimization problem then
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Figure 3.23: Robust design based on the preference function approach with upper limit on the stan-

dard deviation σmax = 0.02.

reads

F(x) = µY(x) (3.42)

g(x) = σY(x) − σmax ≤ 0 ,

or alternatively,

F(x) = σY(x) (3.43)

g(x) = µY(x) − µmax ≤ 0 .

Formulation (3.42) is used if the aim of the optimization is in fact not to obtain a “true”

robust design (with minimal variance) but a design with optimal average performance for

which the variance in the performance is not larger than a prescribed tolerance value σmax.

The second approach might be the proper choice in cases where an optimization based on

nominal values already exposed a design that would perform optimal in the deterministic

case. Following the concept of Equation (3.43) would then allow to “back off” this theoretical

optimum by a certain acceptable loss in average performance to minimize the variance due

to the noise.

Example 2 [continued]. As an example for the preference function approach, emphasis

is put on minimization of µY(x), which is henceforth the actual objective F(x). For the

standard deviation σY(x), an upper bound is established by setting σmax = 0.02. Thus, the

objective to minimize the variance is transformed into a constraint g(x) = σY(x) − 0.02. In

Figure 3.23, the new constraint g(x) is plotted assuming the noise is normally distributed.

Minimizing the preference function F(x) = µY(x) on the feasible domain characterized by

g(x) ≤ 0 yields the optimal design at x∗norm = 1.605. �

Cost function. Similar to the procedure for inequality constraints, cost functions γ(y) can

be introduced to find a substitute formulation ρ(x) for robust design optimization. Since
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Figure 3.24: Robust design based on the cost function approach for Example 2.

particular costs are related to each possible response value y of f (x, z) and y = g(x, z),

the expected overall costs for violation of constraints and variation in the objective can be

optimized.

ρ(x) = E (γ0 ( f (x, Z))) +

ng
∑

j=1

E
(

γj

(

gj(x, Z)
))

=

∫

Ω

γ0 ( f (x, Z)) pZ(z) dz +

ng
∑

j=1





∫

Ω

γj

(

gj(x, Z)
)

pZ(z) dz





(3.44)

The advantage of the cost function approach is that the trade-off between the different ele-

ments of the stochastic optimization problem (violation of each constraint, mean and vari-

ance of the objective) is judged on a consistent basis, namely the individual cost (e.g. in

terms of money or alternative measures such as the weight) contributed by each element of

the optimization formulation. At the same time, the problem usually becomes an uncon-

strained optimization problem since all constraints are expressed in terms of their monetary

equivalent and are summarized in the new objective function, the overall costs. The prob-

lem with this approach is to define appropriate and accurate cost functions for each possible

contribution.

Example 2 [continued]. The quadratic cost function

γ0(y) = 300 y2 + 60 y

is supposed to describe the costs associated with a design x that produces the outcome

y = f (x). Since no constraints are formulated for this example, only the first expression in

Equation (3.44) contributes to the substitute function ρ(x). Figure 3.24 shows the evaluation

of Equation (3.44) for the two probability density functions under investigation. The optimal

designs based on minimum expected costs are x∗unif = 1.420 and x∗norm = 1.575, respectively.

�
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Concluding the Discussion of Introduced Robustness Criteria. A look at the substitute

formulations applied to Example 2 reveals that each robustness criterion yields a distinct

“robust design”. It should be realized that for each formulation an engineering problem can

be conceived which justifies and substantiates the eligibility of the corresponding criterion

as an approximation to the (in most cases) unattainable goal of an optimal robust design.

In general, one optimization problem can successfully be tackled via miscellaneous robust-

ness criteria. For all intents and purposes, there is no better or worse robustness criterion;

the proper choice for a suitable formulation is basically an engineer’s decision. In fact, this

conclusion was already suggested earlier by introducing decision-theoretic methods where

the different criteria were derived depending on the preference of the decision maker. The

individual choice should be made based on available information on the noise (probability

density function or range) and the designer’s demand on the system performance (main

focus on good overall performance or more emphasis on minimal variance). Moreover, as

revealed by the discussion of multicriteria optimization problems in Section 2.1.4, problems

with more than one objective (in this case: location and dispersion of the probability dis-

tribution pY) do not have a unique solution but bring up a set of PARETO-optimal designs

from which the designer has to pick his personal favorite.

3.2.4 Stochastic Optimization Terminology: Robustness versus Reliability

Many examples for stochastic optimization problems are described in the literature but,

unfortunately, they are not always termed coherently. In this text, a consistent terminology

is proposed that tries to combine the established terms from different communities.

Before the field of stochastic optimization can be addressed, stochastic optimization proce-

dures and stochastic optimization problems must be distinguished. The first term summarizes

all optimization algorithms that use stochastic sampling to find the solution of an optimiza-

tion problem, for instance random search or evolutionary algorithms. The problem to be

solved – as defined in Equations (2.6a-d) – does not have to be a stochastic optimization

problem. Stochastic optimization procedures are also successfully applied to determinis-

tic optimization problems i.e. where all parameters and variables involved are inherently

deterministic. Correspondingly, stochastic optimization problem as a generic term subsumes

the analysis of problems which comprise random variables in the problem formulation. To

solve a stochastic optimization problem, it is not mandatory to choose a stochastic optimiza-

tion procedure. Other solution techniques (as introduced in Section 2.3) can also be applied

to this class of problems using substitute formulations presented earlier.

In many texts, the terms robust design (or robustness) problem and reliability problem are

used to denote stochastic optimization problems. The matter which is actually labeled by

these expressions, though, differs from author to author. Frequently, the entire field of prob-

lems with random variables is called “robust design optimization” [LP01, JL02]. In this

text, any problem formulation containing functions of random variables is called a general

stochastic optimization problem. Moreover, two special cases are distinguished depending on

the functions affected by variations: objective function or constraints. If the objective is

solely a function of deterministic variables and exclusively (inequality) constraints are af-

fected by the random variables, one possible deterministic substitute formulation for this

68



3.3 Methods to Solve Stochastic Optimization Problems

problem reads

minimize f (x) ; x ∈ R
n (3.45a)

such that P
{

gj(x, Z) > 0
}

− Pmax ≤ 0 ; z ∈ Ω ; j = 1, . . . , ng (3.45b)

xL
i ≤ xi ≤ xU

i ; i = 1, . . . , n . (3.45c)

The problem described by Equations (3.45a-c) is called a reliability problem. In other publi-

cations [PSP93, DC00], the term feasibility robustness is used to describe this problem. The

methods used to solve reliability problems are summarized in the term reliability-based design

optimization (RBDO).

In case the noise variables merely affect the objective function f (x, Z) (i.e. the constraints

are deterministic or the problem is unconstrained), the problem is called a robustness problem

or robust design problem. To solve this optimization task, the original stochastic problem is

transformed into a deterministic form by applying a suitable robustness criterion ρ(x) as

described in Section 3.2.3. The solution of problems according to Equations (3.46a-d) is

termed robust design optimization.

minimize ρ(x) ; x ∈ R
n (3.46a)

such that gj(x) ≤ 0 ; j = 1, . . . , ng (3.46b)

hk(x) = 0 ; k = 1, . . . , nh (3.46c)

xL
i ≤ xi ≤ xU

i ; i = 1, . . . , n (3.46d)

This differentiation of the two special cases makes sense with respect to the methods needed

to solve problems of each respective class. In robust design optimization, the mean and

the variance play the most important roles in the formulation of the substitute function

ρ(x). To evaluate mean and variance adequately, a good representation of the probability

distribution in areas with large probability is usually sufficient (e.g. the distribution in the

area µ ± 2 σ). On the other hand, to determine the relevant probability of failure (commonly

Pf ≪ 1‰ is chosen) in reliability problems, the “outer legs” (with low probabilities) of the

probability density must be described accurately (often up to ±6 σ or more) [RB05]. Hence,

the methods used to ascertain the resulting probability density pY by mapping the input

density functions pZ onto the response should accommodate the regions of main emphasis

and their different accuracy requirements.

3.3 Methods to Solve Stochastic Optimization Problems

To solve stochastic optimization problems, the effect of randomness in input parameters on

the crucial response values must be determined. Dependent on the substitute formulation

transforming the stochastic problem into a deterministic form, the evaluation of the objective

and/or constraints for one design involves

⋄ a complete optimization run e.g. to determine the corresponding worst case,

⋄ the calculation of the probability of failure PF for reliability problems,

69



CHAPTER 3 STOCHASTIC STRUCTURAL OPTIMIZATION

⋄ the evaluation of integrals over the probability distribution pY to determine the ex-

pected value and the variance of the crucial response value for the robustness prob-

lem.

For both the minimax principle and the minimax regret principle, an optimization has to

be performed to identify the worst case. Suitable optimization algorithms for different kinds

of problems have been proposed and discussed in Section 2.3. An alternative approach to

determine the robustness criterion ρ for these formulations is to examine only the vertices of

the noise space assuming that the worst case will result from some extremal settings of the

noise variables. This assumption typically holds whenever the effect of the noise variables

is approximately linear, but not in general. Thus, applicability of this simplification should

be examined carefully.

Suitable methods to determine the probability of failure as a prerequisite for reliability

problems comprise

⋄ First-order second moment approach (FOSM)

⋄ First-order reliability method (FORM)

⋄ Second-order reliability method (SORM)

⋄ Monte Carlo sampling (MC)

⋄ Importance sampling (IS)

⋄ Directional sampling (DS)

and many other variants of sampling methods. Since the main issue of this work is rather

to solve robustness than reliability problems, a presentation of methods which are specif-

ically designed to estimate small probabilities will be omitted here. As a consequence

of the large number of publications in this field, a list of references for reliability prob-

lems and solution techniques must be incomplete. The following list is meant to provide

an excerpt of interesting contributions and reviews [TCB82, HR84, SBBO89, GS97, Roo02,

RDKP01, OF02, Sav02, PG02, BM04]. A detailed review of reliability-based optimization

techniques and applications is given in [FM03]. Illustrative examples for reliability prob-

lems and the successful application of the aforementioned techniques can be found e.g.

in [TCM86, LYR02, GFO02, MF03, AM04, YCYG04].

In the following, several techniques to solve the robust design problem will be discussed.

The aim of these approaches is either to find the probability distribution of the output vari-

able pY or to compute directly its statistical measures (mean µY, variance σ2
Y). The resulting

data are used as input for the robustness criterion which defines a deterministic substitute

for the original problem.

As already derived in Equations (3.36), (3.37), and (3.40), substitute formulations that are

based on mean and variance of the response involve the evaluation of integrals of the form
∫

Ω

κ(z) pZ(z) dz . (3.47)
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To compute the mean µY(x), the function κ takes the form f (x, z). For the calculation of the

variance σ2
Y(x), κ either reads ( f (x, z))2 or ( f (x, z) − µY(x))2 as derived in Equations (3.37)

and (3.40). Since integration is only performed with respect to the noise variables Z, depen-

dency on x can be disregarded for the evaluation of the integral.

In most engineering applications, the functions f , g, and h are not known explicitly.

Typically, the response values y can only be obtained pointwise as solution of a linear system

of equations, for instance by means of the finite element method [ZT05]. Consequently, the

integration has to be performed numerically. For the numerical computation of an integral,

the basic idea is to approximate the original integrand by a function that is easy to integrate.
∫

f (z) dz ≈
∫

f̂ (z) dz (3.48)

These approximations are constructed by interpolating polynomials which are based on

evaluations of the integrand at m sampling points. With prior knowledge about the class

of polynomials to be used as approximation, the integration can be performed analytically

yielding a weighted sum over the function evaluations at the sampling points.

∫

f (z) dz ≈
∫

f̂ (z) dz =
m
∑

l=1

wl f (zl) (3.49)

The individual weights wi have to be determined according to the class of polynomials used

as approximation and the location of the sampling points. If these sampling points are

equally-spaced, the resulting integration rules are called NEWTON-COTES formulas. A NEW-

TON-COTES formula can be constructed for any polynomial degree. The commonly used

formulas of low degree are known by the names rectangle rule for constant approximations,

trapezoidal rule for linear polynomials, and SIMPSON’s rule for quadratic polynomials. To as-

sure a good accuracy for the NEWTON-COTES formulas, the distance between the sampling

points used for the integration needs to be small. For this reason, numerical integration is

usually performed by splitting the original integration domain Ω into smaller subintervals,

applying a NEWTON-COTES rule on each subdomain, and adding up the results. This pro-

cedure is called composite rule. A similar concept is used by the Gaussian quadrature rule. It

is constructed to yield an exact result for polynomials of degree 2 m − 1 by a suitable choice

of the m points and corresponding weights.

The quadrature rules discussed above are all designed to evaluate one-dimensional in-

tegrals. To compute the mean of response values that depend on multiple noise variables,

multi-dimensional integrals have to be evaluated. One possibility to solve this problem is

to formulate the multiple integral as nested one-dimensional integrals referring to FUBINI’s

theorem. This theorem necessitates some additional assumptions and reads
∫

Ω

f (z) dz =

∫

Ω1×Ω2×···×Ωn

f (z) dz =

∫

Ω1

∫

Ω2

· · ·
∫

Ωn

f (z) dzn · · · dz2 dz1 . (3.50)

This approach requires the function evaluations to grow exponentially as the number

of dimensions increases. Additionally, it only covers integration over a multi-dimen-

sional domain Ω that can be written as Cartesian product of one-dimensional domains

Ω1 × Ω2 × · · · × Ωn.
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Monte Carlo methods offer an alternative approach to compute multi-dimensional inte-

grals. They may yield greater accuracy for the same number of function evaluations than

repeated integrations using one-dimensional methods.

3.3.1 Plain Monte Carlo Method

Monte Carlo methods make use of the special form of the integral in Equation (3.47). This

integral is solved based on m sampling points which are chosen with respect to the proba-

bility density of the noise variables pZ. After the function κ is evaluated at these sampling

points, the solution of the integral can be approximated by

∫

Ω

κ(z) pZ(z) dz ≈
m
∑

l=1

wl κ(zl) . (3.51)

In plain Monte Carlo simulations, the sampling points are determined randomly in con-

sistency with the probability density of the noise variables pZ. In consequence of the ran-

dom sampling which is performed according to the probability distribution, the sampled

response values are all weighted equally. In addition, the sum over all weights should add

up to one in accordance with Equations (3.3) and (3.6), respectively.

m
∑

l=1

wl = 1 ∧ wl = const. ⇒ wl =
1

m
(3.52)

As an aside, this approach results in the equation for the sample mean. This formula is

commonly used in descriptive statistics to estimate the mean of a random variable Y whose

distribution pY is not known explicitly. Typically, the characteristics of a random variable

can only be studied by means of sampling. In this case, the sample mean ȳ provides an

estimate for the mean µY based on m random samples yl .

µY ≈ ȳ =
1

m

m
∑

l=1

yl (3.53)

Analogously, the sample variance s2 is defined as an estimate for the variance of the under-

lying distribution. In minor inconsistency with Equation (3.52), it can be shown that for the

sample variance choosing wl = 1/(m − 1) yields an unbiased estimate for the variance σ2
Y.

σ2
Y ≈ s2 =

1

m − 1

m
∑

l=1

(yl − ȳ)2 . (3.54)

3.3.2 Stratified Monte Carlo Method

By using random sampling, the allocation of sampling points is unsystematic and chances

are that important subsets of the noise space are not taken into account. Especially, if there

are regions with small probability but high impact on the investigated statistics, this influ-

ence might be ignored.
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Stratified Monte Carlo sampling uses a partitioning of the entire noise space into disjoint

subregions Ω
l , so-called strata, to ensure that from each subset samples are included. Typi-

cally, one sample is taken at random from each stratum and so the sample size m is equal to

the number of strata. The weight, that is assigned to each particular sample, is given by the

probability of the corresponding stratum.

wl = P{z ∈ Ω
l} =

∫

Ω
l

pZ(z) dz (3.55)

The strata are often – but not necessarily – selected to have equal probability. Accordingly, in

stratified Monte Carlo, the individual samples can have different weights. If more than one

sample is located in one stratum, the corresponding probability is divided by the number of

samples per stratum to obtain their respective weight. Once the weights wl and the response

values yl have been computed, Equation (3.52) can be used to compute mean and variance

of the investigated random response Y.

Example 3. In this example, a stratified Monte Carlo sampling for eight sampling points

in two dimensions is performed. Random variable Z1 is normally distributed and Z2 varies

according to a uniform distribution as depicted in Figure 3.25. Despite the uniform distribu-

tion of Z2, it is assumed that response values resulting from larger z2 have to be examined

more closely (e.g. because of a highly nonlinear behavior). Accordingly, the strata are cho-

sen to emphasize sampling of the corresponding subregion. By contrast, the range of Z1

is segmented into intervals of equal probability. Clearly, the weights of samples from the

upper row of strata in Figure 3.25 have to be smaller than those from the lower row to avoid

an erroneous evaluation of Equation (3.52). �

The big advantage of using stratified Monte Carlo is that the inclusion of specified sub-

regions can be enforced. But then, two major questions have to be answered: how to define

Subregion of

particular importance

z2

z1

Stratum

Figure 3.25: Stratified Monte Carlo sampling for a two-dimensional space with eight strata and one

sampling point per stratum.
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the strata and how to compute their probabilities? This can be a difficult task, especially for

problems of high dimensionality.

3.3.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) also uses a segmentation of the integration domain. Hence,

LHS is based on a similar basic idea as stratified Monte Carlo, but here the stratification is

performed along each dimension. In a first step, the range Ωi of each noise variable zi is

exhaustively subdivided into m intervals in consistency with the corresponding probabil-

ity density i.e. the “width” of each interval is determined such that all intervals have equal

probability, specifically 1/m. In a second step, this segmentation is extruded to the entire do-

main thus defining m disjoint subregions along each coordinate direction. These subregions

are also commonly termed strata. According to this procedure, the total number of strata

is mn where n determines the dimensionality of the integration domain. Obviously, those

strata that emanate from the segmentation of one coordinate range are disjoint, strata arising

from different coordinates are penetrating each other. Finally, the m sampling points have

to be allocated in the segmented domain. To ensure that the samples are well distributed

over each coordinate range, each stratum is designated to contain exactly one sample. To

achieve this, one stratum along the first dimension z1 is paired at random without replace-

ment with one stratum that belongs to the second dimension z2. Then a randomly selected

stratum of the third dimension is appointed and combined with the pair. This procedure is

continued until an n-tuple is defined. In a next step, the assembly of the n-tuple is repeated

until each stratum along every dimension is addressed once. This procedure nominates m

cells which are indicated by the n-tuples. From each of these cells, one sample is randomly

chosen resulting in a Latin hypercube sampling with m samples [MBC79].

A prerequisite for the above described procedure for LHS is that all variables zi are mu-

tually independent. This implies that the joint probability density function can be described

by Equation (3.17). For the case of correlated variables, IMAN and CONOVER presented a

technique that is able to consider these correlations in Latin hypercube sampling [IC82].

Example 4. To illustrate this approach, a Latin hypercube sampling of eight points is ex-

emplified. Figure 3.26 depicts the integration domain that is defined by random variables

Z1 (normal distribution) and Z2 (uniform distribution), respectively. The range of each vari-

able is split into eight intervals of equal probability. This results in strata of unequal width

for variable Z1. In the first step, strata 7 and 2 have been randomly drawn for Z1 and Z2,

respectively. This pair nominates cell (7,2) for the first sampling point which is allocated at

random within the cell. For the following steps, stratum 7 is removed from the set of strata

available in the first dimension, and stratum 2 is canceled for the second dimension (sam-

pling without replacement). This procedure is continued for the remaining seven sampling

points, where cells (4,3), (3,7), (1,5), . . . are nominated as depicted in Figure 3.26. �

Since all strata (and hence all cells) have equal probability by definition, each sampling

point represents a domain of equal influence on the solution of the integral. Accordingly,

the same reasons can be stated as for plain Monte Carlo to define the weights by wl = 1/m.
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z2
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Figure 3.26: Latin hypercube sampling for a two-dimensional space with eight sampling points.

These weights together with the sampled response values yl can be used in Equation (3.52)

to compute the desired mean and variance, respectively.

3.3.4 TAYLOR Expansion for Robust Design Problems

For some special functions κ including linear and quadratic polynomials, the integral in

Equation (3.47) can be solved analytically using exclusively simple statistics of the proba-

bility distribution pZ(z). This characteristic trait is availed also for other functions when a

TAYLOR series expansion is used to approximate the true functional relationship.

The simplest form is to use a linear Taylor expansion of κ(z) based on the expansion

point z′

κ̂(z) = κ(z′) +
n
∑

i=1

∂κ(z)

∂zi

∣

∣

∣

∣

z′
(zi − z′i) (3.56)

Inserting this linear relation into Equation (3.47) yields

∫

Ω

κ̂(z) pZ(z) dz =

∫

Ω

κ(z′) pZ(z) dz +

∫

Ω

(

n
∑

i=1

∂κ(z)

∂zi

∣

∣

∣

∣

z′
(zi − z′i)

)

pZ(z) dz

= κ(z′)
∫

Ω

pZ(z) dz +
n
∑

i=1





∂κ(z)

∂zi

∣

∣

∣

∣

z′

∫

Ω

(zi − z′i) pZ(z) dz





= κ(z′) +
n
∑

i=1





∂κ(z)

∂zi

∣

∣

∣

∣

z′





∫

Ω

zi pZ(z) dz − z′i









(3.57)

If the expansion point is chosen to be the vector of mean values z′ = µZ, the sum over i in
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Equation (3.57) vanishes since by definition

µZi
=

∫

Ω

zi pZ(z) dz . (3.58)

Consequently, the mean of the response Y = f (x, Z) can be approximated by

µY(x) =

∫

Ω

f (x, Z) pZ(z) dz ≈ f (x, µZ) (3.59)

if a linear Taylor expansion about z′ = µZ is a valid approximation of the original function.

For a function f (x, z) that is linear in z, Equation (3.59) is exactly satisfied.

Often, a linear approximation will not yield satisfactory results. In these cases, a second-

order TAYLOR series

κ̂(z) = κ(z′) +
n
∑

i=1

∂κ(z)

∂zi

∣

∣

∣

∣

z′
(zi − z′i) +

1

2

n
∑

i=1

n
∑

j=1

∂2κ(z)

∂zi ∂zj

∣

∣

∣

∣

z′
(zi − z′i)(zj − z′j) (3.60)

may be used to improve the approximation. If this quadratic form is used in Equation (3.47),

it can be written as

∫

Ω

κ̂(z) pZ(z) dz = κ(z′) +
n
∑

i=1





∂κ(z)

∂zi

∣

∣

∣

∣

z′





∫

Ω

zi pZ(z) dz − z′i









+
1

2

n
∑

i=1

n
∑

j=1





∂2κ(z)

∂zi ∂zj

∣

∣

∣

∣

z′

∫

Ω

(zi − z′i)(zj − z′j) pZ(z) dz



 .

(3.61)

For mutually independent noise variables Zi and the expansion point z′ = µZ, the equation

to compute the mean µY(x) simplifies to

µY(x) ≈ f (x, µZ) +
1

2

n
∑

i=1

∂2 f (x, z)

∂z2
i

∣

∣

∣

∣

x,µZ

σ2
Zi

. (3.62)

Obviously, this formula gives the exact result if f (x, z) at maximum contains terms which

are of second order in z.

In an analogous manner, an explicit functional relationship can be derived for the vari-

ance σ2
Y if a linear TAYLOR approximation is used. Again, the expansion point is chosen to

be z′ = µZ.

σ2
Y(x) ≈

n
∑

i=1

n
∑

j=1

∂ f (x, z)

∂zi

∣

∣

∣

∣

x,µZ

∂ f (x, z)

∂zj

∣

∣

∣

∣

x,µZ

Cov(Zi, Zj) (3.63)

This formula is also known as first-order second moment (FOSM) approach, since second mo-

ment information of the noise parameter distribution (i.e. the covariance matrix) is mapped

onto the second moment of the response (variance σ2
Y) by means of first-order information

∂ f (x, z)/∂z.
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For uncorrelated variables Zi, the off-diagonal elements of Cov(Zi, Zj) vanish and by

definition Cov(Zi, Zi) = σ2
Zi

. Under this restriction, Equation (3.63) reads

σ2
Y(x) ≈

n
∑

i=1

(

∂ f (x, z)

∂zi

∣

∣

∣

∣

x,µZ

)2

σ2
Zi

. (3.64)

For quadratic TAYLOR series approximations, the computation of the variance requires

higher-order information e.g. the third central moments of Z and partial derivatives of

higher-order. The corresponding equations can be found in [LLFSS98].

Due to the fact that a linear approximation has to be determined to compute mean and

variance of the output distribution directly from the respective statistics of the noise parame-

ters (without need for higher-order information), the application of this procedure is limited

to a small number of problem types. They can typically be used if either the dispersion of Z

is so small that a linear TAYLOR approximation is still valid in the respective region Ω (“nar-

row” probability distributions) or if the system behavior is known to be (approximately)

linear at least over the range of variability (∂ f (x, z)/∂z ≈ const.).

The other solution techniques presented above, namely sampling methods and opti-

mization algorithms, have in common that they require multiple evaluations of the origi-

nal response to assess one design configuration i.e. to evaluate the deterministic substitute

function ρ for a specific x. Problems that can be studied in-depth (i.e. through many eval-

uations of the original model) the presented methods allow for an effective robust design

optimization. For complex problems, however, the number of simulations needed to find

a robust design may quickly become prohibitive. This problem arises frequently in engi-

neering applications. Consequently, it will be addressed in the following chapter, where the

metamodeling concept is introduced to reduce computational burden.
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Chapter 4

Metamodels Replacing Computer

Simulations

Today’s engineering methods are strongly based on complex computer codes and numerical

analyses (like nonlinear finite element analyses) which solely provide pointwise (discrete)

information about the underlying relationship. Only in few applications, an analytic rela-

tionship can be established between input variables and output of a system under investi-

gation. As a consequence, the solution of stochastic optimization problems requires many

evaluations of the governing equations, for instance to compute the worst case or to evaluate

the integral over the probability density. Especially for problems that can only be studied by

means of time-consuming numerical analyses, stochastic optimization of the original prob-

lem becomes prohibitive. The permanent efforts in enhancing the underlying analysis codes

and the increasing complexity of the structures under investigation countervail the steady

enhancements in processor speed and computing power. Hence, it may not be expected that

stochastic optimization problems will be easily manageable in the near future.

To reduce the computational burden, a solution method using global approximations

(cf. Section 2.3.6) is presented. These global approximations are also termed metamodels or

surrogate models since they are used as temporary substitution for the original code [Bar98].

A metamodel replaces the true functional relationship f (x, z) by a mathematical expression

f̂ (x, z) that is much cheaper to evaluate. Usually, an individual metamodel is established

for each single response value y. In general, the metamodel f̂ can be set up to depend on

selected inputs and noise variables only – omitting those variables with negligible or no

impact on the selected response y. To shorten the notation, the two different types of input

variables (design variables and noise variables) are assembled to one input vector v.

v =

[

x

z

]

(4.1)

The individual components of v are subsequently addressed by vi with i = 1 . . . n. Ac-

cordingly, the statement y = f (x, z) is rewritten as y = f (v). The metamodel concept is

illustrated in Figure 4.1.

For the generation of a metamodel, an appropriate number of sampling points is needed.

These points can be selected via design of experiments (DoE) techniques to gain a maxi-

mum of information about the characteristics of the underlying relationship between input
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Input variables v Simulation model Output values y

Metamodel
Approximation for

one output value ŷ
Selected input v

Figure 4.1: Metamodels replacing time-consuming computer simulations.

and output. A suitable DoE technique must be carefully chosen since each type of surrogate

model has need of different attributes with respect to the distribution of the sampling points.

Accordingly, diverse DoE techniques will be thoroughly discussed in Chapter 5. After se-

lecting a compatible combination of global approximation method and DoE technique, the

original simulation is performed for the designs appointed by the coordinates of the sam-

pling points. With the information obtained from these computer experiments, the metamodel

can be fit to provide an efficient estimate for the original function [KS97].

The main benefits of metamodels can be summarized as follows:

1. It is much cheaper to evaluate a metamodel than to perform a complex computer sim-

ulation. This yields a reduction in computational effort where many function evalua-

tions are necessary (e.g. in optimization or stochastic analyses).

2. By use of metamodels, the designer can easily explore the entire design space to get a

more profound understanding of the system under investigation.

3. Metamodels can be used to combine information gathered from different sources, for

instance analysis codes for different disciplines (e.g. fluids, structures, or thermody-

namical problems), or physical experiments and computer simulations.

4. Parallel computing is simple, since in general the individual sampling points are

appointed simultaneously. Hence, the necessary computer experiments can be per-

formed independently and in parallel.

5. Metamodels can be used to smooth response values if noise is present in the observa-

tions.

In the remainder of this chapter, a selection of prominent metamodeling approaches will be

familiarized. The chapter concludes with a comparison of the different metamodel formu-

lations.
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4.1 Response Surface Models

The name response surface model (RSM) might be somewhat misleading, since all types of

metamodels constitute a “surface” which enables the user to predict the response at untried

points. Accordingly, the term RSM is used as synonym for metamodels in some other texts.

However, the common use of RSM, which is also adopted here, is to address polynomial

regression models.

The basic idea, which was originally intended for the analysis of physical experiments,

is to establish an explicit functional relationship (response surface) between input variables

v and output value y. This is done by fitting free parameters β of a function η(v, β) to the

observed response values. In general, certain discrepancies between response surface and

observations are acceptable since some inaccuracy ε cannot be precluded when performing

physical experiments.

y = η(v, β) + ε (4.2)

There is no restriction concerning the regression function η used for the response surface.

Typically, a linear model is used, where the term “linear” addresses the linearity with respect

to the coefficients β (termed regression coefficients)

η(v, β) =

nβ
∑

j=1

β j ηj(v) = β̂
T

η(v) . (4.3)

In this case, the function η(v, β) is the sum over a user-determined set of nβ linearly inde-

pendent functions ηj(v) called regressors. Each regressor is multiplied by a scalar valued

variable β j. With regard to the use of matrix notation, the individual regressors are assem-

bled into the vector η(v).

η(v) =
[

η1(v), η2(v), . . . , ηnβ
(v)
]T

(4.4)

The restriction to linear models constitutes a significant simplification for the estimation of

the regression coefficients β j.

With the vector ỹ of size m× 1 containing the response values of the original code gained

at sampling points vl (with l = 1 . . . m), Equation (4.3) inserted in Equation (4.2) and evalu-

ated at vl reads

ỹ = F β + e . (4.5)

In Equation (4.5), the matrix F contains the individual regressors evaluated at the sampling

points.

F =













η1(v1) η2(v1) · · · ηnβ
(v1)

η1(v2) η2(v2) · · · ηnβ
(v2)

...
...

...

η1(vm) η2(vm) · · · ηnβ
(vm)













(4.6)

The vector e of size m × 1 denotes the differences between predicted response value η(vl , β)

and original observation ỹl , which are called residuals.

el = ỹl − η(vl , β) , l = 1 . . . m (4.7)
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Referring back to the application of analyzing physical experiments, it is assumed that

the function η(v, β) describes the underlying system behavior correctly and the residuals e

emerge exclusively from measurement errors or experimenter’s mistakes. Consequently, the

residuals can be assumed to be normally distributed with mean zero, having no correlation

and constant variance σ2. Based on this assumption, the least squares approach can be

applied to calculate an estimation for the regression coefficients. This method is called linear

regression analysis. The linear regression by means of least squares is thoroughly discussed

in many statistical texts e.g. [BD87, MPV01, MM02].

The least squares approach identifies an estimation for the regression parameters β̂ by

minimization of the sum of squared residuals

m
∑

l=1

(

ỹl − η(vl , β)
)2

= eTe . (4.8)

Accordingly, Equation (4.5) is transformed yielding the formulation for the linear regression

analysis

min
β

(ỹ − F β)T(ỹ − F β) . (4.9)

The minimization is performed analytically by use of the necessary condition at the mini-

mum
∂
(

(ỹ − F β)T(ỹ − F β)
)

∂β

∣

∣

∣

∣

∣

β̂

= 0 . (4.10)

This turns the minimization problem into a linear system of equations

− 2 FT ỹ + 2 FTF β̂ = 0 (4.11)

which can be solved for β̂ if FTF is invertible, viz. if there are at least as many sampling

points and corresponding response data as there are regression coefficients to be estimated.

β̂ = (F
T

F)−1 FT ỹ (4.12)

Together with the established functional relationship η(v, β), the coefficients β̂ define the

global approximation

ŷ = f̂ (v) = η(v, β̂) =

nβ
∑

j=1

β̂ jηj(v) = β̂
T

η(v) . (4.13)

For a general engineering problem that was not examined yet, the main difficulty will

be the proper specification of a suitable regression function η(v, β), which is capable of re-

vealing the important characteristics of the original problem. To unravel this hitch, response

surface models are often restricted to a delimited region including only a part of the design

space. As a consequence, the optimization process has to be executed iteratively by sequen-

tially fitting new RSM approximations on a subregion of the design space.

In analogy to the TAYLOR series expansion, it can be argued that any sufficiently smooth

function can be approximated by a polynomial. The smaller the applicable subregion or
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the higher the order of the polynomial, the better the prediction of the model. Typically,

polynomials of first or second order are used for RSM approximations.

η(v, β) = β0 +
n
∑

i=1

βi vi (4.14)

η(v, β) = β0 +
n
∑

i=1

βi vi +
n
∑

i=1

n
∑

j=1
j>i

βij vi vj +
n
∑

i=1

βii v2
i (4.15)

For the sake of a handy notation, the subscripts of regression parameters β in Equa-

tions (4.14) and (4.15) differ from the syntax used before. Here, the regression parameters

are indexed by zero (constant term), single subscripts i (first-order terms), and double sub-

scripts ij (second-order terms), respectively. Nevertheless, they are assembled in one vector

β when occurring in matrix notation.

A crucial point for the accuracy of the response surface is the intricate decision on a

function η. To ensure that a proper choice was made for η, the model adequacy has to be

checked. The main tool to assess the quality of the model is the analysis of the residuals

el = ỹl − ŷl (4.16)

of the fitted model.

Graphically, the model adequacy can be checked by plotting the residuals over the pre-

dicted response ŷl = f̂ (vl) as illustrated in Figure 4.2. The plot should not exhibit any

outstanding pattern (cf. Figure 4.2a). A distinct funnel structure indicates that assuming

constant variance for the residuals may not be admissible. Obviously, the variance is vary-

ing with the absolute value of the response. Residual plots that reveal a clear trend as in

Figure 4.2c&d expose an inappropriate choice for the regression function η. In these cases,

other regressors should be used (for instance higher order polynomials or rational functions)

or the subregion for the model should be scaled down.

In addition to the graphical method which is rather a qualitative analysis, quantitative

measures can be established to assess model adequacy. One possible statistical quantity is

the coefficient of determination R2 which is defined as

R2 = 1 − SSe

SSt
(4.17)

with the sum of squared residuals

SSe =
m
∑

l=1

(ỹl − ŷl)
2 = ỹT ỹ − β̂ FT ỹ (4.18)

and the total sum of squares

SSt =
m
∑

l=1

(ỹl − ȳ)2 = ỹT ỹ − m ȳ2 (4.19)
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Figure 4.2: Typical patterns for residual plots: (a) no outstanding pattern, (b) funnel pattern, (c) linear

pattern, and (d) nonlinear pattern.

where ȳ denotes the mean of the sample response values. The measure R2 can take values

between 0 and 1. It can be interpreted as the amount of variance in the sample response

explained by the fitted response surface. A value of R2 = 1 suggests a perfect fit, where no

residuals remain. However, this statistic must be handled with care. Augmenting the regres-

sion function by adding new regressors will result in an increase (or at least not a decrease)

in the coefficient of determination regardless of the true benefit these terms provide for the

predictive behavior of the model. Even a value of 1 can be easily obtained if the number of

regressors is on par with the number of sampling points. In this case, the response values

at the sampling points are interpolated and not approximated. For the applicability of the

model in between the sampling points, however, no information is provided. The adjusted

coefficient of determination

R2
adj = 1 − m − 1

m − p

(

1 − R2
)

(4.20)

can be used to avoid this trap. The scalar p denotes the size of the vector β i.e. the number of

regressor terms in the model including the potentially existing constant term. The adjusted

R2 statistic does not necessarily increase as additional terms are included into the regression

function. The value for R2
adj will rather decrease as irrelevant terms are added to the model.
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Finally, before the response surface model is used to approximate the original system

at untested points, the fidelity of the model has to be tested. This can be accomplished via

different model validation schemes. The simplest approach to validate the model is to sam-

ple fresh response values at additional points in order to compare these observations with

the corresponding approximations. A prominent validation technique that circumvents the

evaluation of the original system at additional coordinate settings and the accompanying

computational effort is the so-called cross validation. It can be applied in cases where gather-

ing of further information about the system is costly or even risky. To assess the predictive

behavior of the model, the set of sampling points is split into two parts, one for the genera-

tion and another for the validation of the model. The first subset of data is called the training

data, or estimation data, the other subset is termed validation data, or test data. The regression

coefficients are estimated based on the training data, the fidelity of this approximation is

judged based on the validation data.

Dependent on the nonlinearity of the problem under investigation, quadratic polynomi-

als may not be adequate to reproduce the true relationship. Augmenting the polynomial

order of the regression function is related to some pitfalls as for instance the rapidly increas-

ing number of required sampling points or the tendency to oscillations in the prediction.

Reducing the size of the subregion for the approximation is improper in certain cases, espe-

cially if stochastic problems have to be explored by global approximations. Here, the effects

of all possible variations must be considered in one iteration step, and hence, the smallest

admissible subregion must comprehend the entire range of variations. A transformation of

the input variables v or the output value y can be used to enhance the predictive behavior

of the model. As shown in [BD87] and [MPV01], a linear response surface with transformed

variables often approximates the original code better than a model based on a quadratic

regression function. In structural optimization, typical input variables (for instance geo-

metric data or material properties) are often related to the response values (e.g. stress or

displacements) by rational functions. Therefore, reciprocal transformations, that establish

a polynomial model with respect to the inverse input variables, are especially useful for

structural optimization problems.

It is important to note that response values collected at sampling points are in general

only approximated by the response surface if the number of sampling points exceeds the

number of regression coefficients. It was assumed that the established regression function

correctly represents the true behavior of the original system. The residuals were accepted

because of the assumed measurement inaccuracy in the data mining process. As a conse-

quence, the occurring error is supposed to be normally distributed with ε ∼ N(0, σ2) where

σ2 is constant. Based on this reasoning, the least squares method can be applied to fit the

response surface. Due to the fact that computer experiments (numerical analyses) are typ-

ically deterministic in a sense that repeated calculations with the same parameter settings

return the same values up to the accuracy of the numerical processor, this rationale cannot

be sustained. It should be emphasized that computer experiments can also produce a noisy

output if either the code explicitly contains random numbers or if so-called numerical noise

occurs [TvKM95, GBH+97]. In the latter case, it is questionable whether numerical noise is

essentially comparable to random noise and legitimates the use of the standard least-squares

technique. Despite this controversial issue, RSM techniques have been successfully applied
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to compute a “global gradient” for use in gradient-based optimization algorithms – espe-

cially in cases when problems exhibit highly nonlinear (noisy) behavior constituting many

local minima [GDN+94, NGV+95].

With regard to the case of deterministic computer experiments, the surrogate model is

expected to hit each observation exactly i.e. the global approximation should interpolate the

sampled response values. Obviously, as soon as residuals emerge from fitting a response

surface to computer experiments, there is a systematic error in the model (called bias) which

is rooted in an inadequate regression function. The two different types of errors can be

written formally as:

1. Random error: εrand = y − E(y) (4.21)

2. Systematic error: εbias = E(y) − η(v, β) (4.22)

Summing up Equations (4.21) and (4.22) yields

y = η(v, β) + εrand + εbias , (4.23)

a formula which details Equation (4.2). Since random effects are barred from computer

experiments, the random part εrand in Equation (4.23) does not exist. Consequently, the

correct relationship between numerical analysis and response surface reads

y = η(v, β) + εbias . (4.24)

The deterministic trait of εbias is inconsistent with the assumptions made for the least squares

regression. In fact, the residuals should vanish i.e. an appropriate response surface should

interpolate the response values at the sampling points. SACKS et al. [SWMW89] compiled

the following remarks on deterministic computer experiments as basis for response surface

models:

⋄ The error in a response surface approximation is solely governed by an inadequate

regression function.

⋄ The rationale underlying the three basic principles of experimental design [Mon01],

which are replication, randomization, and blocking, is not supportable.

⋄ The standard methods to determine confidence intervals or prediction intervals based

on residuals of a least squares fit are not applicable.

According to the first observation, the (adjusted) coefficient of determination R2 (or R2
adj)

can be used to assess the quality of the approximation, and hence, the usefulness of the

prediction.

4.2 Moving-Least-Squares Models

The method of moving-least-squares (MLS) is an extension to the response surface method

presented above. In the literature [LS86, MPV01], this concept is also termed locally weighted
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regression or weighted least squares. To motivate the idea, it is recapitulated that random errors

do not occur in deterministic computer experiments. Hence, the residuals of a good approx-

imation are expected to vanish – a perfect model should interpolate the sampled response

values.

The key idea of MLS is to focus on a good local fit around the point currently under

investigation, the prediction point. According to this approach, it is preferred to have large

residuals rather far away from the prediction point than close to it. This can be achieved by

assigning individual weights wl to the squared residuals e2
l before they are summed up

m
∑

l=1

wl

(

ỹl − η(vl , β)
)2

= eTW e (4.25)

with the weighting matrix

W =













w1 0

w2

. . .

0 wm













. (4.26)

If the weights are all chosen to be equal to one, the weighting matrix reads W = I and the

MLS method simplifies to standard linear regression. To improve the local approximation

resulting in small residuals around the prediction point or even an interpolation of the cor-

responding response values, the weights must be assigned unequally. Clearly, the residuals

of sampling points that are closer to the current coordinates must be stressed more heavily

than those further away. Accordingly, the individual weights are determined by means of a

weighting function ω(d) which is a decreasing function of the distance d. The scalar Euclidean

distance between two arbitrary points vi and vj is defined by

dij =
∥

∥

∥
vi − vj

∥

∥

∥
. (4.27)

The particular distances

dl =
∥

∥

∥
v − vl

∥

∥

∥
(4.28)

between prediction point v and the respective sampling points vl give the corresponding

weight wl for each residual

wl = ω(dl) . (4.29)

So far, the weighting function is only restricted to decreasing functions. This allows for many

different formulations [LS86] e.g. the class of reciprocally proportional functions where

w ∝ 1/d. One customary class of functions is defined through

ω(d) =
1

1 + a db
(4.30)

with a > 0 and b as user-specified constants. The effects of different choices for a and b

are illustrated in Figure 4.3a. The formulation of Equation (4.30) results in values w ∈ [0, 1].

This prevents the weight from tending toward infinity for very small distances d, a possible
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Figure 4.3: Illustration of different weighting functions for MLS: (a) Equation (4.30), and (b) Equa-

tion (4.31).

cause for numerical problems. For the same reason, it is often advisable to define a mini-

mal allowable value for w. It is also common practice to restrict the weighting function to

a compact support i.e. only in a distinct region (the support), the function takes values un-

equal to zero. However, an appropriate support size at any prediction point v is needed to

avoid a singular matrix F caused by an insufficient number of considered sampling points

(cf. Section 4.1).

An alternative weighting function can be derived in analogy to the probability density

of a normal distribution. This weighting function reads

ω(d) = e
− 1

2
d2

a2 (4.31)

with a > 0. Here, the parameter a corresponds to the standard deviation of a probability

density function. The smaller a is chosen, the narrower the maximum of the weighting func-

tion will be (as depicted in Figure 4.3b). For a better control of the respective free parameters

a and b, and to avoid domination of the distance value by one dimension, it is often useful

to normalize the input variables vi for instance to the range [−1, 1].

After the individual weights wl have been computed, the weighting matrix W is defined

and the least squares fit can be performed. With Equation (4.5) solved for e, the weighted

sum over squared residuals formulated in Equation (4.25) can be rewritten as
(

y − F β̂
)T

W
(

y − F β̂
)

(4.32)

The minimum of Equation (4.32) is found by means of the necessary condition for a

minimum

∂

(

(

y − F β̂
)T

W
(

y − F β̂
)

)

∂β

∣

∣

∣

∣

∣

∣

∣

∣

β̂

= 0 (4.33)

which, in analogy to the standard regression introduced earlier, turns the minimization

problem into a linear system of equations

− 2 FTW ỹ + 2 FTW F β̂ = 0 . (4.34)
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Solving Equation (4.34) for β̂ finally yields the regression coefficients

β̂ =
(

FTW F
)−1

FTW y . (4.35)

Since the individual weight for each residual depends on the distance of the correspond-

ing sampling point to the current prediction point, the weighting matrix W has to be recom-

puted for every new prediction point. This fact necessitates a separate regression analysis

for each prediction point. Hence, the regression parameters β̂ now depend on the current

coordinates of the prediction point v.

β̂(v) =
(

FTW(v) F
)−1

FTW(v) y (4.36)

Using these parameters for the MLS model, approximations ŷ = f̂ (v) to the true re-

sponse y at prediction point v are obtained by the predictor

ŷ = f̂ (v) = η
(

v, β̂(v)
)

=

nβ
∑

j=1

β̂ j(v)ηj(v) = β̂
T
(v) η(v) . (4.37)

The weighted least squares regression can also be motivated by another point of view.

In standard regression, one main postulate is the constant variance for the random error ε.

Now, this fundamental assumption is dropped and the variance is allowed to vary through-

out the investigated design space while maintaining the prerequisite of purely random error

in the observed response values ỹ (no systematic error). Figure 4.2b exemplifies the case

where the variance of the residuals obviously increases with y. In such a case where the er-

ror variance depends on the point under investigation v, the following definitions are used

to characterize the error ε

E(ε) = 0 , V(ε) = σ2(v) (4.38)

Expressed in terms of the residuals at the sampling points, this spatial dependency can be

expressed as

Cov(el , ek) = σ2 R (4.39)

where R is the correlation matrix of e with R 6= I. The (constant) global error variance σ2

quantifies the overall error which is scaled by the correlation matrix. Since the correlation

matrix must be non-singular and positive definite by definition, there exists a non-singular,

symmetric matrix K of equal size with KTK = K K = R. By means of the matrix K, the

original observations ỹ can be transformed into values with constant variance in accordance

with the assumptions of standard regression [MPV01]. The transformed problem reads

K−1 ỹ = K−1 F β + K−1 e . (4.40)

With the transformed residuals K−1 e, the standard procedure for least squares fit can be

applied such that

(

K−1 e
)T

K−1 e = eTK−TK−1 e = eT (K K)−1 e = eTR−1 e . (4.41)
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A comparison of this result with Equation (4.25) reveals that the latter approach leads to the

same model as derived previously if the individual weights are assigned according to W =

R−1. Commonly, the residuals with unequal variance are assumed to be uncorrelated. This

results in a diagonal structure of the correlation matrix which due to the relation W = R−1

is related to the specific weights wl by

R =





















1

w1
0

1

w2
. . .

0
1

wm





















(4.42)

Conversely, a matrix W with non-zero off-diagonal terms corresponds to the assumption of

correlated residuals.

Following the latter motivation for weighting the individual residuals in least squares

regression, the specific weights wl are assigned according to the assumed variance of the

residuals which is in general a fixed value. In contrast, the MLS method presented above

employs a user-specified weighting function to determine the weights dependent on the

distance of the prediction point to the respective sampling point. Here, the weights for least

squares regression are changing as the prediction point is “moving” through the design

space – substantiating the name of the method.

4.3 Kriging Models

Based on the work of DANIEL G. KRIGE [Kri51] addressing problems in geostatistics [Cre93],

kriging models are today a widespread global approximation technique. Their ability to ex-

actly interpolate response values obtained at sampling points makes them particularly at-

tractive for approximating deterministic simulations. SACKS et al. [SWMW89] were the first

to use this approach to model deterministic output of computer codes. Referring to the title

of their contribution “Design and analysis of computer experiments”, this model type is also

called DACE model. A kriging model approximates the original relationship by

y = η(v, β) + Z(v) + ε (4.43)

where η(v, β) is a polynomial with free parameters β as defined in Equation (4.3) for the

response surface approach. Z(v) represents the realization of a stationary, normally dis-

tributed Gaussian random process with mean zero, variance σ2 and non-zero covariance.

The term ε describes solely the approximation error (bias) since random errors are excluded

in this formulation.

The expression η(v, β) provides a global trend for the system behavior as in the standard

response surface approach. The general case, in which the choice of η(v, β) is not restricted,

is called universal kriging. In many applications, the function η is introduced in the simplest

possible way, namely η(v, β) = β (often called ordinary kriging). The second part of the
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formulation Z(v) guarantees the interpolation of the observations ỹ at the sampling points

vl as it creates a “localized deviation” from the polynomial part of the model. As a result,

the output of the kriging model ŷl at the m sampling points equals the original observations

yl i.e. the residuals at the sampling points vanish.

el = ỹl − ŷl = 0 ; l = 1 . . . m (4.44)

The Gaussian random process is characterized by the covariance matrix of Z(v) defined as

Cov
(

Z(vk), Z(vl)
)

= σ2R (4.45)

with the correlation matrix

R = [Rkl ] ; 1 ≤ (k, l) ≤ m . (4.46)

The individual elements of the correlation matrix Rkl are defined by means of a correlation

function R which takes each possible combination of sampling points as arguments.

Rkl = R(vk, vl) ; 1 ≤ (k, l) ≤ m (4.47)

A correlation function has to fulfill the requirements R(vk, vl) = R(vl , vk) and R(vl , vl) =

1, respectively, such that the resulting correlation matrix R is symmetric and its diagonal

entries are all equal to one. Meeting these requirements, still many different formulations

are feasible. In this text, only correlation functions of the form

R(vk, vl) =
n
∏

i=1

Ri(vk
i , vl

i) (4.48)

are considered i.e. products of n (size of vector vl) one-dimensional correlation functions

Ri(vk
i , vl

i). For kriging models, the predicted response values are assumed to be spatially

correlated with the observations made at neighboring sampling points. Hence, the correla-

tion function is expected to decrease with the distance to the sampling points (similar to the

weighting functions used in MLS). Suitable one-dimensional correlation functions are e.g.

the Gaussian correlation function

R(vk, vl) = exp
(

−θ
(

vk − vl
)2
)

(4.49)

and the linear correlation function

R(vk, vl) = max
{

0 , 1 − θ
∣

∣

∣
vk − vl

∣

∣

∣

}

(4.50)

The Gaussian correlation function constitutes a smooth model with an infinitely differen-

tiable predictor while the linear correlation function establishes only C0-continuous kriging

models with piecewise linear interpolations. The parameter θ in Equations (4.49) and (4.50)

is called correlation parameter. It controls the range of influence of the sampling points and

has to fulfill the requirement θ > 0. The formulation of Equation (4.48) offers great flexibil-

ity in selecting the correlation parameter θ independently for each dimension of the input
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variables v. The proper settings for θi will be discussed later in this section. So far, it will be

treated as additional degree of freedom in the model description.

R(θ, vk, vl) =
n
∏

i=1

Ri(θi, vk
i , vl

i) ; θi > 0 (4.51)

Based on the assumption that deviations of the polynomial part of the model from observa-

tions ỹ emerge as realizations of a stationary, normally distributed Gaussian random process

with mean zero, variance σ2 and covariance σ2R, the parameters of the process can be ob-

tained by maximum likelihood estimation. The likelihood function for this Gaussian process

given m correlated realizations ỹl is defined as

L
[

β, σ2, θ
∣

∣ ỹ
]

=
1

σm
√

|R| (2 π)m
exp

(

− 1

2 σ2
(ỹ − F β)T R−1 (ỹ − F β)

)

(4.52)

with the matrix F as introduced in Equation (4.6). The independent variables of the likeli-

hood function are the regression parameters β, the process variance σ2, and the correlation

parameters θ. To facilitate the maximization of Equation (4.52), the natural logarithm of

the likelihood function is taken. The maximum likelihood estimates β̂, σ̂2 and θ̂ for the

model parameters can be obtained by means of the necessary condition for a maximum of

L, namely by setting the partial derivative of ln(L) with respect to each independent variable

equal to zero.

∂(ln L)

∂β

∣

∣

∣

∣

β̂

= 0 ⇒ β̂ =
(

FTR−1F
)−1

FTR−1ỹ (4.53)

∂(ln L)

∂σ2

∣

∣

∣

∣

σ̂2

= 0 ⇒ σ̂2 =
1

m

(

ỹ − F β̂
)T

R−1
(

ỹ − F β̂
)

(4.54)

The partial derivative of L (or ln L) with respect to θ is hinged on the chosen correlation func-

tion. For many correlation formulations, an analytical solution does not exist, and hence, the

maximum of L in θ must be determined numerically. This means that the estimate θ̂ has to

be identified by use of an optimization algorithm adopting the results of Equations (4.53)

and (4.54).

Using these optimal parameters for the kriging model, predictions ŷ for the original

system behavior at new coordinates v are available by means of the predictor

ŷ = f̂ (v) = β̂
T

η(v) + rT(v)R−1
(

ỹ − F β̂
)

(4.55)

with the correlation vector

r(v) =
[

R(v, v1), R(v, v2), . . . , R(v, vm)
]T

(4.56)

containing the individual correlations between the current prediction point v and each sam-

pling point.

In the literature, many examples can be found where kriging models were successfully

applied to structural optimization problems [SMKM98, SAM98, KWGS02, MS03].
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4.4 Radial Basis Function Models

The radial basis function model (RBF) is a metamodel composed of a polynomial part η(v, β)

and a sum over radial functions ψ whose independent variable is the Euclidean distance

between prediction point and respective sampling point as defined in Equation (4.28).

y = η(v, β) +
m
∑

l=1

λl ψ(dl

(

v)
)

+ ε (4.57)

In this formulation, λl and β are the model parameters which have to be fitted to the sampled

data. This metamodel type is constructed to interpolate the observations ỹl at the sampling

points. Since the residuals will be zero by definition, the difference between approximation

model and original system behavior (expressed by ε) is originating from model bias. Similar

to the kriging method, the polynomial part of RBF models provides a global trend for the

response whereas the radial functions ensure the interpolation property of the model. The

radial function ψ(r) can take many forms, for instance

⋄ the linear function

ψ(r) = r , (4.58)

⋄ the cubic function

ψ(r) = r3 , (4.59)

⋄ the thin plate spline

ψ(r) = r2 log r , (4.60)

⋄ the multiquadric function

ψ(r) =







√
r2 + a2 , r > 0 ,

0 , r = 0 ,
(4.61)

⋄ the Gaussian function

ψ(r) = e−a r2
, (4.62)

with r ≥ 0 and a constant parameter a > 0. After selecting a radial function type, the

polynomial part of the model is chosen such that the number of regression parameters is

not larger than the number of sampling points. The parameters λ̂ and β̂ that define the

interpolating RBF model can be determined by solving the linear system of equations

[

Ψ F

FT 0

][

λ̂

β̂

]

=

[

ỹ

0

]

(4.63)

where the matrix F is defined as in Equation (4.6). The matrix Ψ contains the evaluations of

radial function ψ at all possible combinations of sampling points according to

Ψ = [Ψkl ] ; 1 ≤ (k, l) ≤ m (4.64)
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with

Ψkl = ψ
(

∥

∥vk − vl
∥

∥

)

; 1 ≤ (k, l) ≤ m . (4.65)

To ensure that Equation (4.63) has a unique solution, the polynomial part of the model

must include at minimum a constant term β0 in case ψ is linear or multiquadric. For the cu-

bic or thin plate spline case, a linear polynomial as introduced in Equation (4.14) is required.

If ψ is the Gaussian function, the polynomial η is even allowed to vanish [Pow92].

Using the parameters λ̂ and β̂ in Equation (4.57), predictions ŷ for the original response

at new coordinates v can be evaluated by means of the RBF model

ŷ = f̂ (v) = η(v, β̂) +
m
∑

l=1

λ̂l ψ(dl

(

v)
)

(4.66)

4.5 Artificial Neural Networks

Artificial neural networks (ANN) are motivated by the functionality of the human brain which

consists of billions of neurons interconnected by synapses. Together they form a complex

network which is capable of processing information, for instance storing data or reason-

ing [Hay99, Zel00]. The neuron is the fundamental structural component of the brain and

actually the element which processes the given information. A human brain consists of

up to 100 billion neurons where each neuron can cross-link with other neurons through

about 10 000 synapses. Within the network, neurons are connected both in parallel and in

series. This biological marvel inspired the development of artificial neural networks in dig-

ital data processing technology to model and study high-dimensional and highly nonlinear

systems. Typically, ANNs are used for the prediction of response values or for recognition

problems [CU93, And97].

Artificial neural networks are composed of nodes (also called units) which correspond to

the neurons in human brain. The structure of ANNs is characterized by layers as exempli-

fied in Figure 4.4. Each ANN has one input layer and one output layer whose nodes accept

Output layer

ŷ

v1

v2

v3

v4

v5

Input layer Hidden layer

Figure 4.4: Structure of an artificial neural network with one hidden layer.
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Figure 4.5: Data flow within an ANN at a single node i with anterior nodes 1 − 5 and three posterior

nodes.

input or produce output, respectively. Additionally, the ANN can have one or more hidden

layers which contain intermediate variables.

To uniquely identify all components of the network, all nodes are continuously num-

bered across all layers (denoted by means of a single index i). The connections and their

related quantities are addressed by doubly indexed values (index ij). In conformity with

many texts in the field of ANNs, the first part i stands for the receiving unit. The second

part j reveals the opposite end of the connection by the number of the emitting node. It

should be noted that reverse order in the index can also be encountered in the literature.

The set of nodes that are anterior to unit i define the set Ai = {j : ∃wij}, all nodes posterior

to unit j are denoted by Pj = {i : ∃wij}.

The individual units i of an artificial neural network accept only one-dimensional input

and transform it into nodal output oi by the so-called activation function ηi. The scalar input

value of a node i, which is termed net input and symbolized by neti, is defined as weighted

sum over output values oj of all nodes j that are anterior and directly connected to unit i.

neti =
∑

j∈Ai

wij oj (4.67)

The individual weights wij used in Equation (4.67) are characteristic properties of the con-

nections. The output value of node i, which is obtained from evaluation of the activation

function oi = ηi(neti), is passed on to all posterior nodes to contribute to their respective

input. Figure 4.5 exemplifies this data flow within an artificial neural network at a repre-

sentative node i. The output of units in the output layer finally represents the prediction

for the response values ŷ. Hence, contrary to the statement in the introduction to the meta-

modeling concept, ANNs with multiple nodes in the output layer are able to approximate

multidimensional response values.

As typical examples for the large variety of possible activation functions, only some

representative formulations are introduced here (cf. Figure 4.6):

⋄ the linear function

η(net) = net , (4.68)
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Saltus
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Figure 4.6: Illustration of activation functions commonly used in ANNs.

⋄ the saltus function

η(net) =







0 , net ≤ 0

1 , net > 0
, (4.69)

⋄ the sigmoidal function

η(net) =
1

1 + e−a net
. (4.70)

The parameter a governs the slope of the activation function. The sigmoidal activation func-

tion has two beneficial properties: First, as opposed to the linear function, the output is

bounded and as a result the influence of every node is limited. This can prevent the ANN

from being dominated by outliers in the training data. Second, the activation function is dif-

ferentiable at any point, which is a necessary prerequisite for some methods to fit the ANN

to given data.

Dependent on the configuration of the connections interlinking the individual units, two

different types of ANNs are distinguished: feedforward networks and recurrent networks. In

feedforward ANNs, the output of one node is only passed on to nodes in subsequent layers

(cf. Figure 4.4), as opposed to recurrent ANNs, where the output of one node can also be

used as input for nodes on the same layer or on preceding layers.

Before an artificial neural network can be used to approximate the behavior of a com-

plex system, it must be fit to so-called training data. The training data consist of informa-

tion obtained from the original problem viz. coordinates of m sampling points vl together

with corresponding observations ŷl where l = 1 . . . m. The fitting process is called learning

(or training) in the context of ANNs. It is generally performed by adjusting the individual
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weights of the connections (the actual degrees of freedom of an ANN). It can be seen as ana-

log to the determination of the regression parameters β in RSM. Additionally, the learning

phase may comprise a modification of the configuration which can either be achieved by

changing the topology of the network (creation and deletion of nodes) or by varying the

formulation of the activation function for particular nodes.

One of the most popular learning techniques, which can also handle network structures

with hidden layers, is the error backpropagation method (also simply termed backpropagation).

The description of this learning method will be derived exemplarily for feedforward net-

works with a one-dimensional output ŷ. A complete overview over all available techniques

to train ANNs or for training of recurrent networks is beyond the scope of this text. Details

on these methods can be found in the literature [And97, Hay99, Zel00].

The backpropagation method tries to minimize the prediction error E which is a function

of the individual weights wij. It is defined by

E =
m
∑

l=1

El , (4.71)

where El denotes the prediction error evaluated for one element of the training set l accord-

ing to

El =
1

2
(ỹl − ŷl)

2 . (4.72)

The value ŷl is obtained by evaluating the ANN using vl as input settings while ỹl denotes

the original observation at vl . To identify the optimal settings for wij, a gradient-based

optimization algorithm is applied to minimize the overall prediction error E. During each

iteration step, the weights wij are altered by ∆wij. This adjustment of the weights is carried

out in direction of the negative gradient as described in Section 2.3.2

∆wij = −α∇E , (4.73)

where α governs the step size of the iteration steps. Expressing the gradient of E with respect

to the individual weights wij in terms of El yields

∇E =
∂E

∂wij
=

∂

∂wij

(

m
∑

l=1

El

)

=
m
∑

l=1

∂El

∂wij
=

m
∑

l=1

∇El . (4.74)

Hence, to compute the gradient ∇E, the partial derivatives of each El with respect to all

wij have to be determined i.e. the m gradients ∇El . To reduce the number of subscripts

in the following derivation, the index l denoting the currently evaluated training element

is omitted for all interior variables of the ANN. To find an algorithm to compute ∇El , the

gradient is expanded by use of the chain rule

∂El

∂wij
=

∂El

∂neti

∂neti

∂wij
. (4.75)

The first factor of the expansion is called the error signal for unit j symbolized by δj. Using

Equation (4.67), the second factor in Equation (4.75) can be simplified to

∂neti

∂wij
=

∂

∂wij





∑

k∈Ai

wik ok



 = oj . (4.76)
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Subsuming the definition of the error signal and Equation (4.76), Equation (4.75) can be

rewritten as
∂El

∂wij
= δi oj . (4.77)

Accordingly, to determine the search direction for the descent algorithm, the output signal o

and the error signal δ have to be computed for every relevant unit in the ANN. The output

of all individual units oi is obtained by propagating the input values vl through the network,

resulting in the approximation ŷl . To find the error signals of all relevant nodes, the residual

el = ỹl − ŷl has to be propagated back through the ANN. The respective backpropagation

formula can be derived from an expansion of the definition of δj by use of the chain rule

δj =
∂El

∂netj
=

∂El

∂oj

∂oj

∂netj
(4.78)

The second factor of this expansion denotes the derivative of the activation function ηj with

respect to its net input netj.

∂oj

∂netj
=

∂ηj(netj)

∂netj
= η′

j(netj) (4.79)

For the evaluation of the first factor, a distinction has to be made between units that belong

to the output layer and all other units. If unit j is on the output layer, its output oj equals

the predicted response value ŷl . Accordingly, the derivative of El with respect to oj can be

found directly using Equation (4.72).

∂El

∂oj
= ỹl − oj (4.80)

If unit j is not on the output layer, its error signal must be expressed in terms of its posterior

nodes i. In this case, the chain rule is applied again resulting in

∂El

∂oj
=
∑

k∈Pj

∂El

∂netk

∂netk

∂oj
=
∑

k∈Pj



δk
∂

∂oj

(

∑

j∈Ak

wkj oj

)



 =
∑

k∈Pj

δk wkj (4.81)

Resuming the results of Equations (4.79), (4.80), and (4.81), the individual error signals for

all nodes can be computed by

δj =















η′
j(netj)

(

ỹ − oj

)

, if j ∈ output layer ,

η′
j(netj)

∑

k∈Pj

δk wkj , otherwise .
(4.82)

With this relationship, the gradient ∇El in Equation (4.77) is clearly defined. To determine

the gradient of the prediction error according to Equation (4.74), the process of propagating

the input vl through the ANN and the subsequent error backpropagation has to be per-

formed for all m elements of the training data set.

With the gradient information available, the iteration step toward a minimal prediction

error can be taken by adjusting the individual weights wij of the ANN according to

∆wij = −α
m
∑

l=1

∇El , (4.83)
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where α defines the step length of the gradient-based algorithm. It is often called learning

rate in the context of ANNs. As presented in Section 2.3.2, the proper step length is found

by a line search.

The backpropagation method introduced above is a so-called off-line training which

means that all elements of the training set have to be evaluated before the weights are ad-

justed according to Equation (4.83). The additive characteristics of the update formula is

often used to formulate an alternative approach, the on-line training. Here, the weights are

modified after investigation of a single sampling point.

∆lwij = −α∇El , (4.84)

Then, the other training points are considered one by one resulting in a consecutive tuning

of the weights. This procedure is continued for all elements of the training set – and even

repeated (several times) if the gradient ∇El is still not small enough. In this on-line train-

ing, the learning rate α is generally not determined by means of a line search but simply

prescribed as a global parameter. The reason for this procedure is to save computation time.

Since many other optimization steps will follow considering all other elements of the train-

ing set, it is usually sufficient to ensure a decrease in the error during each update in order

to converge to a good overall fit of the ANN. In case α is a fixed parameter, a small value (for

instance α ≪ 1) scales down the adjustment of weights and thus slows down the learning

process. Choosing a larger value (e.g. α ≥ 1) bears the risk of overshooting the minimum

in direction of −∇El . This overshooting may cause the error not to be reduced (or even in-

creased) during the respective optimization step. Accordingly, it is common practice to start

the backpropagation algorithm with reasonably large values for α and to lower the learning

rate gradually during the training of the ANN.

The difficulties with using ANNs as surrogate models for time-consuming computer

codes involve the large variety of possible layouts for the structure of ANNs and the com-

plex implications on their predictive behavior. Moreover, the large number of parameters

(weights wij) to be fit during the learning phase requires the evaluation of many sampling

points to ensure a good fidelity of the model. This fact usually rules out ANNs as suit-

able surrogate models for problems that are expensive to analyze. Additionally, it should

be noted that training of ANNs generally relies on gradient-based optimization algorithms,

which only ensure convergence to local minima. Hence, the probability of finding the global

minimum of the error function E can only be increased by initiating the learning phase from

different starting points i.e. by varying the initial weights wij. As a consequence, establish-

ing an ANN as useful and reliable surrogate model entails a significant computational effort

in addition to the expense of evaluating the necessary sampling points.

4.6 Comparison of Metamodel Types for Stochastic Optimization

Problems

In the previous sections, several metamodeling techniques have been introduced. This sec-

tion offers a comparison of the individual characteristics for the presented metamodel types.
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From the comparison of particular strengths and weaknesses of each formulation, a recom-

mendation for the proper use in specific applications is derived.

In the literature, several comparative studies of metamodeling techniques have been

published, for instance [BH93, CB93, Etm94, GW98, SMKM98, Alv00, JCS01, SPKA01,

SLC01, Kri03, JDC03, SBG+04, FN05]. Most of these publications restrict themselves to few

metamodel types and only one special application. Expectedly, these comparisons reveal

that for each different kind of problem there is a distinct method that performs better than

others. In [JCS01], the authors try to illuminate the predictive performance and accuracy

of several metamodel formulations based on a whole set of test functions, which have been

selected from [HS81]. Clearly, it is not possible to identify one class of metamodels that uni-

versally and perfectly fits any kind of function. However, several distinct statements can be

formulated which can serve as a guideline for choosing the proper surrogate model for a

particular problem.

RSM. Polynomial regression models are especially suitable in cases where the problem is

known to be governed predominantly by low-order effects (linear or quadratic) and

the number of input variables is limited (n ≤ 10). Accordingly, these models are com-

monly applied in mid-range approximations. RSMs are also advantageous whenever

the original response is not deterministic but exhibits significant noise (incl. numeri-

cal noise as discussed in Section 4.1). Here, the “smoothing” effect of RSMs typically

causes these models to outperform all interpolating metamodel types. Example 6 on

page 103 illustrates how the RSM approach smooths “noisy” observations.

When defining the setup of RSMs, the only free choice is in the regressors. On the

one hand, this limited number of options makes RSM easy to handle, but on the other

hand, it restricts the range of possible applications. In addition, an inadequate approx-

imation quality of models with improper regressors cannot be improved by additional

sampling points as outlined in Example 5 on page 102. Disregarding the fundamental

assumption of random error, which is used to substantiate least-squares regression,

induces possible pitfalls (cf. Section 4.1).

With regard to computational requirements, RSMs are very attractive. The fitting

process is cheap and the effort to compute a prediction for the response is negligi-

ble – it simply requires an explicit function evaluation. Furthermore, for the solution

of stochastic optimization problems, it can be advantageous to establish a linear or

quadratic functional relationship between input and output. In this case, the statis-

tical moments of the output distribution can be computed directly from statistics of

the input analogously to the derivation in Section 3.3.4. RSMs also allow for a plain

interpretation of the resulting model. When the model is fit on a normalized space, the

regression parameters directly quantify the significance of each regressor.

MLS. The moving-least-squares approach makes use of regression techniques to define a

global model based on a locally weighted polynomial approximation, which typically

does not interpolate the observations. Accordingly, MLS models are favorable when-

ever RSMs cannot be established to be globally valid, but the function to be approxi-

mated is smooth enough such that in the proximity of the prediction point a polyno-
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mial relationship can be accepted. In contrast to RSM, moving-least-squares approxi-

mations are capable of reflecting higher-order nonlinearities over the inspected region

even with low-order polynomials (cf. Examples 5 and 6).

By means of the freely selectable weighting functions and their parameters, the MLS

approach can be adapted to many different applications. Thus, the crucial problem is

how to identify the proper weighting function and its parameters to control how fast

the weight decays with the distance to sampling points.

The gain in approximation accuracy compared to RSM is countered by additional costs

for the MLS prediction. For each single prediction, the individual weights for all resid-

uals have to evaluated based on the distances between prediction point and respective

sampling points. Afterwards, a separate regression analysis has to be performed for

each prediction point.

Kriging. This type of metamodel is extremely flexible due to the large variety of feasible

correlation formulations. If the function to be approximated is assumed to be smooth,

the Gaussian correlation function is often a good choice. The combination of a polyno-

mial model with a supplement Z(v), which induces the interpolating nature of kriging

models, allows for a more universal application. If the presumed polynomial order is

not sufficient to capture the nonlinear effects of a problem, the add-on Gaussian pro-

cess Z(v) is able to make up for the deficiency. Thus, ordinary kriging (with a constant

polynomial part) is often sufficient to obtain a adequate approximation as demon-

strated in Example 5. Kriging models are typically very sensitive to noise because of

the interpolating property. Hence, this model type should only be used if the underly-

ing system provides reliable deterministic response values. Additionally, the accuracy

of kriging models rapidly decreases if the correlation matrix becomes ill-conditioned.

This effect emerges when individual sampling points are situated “too close” to each

other – a problem that will be addressed again later in this text.

From a computational point of view, kriging models are less favorable. For the fitting

process, an n-dimensional optimization is necessary to find the correlation parameters

via maximum likelihood estimation. This usually restricts the applicability to prob-

lems with a number of input variables n ≤ 50. Evaluating a kriging model is more

time consuming than RSM since at each prediction point m distances have to be ana-

lyzed to compute r(v). Although the fitted kriging model does not provide a closed-

form solution, the estimated correlation parameters θ̂ enable the experienced user to

roughly review the model fit. Small values for θ indicate a smooth approximation

whereas large values imply highly nonlinear behavior of the prediction.

RBF. Radial basis function approximations are comparable to kriging models. Here, the

flexibility to adapt to many different applications is due to the variety of radial basis

functions. The accuracy of the obtained approximation is affected by the opted radial

basis function and its free parameter. Similar to the problem of specifying the weight-

ing functions for MLS approximations, there is no general rule how to find the best

radial basis function for a problem. Since RBFs are constructed to interpolate the given

observations, this issue is not that crucial as compared to MLS. RBFs generally yield

good approximations even for highly nonlinear problems provided that enough train-
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ing data have been collected at suitable sampling points. To ensure a unique solution

of the fitting process, the minimum order of the polynomial part has to be observed.

In contrast to kriging, fitting an RBF model to the observations does not comprise an

optimization procedure. This makes RBF approximations in general much cheaper

to compute. Consequently, the restriction with respect to the number of input vari-

ables imposed on kriging models does not apply here. The time and effort required

to evaluate the model at prediction points is of the same order as for kriging models

and MLS approximations – in either case the distances between prediction point and

all sampling points have to be evaluated. Other than MLS and kriging models, RBF

approximations yield a closed form solution.

ANN. An artificial neural network is a nonlinear regression approach that is extremely ver-

satile. One reason for this flexibility is the large diversity of possible network archi-

tectures (e.g. number of hidden layers and number of units in each respective layer).

Additionally, the approximation quality can be controlled by the selection of appropri-

ate activation functions. On the other hand, the wide range of alternatives encountered

while setting up ANN approximations can pose a problem for the inexperienced user

which often leads to a categorical rejection of this method. However, if employed

properly, ANNs are a suitable approximation technique for high-dimensional and

highly nonlinear problems.

The computational burden associated with the fitting process of ANNs is usually very

high, since training consists of multiple optimization steps. To minimize the error

function, it is often necessary to process the entire set of training data repeatedly.

Hence, the use of ANNs can be efficient whenever the intended application involves

many predictions. Due to the nested layout of ANNs, their conceivability is restricted

to a graphical representation of the output. Validating model fit based on the resulting

weights wij is virtually impossible.

Example 5. This example illustrates the effect of the number of sampling points and the

polynomial order on the accuracy of the presented metamodels. In this comparison, ANNs

are ignored because they do not base on a polynomial approximation. The original function,

which is typically unknown, is assumed to have the form

f (v) = v2 − 8 v + 18 .

For this function (solid gray line in Figure 4.7) approximations are fit based on response

values gained at four and five sampling points (marked by circles), respectively. If the poly-

nomial degree for the RSM approximation is chosen improperly, adding further sampling

points does not improve the fidelity of the model. Figure 4.7a shows a linear RSM fitted to

four sampling points. In Figure 4.7b, the same linear polynomial is fitted to five sampling

points. Obviously, more points do not yield a significant improvement in accuracy. In such a

case, the discrepancy between metamodel and original function is due to a systematic error,

which will not vanish even for m → ∞.

The MLS approximation is already better suited to reproduce the nonlinear behavior of

the original function although the underlying polynomial is still linear. For the MLS models
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Figure 4.7: Effect of inapt polynomial order on different metamodel formulations: (a) approximation

based on four sampling points and (b) approximation based on five sampling points.

depicted in Figure 4.7, Equation (4.31) is used as weighting function with a = 0.5. Clearly,

the accuracy of the MLS approximation is improved by choosing more sampling points, but

in general the observations are not interpolated.

The significance of both interpolating approximations (kriging and RBF) is much better

even when based on only four sampling points. The accuracy increases further with the

number of sampling points. Figures 4.7a & b show kriging models based on a zero-order

polynomial (only a constant term β) and a Gaussian correlation function. Here, the spatial

correlation part of the metamodel makes up for the deficiency of the polynomial part and

a larger number of sampling points significantly improves the fidelity of the metamodel.

Similarly, the radial basis functions enable a better predictive behavior of the RBF model.

For the plotted RBF, ψ(r) is a Gaussian function with a = 0.1. In the present case, the

differences between original function and both kriging model and RBF each based on five

sampling points are already so marginal that the plots are undistinguishable. Clearly, all

model types would perfectly reproduce the original function, if a second-order polynomial

η were used. In this case, the Gaussian random process Z(v) of the kriging model vanishes

with σ̂2 → 0. For the RBF, the free parameters λl analogously tend to zero. �

Example 6. In Example 5 the predictive performance of different metamodeling ap-

proaches were compared in view of the approximation of a unimodal function. Here, a

highly nonlinear function with many local minima is investigated, namely

f (v) = (v − 4)2 + 10 cos(2 v) .

103



CHAPTER 4 METAMODELS REPLACING COMPUTER SIMULATIONS

40

50

60

0
2 4 6 8 10

v

40

50

60

30

20

10

0
2 4 6 8 10

v

(b)(a)

Original function

Quadratic RSM

Kriging model RBF model

MLS modelSampling points

30

20

10

f v( ), f v( )ˆ f v( ), f v( )ˆ

Figure 4.8: Approximation quality of different metamodel types: (a) approximation of a highly non-

linear function and (b) insufficient fit of a kriging model due to improper correlation

parameter θ.

Figure 4.8a depicts the fitted approximations obtained by use of a quadratic RSM, an MLS

model based on a quadratic polynomial and Gaussian weighting function (a = 0.2), an RBF

approximation with Gaussian radial function (a = 1), and a kriging model. The polynomial

part of both kriging and RBF model is set to a constant β. The correlation parameter of the

kriging model was found by MLE to be optimal for θ = 5.04. The conclusions that can be

drawn from this example are similar to those for the unimodal function. The RSM approach

is able to smooth the response. Here, the oscillating effect of the cosine function is either

disregarded or compensated by the regression approach – depending on the purpose of

the model. The MLS approach reproduces the main characteristics of the original function,

however, it is not capable of retrieving the original observations at the sampling points. The

approximations of kriging and RBF approach are both comparably good. During the set-up

of the RBF model, a suitable setting for a has to be selected (manually), whereas the kriging

model is fitted by means of the MLE approach resulting in computed correlation param-

eters. The optimization result of the maximum likelihood estimation should be observed

carefully, since non-converged estimates can significantly disturb the approximation as il-

lustrated in Figure 4.8b. In this case, bad initial values used for the optimization algorithm

led to a diverged solution (θ = 0.01). The resulting metamodel is clearly unfit as compared

to the approximations in Figure 4.8a – especially in view of the high-frequency noise in the

predicted response. �

In case no a-priori information at all is available about the problem characteristics,

the findings of JIN et al. suggest that RBF approximations might be the most dependable

104



4.6 Comparison of Metamodel Types

method [JCS01]. The fidelity of the resulting metamodel, however, can still be poor. Krig-

ing models assist the user in that the MLE approach can be used to compute the optimal

correlation parameters θ at the expense of requiring an n-dimensional optimization run. In

conclusion, both kriging and RBF models appear to be adequate for use in metamodel-based

robust design optimization.

As already indicated earlier, the accuracy of all metamodel formulations presented above

strongly depends on a qualified selection of sampling points. Consequently, the question is:

How to determine coordinate settings of sampling points such that an optimal acquisition

of information is achieved? This topic will be addressed in the next chapter.

Evidently, the list of metamodeling techniques presented in this chapter is not complete.

The discussion of all formulations proposed in the literature could fill a voluminous text-

book. Hence, only the most prominent and commonly used approaches have been discussed

in the preceding sections. For more information on possible alternatives, it is referred to the

survey papers of BARTON [Bar98] and SIMPSON et al. [SPKA01], as well as to the more recent

textbook of FANG et al. [FLS05].
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Chapter 5

Design of Experiments

The metamodeling techniques presented in Chapter 4 rely on training data which has to be

collected at sampling points. The question on how to choose the coordinates for the sam-

pling points in a best possible way is addressed by techniques called design of experiments

(DoE). On the one hand, it is advantageous to minimize the number of sampling points in

order to reduce the experimental effort, but on the other hand, it is important to gather as

much information as possible about the major characteristics of the system under investi-

gation. Finally, the individual specification of the metamodel formulation intended for the

approximation must be considered when selecting adequate coordinate settings of sampling

points.

One of the pioneers of DoE methods was SIR RONALD A. FISHER, who worked in the

agricultural field in the 1920s. Among other things, he studied the effects of different soil

conditions and seed grades on the crop yield under varying environmental conditions. In

his work, FISHER developed fundamental techniques for planning and analyzing physical

experiments [Fis66]. These methods especially consider the stochastic property of exper-

iments in presence of natural noise parameters (cf. Figure 3.2). Noise parameters, which

may be obvious or unrecognized, disturb the analysis of the true fundamental relationship

between controlled input and response values. To cancel the diverse effects of noise param-

eters, and hence, to increase the validity of conclusions drawn from physical experiments,

statistical methods called randomization, blocking, and replication have been developed.

Randomization. Unrecognized noise parameters that affect the response values systemati-

cally may result in a misinterpretation of the true effects of input variables. To obviate

this additional bias, the order in which the varied input settings are studied is ran-

domized before evaluation. As a result, the additional error caused by the noise will

be randomly distributed over all experiments. Thus, regression techniques will be able

to smooth out the random error.

Blocking. Whenever deteriorating effects of prominent noise parameters are obvious or ex-

pected, blocking is used. In these cases, experiment settings are categorized in blocks

that are expected to behave homogeneously within the respective group but differ-

ently compared to members of other groups. Typical examples for such prominent

noise parameters are gender of subjects in clinical trials or weather conditions in out-

door experiments. Blocking allows for an individual assessment of the experiments

independent of noise effects.
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Replication. By means of replication, the experimental error can be estimated. Here, exper-

iments with identical input settings are repeated several times. The sample variance

for all replicates provides a measure for the expected error in the response. Addition-

ally, the sample mean represents a more precise estimate for the expected response

value than a single observation. It is important to distinguish repeated measurements

and replicates. Multiple measurement of a response value investigating one and the

same specimen solely reveals the measurement error, which, in general, constitutes only

one part of the experimental error. In contrast, replicates allow for the estimation of

the total random error associated with a physical experiment.

When applying DoE techniques, that were actually developed for the analysis of phys-

ical experiments, to the setup of numerical experiments (also termed computer experiments),

there is one important aspect to be considered. Numerical experiments are inherently deter-

ministic i.e. equal input yields the same response value up to floating point precision (unless

programmed explicitly as stochastic code). Thus, the three strategies replication, blocking and

randomization introduced to cancel random error and bias are dispensable in this context.

Noise parameters that are expected to influence the response values are explicitly included

in the problem formulation for the computational analysis. In this case, noise parameter

settings become controllable during the engineering and design stage. This is an important

prerequisite for robust design optimization, which strives for a design that is insensitive to

noise during the operation period.

An experimental design represents a set of m experiments to be performed, expressed in

terms of the n input variables vi, which are called factors in the DoE context. In general, these

factors contain the design variables of the problem and all controllable noise parameters.

For each experiment, factor settings are fixed to specified values (called levels) constituting

one sampling point vl . An experimental design is usually written in matrix form X (size

m × n) where the rows denote the individual sampling points and the columns refer to the

particular factors vi.

The proper choice for a particular DoE method depends on

⋄ the intended utilization of the results. For instance, specific requirements relate to

experimental designs used as basis for metamodels. Other prerequisites are relevant

if the aim is to identify factor interdependencies or to perform a sensitivity analysis.

⋄ prior knowledge of the type of problem to be analyzed. Pertinent characteristics com-

prise amongst others the nonlinearity and smoothness of the response and the identi-

fication of particularly interesting subregions in the design space vs. presumably non-

relevant areas.

⋄ additional restrictions, as for example a maximum number of acceptable sampling

points, set by the effort related to their evaluation or a maximum number of levels to

reduce the costs of producing physical specimens.

In the remainder of this chapter, different DoE methods are presented and their indi-

vidual characteristics and areas of application together with possible restrictions are dis-
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cussed. A more detailed description of standard DoE techniques can be found e.g. in

[BB94, Tou94, DV97, Mon01, SWN03].

5.1 Full Factorial Designs

An experimental design is called factorial design if the n factors governing the system are var-

ied only on a finite number of predefined levels l. A full factorial design contains all possible

factor-level combinations. The total number of experiments to be performed results from

the product of the respective number of discrete levels for each factor.

m =
n
∏

i=1

li (5.1)

The designation of all types of full factorial designs reflects this formation rule (cf. Figures 5.1

and 5.2): A full factorial design with n factors, each evaluated at l levels, is symbolized by

ln. Obviously, the design consists of ln sampling points. To specify the individual settings

for each sampling point, the two levels of 2n designs are typically coded by −1 and 1, re-

spectively (or simply −/+). Accordingly, −1, 0, and 1 are used to symbolize the different

levels of 3n designs. This syntax is especially helpful if the design space along each variable

is normalized to the range [−1, 1].

It should be pointed out that most publications on DoE denote the number of factors

by k. Thus, in relevant literature, design classes are commonly termed 2k or 3k. The slight

discrepancy compared to common notation is accepted for the sake of accordance with the

rest of the text at hand.

Factorial designs are typically used for screening experiments. Here, the aim is to identify

either especially significant factors or factors with negligible effect on the response. If factors

with minor influence on the respective response value can be discovered, they can usually

be excluded from further investigations. The dimensionality of a metamodel can be reduced

accordingly, yielding a model formulation that is generally cheaper to fit and to evaluate.

v2

v1

1 4 7

2 5 8

3 6 9

Figure 5.1: Full factorial design 32 – two factors

varied on three levels.

Table 5.1: Setup of full factorial design 32.

Point No. v1 v2

1 −1 −1

2 −1 0

3 −1 1

4 0 −1

5 0 0

6 0 1

7 1 −1

8 1 0

9 1 1
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Figure 5.2: Full factorial design 23 – three factors

varied on two levels.

Table 5.2: Setup of full factorial design 23.

Point No. v1 v2 v3

1 −1 −1 −1

2 −1 −1 1

3 −1 1 −1

4 −1 1 1

5 1 −1 −1

6 1 −1 1

7 1 1 −1

8 1 1 1

To assess the influence of input variables on the output, a linear model as introduced in

Equation (4.3) is fit to the response values observed at the sampling points by means of least

squares regression. The regressors are chosen to include all effects, the experimenter wants

to assess. Each regression parameter characterizes one effect as it quantifies the impact of the

corresponding regressor on the respective response value. The general form of a model to

determine factor effects reads

η(v, β) = β0 +
n
∑

i=1

βi vi +
n
∑

i=1

n
∑

j=1
j≥i

βij vi vj +
n
∑

i=1

n
∑

j=1
j≥i

n
∑

k=1
k≥j

βijk vi vj vk + . . . . (5.2)

In Equation (5.2), β0 represents the mean response value. The model additionally includes

main effects and interaction effects. Main effects are described by regression parameters whose

corresponding regressor comprises only one factor (βi, or βij...k with identical subscripts

i = j = . . . = k). Thus, main effect i quantifies the change in the response caused by a

variation in vi. If an effect of input variable vi also depends on the setting of another input

variable vj, then this effect is an interaction effect. Interaction effects are specified by regres-

sion parameters with unequal subscripts. While 2n designs allow only for the estimation

of linear effects, 3n designs already permit the quantification of quadratic effects. Generally

speaking, to fit a polynomial of degree d, each factor has to be varied on at least d + 1 levels.

An increasing number of factors or levels rapidly raises the experimental effort. While

a full factorial design for three factors and three levels constitutes 33 = 27 sampling points,

twice the number of factors (also evaluated on three levels) already yields 36 = 729 experi-

ments to be performed. One way to circumvent this problem is the use of fractional factorial

designs.

5.2 Fractional Factorial Designs

A fractional factorial design consists of a subset of a full factorial design. These experimental

designs are symbolized by ln−p. As for full factorial designs, n factors are studied on l levels

each. The nonnegative integer p defines the reduction compared to full factorial designs. As
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Figure 5.3: Two alternate fractional factorial designs of type 23−1.

indicated by this denomination, the total number of sampling points in a fractional facto-

rial design is only a fraction of the corresponding full factorial design, where the fractional

portion is (1/l)p of the full design. Accordingly, a 23−1 design comprises half the number

of experiments compared to the full factorial design (23−1 = 23/21 = 4 sampling points).

Both halves of a 23 design, which are both equitable choices for a fractional factorial design,

are depicted in Figure 5.3. The coordinates of the respective sampling points are listed in

Table 5.2.

As discussed in [Mon01], the use of fractional factorial designs is justified through

⋄ the sparsity of effects principle. If a system depends on numerous input variables, it is

most likely governed primarily by few main effects and low-order interactions. The

disregard of higher-order interactions makes it possible to reduce the number of re-

quired sampling points.

⋄ the projection property of 2n−p designs. If p of the n factors are identified as insignificant

and hence excluded from further investigations, the corresponding dimensions of the

design space vanish. As a result, the sampling points are projected into the remain-

ing (n − p)-dimensional subspace. With respect to the remaining n − p factors, the

originally fractional factorial design becomes a full factorial design (cf. Figure 5.4).

⋄ sequential experimentation. Each fractional factorial design ln−p represents a fragment

of the underlying full factorial design ln and this fragment is complementary to all

alternative fractions (cf. Figure 5.3). Accordingly, a more significant and larger de-

sign (up to the full factorial design) can be assembled by sequentially sampling the lp

complementary fractions.

The composition of other fractional factorial designs is specified and illustrated in many

reference books dealing with design of experiments e.g. [BB94, Mon01].
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Figure 5.4: Projection of a 23−1 design into three 22 designs.

5.3 Orthogonal Arrays

To describe orthogonal arrays, the definition of orthogonality in the DoE context has to be in-

troduced first. An experimental design is orthogonal if the scalar product of any combination

of its column vectors evaluates to zero. In other words, if a design is orthogonal, then XTX

describes a diagonal matrix. This property assures a minimum variance in the parameters

β when using linear regression. In fact, all full factorial designs of type 2n and 3n as well as

all resultant fractional factorial designs 2n−p and 3n−p are orthogonal.

The resolution R is an important attribute of an experimental design [Mon01]. It explains

to which extend main and interaction effects can be estimated independently. An experi-

mental design has resolution R if no effect of p factors is confounded with any effect that

includes less than R − p factors. Resolution values are represented by Roman numerals.

Most prominent resolutions are:

Resolution III. No main effect is confounded with any other main effect. Yet, main effects

may be confounded with two-factor interactions, and interactions may be confounded

among each other.

Resolution IV. Main effects are not confounded either with another main effect or with any

two-factor interaction. Two-factor interactions may be confounded.
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Table 5.3: Comparison of full factorial designs and orthogonal arrays with respect to their total num-

ber of sampling points.

Levels Factors Sampling Points Sampling Points

Full Factorial Design Orthogonal Array

2 3 23 = 8 4

2 7 27 = 128 8

2 15 215 = 32 768 16

3 4 34 = 81 9

3 13 313 = 1 594 323 27

4 5 45 = 1 024 16

4 21 421 = 4 398 046 511 104 64

Resolution V. Neither main effects nor two-factor interactions are confounded with any

other main effect or two-factor interaction.

Based on the resolution of experimental designs and the definition of orthogonality, a

special class of designs can be characterized. A full or fractional factorial design that is or-

thogonal and has resolution R = III is termed orthogonal array (OA). Supplementary to the

previously introduced denomination, orthogonal arrays are commonly designated by l
n−p
III .

Orthogonal arrays are focused on the assessment of main effects, whose number may be

large. In case particular factor interactions are also of interest, these interactions have to

be introduced explicitly as independent factors, for instance v3 = v1 v2. As illustrated in

Table 5.3, the number of sampling points in OAs are significantly smaller than in corre-

sponding full factorial designs. This reduction and the saved effort is compensated by the

limitation to consider only main effects. Before using OAs, it must be reviewed carefully

whether main effects are sufficient to capture the distinctive behavior of the system under

consideration. Prominent orthogonal arrays are listed e.g. in [Pha89].

5.4 PLACKETT-BURMAN Designs

PLACKETT and BURMAN introduced the construction of very economical designs. A

PLACKET-BURMAN design (PBD) can be used efficiently in screening experiments when only

main effects are of interest. A PBD with m experiments may be used for a problem con-

taining up to n = m − 1 factors. These designs must be used very carefully though since

all main effects are in general heavily confounded with two-factor interactions (resolution

III). PBDs are defined for the case where the number of sampling points m is a multiple of

four [PB46]. In case m is also a power of two, the resulting designs are identical with the

respective 2n−p fractional factorial designs. Still, PBDs can be an attractive choice for screen-

ing experiments in some special cases e.g. for m = 12, 20, 24, 28, and 36. The layout for these

designs is specified for instance in [MM02].
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5.5 Experimental Designs for Fitting RSMs

Supplementary to DoE characteristics for screening experiments, experimental designs for

response surface models based on computer simulations should offer the following features:

⋄ assure a reasonable distribution of sampling points (and hence gained information)

throughout the model space,

⋄ allow designs of higher order to be built up sequentially,

⋄ provide precise estimates of the model coefficients,

⋄ limit the prediction variance of the metamodel,

⋄ bring about a constant level of prediction variance throughout the model space,

⋄ require a minimum number of runs.

In general, these attributes are conflicting. Hence, different aspects must be balanced to find

a suitable experimental design for each particular application. As presented in Section 5.3,

one important aspect is orthogonality.

Orthogonal designs to fit first-order polynomials include all full and fractional factorial

designs of type 2n and 2n−p. Yet another first-order design is the simplex design. A sim-

plex design contains the minimum number of experiments needed to fit a plain first-order

polynomial, namely n + 1 sampling points. Figure 5.5a depicts the two-dimensional case

where the simplex design is an equilateral triangle. All alternative configurations that arise

from rotating the triangle around the origin are equitable. For n = 3, the simplex design

is a regular tetrahedron which can also be rotated to find alternative designs. From Fig-

ure 5.5b it becomes obvious, that the three dimensional simplex design complies with the

23−1 fractional factorial design depicted in Figure 5.3.

In many engineering applications, linear polynomials are not adequate to approximate

the true functional relationship. In these cases, quadratic polynomials are typically used

v2

v1

v3

v2

v1

(b)(a)

Figure 5.5: Simplex design (a) for two factors and (b) three factors.
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to fit metamodels. Accordingly, experimental designs for quadratic response surfaces are

discussed next. A 3n factorial design provides three levels along each factor. Hence, it can

be used to fit a quadratic polynomial. As already mentioned before, 3n designs are also

orthogonal, however, the resultant number of sampling points is often unacceptably large.

Furthermore, they fail at another decisive criterion: rotatability. An experimental design is

called rotatable, if the variance of the attained prediction

V(ŷ(v)) = σ2 ηT(v)
(

FTF
)−1

η(v) (5.3)

is only a function of the distance from the prediction point v to the center point of the factor

space (in normalized space: vi = 0 ∀ i = 1 . . . n) and not a function of the direction. To il-

lustrate the idea, the case of a quadratic polynomial used as metamodel in an optimization

procedure is considered. Taking the center point as starting point, it would be unfavor-

able to rely on a metamodel whose fidelity depends on the search direction since this could

severely affect the optimization process. Further implications of using metamodels in an

optimization procedure will be discussed in Chapter 6. While all two-level orthogonal de-

signs are rotatable, the 3n design and all its fractions are not rotatable, and hence, in general

not an appropriate choice for response surface models.

5.5.1 Central Composite Designs

The most popular experimental design for fitting quadratic polynomials is the central com-

posite design (CCD). It is a combination of a two-level full factorial design (or a fractional

factorial design of resolution V), one center point, and a set of so-called star points. The star

points are situated on all coordinate axes with a distance α from the origin both in positive

and negative direction. In case the analyzed system is not deterministic, the number of cen-

ter points can be increased in order to create replicates. A typical three-dimensional CCD is

depicted in Figure 5.6. By choosing the distance α appropriately, rotatability of the design

can be retained [Mon01]. For

α = 4
√

mF (5.4)

the resulting CCD is rotatable. Here, mF denotes the number of sampling points in the

factorial part of the design.

In fact, rotatability is one important criterion to control the prediction variance, but it is

not the only one. Rotatability ensures that prediction variance is equal on spheres around the

center point. Additionally, it would be desirable to have a prediction variance that is both

constant and as small as possible throughout the entire model. Here, two typical shapes of

investigated regions are distinguished: spherical and cuboidal regions, respectively.

Spherical Region. If the region under consideration is spherical, the CCD that has the most

advantageous distribution of the prediction variance is obtained by choosing α =
√

n. For

the resulting design, all factorial and star points are situated on a (hyper)sphere with radius√
n. Accordingly, this specific experimental design is called spherical CCD. The spherical

CCD is not rotatable, but the deviation from perfect rotatability is compensated through a

more consistent and small V(ŷ).
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Figure 5.6: Assembly of a central composite design for three factors.

Cuboidal Region. Typically, the designing engineer specifies ranges for each factor which

restrict the space of allowable factor settings to a cuboidal region. In these cases, the face-

centered central composite design (FCD) defined by α = 1 is a suitable choice. As indicated by

the name and illustrated in Figure 5.7, the star points of an FCD are located at the centers

of the faces defined by the factorial part. As a result, the prediction variance is relatively

uniform over large parts of the investigated (cuboidal) region including the vertices. More

details about the prediction variance can be found in [MM02].

Referring to the important features, which were listed at the beginning of Section 5.5,

CCDs constitute an attractive class of experimental designs for response surface models.

Their assembly allows naturally for sequential experimentation: First, a fractional factorial

design is used, for instance for screening experiments. In a second step, a full factorial

design is obtained either by excluding insignificant factors (using the projection property)

or by sampling the missing complementary parts. Finally, to fit a second order polynomial

and to achieve a uniform prediction variance, center and star points can be added.

Comparing CCDs to 3n designs reveals, that CCDs are in general more efficient with

respect to the number of sampling points (cf. Table 5.5). The 32 design is, in fact, equal to the

two-level FCD. With increasing number of factors, however, the 3n design rapidly reaches

an immense number of experiments.
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Table 5.4: Setup of CCD with three factors.

Point No. v1 v2 v3

1 −1 −1 −1

2 −1 −1 1

3 −1 1 −1

4 −1 1 1

5 1 −1 −1

6 1 −1 1

7 1 1 −1

8 1 1 1

9 −α 0 0

10 α 0 0

11 0 −α 0

12 0 α 0

13 0 0 −α

14 0 0 α

15 0 0 0
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Figure 5.7: Face-centered central composite

design (α = 1) for three factors.

5.5.2 BOX-BEHNKEN Designs

Closely related to the CCD but avoiding extremal factor settings (vertices of the factor space)

is the BOX-BEHNKEN design (BBD), which is illustrated in Figure 5.8. The BBD is a spherical

design, in which all points have the same distance to the center point (with the obvious ex-

ception of the center point itself). As a result, BBDs are rotatable or at least nearly rotatable.

They are frequently used when the evaluation of extremal factor settings is related to ex-

cessive costs. Since no experiments are performed at extremal factor settings, a BBD is not

suited for predicting response values at the vertices of the factor space.

For the case of three, four, or five factors, BBDs are constructed as follows. First, the

Table 5.5: Comparison of CCDs with one center point to 3n full factorial designs.

Factors Sampling Points Sampling Points

CCD 3n Design

mF Star Points Total Total

2 4 4 9 9

3 8 6 15 27

4 16 8 25 81

5 32 10 43 243

6 64 12 77 729
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Figure 5.8: BOX-BEHNKEN design for three

factors.

Table 5.6: Setup of BBD with three factors.

Point No. v1 v2 v3

1 −1 −1 0

2 −1 1 0

3 1 −1 0

4 1 1 0

5 −1 0 −1

6 −1 0 1

7 1 0 −1

8 1 0 1

9 0 −1 −1

10 0 −1 1

11 0 1 −1

12 0 1 1

13 0 0 0

factors are paired off in all possible combinations. Then, for each pair, a 22 full factorial de-

sign is established in which the remaining factors are set to zero. Finally, one center point

is added. Again, if the system under inspection is not deterministic, the number of center

points should be augmented to create replicates. In Table 5.6, sampling points 1 – 4 emerge

from a 22 design for factors v1 and v2 with v3 set to zero for all four experiments. Analo-

gously, points 5 – 8 and 9 – 12 originate from combinations (v1, v3) and (v2, v3), respectively.

Lastly, the single center point is listed on position 13. For n≥6, the approach is slightly

different, as described in detail in [MM02].

5.5.3 Optimality Criteria Designs

Although the standard experimental designs discussed before are generally very efficient,

there are situations where they are not suitable. Such situations include an irregular region

of interest, which is not a (hyper)cube or (hyper)sphere, or nonstandard polynomial models

i.e. models that consist of selected monomials only (in contrast to full linear or quadratic

polynomials). In these cases, computer-generated experimental designs can be used, which

are constructed using particular optimality criteria. These optimality criteria are based ei-

ther on the prediction variance as introduced in Equation (5.3) or on information about the

variance of the regression parameters described by the covariance matrix

Cov(β) = σ2
(

FTF
)−1

. (5.5)

For a given set of regressors η, the variance in the regression parameters and the prediction

variance only depend on the experimental design. The sampling point coordinates affect

the matrix F and hence
(

FTF
)−1

. To minimize Cov(β), a characteristic (scalar) value for the

assessment of a matrix has to be chosen. Clearly, several qualified options exist:
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D-Optimality. An experimental design is called D-optimal if the determinant of
(

FTF
)−1

is minimized. This criterion can also be interpreted geometrically as minimizing the

volume of the dispersion ellipsoid for β [BB94].

A-Optimality. An experimental design is called A-optimal if the trace of
(

FTF
)−1

is mini-

mized. The geometrical equivalent of this criterion is the mean length of the semi-axes

of the dispersion ellipsoid for β to be minimal.

E-Optimality. An experimental design is called E-optimal if the largest eigenvalue of
(

FTF
)−1

is minimized. Geometrically, this accords with a minimization of the largest

semi-axis of the dispersion ellipsoid for β.

G-Optimality. An experimental design is called G-optimal if the maximum prediction vari-

ance as defined in Equation (5.3) is minimized.

V-Optimality. An experimental design is called V-optimal if the average prediction variance

is minimized.

Effective methods to determine an experimental design according to these criteria usually

proceed as follows. First, a set of regressors is chosen for a specified region of interest. Sec-

ond, a number of experiments to be performed is fixed. Then, an optimality criterion is

picked. Finally, experimental designs are composed from a selected set of candidate points

and compared with other design combinations. The restriction to a predefined set of sam-

pling points to be considered (typically from a grid of points spaced over the feasible design

region) significantly reduces the computational effort to find an “optimal” design. Clearly,

the design which is found as a result of this procedure is in general not optimal in a global

sense. Yet, it represents the best design which only relies on the selected set.

5.6 Experimental Designs for Interpolating Models

The essential features of experimental designs established in Section 5.5 for polynomial re-

gression models similarly apply to all other surrogate models. For metamodel formulations

that interpolate the observations at all sampling points, however, emphasis on individual

aspects is perforce placed differently.

In fact, for all metamodels a minimal prediction variance, and hence, a minimal approxi-

mation error is deemed the most important criterion. In many cases, the prediction variance

cannot be determined a priori. For instance, the prediction variance of the kriging predictor

ŷ = f̂ (v) is expressed by the mean squared error (MSE)

MSE
(

f̂ (v)
)

= σ2

(

1 −
[

ηT(v) rT(v)
]

[

0 FT

F R

][

η(v)

r(v)

])

. (5.6)

To evaluate the MSE, the correlation parameters θ have to be known (cf. definition of R

and r). The estimation of θ, however, is part of the fitting process and yet depends on the

sampled observations. Consequently, it is not possible to identify the optimal design with

119



CHAPTER 5 DESIGN OF EXPERIMENTS

respect to prediction variance, if the correlation parameters are not known in advance. Then

again, it can be seen from Equation (5.6) that the distance between the current prediction

point v and the surrounding sampling points play an important role for the fidelity of the

metamodel. Intuitively, it makes sense that for an interpolating model, its approximation

quality depends on the distance to the surrounding sampling points. Due to the interpo-

lation property and the deterministic characteristics of the underlying observations, the er-

ror at any sampling point vanishes, hence, the prediction variance must be exactly zero at

these points. If both the original function and the surrogate model are continuous functions,

the possible approximation error will increase with the distance of the prediction point to

the sampling point. As a consequence, the so-called space-filling property will be stressed in

the context of interpolating metamodels. This feature ensures that the sampling points are

evenly spread over the entire factor space. As a result, the distance to the nearest sampling

points does not become too large for an arbitrary prediction point. Although it was already

postulated for polynomial regression models that a reasonable distribution of the experi-

ments throughout the factor space is desirable, this criterion was disregarded in favor of an

explicit examination of prediction variance and variance of the regression parameters.

5.6.1 Space-Filling Designs

One possibility to create an even distribution of sampling points is to superimpose an n-

dimensional equidistant grid on the factor space as illustrated in Figure 5.9a. Designs that

are defined by means of a grid have two main drawbacks. First, the designer cannot arbitrar-

ily choose the number of sampling points to be included. The total number of experiments

is a result of the segmentation along each factor. Second, in case irrelevant factors are de-

tected, a projection of the design onto a subspace with reduced dimensionality would yield

many replicated points.

v2

v1

(a) (b)

v2

v1

Figure 5.9: Examples for space-filling designs: (a) design based on an equidistant grid (m = 32 = 9),

and (b) Latin hypercube design with m = 8.
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As an alternative, a distance-based criterion can be applied to assure a space-filling prop-

erty of the design [JMY90]. One possibility to define such a criterion is the minimum Eu-

clidean distance between any two sampling points vk and vl pursuant to Equation (4.27). A

design that maximizes this criterion is called maximin distance design. This criterion guaran-

tees that no two points are “too close” to each other. An alternative criterion to assess the

distribution of the experiments is to determine the maximum distance between an arbitrary

prediction point to its closest sampling point. A design that minimizes this criterion is said

to be a minimax distance design. Obviously, setting up an optimal experimental design solely

based on the above mentioned distance criteria would be complex since an infinite number

of designs would have to be studied. A commonly applied method to reduce this effort is

to primarily restrict the number of candidate designs by a another criterion, which is cheap

to evaluate, before the distance criterion is applied.

5.6.2 Latin Hypercube Designs

Latin hypercube sampling offers an attractive method to construct experimental designs that

are unpretentious from a computational point of view. The setup of such a design, which is

called Latin hypercube design (LHD), is exemplified in Figure 5.9b. In a first step, the factor

space is normalized i.e. each factor is scaled to have the range [0,1]. Under this condition,

the dimensions (length, distances) will be comparable across different factors. As described

in Section 3.3.3, the (normalized) factor space is segmented by dividing the range of each

factor into m strata. Accordingly, the factor space is split into mn cells. Since an even distri-

bution of the sampling points is desired, the probability density function for each factor is

assumed to be uniform. As a result, all individual strata have equal width. Then, a subset of

m cells is selected at random such that each stratum is only addressed once. In each of the m

subset cells, one sampling point is placed – typically in the center of the cell. Alternatively,

the position of a sampling point within the cell can also be allocated by random sampling

following a uniform distribution. The resulting LHD evenly spreads the m observations

over the range of each individual factor. As a result, LHDs possess a beneficial projection

property. The segmentation of the factor space into strata guarantees that no replicates are

generated when the number of crucial factors is reduced after screening. In general, how-

ever, a Latin hypercube design does not have to be space-filling with respect to the entire

factor space as illustrated in Figure 5.10a.

Since the construction of numerous LHDs requires only modest time and effort, they of-

fer an attractive possibility to restrict the number of designs for which a distance criterion

will be evaluated (cf. Section 5.6.1). Although the number of designs used to evaluate the

distance criterion is reduced to a finite number of randomly generated LHDs, the computa-

tional effort to evaluate the minimax distance criterion, is still significantly larger compared

to the maximin distance criterion. While for the latter, merely all possible combinations of

two sampling points (resulting in m(m − 1)/2 pairs) have to be evaluated per candidate de-

sign, the minimax distance criterion theoretically requires the analysis of an infinite number

of prediction points to identify the decisive maximum distance. This makes the minimax

distance LHD, although perfectly consistent with the originally postulated attribute for in-

terpolating metamodels, inappropriate for most applications. A maximin distance LHD for
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(a) (b)

v2

v1

v2

v1

min d

Figure 5.10: Space-filling property of Latin hypercube designs with m = 8 sampling points: (a) de-

sign with poor spatial distribution, and (b) maximin distance design.

two factors and m = 8 sampling points is depicted in Figure 5.10b.

OWEN introduced a further approach to generate space-filling designs which are de-

veloped from standard OAs. The resulting designs are called randomized orthogonal ar-

rays [Owe92] which are, in fact, Latin hypercube designs. Randomized orthogonal arrays

that are based on OAs with m = l2 experiments where each factor is varied on l levels have

the attractive feature that a projection onto any two-factor subspace will yield a regular l × l

grid. Further comments on randomized orthogonal arrays can also be found in [Tan93].

The approach is also suitable for the application of the maximin distance criterion as shown

in [Tan94].

The concept of space-filling nested designs is introduced in [Hus06]. A group of designs

is called nested when it consists of N separate designs, which are constructed such that one

design is a subset of another, namely X1 ⊆ X2 ⊆ . . . ⊆ XN . Nested designs are helpful

especially in the context of validating a metamodel. In this case, the number of designs is

typically chosen as N = 2. Consequently, the set X1 can be used as a training set for fitting

the metamodel, whereas the sampling points defined by X2 \ X1 are used for validating

purpose. After validation, the entire experimental design X2 can be used with the validated

model parameters. Due to the special construction of these nested designs, the space-filling

property is maintained for the larger design X2. Furthermore, nested designs can be used

for sequential sampling (cf. Chapter 6). In this case, an initial design X1 can be augmented

by the sampling points in X2 \ X1 yielding the enlarged design X2.

The approach of AUDZE and EGLAIS [AE77] uses the physical analogy of the minimum

potential energy to find optimal Latin hypercube designs with a uniform distribution over

the factor space. In accordance with the formulation of LHDs, the factor space is divided

into m strata with only one sampling point per stratum. The sampling points are assumed

to have unit mass which is affected by repulsive forces. The magnitude of these forces is

presumed to be inversely proportional to the squared distance between the points. This
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yields the following expression for the potential Π to be minimized:

Π =
m
∑

l=1

m
∑

k=1
k≥l

1

d2
kl

(5.7)

To find the specific arrangement of points in factor space that results in minimum potential

energy is in fact a discrete problem. For a fixed number of experiments m and predefined

number of factors n, only a finite number of combinations of cells has to be examined – more

precisely (m !)n different combinations are possible. Obviously, even a moderate number of

factors and sampling points results in an immense number of designs to be investigated,

e.g. ten experiments arranged in a three-dimensional factor space offer (10 !)3 ≈ 4.8 · 1019

different layouts. To handle the computational burden associated with these scores, genetic

permutation algorithms have been successfully applied [BST04].

Due to the fact that the set of sampling points will be augmented during the optimiza-

tion process as outlined in Section 6.2, the initial space-filling property is not crucial for a

successful optimization process. As a consequence of the subsequent update procedure, it is

typically sufficient to build an interpolating metamodel based on a maximin distance LHD

which was selected from a limited number of LHDs. The resulting experimental design is

not expected to be perfectly space-filling, but also not as unfit as illustrated in Figure 5.10a.

A possibly poor space-filling property will improve gradually as further points are added

to the set of sampling points. The model update is motivated and described in detail in the

following chapter.
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Chapter 6

Metamodels Used in Optimization

Procedures

Whenever approximations are used as a surrogate for an original computer simulation, the

potential prediction error between predicted and true response has to be borne in mind.

Typically, these metamodels are used within an optimization process where the function

evaluations during the iteration steps are obtained as predictions of the metamodel. As

a result of the optimization process, a predicted optimum is obtained which can be seen as

an estimate for the true optimum. It would be careless to trust this result and to take the

prediction as final result. Clearly, the predicted optimum has to be validated for instance by

a verification run at the predicted optimum which is performed with the original simulation

model. In case the accuracy of the prediction is not appropriate, further steps have to follow.

Typically, a sequential approach is chosen in which the significance of the metamodel is

increased by an iterative update procedure.

Since problems with random variables in the problem formulations have to be treated

differently to some extent, the standard procedures for the solution of purely deterministic

optimization problems are described first. This means that all factors are assumed to be

design variables.

6.1 Move Limit Strategy for Mid-Range Approximations

As outlined in Sections 4.1 and 4.6, the accuracy of polynomial regression models mainly de-

pends on a proper selection of the polynomial degree used to formulate the approximation.

Adding extra information in form of training data at further sampling points (at so-called

infill points), in general does not improve the model fit. Following the reasoning of TAYLOR

series expansions, however, even a low-order polynomial can be an adequate approximation

for a sufficiently smooth function, if the area of validity is chosen small enough. Hence, the

postulation can be deduced that the range of validity for the approximation must diminish

to improve the fidelity of the metamodel.

An approach which is translates this idea into an update procedure for optimization in

conjunction with polynomial regression models is the move limit strategy. Here, the true func-

tional relationships for f , g, and h are replaced sequentially by explicit mid-range approxi-

mations symbolized by f̂ , ĝ, and ĥ, respectively. These approximations are not intended to
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be valid over the entire factor space, but only on a subregion characterized by more stringent

upper and lower bounds on the factors. These bounds are iteratively adapted as the opti-

mization process advances, thus motivating their name: move limits. Together, the surrogate

models and the current move limits define a subproblem of the form

minimize f̂ (l)(x) ; x ∈ R
n (6.1a)

such that ĝ
(l)
j (x) ≤ 0 ; j = 1, . . . , ng (6.1b)

ĥ
(l)
k (x) = 0 ; k = 1, . . . , nh (6.1c)

x
L,(l)
i ≤ xi ≤ x

U,(l)
i ; i = 1, . . . , n (6.1d)

Here, the superscript (l) denotes the current iteration. Accordingly, x
L,(l)
i and x

U,(l)
i symbol-

ize the move limits for which

x
L,(l)
i ≥ xL

i ∧ x
U,(l)
i ≤ xU

i (6.2)

must hold, i.e. the move limits must stay within the global side constraints (xL
i and xU

i ,

respectively).

In the setup of this multipoint approximation strategy, the key issues are how to move

the limits, which define the current subregion. Several options have been proposed in the

literature [TFP93, Etm97, KS99, KEMB02] on how to adapt the current subregion. The ra-

tionales behind the different methods differ only slightly. The common idea is to move the

current subregion in the design space following the search directions of the optimization al-

gorithm. To ensure a sufficient accuracy of f̂ , the size of the subregion is reduced whenever

the approximations are not good enough.

A popular alternative to adjust size and position of the current subregion is the successive

response surface method (SRSM). According to the SRSM scheme, the optimization process

begins with the selection of a starting design x(0) representing the center point of the first

region of interest (iteration number l = 0). The initial subregion is described by its upper

and lower bounds which are determined individually for each design variable xi based on

the user-determined range factors r
(0)
i .

x
L,(l)
i = x

(l)
i − 0.5 r

(l)
i

x
U,(l)
i = x

(l)
i + 0.5 r

(l)
i

(6.3)

Clearly, for the initial subregion, the iteration number is l = 0. Now, a subproblem according

to Equation (6.1a) is established and solved – resulting in the optimum design x∗,(l). This

optimum design will serve as center point for the next subproblem x(l+1) = x∗,(l). The

bounds of the new subregion are calculated pursuant to Equation (6.3). The new range

r
(l+1)
i is obtained by

r
(l+1)
i = λ

(l+1)
i r

(l)
i (6.4)

where λ
(l+1)
i symbolizes the contraction rate. To formulate the contraction rate several other

quantities have to be established. which are introduced next. The vector

∆x(l+1) = x(l+1) − x(l) (6.5)
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describes the moving direction of the subregion. The indicator value

d
(l+1)
i = 2

∆x
(l+1)
i

r(l)
(6.6)

quantifies the relative position of the new center point within the previous move limits.

Specifically, this indicator value can only take values within the interval [−1, 1] in which

di = −1 indicates that the coordinate setting x
(l+1)
i of the new center point lies on the lower

move limit x
L,(l)
i of the previous subregion. Analogously, di = 1 means that the respective

coordinate of the new center point hits the upper move limit x
U,(l)
i during the optimization,

and di = 0 reveals that the position of the center point has not changed in terms of the ith

design variable.

Two additional parameters are used in the formulation of the contraction rate.

λ
(l+1)
i = η +

∣

∣

∣
d

(l+1)
i

∣

∣

∣
(γ − η) (6.7)

The zoom parameter η and the contraction parameter γ. Obviously, these parameters rep-

resent the extremal settings for λi. The contraction rate equals the zoom parameter in case

di = 0. The other extremum λi = γ is obtained for |di| = 1. Typically, η = 0.5 and γ = 1

are chosen. As a result, the subregion will rapidly diminish in size if the obtained optimum

is close to the corresponding center point. As the distance of the optimum to the center

increases, the size reduction is gradually retarded. If the current optimum is located on

the move limits, the true optimum is expected to be outside the subregion. Thus, the new

subregion does not change in size (λi = 1).

Using the above described procedure can result in severe oscillations between two sub-

regions, especially if a linear approximation is chosen for the subproblem formulation. In

this case, consecutive optima are typically found on opposite sides of the respective subre-

gions once the current optimum is close to the true optimum. To prevent this troublesome

behavior, the normalized oscillation indicator

ĉ
(l+1)
i =

√

∣

∣

∣
c
(l+1)
i

∣

∣

∣
sign

(

c
(l+1)
i

)

with c
(l+1)
i = d

(l+1)
i d

(l)
i (6.8)

can be used to define a modified contraction parameter γ which makes for a diminution of

the subregion as soon as oscillation occurs. The contraction parameter is then determined

by

γ =
γpan

(

1 + ĉ
(l+1)
i

)

+ γosc

(

1 − ĉ
(l+1)
i

)

2
(6.9)

where γosc introduces additional shrinkage to attenuate oscillation. Typical values for γosc

are between 0.5 and 0.7. From Equation (6.9), it can be seen that γ = γpan results from

ĉi = 1. This pure panning case arises when the current optimum hits the same (upper or

lower) move limit in two sequent iterations.

Although the presented SRSM approach is rather heuristic, it has been successfully ap-

plied to many optimization problems, for instance in [SC02]. For the solution of stochastic

optimization problems, this approach is not suited in the present form. To evaluate the
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deterministic surrogate formulations based on the methods that have been introduced in

Section 3.3, the entire noise space Ω has to be examined in each iteration step – either to

find the worst case of all possible realizations or to solve the integral in Equation (3.47).

Accordingly, the approximations have to be global, at least with respect to the noise space.

A successive partitioning of the entire factor space into subregions in order to increase the

fidelity of the approximation would exclude possibly decisive parts of Ω. An appropriate

adaptation of the SRSM approach to stochastic optimization problems is to restrict the up-

date procedure to the factors vi that correspond to design variables while the factor ranges

of the noise variables remain unaffected i.e. each subproblem approximation covers the en-

tire noise space; only the design space is zoomed in. The major drawback of this approach

is that the behavior of the original system with respect to the noise variables has to be ap-

proximated globally by polynomials – whether this is satisfactory strongly depends on the

problem under investigation.

6.2 Update Procedures for Global Approximations

Different scenarios can cause an insufficient accuracy of the predicted optimum when inter-

polating metamodels are used to approximate the true functional relationship. On the one

hand, the predicted optimum can fall into a region where the prediction error is large. In

other words, the predictive behavior of the surrogate model around the predicted optimum

can be quite poor. According to this, the predicted value can significantly depart from the

true functional response with the consequence that the true optimum is missed, as illus-

trated in Figure 6.1a. This fault can easily be found by a verification run, i.e. the evaluation of

the original function at the respective design. On the other hand, the location of the true opti-

mum might not be predicted by the metamodel, if in the surroundings of the true minimum

no points are sampled. This means that in a specific region of the design space, a (possibly

decisive) minimum might remain undetected. A verification run potentially misses this de-

ficiency since the predicted response might match the original response quite well around

the predicted optimum design. Such a configuration is depicted in Figure 6.1b. Further-

more, if the predicted optimum by chance coincides with a sampling point, a verification

run even has no relevance at all. The interpolating trait assures that the metamodel exactly

represents the original observations at the sampling points. Hence, a poor fidelity cannot be

detected by simply comparing the response values of metamodel and original model at the

predicted optimum. Accordingly, to avoid these possible pitfalls, special update procedures

have been proposed for interpolating metamodels. Again, the different methods are first fa-

miliarized for the case of a deterministic optimization problem as presented in the literature.

Then suitable enhancements are proposed to augment the range of application to stochastic

optimization problems including noise variables.

All of these update procedures start with a small set of sample points to fit a first meta-

model to the sampled data. Based on this metamodel, one or more additional sample points

are determined sequentially where the original computer simulation will be evaluated. Tak-

ing into account the responses at these additional sample points, a new metamodel is built.

Several different criteria are available to determine infill points, which are presented next.
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Figure 6.1: Pitfalls arising from the use of (interpolating) metamodels in optimization.

6.2.1 Strategies to Improve the Fidelity of the Metamodel

The first approach aims at improving the metamodel, i.e. infill points are placed where the

prediction error of the model is large. Hence, the global fidelity of the surrogate model is

sequentially augmented. In this context, the integrated mean squared error (IMSE) and the

maximum mean squared error (MMSE) are two prominent criteria. They have originally been

proposed as DoE techniques for the initial sampling of computer experiments as detailed

in [SWMW89]. However, these criteria are also appropriate to the search for infill points. In

this case, the evaluation of both criteria is straightforward, even the hurdles [Etm94] associ-

ated with the primary sampling are eliminated: The computational effort to find coordinate

settings for one infill point is relatively small compared to the computation time needed to

set up a complete experimental design. Furthermore, the necessary correlation parameters

θ do not have to be guessed as in the initial state. As soon as a search for infill points is con-

ducted, the correlation parameters have already been estimated based on the existing set of

samples. With these correlation parameters, the new points are positioned to minimize

IMSE =

∫

D
MSE

(

f̂ (x)
)

dx (6.10)

or

MMSE = max
x∈D

MSE
(

f̂ (x)
)

, (6.11)

respectively. The mean squared error (MSE) of the prediction f̂ is computed according

to Equation (5.6) based on the updated set of sampling points (incl. the candidate point)

whereas the correlation parameters of the metamodel are estimated from the current set of

sampling points with the respective original response values.

A third criterion which only addresses model improvement is the entropy criterion pre-

sented in [CMMY88]. This approach can be reformulated to be equivalent to maximizing the
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determinant of the correlation matrix R as defined in Equation (4.46). Again, the candidate

point is added to the set of sampling points and the correlation matrix is established using

the correlation parameters estimated from the existing set of samples. The candidate point

yielding a minimal det(R) is taken as infill point for the updated model.

Computationally less expensive is the approach to identify the point with the largest

prediction error of the existing metamodel. Since the MSE at this infill point is reduced to

zero when it is added to the set of sampling points, the overall predictive behavior of the

global approximation is sequentially increased [MS02]. It should be noted that the latter

criterion is not identical to minimizing the MMSE criterion in Equation (6.11). Here, the

location of maximum MSE of the current model is determined and added as infill point. In

contrast, the MMSE criterion positions the infill point such that the MMSE of the updated

metamodel is minimized under the assumption that the candidate point is added to the set

of sampling points and that the current correlation parameters remain valid.

All of the criteria presented above gradually improve the overall fidelity of the meta-

model. As a result, the sequentially updated metamodel has a balanced prediction error all

over the model space. Information about regions with low response values including the

predicted minimum determined by means of the existing metamodel is neglected during

the selection of infill points. This procedure can be quite ineffective when numerous infill

points are placed in regions with comparably large response values. The related computa-

tional effort might be better invested to refine the metamodels locally in the surroundings

of the predicted optimum.

6.2.2 The Efficient Global Optimization Method

To achieve faster convergence to the global minimum, an approach called efficient global

optimization (EGO) has been proposed by JONES et al. [JSW98]. This method performs a

balanced global and local search based on metamodels which are sequentially updated dur-

ing the optimization process. Here, two goals are weighed up during the search for infill

points, namely a detailed investigation of the behavior around the estimated optimum (lo-

cal search) and elimination of the possibility to miss the optimum due to a large prediction

error (global search). The criterion used for the trade-off between global and local search is

called expected improvement criterion [Sch97].

The expected improvement is computed as follows. The algorithm starts with an initial

set of sampling points xl (with l = 1, . . . , m) for which the original model is evaluated.

From the m (initial) observations yl , the minimum feasible response value is determined.

This response value ỹ∗ represents the best tried and proven choice based on the information

gathered so far. The improvement over ỹ∗ related to an arbitrary y is defined by

I = max {0, (ỹ∗ − y)} . (6.12)

In case the improvement is evaluated with respect to a random variable Y, the improvement

is also a random variable. Consequently, the expected improvement is defined as expected

value of Equation (6.12).

E(I) = E (max {0, (ỹ∗ − Y)}) (6.13)
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According to the definition of kriging models, the predictor ŷ represents such a realization

of a random stochastic process Y. The randomness is governed by the uncertainty about

the true function value at untried x. Hence, Y is characterized by Y ∼ N(ŷ, s2). The corre-

sponding probability density function of this normal distribution is symbolized by pY. The

variance s2 is the variance of the prediction error, which can be estimated by the MSE as de-

fined in Equation (5.6). Since the model parameters θ̂ and σ̂2 used to evaluate the MSE are

typically not known in advance but only estimated from the observations, ŝ2 = MSE repre-

sents the estimated prediction variance. Using these estimates, the expected improvement

for a kriging model prediction ŷ = f̂ (x) can be expressed in closed form by

E
(

I
)

=

ỹ∗
∫

−∞

(ỹ∗ − y) pY(y) dy = (ỹ∗ − ŷ) Φ

(

ỹ∗ − ŷ

ŝ

)

+ ŝ φ

(

ỹ∗ − ŷ

ŝ

)

. (6.14)

Since both ŷ and ŝ2 are dependent variables of x, the expected improvement is also a function

of x. In agreement with standard literature in statistics, φ in Equation (6.14) denotes the

probability density function of the standard normal distribution N(0, 1). Correspondingly,

Φ represents the cumulative density function of the same distribution. A detailed derivation

of Equation (6.14) can be found in Appendix A.1.

A closer look at the finding of Equation (6.14) reveals that the first addend becomes large

if the prediction ŷ constitutes an improvement with respect to ỹ∗ and if this improvement is

also reliable (i.e. ŝ is small). The second addend is large wherever the estimated prediction

error ŝ is large. As a result, the expected improvement is large where ŷ is presumably smaller

than ỹ∗ and/or where the prediction is possibly inaccurate. Clearly, the expected improve-

ment tends to zero as the prediction point approaches a sampling point (at sampling points,

ỹ∗ − ŷ ≤ 0 by definition of ỹ∗ and ŝ → 0).

Figure 6.2 illustrates the expected improvement criterion. Here, ỹ∗ represents the bench-

mark for the expected improvement over this value. Any realization y of the random process

Y that is located left of this reference value is considered to be better, thus contributing to

an expected improvement. The actual contribution amounts to the distance y to the refer-

ence value ỹ∗ multiplied by the probability density of the individual realization. All values

right of ỹ∗ have an improvement of zero as formulated in Equation (6.12). Consequently,

large E(I) values are obtained when large parts of pY are located left (or rather below) of the

benchmark ỹ∗, as exemplified in Figure 6.2a. In contrast, Figure 6.2b depicts the case of a

comparably small expected improvement.

In the search for infill points, the expected improvement is maximized and the corre-

sponding location is added to the set of sampling points. With the additional observation

at this infill point, the metamodel can be updated and the search for further infill points

is repeated. This procedure is continued until the expected improvement is smaller than a

user-defined lower threshold value, for instance 1%. It should be noted, that the expected

improvement is not strictly decreasing with the model updates. Since the correlation param-

eters are re-estimated during each model update, the MSE can significantly vary – especially

during an early stage of the update process. Thus, a suitable stopping criterion should ide-

ally incorporate several successive E(I) values, for instance the average over the last two or

more iterations.
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(a)

(b)

y

E I( )

E I( )

ỹ*

p yY( )

y

ỹ*

p yY( )

ŷ

ŷ

Figure 6.2: Expected improvement criterion for two different designs: (a) prediction ŷ has a large

E(I) value, (b) the expected improvement of ŷ is very small.

An approach which extends the expected improvement criterion to the constrained case

is discussed in [SWJ98].

Example 7. To illustrate the EGO approach, the function

f (x) = (x − 5)2 − 15 e−(x−1.5)2
+5

is assumed to represent the original functional relationship. This function is approximated

by a kriging model which is fitted to the four initial sampling points X = [1, 4, 6, 9]T. In

Figure 6.3a, the original function and the fitted metamodel are plotted.

The characteristics of the expected improvement criterion are demonstrated in Fig-

ure 6.3b. The expected improvement criterion is highly multimodal. The different max-

ima identify promising candidates for infill points. For the first model update, the point

x′ = 5.086 has the largest E(I). Hence, the original function is evaluated at x′, and a new

metamodel is fit to the set of five sampling points. Based on the updated metamodel (with

updated MSE), the expected improvement is evaluated again, and the location with the

largest expected improvement is taken as next infill point.
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Figure 6.3: Efficient global optimization approach applied to Example 7: (a) Original function and

initial metamodel, (b) expected improvement criterion and resulting infill point for first

metamodel, (c) updated metamodel after addition of three infill points, (d) resulting

metamodel after six updates.

Figure 6.3c depicts the state after three updates. After exploring the surroundings of the

local minimum, the search is now conducted more globally. It can also be seen from this

plot, that the expected improvement is not strictly decreasing with the model updates as

discussed above.

After addition of six infill points, the maximum expected improvement is only around

0.05 (the expected improvement is scaled by 100 in Figure 6.3d). It can be seen from this

figure that the metamodel reproduces the original function fairly well, especially in the rele-
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vant neighborhood of the two minima. At this stage, the remaining error in the localization

of the minimum is about 0.15%. After three more iterations, the global minimum is found

to a precision of 10−5 and the expected improvement is reduced to the same order of mag-

nitude. �

A typical problem that may occur especially in a later state of the EGO algorithm is ill-

conditioning of the correlation matrix R. Regarding the initial set of sampling points, the

distances between particular points are approximately equal. During the update process,

infill points are typically added either in rather large distance to existing sampling points

(global search) or in close vicinity to existing points (local search). If, as a result, two points

are very close to each other, the respective columns in R are nearly identical resulting in an

ill-conditioned matrix.

A comparison of EGO with alternative criteria to select infill points (e.g. criteria pre-

sented in Section 6.2.1) is provided in [SPG02]. The approach has also been customized to

work with RBF models instead of a kriging formulation as detailed in [SLK04]. An alterna-

tive approach which conducts the global part of the search by a simple maximin distance

criterion has been suggested by REGIS and SHOEMAKER [RS05]. Their method follows the

rationale used to establish the initial design of experiments for interpolating metamodels:

With a view to increasing the fidelity of a metamodel, a suitable candidate for an infill point

should augment the space-filling property of the original experimental design. Hence, the

selection of the next point is accomplished by means of a minimization of the predicted re-

sponse (based on the current metamodel) subject to a constraint on how close the infill point

x′ may be with respect to existing sampling points. Obviously, there is a largest possible

distance restricted by the distribution of the existing m sampling points. This upper limit is

given by

dmax = max
x′∈D

(

min
1≤l≤m

‖x′ − xl‖
)

(6.15)

To identify qualified candidates for infill points, the following constrained optimization

problem has to be solved.

minimize f̂ (x) ; x ∈ D (6.16a)

such that λ dmax − ‖x − xl‖ ≤ 0 (6.16b)

Here, the user-determined parameter λ ∈ [0, 1] controls whether the search is performed

globally (λ = 1) or locally (λ = 0). Typically, large values (close to one) are preferred during

the first update steps, and in a later stage a local search is allowed by choosing λ = 0.

So far, only deterministic optimization problems were treated in the context of update

procedures for interpolating metamodels. For an efficient optimization of robust design

problems, the approaches have to be extended to the case in which both design and noise

variables are present.

6.2.3 Selection of Infill Points in Robust Design Optimization

A suitable modification of the standard EGO method to account for random variables in the

problem description will be presented in this section. Obviously, it does not make sense to
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treat random variables in the same way as design variables in the evaluation of the expected

improvement. To evaluate the robustness criterion, noise variables settings which result in

a better performance measure are typically irrelevant. The opposite is true: For a reliable

assessment of the robustness criterion, the deteriorating effects of noise are of interest.

As a result and in contrast to the referenced literature, the search for infill points is split

into two parts. First, the design space is explored to find those settings x′ for the design vari-

ables that are most promising with respect to the robustness formulation ρ(x). In a second

step, the noise space is investigated and suitable noise variable settings z′ are identified.

Together, x′ and z′ form the desired infill point symbolized by v′. For this infill point, a

simulation run of the original model is performed and the metamodel can be updated.

Design Space Exploration. As a criterion to identify the design variable part x′, the ex-

pected improvement according to Equation (6.13) is maximized. Since the aim of the robust

design optimization is to find design variable settings x∗ that are optimal with respect to the

robustness criterion, the robustness value y = ρ(x) replaces the response value y = f (x) in

the equation for the expected improvement. To obtain the vector ỹ, the robustness criterion

is evaluated for all vectors xl that are part of the set of sampling points vl . The resulting

robustness values for xl are all determined by means of the metamodel – either by an opti-

mization to find the worst case or by a sampling method to evaluate the expectation integrals

involved (cf. Section 3.3). Hence, the values ỹl = ρ(xl) are not evaluations of the original

model but only predictions for the true robustness value at these points. Consequently, these

values will in the following be denoted by ŷl with the minimum value ŷ∗. The remaining

uncertainty about the accuracy of ŷ∗ conflicts with the postulation of a “tried and proven”

minimum ỹ∗ to be used as a reference value for the computation of the expected improve-

ment according to Equation (6.13). Since the robustness values yl are evaluated on a kriging

metamodel though, each of the predictions ŷl including their minimum value ŷ∗ can also

be seen as a realization of a random process with mean ŷl and a corresponding prediction

variance ŝ2.

Details on how to compute ŷ for robust design problems have been given in Chapter 3.

Yet, a suitable estimate for the prediction error ŝ at a specific design is not always straight-

forward to find. Specifically, in case of a robust design optimization, the prediction error

related to the evaluation of the robustness criterion is required. The MSE, however, only

quantifies the estimated prediction error between global approximation f̂ and original code

f . The crucial question is: How does the MSE associated with predictions of individual

events z ∈ Ω influence the accuracy of the chosen robustness criterion? At this point, the

two significantly different types of robustness criteria have to be distinguished: Either ρ is

based on a minimax formulation or the formulation of ρ comprises an integral over the noise

space.

For integral formulations of the form (3.47), the influence of each individual event on the

robustness value is expressed by its probability density pZ, and hence, ŝ2 can be estimated

by

ŝ2 =

∫

Ω

MSE (x, z) pZ(z) dz (6.17)
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which is the mean of the MSE over the noise space. Equation (6.17) can be solved by the same

sampling methods used to compute the robustness value itself (cf. Sections 3.3.1 through

3.3.3).

ŝ2 ≈
M
∑

L=1

wL MSE (x, zL) (6.18)

In Equation (6.18), M denotes the number of sampling points used to evaluate the expecta-

tion integral based on the metamodel. To distinguish these sampling points from the set of

points which serve as training data for the metamodels, the respective subscripts are capi-

talized here. M can be a fairly large number since evaluations of the metamodel and its MSE

are inexpensive to compute.

The problem with a minimax robustness criterion is that the influence of the MSE on

the accuracy of the robustness value is not clear. A low MSE value at the location of the

(currently estimated) worst case does not imply that this approximation is accurate enough.

The true and decisive worst case – hidden in an area where the MSE is still large – might not

be predicted by the model yet. Hence, the maximum prediction error defined by

ŝ2 = max
z∈Ω

MSE (x, z) (6.19)

is typically used as measure for the prediction error concerning a minimax-type robustness

criterion. Using Equation (6.19) to estimate ŝ implies that a large MSE value anywhere in

the noise space (even within a possibly small range) governs the prediction accuracy of the

robustness criterion. This approach is in line with the inherently pessimistic nature of the

minimax criterion.

As already indicated above, in this configuration, the expected improvement has to be

adapted to the special case where both the reference value and the evaluations of the can-

didate infill points are represented by random numbers denoted by Y∗ and Y, respectively.

This situation is illustrated in Figure 6.4. The random variables Y∗ and Y are characterized

by Y∗ ∼ N(ŷ∗, ŝ∗) and Y ∼ N(ŷ, ŝ), respectively. In this case, only those realizations y con-

tribute to the expected improvement that are below the reference value ŷ∗ and have greater

probability density pY than the corresponding probability density of the benchmark pY∗ .

E
(

I
)

= E (max {0, (Y∗ − Y)}) =

b
∫

a

(ŷ∗ − y)
(

pY(y) − pY∗(y)
)

dy (6.20)

To compute the integral in Equation (6.20), the integration bounds a and b have to be known.

These integration limits depend on the intersection points of the two probability density

functions pY and pY∗ . Contingent on their respective means and standard deviations (pre-

diction errors), three cases can be differentiated: two normal distributions either have one or

two intersections or both distributions are identical. In the latter case, they have an infinite

number of points y that fulfill pY(y) = pY∗(y).

If both prediction errors are equal, namely ŝ = ŝ∗, the probability density functions pY

and pY∗ intersect at exactly one point y1.

y1 = (ŷ∗ + ŷ)/2 (6.21)
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Figure 6.4: Expected improvement for the case of a random reference value.
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In all other cases, the intersection points y1 and y2 can be determined by solving pY(y) =

pY∗(y) for y.

y1,2 =

ŝ2 ŷ∗ − (ŝ∗)2 ŷ ± ŝ ŝ∗
√

(ŷ − ŷ∗)2 + 2 ln

(

ŝ

ŝ∗

)

(

ŝ2 − (ŝ∗)2
)

ŝ2 − (ŝ∗)2
(6.22)

To achieve a consistent notation, the lower intersection point is always denoted by y1, the

upper point by y2 i.e. such that y1 ≤ y2 by definition.

To finally establish the integration limits, three different cases have to be distinguished:

1. If ŝ > ŝ∗, the probability density functions pY and pY∗ intersect at two points. One

intersection point is located below ŷ∗ (denoted by y1), for the second intersection it

holds that y2 > ŷ∗. Accordingly, the lower and upper integration limits for the ex-

pected improvement are a = −∞ and b = y1, respectively. This situation is illustrated

in Figure 6.4a. Evaluating Equation (6.20) with these integration limits yields

E
(

I
)

= (ŷ∗ − ŷ) Φ

(

y1 − ŷ

ŝ

)

+ ŝ φ

(

y1 − ŷ

ŝ

)

− ŝ∗ φ

(

y1 − ŷ∗

ŝ∗

)

(6.23)

2. If ŝ = ŝ∗, the probability density functions pY and pY∗ intersect at exactly one point.

This point can be identified as y1 = (ŷ∗ + ŷ)/2. An expected improvement larger

than zero is only obtained if ŷ < ŷ∗. In this case, the integration limits are a = −∞

and b = y1 as depicted in Figure 6.4b. Accordingly, Equation (6.20) also simplifies to

Equation (6.23). The only difference compared to the first case is the definition of y1.

3. If ŝ < ŝ∗, the probability density functions pY and pY∗ also intersect at two points. Here

again, three cases have to be distinguished:

(i) If both intersection points are below the reference value ŷ∗, these intersection points

are also the integration limits, namely a = y1 and b = y2 (cf. Figure 6.4c).

E
(

I
)

= (ŷ∗ − ŷ)

(

Φ

(

y2 − ŷ

ŝ

)

− Φ

(

y1 − ŷ

ŝ

))

+ ŝ

(

φ

(

y2 − ŷ

ŝ

)

− φ

(

y1 − ŷ

ŝ

))

− ŝ∗
(

φ

(

y2 − ŷ∗

ŝ∗

)

− φ

(

y1 − ŷ∗

ŝ∗

))

(6.24)

(ii) If y1 < ŷ∗ and y2 > ŷ∗, the integration limits are a = y1 and b = ŷ∗ as depicted in

Figure 6.4d.

E
(

I
)

= (ŷ∗ − ŷ)

(

Φ

(

ŷ∗ − ŷ

ŝ

)

− Φ

(

y1 − ŷ

ŝ

))

+ ŝ

(

φ

(

ŷ∗ − ŷ

ŝ

)

− φ

(

y1 − ŷ

ŝ

))

− ŝ∗
(

1√
2π

− φ

(

y1 − ŷ∗

ŝ∗

))

(6.25)

(iii) If both intersection points are located above the reference value, the expected im-

provement is equal to zero.
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The derivations of Equations (6.23) through (6.25) are presented in more detail in Ap-

pendix A.2.

In summary, to find promising design settings x′, the expected improvement in Equa-

tion (6.20) can be maximized when the quantities ŷ∗, ŝ∗, ŷ, and ŝ are known. In the search

for the infill point, ŷ∗ and ŝ∗ are only determined once. To compute the respective expected

improvement over ŷ∗, both the predicted robustness value ŷ and the corresponding predic-

tion error ŝ have to be evaluated for each candidate point.

Noise Space Exploration. Once the most promising design variable settings x′ for the infill

point are determined, the noise space is examined to find matching noise settings z′ ∈ Ω.

The rule or measure to identify z′ will again depend on the type of robustness criterion ρ

used to define the robust design problem.

In case ρ is of integral type, the infill point settings z′ should ameliorate the predictive

behavior of the model to obtain a more dependable evaluation of the integral. This can be

achieved by placing the infill point where the prediction quality is still poor (i.e. where the

MSE is large) and where in addition the individual prediction considerably influences the

solution of the integral (locations with high probability density). Hence, a suitable criterion

can be formulated by multiplication of both components

z′ = arg max
z∈Ω

(

MSE
(

x′, z
)

pZ(z)
)

. (6.26)

This criterion is in general more significant than simply maximizing the MSE because it

potentially prefers regions with moderate MSE values but great importance for the solution

of the integral over regions that exhibit large MSE values but have virtually no relevance for

the evaluation of the expectation integral.

If ρ evaluates a worst case scenario, the rationale underlying the expected improvement

formulation is applied to find settings for z′. As opposed to the standard E(I) formulation,

the goal of the optimization at this stage is to find the worst case y#, or in other words, the

maximum of the deteriorating noise effects. Hence, the objective for the search of promising

noise variable settings z′ should represent a trade-off between worsening of the objective and

reducing the prediction error of the model in the noise space. The worsening associated with

a response value y when compared to the reference value y# is defined as

W = max
{

0,
(

y − y#
)}

(6.27)

For this worst case analysis within the noise space, the robustness criterion is formed by a

single evaluation of the metamodel. Hence, the prediction error ŝ at any point z can be com-

puted directly from the MSE of the metamodel at point (x′, z), namely ŝ =
√

MSE (x′, z).

Typically, there is no original sampling point with coordinates (x′, z) even for arbitrary

z∈ Ω. Hence, there exists no reference value y# for which the prediction error vanishes and

on this account both values have to be treated as realizations of a random process symbol-

ized by random variables Y and Y#, respectively. As a replacement for a “tried and proven”

observation ỹ#, the prediction ŷ# that has the smallest prediction error ŝ# is chosen as refer-

ence value. Due to this choice, no distinction of cases as has been elaborated for the expected
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Figure 6.5: Expected worsening for the case of a random reference value.

improvement is needed; ŝ# ≤ ŝ holds by definition. Consequently, the integration interval

is always from the upper intersection point y2 to infinity. The intersection points y1,2 of

the two probability density functions pY and pY# are defined analogously to Equation (6.22)

with y1 ≤ y2 (cf. Figure 6.5).

The expected worsening results from

E
(

W
)

= E
(

max
{

0, (Y − Y#)
})

=

∞
∫

y2

(

y − ŷ#
) (

pY(y) − pY#(y)
)

dy

=
(

ŷ − ŷ#
)

(

1 − Φ

(

y2 − ŷ

ŝ

))

+ ŝ φ

(

y2 − ŷ

ŝ

)

− ŝ# φ

(

y2 − ŷ#

ŝ#

)

.

(6.28)

A detailed derivation of this Equation can be found in Appendix A.3.

In conclusion, the infill point settings for the noise variable part z′ for integral-type ro-

bustness criteria are obtained according to Equation (6.26) while for minimax-type robust-

ness criteria the expected worsening in Equation (6.28) is maximized. In both cases, the val-

ues for the design variables are fixed to x′. Together the values for the design and the noise

variables, x′ and z′, respectively, define the infill point v′ according to Equation (4.1). For

this infill point, a computer simulation will be performed next and the resulting response

value will serve as additional information to update the metamodel.

This procedure can be continued, until either a lower bound on E(I) of the design or a

maximum number of runs is met. The complete process sequence is illustrated in a flowchart

in Figure 6.6. The sequential update approach for interpolation metamodels in robust design

optimization has been detailed for the case of a kriging metamodel formulation. However,

the concept can identically be applied to RBF models by treating the RBF prediction as real-

ization of a stochastic process. A discussion of this approach is given in [SLK04].

Since the expected improvement is highly multimodal, an extension of the sequential

update procedure to parallel systems is straightforward. By choosing a global optimiza-

tion algorithm that is able to detect and store local minima as well (e.g. a gradient-based

optimizer with multiple starting points or an evolutionary strategy), a desired number of

candidate infill points (typically equal to the number of processors available) can be identi-

fied within one update step. Analogously to the procedure described above, search for infill
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CHAPTER 6 METAMODELS USED IN OPTIMIZATION PROCEDURES

points starts by investigating the design space. In this first step, several isolated maxima

of Equation (6.20) are determined, for which in a second step corresponding noise variable

settings are specified either by Equation (6.26) or from the maximum of Equation (6.28). The

computer simulations defined by these input settings can then be evaluated in parallel. As

a result, the metamodel gains more additional information during one update step yielding

a better global approximation.

To increase numerical efficiency for kriging models even further, updating the estimated

metamodel coefficients θ̂ can be omitted for some iterations in the model update. This re-

estimation of θ̂ requires the solution of a multidimensional optimization problem as pointed

out in Sections 4.3 and 4.6). The cost related to this refitting of the model parameters can

reduce or even outweigh the benefit of a sequential update algorithm – especially if the

number of variables and/or sampling points is large. Since the interpolating property of

kriging metamodels does not depend on θ̂, these correlation parameters do not necessarily

have to be refit each time an infill point is included. In [GRMS06] a scheme is presented to

determine whether the kriging model parameters should be updated.

In case the correlation parameters θ are not re-estimated during the current model up-

date, the position of the subsequent infill point will typically coincide with the location of

the second best local maximum of E(I) before the model update. In other words, the reason

why the maximum expected improvement based on the updated model does in general not

coincide with one of the local maxima of E(I) identified for the previous model is that the

correlation structure of the model changes due to the update in the model parameters.
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Chapter 7

Numerical Examples

In this chapter, the procedure introduced in Figure 6.6 is tested on illustrative examples.

To reveal the special behavior of the update procedure for metamodels in robust design

optimization problems, three different mathematical test functions are investigated. The

emphasis of these test examples is on a problem formulation that is on the one hand easy to

understand and that on the other hand allows for a graphical representation of the progress

in the optimization and update procedures. Hence, only functions with two input variables

(one design variable and one noise parameter) are chosen, such that the response can still be

shown in a 3D-plot.

The presentation of mathematical test functions is followed by an industrial applica-

tion example of metamodel-based robust design optimization. The selected example deals

with the robustness of a deep-drawing process and is rather typical for applications in the

automotive industry. However, this illustration can only exemplify the range of possible

applications. Examples from the field of civil engineering can be found in [JB05].

7.1 Quadratic Test Example

In the first example, the proposed procedure is tested on the function introduced in Exam-

ple 2 on page 54ff.

f (x, z) = (2 − x) (0.1 − z − 0.1 x) + 0.3

with the design space limited to 0 ≤ x ≤ 4. For this robust design problem, the resulting

probability distribution can be determined analytically, and hence exact results for the dif-

ferent robustness criteria are readily available (cf. results in Section 3.2.3). These analytical

results serve as reference values for the robust design optima computed numerically.

The optimization is started by fitting a kriging metamodel (with Gaussian correlation

function and constant polynomial part) to a training data set containing 10 sampling points.

The necessary experimental design is obtained by means of the maximin distance LHD sam-

pling technique i.e. a selection of 100 LHDs is sampled and the design with the largest min-

imum distance is chosen as basis for the initial sampling. A variety of 100 Latin hypercube

designs can be obtained very quickly, however, the maximin distance design from this se-

lection may still be far from being equally spread over the model space. Since further infill

143



CHAPTER 7 NUMERICAL EXAMPLES

Figure 7.1: Quadratic test example.

Figure 7.2: Initial kriging metamodel based on 10 samples.

points will be added during the optimization process, this shortcoming will be compensated

steadily.

The original function f is evaluated for the initial sampling points and the first meta-

model is fit to the resulting training data set. The original function is plotted in Figure 7.1

and Figure 7.2 depicts the initial model, where the sampling points are marked with white

circles. Figure 7.3 depicts the estimated prediction variance (MSE) of the initial metamodel.
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7.1 Quadratic Test Example

Figure 7.3: MSE of initial kriging metamodel.

Figure 7.4: Projection of initial kriging metamodel onto design space (x-y-plane).

7.1.1 Worst-Case Robustness Criterion

In a first run, the robustness criterion is chosen to be of minimax-type. The noise variable

Z is assumed to vary within the range −0.2 ≤ z ≤ 0.2. Hence, for each design x, the worst

case of z ∈ [−0.2, 0.2] represent the characteristic robustness value. Figure 7.4 shows the

projection of the metamodel onto the design space (cf. Figure 3.11 for the same projection

of the original function). As outlined in Section 3.2.3, the upper boundary of the displayed

range corresponds to the worst-case robustness criterion.

The expected improvement criterion is evaluated for prediction ŷ and prediction error
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Figure 7.5: Expected improvement based on initial metamodel.

ŝ of the initial metamodel. The maximum expected improvement is identified by means

of the DiRect optimization algorithm. For the first model update, the design x′ = 1.885 is

found to be most promising (cf. Figure 7.5). For the candidate design variable setting x′, the

corresponding noise parameter setting is computed by maximizing Equation (6.28). This

optimization task is also solved using the DiRect algorithm resulting in z′ = −0.2. The

infill point defined by (x′, z′) is added to the set of sampling points and the corresponding

response is evaluated. Subsequently, a new metamodel is fit to the enlarged set of training

data. The resulting metamodel is plotted in Figure 7.6, where the infill point is indicated by

a black diamond.

Based on the new metamodel, the update procedure is repeated and this process is con-

tinued until the predefined stopping criterion is met. Typically, the update procedure is

aborted when the expected improvement falls below a threshold value, which means that

Figure 7.6: Updated kriging metamodel after inclusion of the first infill point.
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7.1 Quadratic Test Example

Figure 7.7: Final kriging metamodel after seven update sequences.

Figure 7.8: MSE of final kriging metamodel.

significant improvement cannot be expected for further model updates. Here, the model

update is stopped as soon as the average of the three most recent expected improvement

values undershoots 1‰ of the absolute robustness value i.e. the nominal value of the ro-

bustness criterion evaluated at the predicted minimum. This averaging accounts for the fact

that the expected improvement is typically not monotonically decreasing. In the current

test case, this lower limit is reached after five model updates.
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CHAPTER 7 NUMERICAL EXAMPLES

Figure 7.9: Projection of final kriging metamodel onto design space (x-y-plane).

Figure 7.7 shows how the infill points are placed: for all points, the design coordinate

setting is around x = 2, which represents the true robust optimum. A closer investigation

of the noise space reveals that for x < 2, the worst case is defined by z = −0.2 whereas for

x > 2, the noise parameter setting z = 0.2 yields the worst case. The expected worsening

criterion picked up both crucial locations to refine the metamodel approximation. As a

result, the final metamodel predicts the robust optimum at the exact value of x̂∗ = x∗ = 2.

7.1.2 Robustness Criterion Based on a Composite Function

For a second run, the robustness criterion is formulated as sum of the mean and the standard

deviation of the response value – referring to Equation (3.38) with w = 1. The noise variable

Z is described by a normal distribution with µZ = 0.02 and σZ = 0.05. To evaluate the mean

value and the standard deviation of the response, a plain Monte Carlo sampling with 1000

samples is performed on the metamodel.

The optimization is started with the same initial metamodel as in the previous run (Fig-

ure 7.2). The infill points, however, are determined according to the formulas for integral-

type robustness criteria. In Figure 7.10, the expected improvement for the first model update

is depicted. The sampling point at x = 1.8 and z = 0.06 causes the two local maxima in the

expected improvement graph. At this point (as for all sampling points), the prediction error

ŝ vanishes and the expected improvement in the robustness criterion is small. The predicted

robust design, however, is also located in this area. Thus, the expected improvement is

rapidly increasing for designs smaller or greater than 1.8. For the design coordinate set-

ting with the maximum expected improvement x′ = 1.733, corresponding noise parameter

settings are determined according to Equation (6.26) yielding z′ = −0.017.
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Figure 7.10: Expected improvement based on initial metamodel.

Following the update procedure, the point (x′, z′) is evaluated and added to the set of

training data. Then, a new metamodel is fit and the update loop is repeated. Here again,

the iteration is stopped when the average of the three most recent expected improvement

values falls below 1‰ of the absolute robustness value. In the current example, the stopping

criterion is met after five model updates.

As stated in Example 2, the analytical robust solution for this formulation is x∗ = 1.65.

The initial metamodel predicted the robust optimum at x̂∗ = 1.721. Using the final meta-

model (depicted in Figure 7.11) to compute the robust optimum results in the prediction

x̂∗ = 1.646. This result substantiates that the five infill points were chosen at qualified loca-

tions.

Figure 7.11: Final kriging metamodel after five update sequences.
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7.2 BRANIN Function

The second numerical example is the well-known BRANIN function [Bra72, DS78]

f (x, z) =

(

z − 5.1

4 π2
x2 +

5

π
x − 6

)2

+ 10

(

1 − 1

8 π

)

cos(x) + 10 ,

which is depicted in Figure 7.12. For this function, the design space limited to −5 ≤ x ≤ 10.

The noise variable Z is assumed to vary according to a normal distribution with µZ = 5

and σZ = 2. The robustness criterion is formulated as per Equation (3.38) with w = 1. The

necessary statistics are evaluated as before – by means of a plain Monte Carlo sampling with

1000 samples.

The BRANIN function, which is typically used as test function for global optimization

algorithms, is chosen for this example because it exhibits several local minima and is clearly

multimodal along x. Accordingly, it can be assumed that several designs potentially qualify

for a robust solution. Since function evaluations for this analytic equation are not expensive,

the robustness criterion can also be evaluated on the original function. In Figure 7.13, the

robustness criterion evaluated on the original function is plotted. It shows that two distinct

designs represent local minima. The global minimum of the robustness criterion is located

at x∗ = 10.

In the initialization step, a kriging metamodel (again with Gaussian correlation function

and constant polynomial part) is fit to training data consisting of 10 sampling points. The

experimental design is obtained by the same maximin distance LHD sampling technique as

in the previous example. The original function f is evaluated for the initial sampling points

and the metamodel is fit to the resulting training data set. The resulting initial model is

Figure 7.12: BRANIN function.
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Figure 7.13: Robustness criterion for BRANIN function.

plotted in Figure 7.14. The corresponding prediction variance ŝ2 is depicted in Figure 7.15.

The expected improvement criterion is evaluated for the initial metamodel and the maxi-

mum expected improvement is determined by means of the DiRect optimization algorithm.

For the first model update, the design x′ = 10 is identified as most promising infill point

setting (cf. Figure 7.16). For the design variable coordinate x′, the corresponding noise pa-

rameter setting is computed according to Equation (6.26) resulting in z′ = 3.474. The located

infill point is evaluated and added to the set of training data. Consequently, the metamodel

is updated (as plotted in Figure 7.17) and the update loop is started over.

As in the previous examples, the model update is stopped as soon as the average of the

three most recent expected improvement values undershoots 1‰ of the absolute robustness

value. This lower limit is reached after seven model updates.

Figure 7.14: Initial kriging metamodel based on 10 samples.

151



CHAPTER 7 NUMERICAL EXAMPLES

Figure 7.15: MSE of initial kriging metamodel.

As can be seen from Figure 7.18 depicting the final metamodel, the design settings of the

infill points are clustered around two distinct values x both representing the (local) minima

of the true robustness criterion. In the search for promising noise parameter settings, the

prediction variance is weighted with the probability density of Z. This explains why the

noise parameter settings of the infill points are only chosen from regions which significantly

contribute to the robustness value, namely values around µZ = 5.

It can be resumed that the proposed robust design optimization procedure picked up

both candidates for a robust optimal design according to the chosen robustness criterion.

The metamodel was refined in the vicinity of both design sites yielding the final prediction

for the robust optimal design at the location of the true optimum x̂∗ = x∗ = 10.0. Fig-

ure 7.19 shows that the estimated prediction variance of the final metamodel approximation

vanishes for all important subregions of the model space. At the same time, the accuracy

0 10
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E I( )

5

3

2

1

0
− 5

Figure 7.16: Expected improvement based on initial metamodel.
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7.2 BRANIN Function

Figure 7.17: Updated kriging metamodel after inclusion of the first infill point.

Figure 7.18: Final kriging metamodel after seven update sequences.

of the metamodel remains poor in regions which either do not contribute to the robustness

criterion (negligible probability density pZ for z > 10) or where the metamodel already pre-

dicts large robustness values i.e. for designs which are clearly non-optimal (in the present

example x < −2).
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Figure 7.19: MSE of final kriging metamodel.

7.3 Six Hump Camel Back Function

The third numerical example is the so-called six hump camel back function [Bra72, DS75]

f (x, z) = 4 x2 − 2.1 x4 +
1

3
x6 + x z − 4 z2 + 4 z4 ,

which is depicted in Figure 7.20. The investigated design space is limited to −2 ≤ x ≤ 2.

The noise variable Z is restricted to the range −1 ≤ x ≤ 1. The worst case within these

tolerance bounds is taken as robustness criterion according to Equation (3.32). To evaluate

the minimax robustness criterion, the DiRect optimization algorithm is applied.

The six hump camel back function was chosen for this example because it is well-suited

to highlight the proposed method in the context of worst-case analysis. Since the function

is highly multimodal, an accurate global approximation requires a large training data set

(e.g. in [TSS+05] 100 sampling points are used). Obviously, only one design x = 0 qualifies

for a robust optimum. At this design, three different noise parameter settings are relevant,

namely z = −1, z = 0, and z = 1. Hence, the update algorithm is expected to refine the

metamodel mainly in these three subregions.

Again, a training data set of 10 sampling points (maximin distance LHD chosen from

100 LHDs) is evaluated and the same metamodel type as for the previous examples is fit

to the data (Figure 7.21). Due to the comparably small set of sampling points, the initial

model bears only little resemblance to the original function. The corresponding prediction

variance ŝ2 is depicted in Figure 7.22.

To determine the coordinate setting for the infill point, the design space is investigated

first. Here, the maximization of the expected improvement yields the candidate x′ = 0.013.
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7.3 Six Hump Camel Back Function

Figure 7.20: Six hump camel back function.

Figure 7.21: Initial kriging metamodel based on 10 samples.

For this design, a maximization of the expected worsening identifies the noise parameter

setting for the infill point z = −1. The infill point (x′, z′) enlarges the set of training data

for which a new metamodel is fit. The metamodel after inclusion of the first infill point is

plotted in Figure 7.23.

For the updated metamodel, the expected improvement is maximized again and this

procedure is continued until a stopping criterion is met. For this special example, the op-
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Figure 7.22: MSE of initial kriging metamodel.

Figure 7.23: Updated kriging metamodel after inclusion of the first infill point.

timal robustness value is zero. Hence, it would not be reasonable to define the stopping

criterion by means of a minimum expected improvement derived from a percentage of the

robustness value. Consequently, the model update in this example is stopped as soon as the

average of the three most recent expected improvement values undershoots the absolute

value ε = 0.001 or when a maximum of 10 updates has been performed.

As illustrated by Figure 7.24, the first three infill points have been placed at the three
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7.3 Six Hump Camel Back Function

Figure 7.24: Kriging metamodel after three update steps.

Figure 7.25: Final kriging metamodel after seven update sequences.

distinct locations which are most important for evaluation of the robustness criterion. After

ten model updates (Figure 7.25), the infill points refined the crucial regions of the model

such that the robust optimum is predicted accurately at x = −0.534 · 10−3 (true optimum at

exactly x∗ = 0). At this stage, the average of the three most recent E(I) values is 0.003.

To illustrate how selective the update procedure focuses on the detection of the robust

optimum, the projection of the original function onto the x-y-plane is contrasted with the
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(a) (b)

Figure 7.26: Comparison of (a) original function and (b) updated model in projection onto x-y-plane.

Figure 7.27: MSE of final kriging metamodel.

same projection of the final metamodel in Figure 7.26a&b. It can be seen, that the meta-

model prediction only roughly estimates the true response values in large parts of the model

space. However, the three decisive locations (at x = 0 with z = −1, z = 0, and z = 1) are

approximated soundly. Finally, the prediction variance of the updated metamodel around

the robust design x = 0 is close to zero over the entire range of possible noise variations

(cf. Figure 7.27).
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7.4 Robust Design Optimization of a Side Panel Frame in Sheet

Metal Forming

As a final example, an industrial application is detailed in this section. The example shows

the robust design optimization of a side panel frame which is produced by means of a deep

drawing process. The design variables of this optimization problem comprise four geomet-

ric parameters, namely entry angle α1, entry radius r, opening angle α2, and frame depth h

(cf. Figure 7.28). Simultaneously, two process variables are included into the set of design

variables such that for each geometry to be studied, the best possible forming process setup

is considered. Hence, the problem consists of six design variables in total. The most sig-

nificant source of variation is the material, which is described by four parameters. These

random variables are particularized by a joint probability density function derived from

measurements of the sheet metal manufacturer.

In sheet metal forming, the quality of the designed part is typically assessed by means of

the forming limit diagram (FLD) [MDH02, HT06]. The FLD is plotted in the space of the two

principal strains εmajor and εminor, respectively, which are both in-plain with the surface of

the sheet metal. Accordingly, for each finite element of the analysis, its resulting principal

strains are evaluated, and hence, each element is represented by a single point in the FLD.

Depending on the position of this point in the diagram, different possible failure modes can

be distinguished as presented in the schematic illustration of Figure 7.29.

The forming limit curve (FLC) represents the boundary between strain combinations pro-

ducing localized necking and/or fracture (points above the FLC) and those that are per-

missible for the desired forming operation (points below the FLC). The FLC is material-

α1

α2r

h

Figure 7.28: Geometric design variables of the problem.
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Figure 7.29: Schematic forming limit diagram (FLD).

dependent and is typically determined by means of physical experiments. Furthermore, the

FLD identifies a region where wrinkling occurs, namely whenever εmajor ≤ −εminor. Finally,

specific combinations of major and minor principal strains can be identified which define

states of excessive thinning. Typically, additional safety margins with respect to cracking

and wrinkling are introduced as indicated by the dashed lines. Clearly, εmajor ≥ εminor holds

by definition and thus there are no feasible points in the corresponding part of the FLD. Con-

sequently, all points resulting from the respective finite element analyses should be inside

the remaining area in the center of the FLD (highlighted in gray).

Before the optimization is started, the quality of the reference design is assessed. For this

purpose, 200 Monte Carlo samples with varying material parameters are evaluated based

on nonlinear finite element models. For each simulation run, the element with the highest

risk of cracking is determined and only the corresponding point is plotted in the FLD. As

a result, Figure 7.30a shows the FLD for the reference design containing 200 points. Each

point represents the strain state of the most critical finite element for a specific combination

of material parameters. It can be seen from Figure 7.31 that there are two particular locations

on the blank sheet at which cracking can possibly occur. Due to this fact, the most critical

elements also cluster in two distinct regions in the FLD.

The aim of the robust design optimization in this example is to reduce εmajor such that

even in the worst case all elements are located within the optimal formability range. Con-
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Figure 7.30: Forming limit diagrams comparing (a) reference design and (b) optimized design.
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Risk of cracking

Figure 7.31: Two separate locations with pronounced risk of cracking in the reference design.

currently, the variation in this response value should be reduced to minimize the observable

spread of points in the FLD. To achieve this goal, the objective function is composed accord-

ing to Equation (3.38) with w = 4. The problem is tackled by using a maximin-distance Latin

hypercube design with an initial size of 200 sampling points. For the resulting parameter

settings, finite element analyses are performed to gain the required training data. Then, a

first kriging metamodel with Gaussian correlation formulation is fitted and the proposed

update procedure is repeated until the expected improvement averaged over the last three

updates undershoots 0.1% of the robustness criterion evaluated at the estimated optimum.

In this study, the E(I) value falls below the given treshold after 12 model updates.

Finally, the obtained robust optimum is verified by means of another Monte Carlo sam-

pling. Again, 200 analyses of the original finite element code are evaluated yielding the plot

in Figure 7.30b. A comparison of the reference design with the optimized layout reveals

that both criteria (mean and standard deviation) are significantly improved during the op-

timization. In general, the optimized design exhibits a more favorable formability and the

variation is considerably reduced. To point out the smaller variance, a zoomed version of

one of the scatter plots is depicted in Figure 7.32.

This industrial application proves both applicability and efficiency of the proposed

(a) (b)

Figure 7.32: Zoomed scatter plots comparing (a) reference design and (b) optimized design.
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method. Obviously, the two objectives i.e. to improve mean performance and to reduce

the deteriorating effects caused by the variation in the material parameters are achieved

during the optimization. The computational effort related to the complete robust design

optimization (here: 212 FE simulations) is not much larger than what is typically spent to

assess the robustness of one single design (in the present case: 200 simulations per design).

Hence, with an average computation time of around 30 minutes per original analysis, the

suggested approach is expensive, but still feasible for many applications.
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Chapter 8

Conclusions and Outlook

In the present work, the concepts of robust design and reliability-based optimization were

discussed – two special ways how to grasp and solve stochastic optimization problems.

Stochastic optimization problems are characterized by the trait that some input parameters

(so-called noise parameters) are not deterministic, but either uncertain or stochastic in na-

ture. The challenge in solving this class of problems is to quantify the consequences of noise

in the input parameters on some output value. In particular, respective tolerance ranges

or probability distributions related to noise parameters have to be mapped onto ranges of

fluctuation or probability densities of the observed response.

Once this information is obtained, the question arises how to assess and compare a prob-

ability distribution resulting from one design to an alternative design. For this purpose, suit-

able deterministic substitute formulations were compiled from different fields of research

with a focus on robustness criteria derived from statistical decision theory. These substitute

formulations were discussed in detail. On closer inspection, all robustness criteria could be

classified into two groups: Robustness formulations based on statistics (for instance, mean

value and standard deviation) or robustness criteria defined by extreme events (worst-case

analysis).

In general, the presented formulations require a multitude of function evaluations to as-

sess one single design. During an optimization process, where many alternative designs

have to be considered, the number of required function evaluations rapidly becomes exces-

sive. Especially in computational engineering, where analyses typically rely on nonlinear

systems of equations (for instance, derived from a nonlinear finite element formulation),

even pointwise solutions can be quite expensive to evaluate. To reduce the enormous nu-

merical effort related to robustness analyses, metamodeling techniques were used in this

thesis to replace the actual numerical analysis codes by a simpler formulation. Metamodels

are fitted to each individual problem on the basis of training data i.e. response values of the

original system obtained at a selection of sampling points. Different metamodeling tech-

niques were introduced and compared in the present work. Special emphasis was placed

on formulations that result in an interpolating model such that all training data points are

exactly reproduced by the metamodel prediction.

To collect training data efficiently, the locations for sampling points have to be chosen

systematically thus assuring a maximum gain in information with minimal effort. Various

methods were proposed for this purpose, typically summarized under the notion of design
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of experiments (DoE). Typically, a specific DoE method is most suitable in combination with

each individual metamodel formulation. For interpolating models, experimental designs

with space-filling property were introduced. This feature assures a balanced predictive per-

formance of the approximation model throughout the investigated model space.

Finally, it was pointed out that optimization based on metamodels yields a prediction

for the optimum. To guarantee for a reliable and accurate optimization result, a method

to sequentially update the metamodel during the optimization process was proposed. In

contrast to existing methods for sequential approximations in optimization, the update pro-

cedure is particularly tailored to solve robust design problems. In this context, the search for

infill points is divided into two parts. The design and the noise space are explored succes-

sively using adapted search criteria. At this point, the proposed classification of robustness

criteria was used to account for the individual requirements of each robustness formulation.

Three mathematical test functions and one industrial application were used to verify and

illustrate the proposed method showing its applicability and efficiency. In reference to these

examples, it should be noted that different optimization runs starting with random Latin

hypercube designs will generally yield (at least slightly) different optimization results. Fur-

thermore, by choosing too few sampling points, robust designs might remain undiscovered

because the prediction error of the metamodel can dominate the “true variance” due to the

noise.

Consecutive work will have to proof successful application of the proposed method to

more industrial applications. As a possible application example from the field of civil engi-

neering, the renewal of a historical wooden roof structure is envisioned. In this construction,

actual state and condition of the aged wood and joints are uncertain.

The realization of such examples is still impeded by lacking or unavailable interfaces to

link the optimization procedure to the respective analysis software. Here, the integration

of the proposed concept in commercial optimization software, which typically feature inter-

faces to popular and well-established commercial solvers, would enable a broader range of

applications.

In future research, the proposed method of sequentially updated metamodels for robust

design problems could be augmented to include also reliability problems. In this case, care

has to be taken that the metamodels for the constraints are updated in crucial subregions.

Possible locations for infill points in constraint model update could include the most probable

point (MPP) i.e. the point in the infeasible domain with the highest probability density.
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Appendix

Mathematical Derivations

This appendix provides detailed derivations and transformations that have been applied in

the Equations addressed below. To keep the representation throughout the text as concise

as possible, some rather lengthy intermediate steps in the derivations have been deferred to

the appendix.

A.1 Derivation of the Standard Expected Improvement

In the following, the particular transformations that have been applied to find Equa-

tion (6.14) on page 131 are described in detail.

E
(

I
)

=

ỹ∗
∫

−∞

(ỹ∗ − y) pY(y) dy

Applying the substitution y = t ŝ + ŷ and t̃∗ =
ỹ∗ − ŷ

ŝ

=

t̃∗
∫

−∞

(ỹ∗ − t ŝ − ŷ) pY(t ŝ + ŷ)
dy

dt
dt

As a result of the substitution t has a standard normal distribution i.e. t ∼ N(0, 1) and with

pY(t ŝ + ŷ) =
1

ŝ
φ(t) (where φ symbolizes the probability density function of the standard

normal distribution)

=

t̃∗
∫

−∞

(ỹ∗ − t ŝ − ŷ)
1

ŝ
φ(t)

dy

dt
dt

With
dy

dt
= ŝ

=

t̃∗
∫

−∞

(ỹ∗ − t ŝ − ŷ) φ(t) dt = (ỹ∗ − ŷ)

t̃∗
∫

−∞

φ(t) dt −
t̃∗
∫

−∞

t ŝ φ(t) dt
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With the cumulative distribution function Φ(t) =
∫

φ(t) dt of the standard normal distri-

bution

= (ỹ∗ − ŷ)
[

Φ(t)
]t̃∗

−∞

− ŝ

t̃∗
∫

−∞

t φ(t) dt = (ỹ∗ − ŷ) Φ(t̃∗) − ŝ

t̃∗
∫

−∞

t φ(t) dt

Making use of the properties of the exponential function in the formulation of φ, it can be

shown that dφ(t)/dt = −t φ(t) and hence
∫

t φ(t) dt = −φ(t)

= (ỹ∗ − ŷ) Φ(t̃∗) + ŝ
[

φ(t)
]t̃∗

−∞

= (ỹ∗ − ŷ) Φ(t̃∗) + ŝ φ(t̃∗)

Reversing the substitution for t̃∗ finally yields the formula given in Equation (6.14)

= (ỹ∗ − ŷ) Φ

(

ỹ∗ − ŷ

ŝ

)

+ ŝ φ

(

ỹ∗ − ŷ

ŝ

)

A.2 Derivation of the Expected Improvement for Robust Design

Problems

In this section, Equations (6.23) through (6.25) on page 138 are particularized.

E
(

I
)

=

b
∫

a

(ŷ∗ − y)
(

pY(y) − pY∗(y)
)

dy

=

b
∫

a

(ŷ∗ − y) pY(y) dy −
b
∫

a

(ŷ∗ − y) pY∗(y) dy

Making use of the results of Section A.1 and the substitution y = t ŝ + ŷ for the first integral

with ta =
a − ŷ

ŝ
and tb =

b − ŷ

ŝ
yields

= (ŷ∗ − ŷ)
[

Φ(t)
]tb

ta

+ ŝ
[

φ(t)
]tb

ta

−
b
∫

a

(ŷ∗ − y) pY∗(y) dy

For the second integral the substitution y = u ŝ∗ + ŷ∗ is used with ua =
a − ŷ∗

ŝ∗
and

ub =
b − ŷ∗

ŝ∗

= (ŷ∗ − ŷ)
[

Φ(t)
]tb

ta

+ ŝ
[

φ(t)
]tb

ta

−
ub
∫

ua

(ŷ∗ − u ŝ∗ − ŷ∗)
1

ŝ∗
φ(u)

dy

du
du
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With
dy

du
= ŝ∗

= (ŷ∗ − ŷ)
[

Φ(t)
]tb

ta

+ ŝ
[

φ(t)
]tb

ta

+ ŝ∗
ub
∫

ua

u φ(u) du

Using the relation
∫

u φ(u) du = −φ(u)

= (ŷ∗ − ŷ)
[

Φ(t)
]tb

ta

+ ŝ
[

φ(t)
]tb

ta

− ŝ∗
[

φ(u)
]ub

ua

To evaluate these terms, the integration limits have to be known. As introduced in Sec-

tion 6.2.3, the integration limits a and b (and hence all derived quantities) depend on the

intersection points of the probability density functions pY and pY∗ .

For the first two cases, the integration limits are a = −∞ and b = y1 . The substituted

integration bounds are written as

ta = −∞ , tb =
y1 − ŷ

ŝ
, ua = −∞ , and ub =

y1 − ŷ∗

ŝ∗
.

For these integration bounds, the formula for the expected improvement can be simplified

to

E
(

I
)

= (ŷ∗ − ŷ) Φ

(

y1 − ŷ

ŝ

)

+ ŝ φ

(

y1 − ŷ

ŝ

)

− ŝ∗ φ

(

y1 − ŷ∗

ŝ∗

)

For the third case with lower limit a = y1 and upper limit b = ŷ∗ , the integration

bounds read

ta =
y1 − ŷ

ŝ
, tb =

ŷ∗ − ŷ

ŝ
, ua =

y1 − ŷ∗

ŝ∗
, and ub =

ŷ∗ − ŷ∗

ŝ∗
= 0 .

The expected improvement can be computed according to

E
(

I
)

= (ŷ∗ − ŷ)
[

Φ(t)
]tb

ta

+ ŝ
[

φ(t)
]tb

ta

− ŝ∗
[

φ(u)
]0

ua

= (ŷ∗ − ŷ)
(

Φ(tb) − Φ(ta)
)

+ ŝ
(

φ(tb) − φ(ta)
)

− ŝ∗
( 1√

2π
− φ(ua)

)

= (ŷ∗ − ŷ)

(

Φ

(

ŷ∗ − ŷ

ŝ

)

− Φ

(

y1 − ŷ

ŝ

))

+ ŝ

(

φ

(

ŷ∗ − ŷ

ŝ

)

− φ

(

y1 − ŷ

ŝ

))

− ŝ∗
(

1√
2π

− φ

(

y1 − ŷ∗

ŝ∗

))

In case the upper limit is specified by b = y2 , no simplifications are possible. The expected

improvement has to be computed from

E
(

I
)

= (ŷ∗ − ŷ)

(

Φ

(

y2 − ŷ

ŝ

)

− Φ

(

y1 − ŷ

ŝ

))

+ ŝ

(

φ

(

y2 − ŷ

ŝ

)

− φ

(

y1 − ŷ

ŝ

))

− ŝ∗
(

φ

(

y2 − ŷ∗

ŝ∗

)

− φ

(

y1 − ŷ∗

ŝ∗

))
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A.3 Derivation of the Expected Worsening for Robust Design

Problems

In this section, the derivation of Equation (6.28) on page 140 is presented in detail.

E
(

I
)

=

∞
∫

y2

(

y − ŷ#
) (

pY(y) − pY#(y)
)

dy

=

∞
∫

y2

(

y − ŷ#
)

pY(y) dy −
∞
∫

y2

(

y − ŷ#
)

pY#(y) dy

Making use of the results of Section A.1 and the substitution y = t ŝ + ŷ for the first integral

with the transformed integration limits ta =
y2 − ŷ

ŝ
and tb = ∞ yields

=
(

ŷ − ŷ#
)

[

Φ(t)
]∞

ta

− ŝ
[

φ(t)
]∞

ta

−
∞
∫

y2

(

y − ŷ#
)

pY#(y) dy

=
(

ŷ − ŷ#
)

(

1 − Φ(ta)
)

+ ŝ φ(ta) −
∞
∫

y2

(

y − ŷ#
)

pY#(y) dy

In analogy to Section A.2, the second integral is solved by the substitution y = u ŝ# + ŷ#

with ua =
y2 − ŷ#

ŝ#
and ub = ∞ yielding

=
(

ŷ − ŷ#
)

(

1 − Φ(ta)
)

+ ŝ φ(ta) −
∞
∫

ua

(

u ŝ# + ŷ# − ŷ#
) 1

ŝ#
φ(u)

dy

du
du

=
(

ŷ − ŷ#
)

(

1 − Φ(ta)
)

+ ŝ φ(ta) − ŝ#

∞
∫

ua

u φ(u) du

=
(

ŷ − ŷ#
)

(

1 − Φ(ta)
)

+ ŝ φ(ta) + ŝ#
[

φ(u)
]∞

ua

=
(

ŷ − ŷ#
)

(

1 − Φ(ta)
)

+ ŝ φ(ta) − ŝ# φ(ua)

=
(

ŷ − ŷ#
)

(

1 − Φ

(

y2 − ŷ

ŝ

))

+ ŝ φ

(

y2 − ŷ

ŝ

)

− ŝ# φ

(

y2 − ŷ#

ŝ#

)
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