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1 Introduction 

 

Nowadays, the objective of the contemporary dairy farming is to produce high quantity of 

milk with the low production costs. It means that the production of milk pro day has to be 

maximized and the expenses need to be minimized. At the same time the quality of milk 

has to satisfy very high standard, which is expected by the consumers. To satisfy all of 

these requirements is not an easy task. The problem is quite complex and many researchers 

and engineers are dealing with this topic. To get the highest milk yield and quality of milk 

for each cow with minimal investment the farmers maximally exploit the animals and feed 

them economically by preserving good health condition of the animals. It means that a 

strict control of the quality and quantity of food intake is necessary as it influences the milk 

production and also the milk producing cost. The production is optimized by choosing the 

right food mixture and amount for each animal. The investigations show that the right 

individual nutrition regime may not be selected based on the measured daily milk yields as 

it might be insufficient and misleading. Therefore, another measurable performance 

parameter that helps in individual concentrates supplementation decision needs to be 

chosen. The body weight of the cattle is shown to be a reasonable and available parameter. 

Dairy cow body weight is a useful parameter for husbandry decisions along lactation. 

Additionally, the data of body weight is important information of health condition of the 

cow. It seems that the information on the milk yield and body mass may be the correct 

basis not only for feeding strategy but also on the health condition of the cattle. Namely, 

the loss of body weight and the changes in the milk yield indicate the early symptom of 

disease. Based on this statement it is concluded that the need of overlook of the daily milk 

yield and the body weight for each animal is necessary. 

In order to gather all necessary data for modern dairy farming the individual identification 

of cows has to be introduced. The European Union countries are encouraging the farmers 

to mark the cattle. The marking of cows is made with electrical transponders attached on 

the collar or implants in the ear or rumen. To obtain the data of each individual cow the 

transponder antennas are positioned in the milking parlous, feeding stations and weighing 

devices. 

To get the information of the milk yield of an individual cow, first, in the milking parlour 

the number from the transponder is read. Then the milking process begins. The electronic 

in the milking device records the amount of given milk and the cow number. Such 

identification systems and milking installations exist in commercial use. Many companies 
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like Westfalia, DeLaval, etc., are widely recognised as major dairy equipment 

manufacturers and suppliers. 

The data of cow weight is obtained by measuring on the weighing device. In modern 

farming where the cows are treated individually it is necessary to know the weight of each 

cow. To get the information which cattle is measured the number of the cow is recorded 

from the transponder. 

Locations suitable for weighing cows are the return alley of the milking parlour and the 

concentrate feeding station. Weighing at the feeding station is not practical for large herds, 

since each feeder needs to have a weighing device and the body weight of the cow without 

milk is of interest. The weighing scales are frequently placed in the exit corridor of the 

milking parlour. 

There are three types of scales: manual (mechanical), semi-automatic (with doors) and 

automatic weighing scales (commonly referred to as walk-through weighers). The decision 

on what kind of weigher would be preferable depends on the number of cows in the herd 

and milking parlour. The majority farms are equipped with stationary milking parlours and 

just a few are rotary. After leaving the stationary milking parlour cows are commonly 

moving as a tight bunch in the exit walkway. The manual and the semi-automatic weighers 

are usually there installed. The advantage of these weighers is in their simplicity but they 

have many disadvantages and do not satisfy the requirements of modern and economical 

farming. Namely, the manual weighing scale requires labour and a long measurement time. 

The semi automatic weigher is an improved one and it consumes less time than the static 

measuring and requires less human assistance. The both weighers stop the advance of the 

cows and eventually block the milking process. In spite of that, for rotary parlours the 

manual or the semi-automatic weighing scale could be a good weighing solution due to the 

separate exit of the animals. 

For the modern milk production where the goal is to automate all the processes on dairy 

farm, an automatic weigher is the suggested solution. It eliminates the lacks of manual and 

semi-automatic weighing. The automatic weigher works without worker help and stopping 

of animal on the scale. The weighing process is done in a very short time without 

disturbing normal animal movement. The measured data is stored in a memory for the 

certain cow due to recording of the transponder number. In this work a new construction of 

automatic weigher based on the previous ones is suggested. Also, three methods dealing 

with body weight recognition from measured data are proposed. In the next chapter the 

most important automatic weighers are reviewed. 
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2 Stand of science and technique 

 

In this part the previous research in the field of dynamic weighing is presented. The 

achievements in the field of modelling of human being locomotion are reviewed. The 

fuzzy logic usage in function approximation is analysed, as well as, the possibilities of the 

neural networks in classification.  

 
 
2.1 Walk-through weighing scale development 

 

The first weighing scales used were manual weighing scales that weighted animas while 

standing on the platform. At least one man was needed to do the measurements and to 

organize animal movement. As the dairy farming was developing into a complex milk 

production the need for faster and simpler procedure of body weight measurement was 

increasing. Consequently, semi-automatic weighing scale with doors and walk-through 

weighing scale were designed. The weighers with doors were similar to manual scales just 

that the procedure of weighing was partially automated. The doors of the scale were 

automatically closed as the animal stepped on the weighing platform. The animal was kept 

on the scale long enough to perform good reading of the body weight. Due to the long time 

needed for body weight measurement and often door failure the semi-automatic weighing 

was not preferred. Consequently, walk-through weighing scales were developed. 

The first automatic weighers appeared at the end of seventies of the twentieth century. D.E. 

Filby, M.J.B. Turner and M.J. Street gave the initial investigation in this field in 1979. The 

paper (FILBY et al., 1979 [19]) discussed the novelty in automatic walk-through weighing. 

Since that time many researchers were and are working in developing an accurate walk-

through weighing scale. The innovations in automatic weighers are explained in a number 

of scientific papers. All of them are following the same route in creating a better weighing 

device and all the following researches are the improvement of the previous results and 

represent the alternative solutions. Some of the main results will be shown in this chapter. 

In the work of FILBY et al. (1979) [19] the weighing platform had the length of 3 meters. 

The measured force during cow stride over the weigher was averaged and the peak of the 

signal was recorded as new measured body mass. However, if the new measured mass was 

bigger than allowed deviation of +/- 30 kilograms compared to reference body weight, the 

results were rejected. The useful capture rate was 60.5 %. The method gave better results 
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for big and slow than for young and fast cows. The method was applicable only for the 

case when cow was alone on the scale, but for fast crossing and crowding on the weigher it 

could not give satisfactory results. 

IPEMA et al. (1987) [35] showed that the weighing platform could be mounted on the 

floor of concentrate feeding station on dairy farm. Namely, the cow is mostly motionless 

during feeding so the running mean is sufficient in signal processing. The authors 

suggested that for commercial purposes on large dairy farms all the concentrate feeding 

stations would have to be equipped with such weighing scales. This would lead to higher 

investments but to an improvement in cow body weight measurements. 

The measuring of the weight during feeding is also applied for pigs. WILLIAMS et al. 

(1996) [86] considered the body weight measurement at a single space feeder. A small 

electronic weighing platform was positioned in front of the feeder. The weigher measured 

the weight of pig front legs during eating. The real time method with Kalman filter was 

used for signal processing. The standard deviation of the error between the whole weight 

of the pig and the daily weight derived from a linear interpolation between first and fifth 

day was 1.55 kilograms. The disadvantage of the front legs weighing was in estimation of 

the whole body weight. There was time dependence in proportion between front legs and 

whole weight of the animal. Consequently, measuring the whole weight of the pig 

periodically (e.g. every 14 days) was required. 

The main disadvantage of measuring of animal during feeding is that it requires the 

measuring to be at the same time every day. Namely, the body weight can oscillate 

considerably during the day. The weight of the cattle fluctuates between 30 and 40 

kilograms during the day due to large intakes of food and water and outputs of milk, urine 

and faeces (PEIPER et al., 1993 [58], REN et al., 1992 [62], MALTZ et al., 1990 [45], 

MALTZ et al., 1992 [46]). If the measuring is in different time the obtained results may be 

interpreted falsely. As the body weight does not vary much from day to day at the same 

time of the day the weighing of the animals at the same time every day reduces this lack. In 

order to eliminate this problem and to interpret the changes in body weight correctly, it was 

suggested that the weights should be compared at the same time of the day. To ensure the 

cow to be fed at the same time every day and to be measured at the same time is not an 

easy task. Due to this disadvantage the measuring during the feeding had to be eliminated. 

Since it was known that the weighing after milking, which occurs at approximately the 

same time each day, was more reliable than the cattle weighing at the feeding station the 
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new methods of automatic weighing were introduced (PEIPER et al., 1993 [58], REN et 

al., 1992 [62]). 

REN et al. (1992) [62] created an automatic weigher for mass measurement after milking 

of dairy cows. The walk-through weigher consisted of a 2.1 meters long platform. The 

platform was shorter than the previous mentioned to obtain the lower possibility of cow 

crowding on the scale. The measured weighing force signal was compared with reference 

weight. There were two reference weights for every cow: one for morning and one for 

evening milking, as the weights of an animal vary during the day much more than from 

day to day for the same time of the day. If the measured data points were within the 5% of 

reference value, they were recorded and averaged. Each recorded weight was impaired 

with the identification number of the animal coming from the identification system. After 

each milking, 78% of measured cows data was acceptable. For weekly averaging of 

measured weights, the achieved accuracy was 2% compared to statically measured data. 

The weighing after milking gave better results than those obtained during feeding in the 

terms of efficiency and constancy of results, but problems for fast crossing and crowding 

on the weighing device occurred. 

To eliminate the previous problems PEIPER et al. (1993) [57] designed an automatic walk-

through weighing scale with a slow down step and modified the signal processing. The 

platform had the dimensions of 2.5 meters in length and 1.2 meters in width. A 1.5 x 1.0 

m2 slow down step plate was positioned in front of the main scale in order to reduce high 

variations of the signal caused by quick steps and to separate the animals crossing the 

scale. The identification system antenna was placed on the two-third of the way toward the 

end of the scale. The identification signals were received just before the cow stepped on 

the scale with its full weight. Measured reaction force between the platform and cow feet 

was averaged. Using a special algorithm the real weight of the cow from a vector of 

averaged weight values was selected. It was based on the comparison of weighted average 

to the reference weight of the cow for allowed difference of 30 kilograms. For three daily 

measurements an average of 76.5% successful weights was obtained at least once a day. 

The accuracy of 1.5% was achieved for monthly comparison of the computer and manual 

weighing. The main disadvantage was that the weighing device was inadequate for daily 

weighing of the dairy cows since the high inaccuracy of the calculated weights. Also, the 

physical barrier which was placed to slow down the animal movement on the scale 

required additional measurements time. The weighing process could not be implemented as 

desired on automated dairy farms. 
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Based on the previous results a new conception of automatic weigher is developed and 

described in this paper. 

 
 
2.2 Modelling of human locomotion 

 

To understand the connection between the weight of the cattle and the force in the foot the 

process of walking has to be modelled. 

To understand fully the effects on produced force between animal feet and ground during 

walking, the locomotion of cattle need to be investigated. The accent is on the walking 

mechanism. There are only a few books and papers dealing with the animal locomotion 

(see ALEXANDER, 1992 [4]). Most of the research is concentrated on producing robots 

that imitate bipedal and quadrupedal motion (TODD, 1985 [77], RAIBERT, 1986 [61]). 

They are not directly specialized in the mechanics and modelling of cattle walk. Much 

more investigation is done for bipedal locomotion (MCGEER, 1990 [50], 

VUKOBRATOVIC et al., 1990 [79], ALEXANDER, 1995 [5], GARCIA et al., 1998 

[23]). Therefore, the review of works dealing with human movement and similarities with 

cow movement are here presented.  

The simplest of all models of walking is explained in the work of ALEXANDER (1976) 

[3]. It consists of point mass moving on rigid, massless legs (Figure 2.1a). While a foot is 

on the ground, the mass moves along an arc of circle with centre on the foot. The mass 

rises and falls as the model walks. This is similar to the motion of centre of mass of real 

people (MARGARIA, 1976 [47]). The minimal biped gives some understanding of the 

energy changes during walking. While one foot is on the ground, the model behaves as 

inverted pendulum. The potential energy rises as the point mass rises while the kinetic 

energy drops. The energy is restored as the mass falls again. The work has to be performed 

during changeover of active and passive legs. Kinetic energy is lost in inelastic impact 

between foot and ground (MCGEER, 1990a [49]). The muscles restore the energy loss and 

do the positive and negative work, degrading mechanical energy to heat. According to 

ALEXANDER (1995) [5] during human walking each foot is on the ground for more than 

half the time. There are stages when both feet are touching the ground simultaneously. In 

walking, the knee remains more or less straight while the foot of the same leg is on the 

ground. To obtain the time period of a stride it is necessary to know the velocity of 

walking. THORSTENSSON et al. (1987) [76] denoted that for the adults walk the 
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maximal speed is up to 3 m/s. For an extremely slow walk at the velocity of 0.4 m/s the 

stride period for adult human being is about 2 seconds. For the brisk walking at the 

velocity of 1.6 m/s the stride period is 1 second (ZARRUGH et al., 1974 [88]). These 

values represent the periods of vibrations of the inverse pendulums which are the models 

of bipedal motion.  

The model, represented by MCGEER (1990a) [49] have legs that are sufficiently massive 

for the changes of momentum that occur as they swing to affect the velocity of the trunk 

(Figure 2.1b). MCGEER (1992) [50] developed a walker model with knee joints (Figure 

2.1c). The stride period for this model a little differs from those models without knees. The 

energy costs are bigger, but the gait is more realistic. 

  

 
                  a                                         b                                c   

Figure 2.1: Models of walker: a) Minimal biped (Alexander, 1976), b) Two-dimensional 
biped (McGeer, 1990a), c) Knee-jointed biped (McGeer, 1992). 

 
 
ALEXANDER (1995) [5] measured the force that the foot exerts on the ground and 

compared with the force obtained using his model. The gait in the model was adjusted in 

order to achieve same pattern force as measured for people. The vertical component of 

force must equal body weight, when averaged over a complete stride. The force is greater 

than body weight at the stage of a walking stride when both feet are on the ground and the 

centre of mass has an upward acceleration. The force is smaller than body weight as the 

centre of mass passes over the supporting foot and accelerates downwards. According to 

measured pattern of vertical force during human walk an equation of vertical force 

dependent on stride period (T), duty factor of each leg (β), body mass (m) and shape factor 

(q) is developed. The equation has the following form: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
T
tq

T
t

q
mgFy β

π
β
π

β
π 3coscos
34

3 . The force is presented by means of truncated 

Fourier series. The only parameter with physical meaning is body mass (m). A good 
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matching between measured and modelled force pattern is achieved adjusting parameters β 

and q in the model. 

MCGEER (1990) [49] analysed the passive dynamic walking with use of simple, pure 

mechanical models. It is suggested that the mechanical parameters of the human body 

(e.g., leg length, mass distribution) have a greater effect on the existence and quality of gait 

than predicted. GARCIA et al. (1998) [23] give the accent to the mechanics rather than 

control of human walk. A simple bipedal model with two rigid legs connected to point 

mass through a frictionless hinge is analysed. The model of motion is governed by the laws 

of classical rigid body mechanics. The dynamics of the uncontrolled systems are based on 

mass distribution and length characteristics. According to above presented the simple 

walking model of human movement can nicely represent the mechanics and forces of the 

real system. 

The cattle walk, as a four legged animal, is more complicated than two legged being 

motion modelling. From the previous results it is concluded that the passive dynamic 

models might be a good starting point for understanding some aspects of animal motion. It 

may be that many animal motions are largely natural or quasi-passive and not heavily 

controlled. In this dissertation a model of cow movement is presented. It is planed to be 

simple to avoid difficulties but at the same time to give some positive advantages due its 

simplicity. HUBBARD (1993) [34] wrote, “The most fundamental understanding often 

comes from the simplest models”. The simpler the model, the easier is to find the essential 

influences on the observed effect. 

 
 
2.3 System modelling  

 

There are two types of modelling: analytical and experimental (LJUNG et al., 1994 [43]). 

Analytical modelling involves physical modelling of the system, which results in 

derivation of mathematical equations describing various processes within the plant based 

on first principles of physics. Physical parameter models are often called white-box 

models. In order to develop such a model, the understanding of processes and physical 

knowledge is required. Most of physical modelling includes certain assumptions and 

simplifications since most systems in real world are non-linear and the knowledge about 

many physical phenomena are poor. In many cases non-linear systems are linearised. Such 

a model mostly denotes an approximate representation of the real system that gives fairly 
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accurate estimation of real system behaviour. However, the simplifications and 

approximations of real systems can be valid in some system cases, but sometimes the 

construction of complex non-linear model cannot be escaped.  Modelling of complex 

systems and systems with uncertainties with conventional mathematical tools is in many 

cases not possible. Another tool for describing such systems is needed. When the analytic 

approach cannot solve the modelling of some complex and/or uncertain system the 

experimental concept is employed (LJUNG, 1987 [42], SÖDERSTRÖM et al., 1989 [71]). 

 
 
2.3.1 Physical and mathematical modelling 

 

Physical modelling of a system is the first step in describing physical behaviour of the 

system. To do so some elementary understandings of the system need to be known. The 

physical model of a system is described as a spring-mass-damper system. It may involve 

motions, translation and rotation, of the mass. Dependent on number of springs, masses 

and dampers, and their connections the physical meaning of the model change. Once the 

physical model is described mathematical model is derived. Mathematical model of the 

system is a set of differential equations, which describe motion of the physical model. 

Behaviour of the model and, therefore, the real system can be predicted solving the 

mathematical equations for particular cases. The model represents correctly the real 

system, if the results from the model match the output of the real system; otherwise the 

model has to be changed.  

 
 
2.3.2 Experimental system modelling and function approximation 

 

Experimentally based models are developed from experimentally measured input-output 

data. Experimental analysis can produce two models: parametric and non-parametric. 

Parametric models can be designed as differential equations, frequency transfer functions 

or state space representation. The main feature of parametric models is the known model 

structure. Non-parametric models include: look-up tables, impulse response functions, 

convolution sums and frequency response functions. Non-parametric models do not 

possess a given structure and use a large set of parameters. Experimental models describe 

the process in an input-output sense and the parameters generally do not have any physical 

meaning. Simplified, experimental modelling is basically, finding a curve that fits the 
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measured input-output data set. In other words, it can be described as function 

approximation or function fitting. 

Function approximation is performed whenever a function needs to be constructed to 

connect experimentally measured input-output data. Function f fits input-output data set (x, 

y) when y=f(x). Function approximation is the same as system identification, since the 

objective of the theories is to find the optimal model that estimates the output of the real 

system for certain input.  

The procedure of system identification is as follows. An identification experiment is 

performed by exciting the system and observing its input and output over the interval of 

time. These signals are normally recorded in a personal computer for subsequent 

information processing. The model representation is assumed. Typically a linear difference 

equation of a certain order is selected. The chosen parametric model is then fitted to the 

recorded input and output sequences. Some statically based method is used to estimate the 

unknown parameters of the model. In practice, the estimation of structure and parameters 

are often done iteratively. This means that the model structure is chosen and the 

corresponding parameters are estimated. The obtained model is then tested to see whether 

it is an appropriate representation of the system. If not, some more complex model 

structure is considered, its parameter estimated and the new model validated. This 

procedure is repeated till the goal is reached.  

The black-box models or ready-made models are often used when no physical knowledge 

about a system is known. The parameters in such models have no direct physical 

interpretation, but are used as tools to describe the properties of the input-output 

relationship of the system. Normally, ready-made models are described in discrete time, 

since data are collected in sampled form. It is always possible to transform the time 

discrete model into a time continuous model, if required. The parameter black-box models 

are polynomial regression models. These models are analysed and explained in many 

books and papers (LJUNG, 1987, SÖDERSTRÖM et al., 1989 [71], LJUNG at al., 1994 

[43]). The general model structure for linear time-invariant system is: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )qe
qD
qCtu

qF
qBtyqA += , 

with  

( ) na
na qaqaqA −− +++= ...1 1

1 , 

( ) 11
21 ... −−−−−− +++= nbnk

nb
nknk qbqbqbqB , 
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( ) nc
nc qcqcqC −− +++= ...1 1

1 , 

( ) nd
nd qdqdqD −− +++= ...1 1

1 , 

( ) nf
nf qfqfqF −− +++= ...1 1

1 , 

where na, nb, nc, nd, nf and nk are the structural parameters, and ai, bi, ci, di and  fi are the 

adjustable parameters to input-output data. Parameter q is the shift operator. 

From the general model four developed models are often used: 

Box-Jenkins, ( ) ( )
( ) ( ) ( )

( ) ( )qe
qD
qCtu

qF
qBty += , 

Output error, ( ) ( )
( ) ( ) ( )qetu
qF
qBty += , 

ARMAX, ( ) ( ) ( ) ( ) ( ) ( )qeqCtuqBtyqA += ,  

ARX, ( ) ( ) ( ) ( ) ( )qetuqBtyqA +=  

where AR- auto regressive (A(q)y(t)), MA- moving average (C(q)e(q)) and X- extra input 

(B(q)u(q)). 

The above presented models are good only for linear dynamic systems. Yet, as suggested 

the majority of systems are non-linear and so the modelling needs to be non-linear. A 

number of papers are published dealing with input-output parametric models for non-linear 

systems (PARKER et al., 1981 [55], LEONARITIS et al., 1985 [40], [41], HABER et al., 

1990 [26], BILLINGS et al., 1988, 1989 [10,11], AGUIRRE et al., 1995 [2], SJÖBERG et 

al., 1995 [70], JUDITSKY et al., 1995 [37], MAO et al., 1997 [48]). The non-linear 

polynomial regression models consist of linear parts (as in linear polynomial regression 

models) and non-linear parts that are not included in linear models. Among the frequently 

used models are those described by LEONARITIS et al. (1985) [40], [41]. The non-linear 

autoregressive moving average with exogenous inputs (NARMAX) is the non-linear 

extension of ARMAX model. The NARMAX model is represented as the function of 

previous inputs, outputs and disturbance: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]euy
l ntetendtudtuntytyFty −+−−−−−= ,...,,1,...,,,...,1  

where Fl is some non-linear function of u(t), y(t) and e(t) with non-linearity degree l, u(t) 

and y(t) are, respectively, input and output time series obtained by sampling the continuous 

input-output data. Uncertainties, noise, unmodelled dynamics, etc, figurate in e(t). The 

deterministic part of NARMAX model is a NARX model. NARX model can be expanded 

as the summation of terms with degrees of non-linearity up to the defined degree l. Even 

  



Stand of science and technique 16

such a simple model structure as NARX has a lot of unknown parameters and coefficients. 

Different concepts of solving the minimal model structure, as well as, coefficient 

estimation from measured input-output data are suggested (BILLINGS et al., 1988, 1989 

[10,11], HABER et al., 1990 [26], AGUIRRE et al., 1995 [2], MAO et al., 1997 [48]), but 

exhaustive computation of unknown parameters cannot be avoided. The mathematical 

function structure describing a real world process might be very complex and its exact 

form is usually unknown. Therefore, another tools for function fitting and so system 

identification described by neural networks and fuzzy logics need to be introduced.  

 
 
2.3.3 Fuzzy theory and applications 

 

The practical success of fuzzy control systems in commercial products and industrial 

process control caused the increase of investigations in theoretical fuzzy systems and 

control. Researchers are trying to understand its possibilities and develop more powerful 

tools for modelling, function approximation and control. In this section the achievements 

in field fuzzy logic are presented. The first part is a short review of fuzzy theory, while the 

second explains its possibilities in modelling and function approximation. 

The word “fuzzy” stands for blurred, imprecisely defined, indistinct, confused. However, 

fuzzy theory is precisely defined. The meaning is mostly related to the phenomena that 

fuzzy systems theory characterise (exp.: low speed is between 0 and 60 km/h, high speed is 

between 50 and 120 km/h). Fuzzy systems theory is justified by complexity of the real 

world to be precisely described and the need of formulating human knowledge in 

systematic manner and put it in engineering systems. Fuzzy systems are knowledge or rule 

based systems. The heart of the system is the IF-THEN rule. Fuzzy systems have been 

applied to a variety of fields ranging from control, signal processing, communication, 

integrated circuits manufacturing, and expert systems in business, medicine, etc.  

There are two major types of fuzzy systems: Mamdani fuzzy systems and Takagi-Sugeno 

(TS) fuzzy systems (TAKAGI et al., 1985 [74], SUGENO et al., 1988 [73]). The main 

difference lies in the consequent of fuzzy rules. Mamdani fuzzy systems use fuzzy sets as 

rule consequent, while Takagi-Sugeno fuzzy systems employ linear functions of input 

variables as rule consequent. The example for Mamdani IF-THEN rule is: “IF speed is low 

THEN more force to accelerator”. The example for Takagi-Sugeno IF-THEN rule is: “IF 

speed is low THEN force to accelerator is F=cx”. The product of constant c and input x has 
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the same meaning as words in consequent part of Mamdani example. The main problem of 

Takagi-Sugeno fuzzy system is that the mathematical formula cannot be used in 

representing human knowledge. On the other hand, a great advantage of Takagi-Sugeno 

fuzzy models is its representative power. It is capable of describing a non-linear system 

using sufficient rules and training data.  

Every fuzzy system consists of: fuzzifier, fuzzy rule base, inference engine and defuzzifier. 

The fuzzifier is defined as a mapping from real valued point x∈ℜ to fuzzy set A. For 

example the word “high speed” is a linguistic variable for physical value between 50 and 

120 km/h. Fuzzifiers differ because of membership functions used in fuzzification. Here 

are some fuzzifiers commonly used. Singleton fuzzifier maps a real valued point x into 

membership value 1 at x  and value 0 at all other points. Gaussian fuzzifier maps x into a 

fuzzy set, which has the following membership function:  
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where ix  and iσ  are positive parameters and the t-norm * is usually chosen as algebraic 

product or min. Triangular fuzzifier maps x into fuzzy set, which has the following 

triangular membership function:  
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where  are positive parameters and the t-norm * is usually chosen as algebraic product or 

min. The singleton fuzzifier greatly simplifies the computation involved in the fuzzy 

inference engine. The Gaussian and triangular fuzzifiers can suppress noise in the input, 

but the singleton fuzzifier cannot. 

ib

Fuzzy rule base consists of a set of fuzzy IF-THEN rules. Fuzzy rule base has the 

following form: IF (x1 is A1) and … and (xn is An), THEN (y is B). The elementary logic 

operations such as conjunction, disjunction and negation can be used in fuzzy rule base. In 

a fuzzy inference engine fuzzy logic principles are used to combine the fuzzy rule base into 

a mapping from fuzzy set A to a set B. There are two ways to infer with a set of rules. In 

composition based inference all rules in fuzzy rule base are combined into single fuzzy 

relation. In individual rule base inference each rule in the fuzzy rule base determines an 

output fuzzy set, and the output of the whole fuzzy inference is the combination of the 

individual fuzzy sets. Most commonly used fuzzy inference engines are: product and 
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minimum inference engine. In product inference engine algebraic product is used for t-

norms and maximum for s-norms operators. In minimum inference engine minimum is 

used for t-norms and maximum for s-norms operators.  

Deffuzifier is defined as the mapping from fuzzy set, which is the output of the fuzzy 

inference engine to crisp point value. Commonly used defuzzifiers are: centre average and 

maximum defuzzifier. Centre average defuzzification is computed according the equation: 

∑
∑=

i

iiy
y

ω
ω

, 

where iy  is the centre of the i-th fuzzy set and iω  is the height of i-th fuzzy set. Maximum 

deffuzifier chooses the crisp output at which the fuzzy set has the maximum value. Since 

the maximum might be achieved at more than one point, different criterions can be used. 

Among them are: the smallest of maxima, the largest of maxima, mean of maxima, 

centroid of area, bisector of area, etc. 

Fuzzy system composed of the mentioned elements is presented in Figure 2.2. 

The process of fuzzy reasoning is presented in the following steps: 

1) Compare the input variables with the membership functions on the premise part to 

obtain membership values of each linguistic label (fuzzification). 

2) Combine through a specific t-norm operator, usually multiplication or minimum, the 

membership values on the premise part to get firing strength (weight) of each rule. 

3) Generate the qualified consequent (fuzzy or crisp) of each rule depending on the firing 

strength. 

4) Gather the qualified consequent to produce a crisp output (defuzzification).  
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Figure 2.2: Basic configuration of fuzzy system. 
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Depending on the types of fuzzy reasoning and fuzzy IF-THEN rules employed, most of 

the fuzzy systems can be classified into three types: 

a) The overall fuzzy output is the weighed average of each rule crisp output. The crisp 

outputs are generated by the rules firing strength, which is the product or minimum of 

membership values from the premise part.  

b) Applying maximum defuzzification to the qualified fuzzy outputs derives the overall 

fuzzy output. Minimum inference operation is performed on firing strength of each 

rule.  

c) Takagi and Sugeno’s fuzzy IF-THEN rules are used. The output of each rule is the 

linear combination of input variables plus a constant term. The final output is the 

weighted average of each rule output. 
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The most commonly used membership functions in fuzzification are triangular and 

Gaussian. Gaussian function has an advantage since it never reaches zero. Algebraic 

multiplication or minimum is applied in inference engine. Defuzzification is obtained with 

centre average or maximum method.  
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Figure 2.4: Takagi-Sugeno fuzzy rule consequents and centre average defuzzification. 

 

In Figure 2.3, a two rule and two input single output fuzzy system is presented. The 

Takagi-Sugeno fuzzy rules and centre average defuzzification for this system are shown in 

Figure 2.4. Since the most common fuzzy systems are being explained, it is to present the 

possibilities when these systems are applied. In this work the accent is on the Takagi-

Sugeno fuzzy system. In the next section the application of Takagi-Sugeno systems in 

function approximation and system identification. 

In fuzzy logic theory many effort is done exploring the Mamdani fuzzy systems in system 

modelling and function approximation (WANG et al., 1992 [80], ZENG et al., 1994 [88], 

YING, 1994 [86], CASTRO, 1995 [13], ABE et al., 1995 [1], DICKERSON et al., 1996 

[18], CASTRO et al., 1996 [14], RUNKLER et al., 1999 [67], THAWONMAS, 1999 [75], 

WANG et al., 2000 [81], ROJAS et al., 2000 [63], SALMERI et al., 2001 [69], LANDAJO 

et al., 2001 [39], POMERAS et al., 2002 [59], GONZALEZ et al., 2002 [25]). Mamdani 

fuzzy systems employing fuzzy singleton as rule consequent are equivalent to linear 

Takagi-Sugeno fuzzy system rule consequent with coefficients set to zero. In other words, 

the simplest Takagi-Sugeno rule consequent is same as Mamdani singleton rule 

consequent. Almost all the Mamdani fuzzy systems used in function approximation 

discussed in above references use singletons as rule consequent. This, however, points out 

the importance of investigations of Takagi-Sugeno fuzzy systems as universal 

approximators. Recent investigations in Takagi-Sugeno fuzzy systems show the good 

capability in function approximation and modelling (YING, 1998 [87], ZENG et al., 2000 

89]). The Takagi-Sugeno type of fuzzy models has attracted great attention due to their 

  



Stand of science and technique 21

good performance in various applications. Takagi-Sugeno fuzzy models have a great 

advantage compared to traditional Mamdani fuzzy models since their functional type fuzzy 

rules consequences enable the fuzzy system to represent any non-linear system using 

sufficient rules and training data. In both, Mamdani and Takagi-Sugeno, fuzzy systems 

when modelling a real system or approximating a function the adjusting parameters are: 

fuzzification parameters, fuzzy rules, defuzzificatin parameters. Fuzzification parameters 

are the number of membership functions and its characteristics. The number of 

membership functions covering the input region need to be optimal, such that unnecessary 

computation or impreciseness is minimized. The characteristics of the membership 

function are the width, height and centre of the membership function. Same as for 

fuzzification, defuzzification membership functions has to be defined to produce desired 

output. Specially, for Takagi-Sugeno fuzzy system the coefficients of the fuzzy rules 

consequences are adjustable. The connection between fuzzification and defuzzification is 

organized with fuzzy IF-THEN rules. Number of rules as well as the link between input 

and output fuzzy values has to be determined for the particular system.  

The design of fuzzy system using a table look-up scheme (input-output pairs) as a simple 

heuristic method is described by WANG (1997) [82]. First the fuzzy sets are defined to 

cover the input-output spaces. All membership functions in fuzzification of crisp input 

have the same width and height, and the centre is moved for the same interval. The 

identical principle is applied in output space defuzzification. Function fitting accuracy 

increases as the number of membership functions in input-output space enlarges. One 

fuzzy rule is generated from each input-output pair. Conflicting rules are expelled and the 

rule with highest degree is kept. So created fuzzy system may not be complete, since the 

number of rules in the fuzzy rule base may be much less than all possible combinations of 

the fuzzy sets defined for input variables and number of input-output pairs. For this reason 

the method of look-up scheme is not commonly used. The concept of designing a fuzzy 

system by first specifying its structure and then adjusting its parameters using some 

training algorithm is widely investigated and used. With specifying the structure the 

elements of the fuzzy system are denoted. In order to do so, following obscurities have to 

be enlightened. First, the dimensions of input and output spaces are established. It depends 

on the ability to experimentally measure inputs and outputs of the real system. Yet, the 

inputs and outputs that have minor influence on the system behaviour can be neglected and 

so simplify the fuzzy model. Further on, the number of fuzzy rules is determined. The 

number of rules in a fuzzy model corresponds to the order in a conventional model. Higher 
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order model minimizes the conventional criterion, i.e. output error, but might result in over 

fitting. In many cases the input-output data is contaminated by noise so the lower order 

model gives better fitting on the average. The fuzzy model parameter identification is done 

by denoting the parameters in the membership functions in fuzzy sets and the coefficients 

in Takagi-Sugeno fuzzy rules consequent.  
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Figure 2.5: ANFIS structure for two input single output with two fuzzy rules. 

 

One of the most influencing works in the input-output data mapping is done by JANG 

(1993) [36]. Based on Takagi-Sugeno fuzzy system an adaptive-network-based fuzzy 

inference system (ANFIS) was created. ANFIS is the presentation of fuzzy system through 

feedforward neural network with supervised learning capability. The adaptive network 

representing Takagi-Sugeno fuzzy system consists of five layers as shown in Figure 2.5.  

The square and circle nodes are for adaptive nodes with parameters and fixed nodes 

without parameters, respectively. The first layer consists of square nodes that perform 

fuzzification with chosen membership function, which is usual a bell-shaped function, i.e. 

Gaussian membership function. The parameters in this layer are called premise parameters. 

In the second layer the t-norm operation (algebraic product) is performed to produce firing 

strength of each rule. The ratio of i-th rule firing strength to the sum of all rules’ firing 

strength is calculated in the third layer generating the normalized firing strengths. The 

fourth layer consists of square nodes that perform multiplication of each normalized firing 

strength with corresponding rule. The parameters in this layer are called consequent 

parameters. The overall output is calculated by summation of all incoming signals in the 
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fifth layer. The adjustable parameters are the premise and consequent parameters. JANG 

(1993) [36] proposed the hybrid learning method that integrates gradient descent and least 

square estimation. Each epoch of hybrid learning procedure is composed of forward and 

backward pass. In the forward pass, for supplied input data the consequent parameters are 

calculated with sequential least squares formulas. After identifying the consequent 

parameters, the output error is obtained comparing the created output and measured output. 

In backward pass, the error rates propagate from the output towards input updating the 

parameters in premise part by the gradient descent method. As proposed, the structure of 

the fuzzy system is fixed and the parameter identification is solved through the hybrid 

training. The possibilities of this method are broad and can be used in modelling non-linear 

functions, predict chaotic time series, signal processing, etc. ANFIS can replace almost all 

neural networks in control systems. 

The presented ANFIS model can be simplified by constraining some adjustable 

parameters. It depends on the knowledge about the system that is being modelled. On the 

other hand, ANFIS model can be easily completed by adding the part for structure 

identification, which concerns with the selection of an appropriate input space partition 

style and the number of membership function for each input, etc. It is proved that ANFIS 

can achieve high non-linear mapping and reproduction of non-linear time series. For many 

cases of non-linear mapping ANFIS uses less parameters and time adaptation then neural 

network. ANFIS architecture is functionally equivalent to radial basis function neural 

network (RBNN). Training methods used in RBNN can be applied in ANFIS and vice 

versa.  

 
 
2.3.4 Neural networks structure and application 

 

Neural networks theory is developed as a result of necessity to create a system that can be 

capable of behaving as human being brain. The brain is a highly complex, non-linear and 

parallel computer, which is capable to organize its structural constituents and perform 

certain computations much faster than the fastest digital computer. Neural network carries 

out a function by means of training instead of algorithmic programming.  

Because of its properties and capabilities of non-linearity, generalization, adaptivity, input-

output mapping, etc. neural networks are widely used in engineering, mathematics, 
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physics, biology, medicine, etc. Neural networks are based on the human nervous system 

structure.  

The elementary part of the neural network is a neuron. Neuron is an information-

processing unit that is fundamental to the operation of a neural network. It consists of: 

source nodes, synapses, adder, bias and activation function. A basic structure of a neural 

network is presented in Figure 2.6. Input signal is entering the system through the source 

nodes. Synapses are connecting links between input signals and adder, characterised by a 
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Figure 2.6: Neuron structure. 

 

weight. Adder performs summation of incoming signals from neurons. Bias has the effect 

of increasing or lowering the net input of the activation function. Activation function limits 

the amplitude of the output. There are various activation functions used for creation of 

neuron output. Three basic groups activation functions are as follows: threshold, 

piecewise-linear and sigmoid functions (HAYKIN, 1999 [30]). Threshold activation 

function is often called hard limiter, since the output can be zero or one, dependent on 

input. Threshold function is of form: 
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where  is activation function, and a is a constant number. ( )xΦ

Piecewise-linear activation function may be viewed as an approximation to a non-linear 

amplifier and is presented as: 

  



Stand of science and technique 25

( )
⎪
⎩

⎪
⎨

⎧
=Φ

,0
,
,1

xx
ax

axa
ax

−≤
−>>

≥
 

Sigmoid activation function is by far the most common used activation function in neural 

networks. These functions are s-shaped and the widely implemented are: 
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1 , the sigmoidal function. 

Beside mentioned activation functions, Gaussian bell is often applied as output activation 

in radial basis neural networks.  

 In neural networks neurons as processing elements are organized in parallel arrangement 

called layers. The network topology is mainly determined by the layer order and the 

connection direction. First layer in the system is called input layer, while the last is called 

output layer. Between the input and output layer are the hidden layers. Single layer 

network is the network where input layer is at the same time the output layer. Multi-layer 

networks consist of more than one layer. The connection direction controls the information 

flow from the networks input to the output. Possible connections are: feed-forward, 

feedback, recurrent and lateral. In Figure 2.7, multi-layer network with various connection 

directions is shown.  
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Figure 2.7: General neural network architecture. 
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Artificial neural networks can be grouped into four categories: stochastic, associative, 

hierarchical and mapping neural nets. Stochastic networks typically have a cost function 

and employ noise processes to reach global minimum of this function. This network 

utilizes the procedure called simulated annealing (METROPOLIS et al., 1953 [51]) in 

Boltzmann machine network (HILTON et al., 1984 [32]). Stochastic networks are being 

used for solving combinatorial optimisation problems.  

Associative networks are used for storing and recalling patterns. They consist of only one 

functional layer with both feed-forward (ANDERSON et al., 1972 [6], KOHONEN, 1972 

[37]) and recurrent (ANDERSON, et al., 1977 [6], HOPFIELD, 1982 [33]) connections. 

Associative networks are widely applied to pattern recognition tasks. In hierarchical neural 

networks the processing units within a layer are connected to a group of processing 

elements in the previous layer. This type of network is not so commonly used. It is 

investigated in pattern recognition of static images (FUKUSHIMA, 1988 [21]). The fourth 

category of neural networks is mapping networks. Mapping networks are capable of 

approximating any mathematical function in an input-output sense. Multi-layer perceptron 

and radial basis function networks are commonly applied in classification problems and 

identification tasks. Self-organized maps (KOHONEN, 1987 [38]) and counter-

propagation networks belong to the mapping networks group.  

The significant property of neural networks is its ability to learn. The improvement in 

performance of the network occurs by adjustments of synaptic weights and biases over a 

period of time in which the network and environment interacts. There are two types of 

learning: learning with a teacher and learning without a teacher. Learning with a teacher is 

also referred as supervised learning. With this sort of system learning, knowledge of the 

environment is being presented by a set of input-output data. Network is producing output 

for certain input, and is compared to desired output. The adjustment of the network is 

performed with parameter estimation procedures in order to minimize a performance 

function. Adaptation algorithms deal with least mean square error between produced and 

desired output of the system. Among these algorithms are the delta rule (Widrow-Hoff 

law) and error backpropagation algorithm. Learning without a teacher can be divided in the 

two subdivisions: reinforcement and unsupervised learning. Reinforcement learning is 

similar to supervised learning except that instead of known value of desired output for 

particular input the network receives a score on how it behaved over a sequence of 

training. This is achieved with cost function evaluation. The advantage of reinforcement 

learning is in possibility of network adjustment without correct input-output trial. In self-

  



Stand of science and technique 27

organized (unsupervised) learning there is no external teacher or critic to watch over the 

learning process. The most famous learning algorithm in unsupervised learning is the 

competitive learning rule. Such a network contains a competitive layer in which neurons 

compete with each other according to learning rule for the opportunity to respond to input. 

However, beside the mentioned learning methods there are some other learning rules that 

are not so common (coincidence, filter, spatiotemporal learning).  

In the following section the commonly used networks in classification, function 

approximation and system identification are reviewed.  

 

 
Input 
layer 

Hidden layer of 
neurons 

Output layer of 
neurons  

Σ 

Σ 

Σ 

. 

. 

. 

x1 

x2 

x3 

xR 

w11

wSR

b1,2

b1,1

b1,S

.

.

.

Σ

Σ

Σ

b2,1

b2,2

b2,T

w21

wTS

.

.

.

 

 y1 
 

 
y2 

 

 

 

 yT 
 

 

Figure 2.8: Multi-layer preceptron network structure with one hidden layer. 

 

Multi-layer perceptron and radial basis function networks are the basic constituents of 

feed-forward neural network. They are structurally equivalent consisting of one hidden 

layer with non-linear activation function and an output layer with linear activation 

function. Multi-layer perceptron network is a powerful tool for a variety of problems 

ranging from function approximation to image processing. The elementary processing unit 

called neuron is here referred as perceptron. A perceptron structure is similar to that shown 

in Figure 2.6, with activation function chosen as non-linear function (i.e. sigmoid, 

hyperbolic tangent function). ROSENBLATT (1962) [64] invented the perceptron 

structure as known today.  Single-layer perceptron network is commonly used with 

threshold activation function and so-called Widrow-Hoff learning algorithm, which is the 

least square error technique for weight estimation by lowering the cost function 
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(WIDROW et al., 1960, 1985 [84], [85]). The parallel arrangement of perceptrons within 

layers and feed-forward connection between layers characterize multi-layer perceptron 

(Figure 2.8). The hidden layer includes sigmoid transfer (activation) function (exp. 

tangent-sigmoid, logarithm-sigmoid), while linear activation function is specified in the 

output layer. 

Multi-layer perceptron networks are, generally, trained with error backpropagation 

learning rule. Error backpropagation rule was created by generalizing Widrow-Hoff (least 

mean square) algorithm. Standard error backpropagation algorithm is, as well as Widrrow-

Hoff algorithm, gradient descent training method performed for known input-output data 

set. The equation of Widrow-Hoff algorithm is: 

( ) ( ) ( ) ( )nxnnwnw iii αδ+=+1 , 

where  is the ith weight, α is the learning rate, and iw δ  is the current gradient defined as: 
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network is m. 

ix y

Φ′  denotes the derivative of the activation function with respect to 

activation (input). Error backpropagation algorithm was essentially derived to provide an 

approximation of the gradient term for hidden layers (RUMELHART et al., 1986 [65]). 

Error backpropagation rule adjust the weights according to the mathematical formula: 

( ) ( ) ( ) ( )nxnnwnw ijjiji αδ+=+1 , 

where  is the ith input of the jth neuron,  is the ith weight of the jth neuron, α is the 

learning rate (correction factor) and 

ix jiw

jδ  is the local gradient, 

( ) ( ) jjj nen Φ′=δ ,  

for  being the derivative of the jth activation function, and error jΦ′
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There are two different ways of gradient descent algorithm implementation to the network: 

incremental mode and batch mode. In the incremental mode the gradient is computed and 

the weights are updated after each input-output pair is applied to the network. In the batch 

mode, weights are updated after all input-output data sets are employed to the network. In 

both cases, synaptic weights are adjusted backwards starting with the last layer and ending 

in the first layer. A primary difficulty of error backpropagation method is the proper choice 

of correction factor. Large learning rates lead to faster adaptation of the network, but too 

large rates lead to instability. On the other hand, small learning rates cause long training 

time. Many work have been done on improving error backpropagation rule. Some are 

dealing with better choice of initial weights (NGUYEN et al., 1990 [54]). Faster algorithms 

can generally be classified into two categories. The first category uses heuristic techniques 

such as momentum technique, which decreases the possibility of trapping in the local 

minima. The second category uses numerical optimisation methods. Among them are the 

conjugate gradient, quasi-Newton and Levenberg-Marquardt training methods, which 

utilize second order derivative information (BATTITI, 1992 [8], BEALE, 1972 [9], 

CHARALAMBOUS, 1992 [15], FLETCHER et al., 1964 [20], HAGAN et al., 1994, 1996 

[27], [28], MOLLER, 1993 [52], POWELL, 1977 [60], VOGL, 1988 [78]).  

Multi-layer perceptron networks with three layers have been proved to be universal 

approximators (MOORE et al., 1988 [53], FUNAHASHI, 1989 [22]) satisfying the 

universal approximation theorem. It was confirmed that even a two layer feed-forward 

network could approximate arbitrarily well any continuous function (CYBENKO, 1989 

[17]). Hecht-Nielsen in 1990 developed a backpropagation theorem to prove 

approximation ability of backpropagation networks (feed-forward network with error 

backpropagation learning).  

Radial basis function networks gained a considerable attention as an alternative to multi-

layer perceptron networks trained by error backpropagation algorithm. They are 

structurally equivalent. Radial basis function neuron uses distance (Euclidian norm) 

between input vector and weight vector 

( )∑ −=− 2
ii wxwx , 

and a radial basis function as the activation function of form 

( ) 2ueu −=Φ . 

The Euclidian distance with radial basis activation function is similar to the Gaussian bell-

shaped function. A multi-layer radial basis function network structure with one hidden 
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layer is shown in Figure 2.9. The hidden layer contains radial basis function neurons. In the 

output layer, linear activation function is applied for function approximation and s-shaped 

activation function is applied for classification problems. 
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Figure 2.9: Radial basis function network structure with one hidden layer. 

 

Like multi-layer perceptron networks, radial basis networks have universal approximation 

ability (HARTMAN et al., 1990 [29], PARK et al., 1991 [56]). Radial basis function 

networks have been proved to have best approximation property among the artificial neural 

networks (GIROSI et al., 1990 [24]). Radial basis networks may require more neurons than 

multi-layer perceptron networks, but often can be trained much faster. There are two 

variations of the standard radial basis network: regression and probabilistic neural 

networks (WASSERMAN, 1993 [83]). Regression networks are often used for function 

approximation, while probabilistic networks can be used for classification problems. 

Regression network is similar to radial basis network, but has a slight difference in the 

linear layer. The normalized dot product operation is performed on coupling the input into 

the layer and its weights. In probabilistic network output layer is so-called competitive 

layer that sums the contributions for each class of input to produce output and form a 

vector of probabilities. Compete activation function picks the maximum of the 

probabilities and assign 1, but for other classes 0. Radial bases function networks are not 

suggested to be used for the systems with high dimensional input space, because of 
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exponential increase of parameters. Radial bases function approximate locally, while 

multi-layer preceptron does it globally. Multi layer perceptron can approximate only 

smooth non-linearities. Radial bases function is able to approximate both smooth and 

nonsmooth non-linearities. 

 
 
2.3.5 Summary 

 

To model a real system both analytical and experimental methods can be used. The 

mathematical equations of the model can be derived from physical model with some 

assumptions and simplifications. However, constrains of the model might cause inaccuracy 

of the model output. Consequently the experimental modelling methods can be applied. 

The most powerful black-box models, which connect input and output values of the real 

system, are based on fuzzy logic and neural networks theory.  According to earlier exposed 

system modelling theory there are no strict rules to create fuzzy or neural network model. 

Each system has to be modelled independently and all cases have to be examined. 

Therefore, there is no final answer that suggests what type of modelling method to use in a 

particular case. 
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3 Goals of the work 

 

The aim of this work is to adapt an existing weighing scale for the purpose of walk-through 

weighing of cattle and to create a method of denoting cattle body weight from the 

measured force. Based on the previous research results, it is obvious that the process of 

automatic weighing involves measuring of weighing force produced by feet of cow during 

its walk over the weighing platform. The measured force is processed and the body weight 

of the animal is estimated. The accent is on achieving precise and secure body weight 

recognition. The major inaccuracies of existing dynamic weighers are caused by crowding 

of animal on the weighing scale and fast crossing of the scale. The errors are produced due 

to the simplifications introduced to the real system. Simple averaging of the stochastic non-

linear system does not necessarily lead to accurate result. Consequently, in this work the 

dynamic weighing of the dairy cows is analysed as a stochastic non-linear system.  

This work represents an extension of the previous knowledge on automatic weighing scales 

and gives some new approaches and solutions, which avoid the previous lacks, like the 

problem of crowding on the weighing device and fast crossing of cattle. 

The work consists of six main parts: 

1) walk-through weighing scale design 

2) signal processing 

3) mathematical model design 

4) fuzzy logic model design 

5) neural network classifier design  

An existing weighing platform is adjusted for dynamic weighing of cattle. The platform 

used was manufactured by DeLaval as a standard weighing device. The signal from the 

load cell is recorded in a PC and later processed. Recorded force signal is filtered from 

noise and then the valuable part of the signal is selected. The chosen signal part is 

processed with a body weight recognition method. Three methods are developed for body 

weight recognition. The first is based on mathematical model of cattle movement. The 

second performs function approximation of measured force signal based on fuzzy logic 

theory. The third body weight recognition method involves neural network classification. 

The body weight estimations for dairy cows weighted dynamically and processed with the 

three methods are presented and discussed.   
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4 Materials and methods for measurement of body weight data 
 

4.1 Walk-through weighing scale description 

 

The experiments were performed on the experimental dairy farm of Technical University 

Munich in Freising, Germany. The experiments were accomplished on dairy cows. The 

cattle were measured each time they were milked. The weighing system was designed and 

built to fit into the walking path of the cows as they leave the milking parlour. The milking 

parlour was a herringbone with six cows on each side. The maximum of 12 cows could be 

released at once. The weighing scale was positioned in the return alley of the milking 

parlour. This was chosen since the body weight without milk is of interest. Another 

important factor was that the animals were measured in the same interval of the day. 

Consequently, the daily oscillations in the animals body weights were minimized. The plan 

of the position of the milking parlour and the walk-through weighing device are shown in 

Figure 4.1. 
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Figure 4.1: Plan of weighing scale position. 

 

The corridor connecting milking parlour and weighing scale was 1.2 meters wide enabling 

cows to advance one by one in a row. The floor was smooth and sometimes slippery, 

which caused the animals to move with caution. However, younger animals walked faster 

than older and heavier. The weighing platform was made by DeLaval as a commercial 
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weighing device. The weighing scale is made of thick steel plate and had a width of 0.8 

meters and length of 2.3 meters. The width of the scale did not allow more than one cow to 

fit side by side on the weigher. The scale was designed to enable one cow to fit on the scale 

with its all four legs. The scale platform was elevated above the floor for 10 centimetres. 

The mount was influencing the walking speed of some animals, but for some it did not 

change their pace. On the height of 1.9 meters above the platform a horizontal bar was 

mounted on the entrance of the weigher. This obstruction was aimed to disable the cows to 

jump on each other hindquarters and advance through the weigher. The photo of the 

weighing scale is presented in Figure 4.2.  

 

 
 

Figure 4.2: Photo of walk-through weigher. 

 

The apparatus was waterproof for cleaning purposes. Load cells were positioned under the 

left and right end of the platform. The load cells sent the signal that was amplified in 

SOEMER LAC universal signal amplifier. The analogue signal was transformed in digital 

with an analogue to digital converter. Data were recorded with data acquisition software 

DIADEM installed on industrial personal computer on dairy farm. Calibration parameters 

were adjusted such that the measured force data are expressed in kilograms. Data were 
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recorded every 0.01 seconds. The rate of hundred samples per second was necessary since 

the quick changes of the signal during animal crossing over the weighing platform. Yet, 

this sampling rate was more than required for slow crossing of the animal, the extremely 

fast walking case produced less than hundred recorded points. To match weights with 

cows, a complete electronic identification (ID) system was installed. The identification 

system manufactured by DeLaval consisted of: ear transponder, antenna and control 

device. The antenna was positioned approximately at a middle of the platform length such 

that the cows were identified the time they stepped on the scale with front legs. The signals 

from the identification system were recorded with the same acquisition software as force 

signals. The synchronized recording of force and cow ID was of great importance for later 

signal filtering and processing. When cow transponder was in the region of antenna 

reading, the number was read and recorded. All other recorded values of ID were zero. The 

walk-through weigher experimental set-up is shown in Figure 4.3. 
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Figure 4.3: Schematic drawing of the identification and weighing system. 
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The walk-through weigher construction enabled that:  

• cows could not fit side by side on the weighing platform 

• cows could not ride on each other hindquarter and so advanced through the weigher 

• there was always a moment when each cow was alone on the weighing platform 

with its whole body weight (all four legs on and/or above the platform) 

• more than two cows could not act on the weighing platform at the same time 

The cattle were measured twice a day after milking. A number of data were gathered for 

various pace situations. The recorded data was coupled with identification signal for 

animal. There were two cases of animal crossing the weighing scale. The first was a 

straightforward situation when the animal was alone on the weigher. The second was a 

more complicated case, which included two cows touching the weighing platform at the 

same time. The crossing situations are explained in the next chapter. 

 
 
4.2 Sequence of weighing on the walk-through weighing scale 

 

Before introducing the signal processing and body weight recognition methods in dynamic 

weighing the animal crossing manners of the weihger and the adequate measured force 

need to be exhibited.  
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Figure 4.4: The sketch of dairy cow walking over the weighing scale. 
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The animal crossing cases over the weighing scale can be grouped into two categories: 

1) single crossing case 

2) crowded crossing case. 

The procedure of walk over the weighing scale for single cow is shown in Figure 4.4. The 

weighing force versus time of a single cow crossing over the weighing scale with 558 kg 

body weight is presented in Figure 4.5.  

As presented in Figure 4.4 and 4.5, the crossing of the weighing platform for single cow 

consists of three consecutive elements. The first marked with A is when forelegs are on the 

scale (Figure 4.4). Approximately half of the body weight is then measured (see Figure 

4.5). The part of crossing when all four legs are on the scale and so the whole body mass is 

measured is indicated with B. The C point out the moment when hind legs are touching the 

scale. This part is similar to the first part (A) so the measured weight is approximately the 

half of the total weight of the cow. 

 

 
Figure 4.5: Plots of weighing force variation for single cow crossing the weigher. Time of 

crossing 0.97 s. 
 
 
After milking in the milking parlour (exp: herringbone) cows leave the parlour in a bunch. 

The number of animals in the leaving group depends on the size of the parlour. Since the 

automatic walk-through weigher is placed in the exit corridor of the milking parlour the 

crowding of the animals occur. The cows are commonly following each other in quick 

succession over the scale. Due to the construction of the weighing scale the crowding on 
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the scale is always formed with two animals. An example of two cows crowding on the 

platform is presented in Figure 4.6. The body masses of the cows were 624 and 600 

kilograms, respectively. Figure 4.7, gives a plot of measured weighing force during the 

time when the two cows crossed the scale as sketched in Figure 4.6. 

In the case a when one cow with forelegs is on the scale (Figure 4.6) approximately the 

half of the body weight of the first cow is measured (Figure 4.7). For b is the moment 

when all four legs are on the scale (Figure 4.6) and so the whole body mass is measured 

(Figure 4.7). In part c the first cow is on the scale while the following cow steps with 

forelegs on the scale. The measured force in d is sum of two “half” of the first and second 

cow. In parts e, f and g the second cow is first with its front, with all four and then with 

back legs alone on the platform. 

Yet, this is only one of four possible crowding cases of two animals on the weighing 

device. Other cases are presented in the signal processing chapter. 
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Figure 4.6: Sketch of two cows crowding on the weighing platform. 

 

As presented in the previous plots, there are three types of intervals during crossing of 

scale that are not of interest. Those intervals are when: only the fore or hind legs of a cattle, 

the whole body plus fore or hind legs of the other animal and fore and hind legs of 
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different cows are measured. The part of the signal when the animal is alone on the scale 

with its whole body is of relevance in denoting the correct body weight.  

 
Figure 4.7: Plots of weighing force variation during crowding on the scale. Two  

consecutive crossings for cows with body weights 624 and 600 kg. 
 
 
 
4.3 The influence of velocity of cow movement on the recorded force signal 

 

The cow walk, as well as, any other life being motion is a non-linear and stochastic 

problem. Consequently, the forces between the scale plate and the animal feet are of 

varying periodic nature. The produced force depends on many parameters. Some of them 

are: body weight, walking velocity, step length, body swinging, etc. The most significant 

are the body weight and walking speed. The walking pace is the major frequency 

component that influences the reaction force among feet and platform. In order to have 

better view on the influence of the velocity of cow walk over the weigher on the measured 

weighing force, three different situations of stride for the same cow are recorded. A cow of 

762 kilograms body weight is let over the weigher. Walking velocities vary from slow to 

fast. The part of the measured signal when animal is with its whole body on the scale is 

selected and plotted (Figure 4.8). The time that the cow spent on the scale are: 1.32, 2.43 

and 4.24 seconds. As shown in Figure 4.8, there is obvious difference in plotted forces for 

the three paces. The impact between feet and platform increases as walking speed 

increases. For fast crossing the scale force peaks are larger than those created for medium 
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and slow pace. The force varies between 630 and 865 kilograms for fast stride, while it 

only fluctuates among 725 and 775 kilograms in slow crossing situation. As the walking 

speed over the weigher decreases, the easier is to estimate the correct body mass of the 

cow.  

According to above presented, the best case in automatic walk-through weighing would be 

if the cows would cross the scale separately and with low velocity. Out of the rotary 

milking parlours animals are separated because of the specific milking method. 

Unfortunately the majority of milking parlours are stationary and the cows are let to cross 

the scale as a bunch after milking. Consequently, the methods of denoting the valuable part 

of the signal and the body weight recognition needed to be applied. In the next chapters the 

signal filtering methods are explained followed by the body weight recognition techniques.  

 

 
(1) 

  



Materials and methods for measurement of body weight data 41

 
(2) 

 
(3) 

 
Figure 4.8: Plots of weighing force variation for single cow crossing the weigher with its 

full body weight. Times of crossing: (1) 1.32 s, (2) 2.43 s and (3) 4.24 s.  
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5 Signal processing of recorded raw data 

 

Signal processing is an important part of body weight recognition process of dynamic 

livestock weighing. Filtering out the signal from noise, as well as, correct separation of 

valuable part of the signal, influences the accuracy of the body weight estimation. As 

mentioned earlier, there are two cases of cattle crossing the weighing scale: single and 

crowded case.  

Single case is the case when only one animal alone crosses the weighing scale (Figure 4.1, 

4.2). In single case crossing, force signal is characterized by the zero force measurement 

between two consecutive crossings.  

Crowded case is when animals are following each other in quick succession over the 

weighing scale (Figure 4.3). In this case, without identification information it could not be 

possible to distinguish the valuable part of the signal (Figure 4.4). The valuable part of the 

force versus time signal is measured when an animal was alone with its whole body weight 

on the weighing platform. 

The aim of the signal processing is to separate the valuable part of the force signal. The 

method is explained for single and crowded crossing cases with examples.  

 
 
5.1 Single crossing case 

 

To explain the method of signal filtering and separation an example is presented. A cow 

with 618 kilograms body weight was let across the weighing scale and force was 

measured. Plot of measured force versus time is shown in Figure 5.1. Performing discrete 

Fourier transformation on measured force signal with mathematical formula 
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a signal in frequency domain is created, where N is number of measured points, k is a 

coefficient between 1 and N, and x(n) is the measured force in the time sample n. As 

shown in Figure 5.2, applying absolute value of Fourier transformation values for 

measured signal the frequency domain of the force signal is formed.   
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Figure 5.1: Measured force signal of 618 kg cow. 

 

The signal is transformed excluding all frequencies except zero frequency, which carries 

the information of the body weight and walking velocity. The signal was filtered with the 

use of rectangular window of length L (L=L2 –L1): 
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which was multiplied with the measured force signal. Consequently, only a part of the 

signal was transformed in frequency domain. All values related to higher than zero 

 

 
Figure 5.2: Frequency domain presentation of the force signal. 
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Figure 5.3: Plot of force in time after filtering. 

 

frequency were set to zero. Inverse Fourier transformation turned the filtered signal in time 

domain. However, only the first value in the row of returned values was selected and the 

position in a new processed signal was assigned. The window was then moved from 

beginning toward the end of the signal such that the L1 and L2 are increased by one. The 

window filtering method was performed on the whole signal length. The created signal is 

presented in Figure 5.3. So obtained signal was much smoother than initially measured. 

The filtered signal was still containing the part where the animal was touching the scale not 

only with its four legs but also the transient parts of crossing (step on and off). To 

eliminate the transient parts of the signal another filtering needed to take place. This 

process was not as simple as the previous one, since there were no existing rules for the 

filter, but they had to be determined from experiments and practice.  

Discrete Fourier transform was performed on the signal and the frequency domain 

representation was obtained. The rectangular window method was performed in this 

process. The length of the window was determined according to the signal length. The 

absolute value at the first frequency was assigned for each window as it progressed through 

the signal. A new signal was created as shown with dashed line in Figure 5.4. The abrupt 

changes in the force signal were manifested by jumps in the new signal (dashed line). The 

transient points in the signal were recognised and the signal valuable part was detected. As 
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Figure 5.4: Transient points recognition plot. Dashed line has the magnitude of Fourier 

transform. 
 

shown in Figure 5.4, transient stages were at 0.91 and 2.53 second. Cutting out the 

valuable part of the force signal a new force signal measured during the stay of the animal 

with its whole body weight was formed. The selected part of force signal is plotted in 

Figure 5.5. 

 

 
Figure 5.5: Selected valuable part of the measured force signal. 
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For the case of single animal crossing the weigher the process of finding the transient parts 

of the force signal is completely defined. In other words, an algorithm was formed to find 

all maximums of the signal created by second proposed filtering method. The two biggest 

maximums pointed out the moment when an animal stepped on and off the weighing scale.  

 
 
5.2 Crowded crossing case 

 

As mentioned earlier, the most common case of crossing the weigher on dairy farm is the 

crowded case. An example of six cows weighed during consecutive crossing the weighing 

platform is here analysed. The plot of force signal combined with identification signal is 

presented in Figure 5.6. The identification signal is presented as a discrete unit pulse for 

each time when a cow was detected by the identification system. As explained in previous 

section, the identification detection occurred approximately at the moment when the cow 

stepped on the weighing platform. Filtering the force signal from noises was done in the 

same way as explained for single crossing situation. The major difficulty was the second 

filtering that selected the valuable part of the force signal. The construction of the weigher 

enabled that the maximum of two cows simultaneously touch the platform. Consequently, 

analysing all crossing situations for two animals was enough to understand even the most 

complex cases of weighing scale crossing. In Figures 5.7, 5.8, 5.9 and 5.10 possible 

situations of force signal measurement for two cows are presented. 

In Figures 5.7, 5.8, 5.9 and 5.10 idealised force signals of two cows with body weights of 

600 and 800 kilograms are drawn. These Figures consist of three windows. The first cow 

force signal is plotted in upper window, while the second force signal is presented in 

middle window. The two signals in upper and middle plots are summed and produced 

lower plot, which is, in fact, the kind of signal that is measured when two cows are 

following each other over the weighing scale. The plots in Figures 5.7, 5.8, 5.9 and 5.10 

are showing the decomposed force signal. They are basically showing how the final force 

signal is formed. Consecutive crossings over the weigher are characterised by the fact that 

the previous animal still acts on the weighing platform when the following animal stepped 

on the scale. The construction of the weighing device does not allow two cows fit side by 

side on the scale. In other words, maximum of three pair (two pair of one animal and one 

pair of the other) of legs can fit on the scale. 
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Figure 5.6: Plot of force signal (upper solid line) coupled with identification signal (bottom 

solid line). 

 

 
Figure 5.7: Plots of force signals for two cows consecutively crossing a weigher. 
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Figure 5.8: Plots of force signals for two cows consecutively crossing a weigher. 

 

 
Figure 5.9: Plots of force signals for two cows consecutively crossing a weigher. 
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Figure 5.10: Plots of force signals for two cows consecutively crossing a weigher. 

 

In Figures 5.7, 5.8, 5.9 and 5.10, one pair of legs is symbolised by “1”, two pair of legs of 

the same animal by “2”, one pair from one animal and one pair from the other by “1+1”, 

and two pairs from one animal and one pair from the other by “2+1”. Yet, when the first 

animal touches the scale with all four legs and the second animal affects the scale with its 

front pair of legs, the symbol is “2+1”. Vice versa, when the first animal touches the scale 

with hind pair of legs and the second animal affects the scale with all four legs, the symbol 

is “1+2”. In Figure 5.7 the second animal stepped on the scale with its front legs, while the 

first was still with all four legs on the scale (case c in Figure 4.3). The front legs of the 

second animal continued to affect the scale after the first animal stepped off with its front 

legs (case d in Figure 4.3) and later with its hind legs (case e in Figure 4.3). The second 

animal moved across the scale after the first animal disengaged completely (cases f and g 

in Figure 4.3). In Figure 5.8, the second animal moved forward after the first stepped off 

with its front legs and created space for the second to apply fully. In Figure 5.9, the second 

animal moved on the scale some times after the first animal stayed on the scale with its 

back legs producing a jump in the force signal symbolised by “1+1”. The second animal 

did not step on the scale with its back legs until the scale did not clear. In Figure 5.10 a 

similar situation of pace as in Figure 5.9 is presented. The difference is that the second cow 

fitted on the platform while the first had its hind legs on the platform, marked by “1+2”. 
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The four previous figures represent the possible cases of consecutive crossings over the 

weighing scale. Still, length of the stages “1”, “2”, “1+1”, “2+1”, and “1+2” vary from 

case to case. According to previously proposed, there are four main situations of crowded 

crossing over the weighing scale. Between the two consecutive full body weight (“2”) 

measurements in crowded crossing case, the following situations may occur: 

1) “2“ – “2+1” – “1+1” – “1” – “2” 

2) “2“ – “2+1” – “1+1” – “1+2” – “2” 

3) “2“ – “1” – “1+1” – “1” – “2” 

4) “2“ – “1” – “1+1” – “1+2” – “2” 

In reality the length of some crossing stages “1”, “1+1”, “2+1”, and “1+2”, might be short 

or zero and so the four main situations can be simplified. The real situations of crowded 

crossing for two animals over the scale were measured and the force signals are plotted in 

Figures 5.11, 5.12, 5.13 and 5.14. 

 

 
Figure 5.11: Force signal plot for two consecutive crossings (585 & 762 kg). 
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Figure 5.12: Force signal plot for two consecutive crossings (723 & 558 kg). 

 

 
Figure 5.13: Force signal plot for two consecutive crossings (567 & 633 kg). 

 

The four figures represent four proposed crowded crossing situations. As shown in Figures 

5.11, 5.12, 5.13, and 5.14 the transient parts are not so visible as in ideal crossing cases 

shown in Figures 5.7, 5.8, 5.9 and 5.10. Especially, the lasting of transient parts of case 3 

(“2“ – “1” – “1+1” – “1” – “2”) when only the front or back pair of legs was touching the 

scale (“1”) were almost zero and so invisible on force signal plot as presented in Figure 

5.15.  
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Figure 5.14: Force signal plot for two consecutive crossings (723 & 558 kg). 

 

 
Figure 5.15: Force signal plot for two consecutive crossings (700 & 618 kg). 

 

In the case of animals crowding on the weighing scale one of the four explained situations 

of two animals crowding occurred. The filtering of crowded force signal was done in the 

same way as proposed for single crossing case. The sampling window was selected 

according to recorded signal length and the discrete Fourier transform was applied. The 

absolute value of the first frequency value was calculated and the position in the new 

signal was given. The new created curve is presented together with force signal in Figure 
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5.16. The dashed line curve is the new created curve to denote transient points in the force 

signal. Vertical lines are drawn to mark the transient points. Dash-dotted vertical line is 

presenting the moment an animal stepped on the scale. This moment coincides with 

identification signal record.  

 

 
Figure 5.16: Transient points recognition plot.  

(Dashed line has the magnitude of Fourier transform) 

 

Unlike single crossing case where two maximum jumps of the new signal denoted the 

transient parts of the force signal, in crowded crossing case the situation was slightly 

trickier. The procedure of selecting the valuable part of the force signal for crowded 

crossing case is here explained. The force signal was separated into sections. Beginning of 

each section was the step on recognition from the identification signal and the end was the 

next recognition of the following animal. Six maximums of the first frequency curve are 

found for each section. This was chosen since the maximum of six transition points could 

occur, as previously explained. These five subsections were tested for body weight and 

time match. The construction of the weigher and the physical characteristics of the cattle 

determined the minimum of time spent on the scale when animal was alone with its whole 

body weight on the scale. Consequently, a boundary was stated for subsection time 

inspection. The time boundary was one second. Force signal corresponding to subsections 

were averaged. The mean value was compared to previously measured weight of the 

identified animal. The results from subsection body weight and time match were analysed. 

An algorithm inspecting all possible cases and combinations was developed. In the case 
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when some transition points did not exist the algorithm lowered down the number of 

subsections combining the neighbouring subsections that had close average values of force 

signal. Another significant problem caused by close values of the average force signal of 

not neighbouring subsections with previously measured body weight was resolved by 

choosing the most right subsection as the valuable part of the signal. This situation 

occurred when previous and following animals had similar body weights. It caused the 

body weight inspection to produce similar results for subsection “1+1” and subsection “2”. 

As previously proposed, subsection “2” came as last before the section ending.  

Finally, flow charts presenting the complete procedure of force signal noise filtering and 

valuable part filtering, as well as, algorithm for different situation inspection are shown in 

Figure 5.17, 5.18 and 5.19.  
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Figure 5.17: Flow chart of force signal filtering for single animal crossing case. 
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After force signal filtering was successfully done, it was possible to continue with body 

weight recognition procedure. There are three different methods of body weight 

recognition explained in the following sections.  
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Figure 5.18: Flow chart of force signal filtering for crowded crossing case. 
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Figure 5.19: Block diagram of algorithm for inspection various crossing situations.  
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6 Development of body weight recognition methods 

 

Three methods of denoting correct body weight of the animal weighted on the walk-

through weighing scale are presented in the following sections. Mathematical modelling 

method, neuro-fuzzy method and neural networks method are explained. 

 
 
6.1 Mathematical model of cow locomotion 

 

6.1.1 Model creation 

 

The model created and presented in this section was inspired from previous research in the 

field of human and animal locomotion. The aim was to develop a physical and 

mathematical model that could simulate cow walk. However, the model had to be 

applicable for the use in body weight recognition from the measured force signal.  

 

 

 

 

 

 

 

 

 

  

Figure 6.1: Physical model of cow locomotion. 

 

The force signal gave information on intensity of vertical force produced between animal 

feet and weighing platform and time of crossing lasting. Lasting of crossing determined the 

walking velocity, since the known platform length. Therefore, the model had to combine 

three parameters: walking velocity, body weight and vertical force produced by feet. On 

the other hand, systems like four legged animals are highly sophisticated. All four legs are 

moved independently. Each leg is composed of three parts that perform rotation 

independently. This leads to the number of twenty-four parameters to control. Twelve are 
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the torques produced by muscles to move each leg segment and the other twelve are the 

angle position of each leg segment. Additionally, there are seven parameters characterising 

masses of different body parts (1 – body mass, 3 – front legs, 3 – hind legs) and six 

parameters symbolising lengths of leg segments to adjust (3 – front legs, 3 – hind legs). 

Such a model produced directly from real system is presented in Figure 6.1. Due to its 

complexity it is not convenient for study of locomotion of the cattle. Some simplifications 

has to be introduced. Once the foot touches the ground the leg stays straight until the end 

of interaction with the ground. As a result, the leg can be examined not as a three segments 

element but as a single rigid one. This lowers down the parameters of the system almost 

three times.  

 
 

 

 

 

 

 

 

 

  

 

Figure 6.2: Simplified model of cow locomotion. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Pendulum type model of cow locomotion. 

  



Development of body weight recognition methods 59

The simplified model is shown in Figure 6.2. An important notice, at the transition stage 

when the leg is without contact to the ground, the leg have to shorten otherwise it would 

touch the ground when it is not desired. 

The model shown in Figure 6.2 symbolises a mass with four pendulums attached to it. Yet, 

the legs that are in contact with the ground perform as inverted pendulum moving the mass 

on arc. The free legs behave as pendulums moving from the position when they lost 

contact with ground to the position when they touch the ground again and become inverted 

pendulums. To achieve body motion during the inverted pendulum stage one front and one 

hind leg need to touch the ground simultaneously. Cattle move their diagonal legs roughly 

at the same time. 

In Figure 6.3 the pendulum - inverted pendulum model is shown. In reality cattle do not 

move their diagonal legs precisely simultaneously. There is always some time shift. The 

position angles of diagonal legs change in approximately same manner. Simultaneous 

movement of diagonal legs with exactly same angles is the ideal case of cattle walk. The 

model of ideal walk is similar to that in Figure 6.3. Ideal model has the legs with same 

length and masses. The diagonal legs move at the same time for the same angle interval. 

Consequently, the ideal model can be unified in a simpler one. The assumption that the 

four-legged animal simultaneously moves its diagonal legs caused the four-legged being to 

be seen as a two legged being. The simplified ideal walking model is shown in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Simplified pendulum model of cow locomotion. 

 

In this model the mass of each leg is double the mass of one leg of four legged pendulum 

model. The simple model of cow walk consists of: link bar and a point mass at its end, a 

free bar connected to the point mass and a motor that drives the rigid bars (Figure 6.5). The 
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model is similar to those proposed as human walk model. Simplifications introduced to 

four legged model are:  

1) simultaneous movement of diagonal legs 

2) straight legs during interaction with ground 

The mass and the length of the bars are m and l, respectively. The point mass is marked 

with M. The point mass stands for body mass of the animal, while the two bars represent 

legs of the cattle. The torques T1 and T2 which move the bars are in reality produced by 

muscles in order to move the legs. The angle positions of the bars are θ and φ.  
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Figure 6.5: Physical model of cow walk and control schematic. 

 

The walking of two legged being is the rotation of the active leg around the foot and the 

rotation of the passive leg around the hip. The active leg changes into passive leg and vice 

versa during walk. The active leg starts off with a negative value of angle to the vertical 

and ends approximately at the same angle value but with positive sign. During the rotation 

of an active leg, the passive leg rotates around the hip until the ground contact when it 

becomes the active leg and the active becomes the passive one. In ideal case the walking 
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begin and end angles of active and passive leg are equal and same for both legs, as well as 

the angular velocities of the legs. Muscles move the legs according to the command from 

brain. Similar to that concept the bars in the model are moved with torques. The torques 

are applied to the bars dependent on the information from the controller. The controller 

tracks the angle positions of the bars, θ and φ, and compares it to the desired angle values, 

θd and φd. The simple pendulum model of cow movement with controller is shown in 

Figure 6.5. 

Walk simulation with simple pendulum model is done analogue to that explained for two 

legged being. It is chosen that instead of moving the whole system like during walking the 

rotation around two joints, one at ground and the other at the point mass, produce the same 

result as real motion. The walking process is presented as vibration of inverted pendulum 

and pendulum attached to the end of the inverted pendulum. The oscillation of the model is 

shown in Figure 6.6.  
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Figure 6.6: Simulation of walking process. 

 

As in walking when legs switch at every step, the bars switch such that active becomes 

passive and passive becomes active. In simulation it is done by switching the angles. The 

angles θ and φ change their names and θ becomes φ, and vice versa. The fool step is 

accomplished when the bars complete one oscillation from left most to right most or from 

right most to left most position. The controller tracks the desired position angles of bars 
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and applies amount of torque to each bar so it minimize the tracking error. During that 

procedure the torques change their direction. The desired angles change their values as 

sinusoidal function. Angle values are shifted for 180 degrees, such that the angles have the 

same amount just different signs.  

The equation of motion of simple pendulum model is here derived. A drawing of physical 

model according to which the equations of motion are derived is shown in Figure 6.7. In 

Figure 6.7 the forces and torques acting upon the system, as well as, the relevant angles 

and points are presented.  
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Figure 6.7: Forces and torques applied on the system. 

 

The kinetic energy of the model plotted in Figure 6.7 is 

321 KKKK EEEE ++= ,        (1) 

where  is the kinetic energy of rotating bar (inverted pendulum),  is the kinetic 

energy of the point mass at the end of the bar, and  is the kinetic energy of the bar with 

plain motion (free pendulum). Kinetic energies are 

1KE 2KE

3KE

2
11 2

1 θ&IEK = ,          (2) 

22
2 2

1 θ&MlEK = ,         (3) 

2
2

2
23 2

1
2
1 ϕ&CCK ImvE += ,        (4) 
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where  and  are the moments of inertia of the bars at the centre of rotation A and 

centre of bar C

1I 2CI

2 for rotating bar and planar motion bar, respectively. Velocity at the mass 

centre C2 is  and is calculated from position of mass centre on the x and y axes  2Cv

ϕθ sin
2

sin2
llxC += ,        (5) 

ϕθ cos
2

cos2
llyC −= .        (6) 

Velocity at the middle of free bar is calculated as 

( 2/12
2

2
22 CCC yxv += ) .         (7) 

Substituting (5) and (6) in (7) denotes 

( )
2/12

2
2 cos

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= ϕθϕθϕθ &&

&&lvC .      (8) 

The moments of inertia of bars are 

2
1 3

1 mlI = ,          (9) 

2
2 12

1 mlIC = .          (10) 

Substituting equations (9) in (2), and (10) and (8) in (4) the kinetic energy equations are 

formed 

22
1 6

1 θ&mlEK = ,         (11) 

( ) 22
2

22
3 24

1cos
42

1 ϕϕθϕθϕθ &&&
&& mlmlEK +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++= .    (12) 

Therefore, substituting (11), (3) and (12) in (1) the kinetic energy of the whole system is 

( ) ϕθϕθϕθ &&&& +++⎟
⎠
⎞

⎜
⎝
⎛ += cos

2
1

6
1

2
1

3
2 222222 mlmlMlmlEK .   (13) 

Potential energy of the system is produced by potential energy of bars and point mass, 

321 PPPP EEEE ++= .         (14) 

Potential energy of the rotating bar (inverted pendulum) is 

θcos
21
lmgEP = ,         (15) 

potential energy of the point mass is 

θcos2 MglEP = ,         (16) 
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potential energy of planar moving bar (free pendulum) is 

⎟
⎠
⎞

⎜
⎝
⎛ −= ϕθ cos

2
cos3

llmgEP .        (17) 

Finally, substituting (15), (16) and (17) in (14) the total potential energy of the system is 

⎟
⎠
⎞

⎜
⎝
⎛ −++= ϕθθθ cos

2
coscoscos

2
llmgMgllmgEP .    (18) 

The modelled system has two degrees of freedom. The general equations of motion in 

general form for two variables, θ and φ, are 

θθθθ
QDLL

dt
d

=
∂
∂

+
∂
∂
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⎠
⎞
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⎝
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∂
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⎝

⎛
∂
∂

&&
,        (20) 

where the Lagrange function is 

PK EEL −= ,          (21) 

the generalized forces are 

θθ ∂
∂

=
WQ , 

ϕϕ ∂
∂

=
WQ ,        (22) 

and the dissipation function  

0=D .           (23) 

The virtual work of the non-conservative time periodical torques is 

δϕδθδ 21 TTW +=          (24) 

where T1 and T2 are the torques which act on the bars. Substituting (13), (18) and (24) in 

(19) and (20), the differential equations become 

( ) ( )

1

2222

sin
2
3

sin
2
1cos

2
1

3
4

TMmgl

mlmllMm

=⎟
⎠
⎞

⎜
⎝
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−+−++⎟
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⎝
⎛ +

θ
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 ,   (25) 

( ) ( ) 2
2222 sin

2
sin

2
1

3
1cos

2
1 Tlmgmlmlml =++−++ θϕθθϕθϕθ &&&&&  .  (26) 

Equations (25) and (26) are the non-linear differential equations of motion for the model 

representing cow walk sketched in Figure 6.7.  

The forces acting on the system during walking simulation of the model are presented in 

Figure 6.8. 
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Decoupling the model, the following system of equations in point C1 in the direction of x 

and y axes marked in Figure 6.8 are formed 

MTC XFxm +=1&& ,         (27) 

MNC YMgmgFym +−−=1&& ,        (28) 

and in point C2, 

MC Xxm −=2&& ,          (29) 

MC Ymgym −−=2&& .         (30) 
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Figure 6.8: Forces and joins reaction of the model. 

 

Reaction forces in point M are XM and YM, while the reaction forces at the ground 

connection A are FN and FT. Substituting (29) in (27) and (30) in (28) reaction forces 

between bar and ground are  

( 21 CCT xxmF &&&& += )

)

,         (31) 

( ) ( mMgyymF CCN 221 +++= &&&& ,       (32) 

where  and  are formulated in equations (5) and (6), respectively, and 2Cx 2Cy

θsin)2/(1 lxC = ,         (33) 

θcos)2/(1 lyC = .         (34) 

The second derivative of (5), (6), (33) and (34) is substituted in (31) and (32), and the final 

equations of ground reaction forces are created 
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⎟
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The aim is to connect ground reaction vertical force FN with equations of motion of the 

model (25) and (26). From coupled system of differential equations of motion the values of 

θ , , , θ& θ&& ϕ , ϕ&  and ϕ&&  can be calculated using numerical calculus method. The equation 

(26) is modified 

( ) ( ) 22
2 3sin

2
3sin

2
3cos

2
3 T

mll
g

+−+++−= θθϕθθϕθϕ &&&&& ,     (37) 

and substituted in (25). The equation (25) is then expressed as 
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It is assumed for initial conditions that the angle position of the bars correspond to the 

ending position of the previous step, 

( ) ( ENDSTART tt )ϕθ = ,         (39) 

( ) ( ENDSTART tt )θϕ = .         (40) 

As the kinetic energy is lost in inelastic impact of foot with the ground it is taken that the 

angular velocities of bars for the start position of each step are zero, 

( ) 00 =θ& ,          (41) 

( ) 00 =ϕ& .          (42) 

The values of bar position angles, angular velocities and angular accelerations can be 

calculated from (37) and (38) for assumptions stated in (39) – (42). However, the values of 

point mass and bar masses, as well as, bar length have to be chosen. First, value of  is 

calculated from (38) and then the value of 

θ&&

ϕ&&  is calculated from (37). These values are 

integrated by numerical integration method and then the computed value of θ , , θ& ϕ and ϕ&  

are substituted in (38) and (37) in the new iteration. The new computed values of angular 

accelerations are obtained. The process continues dependent on the number of iteration in 

numerical calculus. At every iteration the value of ground reaction vertical force is 

calculated according to equation (36).  
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As exposed in mathematical model development, there are three parameters to constrain in 

the model: mass of point mass (M), masses of bars (m) and length of the bars (l). The total 

mass is the sum of point mass and two bars masses. Initially, it was chosen the mass of the 

bars to be 16 % of total mass. This was done according to known data on mass ratio of the 

cattle body parts. The length of the bars was fixed to one meter, since the average length of 

the legs of an adult cow is approximately one meter. The desired position angles of the 

bars are calculated as 

( tAtd )ωθ cos)( −= ,         (43) 

( tAtd )ωϕ cos)( = .         (44) 

where A is the maximal (minimal) angle between bars and vertical and ω  denotes the 

frequency of oscillation. This constant was chosen to be 10 degrees according to average 

leg swing of cattle. According to (43) and (44) simulation starts at maximal extension of 

bars. The steps are set to be ideal, producing an ideal walk simulation. The controller 

chosen was a simple proportional-differential (PD). The parameters of the PD controller 

had to be adjusted such that the output force was smooth and close to realty. An example 

of cow walk model simulation is presented for better understanding of model and 

simulation.  

The simulation was run with the use of two equation of motion (37) and (38), and the 

ground reaction vertical force equation (36). The desired bar position angles were of 10 

degrees amplitude and 1 rad/s oscillation frequency. The total body mass was 700 

kilograms. The parameters of the PD controller were set to 10000 and –5000 for 

proportional and differential part, respectively. The calculated vertical force during 

simulation is plotted in Figure 6.9. In Figure 6.9 the solid line marks the calculated ground 

reaction vertical force, while the dashed line marks the angle θ  (angle values were 

increased by 700 to be visible with force curve). As shown in Figure 6.9, the force reaches 

its minimums when the bars are in the vertical position. The maximums are reached at the 

right most and left most position of bars. The frequency of force oscillation is double the 

frequency of position angles. This, however, coincide with reality ground reaction vertical 

force during walking (exp. human walk). The right most and left most positions are the 

switching of legs points (change of direction of model oscillation). At these points the most 

force is applied to the ground. The plot of force in Figure 6.9 is not a perfect harmonic. In 

the first step calculated force has slight variations compared to the following steps. This is 

caused by the fact that the system moves from the still position and later the constant 
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inertia is created producing same amount of ground reaction for each step. The amplitude 

of 40 kilograms in force oscillation is obvious from the plot. The force oscillation 

amplitude changes as the total mass and/or bars position angle frequency change. 

 

 
Figure 6.9: Plot of calculated force (700 kg, 1 rad/s).  

 

 
Figure 6.10: Plot of calculated force (700 kg, 0.5 rad/s). 
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Figure 6.11: Plot of calculated force (700 kg, 1.5 rad/s). 

 

In Figures 6.10 and 6.11 calculated force is plotted for two frequencies. The force 

calculated and plotted in Figure 6.10 was computed for the total mass of 700 kilograms and 

angle oscillation frequency of 0.5 rad/s. This is the case of slower walking than in the first 

case. The amplitude of vibration is approximately 10 kilograms. In Figure 6.11 faster 

walking simulation results are presented. The angle oscillation frequency was 1.5 rad/s and 

therefore produced the vibration amplitude of about 130 kilograms. From the previously 

exposed it is obvious that the acceptable bar oscillation frequency range between 0 and 1.5 

rad/s. The value of bars oscillation frequency is directly proportional to walking velocity.  

According to above presented the model used in simulation had two inputs and one output. 

The inputs in the system were total mass and bars oscillation frequency analogue to body 

weight of the animal and the walking velocity. The output was the ground reaction vertical 

force produced analogue to force between feet and weighing platform.  

 
 
6.1.2 Model application 

 

The process of body weight recognition for a cow passing over the walk-through weighing 

scale is done similar to earlier explained model verification method. The ground reaction 

force is measured and filtered. The valuable part of the signal is analysed. The developed 
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mathematical model is used inversely for finding the correct body mass from known output 

force. The optimisation of two parameters is performed in order to match the measured 

force signal. The two parameters are the total mass and the bars oscillation frequency. The 

selected value of total mass from the optimisation process represents the body weight of 

the animal measured on the walk-through weighing scale.  

An algorithm was created to extract the average values of maximums and minimums of 

force signal and the distance between peaks. Based on the information on average 

maximum and minimum of the force signal the parameters in the mathematical model are 

adjusted. 
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Figure 6.12: Block diagram of the optimisation algorithm. 
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After first round of model parameters selection the so calculated force was compared to 

measured force. In order to match the peaks of the two curves the information on distance 

between peaks is used. The divergence of the two curves is computed as square error. The 

part of the force signal where the error is smallest is cut out for further comparison. The 

procedure repeats for new parameter values until the best match is achieved. The block 

diagram of the body weight recognition algorithm is shown in Figure 6.12. 

 
 
6.2 Fuzzy logic method 

 

As presented in previous chapter, mathematical model of cow movement might be applied 

in body weight recognition of cattle weighted on the walk-through weighing scale. Other 

ways of solving the problem of dynamic body weight measurement were analysed. Fuzzy 

logic based method of body weight recognition for cattle weighted on the walk-through 

weighing scale is exposed. 

 
 
6.2.1 Model creation 

 

The approximation capability of fuzzy logic applied for force signal measured during cow 

walk is analysed. Takagi-Sugeno fuzzy system was created. Takagi-Sugeno fuzzy model 

was chosen since its representative power. It is capable of describing a non-linear system 

using sufficient rules and training data. The model consists of: Gaussian fuzzifier, product 

inference engine and centre average defuzzifier. Gaussian membership function (MF) is 

used to denote the grade of the input for particular membership class 
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⎟⎟
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Ai
Ai a

cxµ ,        (45) 
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⎟
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⎞
⎜
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⎝

⎛ −
−= 2

2

exp
Bi

Bi
Bi a

cy
µ ,        (46) 

where x and y are the inputs and cAi and cBi are the parameters of the Gaussian function 

characterising centre and aAi and aBi are the parameters of the Gaussian function 

characterising width of the function. Product inference engine performs multiplication of 

the grades combined according to Takagi-Sugeno fuzzy rules 

BiAiiw µµ ×= .         (47) 
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The consequent of the Takagi-Sugeno fuzzy rules are described by linear function 

iiii ryqxpF ++= ,         (48) 

where pi, qi and ri are the parameters of the Takagi-Sugeno fuzzy rules consequent. 

Centre average defuzzification calculates the output of the fuzzy system  

∑
∑=

i

ii

w
Fw

y .          (49) 

The adjustable parameters of the system are cAi, cBi, aAi, aBi, pi, qi and ri.  

The measured force signal is the output of a non-linear function. This non-linear function 

has a number of inputs. Among them are the body length, length of legs, body weight, 

body velocity, velocity of legs and position angle of legs. The only input that is possible to 

be measured during weighing scale crossing is the walking velocity. It is calculated from 

the measured time of crossing the scale and the length of the scale. However, the walking 

velocity is assumed to be constant during the whole stride period. The function is therefore 

simplified to a single input single output (SISO) function. The input is the time of crossing 

the scale, while the output is the vertical force created by animal feet during walking. The 

fuzzy model to be created to approximate such a function has one input and one output. 

Takagi-Sugeno fuzzy model for one input uses Gaussian membership function (45). 

Product inference engine is not used since only one input is applied and the fuzzy rules are 

simple. The number of membership functions that cover the input region define the number 

of consequent parts in fuzzy rules. Each membership function corresponds to a consequent.  

The Takagi-Sugeno fuzzy rule consequent for single input system is 

iii rxpF += .          (50) 

Since the single input system is used equation (47) is simplified in 

Aiiw µ= .          (51) 

The number of adjustable parameters is  

MFPAR NN 4= ,         (52) 

where  is the number of membership functions.  MFN

The parameters of the fuzzy model to approximate force signal measured with the walk-

through weighing device on dairy farm can be adjusted with a number of training methods 

proposed in literature. One of the most powerful training tools is the so-called hybrid 

training in adaptive network based fuzzy inference system (ANFIS). It combines gradient 

descent method and least square estimation method to fit the parameters of the fuzzy 
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system so the square error of force signal and approximation curve are minimised. ANFIS 

model for single input single output system is drawn in Figure 6.13. In Figure 6.13 neuro-

fuzzy model with two membership functions is shown. X stands for the crossing time, Ai is 

the membership function, P stands for the product inference engine, while N is the 

normalised part and Fi is the Takagi-Sugeno fuzzy rule consequent. The model has five 

layers. The first layer performs fuzzification with the Gaussian bell shaped function (45).  
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Figure 6.13: ANFIS SISO model with two MFs.  

 

Second and third layers are the product inference engine and the normalised part, 

respectively. As mentioned, the product inference engine is not used for single input 

system. The normalised part computes normalised fuzzy value for each input following 

(51) 

∑
=

i

i
i w

w
w .          (53) 

The normalised layer performs a part of calculation for centre average defuzzification.The 

fourth layer is the Takagi-Sugeno rules consequent described with equation (50). The last 

layer is the summation. For the known input-output signal pair, i.e., time of crossing the 

scale and vertical force acting on the scale during walking, the system parameters are 

calculated.  

To illustrate the possibility of the created fuzzy model in function approximation an 

example is considered. Approximation of a force signal curve produced by 618 kilograms 

cow and time of crossing 1.68 seconds is analysed. In Figure 6.14 the filtered valuable part 

of the force signal is marked with crosses. The solid line is the fuzzy logic based 

approximation of the force curve. The fuzzy model included ten membership functions. 
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Consequently, forty parameters (52) were adjusted with hybrid training for input-output 

pairs of measured sampling time and force measured at that time. The approximation force 

function with ten membership functions (MFs) is highly precise. On the other hand, the 

input into the fuzzy system is not adequate to create a useful fuzzy system that can be used 

as a model for any situation of pace. The adequate input into the system would be the 

motion of each of four legs. Unfortunately, angles and velocities of the legs are impossible 

to measure on dairy cows. Yet, it is possible to measure these values but the system would 

be too expensive for common use on dairy farms. Therefore, the only left option was the 

crossing time – force, input – output model.  

 

 
Figure 6.14: Force signal approximation with fuzzy model (10 MFs). 

 

The plot of fuzzy model with two membership functions approximating the force signal is 

shown in Figure 6.15. The fuzzy model approximation marked with solid line shows an 

imprecise approximation of force curve. The fuzzy model with two membership functions 

performs so-called non-linear averaging of the force signal. Comparing the obtained 

solutions of force signal approximation it is concluded that the lower order fuzzy model is 

more desirable from our standpoint since the goal was to obtain the average value of 

measured force excluding extra influences. The extra influences are the length of the step, 

body swinging, hobble, etc. Namely, the model should only model body weight and time 

dependencies. For a cow with 618 kilograms a number of walk-through body weight 

measurements for various walking velocities were performed. The measured times of scale 
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crossing were: 1.43, 1.52, 1.67, 1.82, 1.98 and 2.03 seconds. The fuzzy model with two 

membership functions was applied in function approximation for the measured force 

signal. Before approximation, the force signal was processed and filtered as explained in 

Chapter 5. The created curves are plotted in Figure 6.16. 

 
Figure 6.15: Force signal approximation with fuzzy model (2 MFs). 

 

 
Figure 6.16: Approximation curves of force signals for 618 kg cow (2 MFs). 

The curves shown in Figure 6.16 are similar to each other. They differ in the width, which 

is produced by different crossing times. If centred and adjusted to the same number on the 

horizontal axis they would create a close match. Consequently, the curves created with 
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fuzzy approximation of force signal are dependent on body weight and time of crossing the 

scale.  

It was of great importance to investigate the approximation capabilities of the fuzzy model 

with two membership functions not only for same body weight and various walking 

velocities but also for different body weights and similar crossing times. Experiments were 

performed on three dairy cows with different body weights. The animals tested were with 

558, 618 and 700 kilograms body mass. After a number of measurements the close time of 

crossing the scale were 1.81, 1.83 and 1.85 seconds, from lightest to heaviest animal. The 

filtered force signals for the three crossing cases are shown in Figure 6.17. The fuzzy 

model based approximation of force signals plotted in Figure 6.17 is plotted in Figure 6.18.  

As shown in Figures 6.17 and 6.18, the force signals differ among each other, while fuzzy 

approximated curves are alike. The similarity among approximated force signals enabled 

the possibility of representing various situations of stride for the same animal for similar 

crossing times with one fuzzy model (Figure 6.19). In Figure 6.19 approximated force 

signals for a cow with 700 kilograms body mass and 1.85 and 1.88 seconds crossing times 

are plotted. 

 
Figure 6.17: Filtered force signals of 558, 618 and 700 kg cows. 
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Figure 6.18: Approximation curves of force signals for 558, 618 and 700 kg cows (2 MFs). 

 

 
Figure 6.19: Approximation curves of force signals for 700 kg cow (1.85; 1.88 s). 
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Figure 6.20: Approximation curves of force signals for 700 kg cow (1.85; 1.97 s). 

 

The curves in Figure 6.19 match while curves in Figure 6.20 are shifted. The differences 

between times of crossing in the two figures are 0.03 and 0.12 seconds, respectively. 

Although the time differences are quite small one fuzzy model could not represent stride 

differing more than 0.1 seconds from that the model was created. The calculated 

parameters of the fuzzy model approximating force signal did not have any physical 

meaning. Consequently, fuzzy models had to be created for groups of crossing times, i.e. 

1.09, 1.15, 1.31, 1.54, etc. To cover most of crossing times a number of experiments were 

done. The cattle varied in their body weights and age, since the younger and lighter 

animals were quicker than older and heavier. The models created were gathered in a 

database of models. In the database of models, parameters of the fuzzy model were stored. 

Two membership functions Takagi-Sugeno fuzzy model contains eight adjustable 

parameters (a1, a2, c1, c2, p1, p2, r1, r2). From a variety of processed force signals for fuzzy 

model detection, some parameters of the models were possible to constrain. The 

parameters in the first layer (a1, a2, c1, c2) were shown to be linearly dependent on crossing 

time TC

01 =c , , CTc =2

CTa 6.01 = , . CTa 6.02 =

Therefore, the parameters of the model that needed to be calculated were only in the last 

layer of the model. Four parameters (p1, p2, r1, r2) of the fuzzy model were representing 
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every crossing situation of the weighing scale. Since only parameters in the Takagi-Sugeno 

fuzzy rules consequent were computed, the hybrid training was simplified by least squares 

estimation. This simplification of approximation procedure decreased the model 

parameters computation time. The database of model parameters contained the values of 

four parameters (p1, p2, r1, r2). Database of model parameters was created with body 

masses 558, 618 and 723 kilograms as shown in Table 6.1.  

 

Table 6.1: Database of model parameters. 
 

Crossing 

time (s) 

 

1.09 

 

1.15 

 

1.31 

 

1.54 

 

1.63 

 

1.74 

 

1.81 

 

2.00 

 

2.10 

Body weight 

(kg) 

 

558 

 

723 

 

723 

 

618 

 

618 

 

558 

 

558 

 

618 

 

618 

p1 0.377 8.182 3.854 1.601 2.433 0.746 2.740 1.740 2.592 

r1 520.7 629.0 657.1 626.7 576.3 525.5 482.3 565.9 549.9 

p2 -0.11 7.208 1.792 2.248 1.721 -0.47 1.123 0.999 1.714 

r2 578.6 49.48 461.3 326.0 352.0 588.8 327.3 411.9 268.1 

 
 

As presented in Table 6.1, crossing times covered range between 1.00 and 2.20 seconds. 

The so created database of models was used in body weight recognition of cattle measured 

on walk-through weighing scale.  

 
 
6.2.2 Model application 

 

The usage of created database of models and fuzzy function approximation in body weight 

recognition problem is here explained. The body weight recognition of cattle measured on 

the walk-through weighing scale was based on fuzzy model approximation of force signal 

measured on the scale and filtered with the signal processing algorithm. The Takagi-

Sugeno fuzzy model with two membership functions was used in signal approximation. 

The output of the fuzzy model is 

2211 FwFwy += ,         (54) 

where  

  



Development of body weight recognition methods 80

21

1
1 ww

w
w

+
= ,         (55) 

21

2
2 ww

w
w

+
= ,         (56) 

111 rxpF += ,          (57) 

222 rxpF += .          (58) 

The elements in equation (55) and (56) are calculated as 
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Switching (57) and (58) in (54) the output equation is formed 

22221111 rwxpwrwxpwy +++= .       (61) 

Equation (61) can be written in matrix form 

PXy T= .          (62) 

The matrices are of form 
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Parameters a1, a2, c1 and c2 are fixed as explained earlier. Parameters grouped in the matrix 

P were adjusted with least square estimation method. Least square training method used 

following equations 

( )PXySXPP T−+= ,        (65) 

where S was calculated as 

SXX
SSXXSS T

T

+
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.         (66) 
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Initial value of S was chosen to be  
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The approximator produced a fuzzy model with output dependent on animal body weight 

and walking velocity. Plotted fuzzy model output created a curve which was similar to 

those plotted for similar walking velocities. Based on similarity on output curves body 

weight recognition method was created.  

Body weight recognition method consisted of time and surface comparison. For every new 

object crossing over the scale, the force vs. time was approximated using the described 

fuzzy method creating a new curve. The parameters of the fuzzy model were selected from 

the initially created database of model parameters according to measured time of crossing. 

The new curve and the database curve were compared. The difference between the 

integrals of the two curves denoted the new body weight of the measured animal. 

The procedure of body weight estimation is explained on an example. The force vs. time 

measurement was filtered and the valuable part of the signal was selected. The time animal 

stayed on the weighing platform with all four legs was 1.85 seconds. Applying the fuzzy 

approximation for the measured force signal a fuzzy output was created and solid line 

curve was plotted in Figure 6.21. Crosses in Figure 6.21 marks the force signal.  

 

 
Figure 6.21: Force signal approximation with fuzzy model. 
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Figure 6.22: Fuzzy approximation curve of new (solid) and database (dashed) force signal. 

 

The parameters of the model from database were chosen according to the time of crossing 

the scale. As presented in Table 6.1, the closest time of crossing from the database is 1.81 

seconds for body mass 558 kilograms. The output of the fuzzy model for the chosen 

database model parameters is plotted in Figure 6.22 with dashed line. The solid line in 

Figure 6.22 presents fuzzy approximation of the new measured force vs. time. 

To find the body weight of the new animal the curves plotted in Figure 6.22 were 

compared. The surface between the solid and the dashed line was computed. The surface 

above solid line was positive, while under the solid line was negative. With such signs total 

intersection surface was calculated. The database fuzzy model output values were 

increased or decreased in order to minimise the total intersection surface. This was 

obtained with an optimisation algorithm. Once the minimum intersection surface was 

reached the added value to the database fuzzy output was added to the database body 

weight for which the parameters were selected. In this example, the best fit was achieved 

adding 143 kilograms to the database fuzzy output. Figure 6.23 shows the best fit of the 

new and the database curves. Adding 143 kilograms to 558 kilograms, body weight of new 

animal was determined. Statically measured body mass of the new animal was 700 

kilograms. The calculated mass was 1 kilogram bigger than the measured one.  

The above procedure for body weight estimation is applicable not only for single crossing 

case, but also for the crowded case when animals follow each other in quick succession 

over the scale. The valuable parts of the crowded crossing case force signal are filtered and 
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the body weight recognition method is applied. An example of two cows following each 

other over the weighing scale is discussed. The animals were statically weighted, such that 

the first was 567 and the second was 633 kilograms. Filtered force signal is presented in 

Figure 6.24.  

 

 
Figure 6.23: Best fit of modelled curves. 

 

 
Figure 6.24: Filtered force signal (567 & 633 kg). 
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The valuable parts of the signal were selected as explained in Chapter 5. After 5.25 

seconds the first cow stepped on the scale the second moved forward. Valuable parts of the 

signal were between 1.47 - 4.45 seconds and 8.62 - 16.79 seconds. The selected parts of 

the force signal were approximated with presented fuzzy model and the body weight 

recognition procedure was applied. However, the database comparison model was chosen 

according to the time of crossing the platform. In other words, the time between step on 

and off the scale of the animal was of interest for database match up, but the comparisons 

of the created curves were done for the part of the signal when the animal was alone on the 

scale. The calculated body weights were 570 and 623 kilograms.  

The proposed method for denoting animal body weight from measured force signal is 

tested for various crossing situations of the weigher and the results are presented in 

Chapter 7.  

 
 
6.3 Neural networks method 

 

The method includes neural networks calculations. In the first part of the chapter the 

selection of peaks in force signal is explained. The training rules of the network for input-

output pairs are also described.  

 
 
6.3.1 Model creation 

 

The dynamic weighing problem can be turned into a classification task. Classification in 

common sense is to link input vector with some class. The classification task in dynamic 

weighing associate input vectors with specific output vectors. In dynamic weighing the 

output vector is well known. It is the body weight of the animal measured on the manual 

(static) weighing scale. However, the parameters of the force signal in input vector to be 

associated to body weight need to be determined.  

The measured force signal depends on walking velocity and body weight. The walking 

velocity and the body weight influence the amplitudes of force produced by feet. The 

amplitude of force increases as the walking speed increases. The amplitude of force also 

increases as body weight increases for constant walking speed. To illustrate that a cow 

with 558 kilograms body weight was measured on the walk-through weighing scale.  
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Figure 6.25: Measured and filtered force signal of 558 kg cow.  

 

In Figure 6.25 and 6.26 the filtered force signal valuable parts are plotted. The crossing 

time of the weighing scale were 1.65 and 0.85 seconds, respectively. The maximum force 

values measured for the first and second case were 590 and 610 kilograms, while the 

minimums were 520 and 500 kilograms, respectively. In other words, the forces measured 

and plotted in Figure 6.25 and 6.26 had the amplitude of 35 and 55 kilograms. As 

expected, the amplitude of force oscillation was bigger for faster crossing of the scale.  

 

 
Figure 6.26: Measured and filtered force signal of 558 kg cow. 

  



Development of body weight recognition methods 86

 

 
Figure 6.27: Measured and filtered force signal of 618 kg cow. 

 

In Figure 6.27 measured force signal of 618 kilograms body weight cow is plotted. The 

crossing of the weighing platform lasted 1.67 seconds. This was similar to the crossing 

time of 558 kilograms cow plotted in Figure 6.25. The maximum force value measured for 

618 kilograms cow was 650 kilograms, while minimum was 570 kilograms. This produced 

the force signal oscillation amplitude of 40 kilograms. Comparing the characteristics of the 

first and third force signal, it was noticed that the amplitudes differed for 5 kilograms, 

while the body weights differed for 60 kilograms and the walking velocity was 

approximately equal. 

This leads to the conclusion that each crossing of the walk-through weighing scale produce 

force signal which can be characterized by maximum and minimum value of the force 

swinging. These values are directly dependent on animal’s body weight and walking 

velocity. Consequently, the maximum and minimum of force oscillation can represent 

every measured force signal recorded on the walk-through weigher. Therefore, the two 

parameters of force signal can be selected as input vector for classification task.  

Since the input-output vector was denoted, it was necessary to define the neural network 

used for classification task. There are a number of networks structure suggested in 

literature that are good classifiers. Two major groups are the linear and non-linear 

classifiers. In the case of inputs defined as maximum and minimum of force signal and 

output as body weight, there is no strict linear relation between input and output vector and 
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so the non-linear classifier is preferred. The two well-known non-linear classifiers are 

radial basis network and multi-layer perceptron network. They contain hidden layers with 

non-linear activation function and an output layer with linear activation function. Radial 

basis network requires more neurons than standard multi-layer perceptron network. 

Probabilistic neural network is the variation of radial basis network commonly used in 

classification problems. Probabilistic network has a competitive output layer instead of a 

linear layer. The parameters in the probabilistic neural network increase exponentially with 

dimensions of input space. The probabilistic network approximates locally, while multi-

layer perceptron network does it globally. However, multi-layer perceptron network 

performs successful classification of only smooth non-linearities. Since in the body weight 

recognition of dynamically weighted animals the training pairs of a classifier could not be 

introduced covering the whole surface of possibilities, the generalization need to be 

introduced in the network. Yet, the probabilistic neural network is formed for input-output 

pairs without typical training but with adjustment of the network parameters to the input-

output vector, which results in limited classification possibilities. Since in the body weight 

recognition task a small number of training sets can be introduced to the network the 

probabilistic neural network should be avoided. Consequently, the multi-layer perceptron 

network would be the first choice of the neural network structure adequate for body weight 

classification. The structure of multi-layer perceptron network with one hidden layer is 

shown in Figure 6.28. 
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Figure 6.28: Multi-layer preceptron network structure with one hidden layer. 
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The final structure of the neural network used in body weight classification was 

determined after the network was tested. The training rule was first selected for this type of 

classification task.  

One of the problems that occur during neural networks training is over fitting. The training 

data set error is minimized during training, but for the new data set error is large. The 

network is fully adapted to training data and leaves no space for new data. To eliminate the 

problem of over fitting the network needs to be learned to generalize to new situations. To 

improve network generalization the network has to be just large enough for an adequate fit. 

Larger networks result in over fitting, while smaller result in under fitting. The optimal 

network size is impossible to know without testing. However, there are methods developed 

to perform generalization on neural network. Bayesian regularization is one of the methods 

to accomplish neural network generalization. Bayesian regularization takes place within 

some training technique. Training methods for multi-layer perceptron network are mostly 

developed based on Widrow-Hoff algorithm, which is based on mean square error. The 

training mode needed in body weight recognition task was the batch mode, which updated 

the parameters of the network after all training sets were introduced. The batch training 

mode was important since it improved the generalization of the network. The 

recommended training method for small and medium size neural networks is Levenberg-

Marquardt training, since its rapid convergence. On the other hand, Levenberg-Marquardt 

training can be adapted to perform Bayesian regularization. Levenberg-Marquardt training 

uses numerical optimisation technique and large memory storage. However, the suggested 

training method is not suitable for large networks. For training of large neural networks 

commonly used methods are conjugate descent and some heuristic technique training 

methods. The most powerful conjugate descent training for a variety of tasks is scaled 

conjugate gradient algorithm. This algorithm is designed to avoid the time-consuming line 

search per learning iteration, which makes the algorithm faster than other second order 

algorithms. Among the heuristic training methods resilient backpropagation represents 

simple batch mode training with fast convergence and minimal storage requirements. The 

resilient backpropagation training eliminates the effect of small gradient values and so 

decreases the training time of standard steepest descent training. Since the architecture of 

the multi-layer perceptron network used for body weight recognition task was not known 

various models and training methods were tested in order to find the optimal network 

structure and values of network parameters (weights and biases).  

  



Development of body weight recognition methods 89

First, a multi-layer perceptron network was selected among various layer and neuron 

numbers with the use of Levenberg-Marquardt training. The training algorithm included 

Bayesian regularization. The Levenberg-Marquardt training method was developed from 

Newton’s method. The basic Newton’s method computed the Hessian matrix, which was 

the second derivative of performance function at the particular weights and biases. 

Performance function is commonly mean square error. Due to complexity of the 

calculation proposed by Newton, Levenberg-Marquardt offered an alternative without 

having to compute the Hessian matrix. The Jacobian matrix was computed instead Hessian 

matrix as a first derivative of performance function with respect to weight and bias 

variables 
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and  is the vector of weights and biases. x

The Hessian matrix can be approximated as 

JJH T= .          (70) 

The Newton’s method learning step is 
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1

−
+ −= .         (71) 

The gradient can be approximated as 

eJg T= ,          (72) 

where e represents vector of network errors. Therefore, the final Levenberg-Marquardt 

learning step is of form 
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+ +−= µ ,       (73) 

with µ  being a scalar determining the speed of the convergence. When µ  is zero the 

Levenberg-Marquardt training method turns into the Newton’s method. The Levenberg-

Marquardt training method becomes gradient descent method when µ  is large. The aim is 

to decrease µ  since the Newton’s method is faster and more accurate near error minimum 

than gradient descent. On the other hand, gradient descent method with small step size 

converge to error minimum slower but with continuous reduction of performance function. 

Consequently, the scalar µ  is decreased after each step when the performance function 
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decreases and increased only when the performance function increases. This leads to fast 

convergence with constant reduction of the performance function. However, the 

requirements of the storage memory and computation are big.  

The Bayesian regularization is implemented in Levenberg-Marquardt training method by 

changing the performance function as 

WD EEF αβ += ,         (74) 
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and α and β  are the performance function parameters. 

The effective number of parameter used in the network is 
1)(2 −−= HTRN αγ ,         (77) 

where N is the total number of parameters in the network, and H is the Hessian matrix 

calculated according to equation (70). 

The estimates of the performance function parameters are computed as 

( )wEW2
γα = , and         (78) 
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= ,          (79) 

where w stands for weights, and n is the number of weights. 

The procedure of Bayesian regularization applied on neural networks with Levenberg-

Marquardt training method is as follows: 

1. Initialise weights and biases, and set parameters 0=α  and 1=β . 

2. Perform one step of the Levenberg-Marquardt algorithm to minimize the 

performance function (74).  

3. Calculate the effective number of parameters used in the network (77). 

4. Calculate the new estimates for performance function parameters according to (78) 

and (79). 

5. Repeat steps 2 – 4 until convergence, or train epochs, or train error goal. 
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Another testing of multi-layer perceptron network was done with the use of scaled 

conjugate gradient training method. The training method steps are as follows: 

1. Choose initial weights  and scalars 1w 0>σ , 01 >λ  and 01 =λ . Set 
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mean square error, while  is associated to the training data set, and N is the 

number of training data sets. 
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5. Calculate step size: 
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10. If  then increase the scale parameter: 25.0<∆ k kk λλ 4= . 
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11. If the steepest descent direction 0≠kr  then set 1+= kk  and go to step 2, else 

terminate the training and return the desired weights as . 1+kw

  

The results of the training methods and network structure selection are presented in the 

Chapter 7 where the results of the body weight recognition methods are given. 

 
 
6.3.2 Model application 

 

The described neural network classifier can be used for body weight recognition of cattle 

weighted on the walk-through weighing scale. Once the network structure and the 

parameters of the classifier are denoted using the proposed training method and training 

pairs, it is possible to perform body weight recognition from the force signal. The input of 

the classifier is selected from the force signal which was recorded when the animal was 

alone on the scale with its whole body weight. A computer program was created to select 

the maximums and minimums of the force signal based on numerical differentiation of the 

signal. The force signal peaks are recognised where the differentiated signal changed sign. 

The maximums and minimums are averaged, respectively, and included in the neural 

network calculation. The output of the neural network classification is the body weight of 

the weighted animal.  
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7 Validations of models and methods 

 

In this section the results of body weight recognition methods in dynamic weighing of 

cattle exposed in previous chapters are presented. First, the validation of the created 

mathematical model is done and then the model is applied in body weight recognition. 

Second, the results of fuzzy method in body weight recognition for single animal crossing 

case and two animal crowding on the weigher are shown. Third, the neural network 

suggested in the previous chapter for body weight recognition was trained and tested for 

single crossing case, as well as for two cows crowding on the weighing platform. Finally, 

fifty-four dairy cows were weighted on the walk-through weighing scale. The measured 

force signals were processed with the suggested methods. The results are presented and 

analysed.  

 
 
7.1 Validation method 

 

The validation of the created methods for body weight recognition in dynamic weighing of 

cattle is accomplished comparing the calculated and the experimentally measured body 

weight. A number of dynamic weighing of dairy cows were completed and the data were 

processed with the proposed filtering and body weight recognition methods. The animals 

were also weighted statically in order to denote their true weight before dynamical 

weighing. 

 
 
7.2 Mathematical model 

 

The body weight of the cattle weighted dynamically and processed with mathematical 

model body weight recognition was denoted comparing the real measured values of 

vertical force produced by cattle feet recorded on dairy farm and that calculated through 

the model. The cow was let to cross the walk-through weighing scale described in previous 

section. The signal filtering process was done as explained in the signal processing section 

of this work. Therefore, the valuable part of the force signal when the animal was alone on 

the scale with its whole body weight was selected. In order to provide information on 

accuracy and worthiness of the developed lumped-parameter model of cow motion a 

number of experiments were done.  
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Figure 7.1: Measured and calculated ground reaction forces during cow walk (558 kg). 

 

 
Figure 7.2: Measured and calculated ground reaction forces during cow walk (618 kg). 
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Figure 7.3: Measured and calculated ground reaction forces during cow walk (723 kg). 

 

The experiments were performed on the created walk-through weighing scale of the dairy 

farm. Eleven cows with mass of: 558, 567, 585, 600, 618, 624, 633, 700, 723, 762 and 860 

kilograms were included in tests. With these animals thirty data sets were recorded, 

processed and used in model verification. To complete the calculated and measured force 

curve comparison additional computation algorithm was developed as described in Chapter 

6. The selected total mass and bars oscillation frequency were put into the mathematical 

model calculation. The results of the simulation were compared to measured forces as 

presented in Figures 7.1 – 7.3. 

The measured force signal is presented with solid line, while the calculated force curve is 

marked with dashed line. Analysing the graphs of forces it can be concluded that curves 

are not ideally matching each other over the whole time interval. As shown in plots only a 

part of the measured force signal is matching the calculated force curve. This was expected 

since the model represents synchronised and ideal steps during walking. In reality every 

step is different. This stochasticity could not be modelled. Yet, the matching parts are long 

enough to achieve successful comparison of the curves. 

The maximal error for single crossing case did not exceed 2% of the correct cattle body 

weight. Such a small error was not expected due to complexity of animal walk. The 

simplified model showed good results and the program was capable of recognising the 

body weight with 2 % error. However, it did not show good results for the case when more 

cows were following each other in quick succession over the scale. The valuable part of the 
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force signal that was selected after filtering was too short to give sufficient data for 

accurate body weight recognition process. Therefore, the mathematical model cannot be 

used in body weight recognition where the crowded crossing case is frequent.  

 
 
7.3 Fuzzy logic method 

 

A number of experiments were completed for various animals with different masses and 

walking velocities. The animals included in walk-through weighing were statically 

weighted for comparison with calculated results. The body mass of the animals was: 558, 

567, 585, 600, 618, 624, 633, 700, 723, 762 and 860 kilograms. Each cow repeated at least 

three walk-through measurements. The database of model parameters used in body weight 

recognition was as presented in Table 6.1. The results of body weight calculations are 

shown in Table 7.1.  

 

Table 7.1: Percentage calculation error of measured animals for single crossing. 

 
Body weight (kg) 567 585 600 624 633 700 762 860 

1.2 0.2 0.2 1.3 0.2 0.1 1.8 1.9 
1.0 0.6 0.3 0.2 0.5 0.3 1.2 0.1 

 
Percentage error 

(%) 
 1.1 0.2 1.6 0.7 1.5 0.0 0.5 0.1 

Average error (%) 1.1 0.3 0.7 0.7 0.7 0.1 1.2 0.7 
 

 
In Table 7.1 the differences between estimated and true body weights of animals in percent 

are marked with crosses. As shown in Table 7.1 maximal difference did not exceed 2 %. 

Among tested animals the maximal error of 17 kilograms was calculated for 860 kilograms 

animal. The average error for single crossing case was 0.7 %.  

For crowded crossing case experiments were performed with same cattle as in single 

crossing case. Two cows were forced to cross the weighing scale following each other in 

quick succession. The pairs weighted on the walk-through weighing scale were: 558 - 723, 

567 – 633, 585 – 762, 624 – 600 and 618 – 700 kilograms. Impaired cattle crossed the 

weighing scale a least three times. The calculated body weights were compared to 

statically measured ones. The errors of calculated body weights were plotted in Table 7.2. 

As it can be seen the maximal error did not exceed 2.6 %. The average error for crowded 

crossing case was 1.3 %. 
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Table 7.2: Percentage calculation error of measured animals for crowded crossing. 

 
Body weight (kg) 558 567 585 600 618 624 633 700 723 762 

1.4 1.0 0.3 1.3 0.3 0.8 2.0 2.0 1.2 0.7 Percentage error 
(%) 1.2 1.4 2.6 2.3 0.8 0.8 1.1 1.2 1.2 1.4 

Average error (%) 1.3 1.2 1.5 1.8 1.0 0.8 1.6 1.6 1.2 1.1 
 

 
The highest errors occurred for the both crossing cases when model parameters for certain 

crossing times were not defined in database. For example, the crossing time of the 600 

kilograms cow was 3.55 seconds and the maximum database crossing time was 2.14 

seconds. This was expected since the fuzzy model could not present stride situations whose 

walking velocity was much lower or higher than the modelled. For this reason the database 

of model might be enlarged in order to minimise the calculation error. However, even with 

this small database the results are satisfying. On the other hand, the database does not need 

to be enlarged over some reasonable crossing time value. For long crossing times the 

walking velocity is approximately zero and such signals can be averaged to give good 

estimation of the animal body weight. 

 
 
7.4 Neural network method 

 

The Levenberg-Marquardt training method was applied on fourteen training data sets with 

body weights 558, 618, 633, 700 and 762. The neural network was tested for both single 

and crowded crossing cases of the weighing scale. The network was tested with seventeen 

test data sets in single crossing case for body weights 567, 585, 600, 624 and 723. The 

network is also tested for crowded crossing case with 12 situations of two animals 

consecutively crossing the scale. The animals body weights included in testing were 558, 

567, 585, 600, 618, 624, 633, 700, 723 and 762. The training data sets covered the body 

weight surface such that testing data were not outside the training surface. Yet, if it would 

not be the case neural network could not create a reasonable response to testing data.  After 

testing various multi-layer perceptron network structure with the Levenberg-Marquardt 

training method the best results were obtained for network structures 10-1 and 1-5-1. The 

hidden layer neurons had hyperbolic tangent sigmoid activation function while the output 

layer had a linear activation function. The maximal percentage error of training data sets 

was 1.1 % and the average training error was 0.35 %. The maximal error occurred for 
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single crossing case testing data sets was 2 %, with average error of 0.8 %. The maximal 

error computed for crowded crossing case testing data sets was 2.7 %, with average error 

of 0.8 %. 

The network was also trained with scaled gradient conjugate training method. The training 

and testing for different neural network structure were with same input-output data set as 

for Levenberg-Marquardt training. The best results obtained with this training were for 

multi-layer perceptron structure 1-5-1 and 10-1, same as with previous training. The 

optimal results were calculated faster with Levenberg-Marquardt training than with scaled 

conjugate gradient method. The optimal results were those for which the mean and 

maximum errors were minimised for training, single testing and crowded testing data sets. 

Enlarging the size of the network produced reduction in error of training sets, but increase 

in error for testing data sets.  

Adding the time of crossing the scale as another input parameter enlarged the size of the 

input vector that consisted of minimum and maximum values from the measured force 

signal. With such a three dimensional input vector and scalar output multi-layer perceptron 

network was trained. Training algorithms used in network parameter adjustment were the 

earlier presented Levenberg-Marquardt and scaled conjugate gradient training. The same 

network architecture was selected for three dimensional input as for two dimensional input 

vector. Slightly better results were obtained with larger input vector. The average training 

error was 0.2 %, while the maximal error was 0.8 %. For single crossing testing data 

average error was 0.6 % and the maximal error was 1.5 %. For crowded crossing case the 

maximal percentage error was 2.5 % with average error of 0.8 %. However, the testing 

data pairs that included crossing times bigger and smaller than those introduced with 

training data sets were discarded, since the network could not response to not trained 

situations.  

Although the results produced by multi-layer perceptron network with three dimensional 

input were somewhat better than two dimensional input the training of such a network 

would be a hard task. With maximum and minimum input vector the network could be 

trained and ready to give reasonable results if the testing body weight was smaller than 

maximum training body weight and bigger than minimum training body weight. For the 

network including the information of crossing time significantly decreased the possibility 

of the network since in many cases the crossing time was not in the trained region. To train 

the network to cover the whole crossing time region was impossible, since the 

experimentally gathered data were limited to the possibilities of the animal crossing the 
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weighing scale. Consequently, the neural network including the maximum and minimum 

of the force signal as input and body weight as output was the reasonable solution. The 

selected multi-layer perceptron network with 1-5-1 structure seemed to be adequate for 

body weight recognition task. 

 
 
7.5 Comparison of developed methods 

 

To inspect the possibilities of the created body weight recognition methods real situations 

of the dynamic weighing on the dairy farm are investigated. The dairy cows were weighted 

on the walk-through weighing scale. The measured force signals were coupled with the 

identification (ID) signals. The force signals were processed with the signal filtering 

methods to select the valuable parts of the signals. The chosen parts of the force signals 

were associated to the cattle ID numbers. From this stage the fuzzy approximation and the 

neural network classification methods were independently applied on the signals. The 

calculated body weights of the animals were compared to the statically measured body 

weights.  

Fifty-four cows were measured on the walk-through weighing scale. Nine groups of six 

cows were formed. After milking six cows were let to cross the weighing scale as they 

were leaving the milking parlour. After crossing the scale the animals were sent to the 

milking parlour and let to cross the scale again. They were measured dynamically three 

times on the weighing scale. All animals were weighted statically on the same weighing 

scale by closing the entrance and exit doors mounted on the construction of the device. The 

measured force versus time was processed with the signal filtering and the body weight 

recognition methods. Results of the methods were compared to the statically measured 

body weight.   

The errors of calculated body weights with the fuzzy approximation method are given in 

Table 7.3. 

 

Table 7.3: Errors of calculated body weights using the fuzzy approximation method for 
groups of cattle. 

 

Group 1  2  3  4  5  6  7 8 9 Mean

MPE [%] 1.2 2.8 2.5 1.5 2.0 2.0 2.7 3.0 2.7 2.3 

APE [%] 0.7 1.0 0.9 0.8 0.9 0.8 1.0 1.3 1.2 1.0 

  



Validation of models and methods 100

The maximal percentage error (MPE) and the average percentage error (APE) are 

computed for each group of six cows weighted on the walk-through weighing scale. The 

MPE does not exceed 3 % error, while the average error is 1 %. In all groups crossing the 

weighing scale the calculated body weight error was larger for crowded crossing case than 

for single crossing case. The database model parameters were used in the body weight 

recognition process as presented in Table 6.1. The database model parameters covered 

bigger crossing times than defined in the database. For the crossing times bigger than 5 

seconds averaging of force signal was performed. For such a long signal mean value gives 

reasonable accuracy since the animal is stationary on the scale.  

For the same measured force signals for the fifty-four cows the neural network 

classification body weight recognition method was applied. The selected multi-layer 

perceptron network with 1-5-1 structure was used. The weights and biases of the neural 

network were denoted after training the network with Levenberg-Marquardt training 

algorithm. The training pairs were formed for the cattle with body mass of: 558, 618, 633, 

700 and 762 kg. For each animal three data pairs were formed. As suggested earlier the 

inputs were the maximum and the minimum of the force signal valuable part, while the 

output was the statically measured body weight of the animal. The neural network was 

tested the same way as fuzzy approximation method and the results are shown in Table 7.4. 

 

Table 7.4: Errors of calculated body weights using the neural network method for groups 
of cattle. 

 

Group 1  2  3  4  5  6  7 8 9 Mean

MPE [%] 1.3 1.6 2.0 1.5 1.8 1.2 3.5 3.0 2.4 2.0 

APE [%] 0.6 0.7 0.8 0.7 0.7 0.5 1.2 1.1 1.0 0.8 

 
 

The maximal percentage error (MPE) and the average percentage error (APE) are 

computed for each group of six cows weighted on the walk-through weighing scale. The 

largest value of MPE occurred for the group seven when the crowding on the weighing 

scale of six animals was measured. The maximal error compared to the correct body 

weight is 3.5 %. The average error for all calculated situations is 0.8 %.  
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7.6 Summary 

 

Body weight estimation was performed on dairy cows weighted dynamically after milking 

process. The recorded force signal was filtered and the valuable parts were extracted. The 

body weight recognition methods were applied on the force signal.  

Signal processing performed good signal filtering for both crossing cases of the scale. 

Mathematical model based body weight recognition showed accuracy of 2 % for single 

crossing case, but for crowded crossing case it could not be successfully used due to 

briefness of the processed signal. Fuzzy logic based body weight recognition was 

effectively used for body weight estimation with accuracy of 3 % (average 1 %) for both 

single and crowded crossing case. Neural networks based body weight recognition denoted 

body weights of dynamically weighted animals with preciseness of 3.5 % (average 0.8 %) 

for all crossing situations. 
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8 Discussion  

 

To evaluate the results in dynamic weighing achieved with the created signal processing 

and body weight recognition methods, some association to the earlier developed dynamic 

weighing methods need to be done. The comparison is to be done with the most 

influencing methods of dynamic weighing proposed by FILBY et al. (1979) [19], PEIPER 

et al. (1993) [58] and REN et al. (1992) [62]. Comparing the achievements of the 

developed methods for body weight estimation to the results of earlier dynamic weighing 

methods some major differences can be noticed. The comparison is done for weighing 

scale design, data sampling, signal filtering and above all the body weight estimation 

accuracy.  

The weighing platform design is quite simple unlike that of PEIPER et al. (1993) [58], 

which contained a step to slow down animal movement and to separate them and so 

prevent crowding. By the simplicity of the weighing platform design REN et al. (1992) 

[62] is the closest to that here presented. The data sampling rate here used (100 samples 

per second) is much higher than those earlier proposed (5 – 20 samples per second). This, 

however, enables more preciseness, since the valuable parts of the signal are not lost, but 

increases the amount of information and complicates signal processing.  

The earlier proposed signal processing (FILBY et al. 1979 [19], PEIPER et al. 1993 [58] 

and REN et al. 1992 [62]) was based on force signal averaging and comparison to the 

reference body weight value. FILBY et al. (1979) [19] performed averaging of the 

incoming signal and kept the maximum of such signal as new body weight if within 30 

kilograms compared to previous body weight of the same animal. This was an initial and 

simple signal processing method. More complexity in signal processing was proposed in 

later research. REN et al. (1992) [62] suggested comparing of the incoming signal with the 

reference value (previous measured body weight) with allowed 5 % divergence and then 

averaging the filtered signal. The most sophisticated force signal processing introduced by 

PEIPER et al. (1993) [58] proposed averaging of incoming force signal and then a special 

algorithm recognised the relevant body weight from a vector of averaged data. Afterward 

the selected body weight was validated comparing to the reference value (previous 

measured body weight) with allowed error margin of 30 kilograms. The last two methods 

showed similar accuracy. For two daily measurements (REN et al. 1992 [62]) 78 % were 

acceptable weights, with weekly accuracy of 2 % compared to statically measured weight. 

For three daily measurements (PEIPER et al. 1993 [58]) 76.5 % were acceptable weights, 
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with monthly accuracy of 1.5 % compared to statically measured weight. As a result, at 

least for thirty cows from one hundred, there were no new body weight data after dynamic 

weighing. In other words, 30 % of the animals weighted on walk-through weighing scale 

did not satisfy the error margin of 30 kilograms (roughly 5 % of the previous recorded 

body weight). This was caused by fast crossing over the scale and crowding of animals on 

the weighing platform.  

The here presented signal processing method coupled with body weight recognition 

methods showed better outcome after dynamic weighing than the above mentioned. All the 

cows weighted on the walk-through weighing scale had good readings of force signal and 

the weights were always estimated. The previous body weight of the animal was relevant 

for signal filtering in crowding crossing case not as an error margin, but as a calculation 

helper for better signal separation. The estimated body weight compared to the statically 

measured weight diverted for the maximum of 3.5 %, while the average divergence was 1 

%. Consequently, one hundred percent of dynamically weighted animals were within the 

3.5 % body weight estimation error, which was much lower estimation error than the 

earlier achieved. The most important of all is that the methods successfully solved fast and 

crowded crossing cases. There were no unrecognised weighing situations, which is the 

major breakthrough in dynamic weighing. This enables that every animal is weighted each 

time it is measured on the walk-through weighing scale.  

Comparing among the three developed body weight recognition methods, the fuzzy logic 

and neural network methods showed better estimation possibilities than the mathematical 

model. The mathematical model estimated body weight for single crossing cases with 

accuracy of 2 %. Crowded crossing cases could not be processed with this method due to 

the briefness of the measured signal. Fuzzy and neural network procedures were applicable 

for both single and crowded cases and showed similar accuracy. The fuzzy method showed 

lower average accuracy (1 %) than the neural network method (0.8 %) when used in body 

weight recognition. However, slightly higher inaccuracies were reached with the neural 

network method (3.5 %) than with the fuzzy logic method (3 %). The neural network 

method required less computation because the model parameters were earlier defined. The 

fuzzy method required more calculation due to function approximation and database model 

computation. The advantage of the fuzzy method was that the database could be easily 

enlarged adding new model parameters, while the neural network needed to be separately 

trained for sets of training parameters and then the new parameters of the model were 
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entered. Generally, the neural network method would be easier to implement in a separate 

device used for commercial purposes on dairy farms. 

The created methods estimate the body weight of animals with maximum error of 

approximately 20 kilograms, which is smaller than daily body weight oscillation of 30 

kilograms. This fact discards the possibility of false alert for animal sickness and enables 

good tracking of animal health condition. Such a secure and precise data on animal body 

weight is crucial for completing the gathering of relevant parameters for each animal.  

The created signal processing and body weight recognition methods applied in dynamic 

weighing of cattle successfully accomplished body weight estimation for both single and 

crowded crossing cases, as well as for fast and slow crossing speeds.  
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9 Conclusion  

 

The dynamic weighing of dairy cows, especially the processing of the measured force 

signal is elaborated in this work. The weighing scale made by DeLaval was used in 

dynamic weighing of cattle. The dimension of the weighing platform was correctly chosen. 

It allowed one cow to stay with its whole body weight on the platform enough time to 

gather all the relevant force data. On the other hand, it enabled the maximum of three pairs 

of leg to touch the platform at once. It simplified the procedure of signal filtering in 

crowded crossing case. The force signal measured on the weighing platform was recorded. 

The signal processing performed force signal filtering from noise and separation of the 

signal part when a cow was measured with its whole body weight. Adjusting the force 

signal in frequency domain the signal was modified in preferred form. The body weight 

recognition methods were applied on the filtered signal to determine the body weight of the 

animal weighted on the walk-through weighing scale. Three independent methods were 

developed for body weight estimation. All of the methods were produced for stochastic 

non-linear system of cow walk. In the mathematical model the stochastic influence was 

ignored, while in fuzzy and neural model it was included. Mathematical model method 

could not be used in crowded crossing case weighing, but fuzzy logic and neural network 

methods responded on all weighing cases giving the estimation of animal’s body weight. 

The mathematical model can be successfully used in body weight recognition for dynamic 

weighing without crowding. This might be the case for rotary milking parlours, where the 

separate exit of animals is common. The fuzzy logic and neural network model were based 

on completely different concepts. The fuzzy body weight recognition method contained 

database of model parameters, which were created from experiments of dynamic weighing. 

The database models were used for body weight estimation of new measured animals. The 

neural network classification method was used for body weight recognition after the 

network was trained with experimentally obtained training sets. 

The methods were tested on a large number of situations of crossing the scale. Various 

animals were tested under different conditions, so all possible cases of dynamic weighing 

were inspected. The created signal processing and body weight recognition methods 

applied in dynamic weighing of cattle were successful in body weight estimation. The 

fuzzy logic and neural network method with described signal processing can be used in 

commercial walk-through weighing devices on dairy farms as an accurate and secure 

weighing system. 
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