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Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum
Weihenstephan für Ern̈ahrung, Landnutzung und Umwelt der
Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Arne Skerra
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Abstract

This thesis describes the approach to a functional and metabolic analysis
of biological whole-genome data. It focusses on three fields of biotechnol-
ogy and bioinformatics: gene expression, protein-protein interactions and
metabolic pathways. For each of them, an introduction is given that de-
scribes potential benefits of the technologies and that highlights the com-
putational challenges that arise from their analysis. In this thesis, compu-
tational analysis methods for the respective data sets have been developed.
These bioinformatic methods, the SOM clustering for gene expression data,
the graph modeling of protein-protein interactions and the three methods
for a dynamic modeling of metabolic pathways prepare the ground for the
developed integrative methods.

For the further analysis and interpretation of the high-throughput data sets,
a knowledge-basedintegrative analysis approachhas been elaborated. The
developed combinatorial and integrative analysis methods make use of exis-
tent knowledge in order to achieve qualitative and reliable results. Data sets
are analyzed in the context of systematic, previously assembled facts, lead-
ing to a more holistic view of the subjects of analysis. Protein-protein in-
teraction data is combined with systematic functional annotations, focussing
the analysis of the interaction data on a specific biological context. This al-
lows to scale the complexity of the large protein-protein interaction data sets
and makes the results comprehensible. Moreover, it allows to hypothesize
on the functional context of previously uncharacterized genes and proteins.

Biochemical reactions and textbook metabolic pathways are employed for
the analysis of clustered gene expression data, which allows to analyze the
metabolic properties and the changes in metabolism that have been captured
by the respective gene expression experiment. Interesting features like co-
regulated or conversely regulated pathways are highlighted by the integra-
tive methods. Besides working with the established schemes and categories
of textbook metabolic pathways, the elaborated methods allow to construct
hypothetical pathways dynamically based on the gene expression profiles.
From the structure of a hypothetical pathway, relations between parts of an
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organism’s metabolic network can be inferred that are conceptually distinct
in the textbook pathways.

A method for the integration of gene expression data with functional annota-
tions has been developed. An expression data set can be analyzed in the con-
text of every of the various categories of a functional classification scheme.
This functional projection is capable of identifying functionally related sets
of genes that exhibit similar, correlated or anti-correlated expression pro-
files. Cellular processes that are co-ordinately switched on or off during a
biological experiment are revealed. The relation between the experiment,
e.g. a systematic variation of environmental conditions, and the genetic re-
sponse of the analyzed organism becomes obvious. The analysis of overlap-
ping groups of functionally related genes reveals how the genes of different
functional categories relate, highlighting a larger biological context. The
combination of the functional projection with the metabolic analysis meth-
ods allows to further investigate the identified co-regulated gene groups with
a specific focus on aspects of intermediary metabolism.

The developed integrative methods are generically applicable to other types
of high-throughput data, e.g. protein complexes, and for other systemati-
cally annotated facts about genes and proteins, e.g. subcellular localization,
mutant phenotypes, protein classes, PROSITE motifs, signal transduction
pathways and regulatory pathways.

The developed bioinformatic methods are compared with other approaches
to a combinatorial and integrative analysis of whole-genome data sets. The
benefit and the great potential of integrative methods is pointed out: the
combination of different types of data can lead significantly towards a true
systems biology that may allow the understanding and simulation of reason-
ably complex cellular processes or even whole cells.



Chapter 1

Introduction

The Bio2000 meeting [...] helped confirm in my mind that
biotech is back with a vengeance and that bioinformatics will be
a key part of the growth of this, the third, industrial revolution.
[...] It’s a privilege to be able to provide the picks and shovels
to the miners in this goldrush.

– Tim Littlejohn1

In the previous months and years, the biotechnological industry has been
growing rapidly. Modern technologies in molecular biology have triggered
the hope that one will find new drug targets and drugs and that it will be pos-
sible to find cures for severe diseases like cancer and diabetes. Many of the
new technologies arehigh-throughput technologiesthat generate ever faster
growing amounts of biological data. Effective and efficient intelligent meth-
ods are desperately needed in order to be able to manage, store, retrieve and
analyze this heterogeneous data.Bioinformaticsis the branch of computer
science that deals with the development of informatic methods such as al-
gorithms and data structures for biological problems especially of molecular
biology.

This thesis describes a bioinformatic framework that realizes anintegra-
tive analysis approach. The approach integrates data from different sources.
Data sets are combined and the individual sets are restricted or interpreted
by means of the other. This allows to learn more from the data than the
isolated analysis of any one kind of data could reveal. The focus is on the
extraction of qualitative, not quantitative results from large-scale data sets.

This introductory chapter is not thought to be an introduction to molecular
biology or bioinformatics. Brilliant textbooks can be found for further read-
ings in both areas [ABL+89, APS99, Pev00]. This chapter introduces key

1EMBnet News, 2000, 7(1):6-7.
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terms of molecular biology and shall convey an idea of why the integrative
analysis methods described in this thesis are useful. The subsequent chap-
ters deal with biological concepts, the corresponding data types and data
structures and the algorithms that work on these data structures. Chapter 2
describes the data types we use for the integrative analysis, their biological
meaning and their computational aspects in detail. Some of the methods are
part of the developments I have achieved at the Munich Information Center
for Protein Sequences (MIPS) during the work that is the basis of this the-
sis. Sections that describe my contributions are marked. Chapter 3 is the
core chapter of the thesis. The instances of my approach to an integrative
analysis are described here. The system architecture and the user interface I
have developed for this purpose are presented in Chapter 4. Finally, Chap-
ter 5 discusses the results.

Some results of the analyses are plublicly accessible at MIPS via the de-
scribed suite of dynamic web pages [Fel01b].

1.1 Trends in Modern Molecular Biology

Cells occupy a halfway point in the scale of biological com-
plexity. We study them to learn, on the one hand, how they are
made from molecules and, on the other, how they cooperate to
make an organism as complex as a human being.

– [ABL+89]

In order to clarify some terms of molecular biology, we partly follow the
second chapter of [ABL+89] in this section. The book gives an easy to read
and comprehensive introduction to the field.

The atomic unit of all living organisms is thecell. An individual organism
may consist of only one cell, such as bacteria or funghi, or it may be com-
posed of billions of cells of different types (e.g. there are1014 cells in hu-
man). The cells can be viewed as chemical machines that interconvert thou-
sands of molecules of eventually different types in a highly ordered, system-
atic way. Themetabolismof the cell is an intricate network of biochemical
reaction steps. Each of these reactions requires a catalytic molecule. Typi-
cally, the catalytic molecules are proteins (enzymes) – but in biology, there
is no rule without exceptions. In rare cases, the catalyst is not a protein,
but an RNA molecule. Enzymes are themselves products of the very same
metabolic machinery. A small molecule, e.g. an amino acid, can typically
be modified by six to ten different enzymes. It may be adenylated, degraded,
acetylated, or transferred to a fatty acid. The correspondingpathwayscom-
pete for the amino acid molecule. The whole network of bioreactions can be
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Figure 1.1: Two complementary DNA strands. The backbones of each strand con-
sist of a sequence of alternating sugar (desoxyribose) and phosphate molecules. A
base is bound to each sugar molecule. Hydrogene bonds between the bases link the
two DNA strands (source:http://www.fdl.cc.mn.us/ ).

described in terms of pathways competing for small molecules. Despite of
its complexity, the metabolism of the cells is very stable. It is regulated and
coordinated by a network of control mechanisms on different levels.

The elements that carry the hereditary information of the cell are thegenes.
The totality of all genes is called thegenome. The genes are made of des-
oxyribonucleic acid (DNA). DNA is a polymeric molecule that consists of
two linear strands. The backbone of each strand is a sequence of alternating
sugar (desoxyribose) and phosphate molecules. One of four kinds of base
molecules (adenosine (A), thymine (T), guanine (G), and cytosine (C)) is
bound to each sugar molecule of the strand. The monomeric building blocks
of the DNA strands consist of one desoxyribose molecule, one phosphate
molecule and one base molecule. They are callednucleotides. The linear
sequence of the nucleotides encodes the genetic information. Two DNA
strands are loosely linked via hydrogene bonds between complementary
base pairs (A=T, C≡G) (Figure 1.1). The double stranded DNA molecules
form the characteristic DNA double helix.

Whenever information from the DNA is needed, e.g. in order to construct
an enzyme, a specific stretch of the coding DNA strand, the gene, is copied
(transcribed) into a complementary ribonucleic acid (RNA) molecule. The
entirety of the transcribed genes of a cell is called thetranscriptome.

A number of different types of RNAs are distinguished. The ribosomal RNA
(rRNA) builds cell organelles, the ribosomes. The messenger RNA (mRNA)
is carried to the ribosomes, where the sequence of bases of the mRNA strand
serves as a blueprint. It is specificallytranslatedinto a sequence of amino
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acids that is called aprotein. A third type of RNA is involved here, the
transfer RNA (tRNA).

The totality of the proteins of a cell is calledproteome. It accounts for more
than a third of a cells dry weight. Proteins determine the shape and structure
of the cell. They are involved in molecular recognition and catalysis. The
amino acid sequence of a protein is calledprimary structure. It determines
the shape of the protein. Proteins fold into a specificsecondary structure
conformation ofα-helices andβ-sheets. These in turn pack together to form
compactly foldeddomains. Functional proteins are either formed of a single
domain or they areprotein complexesthat consist of a number of protein
domains bound together by non-covalent interactions.

All different kinds of molecules mentioned above are subject to extensive
research in molecular biology, biochemistry, biotechnology, and pharma-
ceutics. While only few years ago scientists in the laboratories dealt with
one gene or one protein a time, modern technologies now allow to deal with
a whole genome, transcriptome, or proteome at the same time, within a sin-
gle experiment.High-throughputtechnologies give rise to large amounts of
data, what in turn triggers the development of bioinformatic methods, i.e.
methods that allow the (semi-)automated analysis of the biological data by
means of computers.

The most established field of high-throughput analysis is thesequenc-
ing, i.e. the determination of the nucleotide sequence of one strand
of a DNA molecule and the subsequentsequence analysisof genomic
DNA [DEKM98]). In order to learn which pathways of the large metabolic
network are switched on or off under various conditions in various organ-
isms, one either measures the expression rates of the individual genes of an
organism or of a subset of genes of interest (cf.gene expression analysis,
Chapter 2.1), or the protein abundance in the cell (proteomics). Since most
proteins do not function isolated in a cell, but interact with one another
and build protein complexes and protein machines, it is important to study
protein-protein interactions on a large scale. Several high-throughput tech-
nologies are available that are capable of revealing nearly complete protein
interaction maps of an organism (Chapter 2.2).

1.2 Trends in Bioinformatics

Major achievements are being made in biotechnology. The sequencing of
the genomes of whole organisms, beginning with the brewers yeastSaccha-
romyces cerevisiaein 1989 and the bacteriumHaemophilus influenzaein
1994, has become routine work. Even the human DNA sequence is now
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at hand [Int01, VAM+01]. The analysis of the huge amounts of sequence
data as well as of the data produced by high-throughput technologies in the
biotechnological laboratories has just begun. The data has to be stored ef-
ficiently. Scientists must be able to retrieve and handle the data they need.
Since the number of elements in the biological databases has grown to an
extent that makes it impossible to analyze them manually, automatic compu-
tational analysis methods have to be developed in order to destil information
from the data. The needs of biotechnologists and molecular biologists push
established computational analysis methods beyond their limits.

Since the human sequencing projects started, scientists speculated about the
number of human genes. For quite some time estimations of about 100,000
human genes were agreed upon. In autumn 1999, when the draft versions of
the sequences of the first human chromosomes were available, researchers
changed their estimations from 100,000 to 130,000. Some groups even sug-
gested three times as many genes. It was not before end of 2000 that the
numbers were finally corrected to much smaller values. The number of
genes predicted to exist in the human genome currently ranges from 30,000
to 40,000 [Cla01]. This uncertainty shows how insufficient our gene pre-
diction methods still are. The definition of what ageneactually is, remains
unclear [Att00]. It might turn out that the dramatic downcome of estimates
to relatively small numbers of human genes does not mean that also the
number of proteins and functions is as low. There are examples like im-
mune globulines and signal transduction, which show that a single gene can
have more than one function, that its transcript can be spliced in more than
one way and that the resulting mRNAs can be edited before protein transla-
tion. On the protein level, complicated regulatory processes and biochemical
modifications of proteins may turn out to be the rule, not the exception.

From recent bioinformatic publications one can tell that integrative analysis
approaches will dominate the future of bioinformatics, e.g. [PMT+99,
Pel01]. Looking at the sequence of a gene or the structure of a protein in iso-
lation often does not allow to hypothesize on the function of the respective
element. Integrating analysis results is like collecting evidence in an obscure
criminal case. We can analytically link the genomic level with the protein
level and the metabolite level. To promote the knowledge and understanding
of what is going on in a living cell, the various fields of bioinformatics must
go hand in hand.
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1.3 Approach to an Integrative Data Analysis

Nature functions by integration, and the adoption of a more
holistic view of complex biological systems is an essential step
for bioinformatics.

– Teresa K. Attwood[Att00]

This thesis puts forward the approach of an integrative data analysis. The
large-scale data sets resulting from high-throughput technologies of func-
tional genomics and proteomics need to be analyzed automatically. These
techniques produce data associated with certain genes (e.g. gene expression
data) or proteins (e.g. protein-protein interaction data, protein expression
data). The first step is to analyze the data sets by looking at the internal
structure, distribution of values, and (numerical) peculiarities. A prominent
example of such an analysis is the normalization and clustering of gene ex-
pression data. One will then analyze the data by comparison with other data
sets of the same kind. The sequence similarity search using algorithms like
BLAST and FASTA follows this approach: a DNA or amino acid sequence
is compared with an entire database of sequences.

As I show in this thesis, a combinatorial and integrative analysis that com-
bines different types of data sets can greatly promote the understanding of
the data. Following this approach, the data and the structures derived from
the data by internal analyses are further structured and analyzed by integrat-
ing them with other kinds of data. These may be other high-throughput data,
but the most interesting qualitative results we obtain using data that system-
atically classifies genes and proteins. We use functional annotations, i.e. the
MIPS functional catalog (Chapters 3.1, 3.4) and the grouping of genes and
proteins to metabolic pathways (Chapter 3.2), both reference pathways and
dynamically modeled hypothetical pathways and metabolic networks.

1.4 Acknowledgements

This doctoral thesis describes the main results of my work over the last three
years at MIPS and Biomax. During this period many people, colleagues
and external collaborators, helped to promote and realize my ideas and often
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Jean first came with his idea, we submitted the ISMB paper [FAZ+00].
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data sets can best be found by combining mathematical methods with bio-
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An important scientific application of the methods I have developed was on
the data that Hendrik Milting obtained at the Clinic of Thoracic and Cardio-
vascular Surgery of the Ruhr-University Bochum at the Heartcenter (HDZ)
in Bad Oeynhausen. During the collaboration, I believe, we both learned
a lot. A paper has been submitted for publication that resulted from the
work of his group that I partly supported, again in cooperation with Volkmar
Liebscher.

With my room mate at MIPS, Ole Bents, I had interesting and often effec-
tive discussions on technical issues of his and my work but also on science,
bioinformatics and the many different possibilities to work as a computer
scientist. With his many corrections and suggestions he also did a great job
when reading this thesis as well as numerous articles over the years.

In March 1999, at a very early stage of my work, I partly joined Biomax
Informatics, the MIPS spin-off company at Martinsried. This allowed and
obliged me to present the work to the Biomax customers who gave very
important feedback. Biomax with its CEO Klaus Heumann gave me the
freedom to continue with the scientific work I had begun. Doing the work
in parallel at MIPS and Biomax was sometimes streneous but after all, the
work was greatly promoted by the different and sometimes contradictory
influences and necessities.

This is only a small subset of the people I would have to mention. Thank
you all, your help is greatly appreciated!



Chapter 2

High-Throughput and other
Biological Data

This chapter describes the data sets that the integrative analysis approach
deals with. We distinguish betweenhigh-throughput dataand other biolog-
ical data. The latter may be termedqualitative dataand includes informa-
tion on the function of genes (annotations) and the structure of metabolic
pathways. These data sets are often collected from various sources and
mostly describe an organism independent from a special experiment, while
high-throughput data sets can be produced in arbitrary number for dif-
ferent experimental setups. The most prominent type of high-throughput
data is thegene expression dataobtained by DNA microarrays and sim-
ilar techniques. Beginning in early 1997 with a few ground breaking
publications [DIB97, ESBB98], microarrays have become a routine tech-
nique utilized by biological and medical research institutes as well as phar-
maceutical and biotechnological companies all over the world. Another
forthcoming technique are two-hybrid assays, a high-throughput technol-
ogy for analyzingprotein-protein interactions. After a moderate develop-
ment of the analysis of protein-protein interactions in the 1990s, a stunning
number of publications describing two-hybrid experiments and computa-
tional approaches of protein-protein interaction analysis appeared in 2000,
e.g. [UGC+00, FAZ+00, SUF00]. Both, gene expression data and protein-
protein interaction data are described in the following sections 2.1 and 2.2.

A third important high-throughput approach,proteomics, is not discussed in
this thesis. Although a very promising field, public protein expression data
sets are still sparse. This is due to the very complex and time consuming pro-
cess of identifying and quantifying proteins from the probes. In proteomics,
2D gels are employed to separate the different proteins. In contrast to the
microarray technology, the spots on the gels are not predetermined but their
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Figure 2.1: A 2D gel used for proteomic analysis. Some protein spots are labeled.
Not only does such anoisygel cause difficulties in image analysis. Assigning pro-
teins to spots is costly and time consuming. The picture is taken from the ExPASy
web pages and was originally published in [SAG+95].

position depends on the chemical and physical properties of the proteins.
These properties of the native proteins are altered by post-translational mod-
ifications such as methylation and phosporilation. Due to these modifica-
tions, a single protein may appear as two, four or even more spots on the
gel. In order to determine the protein that accounts for a specific spot,mass
spectrometric analysishas to be carried out.

Sections 2.3 and 2.4 describe the qualitative types of data discussed in this
thesis: systematicfunctional annotationsof genes and gene products and
metabolic pathways. Systematic schemes for functional annotations are well
developed. Therefore they are an ideal object of computational analysis ap-
proaches. Metabolic pathways are of particular interest in many fields, e.g.
in metabolic engineering.
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2.1 Gene Expression Data

Comparison of transcriptomes yields interesting informa-
tion about the dynamics of total genome expression attributable
to a change in environmental conditions or state of differenti-
ation. In addition, it provides necessary clues to determine the
function of those genes whose contribution to cellular life is still
unknown.

– [KvZB+99]

With the genomic sequences of a substantial number of organisms avail-
able, the field offunctional genomicsis rapidly developing. Although the
pure sequence information is theoretically sufficient to promote a full un-
derstanding of gene expression, gene function and regulation of gene activ-
ity, we are currently not able to interpret the sequence information to such
an extent [LDB+96]. Cellular processes are genetically controlled. Sig-
nal transduction and other regulatory systems control the expression of the
genes in each cell of an organism [PSE+00]. Changes in the physiology
of an organism or a cell will be accompanied by changes in gene expres-
sion [vHVvH+00]. Therefore, knowledge of which genes are expressed in a
certain organism and about the levels and timing of expression is important
for a further understanding. Knowing when and where a gene is expressed
allows to infer on its biological role while the pattern of the genes expressed
in a cell allows to infer on its state [DIB97].

At MIPS I have developed a toolbox for the analysis of large-scale gene
expression data. The tools and algorithms cover the analysis steps from
normalization and clustering up to the integrative analysis of gene expression
data in the context of other high-throughput data and systematically stored
annotational data (Chapter 3).

2.1.1 Introduction

Large-scale gene expression studies are carried out with modern technolo-
gies like oligonucleotide arrays, DNA microarrays, and Serial Analysis of
Gene Expression (SAGE). A brief introduction to these techniques and their
specific differences is given below. With these technologies it is for the first
time possible to measure gene expression on a genomic scale. For every
gene of an organism the expression rates are determined in parallel under
well defined experimental conditions. We call the resulting expression rates
of all measured genes theexpression pattern. A series of measurements is
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typically carried out, either under systematically varied environmental con-
ditions or at several successive time points during an experiment. The result
is a vector of expression rates for each gene that we callexpression profile.
The expression profiles are time courses in the latter case. To allow statisti-
cal analyses and error estimation, the measurements for each condition/time
point are typically repeated several times [LKWS00].

Studies of whole-genome messenger ribonucleic acid (mRNA) expression
levels are also calledtranscriptome analyses. Consider a gene in a cell at
a certain time point or under certain environmental conditions. The gene
expression, i.e. the occurrence of the transcribed mRNA molecule that cor-
responds to the gene, serves as an indicator for the production of the corre-
sponding protein in the cell.

2.1.2 Aims of Gene Expression Analysis

Having gene expression data available, a large variety of questions can be
asked. One can identify at least the following groups of questions:

Single Gene Analysis.Focussing on a certain geneA, an obvious question
arises: is geneA expressed in a certain context, e.g. mitosis? We can also
compare the expression of geneA to other genes: which genes are expressed
similarly toA (cf. Chapter 2.1.8)? Do they belong to a certain functional
class (cf. Chapter 3.1)?

Single Genome Analysis. Which genes are (differentially) expressed?
Which genes regulate and which are regulated in a time dependent process?
Can we find meaningful clusters of similarly expressed genes? Do we find
expected patterns of expression? How does a toxic compound effect gene
expression? Gene annotations can be taken into account: Do we find clus-
ters of genes that have a high rate of genes of a certain functional category
or a certain biochemical pathway (cf. Chapters 3.1, 3.2.1)? Can we con-
struct metabolic pathways from scratch, just analyzing the expression data
(cf. Chapter 3.2)?

Cross-Genome Analysis.Do homologous genes share certain expression
profiles?

Cancer Research.Can we distinguish between healthy and affected cells?
How does the gene expression differ? Can we clearly identify different
kinds of tumors via their expression patterns? This is regarded to be es-
pecially helpful for very similar and phenologically difficult to distinguish
kinds of tumors. It is proposed that the diversity of tumors corresponds
to a diversity in gene expression patterns. Capturing these differences by
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measuring gene expression patterns on a genomic scale might lead to an
improved understanding of cancer, different types of tumors, and their tax-
onomy [ABN+99, GST+99, PSE+00].

Gene expression analysis can shed light onto questions from various fields.
It can aid the understanding of gene regulation, it can promote the under-
standing of changes that occur in a disease and it can help identifying genes
not yet known to be involved in a disease (medicine, cf. Chapter 2.1.10).
Gene expression analysis can help finding genes that might be of pharma-
ceutical relevance, e.g. in drug target discovery.

2.1.3 Biotechnological Analysis Methods

The following paragraphs describe very briefly the analysis methods used
in biotechnology. The specific differences have to be considered when ana-
lyzing the resulting data sets. Differences include the type of resulting data,
i.e. relative vs. absolute values, radioactive vs. fluorescent labeling, and of
course potential errors and shortcomings. Oligonucleotide arrays, nylon fil-
ters and complementary DNA (cDNA) microarrays are based on hybridiza-
tion of mRNA probes or cDNA probes, respectively, to a high density array
of immobilized spots of target sequences that correspond to one gene each.
SAGE uses a completely different technology based on sequencing.

Oligonucleotide Arrays

Lockhart et al. have developed oligonucleotide arrays, an approach that is
based on hybridization to high-density arrays containing several thousand
synthetic oligonucleotides [LDB+96]. Affymetrix, who produce the most
popular oligonucleotide arrays, use 15 different 25-mers per gene. The ar-
rays are designed based on sequence information and are synthesizedin
situusing a combination of photolithography and oligonucleotide chemistry.
Oligonucleotide arrays have a large dynamic range. The detection of RNAs
is quantitative over more than three orders of magnitude. RNAs present at
a frequency of 1:300,000 are unambiguously detected. The method is read-
ily scalable and allows the simultaneous monitoring of tens of thousands of
genes. The equipment needed for manufacturing and reading the chips is not
inexpensive.

Radioactively Labeled Nylon Filters

A well established method is the measurement of gene expression rates with
arrays on nylon membrane using radioactive hybridization [LL91]. The
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ORFs to be spotted onto the array are first polymerase chain reaction (PCR)-
amplified from genomic DNA. The PCR products are arrayed at high density
using robotic devices. The probes are made from total RNA preparations and
are hybridized for the analysis of the transcriptional activity of the organism
under investigation [HVS+98]. Nylon filters can be regenerated and can be
reused for more than one hybridization.

cDNA Microarrays

cDNA Microarrays are produced on glass slides. Full-length DNA se-
quences are printed onto the slide using a robotic device. The cDNA se-
quences are prepared from the ORFs of the organism by PCR. We fol-
low [DIB97] for the description of an experimental analysis: The organism
that is to be analyzed is kept under the conditions defined by the experimen-
tal design. At predefined time points, samples are harvested and RNA is
isolated from the samples. Fluorescently labeled cDNA is prepared from the
RNA by reverse transcription of labeled deoxyuridine triphosphate (dUTP).
Two different fluorescent labels are used: a green and a red one. The cDNA
prepared from the samples at the individual time points are labeled red. A
reference cDNA from samples harvested at a control time point is labeled
green. Both cDNAs are mixed and hybridized to the microarray.

The described experimental design allows to measure current expression lev-
els and reference levels in parallel on the same array. The hybridization of
sample and reference sequences is competitive. The fluorescence intensi-
ties of the red and green markers are separately measured. For each pair,
the relative intensity is calculated as a measure of the relative abundance of
the corresponding mRNA in the two samples. The characteristic red/green
arrays are the result of this technique (Figure 2.2). As described, the col-
ors encode the relative abundance of the same sequences in two different
samples. The arrays have to be evaluated electronically by means of image
processing.

The introduction of fluorescent probes makes a miniaturization of arrays
possible. Smaller amounts of starting material can be used and larger num-
bers of genes can be screened in parallel [vHVvH+00]. cDNA microarrays
are cheaper to produce and easier to read than oligonucleotide arrays but
they require handling full-length cDNAs instead of oligonucleotides.

SAGE

The SAGE technique, described in [KvZB+99], samples short sequences
of 10-14 nucleotides (tags) of individual mRNAs. The sequence of these
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Figure 2.2: Detail of a microarray scan, taken from the diauxic shift
experiment of DeRisi et al. The experiment data is accessible at
http://cmgm.stanford.edu/ pbrown/ explore/ .

tags has to be determined in order to allow the identification of the corre-
sponding genes. Information about the level of gene expression is derived
from the frequency of a tag. A SAGE protocol is described by Velculescu et
al. [VZVK95]. SAGE involves complex sample preparation, requires exten-
sive DNA sequencing and is not very sensitive [vHVvH+00]. An advantage
of SAGE is that the genomic sequence of the genes does not have to be
knowna priori. SAGE is thus capable of determining the expression rates
of previously unknown genes. Data obtained with the SAGE method is not
considered in this thesis.

2.1.4 Variations of Expression Rates

With the described techniques it is still not possible to obtain a count of
mRNA copies per cell. Gene expression measurements are relative by na-
ture. Thus it is only possible to compare the expression levels of the same
gene in different measurements or of different genes in the same measure-
ment [BV00]. Computational processing, i.e. normalization and statistical
evaluation of the data, play a crucial role. Biologically meaningful signals
may be obscured by experimental noise and systematic errors. A statistical
preprocessing has to be performed in order to get rid of the specific influ-
ences of the experimental methodology and in order to estimate the error
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Figure 2.3: Example of an image analysis tool for gene arrays (AIDA Array Eval-
uation, Raytest Isotopenmeßgeräte GmbH, Germany). The array scan can be seen
on the left with circles fitted to the spots. The color coded values for each spot are
depicted in the abstract array view on the right.

rates for individual genes, measurements and experiments. The expression
data and the results of their analysis always have to be interpreted with the
shortcomings and potential errors in mind. Compared to directly interpret-
ing quantitative results, heading for qualitative results has some advantages.
The qualitative results are more robust against inherent measurement errors.
Qualitative results can e.g. be obtained by the integrative analysis methods
described in Chapter 3.

2.1.5 From Arrays and Chips to Data Matrices

After the laboratory part of a gene expression measurement is finished, the
array, chip, or filter has to be evaluated. Therefore a non-compressed digital
image (TIFF bitmap) of the device is used. Advanced techniques are neces-
sary for a reliable transformation of the image into a data set, i.e. generating
numerical values for each spot of the device [BV00]. The spots that corre-
spond to genes have to be identified and their borders have to be determined.
The intensity of the spot has to be measured. It has to be compared with the
background intensity. The image analysis software tools, e.g. by Raytest
(Figure 2.3), are often bundled with the scanner hardware. They identify the
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spots by fitting an irregular grid onto the image. The background intensity
is measured, either globally, i.e. for the whole array, or locally, i.e. for each
spot or group of spots. The obtained values are corrected according to the
background. From intensity, background intensity, position and shape of the
spots, a trust score is assigned to each spot. Result of the image analysis
process is a data vector. Repeated measurements and several conditions or
time points lead to a data matrix. Within the matrix, each row represents a
gene, each column represents a measurement. The focus of the MIPS group
is on the data analysis. Our analyses start with the data matrix produced by
the image analysis software.

The data matrix can be interpreted in two ways: by rows or by columns, ei-
ther looking at gene expression profiles (one geneandone genome analysis)
or looking at measurements (cross genome comparisonand cancer re-
search). Time course experiments are the typical case for a gene-wise
analysis, e.g. a gene clustering (Chapter 2.1.8). Comparing cells of dif-
ferent phenotypes or tissues, one would look at the measurements, e.g. in a
differential display [BFB+00]. In the context of this thesis we focus on gene
expression profiles, mainly by performing gene clusterings as the first step.

2.1.6 Normalization

The normalization of the gene expression data is a crucial process in order
to make measurements comparable. Even the measurements of a series of
repetitions that have been performed with the same array type at the same
laboratory by the same person vary significantly. The variations can easily
be observed in a scatter plot (Figure 2.9, left) that reveals additive as well
as multiplicative offsets. [SBM+00] name several sources of fluctuations
in probe, target and array preparation, in the hybridization process, and in
image processing (quantification). Without normalization, measurements
could therefore not be compared in an analysis.

Several methods have been suggested for normalization of measurements,
e.g. [SBM+00, BFB+00]. The methods have different characteristics, es-
pecially as far as robustness is concerned. The decision for an individual
method depends partly on the type of array. One has to distinguish between
whole genome measurements and partial arrays that contain only a specific
subset of the genes of an organism.

Normalization to a Set of Constitutively Expressed Genes

A number of genes of an organism is considered to be constitutively ex-
pressed, i.e. these genes are unregulated so that the expression rate should
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largely be constant. Up to 30% of the genes expressed in a cell are thought to
be constitutively expressed. They are probably involved in respiration, cell
growth, replication, and gene expression [DH97]. Whenever the expression
rate of genes that are known to be constitutively expressed is measured on
an array, one can assume that the expression rate of these genes does not
change during the time line of the experiment. One can normalize the mea-
surements onto the constitutively expressed genes. The procedure may lead
to good results, still it is not very robust since it depends on the measured
values of a small number of genes. Besides for normalization, constitutively
expressed genes are also applied for an estimation of the reliability of gene
expression data.

Normalization to a Set of Reference Sequences

Another strategy is to normalize onto a set of reference sequences (external
spikes). The prerequisite for this method is that the array contains a number
of sequences that do not appear in the gene set of the analyzed organism.
Together with the probes, one then applies the external spikes in a prede-
termined concentration to the array. The sequences will hybridize to the
corresponding spots. Since the concentration of the reference sequences is
known and since it is kept constant throughout a whole series of measure-
ments, the measurements can be normalized onto the values obtained for
these external spikes. Although this method proved useful and is applied
for example by Affymetrix, one of the leading chip providers, many other
chip manufacturer do not use reference sequences. In these cases, it is not
feasible for an experimentor to use external spikes on the standard array.
Therefore this method has a limited field of application.

Purely Statistical Normalization

In order to normalize gene expression data by means of statistics on the data,
one has to make certain assumptions on the characteristics of the data sets.
An important and at least for whole-genome arrays largely accepted assump-
tion is that on average the transcription rate and thus the mRNA abundance
of the measured genes does not change. When employing arrays that con-
tain specialized subsets of genes or particularly small gene sets one has to
consider carefully, whether this assumption holds.
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2.1.7 A Statistical Normalization Procedure

The statistical normalization procedure described here, I have developed
for the analysis of gene expression data obtained from human heart tissue
([MBK +01], Chapter 2.1.10). In collaboration with the molecular biologist
that set up the study, we agreed on the assumption that on average the gene
expression rates would not change during the experiment. Thus we can use
a statistical normalization method.

Normalizing gene expression data sets means that the individual statistical
characteristics of a set of hybridizations are made similar without affecting
the possibility to derive the desired signals. For a pair of measurements this
can be achieved via a line fit. When normalizing a whole set of measure-
ments, we adapt every single hybridization to a pseudo-measurement. For
each gene the median of the individual values is computed. The resulting
pseudo-measurement, i.e. the pattern that consists of the medians, is used
to adapt the hybridization data sets via linear regression. The computation
of a median measurement avoids the adaption to a single, arbitrarily chosen
hybridization. We prefer the median over the average because it is more ro-
bust, i.e. outliers influence the median significantly less. The performance
of the method can be assessed by computing the mean and the standard devi-
ation of the data points of each measurement. We observe that the means of
the normalized measurements are nearly equal. The standard deviations also
become very similar. The skewness values vary between the hybridizations.
Skewness is not affected by the normalization. The fact that they all have
the same sign supports the conclusion that the data sets have a similar sta-
tistical characteristic. The case study, described in Chapter 2.1.10, provides
an example for the usefulness of this method. Figure 2.9 shows scatter plots
of the same measurements as raw values (left), and with both measurements
adapted via a line fit to the pseudo-measurement of the medians of the 46
hybridizations of the same series.

2.1.8 Gene Clustering

A step towards the rapid and comprehensive interpretation of gene expres-
sion data is the clustering of the genes with respect to the expression pro-
files [ESBB98]. The individual genes are sorted into groups (clusters) by
a clustering algorithm. One wants to find clusters of genes that are co-
expressed. This is biologically relevant since co-expression may be caused
by co-regulation according to similar protein binding sites or transcription
factors.

The clustering can generally be achieved with every established clustering
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method of data analysis. Eisen et al. use nearest neighbor joining, a hierar-
chical clustering method that results in a binary tree with the genes at its
leaves [ESBB98]. A neural network approach, Kohonen’s self-organizing
map (SOM), is well suited for the analysis of multi-dimensional data.
Tamayo et al. first used the SOM for clustering gene expression profiles.
They name distinct advantages of the SOM clustering over the hierarchical
clustering [TSM+99]. More methods are described in the literature, some
developed especially for the application on gene expression data [MCA+98].

In essence, different clustering methods provide very similar results. Dif-
ferences pertain to the possibilities of representing and assessing results and
in the computational complexity of the methods. The distance measure is
as relevant as the actual method used for the clustering. In this chapter we
first describe several distance measures and their specific advantages and
disadvantages. Then we present three clustering methods largely employed
for clustering gene expression data. The methods are only briefly described
here. The SOM clustering approach I have developed at MIPS is described
in detail in the next section (Chapter 2.1.9).

Distance Measures for Gene Expression Profiles

In order to cluster genes according to their expression profiles, the distance
between two expression profiles has to be computed. The expression pro-
file of a gene can be interpreted as an-dimensional vector or as a point in
n-dimensional Euclidean space. Thus the Euclidean distance measure is ap-
plicable. Other distance measures have been suggested, among them the
linear correlation coefficient and theL1 distance measure. Rank correlation
and mutual information have also been proposed. Obviously, there is nobest
measureand noright choice. At MIPS, I have implemented and employed
the following four measures. In the equations below,X andY denominate
the expression profiles of two genes. Correspondingly,xi andyi are theith
components of the respective profile vectors.

The Euclidean distanceDE(X,Y ) of twon-dimensional expression vectors
X andY is defined as

DE(X,Y ) =
√ ∑
i=1,..,n

(xi − yi)2 (2.1)

The linear correlation coefficientDLC(X,Y ) of two expression vectors is
related to Euclidean distance if before applying the Euclidean distance the
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expression vectors are standardized to mean zero and unit variance. The
linear correlation is computed as

DLC(X,Y ) =

∑
i=1,..,n (xi − x̄)(yi − ȳ)√∑

i=1,..,n (xi − x̄)2
√∑

i=1,..,n (yi − ȳ)2
(2.2)

with x̄ andȳ representing the mean of thexi andyi, respectively. The Man-
hattan distance (L1) DL1(X,Y ) is defined as

DL1(X,Y ) =
∑

i=1,..,n

|xi − yi| (2.3)

This is a more robust measure with respect to outliers compared to Euclidean
distance and the linear correlation coefficient since the differences between
the components of the expression vectors are linearly summed, not squared.
To make the measures even more robust, we also tried to cap the components
of the Manhattan distance. The capped Manhattan distanceDL1C(X,Y ) is
defined as

DL1C
(X,Y ) =

∑
i=1,..,n

max(T, |xi − yi|) (2.4)

with T being the maximal value (threshold) of any addend of the sum.
Thus, the maximum distance of two expression profiles isnT . The robust-
ness stems from the fact that outliers resulting from measurement errors are
weighted with a maximum ofT .

Pairwise Average-Linkage Clustering

The clustering usingpairwise average-linkage cluster analysiswas intro-
duced into gene expression analysis by Eisen et al. [ESBB98]. We follow
their description of the algorithm here. Eisen et al. combine the clustering
that results in a reordering of the list of genes, with a red/green represen-
tation of the expression profiles (Figure 2.4). The pairwise average-linkage
cluster analysis is a form ofhierarchical clustering. The relationship be-
tween the clustered entities is represented by a binary tree, calleddendro-
gram. The branch lengths of the tree reflect the similarity of the entities that
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Figure 2.4: The representation of a gene clustering taken from [ESBB98], some-
times calledeisengram. The genes are ordered by means of the similarity of their
expression profiles but can still be represented in a simple table. The expression
rates are color coded (see bar at the top).

is computed pairwise by a similarity function. In the diagrammatic repre-
sentation of figure 2.4, the tree is attached to the left edge of the color coded
data representation.

The steps of the average-linkage clustering in detail: For a set ofn genes,
a similarity matrix is computed using an arbitrary distance measure. Eisen
et al. used the linear correlation coefficient to compute distances between
expression profiles. The highest value is identified in the matrix and the cor-
responding genes are joined, building a new node of the initially empty tree.
For the node, an expression profile is calculated by averaging the expression
profiles of the joined entities. The similarity matrix is updated with the new
node replacing the joined elements. The new node is subsequently treated
just like a single gene. The process is iterated until a single element, the
root of the tree, remains and the binary tree is complete. The data table has
to be adequately ordered according to the tree structure. This is not straight
forward, since2n−1 orders exist that are consistent with the imposed tree
structure. Eisen et al. use a weighting of the elements and at each bifurca-
tion of the binary tree place the node with the smaller weight earlier in the
final order. For the weighting, factors like average expression level and time
of maximal induction are considered.
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Figure 2.5: A clustering tree as it is produced by the algorithm described
in [WFM+98]. The authors highlighted areas that correspond to anexpression wave
(shaded areas) to demonstrate the utility of the clustering method. The areas are de-
termined manually by visual inspection. The figure is taken from [WFM+98].

SOM Clustering

The SOM is a neural network that provides a mapping from a multi-
dimensional data space into a discrete two dimensional space [Koh95].
The SOM proved valuable in fields like engineering and medical image
analysis [EFK+99]. The usage of the SOM algorithm for clustering expres-
sion profiles was first described by [TSM+99]. For the MIPS group, we also
employ this very robust method for expression data produced in the EURO-
FAN project [FM99] and for the human data of the case study described in
Chapter 2.1.10.

The details of the SOM algorithm and the approach to gene clustering using
the SOM I developed at MIPS are described in Section 2.1.9.

Other Clustering Methods

Other clustering methods have been described in literature, e.g.
in [MCA+98]. Here, the Euclidean distance is employed as the distance
metric between the multi-dimensional expression data vectors of the indi-
vidual genes. The vectors are made up of then expression values and
then − 1 slopes between them. Both types of vector components are re-
duced to a range [0;1]. By adding the slope values to the data vectors the
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method accounts for parallel but offset expression profiles. The Fitch algo-
rithm [FM67] that originates from phylogeny is used for the calculation of
a Euclidean distance treefrom the pre-determined Euclidean distance ma-
trix. The method produces characteristic trees (Figure 2.5). From the tree,
the cluster boundaries are determined manually by visual inspection. The
authors point out that main branches separatewavesof gene expression, i.e.
groups of genes that have their maximum expression value at the same time
point. The computational complexity is high compared with the SOM clus-
tering and the pairwise average-linkage clustering.

2.1.9 A SOM Approach to Gene Clustering

This section describes the SOM algorithm in more detail. At MIPS, I de-
veloped a method for clustering genes according to their expression profiles
using the SOM. This approach and the features that make the SOM better
suited for gene clustering than other clustering methods are discussed.

The SOM is a neural network that provides a mapping from a multi-
dimensional data space into a discrete two dimensional space. The method
is robust, scalable, flexible, and reasonably fast. Additionally, the clusters
are sorted according to the two dimensional regular discrete topology of the
map. Thus, neighboring clusters are quite similar, while more distant clus-
ters become increasingly diverse [Koh95]. The mapping is reached via an
iterativelearning process. One generally distinguishes betweensupervised
learning andunsupervised learning. The learning process is called unsu-
pervised, if no external teacher is involved that would give a correct output
during learning. The neural network adapts its weights unsupervised (self-
organizing) in response to an external stimulusξ [Bar89]. The learning rule
is often defined as the partial derivative of anenergy function(also called
cost function), such that the weight adaption minimizes the energy function.
During the iterative weight adaption process, an internal representation of
the input data is established that captures interesting features of the high-
dimensional input data. The inherent reduction of dimensionality makes
these features seizable. Applications for unsupervised learning include clas-
sification, clustering, estimation of probability distributions in the input data
and the generation of topographic maps [HN90].

Neural networks define a mapping from an input spaceE into an output
spaceA. The adaption of the network’s weights changes this mapping. Let
the output spaceA consist of a regular grid ofN neurons. The mapping
of the network assigns a reference vectorwi ∈ E to each neuroni ∈ A.
The components of the reference vectors are called theweightsof the neu-
ral network (Figure 2.6). Defining distance measures in input and output
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Figure 2.6: Left: Scheme of a neural map. The neurons are arranged on a gridA.
Each neuroni has got a reference vectorwi that points into the input space (data
space). Right: A topographic mapping of neighboring input data points (external
stimuli) ξ(1), ξ(2) onto neighboring pointsi, j of the output spaceA. F andG
are distance functions that define a measure for the neighborhood of two inputs and
outputs respectively [GFS95]. In terms of neural maps the output space corresponds
to the regular grid of neurons.

space allows to use the termneighborhoodof input data and output neurons
respectively.

Mappings defined by a neural network are calledtopology conservingby
Villmann et al. [VDHM97], if neighboring reference vectorswi, wj ∈ E
belong to neighboring neuronsi, j ∈ A and neighboring neuronsi, j ∈ A
are assigned to neighboring reference vectorswi, wj ∈ E. The mappings
are also calledtopographic mappings[GFS95, GS96] (cf. Figure 2.6). Neu-
ral networks that establish a topographic mapping are called neural (fea-
ture) maps [BGPW96], a term that goes back to Kohonen’s Self-Organizing
Feature Map [Koh82], now called self-organizing map (SOM). The iter-
ative procedure of learning can formally be described as a Markov pro-
cess [RMS90]. Initially, the reference vectors of the neurons are randomly
distributed over the input spaceE. At each step, a data point that is randomly
chosen from the input data is presented to the network. This data pointξ is
called input, orstimulus. The neural map adapts the reference vectors of
the neurons according to the learning rule (Equation 2.6). A topographic
mapping establishes iteratively. A predetermined number of learning steps
is applied. The steps are denoted byt (time). The learning rule follows
the principle ofcompetitionbetween neurons. The neuroni whose refer-
ence vectorwi is closest to the stimulusξ is assigned the winneri∗ of the
competition. The inequality
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|wi∗ − ξ| ≤ |wi − ξ| (2.5)

holds for alli = 1, . . . , N . The componentswij of the reference vectorswi
are changed according to the learning rule

∆wij = ηΛt(i, i∗)(ξj − wij) (2.6)

for all i = 1, . . . , N andj = 1, . . . , D. Note thati∗ always depends on the
current stimulusξ.

The neurons are ordered on a grid. For any two neurons, one can calculate
their distance on the grid. The neighborhood functionΛt(i, i∗) determines
how strong the neighborhood between neuronsi andi∗ is rated relative to
their distance.Λ is a function of the timet and of the distance between the
neuronsi andi∗ within the grid. At any time pointt, Λt decreases monoton-
ically with increasing distance of the neurons. During the learning process,
the neighborhood is normally decreased globally. The learning rule moves
the reference vector of the winning neuroni∗ towards the stimulus (Hebbian
learning). The reference vectors of the other neurons are also moved towards
the stimulus, but not as much. The adaption rate decreases according to the
neighborhood function. The factorη is called learning rate and decreases
during the learning process, too. The following set of functions is a reason-
able choice [Fel98]:Λ is a Gaussian function with logistically decreasing
width σ. The learning rateη is a decreasing logistic function (Figure 2.7):

Λt(i, i∗) = exp(−|i− i∗|2/2σ(t)2) (2.7)

σ(t) = A1/(1 + exp(C1(t−B1))) +D1 (2.8)

η(t) = A2/(1 + exp(C2(t−B2))) +D2 (2.9)

For the calculation ofσ(t) andη(t), t is mapped onto the intervall[−10; 10].
This arbitrary predefinition eases the parametrization of the functions since
the characeristic of the functions does not change when the number of learn-
ing steps is adapted.

Figure 2.8 shows the graphical representation of a SOM clustering. The an-
alyzed gene expression data set has been published in [DIB97]. They have
measured the expression rates for a set of 6153 genes at seven successive
time points. The conditions varied monotonously during the experiment.
Yeast was initially grown on a glucose rich medium. During the experi-
ment, the glucose was depleted by the yeast and a reprogramming of the
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Figure 2.7: A logistic function. The role of the four parameters A, B, C, and D
is indicated by the dashed lines. A and D determine the negative and the positive
limes. B determines the horizontal transition and C relates to the steepness of the
curve.

metabolism was necessary for the organisms to survive. Thisdiauxic shift
is well understood and therefore this experiment served as a proof of the
usefulness of the microarray technique for measuring expression profiles
on a genomic scale. Each diagram in the figure corresponds to a cluster.
The clusters are shown in the explicite order imposed by the SOM clusterer,
conserving the two-dimensional topological ordering featured by the neural
map. Within the diagrams, time points or conditions respectively are on the
abscissa, the values (logarithmized ratios, here) are on the ordinate. The
topological order is clearly visible: neighboring clusters are similar in both
dimensions. This similarity of neighboring clusters makes the representation
comprehensive. The topological ordering is the basis of the integrative ap-
proaches described in Chapter 3. It allows to combine neighboring clusters
according to heuristics induced by other data, e.g. functional annotations and
metabolic pathways. We can compute a large number of clusters according
to the numerical expression data that can be flexibly joined to overlapping,
meaningful groups by further analysis steps. Even for large numbers of clus-
ters the result remains comprehensible.

2.1.10 A Case Study: Human Heart Tissue

This section presents results of a cDNA array study that was carried
out at the Clinic of Thoracic and Cardiovascular Surgery of the Ruhr-
University Bochum at the Heartcenter (HDZ) in Bad Oeynhausen, Ger-
many [MBK+01]. At MIPS I have employed the techniques described above
to verify or prove wrong a specific working hypothesis formulated within the
project.
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Figure 2.8: The graphical representation of a SOM clustering. Distance measure:
Euclidean distance. The data set has been published by [DIB97]. Each diagram
represents one cluster and shows a plot of the seven time points vs. the log relative
expression levels. The topological order is clearly visible: neighboring clusters are
similar.
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Description of the Study

Heart failure is the most frequent cause of death in the industrial countries.
The ultimate treatment for patients suffering from endstage heart failure is
the orthotopic heart transplantation (HTx) despite efforts to develop alter-
native therapeutical approaches [LVdVC+93, KBIU+98]. However, be-
cause of the shortage of donor hearts a considerable number of patients
dies on the waiting list. During the last decade the gap between demand
and availability of donor hearts increased considerably. Since the mid of
the nineteen-eighties Ventricular Assist Device (VAD) are implanted as a
bridge to transplantation in specialized heart centers [DLEB+01]. The im-
plantation of VADs leads to a short term recompensation of the patient’s
circulatory demands and to the recovery of peripheral organs as liver and
kidney [FMM+94].

The main group of patients bridged to HTx by VAD so far suffers from di-
lated cardiomyopathy (DCM), which is also the main indication for HTx.
The unloading of the failing heart by implantation of VADs has been shown
to cause considerable changes of myocardial gene expression in different
patients [BMS+99]. Apart from these observations the Heartcenter Bad
Oeynhausen and other groups have experienced the successful weaning of
patients from VADs leading to the idea that VAD might be used as abridge
to recoveryfor some patients. On the other hand, clinical experience has
tought us, that in some cases myocardial recovery was not sustained on a
time scale of weeks or months after weaning from the VAD [HMM+00].
Nevertheless transient VAD implantation is discussed as a putative alter-
native treatment for heart transplantation in a subgroup of HTx candidates
suffering from DCM. But clinicians still lack criteria for identifying patients
who might develop a sustained recovery of the myocardium under VAD sup-
port [HMM+00].

DCM is a disease with a heterogeneous etiology. Whereas 20-30% of the
DCM patients are regarded to have a congenital disorder [AMP+00] an-
other estimated 30% suffered from DCM as a consequence of a virus infec-
tion. DCM is associated with a complex remodeling process in the myocar-
dial wall and reduced contractility of the myocytes caused by an increased
wall stress in the enlarged ventricle. The clinical phenotype of DCM is the
result of an adaptive process associated with a remodeling process in the
myocardium leading to diastolic and systolic dysfunction. The implantation
of VAD reduces the wall stress and might therefore induce a reversal of the
remodeling process leading to partial recovery of the myocardium.

Using cDNA arrays we have analyzed the gene expression profiles of 588
genes in myocardial samples of ten transplantation candidates suffering from
DCM [MBK +01]. In parallel we have analyzed in the same samples the
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Ca2+ dependent ATPase activity as a marker of sarcoplasmicCa2+ up-
take. We show that unloading of the left ventricle by VAD induces a reverse
remodeling process, which is independent of myocardialCa2+ dependent
ATPase activity. The cluster analysis of array data reveals distinct pheno-
types in patients supported by VAD.

Ten patients of the heart transplantation program at the HDZ suffering from
dilated cardiomyopathy and supported by VAD were analyzed. Seven pa-
tients were supported by Novacor LVAD and three by Thoratec VAD (2
LVAD, 1 BiVAD). Mean supporting time was 264 days (range 38-741 days),
mean age 51 years (range 12-70 years).

RNA expression patterns of paired myocardial samples from VAD patients
were analyzed by commercially available cDNA arrays (Clontech Labora-
tories; Palo Alto, CA, USA). The myocardial samples of each patient were
obtained at the time of VADimplantationand at the time oftransplantation
(HTx). Hybridisation was performed in triplicate for each sample according
to the manufacturers recommendations with modifications. Arrays, double
spotted with 588 different cDNAs, were incubated in parallel with radioac-
tive labeled first strand cDNA. The cDNA arrays were exposed to a phosphor
imager screen for 3-5 days. Resulting data files were imported into the Atlas
Image software (Clontech). Hybridization spots were aligned and the ex-
pression data sets were normalized. The data sets of 46 hybridizations from
eight patients were already available in an early stage of the project. We gen-
erated a multi-dimensional expression data set from these comprising eight
conditions, one per patient. A gene clustering was achieved using the SOM
clustering procedure (Chapter 2.1.9).

Methods

Hybridization of cDNA arrays was done in triplicate from the same RNA
sample [LKWS00]. Resulting data were evaluated under functional aspects
and were analyzed in order to identify differences between expression pat-
terns of patients and genes.

For the normalization we have employed the pure statistical procedure that is
described in Chapter 2.1.7. For each gene the medians of all 46 values have
been computed. The resultingpseudo-measurementof medians was used to
adapt the 46 data sets via linear regression. Table 2.1 shows mean, median,
standard deviation and skewness of the values of each of the measurements
before and after the normalization, respectively. The effect is clearly vis-
ible: the mean values are nearly equal afterwards, the standard deviations
vary significantly less than before. The skewness values remain practically
unchanged by the normalization. As expected, they are not affected by the
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Measurement Mean Median Std Dev Skew Mean Median Std Dev
P1 220500IMP 13734.5 11278 8092.16 1.52 15344.0 13119.91 7358.24
P1 220500TRA 14879.4 12426 7221.84 1.66 15324.0 12797.14 7438.14
P1 231299IMP 19114.8 18192 4312.66 3.75 15344.1 13279.95 9244.74
P1 231299TRA 25258.3 22872 7376.90 1.87 15344.0 12876.22 7520.76
P1 270600IMP 20344.3 18436 7575.03 1.51 15344.0 13431.14 7528.45
P1 270600TRA 18312.7 15568 7852.74 1.70 15344.1 12690.94 7568.71
P2 070700IMP 15127.4 13298 7845.24 1.57 15266.3 13420.01 7917.80
P2 070700TRA 15973.6 13406 9425.23 1.22 15344.0 13294.04 7556.14
P2 130600IMP 4439.9 1690 6270.48 2.40 15344.0 11962.73 7785.54
P2 130600TRA 9071.9 5246 9345.30 1.40 15344.0 12342.53 7398.49
P2 180200IMP 19216.7 16906 7696.34 1.66 15344.0 13014.20 7716.30
P2 180200TRA 17968.8 15670 6498.51 2.10 15344.0 12613.65 7662.84
P3 110900IMP 18797.6 16070 9359.38 1.23 15212.1 13004.65 7574.58
P3 110900TRA 20191.9 18024 8746.24 1.34 15111.0 13159.06 7834.96
P3 2808002IMP 17012.4 14500 9715.66 1.16 15111.0 13114.54 7740.48
P3 2808002TRA 16088.6 13734 8818.41 1.37 14932.5 12746.97 8185.20
P3 280800IMP 14497.4 11828 9022.38 1.44 15111.0 12804.79 7823.69
P3 280800TRA 16303.8 13564 8938.03 1.43 14930.2 12421.08 8185.46
P4 030400IMP 8736.6 5884 7916.26 1.76 15344.1 12630.58 7594.97
P4 030400TRA 5015.3 2396 6093.82 2.52 15344.0 12077.50 7669.99
P4 130600IMP 9995.2 7140 8425.86 1.48 15344.1 12841.59 7449.45
P4 130600TRA 7643.8 4898 7423.17 1.68 15344.0 12590.74 7512.39
P5 191199IMP 14506.0 13690 3146.54 4.12 15344.0 12994.18 8738.10
P5 191199TRA 14429.5 13704 4054.33 3.52 15344.0 13755.96 8589.26
P5 220500IMP 14186.7 11930 6971.28 1.68 15301.2 12866.99 7519.43
P5 220500TRA 12753.6 9936 7808.99 1.98 15344.1 12631.75 7545.34
P5 300600IMP 22154.9 19812 8207.37 1.19 15344.0 13198.75 7458.41
P5 300600TRA 21256.3 19188 8432.73 1.36 15344.1 13508.90 7435.53
P6 100800IMP 12630.4 10404 8009.02 1.53 15111.0 12881.53 8049.15
P6 100800TRA 12248.7 9632 8495.90 1.56 15111.0 12720.23 7804.43
P6 200600IMP 14648.0 11956 9360.95 1.15 15344.0 13208.69 7467.92
P6 200600TRA 15796.4 13526 9858.74 1.16 15344.0 13627.84 7500.40
P6 290500IMP 19501.5 17100 9566.59 1.06 15343.5 13453.92 7527.23
P6 290500TRA 18106.4 15574 10141.2 1.11 14998.3 12900.56 8400.85
P7 100800IMP 11177.3 8150 8247.81 1.63 15111.0 12283.14 7746.55
P7 100800TRA 8957.0 5858 7525.21 1.93 15111.0 11927.16 7778.93
P7 2407002IMP 19387.3 16696 9255.55 1.30 15374.9 13240.52 7340.43
P7 2407002TRA 21109.9 18864 7781.32 1.65 15344.1 13180.40 7439.92
P7 240700IMP 18816.6 16308 8748.24 1.45 15432.3 13374.79 7175.22
P7 240700TRA 19582.4 17386 7600.98 1.76 15344.0 13148.77 7549.16
P8 200600IMP 8391.8 5674 7373.85 2.02 15344.0 12612.75 7472.51
P8 200600TRA 10578.3 7896 8211.96 1.61 15344.0 12944.06 7407.21
P8 240100IMP 19041.2 17034 6906.06 2.09 15344.0 13078.25 7726.87
P8 240100TRA 14988.0 13150 5681.87 2.57 15344.0 12779.63 7871.20
P8 290500IMP 9866.6 7334 7322.60 1.95 15344.0 12753.15 7541.43
P8 290500TRA 11882.1 9738 7276.82 1.87 15344.0 13149.63 7483.11

Table 2.1: Mean, median, standard deviation, and skewness of the 46 measure-
ments from the HDZ study. Left: values as measured. Right: values after statistical
normalization of the measurements.
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normalization, except due to numerical inaccuracies. An alternative normal-
ization procedure suggested by the array distributor is the normalization to
the constitutively expressed gene GAPDH. Normalization to GAPDH was
found to be in rough accordance with the statistical normalization. The sta-
tistical normalization over all genes resulted in no significant differences of
GAPDH hybridization signals.

The normalized triplicate measurements have been combined by averaging
the values of the individual genes, i.e. we have computed the mean expres-
sion value of each gene. A log ratio has been computed as the logarithm
of the ratiotransplantationdivided by implantation. The ratios thus give
the relative fold change of gene expression for the respective gene in each
patient that occurred in the period between implantation and transplantation.

Results

Since a recovery of the heart muscle had been observed on unloading of the
heart by the implanted VAD previously to this study, we hypothesized that
the change in gene expression that can be observed betweenimplantation
and transplantationvalues would depend on the supporting time, i.e. the
time that passed from implantation to transplantation. However, clustering
using the SOM algorithm has revealed that the differences between patients
are more important compared to the length of the period of VAD support.

The order of the patients’ values in the data set has been rearranged ac-
cording to increasing individual VAD support time. Thus the data set can
be seen in analogy to a time course of expression values. The assumption
is that if there is a significant support time dependence of the expression
rate changes, a substantial number of the differentially expressed genes will
exhibit almost monotonously increasing or decreasing expression profiles.
Figure 2.10 shows the partition of the genes into12 × 9 clusters. The clus-
ters exhibit distinct expression profiles. Obviously, there are groups of co-
expressed genes on the chip. However, no cluster can be found whose genes
exhibit a significant monotonous increase or decrease of expression rates.
The differences in gene expression between the patients seem to conceal
common changes that occur due to the VAD implantation. This finding sup-
ports the characterization of dilated cardiomyopathy (DCM) as a heteroge-
neous disease also on the gene expression level. A typical common response
in gene expression could not be found, neither globally nor for a subset of
the measured genes.

Results obtained with methods other than SOM cluster analysis are not men-
tioned here. Please refer to the original paper for detailed descriptions of
methods, results and a medical discussion [MBK+01].
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Figure 2.9: Scatterplots of two individual measurements. For each gene, the value
of the first measurement is plotted against the value of the second measurement.
Above: the raw values. Below: the same measurements after statistical normaliza-
tion to the pseudo-measurement that consists of the medians of 46 measurements
from the same series for each gene (cf. Chapter 2.1.7).
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Figure 2.10: SOM clustering (12× 9 clusters) of the human heart tissue data set
discussed in this section. Each diagram represents a gene cluster showing a plot
of the eight pseudo time points vs. the log relative expression levels. Here, no
mean/variance standardization was applied to the data.
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2.2 Protein-Protein Interactions

The knowledge of the whole genomic DNA sequence of organisms has
started a new era in biological research. It is now for the first time possi-
ble to identify and analyze all genetic elements of a single organism. Be-
side the whole genome also theproteome, i.e. all proteins expressed by the
genome of an organism, is becoming accessible with the further develop-
ment of current analysis methods and the advent of new technologies like
protein arrays [LHE+99]. The analysis of the proteome mainly depends on
experimental biological data. A substantial amount of data is published, but
in general not stored in sufficiently structured form.

Biological processes are mainly determined bymolecular interactions, e.g.
between DNA and proteins, proteins and proteins, or proteins and small
molecules. Among these,protein-protein interactionsplay an especially
important role since they are essential for virtually every biological process.
Protein-protein interactions are the fundamental prerequisites for such com-
plex phenomena as control of the cell cycle, DNA replication, transcription,
metabolism and signal transduction. The knowledge of the biological con-
text of a single protein, especially of its interactions with other molecules,
is mandatory for a precise understanding of its function in the cell. Study-
ing the functions of individual proteins in various organisms has shown that
proteins do not function isolated in a cell but act either inmulti-protein com-
plexesor in protein networks. Often these multi-protein complexes act as
highly efficient protein machines [AML92]. These protein machines are as-
semblies of different protein subunits in which the allosteric movement of
individual components are coordinated to carry out complicated tasks which
need temporal and spatial coordination.

Besides their importance for the formation of multi-protein complexes,
protein-protein interactions are involved in a number of other essential fea-
tures. Proteins are directed to the correct compartments of cells by bind-
ing to other proteins; protein messengers bind to protein receptors on the
outer surface of cell membranes to exchange signals between cells; pro-
teins form structural connections between cells; some inhibitors of enzymes
are proteins; proteins are modified and degraded by interacting proteins,
the enzymes; protein-protein interactions are involved in large-scale move-
ments in organisms, such as muscle contraction. A vast amount of protein-
protein interaction data has been generated during the last decades. Re-
cently developedhigh-throughput approachesfor a systematic analysis of
genome-wide protein-protein interactionsare widely used, producing large-
scale data sets [FRRL97, ITM+00, UGC+00]. The final goal of studying
protein-protein interactions in a given organism is to produce completepro-
tein interaction maps.
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2.2.1 MIPS Yeast Interaction Tables

One of the main challenges for the analysis and annotation of the genome
of the baker’s yeastSaccharomyces cerevisiaeafter completion of the se-
quencing project [GAAC+97] was to integrate all available gene-related
information of the public domain into a comprehensive yeast genome
database [AGH+01, MFG+00]. The information contained in MYGD is
gathered from various sources, mainly the systematic functional analysis
projects of yeast [OWKB98] and the yeast literature. Efficient integration
of information from the literature requires the application of a standardized
terminology as much as possible.

For the annotation of protein-protein interactions MIPS has developed the
following format. Each interaction consists of 6 different annotation fields:
first interactor, second interactor, type of interaction, method the interac-
tion was detected with, references, and free text for additional information.
Two types of interactions are distinguished: physical and genetic interac-
tions. The type of interaction is annotated according to the experimental
method applied. Physical interactions are detected by e.g. coimmunopre-
cipitation, two hybrid assay, and affinity purification; genetic interactions
are revealed by methods like extragenic suppression, multicopy suppres-
sion, synthetic lethality, and transdominant inhibition. Genetic methods are
often just a starting point for further biochemical or cell biological experi-
ments since they only give indirect clues for the interaction of two proteins.
This standardized annotation format allows the compilation of the gathered
data into tables giving easy electronic access to the data [AHZ00]. So far
data about interacting domains of individual proteins have not been system-
atically introduced into the data set. The MIPS Yeast Interaction Tables
have been used for other types of presentation such as in the INTERACT
database [EBPH99].

The MIPS yeast interaction tables consist of more than 1000 genetic inter-
actions and more than 2500 physical interactions as of November 2000. For
those cases where the interaction type could not be identified from the liter-
ature we generated a supplementary table that now contains 197 unclassified
interactions.

2.2.2 Visualization of Protein-Protein Interactions

The binary protein-protein interaction compiled in the interaction tables
need to be visualized in order to make them comprehensible and in order
to be able to judge on the interactions of specific proteins more easily. The
following paragraphs describe a procedure I have developed to transfer the
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Figure 2.11: The 3500 protein-protein interactions of the MIPS Yeast Interaction
Table [AHZ00] represented as a graph. Proteins are shown as nodes, interactions
are represented by edges between them. Physical interactions are represented by
solid blue edges, genetic interactions by dashed red edges. As the graph is too
complex to be of direct use, we employ the integrative analysis approach to restrict
the complexity and to focus on a specific biological context (Chapter 3.4).

information from the tables into graphs that can be visualized [FAZ+00].
Figure 2.11 shows an example.

Building Protein Clusters

In an iterative procedure we buildclusters of proteinson the basis of the an-
notated interactions. Every single protein initially represents its own cluster.
For every annotated interaction, where the interacting proteins are not in the
same cluster, we join the two clusters involved. After the clustering, every
cluster contains all the proteins that interact either directly or indirectly. In a
graph theoretic sense, modeling proteins as nodes and interactions as edges,
we build clusters of proteins that belong to the same connected component
of the whole interaction graph.
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Graph Representation

The genetic interactions as well as the physical interactions are binary rela-
tions. They are ideally suited for visualization as graphs. Genes and proteins
are modeled as nodes, the interactions are represented as edges between the
respective nodes. A graph editor tool-kit can be employed for displaying
the interaction graphs. We have customized the LEDA graph editor [MN99]
for the graphical visualization of interaction graphs. The nodes are labeled
with the systematic names or the gene names if available. Edges correspond
to interactions and are drawn according to the interaction mode. Physical
interactions are represented by solid edges, genetic interactions by dashed
edges. A color code can be applied for a deeper characterization of the dif-
ferent methods by which the interactions have been detected. The algorithms
of the editor create a suitable layout for the complex graphs, resulting in a
clear, easy to grasp picture of the displayed interactions. The user can alter
the graph by moving nodes and by deleting nodes and edges.
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2.3 Functional Annotations: The MIPS Functional
Catalog

During the process of annotation of a sequenced genome, the identified
genes and the corresponding proteins are characterized. Complex biolog-
ical functions are assigned to the proteins. These include general aspects,
e.g. naming a protein family that a certain protein belongs to. Other descrip-
tions refer to the exact role of the protein in a special cellular process. The
usage of free text for the systematic functional description of proteins is not
adequate for computational tasks [Ril93]. In analogy to the established EC
catalog [NI92] a hierarchical ordering of the gene products of a cell in terms
of their function is an adequate solution for a systematic approach. Different
levels of categories group together biochemical functionality according to
their role in the organism in rough analogy to biochemical textbooks group-
ing the biochemical information in paragraphs, chapters and sections.

As the sequence of the yeastSaccharomyces cerevisiaewas available in
1996 MIPS has generated a specialfunctional catalogfor yeast [ZHAM01,
MAB+97]. Significant homologies of proteins to functionally characterized
proteins as well as data from the literature derived from biochemical, ge-
netic or phenotypic experiments have been used to assign functions. The
yeast functional catalog is hierarchically organized. It contains 15 main cat-
egories, each containing 3 to 4 levels of subcategories. In total the catalog
consists of more than 200 functional categories. Proteins can be assigned
to more than one functional category. This allows a multi-dimensional an-
notation that takes into account different aspects of function. A protein that
belongs to theglycolytic pathwaycategory that is a subcategory of theen-
ergy main category also belongs tocarbohydrate utilization. Additionally,
it may be assigned to the categorycellular organization. For 3793 out of
6359 yeast genes at least one of the functional categories is assigned, the
remaining proteins are assigned to the categoryunclassified proteins.

An updated version of the functional catalog is currently being prepared. It
will take into account the experiences made with the original version and
will allow a more specific annotation. Recently, a review of functional an-
notation schemes has been published [RHT00]. According to this review the
MIPS Functional Catalog, of all investigated schemes, provides the broadest
coverage of cellular functions.
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Systematic number Description of category

01 METABOLISM
01.03.16 polynucleotide degradation
01.05.01 C-compound and carbohydrate utilization
01.05.04 regulation of C-compound and carbohydrate utilization

02 ENERGY
02.01 glycolysis and gluconeogenesis
02.13 respiration
02.19 metabolism of energy reserves (glycogen, trehalose)

03 CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS
03.04 budding, cell polarity and filament formation
03.07 pheromone response, mating-type determination, sex-specific proteins
03.10 sporulation and germination
03.13 meiosis
03.16 DNA synthesis and replication
03.19 recombination and DNA repair
03.22 cell cycle control and mitosis

04 TRANSCRIPTION
04.01.04 rRNA processing
04.03.03 tRNA processing
04.05.01.04 transcriptional control
04.05.03 mRNA processing (splicing)
04.05.05 mRNA processing (5’-, 3’-end processing, mRNA degradation)
04.05.99 other mRNA-transcription activities
04.07 RNA transport
04.99 other transcription activities

05 PROTEIN SYNTHESIS
05.01 ribosomal proteins
05.04 translation (initiation, elongation and termination)
05.07 translational control

06 PROTEIN DESTINATION
06.04 protein targeting, sorting and translocation
06.07 protein modification (glycolsylation, acylation, ...)
06.10 assembly of protein complexes
06.13.01 cytoplasmic degradation

08 INTRACELLULAR TRANSPORT
08.01 nuclear transport
08.07 vesicular transport (Golgi network, etc.)
08.13 vacuolar transport
08.19 cellular import

09 CELLULAR BIOGENESIS
09.25 vacuolar and lysosomal biogenesis

10 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION
10.01.05.11 key kinases

11 CELL RESCUE, DEFENSE, CELL DEATH AND AGEING
11.01 stress response
11.07 detoxificaton
11.11 ageing
11.13 degradation of exogenous polynucleotides
11.99 other cell rescue activities

99 UNCLASSIFIED PROTEINS

Table 2.2: An excerpt of the MIPS functional catalog. The systematic numbers
appearing in Tables 3.4, 3.5, and 3.6 are described. The complete functional catalog
is available at MIPS [ZHAM01].
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2.4 Metabolic Pathways

In textbooks of molecular biology the metabolism of biological organisms
is commonly divided into parts according to certain functional tasks per-
formed. These parts are calledpathways. Because the partition into distinct
pathways is purely conceptual, they are referred to astextbook pathways.
Along these pathways of the intermediary metabolism, organic substances,
also calledcompounds, reactants, or metabolites, are interconverted, i.e.
generated (anabolism) or degraded (catabolism).

2.4.1 Introduction

A major work in the systematic representation of metabolic pathways has
been done by German researcher G. Michal, who created theBoehringer
Mannheim Biochemical Pathways Wall Chart(Figure 2.12). It is available
in electronic form and as a paper version [M+93]. A textbook version of the
famous chart is also available [Mic99].

For metabolic databases, diverse pathway schemes exist. Most of them es-
tablish a hierarchy with three to six levels. Entities on the lowest level are
then called pathways, higher levels group functionally related and neighbor-
ing metabolic pathways and the top level represents the whole metabolic net-
work. Pathways can be specific for a certain organism or represent metabolic
knowledge in a generalized form, i.e. containing all metabolic reactions
known to exist in some organism.

Besides static information storage in metabolic databases (Chapter 2.4.2),
dynamic approaches to metabolism have recently been undertaken. At MIPS
I have developed a set of algorithms suited for a dynamic assessment of
the metabolic capabilities of organisms for which a substantial number of
bioreactions is known to be present. These algorithms are described in the
remaining sections of this chapter.

2.4.2 Metabolic Databases and Resources

ENZYME

The Enzyme nomenclature database (ENZYME) is a repository of informa-
tion relative to the nomenclature of enzymes [Bai00]. It contains an en-
try for every type of enzyme for that an Enzyme Commission (EC) num-
ber has been assigned. As of February 24, 2002 the Enzyme nomenclature
database (ENZYME) database contained 3916 entries.
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Figure 2.12: The famousBoehringer Mannheim Biochemical Pathways Wall
Chart [M+93]. The detail below (section G5) shows a part of thetri-carbon acid
cyclemetabolic pathway.
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ID 1.1.1.1
DE Alcohol dehydrogenase.
AN Aldehyde reductase.
CA An alcohol + NAD(+) = an aldehyde or ketone + NADH.
CF Zinc or Iron.
CC -!- Acts on primary or secondary alcohols or hemiacetals.
CC -!- The animal, but not the yeast, enzyme acts also on cyclic
CC secondary alcohols.
PR PROSITE; PDOC00058;
PR PROSITE; PDOC00059;
PR PROSITE; PDOC00060;
DR BRENDA; 1.1.1.1.
DR EMP/PUMA; 1.1.1.1.
DR WIT; 1.1.1.1.
DR KYOTO UNIVERSITY LIGAND CHEMICAL DATABASE; 1.1.1.1.
DR P80222, ADH1 ALLMI; P49645, ADH1 APTAU; P06525, ADH1 ARATH;
DR P41747, ADH1 ASPFL; P12311, ADH1 BACST; Q17334, ADH1 CAEEL;
DR P43067, ADH1 CANAL; P48814, ADH1 CERCA; P23991, ADH1 CHICK;
...

Figure 2.13: Entry of the alcohol dehydrogenase of the ENZYME database. Field
acronyms are the EC number (ID), the official name (DE, description), alternative
names (AN), the reaction catalyzed (CA, catalytic activity), cofactors (CF), com-
ments (CC), and cross references (PR, DR).

In principle, the known biochemical reactions are covered by the ENZYME
entries. From a computational point of view however, the entries are too
general as we can see from the example entry (alcohol dehydrogenase, Fig-
ure 2.13). Alcohol dehydrogenases can catalyze a whole set of bioreactions
involving a number of different alcohols and a number of different ketones
and aldehydes. The ENZYME entry does not enumerate all these specific
alcohol dehydrogenase reactions. Thus for the computation of metabolic
pathways the given information is not suitable. Even an elaborate hierarchi-
cal substrate scheme that defines, e.g., which substrates actually are alcohols
or ketones would not help. Additionally, a mechanism is needed that allows
to infer on the very ketone that a given alcohol would be converted to.

WIT

The What Is There?(WIT) system has been developed by Evgeni Selkov
et al. at the Argonne National Laboratory, Illinois, USA. The WIT team
produces metabolic reconstructions for completely or partially sequenced
organisms. As of February 2002, the reconstructions of 39 organisms are
accessible online [OS+01].

The WIT pathway diagrams are dynamically drawn. The diagrams link from
the compounds of a pathway into the underlying database that provides de-
tailed information on the compound, including a two dimensional diagram
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Figure 2.14: A pathway from WIT. The WIT classification scheme is very detailed
with up to 6 levels of hierarchy. Some pathways consist of only one or two reac-
tions. WIT pathways are generally linear sequences of biochemical reactions. The
organisms for which a specific pathway is asserted are listed.R1andR2mark links
to other pathways.

of its molecular structure. Links from the enzymes of the pathway diagrams
lead to the KEGG/LIGAND databases.

KEGG/LIGAND

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a compre-
hensive information resource of knowledge of molecular and cellular bi-
ology [K+01, GK00]. KEGG is largely known as a metabolic database
that provides diagrams of manually created metabolic pathways. Besides
the metabolic pathway part, KEGG contains some information on signal
transduction and regulatory pathways. The KEGG metabolic pathways are
internally calledreference pathways. The term indicates the independence
of the pathways from individual organisms. They encode general know-
ledge of metabolism. The pathways are hierarchically organized in three
levels. The lowest level contains specific pathways likeglycolysisor cys-
teine metabolism. These pathways are grouped on the next level according
to a common functional context, e.g.amino acid metabolism. The top level
integrates all groups of pathways in a node calledmetabolism. Figure 2.15
shows an example of the KEGG pathways on the three levels. Compared to
WIT, the KEGG pathways consist of larger networks of biochemical reac-
tions. In most cases, a single pathway contains more than a linear path from
one metabolic compound to another.

The Kyoto Chemical Database of Enzyme Reactions (LIGAND) [GNK00]
contains the information on enzymes, substrates, and biochemical reactions
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Figure 2.15: The KEGG pathways: an organism independent metabolic network
is divided into pathways on three levels. (A) The whole metabolic network, shown
top left. (B) The groups of functionally related pathways, here thecarbohydrate
metabolism, shown top right. (C) The individual pathways, here thegalactose path-
way, bottom. In this example, the enzymes that are known to appear inS. cerevisiae
are marked, they appear shaded in the diagram [K+01].
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ENTRY EC 1.1.1.1
NAME Alcohol dehydrogenase

Aldehyde reductase
CLASS Oxidoreductases

Acting on the CH-OH group of donors
With NAD+ or NADP+ as acceptor

SYSNAME Alcohol:NAD+ oxidoreductase
REACTION Alcohol + NAD+ = Aldehyde or Ketone + NADH
SUBSTRATE NAD+

Primary alcohol
Secondary alcohol
Cyclic secondary alcohol
Hemiacetal

PRODUCT Aldehyde
Ketone
NADH

COFACTOR Zinc
COMMENT A zinc protein. Acts on primary or secondary

alcohols or hemiacetals; the animal, but not
the yeast, enzyme acts also on cyclic secondary
alcohols
The insect enzyme is a member of the
nonmetallo-short-chain alcohol dehydrogenase
(ADH) family (Proc.Natl.Acad.Sci.USA(1991)
88, 10064-10068).

PATHWAY PATH: MAP00010 Glycolysis / Gluconeogenesis
PATH: MAP00071 Fatty acid metabolism
PATH: MAP00120 Bile acid biosynthesis
PATH: MAP00350 Tyrosine metabolism
PATH: MAP00561 Glycerolipid metabolism

GENES ECO: b0356(adhC) b1241(adhE) b1478(adhP) b3589(yiaY)
HIN: HI0185(adhC)
XFA: XF1746 XF2389

.... ....

Figure 2.16: Entry of the alcohol dehydrogenase of the LIGAND database. The
PATHWAYfields contain references to the KEGG pathway diagrams that contain an
enzyme with the respective EC number. TheGENESsection lists the corresponding
genes of various organism, hereEscherichia coli(ECO),Haemophilus influenzae
(HIN) andXylella fastidiosa(XFA).

R00754:1.1.1.1: Ethanol <=> Acetaldehyde
R00633:1.1.1.1: 1-Alcohol <=> Aldehyde
R04805:1.1.1.1: 3alpha,7alpha,26-Trihydroxy-5beta-cholestane

=> 3alpha,7alpha-Dihydroxy-5beta-cholestan-26-al
R04880:1.1.1.1: 3,4-Dihydroxyphenylethyleneglycol

<=> 3,4-Dihydroxymandelaldehyde
R01035:1.1.1.1: D-Glyceraldehyde <=> Glycerol

Figure 2.17: The specific biochemical reactions LIGAND provides for an alcohol
dehydrogenase (EC number 1.1.1.1). Only main compounds are listed while addi-
tional compounds likeH2O andNADH are omitted.
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Figure 2.18: Information flow in static systems (metabolic encyclopedias, gray ar-
rows) and in theAMPhorasystem for dynamic modeling of metabolic pathways
(black arrows).

that serve as a the basis of the KEGG pathways. The KEGG pathway di-
agrams link to the respective LIGAND entries. In contrast to ENZYME,
LIGAND enumerates the different reactions that enzymes with a single EC
number may catalyze in a special file (Figures 2.16, 2.17). The enzyme
entries also provide a list of the respective genes of a substantial number
of organisms. A feature is implemented that allows to draw organism spe-
cific pathway diagrams by highlighting all enzymatic reactions in the path-
way diagrams that are annotated to appear in the respective organism. LIG-
AND can be downloaded as a collection of flat files from the KEGG WWW
pages [K+01]. We have parsed these files and transformed the LIGAND
data into a format suitable for the dynamic pathway modeling approaches
described below (Chapter 2.5ff.).

2.5 Dynamic Modeling of Metabolic Pathways

As described above, metabolic databases today provide a static view of
metabolic pathways. The metabolic network of a growing number of organ-
isms is devided into pathways according to a historically developed scheme.
These parts mainly correspond to the organization of metabolic pathways
in textbooks of molecular biology. The metabolic data resources are also
calledmetabolic encyclopediassince they provide the latest knowledge of
the metabolism of the sequenced organisms. In contrast to these well estab-
lished knowledge bases, dynamic approaches to metabolic pathways have
not yet been followed much [GNK98].

The algorithmic frameworkAMPhora I have developed at MIPS allows to
carry out computations on the set of known reactions of an organism and
to construct metabolic pathways without the bias towards historically de-
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veloped schemes. It constitutes a framework of methods that allow a very
flexible and dynamic view of metabolism. Metabolic systems are described
in terms of the stoichiometry of the involved bioreactions. Algorithms that
handle sets of these reactions can be used to reveal the pathway structure of
the metabolic system under investigation. TheAMPhoratools are based on
the data sets that provide the metabolic reactions and substrates needed for
the modeling as described in the previous section. Figure 2.18 visualizes the
information flow in both static and dynamic metabolic pathway systems.

We employ two different data structures for the technical representation of
metabolic reactions and pathways, agraph representationand analgebraic
representation. The graph representation is used for displaying and travers-
ing the metabolic networks. Metabolic networks lend themselves naturally
to being represented as graphs. We can take advantage of standard graph
algorithms like depth first search (DFS), breadth first search (BFS), shortest
path algorithms and the computation of the connected components of the
graph. The algebraic representation maps metabolic reactions and pathways
one-to-one onto vectors of some high-dimensional data space. This allows
very efficient algebraic manipulations mainly used for the constraint-based
pathway construction (Chapter 2.5.5). The representation of metabolic net-
works asmetabolic graphsis described below. It is employed for the
analysis of metabolic networksand thelinear path search. The algebraic
notation is described later in connection with theconstraint-based pathway
construction.

2.5.1 A Dataset for Dynamic Pathway Modeling

For the pathway modeling we need two non-redundant data sets, one set
listing the metabolites involved and the other data set listing the biochem-
ical reactions. The latter is organism specific and therefore has to be set
up separately for every organism under investigation. We collect the data
needed from various LIGAND source files, associating the data fields via
the LIGAND keys that identify compounds, reactions, EC numbers, and the
genes of the organisms.

The metabolites that appear in the reactions are classified as eithermain
metabolitesor side metabolites. Main metabolites are taken into account for
the pathway modeling, while the side metabolites likeH2O, CO2, ATP, and
NADH are only displayed but never considered in the modeling procedures.
This is according to the assumption that the side metabolites are available
in abundance within the cell or the respective cellular compartment. In a
semi-automated processing step we initially have to classify the metabolites
as main and side metabolites.
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The respective classification can be extracted from the LIGAND data files
that describe the metabolic maps. Only those metabolites that do not appear
in any of the maps have to be classified by other means. We first classify the
metabolites whose name is at least seven characters long as main metabo-
lites, all others as side metabolites. The resulting very rough classification
is then corrected manually. Of course it is possible to reclassify any of the
metabolites for a specific task or question formulation.

The metabolite data set comprises for every metabolite its name, an internal
identifier and the main/side classification. The reaction data set lists for ev-
ery reaction an identifier, the enzyme’s EC number (if assigned), the enzyme
name, and the substrates of the reactions. These are divided into reactants
and products. For each, the internal metabolite number and the coefficient
of the respective substrate in the reaction is given. In principle, biochemi-
cal reactions are reversible, i.e. the metabolic conversion can take place in
both directions, depending on the conditions, especially the abundance of
the respective metabolites. Under physiological conditions, some biochem-
ical reactions are thought to run in one direction only. Our data set, based
on the LIGAND data, does not provide information about these cases. We
therefore model every reaction as being reversible. The direction of a spe-
cific reaction in the data set is mostly arbitrary, i.e. reactants and products
might as well be swapped.

2.5.2 Metabolic Graphs

Biochemical reactions and pathways can be represented as directed graphs
that we callmetabolic graphs. Metabolic graphs are formally defined as

Definition (Metabolic Graph). LetM be a set of (main) metabolites and
let E be a set of enzymes. Ametabolic graphis a directed graph

G = (V,E) with

nodesV =M∪ E and

edgesE ⊆ (M×E) ∪ (E ×M). �

Generating a metabolic graph from a set of reactions we transform the in-
dividual reactions into their graph representations. For every reaction, an
enzyme node is created. The metabolites are also modeled as nodes. Edges
leading from the reactants to the enzyme and from the enzyme to the prod-
ucts are added. Modeling all biochemical reactions of a given set within the
same graph, only one node is created for each species of main metabolites. A
reaction graph consists of an enzyme node along with its adjacent edges and
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the metabolite nodes adjacent to these edges. The reaction graphs are au-
tomatically linked via common main metabolites to make up the metabolic
graph.

Definition (Internal Metabolite, Internal Pathway). A metabolite that
is neither accumulated nor consumed by a pathway, i.e. a metabolite that is
stoichiometrically balanced within the pathway, is calledinternal metabolite
of the pathway. A pathway that consists of internal metabolites only is called
internal pathway. �

Definition (External Metabolite, External Pathway). A metabolite that is
either accumulated or consumed by a pathway, i.e. a metabolite that is not
stoichiometrically balanced within the pathway, is calledexternal metabolite
of the pathway. A pathway that contains at least one external metabolite is
calledexternal pathway. �

These definitions are first introduced in [SFD00].

The AMPhora framework consists of three analysis methods that are de-
scribed in the remainder of this chapter. They have been developed with a
focus on the metabolic interpretation of an eventually incomplete set of re-
actions, e.g. obtained via the automatic annotation of the genomic sequence
of a recently sequenced organism.

2.5.3 Computing Metabolic Networks

A particular instanceG of a metabolic graph for a setR of bioreactions de-
composes into a number ofconnected components1. In a biological context
we use the termmetabolic networkfor a connected metabolic construct as
it is more adequate than a graph theoretical term. In contrast to the term
pathwaywe usenetworkfor a metabolic construct to indicate that it is not
the result of a modeling step but results just from linking the reactions of a
given set via their metabolites. As indicated above, virtually every metabolic
reaction may occur in either of two directions. In a metabolic network, a re-
action appears in the one direction that has arbitrarily been assigned to it
in the database. Due to the fact that no real modeling step is involved in
computing the metabolic networks, there is no biological context according
to which one could assign a meaningful direction. This is in contrast to the
pathways, where there is a certain context, e.g. a conversion of a metabo-
lite A into another metaboliteB, in which the directions of the individual
reactions are biologically meaningful.

1A graph is calledconnectedif for all pairs of nodes there is a path from one to the other.
A maximal connected subgraph of a graph is calledconnected componentof the graph.
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Figure 2.19: Two of the smaller metabolic networks found in theS. cerevisiae
metabolic graph. These small networks are not linked to the remaining reactions
because the main metabolites do not appear in any other reaction. This is due to
a still incomplete knowledge and a consequently incomplete data set. The lower
network gives an example of enzymes with the same EC numbers transforming dif-
ferent substrates. In the representation, enzyme nodes that are labeled with a dash
(’–’) indicate biochemical reaction steps that are known to exist though so far there
are no enzymes identified that catalyze them. The numbers at the reaction arrows
give the multiplicity of the respective metabolite in a reaction.
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The generation of the connected components of a metabolic graph, i.e. the
computation and the graphical display of metabolic networks is the basic
method of theAMPhorapathway modeling techniques. Due to incomplete
knowledge, the metabolic networks generated from the available reaction
data sets are usually not completely linked. The metabolic network analysis
is of particular use to investigate the smaller parts of the metabolic graph of
an organism. It may also be applied whenever the reaction set to be analyzed
consists of only a few biochemical reactions and the resulting metabolic
networks keep reasonably small. This may be the case if not many enzy-
matic proteins of an organism are known or if the reaction set was restricted
by methods combined with the pathway modeling in an integrative analysis
(Chapter 3.2).

Let the reaction set that serves as an input to the metabolic network analysis
consist ofn reactions. Depending on the connectivity of the reaction set the
metabolic graph may consist of one ton metabolic networks, representing
the extreme cases that all reactions are transitively linked or none of the
reactions are linked.

The yeast reaction set compiled from LIGAND consists of 1079 reactions in-
terconverting 1141 metabolites2. The resulting metabolic graph decomposes
into 132 connected components. The largest component contains 847 reac-
tions, i.e. more than 75%. The second largest consists of only 12 reactions.
All but one network are thus small enough to be displayed and inspected
directly whereas the large network is too big and too complex. Figure 2.19
shows an example of two small metabolic networks found in the metabolic
graph ofSaccharomyces cerevisiae(yeast) set up according to the reaction
set distilled from LIGAND. Since in a biological metabolic network reac-
tions would hardly be isolated the connecting reactions between these com-
ponents and the large main metabolic network are obviously missing from
the reaction set. The main metabolic network can be further analyzed by the
more elaborate methods presented below.

2.5.4 Linear Path Search

With a growing number of biochemical reactions in the analyzed reaction
set, the metabolic graph grows. Its connected components, the metabolic
networks, also tend to grow. They become too large and too complex to
be displayed and to be visually inspected as a whole. The mere display of
the metabolic networks is often not sufficient. The graph-based path search
algorithm that forms part of theAMPhoraframework allows to investigate

2Numbers as of February 2001.
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whether linear sequences of reactions exist in the network that transform one
specific metabolite into another.

From the set of metabolites appearing in a reaction set, two metabolitesS
andT are selected as source and sink nodes of a path search. Using a BFS
algorithm the length of the shortest path betweenS andT is computed if
such a path at all exists. If it exists, the user is asked to specify the maximal
length of the linear paths that should be computed. All paths between the
two metabolites that do not exceed the specified maximum path length are
determined using a recursive DFS algorithm. The result of the path search is
a number of linear hypothetical pathways that can be displayed graphically,
either separately (Figure 2.20) or all together in a single non-linear pathway
linking the source and the target metabolite (Figure 2.21).

Both standard graph algorithms, the BFS as well as the DFS are adapted to
the special requirements of the metabolic graphs. We distinguish between
enzyme nodes and substrate nodes. The directed edges of the graph link en-
zymes with substrates and vice versa. The graph is traversed from substrate
node to substrate node, at each step moving over an enzyme node that links
the two substrates. All bioreactions of the reaction data set are thought to
be reversible, i.e. the metabolic transformation may occur in either of both
directions. We therefore have to make the metabolic graph bidirected before
searching for paths by constructing the reverse edgee′ = (B,A) for every
edgee = (A,B). We label the edges according to their direction in order
to distinguish between the original edges and the reverse edges. Traversing
the graph, we have to take care of the edge directions. Traversing from a
metabolite node to an enzyme node and from there to the next metabolite
node, we have to use either original edges only, or reverse edges only. Oth-
erwise, we would follow a path that is biologically impossible (Figure 2.22).

Both BFS and DFS, applied on a graphG = (V,E) have a running time of
O(|V | + |E|) [MN99]. For the determination of the non-linear cumulative
pathway (Figure 2.21) this holds true since we visit each node and each edge
at most one time. For computing all linear paths, the situation is different.
Potentially there is an expontial number of linear paths between two nodes
of a graph. This is because any two linear paths may contain a common sub-
path. Consider the graph shown in Figure 2.23. To reach metaboliteT from
metaboliteS a pathway can follow either the upper or the lower reaction at
metaboliteS and at every metabolite nodeMi. With n reactions in the net-
work, this gives rise to2n/2 different pathways of lengthn2 . Thus the com-
putational complexity of the linear path search is exponential in the number
of reactions. Theoretical and real computational complexity though deviate
significantly. Time and space requirements for the computation of paths of a
realistic maximum length are reasonable because biological metabolic sys-
tems contain long sequences of reactions but few parallel branches [Mav93].



60 Chapter 2. High-Throughput and other Biological Data

Figure 2.20: Two of 16 linear paths from Ethanol to Pyruvate of maximum length
4 found in theS. cerevisiaedata set. The length of the shortest path is 3.
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Figure 2.21: The 16 linear paths of maximum length 4 found in theS. cerevisiae
data set from Ethanol to Pyruvate shown as a single graph.



62 Chapter 2. High-Throughput and other Biological Data

Figure 2.22: The schema visualizes a part of a metabolic
graph that represents a single biochemical reaction. The
edges that correspond to the original direction of the re-
action (from the database) are shown in black. Since the
reaction is reversible, we made the graph bidirected by
adding the reverse edges shown in gray. Biologically, the
enzyme either joins to metabolites,A andB, to form a
third, C, or splitsC into A andB. It does however not
convertA andC into B or B andC into A. Traversing
the graph, we have to consider this by either using original
edges only or reverse edges only.

Figure 2.23: A network of reactions that gives rise to an exponential number of
different linear metabolic paths.

2.5.5 Constraint-based Pathway Construction

Inspired by a theoretical paper [Red88] I have developed an efficient
constraint-based algorithm for the construction of stoichiometrically bal-
anced metabolic pathways. The problem solved by the algorithm is defined
as

Definition (Stoichiometric Pathway Construction). Find all metabolic
pathways within the whole metabolic network that convert a certain set of
metabolites, the reactants, into another set of metabolites, the products, such
that no other than the specified metabolites appear as external metabolites of
the constructed pathways. �

An algorithm that accomplishes a similar task is described by [Mav93]. The
author shows that the number of pathways constructed by the algorithm can
be exponential in the number of bioreactions. The same reasoning applies
here as for the linear path search in the previous chapter. Though this ob-
servation holds for our problem definition, the employed model of the prob-
lem definition and the chosen representation of results allows an efficient
computation of the pathways. A concurrent approach has been described
in [SLP00] that employs virtually the same method as described here, de-
spite that their approach is based on convex analysis and takes into ac-
count thein vivo irreversibility of some biochemical reactions. A similar
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E1 =


−1

1
1
0



E2 =


0
0
−1

1



A =


−1 0

1 0
1 −1
0 1


Figure 2.24: An example of the vector notation for reactions. The two reactions
on the left interconvert four metabolites, numbered one to four. The vectors for the
reactionsE1 andE2 are given as well as the resulting matrixA.

approach to a mathematical description of bioreactions and pathways can be
found in [Alb96] with a focus on thermodynamics. [Red88], [SFS99] and
[HS98] also use a vector notation for structural and steady state analyses of
metabolic networks.

I have developed an algorithm that provides a systematic algebraic descrip-
tion of the identified pathways rather than enumerating them. The length of
this description is linear in the number of reactions. The reduction of com-
plexity is achieved by constructing the minimal pathways that satisfy the
constraints. These can be linearly combined to form the potentially expo-
nential number of qualitatively different pathways satisfying the constraints.

For the computational handling of the reactions and pathways we employ a
vector representation similar to [Red88]. We will show how the described
construction problem can be formulated in terms of linear equation systems
and how the basis of the solution space of an equation system has to be
transformed in order to obtain a result that is intuitive and easy to understand.

The vector notation for metabolic reactions

Givenmmetabolites in an arbitrary but fixed order, reactions are represented
bym-dimensional vectors. The value of a vector component defines the sto-
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ichiometry of the corresponding metabolite in the reaction. Opposing signs
indicate that the respective metabolites are on opposing sides of the reaction
arrow. The definition of the components’ signs is arbitrary and does not de-
fine the direction of the reaction with respect to its equilibrium. Relative to
this technical direction given by the signs of the metabolite components, the
coefficient of a reaction in a pathway vector determines which metabolites
are reactants and which are products of the reaction within the correspond-
ing metabolic pathway. Figure 2.24 shows an example of the vector notation
for reactions.

A set ofn bioreactions interconvertingm metabolites corresponds to a set
R = {r1, . . . , rn} of vectors of dimensionm that form am × n matrix
A = [r1r2 . . . rn] we callstoichiometry matrix.

Metabolic pathways are completely described by their constituting reactions.
Thus givenn bioreactions in any order, a pathway is represented by ann-
dimensional vectorx. Each component of the vector contains the coefficient
of the corresponding reaction, where the absolute value defines the multi-
plicity and the sign defines the direction of the reaction within the pathway.

Multiplying them×n stoichiometry matrixA with ann-dimensional path-
way vectorx we obtain anm-dimensional vectorb that corresponds to the
overall stoichiometry of the pathwayx:

A · x = b (2.10)

The vectorb has to be interpreted just like a reaction vector. It represents
the metabolic conversion accomplished by the whole pathway.

Formalization of the construction problem

In the construction problem stated above, the set of reactions is given, so we
can determine the stoichiometry matrixA. Let k be the number of allowed
reactants and products. Allm − k metabolites not specified as allowed re-
actants or products must be balanced in the constructed pathways, i.e. they
must beinternal metabolites. Considering only the internal metabolites,A
reduces to the(m− k)×n matrixA′, theinternal metabolite stoichiometry
matrix [SFS99]. Then, equation (2.10) changes to the homogeneous linear
equation system

A′ · x = b′ = 0 (2.11)
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The constraints concerning the balances of the internal metabolites are mod-
eled in this system. In general, the reaction vectors are linear dependent, i.e.
rank A′ < n. This effects the dimensionalityd of the solution spaceL,
which is

d = dimL = n− rankA′ (2.12)

Normalizing the upper triangular matrix obtained from the Gaussian elimi-
nation algorithm leads to a matrix of the form

A′′ =
[

I ∗
0 0

]
(2.13)

I =



1 0 ∗ 0 ... 0 ∗ 0
0 1 ∗ 0 ... 0 ∗ 0
0 0 0 1 ... 0 ∗ 0
. . . . ... . . .
0 0 0 0 ... 1 ∗ 0
0 0 0 0 ... 0 0 1

 (2.14)

in the notation above, the asterisk marks matrix positions that can carry any
value. Leaving out the columns that contain asterisks, we get a square upper
triangular matrix with all values on the main diagonal being 1. Between the
columns of this reduced matrix may be additional columns as shown. To
clarify the matrix structure, let us assume that the interchange of columns is
allowed (in practice we would have to keep track of the changes and inter-
change the elements of the pathway vector in parallel). Then, we can rear-
range the columns of the left part ofA′′ such that a unit matrix is formed on
the very left. The result is a matrix of the form

A′′R =
[

E ∗ ∗
0 0 0

]
(2.15)

with E being the unit matrix of sizerankA′ = rankA′′ = rankA′′R. Com-
paringA′′ andA′′R, the right parts in the notation are the same while the
left part ofA′′ corresponds to the left and middle parts ofA′′R. The solution
space of equation system 2.11 is
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L =

b ; b =
∑

i=1,..,d

xipi

 (2.16)

where thepi are basis vectors ofL and thexi are their coefficients in the
linear combination vectorsb. The basis vectors are determined from the
normalized upper triangular matrixA′′. The solution space is a system-
atic description of the qualitatively feasible metabolic pathways satisfying
the defined constraints. Eachpi corresponds to a basic pathway. The ba-
sic pathways can be denominated smallest possible pathways satisfying the
constraints. A basic pathway is either aninternal pathwaywith all involved
metabolites balanced (sometimes called afutile cycle), or it accumulates or
consumes a subset of the allowed reactants and products. These metabolites
are external metabolites in the context of this pathway and we call the path-
way external pathway. By specifying the coefficientsxi, we determine the
multiplicity of a basic pathway in the linear combinations of thepi. Consid-
ering all biochemical reactions as reversible, every linear combination of the
basic pathways is a valid pathway with respect to the modeled biochemical
properties of the reactions.

Figure 2.25 shows how an external basic pathway can be combined with in-
ternal basic pathways to form other external pathways that are qualitatively
different from all other basic pathways. The external pathway in the ex-
ample can be combined with10 internal pathways. Thus, the systematic
description consists of a total of11 basic pathways, while from combining
the external pathway with the possible subsets of the10 internal pathways,
up to 210 qualitatively different external pathways result. Often there are
less, namely when two or more internal pathways replace the same reac-
tions in the original external pathway. In these cases, combining the original
pathway with two internal pathways does not yield a qualitatively different
pathway. Instead, the resulting pathway is the sum of the two pathways
that are built by combining the original pathway with the individual internal
pathways separately.

Correctness and completeness of the algorithm are directly connected to the
correctness and completeness of the algorithm for solving the linear equation
system, here Gaussian elimination. The constructed pathways satisfy the
constraints since they correspond to solutions of the linear equation system
that models the constraints. On the other hand, the vector of any pathway
that satisfies the constraints is a solution of the system by definition.
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Figure 2.25: Using the constraint-based pathway construction:Acetyl-CoAhas
been defined as the only external metabolite. The upper diagram shows a path-
way that consumesAcetyl-CoA, the lower pathway is an internal pathway. Linear
combination of both pathways results in the reaction 4.1.1.49 in the upper diagram
being replaced by the remaining three reactions of the internal pathway, forming
a new qualitatively different external pathway. In total10 internal pathways have
been found that can be combined with the displayed external pathway. The linear
combination gives rise to up to210 different external pathways.
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Complexity of the algorithm

Avoiding an enumeration of solutions leads to a sub-exponential complexity
of the algorithm. The potential number of individual solution pathways is of
course still exponential, but the systematic description achieved makes their
enumeration unnecessary. Large systems of more than a thousand biore-
actions become manageable. The user gains an overview of the feasible
pathways instead of being deluged with an enumeration of all pathways.

The core of the method is the algorithm for solving the linear equation
system. I have implemented a Gaussian elimination algorithm with pivot
search. It has a cubic complexity in the maximum ofn andm, the numbers
of metabolites and reactions, respectively. Since the number of metabolites
and reactions will seldomly be greater than103 by order of magnitude, the
cubic complexity of the Gaussian elimination is fully acceptable for typical
applications. Gaussian elimination applied on large matrices can lead to nu-
merical inaccuracy due to rounding errors. This is not the case here since the
metabolic matrices are sparse. About 99.6% of the entries are zero. There-
fore the entries of the matrix do not get too big throughout the elimination
and rounding errors have not been observed.



Chapter 3

Integrative Data Analysis

This chapter describes three approaches I have developed for an integra-
tive analysis of biological high-throughput data. The integrative analysis
methods are based on the analyses described for the different types of high-
throughput data in the previous chapter.

The results show how a comparative and integrative analysis that combines
different types of data sets can promote the interpretation of gene expression
data and protein-protein interaction data. Following the approach, the data
and the structures derived from an internal analysis are further structured
and organized by integrating them with other kinds of data. The functional
catalog (FunCat, Chapter 2.3) of computationally accessible functional an-
notations is used for both types of high-throughput data sets. For the in-
terpretation of gene expression data, the systematic functional annotations
are used in order to obtain reliable and meaningful groups of genes (func-
tional projection). The resulting gene groups are further analyzed in terms
of metabolic pathways using themetabolic mappingapproach. In analogy
to the functional projection, thepathway projectionmakes use of predefined
textbook metabolic pathways. For the concise analysis of protein-protein in-
teractions, the functional annotations are applied in order to focus on a spe-
cific biological context enabling the functional classification of previously
uncharacterized genes and proteins.

The chapter is devided into four sections. The first two sections describe the
integrative analysis of gene expression data. I have developed the presented
methods in cooperation with Kaj Albermann and Jean Hani of Biomax In-
formatics AG. Their evaluation of the results from a biologists point of view
put the development in the right direction. Section 3.3 discusses the results
of both approaches. The fourth section describes the functional analysis of
protein-protein interactions that I presented at the8th International Confer-
ence on Intelligent Systems for Molecular Biology (ISMB2000)held in San
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Diego, California, in August 2000. The basis of this section is the respective
ISMB paper [FAZ+00].

3.1 Integrating Gene Expression Data with Func-
tional Annotations

This section introduces a set of integrative methods for the functional
analysis of gene expression data, subsumed under the termfunctional pro-
jection. A first step towards the rapid and comprehensive interpretation of
gene expression data is the clustering of the genes with respect to the expres-
sion patterns [ESBB98]. The individual genes are partitioned into distinct
clusters by a clustering algorithm. A neural network approach, the self-
organizing map (SOM) [Koh95], is well suited for the analysis of multi-
dimensional data. For the gene clustering that is a prerequisit of the func-
tional analysis methods presented here, we use the SOM gene clusterer de-
scribed in Chapter 2.1. The resulting gene clusterings are further analyzed
by the integrative methods of thefunctional projectionthat make extensive
use of the systematic annotations of the genes according to the functional
catalog (Chapter 2.3). Thefunctional projectioncan be used interactively as
well as in conjunction with an automated group identification algorithm.

The SOM clustering defines a partition of the genes. It assigns each of the
genes to exactly one cluster. The clusters are implicitely ordered on a 2-
dimensional regular grid. Due to the topology conservation achieved by
the SOM, the expression profiles of genes in neighboring clusters tend to
be similar. The idea now is to compute a large number of clusters and to
subsequently identify groups of neighboring clusters that contain a signif-
icant number of genes of the same functional category, either interactively
by direct intervention of the user or in an automated fashion. The result of
both applications of thefunctional projectionis a non-partitional clustering
of the genes that takes into account common biological properties. These
properties are systematically annotated according to the functional catalog.

3.1.1 Methods

The basic method and the basis of all successive parts of thefunctional pro-
jection is the projection of gene functions onto the gene clusters. For a spe-
cific, selected functional category, the genes that are described as to belong
to this category are determined and are identified in the gene clusters. The
results of this computationally straight forward task are striking: for many
functional categories it shows that the respective genes are accumulated in
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certain regions of the grid of clusters. The projection can be graphically
represented in a 3-dimensional plot (Figure 3.2) or in a 2-dimensional plot,
where a color coding replaces the third dimension (Figure 3.3). For a given
clustering, the functional category to be projected onto the grid of clusters
can be determined by the user. The diagrams show the distribution of the
respective genes over the clusters and the user can select groups of neigh-
boring clusters according to this distribution. A group of selected clusters
can be further analyzed as described below or by application of the metabolic
analysis methods presented in the next section.

Finding Groups of Covariant Clusters According to Shared Functional
Categories

Having a gene clustering and the projection technique described above at
hand, the next step is the automated identification of functional categories
whose genes accumulate in certain regions of the clustering map and the
determination of tight groups of neighboring clusters that contain a signifi-
cantly high number of genes of the respective category.

For this automated identification, I developed a greedy group identification
algorithm that can be described as follows: Groups are identified separately
for each functional categoryF . A geneg that belongs toF is randomly
selected and its clustercg is determined. Clustercg is assigned to groupG.
Each of the neighboring clustersc ∈ neigh(cg) of cg are processed: ifc also
contains at least one gene of categoryF and the linear correlationlc(c, cg)
of the mean cluster profiles ofc andcg is above an empirically determined
threshold (about 0.85 to 0.9),c is also assigned toG, enlarging the group.
Its neighbors are recursively processed. If the groupG cannot further be
enlarged, a new group is built. The greedy algorithm stops when all the
clusters that contain a geneg ∈ F have been assigned to a group. The result
is a setSF of groups of clusters identified for categoryF . Figure 3.1 shows
a scheme that describes the group finding process graphically.

P-value: Judging on the Significance of Identified Groups

The computed setSF of cluster groups for a functional categoryF may
contain groups that consist of just one cluster or groups that extend over
more than half of all clusters. Only some of the groups represent what we
are looking for: compact groups of clusters that contain a substantial number
of genes of functional categoryF . In order to judge on the significance of
the identified groups, we apply the following criteria:
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A B C

Figure 3.1: The process of identifying groups of clusters that contain genes of the
same functional categoryF . The clusters of a group have to be neighboring. Each
cluster has to contain at least one gene that belongs toF and the mean expression
profiles of the clusters have to have a high linear correlation. In the fictive example,
the yellow clusters contain genes of categoryF (A). From a seed cluster, the group
of clusters is greedily extended to neighboring clusters that also contain genes ofF
(B). Three clusters are added to the group in the first iteration, another one in the
second iteration. One of the considered clusters does not show a sufficient linear
correlation with the seed cluster and is spared (C).

• groups must comprise less than 15% of the clusters (less than 30% for
functional category 99 of uncharacterized genes).

• groups must have a p-valueP (G) < 2 · 10−4.

The values for these criteria have been empirically determined. We compute
the probabilistic score (p-value) according to the followingad hocproce-
dure: let groupG comprisenc clusters of a total ofNc clusters andng genes
of a total ofNg genes of categoryF . The p-valueP (G) of a groupG is
the probability to find at leastng genes of categoryF in nc randomly se-
lected clusters provided that the genes have been randomly distributed over
the clusters:

P (G) =
∑

i=ng ,..,Ng

(
Ng

i

)(
nc
Nc

)i(
1− nc

Nc

)Ng−i
(3.1)

The p-value threshold has been determined by visual inspection: the groups
G with a p-valueP (G) < 2 · 10−4 showed to be interesting and would
probably also be identified by a user who evaluates the projection diagrams
manually. We visualize significant groups using the previously described
3-dimensional plot that shows the distribution of the genes of a certain func-
tional category over the clusters (Figure 3.2). The identified groups of clus-
ters are highlighted in this diagram. Also, we employ the color-coded 2-
dimensional schema. Here, the clusters that belong to the respective group
are pre-checked to allow the selection of these clusters in order to apply
further analysis steps (Figure 3.3).
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Figure 3.2: 3D-diagram showing the distribution of the genes of functional cate-
gory respiration over the14 × 18 clusters. The grid of clusters is drawn in the
x/y-plain. The z-axis gives the number of respiratorial genes in each cluster. A
cluster group that comprises 14 clusters and 38 respiratorial genes is highlighted in
red.

Figure 3.3: 2D-diagram showing the distribution of the genes of functional cate-
gory respirationover the14×18 clusters. The number of genes per cluster is color-
coded from green (no genes) to red (maximum number of genes). The clusters of
the same group as in Figure 3.2 are checked in this example. The numbers given
for each cluster indicate the number of genes of the selected functional category.
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Finding Overlapping Groups for Different Functional Categories

Having the significant groups identified for all functional categories one can
ask whether groups identified for different functional categories overlap. We
straight forwardly determine overlapping groups, i.e. groups containing at
least one common cluster. Again, two modes of analysis are implemented:
an interactive analysis that focusses on a specific selected group and shows
all groups that overlap with the selected group and a batch analysis that
identifies the most strongly overlapping pairs of groups of clusters over all
functional categories.

We have developed a diagram for the visualization of overlapping groups of
clusters based on the 2D-diagram shown in Figure 3.3. Up to three over-
lapping groups can be visualized according to this schema (Figures 3.4 to
3.6). The clusters of the three groups are colored red, yellow, and blue, re-
spectively. Regions of overlap are shown in the combination color of the
involved groups.

3.1.2 Results

To demonstrate the benefit of thefunctional projection, we analyzed public
gene expression data sets available forS. cerevisiae(yeast). We used the
publicly available data set of the diauxic shift in yeast [DIB97]. Similar
results have been obtained for other data sets, e.g. [SSZ+98] and [CEM+98].

For the analysis of the genetic reprogramming associated with the diauxic
shift in yeast, expression profiles of more than 6000 genes ofSaccha-
romyces cerevisiaehave been measured at seven successive time points by
DeRisi et al. The shift from anaerobic metabolism (fermentation) to aero-
bic metabolism (respiration) is a potentially recurring cycle during the life
of yeast. Inoculation of yeast into a sugar rich medium is followed by a
rapid growth phase induced by fermentation and the production of ethanol.
Exhaustion of the fermentable sugar makes the yeast cells turn to the previ-
ously produced ethanol as a carbon source for aerobic growth. The switch
from anaerobic growth to aerobic respiration upon depletion of glucose is re-
ferred to as thediauxic shift. The shift is correlated with a dramatic change
in the expression of genes involved in fundamental cellular processes such
as protein synthesis, carbon metabolism and carbohydrate storage [JM92].
DeRisi et al. have performed a comprehensive investigation of the temporal
program of gene expression accompanying the metabolic reprogramming
using DNA microarrays [DIB97]. In the paper, several classes of genes
are discussed, such as cytochrome C-related genes and genes involved in
the TCA/glyoxylate cycle and carbohydrate storage that are coordinately in-
duced on glucose exhaustion. Genes involved in processes related to protein
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No. Trend Functional category P-Value #Genes #Clusters

1 ↘ ribosomal proteins 7.868213e-104 120 14

3 ↗ respiration 1.193299e-28 38 14

4 ↘ translation 1.669822e-25 37 20

9 ↗ metabolism of energy reserves
(glycogen, trehalose) 1.166582e-14 18 12

15 ↗ tricarboxylic-acid pathway 7.791692e-12 12 9

22 ↘ tRNA-synthetases 8.773009e-10 13 10

34 ↗ tricarboxylic-acid pathway 2.975183e-08 6 2

40 ↗ ribosomal proteins 4.598571e-07 31 16

52 ↗ glyoxylate cycle 9.820714e-06 3 2

53 ↗ glyoxylate cycle 9.820714e-06 3 2

57 ↘ glycolysis and gluconeogenesis 1.747843e-05 6 4

Table 3.1: The list shows 11 groups for the diauxic shift data set that have a p-value
below the threshold of2 · 10−4. The properties of these groups and of the genes of
their functional categories are discussed in the text.

biosynthesis, such as ribosomal proteins, tRNA synthetases and translation,
elongation and initiation factors exhibit a coordinated decrease in expres-
sion. An interesting exception is that genes encoding for mitochondrial ri-
bosomal proteins are generally induced rather than repressed after glucose
exhaustion.

We have clustered and functionally analyzed the data of the DeRisi experi-
ment with the previously described methods. Using the described parameter
settings for the clustering of the diauxic shift data set and for the group find-
ing in the clusterings, 62 significant groups of clusters can be identified.
Those groups of clusters that contain genes of the functional classes that
have been described by DeRisi et al. as being co-ordinately regulated are
listed in Table 3.1. We have analyzed the properties of these groups of clus-
ters in detail, applying the analysis of overlapping groups of clusters and the
metabolic mapping approach (Chapter 3.2).

Identifying Groups of Clusters

Groups have first been computed without application of the constraints con-
cerning the number of clusters and the number of genes of a group. This
led to 3929 groups that contained an average of 4.7 genes and that have an
average p-value of 0.2.

As described in detail below, groups of clusters could automatically be iden-
tified for the functional categories and metabolic pathways discussed by
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DeRisi et al. The identified groups correspond very well to the manually
achieved description in the original publication [DIB97].

Ribosomal proteins. Two groups of clusters (#1, #40) have been found
for the ribosomal proteins, consisting of 14 and 16 individual clusters. The
groups represent the repressed cytoplasmatic and the induced mitochondrial
ribosomal proteins, respectively. In total, 151 of the 187 ribosomal proteins
are contained in these two groups.

Translation (decreased). The functional catalog lists 63 ORFs of the func-
tional categorytranslation. 39 of these genes can be found in a single group
of clusters (#4), containing genes which are down-regulated during the di-
auxic shift. Among these are 35 of the 42 known cytoplasmic translation
factor complex proteins. The 24 missing genes are either not contained in
the diauxic shift data set (1 gene), were wrongly assigned to the functional
category translation (4 genes), are found in nearby clusters that exhibit sim-
ilar expression profiles (6 genes), are involved in mitochondrial translation
processes showing different expression profiles (6 genes), or are involved in
cytoplasmic translation but show a different expression profile than the other
genes (7 genes).

tRNA synthetases (decreased). Of the 36tRNA synthetasegenes ofS. cere-
visiae15 are known to code for cytoplasmic tRNA synthetases, 12 genes are
known to code for mitochondrial tRNA synthetases and 3 genes are known
to code for both, cytoplasmic and mitochondrial tRNA synthetases. For the
remaining 6 genes, the localization is not yet known. 13 of the 36 tRNA
synthetases can be found in a single group of clusters (#22), of which 10
are cytoplasmic, 2 act in cytoplasm and in mitochondria and one has an un-
known localization. Additional 5 genes can be found in nearby clusters (4
cytoplasmic, 1 unknown). All of the mitochondrial tRNA synthetases are
found in clusters showing a different expression profile than the genes of
group #22. Only one known cytoplasmic tRNA synthetase is not found in
the clusters of group #22 or in a nearby cluster.

Respiration (induced). The functional categoryrespiration contains 71
genes. These genes can be found in 43 different clusters. A group of 14
clusters has been identified by our analysis method that contains 38 respira-
tory genes (group #3). Among them are all but four of the nuclear-encoded
genes known to belong to the respiratory chain complexes. The missing
genes were either not in the set of genes analyzed by DeRisi et al. (2 genes)
or are assigned to clusters that are near the respiration group of clusters (2
genes). Genes that are required for the assembly of the individual respiration
complexes are also found in the respiration group of clusters.

TCA/glyoxylate cycles (induced). In S. cerevisiaeat least 15 proteins are
directly involved in the metabolic conversions of theTCA cycle. All but one
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of them can be found in either of two directly neighboring groups identified
for the category TCA cycle (#15, #34). Two groups of clusters (#52, #53)
have been identified that contain the 5 genes known to be directly involved
in the glyoxylate pathwayof yeast. The sixth gene of these groups that is
assigned to the categoryglyoxylate cyclehas recently been shown to belong
to another pathway [LKS+00] and is thus wrongly annotated.

Glycogen/trehalose metabolism (induced). The functional category
metabolism of energy reserves (glycogen, trehalose)contains 17 genes in
total, 7 are involved in glycogen metabolism, 7 in trehalose metabolism and
3 are involved in both pathways. Of these, 11 are found in the group of clus-
ters identified for the functional category. Of the remaining 6 genes, 5 can
be found in nearby clusters. These 16 genes exhibit expression profiles that
indicate an induction during the diauxic shift. The last gene shows a quali-
tatively different expression profile and is contained in a cluster of repressed
genes.

Overlaps of the discussed groups of clusters

The analysis of overlapping groups has been performed to identify possibly
co-regulated groups of genes of different functional categories. The previ-
ously discussed groups of induced genes revealed the following significantly
overlapping groups of clusters (Figures 3.4, 3.5): The groups of clusters
identified for the glyoxylate pathway is a subset of the larger TCA group.
This indicates that the glyoxylate pathway genes are co-expressed with a
part of the TCA cycle genes in this experimental context. The group that
contains respiratory genes shows overlaps with all other discussed groups
that show an induced expression during the diauxic shift. Looking for sig-
nificant overlaps in the repressed groups of clusters shows that the group
identified for the mitochondrial ribosomal proteins overlaps with the trans-
lation and tRNA synthetases groups (Figure 3.6).

This kind of functional analysis elucidates co-ordinated regulation of the
genes of different functional categories. Not only can functional categories
be identified whose genes are largely co-regulated, but a greater context is
shown by pointing out the relation of different functional categories that are
eventually involved in the same biological cellular processes.

The interpretation of the overlapping gene groups identified here is con-
tinued using themetabolic mappingapproach that is described in the next
section.
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Group #3

Group #15

Group #34

Overlap

Group #3

Group #52

Group #53

Overlap

Figure 3.4: Groups of the functional categories with induced genes as discussed
in the text. Shown in red is group #3 (Respiration). Left: The groups #15 and
#34 (TCA cycle) are shown in yellow and blue. Right: The groups #52 and #53
(Glyoxylate cycle) are shown in yellow and blue. The bottom-most diagrams show
the color-coded overlaps. Clusters that belong to more than one group are shown in
the respective combination color (red and yellow = orange, red and blue = purple,
blue and yellow = green). Those clusters that belong to all three groups are shown
in white.
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Group #3

Group #9

Group #40

Overlap

Figure 3.5: Groups of the functional categories with induced genes as discussed in
the text (cont’d). Shown in red is group #3 (Respiration). The groups #9 (Glycogen
and trehalose metabolism) and #40 (Ribosomal proteins, mitochondrial) are shown
in yellow and blue. The bottom-most diagram shows the color-coded overlap.
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Group #3

Group #9

Group #40

Overlap

Figure 3.6: Groups of the functional categories with repressed genes as discussed
in the text. Shown in red is group #1 (Ribosomal proteins, cytoplasmatic). The
groups #4 (Translation) and #22 (tRNA synthetases) are shown in yellow and blue.
The bottom-most diagram shows the color-coded overlaps.
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3.2 Integrating Gene Expression Data with
Metabolic Pathways

This chapter describes two approaches to a metabolic analysis of gene ex-
pression data, thepathway projectionand themetabolic mapping. The path-
way projection maps predefined textbook pathways onto the grid of clusters
of co-expressed genes in analogy to the functional projection. The metabolic
mapping is a method of inferring on hypothetical and asserted biochemical
pathways that are affected by changes in gene expression. Time courses of
expression data are intuitively the most suitable input for such analyses, but
expression profiles assembled from non-time course measurements may as
well be subject to the described analysis method. We have first described
themetabolic mappingapproach in [FM99] in an early stage. Themetabolic
mappingapproach constructs hypothetical metabolic pathways from scratch.
As an input it uses known biochemical reactions and the annotations of the
measured genes that are related to metabolism. Analyzing the expression
data we construct metabolic networks from a set of bioreactions whose cor-
responding genes are co-expressed.

3.2.1 Pathway Projection

A straight forward way of integrating gene expression data with metabolic
knowledge is described by DeRisi et al. They annotate the enzymes in the
maps of textbook pathways with the corresponding, color encoded gene ex-
pression levels [DIB97]. The gene expression data stems from a series of
seven successive measurements of yeast. During the measured period, the
glucose concentration in the growing medium is decreased. Thus the genes
involved in glycolysisand the subsequent metabolic pathwaystri-carbon
acid cycle(TCA) and pentose phosphate cycleare subject to substantial
changes in gene expression. DeRisi et al. provide a pathway diagram that in-
dicates the change in gene expression at one significant time point compared
with a reference hybridization (Figure 3.7). The colors of the enzyme boxes
encode upregulation and downregulation. The multi-dimensional expression
profiles are not considered in this representation.

The pathway projection follows the inverse direction: the genes that belong
to a specific metabolic pathway are projected onto the topologically ordered
grid of gene clusters. This approach is in direct analogy to the functional
projection. Provided that the functional catalog used contains categories for
textbook metabolic pathways, the pathway projection is in fact a special case
of the functional projection.
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Figure 3.7: Diagram of the glycolysis, TCA cycle and pentose phosphate cycle
metabolic pathways from [DIB97]. The colors of the enzyme boxes encode upregu-
lation (red) and downregulation (green) at the most significant time point in a series
of gene expression measurements. This is a simple and intuitive way of integrating
gene expression data with metabolic knowledge. Nonetheless multi-dimensional
data sets cannot be considered.
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Figure 3.8: 3-dimensional plot showing the distribution of the genes of theglycol-
ysistextbook pathway in yeast over the gene clusters resulting from clustering the
diauxic shiftdata set [DIB97], Figure 2.8. The regular grid of 18× 14 clusters is
shown in the plain, while the z-axis represents the number of genes of the pathway
in the respective clusters.

The distribution of the genes of the respective pathway over the clusters is
shown in a 3-dimensional plot (Figure 3.8). A co-ordinated expression of
the genes of a whole pathway or parts of it becomes directly visible in this
diagram. According to the projection, a group of clusters can be selected that
contain a substantial number of the pathway genes. This group of clusters
can in turn be the starting point of a more detailed analysis. The clusters can
be put into a functional context other than metabolism using the functional
catalog 3.10. The metabolic context of the selected group of clusters can be
explored with themetabolic mappingapproach that is described in the next
section.

The textbook pathways are derived from an extended functional catalog that
has been developed at Biomax: as of August 2001, 628 pathways have been
defined on two hierarchical levels. Pathways from the higher level (147
super-pathways) each subsume a number of pathways of the lower level
(481 pathways in total). Table 3.2 shows a fraction of the Biomax textbook
pathways.

Results

Figures 3.8 to 3.10 give an example for an application of thepathway pro-
jection. It is applied to the gene clustering of the diauxic shift data set to
show the distribution of the genes of theglycolysistextbook pathway over
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Figure 3.9: The diagram shows a group of selected clusters in the grid of all
18× 14 clusters. The clusters of the group do not share highly correlated expression
profiles but the expression of the genes of all selected clusters is repressed during
the experiment and all clusters contain genes that belong to theglycolysispathway.
The clusters form the peaks visible in the upper left region of the 3-dimensional plot
(Figure 3.8).

Figure 3.10: This table shows the functional categories that are best represented
within the 447 genes of the selected clusters. Though a large fraction is unchar-
acterized (26.7%), still 3.8% of the genes in the clusters belong to the functional
categoryglycolysis, nearly half of all genes annotated to belong to this pathway.
7% of the genes belong to the categorycarbohydrate utilizationthat also the gly-
colysis genes fall into.
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Biosynthesis of the serine family
Biosynthesis of serine
Biosynthesis of cysteine
Biosynthesis of glycine

Biosynthesis of the aspartate family
Biosynthesis of aspartate
Biosynthesis of asparagine
Biosynthesis of threonine
Biosynthesis of methionine

Biosynthesis of lysine
Diaminopimelin acid pathway
Aminoadipic acid pathway
...
Glucose catabolism
Embden-Meyerhoff-Parnas pathway
Embden-Meyerhoff-Parnas pathway via EC 5.1.3.3 EC 2.7.1.2
Embden-Meyerhoff-Parnas pathway BPG-independent
Glycosomal glycolytic pathway
UDP glucose metabolism

Galactose catabolism
Galactose oxidation
De Ley-Doudoroff pathway via EC 2.7.7.10 EC 5.4.2.8
Galactose to glycerol
Galactose to sorbitol
...
Glycolipid biosynthesis
Glucosylceramide biosynthesis

Fatty acid biosynthesis
Fatty acid biosynthesis 1
Fatty acid biosynthesis 2
Palmitate anabolism
Palmityl-ACP anabolism
Palmitoyl-CoA anabolism
Holo-ACP synthase reaction
Propanoyl-CoA anabolism
...
Metabolism of energy reserves glycogen, trehalose
Glycogen metabolism
Trehalose metabolism

Glyoxylate cycle
Glyoxylate cycle

Table 3.2: A fraction of the 628 standard pathways and super-pathways as defined
in the Biomax extension of the functional catalog. The definition of these textbook
pathways serves as the basis for thepathway projection.



86 Chapter 3. Integrative Data Analysis

Set of Metabolic Pathways

Set of Biochemical Reactions

Clusters

Gene A

Gene B

Gene C

Gene X

.

.

.

.

.

Clustering

Cluster n

Cluster II

Cluster I

Cluster III
.
.

Gene-Enzyme-

Mapping
Set of Enzymes

Expression Profiles

Figure 3.11: Gene–enzyme mapping. The genes for that expression levels have
been determined in a microarray experiment are partitioned into clusters of simi-
larly expressed genes. One or more clusters are selected. Those genes of the se-
lected clusters that are known to code for an enzyme are mapped onto the reaction
that is catalyzed by the respective enzyme. Hypothetical metabolic pathways are
constructed from this set of biochemical reactions.

the 252 (18× 14) clusters. A group of clusters that contain genes of this
pathway is selected from the upper part of the cluster map. As the listing of
the best represented functional categories shows, there are 17 genes in the
group of selected clusters that belong to glycolysis. These also belong to
the functional categoryC-compound and carbohydrate utilizationof that 31
genes can be found in the clusters. The carbohydrate utilization defines the
larger functional context of the glycolysis genes. Genes of other functional
categories can also be found in the selected clusters.

3.2.2 Metabolic Mapping of Gene Clusters

The aim of themetabolic mappingis to interpret the gene expression data
in terms of metabolism. A prerequisite is the clustering of the genes of an
organism. We apply the SOM algorithm as described in Chapter 2.1.9. The
topology conservation achieved by the SOM ideally supports themetabolic
mapping. The clusters of co-expressed genes are used for the dynamic con-
struction of metabolic pathways. We map each of the genes that are known
to code for an enzyme to the metabolic reaction or family of reactions that
the respective enzyme catalyzes (gene–enzyme mapping, Figure 3.11). The
reaction database is the basis for this mapping. A discussion of reaction
databases can be found in Chapter 2.4.2, the origin of the reaction data set
used here is described in Chapter 2.5.1.

After a clustering of the genes of a gene expression data set has been
achieved, each cluster corresponds to a set of biochemical reactions accord-
ing to thegene–enzyme mapping. This is realized via the annotated EC
numbers. The EC numbers that are carried by at least one of the genes of
a cluster are mapped onto the biochemical reactions that correspond to the
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EC numbers. One EC number may correspond to exactly one enzymatic
reaction or to a set of reactions that vary in their co-factors (the side metabo-
lites likeH2O, CO2 or NADH) or their main substrates. Some enzymes
potentially convert a group of different metabolites, e.g. alcohol dehydroge-
nases that may convert different alcohols into aldehydes or ketones. Using
the annotation of EC numbers and the reaction database, thegene–enzyme
mappingtranslates a set of genes into a corresponding set of biochemical
reactions. Note that the inverse mapping is not possible since in most organ-
isms there are numerous metabolic conversions that are coded for by more
than one gene, i.e. different genes may have the same EC number.

The reaction sets are subject of the subsequent pathway construction.
Unions of reaction sets can be analyzed by selecting more than one gene
cluster. This allows to carry out various analyses: the selected clusters may
origin from the same region of the topologically ordered grid of clusters. In
this case, all genes of the union are more or less co-expressed, having similar
expression profiles. Clusters may also be selected according to other heuris-
tics. A cluster that contains a particular gene of interest can be selected along
with those clusters in the surrounding that show similar expression patterns.
Or one selects a group of clusters that contain a substantial number of genes
of a particular functional category (functional projection, Chapter 3.1) or of
a textbook metabolic pathway (pathway projection, Chapter 3.2.1).

The set of biochemical reactions resulting from thegene–enzyme mappingis
transformed into a graph representation according to the procedure described
in Chapter 2.5. The connected components of this graph, themetabolic net-
works, are computed. These metabolic networks allow a comprehensive
analysis of gene expression data in the context of metabolism. They con-
sist solely of enzymatic reactions whose encoding genes showed to be co-
expressed in the experiment for that the expression data has been obtained.
For such a metabolic analysis of gene expression data, knowledge of the
biochemical reactions of the examined organism has to be available. The
genes must be annotated, i.e. they must be functionally classified and an
EC number has to be assigned to those genes that code for an enzyme. The
annotation of the genes may be derived from public databases or can be
assigned by an automatic bioinformatic method. Tools like the PEDANT
system [FAH+01] achieve annotations of large sequence stretches. They ex-
tract potential coding regions (ORFs) and assign annotations by sequence
comparison with already annotated genes. This is based on the assumption
that the cellular function of a gene can be inferred from the genes of other
organisms by sequence homologies on the DNA level. Automatic annota-
tion of sequences is of particular interest, if the expression profiles have been
obtained for a set of functionally uncharacterized ESTs or if the sequences
of an organism are the property of a company, such that no information on
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the sequence set is available in public databases.

The genes of a number of selected clusters are mapped onto the correspond-
ing set of enzymes by thegene–enzyme mapping. The setR of bioreactions
that these enzymes catalyze is used as the input for the pathway modeling
that results in a number of metabolic networks. WithR containingn reac-
tions, the number of constructed networks ranges from one network contain-
ing all reactions up ton networks, each consisting of only one reaction. The
metabolic mapping is computationally efficient. Thegene–enzyme mapping
can be done in linear time as far as the number of genes is concerned. The
LEDA algorithm for computing the connected components of the metabolic
graph has a complexity ofO(|V | + |E|) [MN99], i.e. linear complexity in
the number of nodes and edges of the metabolic graph.

Results

Analyzing publicly available data sets with the metabolic analysis meth-
ods described here, we obtained biologically meaningful and surprisingly
detailed results. Themetabolic mappingapproach generated hypothetical
pathways that often showed parts of textbook pathways surrounded by sin-
gle reactions of neighboring metabolic pathways. An example is shown here
for another data set, the yeast cellcycle data set of Spellman et al. [SSZ+98].
The graphical overview of the 252 gene clusters that have been determined
with the SOM clusterer is shown in Figure 3.12. We used the pathway pro-
jection to determine those clusters that contain genes belonging to thefatty-
acid biosynthesispathway. The 3D projection identifies two clusters that
are close to each other and that contain 11 of the 15 genes involved in this
pathway (Figure 3.13). One of them, the cluster that contains 6 pathway
genes, is selected using the 2D projection diagram (Figure 3.14). Applying
themetabolic mappingto the genes of this cluster, we generated two large
metabolic networks along with a number of smaller networks that consist
of only one or two biochemical reactions. Figure 3.15 shows the biggest
network. It shows an impressively large linear fraction of the fatty acid
biosynthesis pathway. Some conversion steps are catalyzed by two parallel
biochemical reactions. A single enzyme, thefatty-acyl–CoA-synthase(EC
2.3.1.86), appears numerous times in this hypothetical pathway. The surplus
value of such a dynamically created pathway diagram compared with a rep-
resentation of a textbook pathway is that all the genes that code for one of
these enzymes showed to be co-expressed in the cellcycle experiment. Here,
themetabolic mappingapproach revealed that a large linear fraction of the
fatty-acid biosynthesis pathway is co-ordinately regulated during the yeast
cellcycle.
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Figure 3.12: Overview representation of the gene clustering obtained from the cell-
cycle experiment of Spellman et al. [SSZ+98]. 252 clusters have been computed.
The data set consists of gene expression data from sixteen time points. During
the experiment, the yeast culture under observation completed two cellcycles. The
expression profiles of many clusters show a periodical pattern that reflects the cell-
cycles.
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Figure 3.13: Pathway projection: 3D plot of the projection of thefatty-acid biosyn-
thesispathway. The grid of 18× 14 clusters is drawn in the plain. The z-axis
shows the numbers of pathway genes in the individual clusters. 11 of 15 genes
can be found in two clusters that are additionally close to each other. This strongly
supports the assumption that thefatty-acid biosynthesispathway is co-ordinately
regulated in yeast during the cellcycle.

Figure 3.14: Pathway projection: The same projection as in Figure 3.13 is shown
here in a 2D diagram. The third dimension has been replaced by a color coding:
green encodes minimal values, red stands for maximal values. Intermediate values
are shown in transitional colors from green via yellow to red. This representation
allows to clearly identify and to select the clusters of interest. Here, the cluster that
is shown to contain 6 genes of the projected pathway has been selected.
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Figure 3.15: One of the pathways that emerge from themetabolic mappingof the
previously selected cluster. It shows a large linear sequence of metabolic reactions.
Two reactions,fatty-acyl–CoA-synthase(EC 2.3.1.86) andenoyl-[acyl-carrier pro-
tein] reductase (NADH)(EC 1.3.1.9), appear numerous times in this hypothetical
pathway. It is up to the user to judge whether the proposed pathway is actually
reasonable. Facts that are not taken into account may prove to contradict the propo-
sition, e.g. different cellular localizations of the involved enzymes.
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Figure 3.16: Metabolic mapping, applied to the clustering of the diauxic shift data
set: a pathway that is generated by the metabolic mapping approach for the group
#34, TCA cycle.
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Figure 3.17: Metabolic mapping, applied to the clustering of the diauxic shift data
set: a pathway that is generated by the metabolic mapping approach for the group
#9, glycogen and trehalose metabolism.
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Themetabolic mappingapproach has also been applied in order to obtain an
intuitive picture of the metabolic pathways that are co-ordinately regulated
during the diauxic shift. Using thefunctional projection(Chapter 3.1), we
found rather large hypothetical pathways that correspond to the respective
textbook metabolic pathways for the induced groups of glycogen/trehalose
metabolism, TCA cycle and glyoxylate metabolism as automatically iden-
tified. As expected, these pathways contained additional reactions that rep-
resent parts of connected pathways (Figures 3.16 and 3.17). The metabolic
mapping for the group of glycogen and trehalose metabolism produces a
pathway that besides the trehalose and glycogen network shows the connect-
ing reactions to glycolysis/gluconeogenesis. This shows that a part of the
glycolysis pathway is co-ordinately induced with the trehalose and glyco-
gen metabolic pathway, though the larger part of glycolysis is repressed at
the same time. Two results can directly be derived here: during the diauxic
shift, the glycolysis pathway falls into two sections that are contrarily reg-
ulated. The one section is co-ordinately regulated with the trehalose and
glycogen metabolic pathway.

3.2.3 Discussion

In this chapter, I present two approaches to a pathway analysis of gene ex-
pression data that can be used separately or in conjunction. Based on the
expression data, metabolic networks are extracted that are co-ordinately reg-
ulated in a certain biological context. The metabolic analysis depends on the
quality of the gene expression data as well as on the quality of the gene an-
notations, i.e. the correctness and the degree of completeness of the EC
catalog. Furthermore, the quality of the reaction database that associates
certain metabolic conversions with the EC numbers is crucial. Problems and
inaccuracies caused by the reaction database are mainly due to wrong or
missing assignments of EC numbers. As far as the gene expression data is
concerned, the problems mentioned for gene expression data analysis in gen-
eral apply (Chapter 2.1). An important weakness of any metabolic analysis
of gene expression data is the implicit assumption that relative gene expres-
sion rates can be used to extrapolate the corresponding protein levels. It has
been shown in yeast that mRNA levels may vary significantly for steady-
state protein levels and vice versa [GRFA99]. Transcription is a reaction
of the cell to some stimulus. The transcription of a gene is not necessarily
correlated to the concentration of the respective proteins. The conversion
steps from transcription to the end product, the protein, and the properties of
the intermediates are not considered in this approach. Many regulative and
regulated steps are involved in gene expression, the chain that leads from
the read out of the DNA to the functional protein, e.g. mRNA processing
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(splicing, editing), translation, and protein modification. Additionally, the
half-life period of RNAs and proteins differs significantly [GRFA99].

This dynamic approach is designed to complement existing approaches that
map genes onto diagrams of textbook pathways like it is realized within the
KEGG system [K+01, GK00]. While these more static approaches provide
the user with a familiar representation of the metabolic pathways and can
support the search for single, unknown or erroneously annotated enzymes
within the pathways, the dynamic approach presented here can lead to the
development of new ideas and concepts of metabolic conversions, especially
in organisms whose metabolism is not yet well analyzed. It supports the
metabolic reconstructionprocess that often follows sequencing and annota-
tion of whole genome sequences.

Gene expression data and metabolic pathways can be further integrated with
information on regulatory units like promoters to support the analysis of
gene expression data. First approaches in this direction have already been
published [JCCS01, BLS01]. The authors are looking for common se-
quences in the upstream regions of genes that showed to be co-expressed
in microarray experiments in order to identify potential new regulatory se-
quences. The use of a promoter database, e.g. TransFac [WCF+01], can
further support such an analysis.

Zien et al. explore metabolic databases by calculating pathway scores based
on an expression data set [ZKZL00]. They extract linear pathways between
a source and a target metabolite from the reaction network that is inher-
ent in the reaction database [KZL00]. The pathways are reduced to lists of
EC numbers. Each of the EC numbers is mapped to the set of encoding
genes. For each list of EC numbers, this mapping leads to a set of gene
lists. The gene lists are scored, i.e. the correlation of the corresponding ex-
pression profiles is evaluated. A p-value that indicates the significance of
a score is also proposed. The approach of Zien et al. is able to integrate
metabolic pathways and gene expression data without the need for a clus-
tering of genes according to their expression profiles. The starting point of
the pathway scoring approach is a metabolic conversion. By some means,
metabolic pathways have to be selected for scoring. This can be done by dy-
namic extraction of pathways from a metabolic network, e.g. by the methods
described here or by the approach of [KZL00], but also textbook pathways
are suited. The selected pathways that accomplish a specific conversion are
evaluated by means of a gene expression data set. The pathway scoring com-
plements the pathway projection described in this thesis. Both methods can
well be combined. The pathway scoring approach would be used to select
the most interesting, i.e. high scoring pathways from the given set of text-
book pathways. These pathways can then be projected onto the clustering.
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The pathway scoring can be seen as an inverse approach to the metabolic
mapping. Both methods achieve a metabolic interpretation of a gene expres-
sion data set. While the pathway scoring starts from a metabolic conversion
or a set of metabolic pathways, the metabolic mapping approach starts from
the gene expression data, i.e. from the gene clusters that have been deter-
mined according to gene expression profiles. It allows to find metabolic net-
works of co-expressed genes without the need to predetermine a metabolic
conversion. On the other hand, the pathway scoring approach leads to re-
sults for reasonably defined metabolic pathways while the metabolic net-
works that result from the metabolic mapping approach may or may not be
functional in the sense of a metabolic pathway. They can be regarded as a
hypothesis that has to be tested.
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3.3 Discussion of Functional Projection, Pathway
Projection and Metabolic Mapping

The described methods for a function-guided clustering and a metabolic
analysis of gene expression data allow a fully automatic identification and
ilucidation of non-partitional groups of co-expressed genes that are anno-
tated to have a role in the same biological context. Functional categories
whose genes are tightly co-expressed are effectively identified by means of
a numeric analysis of large-scale gene expression data sets and the succes-
sive automatic construction of corresponding groups of clusters. Addition-
ally, overlapping groups found for different functional categories are visual-
ized. This reveals cases where genes of related but distinct functional cat-
egories are co-expressed. Co-ordinately affected metabolic pathways are
extracted from the network of intermediary metabolism and connections to
co-expressed neighboring metabolic conversions are identified.

Such an integrative analysis is largely dependent on the correctness and
completeness of the annotation of the genomes. Functional categories have
to be consistently assigned to the genes and the enzymatic activities have
to be mapped onto the genes, i.e. the EC numbers have to be assigned.
Only with these prerequisites the integrative approach generates reliable and
reasonable results. Since a significant number of organism-specific high
quality databases have been established or are under development, the ap-
proach can be immediately applied to these organisms (FlyBase [Con99],
MIPS [AGH+01], SubtiList [MGD95], EcoCyc [KRP+99]). For organ-
isms for that only the genomic sequence and the genetic elements are avail-
able it is possible to achieve an annotation by transferring structured in-
formation from preferably manually annotated genes to previously unchar-
acterized genes on the basis of sequence homology (Genequiz [HLB+00],
Pedant [FAH+01]) in a systematic and fully automatic way.

Functional properties and metabolic activities of genes with respect to spe-
cific environmental conditions can be derived. This is achieved by com-
bining numerical analysis methods with additional analysis steps that take
into account external information. The integration of the numerical data
with systematic annotations allows to guide the clustering/grouping accord-
ing to existing knowledge and significantly reduces the effort for an interac-
tive mining of the clustering results. The identification of interesting groups
of genes can now be automated. The result of the analysis is a list of co-
expressed, i.e. potentially co-regulated, groups of genes that allow a direct
biological interpretation of the underlying gene expression experiment.

Functionally uncharacterized genes are put into a detailed functional con-
text. The additional integration with other methods capable of suggesting
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functional roles for uncharacterized genes, e.g. based on protein-protein in-
teractions (Chapter 3.4, [FAZ+00]) can promote the revelation of the func-
tional roles of previously uncharacterized proteins by significantly reducing
the search space and by providing further evidence.

The pathway projectionhas been established in analogy to the functional
projection. Instead of the genes of a functional category, the genes of a
textbook pathway are mapped to the gene clusters. Like the functional pro-
jection, also the pathway projection can be automated by a group finding
algorithm. The method would identify groups of neighboring clusters that
each contain genes of the same metabolic pathway. The analysis of over-
lapping groups would reveal pathways whose genes are co-expressed in the
underlying biological experiment. Applying the group identification to the
pathway projection, the focus of the analysis would specifically shift to the
intermediary metabolism. With the new FunCat that comprises a finer clas-
sification on more hierarchy levels and that includes categories for metabolic
pathways, the pathway projection can be seen as a specialized, refined ver-
sion of the functional projection.
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3.4 Integrating Protein-Protein Interactions with
Functional Annotations

We have developed a method for the integrative analysis of protein interac-
tion data [FAZ+00]. It comprises clustering, visualization and data integra-
tion components. The method is generally applicable for all sequenced and
annotated organisms. In this section we describe in detail the combination
of protein interaction data in the yeastSaccharomyces cerevisiaewith the
functional classification of all yeast proteins. We evaluate the utility of the
method by comparison with experimental data and deduce hypotheses about
the functional role of so far uncharacterized proteins. Further applications
of the integrative analysis method are discussed. The method presented here
is powerful and flexible. We show that it is capable of mining large-scale
data sets.

3.4.1 Methods

The combination of different data sets leads to a more detailed level of in-
formation. Here we show how data of physical and genetic interactions can
be combined with other types of biological data, especially annotations ac-
cording to systematic functional categories (MIPS functional catalog). The
combination of different data sets leads to a more detailed level of informa-
tion.

The MIPS functional catalog (Chapter 2.3) is based on a common-sense ter-
minology of biological function and is therefore well suited for selecting
subsets of genes with related functions. We restrict the gene set to those
genes sharing functional categories. The result is an interaction graph that
consists of the genes belonging to the selected functional categories (nodes
drawn with thick borders) and those directly interacting with them (nodes
drawn with thin borders). Most of the categories of the MIPS functional cat-
alog contain a large number of genes due to the fact that biological processes
in general involve a substantial number of proteins. The catalog does not de-
scribe the exact role of single genes in the cell. The combination of diverse
data sets generates the information necessary for an exact assignment of the
genes to cellular processes.

Protein-protein interaction data in turn is not sufficient for a comprehensive
description of the functional context. If no additional information, e.g. about
the time, localization or function of the individual interactions is taken into
account, i.e. using the pure clustering method described above, the proteome
of an organism tends to be in a single cluster.
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Figure 3.18: Histogram of cluster sizes. Cluster sizes are shown on the abscissa,
the number of clusters of the respective cluster sizes are shown on the ordinate. Both
scales are logarithmic. For the clustering, the ORFs of all functional categories have
been considered. Though there are 174 small clusters with less than 12 ORFs, these
contain a total of only 562 ORFs, while one cluster comprises 1721 ORFs.

functional
category

genes
in this

category

genes
with

interaction

genes
in biggest

cluster

interaction
in all

clusters

all 6359 2283 1721 6158
04 749 460 732 2416
04.05 542 336 558 1862
04.05.05 40 32 62 259

Table 3.3: Number of genes found in different categories and properties of the
resulting clusters. Categories:Transcription(04), mRNA processing(04.05) and
5’-, 3’-end processing, mRNA degradation(04.05.05).

3.4.2 Verification

The MIPS yeast interaction tables contain 6158 individual interactions an-
notated for 2283 ORFs as of February 2000. Clustering these genes as de-
scribed above leads to 175 clusters. While 106 clusters consist of just two
genes and 35 clusters comprise three genes, there is one cluster contain-
ing 1721 genes (main cluster). The remaining 33 clusters consist of 4 to
11 genes (Figure 3.18). A reasonable visualization and interpretation can
be computed for the small clusters while the interaction graph of the large
one is too complex to produce a clear, easy to grasp representation. Thus
the interaction graph of the vast majority of the genes cannot be shown. One
possibility to reduce the complexity of the data is to combine the set of genes
to be analyzed to functionally categorized genes.



3.4. Integrating Protein-Protein Interactions with Functional Annotations 101

Figure 3.19: Display of the largest interaction cluster based on the functional cat-
egorymRNA processing (5’-, 3’-end processing, mRNA degradation). Proteins of
the clustered category appear with thick borders, those of other functional categories
have thin borders. Solid lines indicate physical interactions, dashed lines indicate
genetic interactions. The genes with dark grey boxes belong to functional category
mRNA processing (splicing). Those with light grey boxes are genes of category
transcription, the super-category of mRNA processing. Factors of the processing
complex as described in [ZHM99] are enclosed within ellipses (cf. Table 3.4).

For the functional categorytranscriptionand two of its subcategories, we
show the properties of the gene set restricted to the respective category and
the resulting cluster sizes (Table 3.3).

Restricting the interaction to the lowest hierarchical level, i.e. category
mRNA processing (5’-, 3’-end processing, mRNA degradation)leads to a
gene set that consists of 40 genes, 32 of these with annotated interactions.
We use this well described category to verify the utility of the method. For
the clustering all interactions annotated for the genes of this category are
used, including those interactions with a gene not belonging to the category.
8 clusters result from this process, the largest cluster containing 62 proteins,
23 from the specified functional category, and 99 interactions between the
proteins.

As expected, the interaction graph of this cluster (Figure 3.19) corre-
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ORF Gene Description Functional categories Factor

YDR448w ADA2 general transcriptional adaptor 04.05.01.04
YPR180w AOS1 Smt3p activating enzyme subunit 06.07;06.13.01
YOL139c CDC33 translation initiation factor eIF4E 03.10;05.04
YDR301w CFT1 pre-mRNA 3’-end processing factor CF II subunit 04.05.05 CF II
YLR115w CFT2 pre-mRNA 3’-end processing factor CF II subunit 04.05.05 CF II
YOR250c CLP1 cleavage/polyadenylation factor IA subunit 04.05.05 CF IA
YOL149w DCP1 mRNA decapping enzyme 04.05.05
YNL118c DCP2 suppressor protein of a yeast pet mutant 02.13;04.05.05
YDL160c DHH1 strong similarity to RNA helicases of the DEAD box family 04.99
YDR206w EBS1 similarity to EST1 protein 03.16
YJR093c FIP1 component of pre-mRNA polyadenylation factor PF I 04.05.05 PF I
YER032w FIR1 interacts with the poly(A) polymerase 04.05.05
YKR026c GCN3 translation initiation factor eIF2B, 34 KD, alpha subunit 05.04
YMR255w GFD1 nuclear pore complex protein 04.07;08.01
YER133w GLC7 ser/thr phosphoprotein phosphatase 1, catalytic chain 01.05.04;02.19;03.04;

03.13;03.22;05.07
YOL123w HRP1 cleavage/polyadenylation factor IB 04.05.05;04.05.99;04.07 CF IB
YBR017c KAP104 beta-karyopherin 08.01
YNL322c KRE1 cell wall protein 01.05.01
YBR205w KTR3 alpha-1,2-mannosyltransferase 01.05.01;06.07
YER127w LCP5 Ngg1p interacting protein 04.01.04
YBL026w LSM2 snRNP-related protein 04.05.99
YER112w LSM4 U6 snRNA associated protein 04.05.03
YJR022w LSM8 splicing factor 04.05.03
YGR158c MTR3 involved in mRNA transport 04.01.04;04.05.05;04.07
YGL122c NAB2 nuclear poly(A)-binding protein 04.05.05;04.07
YMR080c NAM7 nonsense-mediated mRNA decay protein 01.03.16;05.07
YER165w PAB1 mRNA polyadenylate-binding protein 04.05.05;05.04 Pab 1
YKR002w PAP1 poly(A) polymerase 04.05.05 Pap 1
YGR178c PBP1 Pab1p interacting protein 04.05.05
YBR233w PBP2 Pab1p interacting protein 04.99
YDR228c PCF11 component of factor CF I 04.05.05 CF IA
YNL317w PFS2 component of pre-mRNA polyadenylation factor PF I 04.05.05 PF I
YBL105c PKC1 ser/thr protein kinase 03.04;03.22;

10.01.05.11;11.01
YAL043c PTA1 pre-mRNA 3’-end processing factor CF II subunit 04.03.03;04.05.05 CF II
YDR195w REF2 RNA 3’-end formation protein 04.05.05
YMR061w RNA14 component of factor CF I 04.05.01.04;04.05.05 CF IA
YGL044c RNA15 component of factor CF I 04.05.05 CF IA
YJL189w RPL39 ribosomal protein L39.e 05.01
YDR450w RPS18A ribosomal protein S18.e.c4 05.01
YOR167c RPS28A ribosomal protein S28.e.c15 05.01
YLR264w RPS28B ribosomal protein S28.e.c12 05.01
YDL111c RRP42 rRNA processing protein 04.01.04
YIL123w SIM1 involved in cell cycle regulation and aging 03.22;11.11
YLR398c SKI2 antiviral protein and putative helicase 11.07
YPR189w SKI3 antiviral protein 11.99
YGL213c SKI8 antiviral protein 03.13;03.19;11.13
YJL124c SPB8 suppressor of PAB1 04.05.05
YMR117c SPC24 spindle pole body protein 03.22
YHR152w SPO12 sporulation protein 03.10;03.13
YDR392w SPT3 general transcriptional adaptor 03.07;04.05.01.04
YGR162w TIF4631 mRNA cap-binding protein (eIF4F), 150K subunit 05.04
YGL049c TIF4632 mRNA cap-binding protein (eIF4F), 130K subunit 05.04
YDR390c UBA2 E1-like (ubiquitin-activating) enzyme 04.05.05;06.07;06.13.01
YGR048w UFD1 ubiquitin fusion degradation protein 06.13.01
YLR345w similarity to 6-phosphofructo-2-kinases 01.05.04;02.01
YLR277c YSH1 pre-mRNA 3’-end processing factor CF II subunit 04.05.05 CF II
YPR107c YTH1 component of pre-mRNA polyadenylation factor PF I 04.05.05 PF I

Table 3.4: The functionally classified proteins of the main cluster of category
mRNA processing (5’-, 3’-end processing, mRNA degradation)(04.05.05), dis-
played in Figure 3.19. The description of the factors can be found in [ZHM99].
Functional categories are explained in Table 2.2.
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sponds to the description of thepre-mRNA 3’-end processingin the litera-
ture [ZHM99]. According to this review, theyeast cleavage/polyadenylation
complexconsists of 15 identified proteins. For 14 of them the corresponding
genes are known. The complex is subdivided into five functionally distinct
activities. CF IA, IB and II are described as sufficient for the cleavage reac-
tion, and specific poly(A)-addition are described as to require CF IA and IB,
Pap1, Pab1, and PF I. These functional factors can be identified in the inter-
action graph. The graph contains additional interactions to proteins of other
functional categories, linking the cleavage/polyadenylation complex with
neighboring cellular processes like splicing and transcription (Table 3.4).

The fifteenth, missing protein has been identified by purification of the PF I
complex. It is a protein of 58kd called Pfs1p, which has not been published
yet. PFS1 is an essential gene containing a zinc knuckle [ZHM99]. We did
not find interaction data pointing to an ORF fulfilling these requirements.
Thus it is not possible to speculate about this protein on the basis of the
protein interaction data available.

3.4.3 Revealing the Functional Context of Uncharacterized Pro-
teins

So far, roughly a third of the yeast ORFs are not functionally de-
scribed [MAB+97]. Several systematic approaches have been developed in
order to functionally classify these ORFs [OWKB98]. Since 1997 about 7%
of the ORFs then calledproteins of unknown functionhave been functionally
described (cf. MYGD [AGH+01]).

We show here how the usage of protein interaction data can provide substan-
tial clues as to the biological context of unknown proteins.

Restricting the gene set to the 2563 non-characterized proteins gives rise to
177 clusters. 39 of these clusters contain more than two unclassified genes.
The biggest cluster, comprising 93 non-characterized and 66 characterized
proteins, contains the ORFs YNR053c and YGL161c. We show the capa-
bilities of our integrative method for the prediction of functions for so far
non-characterized proteins by means of these ORFs. Evaluating a protein
interaction graph, functional relationships between proteins can be deduced
depending on the distance of the respective proteins. Two proteins that di-
rectly interact are most likely to be involved in the same biological process
or pathway [WSL+00]. We thus concentrate on the direct surrounding of
the considered ORFs. Therefore the interaction graphs of YNR053c (Fig-
ure 3.20) and YGL161c (Figure 3.21) have been cut at the second and third
interaction level, respectively.
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Figure 3.20: Part of an interaction cluster resulting from the gene set restricted
to the non-characterized proteins. YNR053c directly interacts with five genes be-
longing to the functional categorymRNA processing (splicing), shown in dark grey.
Another gene of this category is found in the second interaction level:MSL1. FIR1
belongs to the same biological context,mRNA processing (5’-, 3’-end processing,
mRNA degradation). It is indicated in light grey. The graph is cut at the second
interaction level with respect to YNR053c. Non-characterized proteins appear with
thick borders, those with annotated functional categories have thin borders. The
functional categories of the individual proteins are listed in Table 3.5. The solid
lines indicate physical interactions.

The functional context of YNR053c

YNR053c is known to interact directly with six other proteins [FRRL97],
five of which have a known functional classification (Figure 3.20). These
five all belong to the categorymRNA processing (splicing)(cf. Table 3.5).
All but four of the indirectly connected proteins of the second level are un-
characterized. The four classified proteins comprise Msl1p that is also in-
volved in the mRNA splicing and Fir1p that is involved in 3’-end mRNA
processing. The remaining proteins, Tid3p and Hbs1p belong to other func-
tional categories. The central position of YNR053c in the described protein
interaction network is a strong clue as to its functional role in mRNA splic-
ing. For YLR456w, a non-characterized protein that directly interacts with
YNR053c, a functional prediction is more difficult to make. The five inter-
actors of this ORF belong to more diverse categories. Two of the interacting
proteins are known to be involved in mRNA transcription (Msl1p, Fir1p).
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ORF Gene Description
Functional
categories

Interaction
level

YDL030w PRP9 pre-mRNA splicing factor 04.05.03 1
YDL043c PRP11 pre-mRNA splicing factor 04.05.03 1
YER029c SMB1 associated with U1 snRNP 04.05.03 1
YER032w FIR1 interacts with the poly(A) polymerase 04.05.05 2
YIL144w TID3 Dmc1p interacting protein 03.22 2
YIR009w MSL1 strong similarity to snRNPs 04.05.03;06.10 2
YJL203w PRP21 pre-mRNA splicing factor 04.05.03;06.10 1
YJR022w LSM8 splicing factor 04.05.03 1
YKR084c HBS1 eEF-1 alpha chain homologue 05.04 2
YLR456W strong similarity to YPR172w 99 1

Table 3.5: The interacting partners of the non-characterized protein YNR053c. All
interacting proteins of level 1 and those of level 2 with a described function are
listed. The functional categories are described in Table 2.2.

For the third interactor, YNR053c, there are strong indications for the par-
ticipation in mRNA splicing as described above. The two remaining ORFs
are involved in cell cycle control and translation, respectively. Consider-
ing the whole interaction context of YLR456w, allows to hypothesize on a
potential cellular function in mRNA splicing.

The functional context of YGL161c

For YGL161c seven direct interactions with other proteins are
known [ITM+00, UGC+00], three of them have a known function (Fig-
ure 3.21). These three proteins, Vam7p, Yip1p, and Pep12p, are involved in
intracellular transport. Additionally, two of three functionally classified pro-
teins of the second interaction level, Yip3p and Akr2p, are also intracellular
transport proteins. The third, Ktr3p, is an alpha-1,2-mannosyltransferase
involved in glycosylation of proteins to be secreted. Ktr3p is likely to be
localized in the golgi apparatus [SPC95]. Thus the cellular role of Ktr3p
is closely linked to intracellular transport processes. Even on the third
interaction level of YGL161c one more protein, Ypt1p, is described to be
involved in intracellular transport processes. Considering all these data
one can assume that YGL161c is involved in intracellular transport. In
addition, there is some evidence for the non-characterized proteins YIF1,
YHR105w, and YPL246c to be involved in the context of intracellular
transport. All three have a central position in the described interaction
network of intracellular transport processes.
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Figure 3.21: Part of an interaction cluster resulting from the gene set restricted to
the non-characterized proteins. The graph is cut at the third interaction level with
respect to YGL161c. Non-characterized proteins appear with thick borders, those
with annotated functional categories have thin borders. The functional categories
of the individual proteins are listed in Table 3.6. The solid lines indicate physical
interactions.

ORF Gene Description
Functional
categories

Interaction
level

YAL032c FUN20 required for RNA splicing 04.05.03 3
YBR205w KTR3 alpha-1,2-mannosyltransferase 01.05.01;06.07 2
YFL038c YPT1 GTP-binding protein of the rab family 08.07 3
YGL212w VAM7 vacuolar morphogenesis protein 08.13;09.25 1
YGR172c YIP1 golgi membrane protein 08.07 1
YIL034c CAP2 F-actin capping protein, beta subunit 03.04;03.07 3
YNL044w YIP3 involved in ER to golgi transport 06.04;08.07 2
YOR034c AKR2 involved in constitutive endocytosis of Ste3p08.19 2
YOR036w PEP12 syntaxin (T-SNARE), vacuolar 06.04;08.13 1

Table 3.6: The interacting partners of the non-characterized protein YGL161c. All
interacting proteins of level 1 and those of levels 2 and 3 with a described function
are listed. The functional categories are described in Table 2.2.
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3.4.4 Discussion

We have developed a method for the integrative analysis of protein inter-
actions [FAZ+00] that combines protein interaction data onS. cerevisiae
proteins, systematically collected from the literature, with the functional
classification data of all yeast proteins. A clustering is performed to find
maximal groups of proteins that are directly or indirectly connected to inter-
action networks. These networks are graphically represented using a graph
editor toolkit. The visualization of protein interaction networks supports the
comprehensive analysis of these large data sets.

The characteristic of the resulting cluster sizes (Figure 3.18) suggests that
the more interactions are known for an organism the larger the clusters of
genes become. We suspect that if all true interactions would be known, vir-
tually every protein of that organism would be in a single cluster of proteins
that results from the described clustering method. It is thus necessary to fo-
cus on a subset of the whole set of genes. A more efficient and exploratory
interpretation of the protein interaction data is enabled by the concentration
on a certain biological context that is achieved by the use of the systematic
functional categorisation of all yeast ORFs.

This combination of different data sets results in the necessary reduction
of complexity. Our results show that the integrative analysis with a hierar-
chically organized data set allows to scale the complexity of the interaction
graphs (Table 3.3).

The utility of the presented method has been shown by applying it to the
well described functional context of mRNA processing. The analysis of the
biological context of the uncharacterized proteins YNR053c and YGL161c
shows the relevance of the method for mining the protein interaction data
and formulating hypothesis about a functional classification of so far un-
characterized proteins.

It has been shown that interactions among proteins are conserved between
the homologous proteins of various organisms [UGC+00]. In cross-genome
analysis the presented method can be used for the prediction of protein in-
teractions in other species. This is of particular interest with respect to se-
quences resulting from whole genome sequencing projects, e.g. the human
genome project. Recently an algorithm for an interaction-based protein in-
teraction map prediction has been published [WS01].

The integrative analysis method presented here is easy to use and allows
a comprehensive overview of the protein interaction data. It is very flex-
ible, i.e. it can easily be applied to other types of annotation data sets to
be combined. It is also possible and very promising to combine the protein
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interaction data with other data produced by high-throughput methods, the
most prominent being expression data produced by DNA microarray tech-
nology [DIB97] and cellular localization via GFP tagging [BLR+00].

Besides the careful assignment of functional categories to the genes two key
features make the functional catalog so well suited for an efficient integra-
tion with high-throughput data like gene expression data and protein-protein
interaction data. These are the hierarchical structure and a clear, system-
atic, and consistent definition of distinct categories. Similar catalogs can
be set up for other annotational aspects of genes, proteins, and metabolites.
The MIPS yeast project group has additionally defined catalogs for subcellu-
lar localization, protein complexes, mutant phenotypes, protein classes, EC
numbers and PROSITE motifs. These are likewise suited for an integrative
analysis. The only restrictions are imposed by semantical dependencies, e.g.
it would probably make no sense to integrate the protein complexes catalog
with protein-protein interaction data.



Chapter 4

The Software System
Architecture

The tools that are described in the previous chapters have been developed
and implemented in parallel on a Compaq Tru64 Unix system and on Intel
PCs running Linux. A layered system architecture has been chosen. This
modular architecture ensures that the structure of the code is relatively easy
to understand and that maintenance is reasonably simple. Additionally, the
layered, modular architecture allows to implement the individual layers suc-
cessively. It provides the flexibility that is highly demanded by a research
project where a complete specification of the software cannot be achieved
in the beginning since the direction of development depends on intermediate
results and is adapted accordingly throughout the time of the project. During
development, the user interface of the tools has been a command line inter-
face. At a point where the tools stabilized and could finally be integrated,
a consistent user interface was set up using a web-based client-server archi-
tecture. The client side GUIs have been designed with Hyper Text Markup
Language (HTML) and some Java for the highly interactive parts. Figure 4.1
shows a diagram of the layered system architecture.

The client-server architecture was chosen to achieve maximal flexibility and
independence of the individual modules (modular programming). Using
web browsers as clients enables the user of the system to freely choose the
operating system of the client machine. Exporting the services over the in-
ternet makes them widely accessible. The involved standard protocol, Hy-
per Text Transfer Protocol (HTTP), is easy to use. Since character streams
are only sent over the net using the standard port 80, HTTP transfer is not
influenced by fire walls in contrast to the more elaborate Remote Method
Invocation (RMI) protocols like Common Object Request Broker Architec-
ture (CORBA). These protocols depend on other ports that are typically
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Figure 4.1: The layered architecture of the client-server system for a metabolic and
functional analysis of biological high-throughput data.
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blocked by a firewall. The Common Gateway Interface (CGI) technology
allows to create the HTML documents dynamically. The possibilities and
modes of user interaction provided by HTML are sufficient for most applica-
tions. Wherever a particular high degree of user interaction is needed, Java
applet technology is at hand. In the described system the pathway viewer
was implemented as an applet. Java servlets have been used as a server
side counterpart to allow efficient communication with the pathway viewer
applet. On the script/binary layer, Perl and C++ have been applied.

The server part of the system is not realized as a monolithic piece of soft-
ware. Instead, it consists of a heterogeneous mixture of binary applications
and scripts. This allows to extent the functionality of the system by adding
new server side binaries and scripts and to extent the functionality of existing
modules by replacing a binary or script by a new version. Such flexibility
proved especially useful during the development phase. Scripts are imple-
mented using the Perl programming language. Perl is excellent for rapid
prototyping and for all tasks that involve a lot of input and output and that
have a rather low computational complexity. This is the case with virtually
every CGI script. The more complex tasks have been implemented in C++
in order to generate a fast running native binary application. In particular,
the AMPhoraapplication for pathway modeling and theMapClustererap-
plication for gene clustering (Chapter 2.1.8) are implemented in C++.

4.1 TheAMPhora Pathway Modeling Application

TheAMPhoraapplication realizes the computation of metabolic networks,
the graph-based search for linear pathways and the constraint-based con-
struction of metabolic pathways. It has a built-in pathway viewer that re-
quires a connection to an X graphics server for command line use and can
export pathways inBioTalk for propagation over the internet and represen-
tation in the applet pathway viewer. Biotalk is a language that is defined
in the eXtensible Markup Language (XML). Figure 4.2 shows the informa-
tion flow between theAMPhora modules. The Library of Efficient Data
Structures and Algorithms (LEDA) is employed for the pathway modeling
application. The LEDA data structures used include strings, dictionaries,
linear lists and labeled graphs. Especially the graph data structure and the
algorithms working on graphs eased the development ofAMPhora.
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Figure 4.2: Modules and information flow in theAMPhora pathway modeling
(PM) application. The main module (PM Application) stages a command-line user
interface and provides high-level functions for the three modes of pathway model-
ing. Pathways are represented in the modules and exchanged between modules as
either pathway vectors or LEDA pathways (metabolic graphs). Pathway vectors can
be compiled in dictionaries. The graph display module can generate XML output
from the input pathway or open a pathway viewer window (uses X protocol, not
available when used in client-server mode).
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Figure 4.3: Communication be-
tween the pathway viewer Java
applet and theAMPhora servlet
is accomplished via the XML-
defined languageBioTalk. The
servlet executes theAMPhora
binary application that directly
producesBioTalk output. The
BioTalk output is passed on by
the servlet to the applet, where an
instance of the respective graph
class is initialized from it.

4.2 BioTalk: Representing Pathways in XML

The transfer of metabolic graphs between server and client as well as the
transfer of complexAMPhorarequests are accomplished via XML. We em-
ploy theBioTalk language developed by Dieter Voges atBiomax Informatics
AG. BioTalk is defined in XML. Instances of Java classes that are derived
from the base classBTObject can serialize themselves, i.e. they can pro-
duce aBioTalkoutput describing the values of their attributes. The other way
round, a new instance of the same class can be initialized from the respective
BioTalkcode.

HTTP communication is generally organized in such a way that a client
initiates a request. The request is processed and answered by the adressed
server and the answer is sent back to the client. No mechanism is provided
for a server to send data without answering a request. Therefore the path-
way viewer has to request a pathway graph inBioTalk representation from
the AMPhora servlet. The pathway viewer uses a request class that can
export itself intoBioTalk representation. The pathway viewer client instan-
tiates the request class and sets the attributes according to the request. The
BioTalk output of this request object is transferred to the servlet, where a
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new instance of the request class is initialized from theBioTalk file. The
AMPhoraapplication is called by the servlet with the corresponding options
set. It carries out the requested pathway modeling steps and finally produces
a BioTalk document that matches the Java graph class of the viewer. The
servlet passes theBioTalkoutput through to the client. The pathway viewer
client initializes a new instance of a graph class from theBioTalkstream and
the corresponding graph is displayed in the canvas of the viewer.

4.3 TheMapClustererapplication

The second binary application is theMapClustererapplication that imple-
ments a SOM neural network and is used for clustering genes according to
gene expression profiles. Input to the clusterer is a flat, tab-delimited textfile
that contains one line for each gene. The first column of each line gives
the gene name (or an internal identifier), the other columns contain the ex-
pression values for the respective gene. The SOM parameters are read from
parameter files. These files provide reasonable parameter settings for dif-
ferent sizes of the neural grid, i.e. the number of clusters. A command line
interface allows the calling user or script to select the data set to be clustered,
the number of clusters to be computed, the normalization to be applied, and
the distance measure to be used. The name of the resulting clustering has to
be specified. The clusterer produces an output that complies to the format
read by the CGI scripts of the graphical user interface.

4.4 The Graphical User Interface

The Graphical User Interface (GUI) of the system except theAMPhorapath-
way viewer is realized in HTML. The HTML code is generated dynamically
via Perl CGI scripts. The GUI is organized in two major parts. The first part
is for gene expression analysis, including the integrative analysis of gene ex-
pression data with functional projection, pathway projection, dynamic path-
way construction (metabolic mapping) and construction of protein-protein
interaction networks. The second part is for theAMPhorapathway model-
ing.

4.4.1 GUI for gene expression analysis

Figure 4.4 shows a site map of the GUI for gene expression analysis. There
are two entry points to the system: theList of Clustered Experimentspage
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Figure 4.4: Site map of the GUI for gene expression analysis.
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and theClustering Start Pages. TheClustering Start Pagesallow to invoke
the clustering of a gene expression data set. The user has to select a gene ex-
pression dataset from a list of previously imported data sets and can specify
the parameters for the clustering. The number of clusters to be computed and
the distance measure have to be selected. The user has to decide whether or
not to apply the standardization to mean zero and unit variance and whether
or not to use logarithm transformed expression values. He invokes the clus-
tering by submitting the settings. The clustering is performed on the server
machine. On completion the result page is presented. A 3-dimensional pro-
jection of the number of genes per cluster roughly indicates the success of
the clustering. A link to the detailed description of the clustering is provided.

The second entry point, theList of Clustered Experimentspage, allows to ac-
cess previously calculated clusterings. The available clusterings are shown,
each with a link to the detailed results that are accessible from theExperi-
ment Portalpage. The experiment portal shows the parameter setting used
for the clustering, the projection of gene numbers that also appeared on the
Resultpage and a histogram of the cluster sizes. From here, theOverview
page can be reached as well as the pages for the integrative analyses. The
Overviewpage shows the regular grid of clusters with a 2-dimensional dia-
gram for each cluster (Figure 2.8). For each cluster and any group of clus-
ters, theDetailspage can be accessed, showing a larger diagram of the clus-
ter or a schematic overview of the group of clusters (Figure 3.9) and a list of
the genes that are in the cluster or in the group of clusters.

TheDetailspage represents the hub of the GUI. From here, the dynamic con-
struction of metabolic pathways and of protein-protein interaction networks
are invoked. TheDetails page is reached from theOverviewpage as well
as from the functional projection and the pathway projection. When reach-
ing it from the functional projection, theDetails page also shows a list of
functional categories that are present in the selected cluster(s) (Figure 3.10).

The Functional Projectionpage, theGroup Evaluationpage and thePath-
way Projectionpage are similarly constructed: they allow to select a func-
tional category, a group of clusters that has been identified according to a cer-
tain functional category or a standard pathway. A 3-dimensional projection
plot shows the distribution of the selected category or pathway (Figure 3.8).
A 2-dimensional representation of that projection, where the third dimen-
sion is replaced by colors, allows to select clusters or groups of clusters of
interest and to further analyze them on theDetailspage.
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Figure 4.5: Site map of the GUI for theAMPhorapathway modeling tool.
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4.4.2 GUI for AMPhora pathway modeling

The site map of the GUI of the AMPhora pathway modeling is shown in
Figure 4.5. On entering via the start page, the user can select the organism
for that the metabolic pathways shall be modeled. This selection restricts
the set of EC numbers to those that are annotated to appear in the selected
organism. The pathway modeling consists of three parts. There is a link on
the start page for each of them that leads to the respective GUI section.

When selecting theComputation of Metabolic Networks, no parameters have
to be set. The user directly gets to a page that lists the metabolic networks
and that provides a link to the graphical representation for each network.

For the Linear Path Searchthe user has to select a source and a target
metabolite. A search option allows to restrict the long list of metabolites
to a subset matching the specified regular expression. On submission of
the metabolite selection, feasibility and minimal length of the specified
metabolic conversion are determined. The user has to specify the maxi-
mal length of the pathways to be shown. The metabolic pathways of at most
the specified maximal length between the source and target metabolites are
shown.

The Constraint-based Pathway Constructionrequires the user to specify a
number of external metabolites. This is realized as a two step process in
order to make the search for metabolites via regular expressions applicable
here, too. The user selects a number of metabolites in the first list that he
may restrict by specifying a regular expression. The selected metabolites are
transferred into the second selection field. This can be repeated. From the
second list, the user selects the external metabolites and invokes the pathway
computation by submitting the selection. A list of the pathways that fulfil
the metabolite constraints is presented, providing a link to the graphical rep-
resentation for each of the pathways. Additionally, external pathways can
be combined with matching internal pathways by checking the appropriate
boxes on the left and clicking theShow selected pathwaysbutton.



Chapter 5

Discussion

This thesis describes the approach to a functional and metabolic analysis
of biological whole-genome data. High-throughput techniques like the de-
scribed methods for gene expression analysis and identification of protein-
protein interactions produce data sets on a large scale. An efficient and com-
prehensive analysis of such huge data sets is only possible in an automatic
way, making extensive use of computer systems. The isolated analysis of
any kind of data has to be the first step in a chain of analytic steps. This
includes basic processing methods like quality control, error correction, and
normalization, but also high-level methods like the clustering of gene ex-
pression data.

5.1 The approach to an integrative analysis

Following an introduction to the problem domain, Chapter 2 of this the-
sis focusses on three fields of biotechnology and bioinformatics that are
currently of great interest as one can tell from the large number of pub-
lications dealing with these topics: gene expression, protein-protein inter-
actions and metabolic pathways. For each of them, I give an introduction
that describes potential benefits of the technologies and that highlights the
computational challenges that arise from the analysis. I explain suitable
computational analysis methods for the respective data sets and describe in
detail the analysis techniques I developed in this thesis. All of these meth-
ods, the SOM clustering for gene expression data, the graph modeling of
protein-protein interactions and the three methods for a dynamic modeling
of metabolic pathways, have been developed with the combinatorial analysis
approaches in mind. They prepare the ground for the integrative methods
that are described in Chapter 3.
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The knowledge-basedintegrative analysis methodsare used on a second,
more abstract level of analysis. Large data sets of one type are analyzed
in conjunction with another type of data. Combinatorial and integrative
analysis methods make use of biological knowledge in order to achieve qual-
itative and reliable results. Data sets are analyzed in the context of sys-
tematic, previously assembled facts, leading to a more holistic view of the
subjects of analysis.

Combining protein-protein interaction data with systematic functional an-
notations, we are able to focus on a specific biological context. This allows
to scale and to reduce the complexity of the large protein-protein interac-
tion data sets and makes the results comprehensible. More importantly, we
show how the integration of protein-protein interaction data with functional
annotations allows to hypothesize on the functional context of previously
uncharacterized genes and proteins [FAZ+00]. This way, the intuitive graph
representation and the integrational approach allow to assess large lists of
protein-protein interactions efficiently.

Numerous scientific papers assess the management, statistical process-
ing, normalization and clustering of gene expression data, e.g. [ARC00,
BFB+00, BV00, YR01, BL01, NSH02]. This thesis describes the use of
biochemical reactions (dynamic modeling of metabolic pathways) and text-
book metabolic pathways (pathway projection) for the analysis of statisti-
cally evaluated and clustered gene expression data. It allows to analyze the
metabolic properties and the changes in metabolism that have been captured
by the respective gene expression experiment. Interesting features like co-
regulated or conversely regulated pathways are highlighted by the integrative
methods. Employing the set of integrative methods that are the subject of
this thesis, it is possible to work with the established schemes and categories
of textbook metabolic pathways or to construct hypothetical pathways dy-
namically based on the gene expression profiles. The hypothetical pathways
do not necessarily correspond to textbook pathways. From the structure of
a hypothetical pathway, relations between parts of an organism’s metabolic
network can be inferred that otherwise appear in distinct textbook pathways.

The functional projection, i.e. the integration of gene expression data with
functional annotations has a broader, less specific range of application. An
expression data set can be analyzed in the context of each of the various cat-
egories of a functional classification scheme like the MIPS functional cata-
log [MFG+00]. The functional catalog covers a very broad range of diverse
categories that focus on different aspects of protein function. The speci-
ficity of a functional projection analysis can be varied due to the hierarchical
organization of the catalog. The functional projection is capable of iden-
tifying functionally related sets of genes that exhibit similar, correlated or
anti-correlated expression profiles. Cellular processes that are co-ordinately
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switched on or off during a biological experiment are revealed. The rela-
tion between the experiment, e.g. a systematic variation of environmental
conditions, and the response of the analyzed organism on a molecular level
becomes obvious. The analysis of overlapping groups of functionally cou-
pled genes reveals how the genes of different functional categories relate.
This sheds light onto a larger biological context. The combination of the
functional projection with the metabolic analysis methods allows to further
investigate the identified co-regulated gene groups with a specific focus on
aspects of intermediary metabolism. Again, the integrative analysis extracts
and reveals interesting phenomena from data sets that could not be found
without making use of additional, previously assembled knowledge.

All these methods are generically applicable also for other types of high-
throughput data and for other systematically annotated facts about genes
and proteins. Two recent publications report on a comprehensive analysis of
yeast protein complexes [GBK+02, HGH+02]. Data on protein complexes
can easily be used for an integrative analysis, e.g. in aprotein complex pro-
jection (analogous to the pathway projection) or to restrict protein-protein
interaction data to protein complexes instead of functional categories. In
addition to the functional catalog, the MIPS yeast project group has defined
catalogs for subcellular localization, mutant phenotypes, protein classes, and
PROSITE motifs. All these systematic collections of biological knowledge
can further promote integrative analysis methods.

• Before using one of the described metabolic analysis methods, a cel-
lular localization catalog allows to restrict the gene set to those genes
that are expressed in the same cellular compartment.

• Once the data is available, the use of signal transduction pathways
and regulatory pathways will support the analysis of gene expression
data. Signal transduction pathways as well as regulatory pathways
can be modeled in much the same way as metabolic pathways. Hence
the same integrative approaches can be applied, but the focus will be
more general. Using metabolic pathways, an analysis is restricted to
aspects of intermediary metabolism. Using pathways that describe
signal transduction cascades and regulatory networks, an analysis may
focus on arbitrary cellular processes.

• Mutant phenotype information, in conjunction with a specially de-
signed gene expression experiment, potentially allows to reveal under-
lying metabolic mechanisms and properties of a respective phenotype.

The analysis of the proteomes of organisms (proteomics) will play an in-
creasingly important role in molecular biology and biotechnology. As in-
dicated above, new technologies have been described that will replace the
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expensive and unhandy 2D gels now used in proteomics. Quantitative pro-
teomics will produce protein expression data on a large scale. The methods
for the integrative analysis of gene expression data that I describe in this
thesis can readily be applied to protein expression data. The metabolic map-
ping and the pathway projection approaches are even more appropriate for
protein expression data since an interpretation of the results does not rely on
the partly incorrect assumption of a direct correspondance between mRNA
abundance and protein abundance in the cells. Though the techniques of
proteomic analysis have not even matured to a state where they would rep-
resent a broadly applied standard, the benefits of an integration of genomic
analyses, proteomic analyses, and supplementary information has been re-
viewed [Fel01a].

5.2 Related work

Bioinformatic approaches to a combinatorial and integrative analysis of
whole-genome data, including those developed during these doctoral stud-
ies, have a great potential. Recently a growing number of scientific papers
have been published that introduce integrative analysis methods. This rather
new category of methods will have significant impact on the further devel-
opment of bioinformatic methods. It is now widely accepted that only the
combination of different types of data can lead significantly towards a true
systems biology that may allow the understanding and simulation of reason-
ably complex cellular processes or even whole cells.

• The group of David Eisenberg published a combined algorithm for
genome-wide prediction of protein function [PMT+99]. They collect
functional evidences from various sources and createprotein phyloge-
netic profilesin order to predict function [MPT+99].

• Ralf Zimmer and Thomas Lengauer analyze dynamically de-
rived metabolic pathways in the context of gene expression pro-
files [KZL00, ZKZL00]. Their approach is discussed in more detail
in Chapter 3.2.

• Noordewier and Warren point out that the efficient use of gene expres-
sion measurements requires the integration of other sources of biolog-
ical information [NW01].

• The correlation between gene expression profiles and biological func-
tion, assessed in Chapter 3.1 of this thesis, is also being studied by
other groups. Instead of systematic functional annotations, computer
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linguistics is employed to derive statistically significant terms from
literature that describe biological function [OBH+00, MWF+01].

• Ideker et al. demonstrate an integrated approach to build, test, and
refine a model of a cellular pathway using cDNA microarrays, quan-
titative proteomics and protein-protein interactions [ITR+01].

• Grigoriev reports on the relationship between gene expression and
protein interactions on the proteome scale [Gri01].

• Mark Gerstein published a number of papers that discuss different data
integration approaches. His group investigates how gene expression
data relates to protein structure and function [GJ00]. For the study
they also make use of the MIPS functional catalog. Another publica-
tion adresses the relation between gene expression data and protein-
protein interactions [JGG02].

5.3 Relevance of the approach

Before having bioinformatics at hand, biologists already approached prob-
lems of the discussed kind. Instead of employing high-throughput tech-
niques, experiments had to be carried out manually, investigating a single
gene or protein a time. That way, experiments can be planned specifically in
order to find answers to explicit questions. The results are to a very high de-
gree reliable since the significance and reliability of each measurement and
each partial result can be directly judged by the biologist. Whole-genome
or whole-proteome data sets obtained by high-throughput methods cannot
be verified to a comparable extent. They are faced with the trade-off be-
tween sensitivity (not missing too many signals) and selectivity (not getting
too many false positive signals). The reliability of the results is assessed by
automatically run protocols. These are often related with statistical methods
that assign confidence scores to whole data sets as well as single data points.
Bayesian statistics is widely employed. Careful experimental design and the
development of intelligent and powerful analysis software can reduce the
ratio of false results.

Integrative analysis methods support and enhance the analysis of noisy data.
The additional context provided by a second kind of data, especially sys-
tematic annotations of the genes and proteins, helps to distinguish between
real signals and insignificant artificial signals. When interpreting the results
of an integrative analysis method, one has to keep the characteristics and
shortcomings of the underlying experiments and data sets in mind. Implicit
assumptions have to be taken into account, e.g. the discussed assumption of
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a tight correlation of gene expression levels and protein levels that is made
when integrating metabolic pathways and gene expression data. A poten-
tial source of misinterpretation are errors in the databases that are employed.
Some database entries, especially of manually curated databases may be bi-
ased by the personal view of the curators. In many cases, database entries
do not contain information on reliability. An important issue influencing the
quality of a database entry is, whether attributes have been experimentally
verified or whether they are just derived from other database entries that may
themselves be derived from others instead of being experimentally verified.
In other database entries, the underlying experimental data may be incorrect,
e.g. the data that stems from two-hybrid assays that are known to generate a
large number of false positive signals [LS00].

Despite of these weaknesses, the strong sides of high-throughput biology
in combination with an advanced bioinformatics framework are significant.
The whole-genome approaches allow to test, i.e. to prove or to disprove, a
large number of hypotheses. By bioinformatic methods, massive amounts
of large data sets can be mined automatically, often making extensive use
of knowledge stored in biological databases. Data mining is capable of ex-
tracting facts and interesting features from data sets that the scientist did not
explicitely ask for. This enables the scientist to formulate new hypotheses
and to establish predictions that he can test by other high-throughput exper-
iments or by classical laboratory experiments that focus on a single or a few
genes or proteins.

Leroy Hood introduced the termsystems biologyfor the approach to sys-
tematically disturb biological systems and to monitor the gene, protein, and
information pathway responses [IGH01]. Bioinformatics is an inevitable
part of this high-throughput biology. Intelligent combinatorial and integra-
tive bioinformatic methods that interrelate various kinds of data sets either
to verify a hypothesis or to suggest new hypotheses will prove crucial as
post-genome biology moves further towards systems biology.
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Acronyms

BFS breadth first search. Algorithm that visits all nodes or edges of a graph
exactly once. Given a starting node, all adjacent edges are visited first.

DFS depth first search. Algorithm that visits all nodes or edges of a graph
exactly once. Given a starting node, the adjacent edges of the node
are visited. For every adjacent edge, the DFS algorithm is called re-
cursively with the target node of the respective edge as the starting
node.

cDNA complementary DNA. DNA that is synthesized, by reverse transcrip-
tase, from an mRNA template, and therefore has no introns.(1)

CGI Common Gateway Interface. A specification for transferring informa-
tion between a World Wide Web server and a CGI program. A CGI
program is any program designed to accept and return data that con-
forms to the CGI specification. The program could be written in any
programming language, including C, Perl, or Java. CGI programs are
the most common way for Web servers to interact dynamically with
users. Many HTML pages that contain forms use a CGI program to
process the form’s data once it is submitted.(2)

CORBA Common Object Request Broker Architecture. An architecture
that enables pieces of programs, called objects, to communicate with
one another regardless of what programming language they were writ-
ten in or what operating system they are running on. CORBA was de-
veloped by an industry consortium known as the Object Management
Group (OMG).(2)

DCM dilated cardiomyopathy. An acquired disease characterized by the
progressive loss of cardiac contractility of unknown cause. As car-
diac contractile function is progressively lost, there is a decrease
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in cardiac output. Increased blood volume and pressure within the
chambers causes them to dilate, most dramatically evident in the left
atrium and left ventricle. In response to the poor contractility and de-
creased cardiac output, the sympathetic nervous system and the renin-
angiotensin-aldosterone axis are activated. As with degenerative valve
disease, these compensatory mechanisms are initially beneficial, how-
ever their chronic activation becomes deleterious. With time, the en-
larged heart gradually deteriorates, causing congestive heart failure.

DNA desoxyribonucleic acid. A macromolecule formed of repeating de-
oxyribonucleotide units linked by phosphodiester bonds between the
5’-phosphate group of one nucleotide and the 3’-hydroxy group of the
next. DNA appears in Nature in both double-stranded (theWatson-
Crick model) and single-stranded forms and functions as a reposi-
tory of genetic information. The information is encoded in its base
sequence.(1)

dUTP deoxyuridine triphosphate. Substance that is used for the red/green
labeling of cDNA in microarray experiments.

EC Enzyme Commission. The IUPAC-IUBMB Joint Commission on Bio-
chemical Nomenclature (JCBN) is responsible for assigning each en-
zyme a recommended name and number, the EC number, to allow it to
be identified. The list so obtained is published at intervals. Its most re-
cent printed edition isEnzyme Nomenclature, published by Academic
Press for IUBMB in 1992. Several supplements have also been pub-
lished.

EST Expressed Sequence Tag. A partial coding sequence isolated at ran-
dom from a cDNA library; like a sequence-tagged site for mapping
total genomic DNA, used for identification and mapping of coding se-
quences, for discovery of new genes and (by reference to sequence
data banks) for discovery of identities with other genes. (Venter, C.
(1993)Nature Genet.4:373-380.(1)

ENZYME Enzyme nomenclature database. ENZYME is part of the Ex-
PASy database collection.

EUROFAN European Network for Functional Analysis of Yeast. A net-
work of a large number European biochemical laboratories organized
in 23 nodes. The project is focused on the systematic deletion of all
the genes of yeast. The knockout strains are evaluated in order to re-
veal altered characteristics and possibly assign a function to unknown
gene sequences. MIPS is a participant of EUROFAN.

ExPASy Expert Protein Analysis System. ExPASy contains a number of
databases produced at the Swiss Institute of Bioinformatics (SIB) in
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Geneva, such as SWISS-PROT, PROSITE, SWISS-2DPAGE, SWISS-
3DIMAGE, ENZYME, CD40Lbase and SeqAnalRef, as well as other
cross-referenced databases.

GUI Graphical User Interface. A program interface that takes advantage
of the computer’s graphics capabilities to make the program easier to
use. Well-designed graphical user interfaces can free the user from
learning complex command languages.(2)

HTML Hyper Text Markup Language. The authoring language used to cre-
ate documents on the World Wide Web. HTML defines the structure
and (to a certain extent) the layout of a Web document by using a
variety of tags and attributes.(2)

HTTP Hyper Text Transfer Protocol. The underlying protocol used by the
World Wide Web. HTTP defines how messages are formatted and
transmitted, and what actions Web servers and browsers should take
in response to various commands.(2)

HTx orthotopic heart transplantation. Surgical removal of the heart and its
replacement with a new donor heart precisely in the place where the
old one pumped blood.

KEGG Kyoto Encyclopedia of Genes and Genomes. KEGG is an initia-
tive of the Institute for Chemical Research, Kyoto University, Japan.
KEGG is available atwww.genome.ad.jp/kegg/ .

LEDA Library of Efficient Data Structures and Algorithms.

LIGAND Kyoto Chemical Database of Enzyme Reactions.

MIPS the Munich Information Center for Protein Sequences. MIPS is part
of the GSF, Department IBI, Neuherberg, Germany. The group has
been located at the Max-Plack-Institute f. Biochemistry, Martinsried,
Germany, until March 2001.

mRNA messenger ribonucleic acid. The RNA that contains the coded in-
formation, as sequences of codons, for protein synthesis.(1)

PEDANT Protein Extraction, Description and ANalysis Tool.

ORF open reading frame. One of three possible reading frames in which
an mRNA is potentially translated into protein. In analysis of a DNA
sequence, an ORF is characterized by the sequence of nucleotides that
when transcribed into mRNA results in a series of triplet codons that
is not interrupted by a translation termination codon.(1)



128 Appendix A. Acronyms

PCR polymerase chain reaction. A technique to amplify a specific re-
gion of double-stranded DNA. An excess of two amplimers, oligonu-
cleotide primers complementary to two sequences that flank the region
to be amplified, are annealed to denatured DNA and subsequently
elongated, usually by a heat-stable DNA polymerase fromThermus
aquaticus(Taq polymerase). Each cycle involves heating to dena-
ture double-stranded DNA and cooling to allow annealing of excess
primer to template and elongation of the primers by theTaq poly-
merase; the number of amplicons, i.e. the target sequence fragments
between flanking primers, doubles with each cycle.(1)

RMI Remote Method Invocation. A set of protocols being developed by
Sun’s JavaSoft division that enables Java objects to communicate re-
motely with other Java objects. RMI is a relatively simple protocol,
but unlike more complex protocols such as CORBA, it works only
with Java objects.(2)

RNA ribonucleic acid. A macromolecule formed of repeating ribonu-
cleotide units linked by phosphodiester bonds between the 5’-
phosphate group of one nucleotide and the 3’-hydroxy group of the
next. RNA has several biological functions, most of which depend
upon its ability to form sequence-specific interactions with DNA.
RNA comprises the genome of some viruses.(1)

SAGE Serial Analysis of Gene Expression.

SOM self-organizing map. The SOM was invented by Teuvo Kohonen. It
is a self-organizing neural network providing a mapping from some
high-dimensional data space into the two-dimensional discrete space
of the map. The map is organized in a regular square grid with a
neuron on every grid crossing.

TCA tri-carbon acid cycle. A central pathway of intermediary metabolism
involved in the degradation of glucose.

VAD Ventricular Assist Device. A left ventricular assist device is a mechan-
ical pump-type device that is surgically implanted. It helps to maintain
the pumping ability of a heart that cannot effectively work on its own
due to pathological procedures. The VAD is sometimes referred to as
abridge to transplant.

WIT What Is There?WIT is a world wide web-based system to support the
curation of function assignments made to genes and the development
of metabolic models.

XML eXtensible Markup Language. A recommendation of the World Wide
Web Consortium (W3C) (www.w3.org ), XML is a subset of SGML.
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XML is a meta-language, which enables a general availability and
interchange of information that is structured according to its content
(www.xml.org ).

Some of these definitions origin from (1) the David M. Glick
Glossary of Biochemistry and Molecular Biology(http://
db.portlandpress.com/ glick/ search.htm ), (2) the Webo-
pediaOnline Dictionary for Computer and Internet Technology (http://
webopedia.internet.com/ ) or the WWW pages of the described
institutions and databases. The respective literal citations are marked.
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