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Chapter 1

Introduction

The quest for the fundamental building blocks and laws of thevorld surrounding
us has been a driving force to mankind since its early days. &hdea that nature
consists of small, invisible constituents was rst expressl by the ancient Greek
Democritus in the fth century BC. It was not until the ninetee nth century AD
that this idea was picked up again and embedded in a scienti context. Over
time experiments discovered ever smaller substructurespifn atoms to electrons
and hadrons, and thereon to quarks. From a theoretical poirdf view, the aim
is to embed these experimental results in a model which is le@kson as few
assumptions as possible and can explain all other physica¢@s.

The currently established model which performs this task ithe Standard
Model of elementary particle physics], 2]. It is one of the best-tested theories
of contemporary physics. All known elementary particles araccommodated in
this model. Solely the scalar Higgs boso#][is included in the theory, but could
not be found in experiments so far4]. It is this particle which is assumed to be
responsible for the masses of the fermions and weak gaugeoss

In spite of its success, the Standard Model also has its insaiencies, and
new theories are searched for, which might provide an eventiee description
of nature. One of the most popular ones is supersymmetrg]] It extends the
two, fundamental symmetries of the Standard Model, the Potae group and
the non-Abelian gauge groupSU(3)c SU(2). U(1)y of strong, weak and
electromagnetic interactions, by an anticommuting operar which induces an
equal number of bosonic and fermionic states.

The search for supersymmetry and the Higgs boson are mainkasf the Large
Hadron Collider (LHC) at CERN. It will start operation in mid -2007 and provide
a wealth of data. To verify or falsify theories and to relatehis data to parameters
of a model, it is necessary to calculate precise theoretigakdictions, which match
the accuracy which LHC will be able to obtain. As both the Stadard Model and
its supersymmetric extension are de ned as perturbative #pries with a series
expansion in Planck's constant-, the inclusion of e ects beyond leading order is
often necessary.
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In this thesis production processes for Higgs bosons in théa&dard Model
and its supersymmetric extension, the Minimal Supersymmet Standard Model
(MSSM) [6], at hadron colliders are considered. The calculations aperformed
at the one-loop level and include the SUSY-QCD correctionse. corrections with
squarks and gluinos running in the loop, for the MSSM Higgs Bons.

The outline of this thesis is as following. First, a short imoduction to the
Standard Model (SM) is given in chapte2. Special emphasis is put on the Higgs
sector of the SM. Here also a possible extension includingiher-order operators
is discussed. Despite being a well-tested theory, the Stamdaviodel also has its
shortcomings, which are mentioned in the last section of thichapter.

Out of the possible extensions of the Standard Model whichraito solve these
de cencies, supersymmetry is the most popular one, as it ippealing from both
an experimental and a theoretical point of view. Its discugsn in chapter 3 of
this dissertation starts with the basic principles of the tieory. After the necessary
ingredients to build a phenomenologically viable model aravestigated, the focus
is put on the simplest supersymmetric extension of the Staadd Model, the
Minimal Supersymmetric Standard Model (MSSM) ¢]. The Lagrangian of the
MSSM after supersymmetry breaking is written down and the pécle content of
the model is explained.

Chapter 4 is concerned with the methods of regularization and renorrhza-
tion. The rst one is necessary to cancel the divergences whi appear in the
calculation of one-loop cross sections, and renders the diyales nite. Renor-
malization then restores the physical meaning of the calated cross sections.
After a general introduction to the concepts, the renormatiation of the strong
coupling constant ¢ in the way it is used in this thesis, is presented. The chap-
ter concludes with a discussion of the bottom-quark Yukawaocipling. Here the
mass counter term introduces large one-loop correctionsttte cross section{, 8].
They are universal, so they can be included in an e ective teelevel coupling.
Additionally, they are a one-loop exact quantity, so a resumation to all orders
in perturbation theory is possible.

The next chapter deals with the calculation of hadronic cr@ssections. The
underlying theory, QCD and the parton model, is brie y introduced. Then ex-
plicit formulae for the calculation of integrated and di erential hadronic cross
sections are given. An important technique to improve the oss-section ratio
of signal over background processes and to enable the ret¢nrtion of particu-
lar event-types in the detector is the application of cuts tonal-state particles.
The implementation of these formulae in computer code is denn a program,
called HadCalc, which is developed by the author of this thesand which is
lastly presented. It is based on the tools FeynArts9 10, FormCalc [11, 12 13
and LoopTools L1, 14, 15. The latter is extended to include now the ve-point
loop integrals, such that a complete one-loop calculationf@ ! 3 processes is
possible. HadCalc completes the tool set to provide a largehutomated way of
calculating hadronic cross sections.



In the subsequent chapters, this program is applied to the alation of pro-
cesses which contain supersymmetric Higgs bosons in the Irdate. The full
one-loop SUSY-QCD corrections, i.e. corrections with squa and gluinos run-
ning in the loop, are included in the numerical results.

The associated production of a charged Higgs boseéh and aW boson via
bottom quark{anti-quark annihilation is studied in chapter 6. The discovery of a
charged Higgs boson would be a clear sign of physics beyond 8tandard Model.
The above-mentioned universal corrections to the bottomugrk Yukawa coupling
are expected to yield a numerically large and dominant conbution for certain
regions of the MSSM parameter space, but the size of the SUSCGD corrections
in the other regions is not known and requires a full one-loogalculation, which
is presented in this thesis.

In chapter 7 the production of the lighter CP-even neutral Higgs bosom®
via vector-boson fusion is investigated. This process hacl@ar nal state of two
jets in the forward region of the detector and forms an impoant h®-production
mode with small theoretical uncertainties. For the correspnding Standard Model
process with a Standard Model Higgs bosad in the nal state, the Standard-
QCD corrections are already known. They are the same as fbf-production
in the MSSM up to the replacement of the Higgs coupling. In th&SSM case
additional SUSY-QCD corrections appear. In this thesis theomplete one-loop
SUSY-QCD corrections are calculated and their e ect on theadtal cross section
is discussed. In the last section of this chapter a backgrodimo the vector-boson-
fusion processh®-production with two outgoing jets and one or two gluons in
the initial state, is considered and its numerical impact stdied.

The SUSY-QCD corrections toh®-production in association with heavy, i.e.
bottom or top, quarks are presented in chapte8. Besides being additional dis-
covery channels for the Higgs boson, these processes cao bk used to extract
the respective quark Yukawa couplings from the data. This &k can only be per-
formed if the theoretical uncertainty of the cross sectiorsismall. The Standard-
QCD corrections to these processes are available in the fa&ure and greatly
reduce the dependence on the renormalization and factorima scale. Addi-
tionally, there are SUSY-QCD corrections which can also \ieklarge corrections
and must be taken into account. Therefore, a full calculatio of the one-loop
SUSY-QCD corrections is necessary, which is presented inglaissertation.

Lastly, the possibility to measure the quartic Higgs couptig at hadron collid-
ers is analyzed in chapte®. For this purpose triple-Higgs production via gluon
fusion is studied at the leading one-loop order. In this chagr not the MSSM
is used as the underlying model, but an e ective theory baseah the Standard
Model where the trilinear and quartic Higgs self-couplingare left as free param-
eters.

In appendix A the numerical values of the Standard Model parameters, witic
were kept xed for all calculations in this thesis, and of theMSSM parameters
for the reference point SPS1%q16] are noted. AppendixB contains the de ni-
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tions of mathematical quantities which are used throughouthe dissertation, and
appendix C the parametrization of the phase space for two- and three-fecle
nal states.

In loop calculations integrals over the loop momentum appeavhich can be
solved analytically. The de nition of these integrals is gien in appendixD. Spe-
cial attention is paid to the ve-point integrals which have not been implemented
in the package LoopTools1l, 14, 15 before. The numerical method of Gaussian
elimination, which is used to further improve the stability of the loop-integral
calculation, is presented in appendiE.

Finally, the complete user manual of HadCalc is attached inppendix F. The
program itself can be obtained from the authdr.

Lemail: mrauch@mppmu.mpg.de



Chapter 2

Standard Model

2.1 Structure of the Standard Model

The Standard Model (SM) of elementary particle physicsl| 2] is one of the best
tested theories in physics. It consists of an outer symmetif the Poincae group
of space-time transformations and a non-Abelian gauge gmuof the inner direct
product SU(3)c SU((2). U(1)y. SU(3)¢ is the color gauge group and describes
the strong interactions by the theory of QCD. The productSU(2), U(1)y spec-
i es the electroweak interactions which unify the electroragnetic and weak in-
teractions. The Higgs mechanism, which will be described chapter 2.2, breaks
this symmetry spontaneously, thereby leaving &(1)q symmetry of electromag-
netic interactions which is described by QED. The one remaing interaction,
gravitational interaction, is beyond the scope of the SM. Irfact, a consistent
theory which formulates general relativity in terms of a quatum eld theory
is not known until today. At the center-of-mass energies udeat present or at
planned future colliders, which are maximally of the orderfaa few hundred TeV,
the e ects due to gravitational interactions are negligiby small. The Standard
Model therefore provides an excellent approximation to desbe collider physics.

The fermionic sector of the SM consists of spia}w-leptons (e , ,& ,)and
quarks (u,c,t,d,s,b which appear in three di erent generations. The particlesof
each generation have the same quantum numbers but a di erenbupling to the
Higgs eld which will be introduced below. Left-handed ferrions transform as a
doublet underSU(2), where the upper component forms the neutrinos §, , )
and up-type quarks (,c,t), respectively, and the lower component the electron-
type leptons (g, , ) and the down-type quarks (,s,b). Right-handed fermions
transform as a singlet underSU(2), the only exception being that there are no
right-handed neutrinos at all. For each group generator a spl gauge boson
exists which transforms under the adjoint representationfdhe respective group.
Consequently there are eight gauge bosons 8tJ(3)c, the gluons, three gauge
bosons forSU(2),, the W bosons, and one folJ(1)y, calledB.

5
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Experiments show that not all gauge bosons are massle$g|[ Adding an ex-
plicit mass term for these gauge bosons is not possible fonoemalizable quantum
eld theories. Such terms are forbidden due to the postulatthat the Lagrangian
should be invariant under gauge transformations. Otherwgsthe resulting theory
would be non-renormalizable. For this reason another way giving masses to
the gauge bosons is needed. This is achieved by the Higgs naacbm which will
be described in the next chapter.

2.2 Higgs mechanism

2.2.1 Standard Model Higgs sector

As mentioned above, it is a di cult task to construct a gauge heory which is
renormalizable and has massive gauge bosons. In the Stamtidtodel this prob-
lem is solved by the Higgs mechanisn3][ The idea is to add additional terms to
the Lagrangian, such that the Lagrangian is invariant undethe SU(2), U(1)y
gauge transformations with a ground state which does not staathis invariance.
To realize this idea one introduces a new complex scalar elthe Higgs eld

, Which behaves like a doublet underSU(2), gauge transformations and has
hyperchargeY = +1. Its ground state acquires a vacuum expectation value,
such that a U(1)o symmetry of electromagnetic interactions is preserved. Eh
electromagnetic charge is de ned aQ = I3+ % wherel 3 is the quantum number
of the third component of the weak isospin operator. Therefe only the lower
component of the doublet can have a vacuum expectation valuas assigning a
vacuum expectation value to the upper component would alsadak the U(1)q.
The Higgs eld can be parametrized as

_t G* (x) .
(0= opy = ve A HE)+IGX) @1)
where G* is a complex andH and G° are two real scalar elds. The Higgs
potential, i.e. the non-kinematic part of the SM Lagrangiarwhich contains only
Higgs elds, can be written as

y 2.

ﬁ y + ﬁ
2 2v2
The breaking of a continuous global symmetry leads to masstescalar par-
ticles, the Goldstone bosonslB]. One Goldstone boson occurs for each broken
generator of the symmetry group. In case of a broken continus local symme-
try, like a gauge symmetry, these Goldstone bosons are ungigal. They can be
eliminated by an appropriate choice of gauge, the unitary g@e. Their degrees of
freedom are \eaten up" by the gauge bosons which become massiOnce \eaten
up"”, the Goldstone bosons form the longitudinal modes of thgauge bosons.

V()= (2.2)
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For electroweak symmetry breaking there are three broken mgerators leading to
three \would-be" Goldstone bosonsz and G°. Only the eld H in eq. (2.1) is
physical. Itis the eld of the Higgs boson which has not beeniscovered yet. Its
massmy is a free parameter of the theory. It is bounded from below byxper-
imental searchesny 1144 GeV [19 and from above by electroweak precision
data where a best t yieldsmy = 114*% GeV [20.

After electroweak symmetry breaking the gauge boson triglév';i =1 :::3;
of SU(2). and the gauge boso® (U(1)y) no longer form the mass eigenstates
of the theory. The mass eigenstates are obtained by rotatien

1 .
W :19—E Wl iw?; Z =cyW? syB; A =syW3+owB: (2.3

sw and ¢y denote the sine and cosine of the electroweak mixing anglaet\Wein-
berg angle. The photon eldA stays massless and can be interpreted as the
gauge boson of the remaining)(1)q symmetry of electromagnetic interactions.
The electromagnetically neutralZ and the chargedW bosons receive a mass,
which is proportional to the vacuum expectation value of thédiggs eld:

e e
250 0m Vv; My = P5m % (2.4)
wheree is the electromagnetic unit charge. A% and Z have already been found
in experimental searches these equations determine the Weerg angle and the
scale of electroweak symmetry breaking =247 GeV.

The Goldstone bosonsz and G° of eq. (2.1) are absorbed by theW and
Z bosons, respectively. In this thesis the 't Hooft-Feynmanagge is used which
has technical advantages for loop calculations since theugge boson propagators
in this gauge take a simpler form. In the 't Hooft-Feynman gage the Goldstone
bosons appear explicitly as internal propagators with a masqual to that of the
associated gauge boson. For external propagators their taoution is accounted
for in the longitudinal component of the polarization vecto of the respective
gauge boson.

In analogy to the inclusion of massive gauge bosons into a cemalizable
guantum eld theory there is no possibility to introduce femion mass terms
directly. To generate fermion masses one introduces Yukawderactions which
couple the fermions to the Higgs eld

mz =

L vukewa = LJ L ery :j] Q ‘uUry :j] Q, dry + hic: (2.5)
with
0
‘=i, = . (2.6)
which is also anSU(2), doublet but has hyperchargeY = 1. The vacuum

expectation valuev in the decomposition of (eq. (2.1) leads to terms which
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are bilinear in the fermion elds, i.e. to mass terms for thedrmions. The }’
are 3 3 Yukawa coupling matrices. They parameterize the massestbé quarks
and further mixing e ects in the quark sector.

2.2.2 Higher-dimensional operators

The realization of the Higgs sector in the SM is minimal in thesense that it
contains just enough additional parameters and elds to gir a consistent the-
ory of the particles known nowadays. In extensions of the SMiditional terms
are possible, which lead to the following general parameization of the Higgs
potential with one doublet [ 21, 22:
X ~ 2 2+n 2 2
vo= " & Y = v Y vo L0 e

n 0

The expansion forn = 0 on the right-hand side is identical to the SM Higgs

potential eq. (2.2) with —p = % up to the constant term which is not a physical
observable and leaves the equations of motion unchanged. eTadditional terms
for n > 0 contain operators of mass dimension 6 and higher. Such texiare non-
renormalizable but can be considered as e ective terms of axtended theory.
They are suppressed by the scale which is the scale where nehysics sets
in. The only requirement eq. 2.7) has to ful Il is that its highest non-vanishing

coe cient 7 is positive so that the potential is bounded from below.

2.3 Problems of the Standard Model

Despite its large success there are both experimental and tnetical hints that
the SM is only the low-energy limit of a more general theory.

An experimental clue is the measured value of the anomalousagnetic mo-
ment of the muon R3]. This observable is known to an extremely high precision
from both experiment and theory, where the uncertainty stes from unknown
higher-loop contributions and experimental errors on thenput parameters. The
deviation from the SM prediction is about 0.7-3.26 standardeviations R4].

Another evidence comes from the dark matter problem in the uwverse R5|.
Looking at the rotation of galaxies as a function of the distace from the cen-
ter shows that for large distances the circular velocity isanstant, whereas the
observed radiating matter would result in a decrease of theelocity with the
distance. This implies that there is some fraction of mattewhich is contribut-
ing to the overall mass density of the galaxy, but not emittig electromagnetic
radiation, hence the namedark matter. Precision measurements of the cosmic
microwave background 26] yield an average density of the universe that is very
close to the so-called critical density, where the curvaterof the universe van-
ishes. Combining these data with our current understandinfpow the universe
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emerged and evolves requires that the total matter contentf ¢the universe which
contributes to this density is about 27%. The rest is some for of energy, so-
called dark energy Of these 27% of matter content, only about 4% of the total
matter content consist of the usual baryonic matter, i.e. ofmatter built up of
protons and neutrons. The remaining 23% must be made of noaslyonic, only
weakly-interacting matter. The only particles in the SM whch ful Il this require-
ment are the neutrinos. Current upper limits on their massef7] imply however
that they cannot account for the whole required dark matter dnsity.

One of the theoretical clues is the uni cation of coupling agstants in Grand
Uni ed Theories (GUT), where all three SM gauge groups merge a single
gauge group. Possible GUT gauge groups a&J(5) [27], which is experimentally
not viable due to a too large proton decay rate28] or SO(10) [29. Via the
renormalization group equations the coupling constants dhe three SM gauge
groups can be written as running coupling constants which gend on the energy.
GUT theories predict that at a high energy scale, typically bthe order Mgyt
10 GeV, all three gauge couplings unify. Such a uni cation doesot occur in
the SM, even if one takes into account that new particles at enGUT scale might
slightly modify the running.

Another hint is the so-called hierarchy problem. If one coimders one-loop cor-
rections to the mass of the Higgs boson quadratic divergescappear B0. These
divergences can be erased by renormalization. One nds thtte corrections are
of the order of the largest mass in the loop. If the SM is indedtle ultimate the-
ory up to arbitrary high energies, this heaviest particle ishe top quark and the
corrections are well under control. But if the SM is replacetly a new theory at
higher energies, like a Grand Uni ed Theory which uni es theelectroweak with
the strong interactions or a quantum theory which includesrgvity, new particles
with masses of the order of this new theory will appear, typally with masses of
the Planck scaleMpjanek 10" GeV. In such new models extreme ne-tuning is
necessary to get a Higgs mass of the order of the electroweels, as is predicted
by electroweak precision dataZ0]. In particular there is no symmetry, neither
conserved nor broken, which would explain such a ne-tuning a natural way.

The last problem concerns the neutrino sector. Neutrinos arassumed to be
massless in the SM. It is known from the observation of neutrd oscillations B1]
that neutrinos possess a tiny mass. There is no conceptuabptem to introduce
such a mass in the SM. As neutrinos are not of importance foréhwork presented
in this dissertation the exact formulation of the neutrino gctor can be ignored.

To solve the problems mentioned above various models havesheproposed.
The model widely believed to be the most promising candidate supersymmetry.
This extension of the Standard Model was studied in this thes and will be
introduced in the following.






Chapter 3

Supersymmetry

3.1 Basic principles

It was shown by Coleman and Mandula32] that combining space-time and in-
ternal symmetries is only possible in a trivial way. In the poof of this theorem
only general assumptions on the analyticity of scatteringraplitudes and the as-
sumption that the S-matrix is invariant under Lorentz transformations are made.

Later it was realized B3] that besides of Lie-algebras, which are de ned via
commutation relations, one can also use so-called supegigps, which also con-
tain anticommutators. Then a new type of operatorLQ is allowed which has the
following properties B, 34, 35|

QA;QB =2 _P AB
QMQP = Qa;Qg =0
P;Q” = P;Qa =0 (3.1)

The supersymmetry generators) and Q carry Weyl spinor indices , , and
—which run from 1 to 2, where the undotted indices transform wther the (0 %)
representation of the Poincae group and the dotted ones wer the (%;0) con-
jugated representation. The indiceA and B refer to an internal space and run
from 1 to a numberN 1. For N > 1 chiral fermions are not allowed 36)].
These are necessary to construct the observed parity violan via SU(2)., where
left- and right-handed fermions carry di erent quantum nunbers. Therefore only
(N = 1)-supersymmetries are relevant for phenomenologicallgteresting energy
ranges and in the following only such supersymmetries willebconsidered. P
denotes the generator of Lorentz translations, the energgomentum operator,
and = (1; ' ) is the four-dimensional generalisation of the Pauli matces.

The rst line of eq. (3.1) shows the entanglement of space-time symmetry and
the internal symmetry. The last line indicates the invariaiwe of supersymmetry
under Lorentz transformations.

11
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As the operators anticommute with themselves, they have Hahteger spin
according to the spin-statistics theorem. A detailed caldation shows that their
spin is always%. Therefore we have

Qjboson = jfermioni Qjfermioni = jboson : (3.2)

The one-patrticle states belong to irreducible represenians of the supersym-
metry algebra, the so-called supermultiplets. Each supeuttiplet includes both
bosonic and fermionic states which are called superpartiseto each other. They
can be transformed into each other by applyin@ and Q.

Each supermultiplet contains the same number of bosonic aridrmionic de-
grees of freedom. For example the simplest supermultipletdorporates a Weyl
fermion with two helicity states, hence two degrees of freeth. Its bosonic part-
ners are two real scalars each with one degree of freedom, aehcan also be
combined into one complex scalar eld. This is called the stz or chiral super-
multiplet.

The next possibility is a spin-1 vector boson. To guaranteéhé renormalis-
ability of the theory this has to be a gauge boson which is mdsss and contains
two degrees of freedom. It follows that the partner is a magss Weyl fermion.
A spin-2 fermion would render the theory non-renormalisable, so it ust be a
spin-% fermion. This is called a gauge or vector supermultiplet.

From eq. 3.1 follows

[PP:Q]=PP:;Q =0 : (3.3)

P P s just M?, the squared mass of a state in the supermultiplet. Applying
the supersymmetry operator therefore does not change the ssaof the state and
all states in a supermultiplet have the same mass if supersymetry is unbroken.
This will be important later on when the Lagrangian is constucted.

3.2 Super elds

Starting from the supermultiplets one can construct supeelds. To simplify the
notation Grassmann variables are introduced. These are acvmmuting numbers
whose properties are de ned in chapteB.3. The superalgebra can now be written
in terms of commutators n

Q; Q = Q_=Q_~=0: (3.5)

In general a nite supersymmetric transformation is given ¥ the group ele-
ment

Q;Q — =2 P (3.4)
h

Gx: ; =¢dfxPr Qo+ Qg . (3.6)
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in complete analogy to a general non-Abelian gauge transfoation € =T° with
the group generatorsT2. P , Q and Q- are the generators of the supersym-
metry group. The coordinates can be combined into a tuple wth represents a
superspace coordinatg = x ; ; . The set of all possible coordinates spans
the superspace.
The elds on which these generators operate must then also befunction of

and besidesx . These are the so-called superelds X ; ; ). In superspace
one can obtain an explicit representation o) and Q- as di erential operators.
For that purpose one considers a supersymmetry transforman of

Gly;; )(Ox ;5 ) (3.7)

Taking the parameters as in nitesimal and performing a Taybr expansion one
obtains the following explicit representation of the supeslymmetric generators

@ @

Q = é%+i - (3.9)
P = |@—@i: (3.10)

For the further treatment it is su cient to consider only in nitesimal super-

symmetric transformations which have the following form
@ @ . @
; X, )= —=+ — 1 — X5 ) 3.11

sl )( ) 2’ @ @x ( ), (3.11)
where and are also Grassmann variables. Contracted indices which are
summed over have been suppressed in this equation.

Analogously to the covariant derivative in gauge theoriesre also introduces
covariant derivativesD and D _ with respect to the supersymmetry generators.
These derivatives have to be invariant unde® and Q, which is equivalent to the
postulate

fD ;Q g=fD ;Qg=fD ;Q g=fD ;Q g=0: (3.12)
Thus the covariant derivatives are
@ . @
D = —+1i — 3.13
@@ B @X@ (3.13)
D = — — 3.14
e ax (3.14)

From egs. 8.8 3.9, 3.13 3.14 one can also deduce that the Grassmann variables
and have spin % while D and Q have spin +%.
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Super elds can be expanded into component elds. The genérmaxpansion of
super elds in terms of Grassmann variables is

(x5 )=f(x)+ )+ (x)
+ mXX)+ nXx)+ v (X) (3.15)
+ (x) + (x) + d(x):

Due to the anticommuting properties of Grassmann variableshis expansion is
complete, i.e. it truncates with the last shown term.

Up to now all expressions have been written out for general ser elds. To
construct a supersymmetric Lagrangian only two special tygs of super elds are
needed. They are irreducible representations of the supgmsmetry algebra. One
obtains them by imposing covariant restrictions on a genekauper eld. In this
way they still span a representation space of the algebra boave less components.

3.2.1 Chiral Super elds

One possibility are chiral super elds. They are de ned by aplying the covariant
derivative D _on the scalar super eld as de ned in eq. 3.19

D (2)=0: (3.16)

The solution of this di erential equation leads to a chiral siper eld which can be
expressed in general component elds as

= A(X)+ i @A(x)+i—L1 @ @A(X)

+ "3 (x) p%@ (x) + F (x):

(3.17)
A is a complex scalar eld, a complex Weyl spinor and= an auxiliary complex
scalar eld which has mass dimension two. It transforms undesupersymmetry
transformations into a total space-time derivative and theefore does not represent
a physical, propagating degree of freedom. The product oficll super elds is
again a chiral super eld. For two chiral super elds ; and , this follows directly
from the product rule for derivatives

D (12=D 1 2+ 1D , =0: (3.18)

Analogously one can de ne an antichiral super eld by the equation
D (2)=0: (3.19)

In particular the hermitian conjugate Y of a chiral super eld is an antichiral
super eld.
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3.2.2 \Vector Super elds

The second special type of super elds are vector super eldShey are derived
from a general scalar super eldV by demanding it to be real:

VY(z) = V(2): (3.20)

The name vector super eld stems from the fact that in the expasion a real vector
eld appears as a component eld and that these elds are useds generalized
gauge elds when supersymmetric gauge theories are constied.

The complete expansion in terms of component elds is

VG )=Co+i () 0 )+ -

; MEOTINGI 5 M) NGO
VO 0rs @0 T (03 @ ()

+2 D+ ,0@@C(K) :
(3.21)

C,D, M andN are scalar elds andv is the vector eld which gives the name
to this type of super elds. They all have to be real to ful ll eq. (3.20. and
are Weyl spinors.

For the vector super eld we can now de ne a supersymmetric gge transfor-
mation which is in the general non-Abelian case described by

eVl eld egVegs (3.22)
where denotes again a chiral super eld. This simpli es in the Abelian case to
VI V+i y (3.23)

Using this gauge transformation we can simplify eq.3(21) and choose
X)=C(x)=M(XxX)= N O (3.24)

thereby eliminating unphysical degrees of freedom. This alte of gauge is called
Wess-Zumino gauges]. As we have used only three of the four bosonic degrees
of freedom in the \ordinary" gauge freedom of an Abelian gage group is still
present and the Wess-Zumino gauge is compatible with the wHugauges.

The vector super eld is now simpli ed to

V = v (X)+ i (x) i (x) + % D (x) (3.25)

with the scalar auxiliary eld D with mass dimension two. As in the case of chiral
super elds this auxiliary eld turns into a total derivativ e under supersymmetry
transformations and does not contribute to the propagatinglegrees of freedom.

Now we have all building blocks to construct a supersymmetriextension of
the Standard Model.
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3.3 A Supersymmetric Lagrangian

A supersymmetric Lagrangian requires the action to remainnchanged under
supersymmetry transformations

e d™L(x)=0 (3.26)

This requirement is ful lled if the Lagrangian L turns into a total space-time
derivative under supersymmetry transformations. A compason with the trans-
formation properties of chiral and vector super elds showshat the F and D
terms of eq. B.17 and (3.21) show exactly this behavior. Schematically the
Lagrangian can be written sémply as

L= d’Lege+ d®d?®Lp : (3.27)

As was noted already in the previous chapter the product of wvchiral super-
elds is again a chiral super eld. Explicit multiplication of the component elds
yields a term proportionalto ; ; which has the form of a fermion mass term. The
product of three chiral super elds which is by induction alse a chiral super eld
contains terms of the type ; jAx which describe Yukawa-like couplings between
two fermions and a scalar. Products of four or more chiral sep elds would lead
to terms with a mass dimension greater than four and yield a Iggangian which
is no longer renormalizable. Thus the terms which can conlriite to a supersym-
metric Lagrangian can be written in a compact way with the suerpotential

1 1
W( )= L B Bl T A R (3.28)
The product Y of a chiral super eld with its hermitian conjugate is self-
conjugate. Therefore it is a vector super eld according tolte de nition eq. (3.20

and a possible %andidate for a contribution td_p:
d>d*> Y=FF A@Q@@A' i @ : (3.29)

The expression contains terms for the kinetic energy of botime scalar and the
fermionic component. The auxiliary eldsF do not have any kinematic terms so
they can be integrated out.

Gauge interactions are introduced by a supersymmetric gaadization of the
\minimal coupling” Y ! Ye?V with a vector supereld V with V = Tav?,
whereT? are the generators of the gauge group. Written in componenelds one
can replace the ordinary derivatives by covariant derivatiesD = @ + igv@Ts,.

The terms for the kinetic energy of the gauge elds can also expressed in
terms of a superpotential

1
W = 7 DD e VD &9V (3.30)
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The product W,W? is gauge invariant and also a chiral super eld, so its -term
can appear in the supersymmetric Lagrangian. Again only thgauge bosons and
their superpartners, the gauginos, obtain kinetic terms, Ut not the auxiliary
elds, so we can eliminate them.

Therefore the most general form of a supersymmetric Lagraag has the

following form:

Z Z
1
L susy = d? @Wawa + W () +h.c. + d? d? ye?ov
(3.31)

As the two auxiliary elds F and D do not have any terms for the kinetic
energy, their equations of motion have a simple form

@ @
= =0 — =0: 3.32
@F R (3:32)
Solving these equations for thé& and D elds
@WA)) 0
Fi = D.= gATIA 3.33
@A g i ( )

and inserting these expressions into eq3.3]) the Lagrangian can be completely
expressed in terms of physical elds.

3.4 Supersymmetry breaking

As shown in eq. 8.3 all members of a supermultiplet must have the same mass.
This means if the Standard Model was supersymmetrized by juseplacing the
elds with their respective super elds there would exist fo example a supersym-
metric partner to the electron with a mass of 511 keW£. This partner particle
is a boson with spin 0, but otherwise with the same quantum nubers as the
electron, i.e. particularly with a charge of one negative eimentary charge. Such
a particle would have been discovered experimentally a lotigne ago.

This problem can be circumvented by requiring that supersymetry is bro-
ken. In this way one can give a mass to the supersymmetric pagrs which is
beyond the current experimental limits. In analogy to spor@neous symmetry
breaking in the electroweak sector the Lagrangian itself shld be invariant un-
der supersymmetry transformations, but have a vacuum expgtion value which
is not invariant under such transformations. For supersymetry this problem is
somewhat complicated because additional constraints apgrewhich have to be
ful lled simultaneously. Such a constraint follows immedately from the de nition
of the supersymmetry algebra eq.3.1) which implies

H o PP= 7 QO+ Qi+ Qo+ QuQ: O (3.34)
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Applying the Hamiltonian H onto a statej i leads to the result that supersym-
metry is broken if neither theD nor the F term can be made zero simultaneously.

The Fayet-lliopoulos mechanism 37] achieves supersymmetry breaking by
adding aD term to the Lagrangian which is linear in the auxiliary eld, while
O'Raifeartaigh models 88] do this via chiral supermultiplets and a superpotential
such that not all auxiliary elds F can be made zero at the same time. Both mech-
anisms are phenomenologically not viable because they caad to color breaking
or the breaking of electromagnetism, or need an unacceptabhe-tuning [39].

Hence one expects that supersymmetry is not broken directlyy renormal-
izable tree-level couplings, but indirectly or radiativey. For these purposes one
introduces a hidden sector of particles in which supersymmng is broken and
which has only small or no direct couplings at all to the normavisible sector.
The two sectors however share some common interaction whiotediates the
breaking from the hidden to the visible sector and leads to ddional super-
symmetry breaking terms. Two possible scenarios for this mhation are widely
discussed in the literature 40]. The rst one is gravity-mediated supersymmetry
breaking. At the Planck scale gravity is anticipated to becme comparable in
size to the gauge interactions. The mediating interactiorsiassociated with the
new gravitational interactions which enter at this scale. Bcause of the avor
blindness of gravity these gravitational interactions arexpected to be avor-
blind as well. A second possibility is that the mediating ineéractions are the
ordinary QCD and electroweak gauge interactions. They coeat the visible and
the hidden sector via loop diagrams involving messenger piales. This scenario
is called gauge-mediated supersymmetry breaking.

For a phenomenological analysis it is often not relevant whahe exact way
of supersymmetry breaking is but only which additional terra in the Lagrangian
are generated. Thereby the cancellation of quadratic divgences should remain
valid, such that the solution of the naturalness problem oftte Standard Model
is not lost. Terms which do not spoil the cancellation are cl&d soft supersym-
metry breaking terms. It was shown 41] that only the following terms are soft
supersymmetry breaking up to all orders in perturbation thery:

scalar mass terms mﬁ A A

trilinear scalar interactions tik AiAjA + hic:
. 1

mass terms for gauge particles §m| L

bilinear terms by AiA; + h:c:

linear terms li A

Now all building blocks are in place and we can turn to buildig a supersym-
metric version of the Standard Model.
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3.5 Minimal Supersymmetric Standard Model

The simplest possibility of a supersymmetric extension ohé Standard Model is
called Minimal Supersymmetric Standard Model (MSSM). The nderlying alge-
bra is an (N=1)-supersymmetry with soft supersymmetry breking. As in the
Standard Model the MSSM shall have a local gauge symmetry Wwitrespect to
the gauge groupSU3)c SU(2), U(1)y, which describe the strong, weak
and electromagnetic interactions. Its particle content imbtained by replacing all
elds with their corresponding super elds.

Each matter eld is assigned a chiral super eld. Its fermioit part describes
the usual fermions of the Standard Model and its bosonic pacbntains the \scalar
fermions”, the sfermions as superpartners. For each gauge group a vector super-
eld is introduced whose vector bosons form the usual gauge$ons of the Stan-
dard Model, and the fermionic superpartners are two-compent Wey!l spinors,
in general calledgauginos The nomenclature of the new particles usually follows
the convention that the bosonic superpartners carry the naenof the fermion with
a pre x \s", which is short for \scalar", and the fermionic superpartners carry
the name of the gauge boson with the su x \-ino".

In the Higgs sector of the MSSM it is not su cient to replace the scalar eld
by a vector super eld. One would need both the eldH and its hermitian con-
jugate H to give mass to both up- and down-type quarks. This is forbideh
by the requirement that the superpotential must be analyticand so one needs a
second Higgs doublet with negative hypercharge. Additiofig the fermion which
emerges from the single Higgs super eld would carry a noniahing hypercharge
Y. This hypercharge contributes to the chiral anomaly42] which is not com-
pensated by other particles. The quantized version of suchtheory would be
inconsistent. In the MSSM the two fermions, one from each Hig doublet, have
opposite hypercharge and their contribution to the anomalgxactly cancels.

Table (3.1) gives an overview of the particle content of the MSSM in the
interaction basis. For the gauge super elds we have the foling eld strengths
in the MSSM

We? = %1 DD e 26p g6 (3.35)
1

W'= 7DD e 200 Wy 2o (3.36)

Wy = %1 DD e 28D 98 = %DDD B (3.37)

Additionally the superpotential must be xed. In the MSSM it is de ned as

Wyissm = ij LJ ﬁilnjl EAJ Iu.] |4i2(3j| OJ + Id.J ﬁilQu 6.] |ql1|qu :
(3.38)
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elds

group representation

super eld || fermion eld | boson eld

SUEB)c [ SU@). [ U(1)y

matter sector

Ug;l b 1
Quarks o] 0. 0, 3 2 L
0 Uk bR 3 1 %
D, dg, A, 3 1 Z
Leptons (, L L 1 2 1
€L €Ll
gauge sector
SU(3)c G2 ~a G? 8(adj.) 1 0
SU@2). Wi ~ wi 1 3(adj.) 0
U(d)y B ~& B 1 1 0
Higgs sector
|‘T1 H 1
H L L 1 2 1
1 A HE
H—l H 1
H 2 2 1 2 1
2 A} H3

Table 3.1: Super elds and particle content of the MSSM in thénteraction basis.
Super elds are denoted with a hat and the superpartners allacry a tilde. The
generation index| of the quarks and leptons runs from 1 to 3. For the gauge
elds the color index a runs from 1 to 8 and the weak isospin index from 1
to 3. The bold numbers in the group representation of the noAbelian groups
SU(3)c and SU(2), denote the dimension of the representation, wherkis the
trivial representation and the gauge bosons are in the adjairepresentation of
the group. The number for the Abelian groupJ(1)y denotes the hypercharge of
the patrticle.
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where ., , and 4 are 3x3 Yukawa coupling matrices andl and J denote the
generation index.

Inserting egs. 8.395-(3.39 into eq. (3.31) and adding the F terms to the
Lagrangiag yields the supersymmetric part of the MSSM Lagragian

1 1
Lsusy = d? reggwcawca + 1637

"‘@WY y + Wussw +h.c.

+ d? g2 hCyeZQW\/\\/+29yB\C+ éyeZQyB\é

+ dezgsé+29w\ﬂ/+29yé‘©+ OYe 2gsGT+29yB‘0 + DVe 2667298
+|4])-/e29\,\,\f\\/+29y|3\|41+ Iq%/ezngvugyr@lqzl

Supersymmetry in the MSSM is broken explicitly by soft supsymmetry
breaking terms, i.e. only the terms mentioned at the end of elpter 3.4 are al-
lowed. This leads to the following contributions to the MSSM_agrangian:

W w !

(3.39)

Majorana mass terms for all gauginos

1 . — -
L soft,majoranamass :é M3™g ~a G+ M2y "Wt Mg+ hic (3.40)

mass terms for all scalar superpartners of the Standard Mddermions and
for the scalar Higgs elds

L softscalarmass = M[_g L T e el |\/|r:2~eR;l €ril
Mé b b+ A L Mgty bRy M3 g, Ok
mijH®  m3jH,j? (3.41)

bilinear term which couples the two scalar Higgs elds
I—soft,bilinear :miz ij H;iLsz + h:c: (3.42)

trilinear interaction terms for the scalar superpartners bthe Standard
Model fermions

Lsoft,trilinear = ij LJ AeH;iLI:jI E? LJ AuHiijl U’ + :jJ AdH:iLQjI D
+ hic: (3.43)
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In the general case the Yukawa couplingse, , and 4 as well as the trilinear
couplingsAe, Ay, and Ay are complex 3 3 matrices. The scalar mass parameters
My, Mg, Mg, My, My, are hermitian 3 3 matrices. The scalar Higgs mass
parametersm; and m, are real numbers, and the gaugino mass parametevk,,
M, and M3 as well as the bilinear Higgs couplingn,, are complex numbers.

There is an additional possibility for soft-breaking trilnear couplings 43
which has the form

Leotric = A HIC'E?  AJ"H] Q"U% + AJVH, Q'D? + hic: @ (3.44)

This expression involves charge-conjugated Higgs elds wh, in contrast to the
superpotential, are possible for soft supersymmetry-brkiag terms. However, it
turns out that in most scenarios of supersymmetry breakingush terms are not
generated. Therefore they are normally not considered andlmalso be neglected
in this thesis.

The complete soft supersymmetry breaking Lagrangian is @m by

Lsoft = Lsoft,majoranamass + I-soft,scalarmass"' I—soft,bilinear + I—soft,trilinear (3-45)

As next step gauge xing terms must be added to the LagrangianThis is
required so that all Green functions are still calculable.nl this dissertation the
R - or 't Hooft gauge is used

1 1 i .

L gauge-xing = > @G? ? > @W1+ p—zmw G G
L 2 g . i 3.46
5 @W p—émw G"+G (3.46)
1 3 02 1 0 2
2_ @W + Cyw Mz G 2_ @B Sw Mz G .

G and G° are the Goldstone bosons which were already described foetBtan-
dard Model case in chapte2.2 and appear in the MSSM in the same way.

Setting = 1 yields the 't Hooft-Feynman gauge which is advantageouif
one-loop calculations, because the propagators take a vesiynple shape, while
the Goldstone bosons appear explicitly in the calculationThis kind of gauge is
used throughout this thesis.

Finally unphysical modes which were introduced by the gaugging terms
are compensated by Faddeev-Popov ghost termgnes: [44].

Adding up all contributions gives the complete Lagrangianfahe MSSM

I—MSSM = I—SUSY + I—soft + I—gauge-xing + I—ghost: (3-47)

Additional terms could be added to the superpotential in eq(3.38 which are
also gauge-invariant and analytic in the super elds, but \late lepton or baryon
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number conservation which has not been observed experimalht so far. Such
terms include the coupling of three lepton or quark super els or the coupling
of lepton to quark super elds. The strictest limits on leptan and baryon number
violation are obtained by searching for a possible decay dfd proton which vio-
lates each baryon and lepton number by one unit. Experimentsave established
a lower limit on the proton lifetime of 1(° years [L7] while general violating
terms predict a decay time in the order of minutes or hours. Tis a mechanism
must exist which forbids or at least heavily suppresses treserms. The simplest
possibility is to postulate a conservation of baryon and lépn number. Such a
postulate would be a regression with respect to the Standaiodel. There the
conservation is ful lled automatically and a consequencef dhe fact that there

are no renormalizable lepton and baryon number violating tens. Furthermore,

postulating lepton and baryon number conservation as a fuagnental principle

of nature is generally not viable. It is known that there are on-perturbative

e ects in the electroweak sector which do violate lepton andbaryon number
conservation, although their e ect is negligible for the eergy ranges of current
experiments.

Instead a symmetry should be introduced which has the consation of these
guantum numbers as a natural consequence. So in the MSSM aseaatprbative
theory baryon and lepton number conservation is again guantueed while the
existence of non-perturbative e ects is not contradicted ¥ demanding a funda-
mental symmetry. Such a symmetry is given byR-parity [45. A new quantum
number R is introduced and from that a so-calledR-parity Pg = ( 1)R is de-
rived. It is induced by the generators of supersymmetry, sya intact after spon-
taneous supersymmetry breaking and is multiplicatively awserved. R = 0 for
all Standard Model particles and the additional Higgs scata and R = 1 for all
supersymmetric partners. The link to lepton and baryon numér conservation is
obvious if one writes theR-parity quantum number in terms of baryon number
B, lepton numberL and spins

PR — ( 1)28+3(B L) : (348)

B is +% for the left-handed chiral quark super eldQ,, % for the right-handed
quark super elds 0, and B,, and 0 for all other particles. AnalogoushL is +1
for the left-handed lepton super eld(’;, 1 for the right-handed lepton super eld
E,, and O for all other particles. Then all Standard Model partiles and the Higgs
scalars havePgr = +1 and the supersymmetric partners have an oddR-parity of
PR = 1.

An interesting consequence of this is that each interactiorertex connects an
even number of supersymmetric particles. Therefore they ranly be produced
in pairs and the lightest supersymmetric particle (LSP) musbe stable.
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3.6 Particle content of the MSSM

3.6.1 Higgs and Gauge bosons

As in the Standard Model theSU(2), U(1)y symmetry is broken by the vacuum
expectation values of the Higgs elds in such a way that &(1)q symmetry of
electromagnetic interactions remains. Its associated cggrved quantum number
is the usual electromagnetic charge. As shown before the Bl§gsector of the
MSSM must consist of two scalar isospin doublets

1 .
vites( ] i 9) >

Hy= Hy = 1 ,0,: 0
Vot p5( 5+ 3)

(3.49)
1

with opposite hypercharge. ¢, 9, 2 and 9 are real scalar elds, and ; and
> are complex scalar elds. In eq. .49 an expansion around the vacuum
expectation values has been performed, which satisfy theuagion
HHyi = 2 Hyi= O (3.50)
1l = 0 21 = V2 . .
Collecting all terms in the Lagrangian which contain only tle Higgs elds we
have contributions to the Higgs potential from theF terms in the superpotential,
from the D terms and nally from the soft supersymmetry breaking terms

Vhiggs = § J° jH1” + jH2j°
1 L o2 1 2
o g HIT I HoT T+ Sl HiM, (3.51)
+ m%jHljZ"' m%szjz m3 i Hi1H£+ h:c:

This equation shows the close entanglement between supensyetry breaking
and electroweak symmetry breaking. Only including the sofibreaking terms it
is possible that the minimum of the Higgs potential is not at lhe origin and the
elds acquire a vacuum expectation value.

The mass matrices of the Higgs elds are obtained by di eremting twice
with respect to the elds and . This leads to four uncoupled real 2 2
matrices. To obtain the mass eigenstates these matrices kaw be diagonalized
by unitary matrices. In the case of a real 2 2 matrix this is simply a rotation
matrix. We obtain

G C S
H - s ¢ i (3.52)
G° cC s 0

s o b (3.53)
HO cC s 0

o= s ¢ 8 (3.54)
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c,S,c ands is a short-hand notation for cos, sin , cos and sin , respec-
tively. Similar abbreviations will also be used for the otheangles in this thesis,
as well ast denoting tan . The mixing angle is de ned as the ratio of the
two vacuum expectation values

Vo .

t = —= with 0< < = : 3.55

v > (3.55)
t is a free parameter of the MSSM. The mixing angle is determined by the
relation
mz + m3

t, =1t
mi  mZ

with > < < 0 : (3.56)
The restriction on the given interval determines uniquely and is chosen such
that always myo < myo. By electroweak symmetry breaking three group genera-
tors are broken and therefore as in the Standard Model threenphysical would-be
Goldstone boson& and G° emerge. The ve remaining Higgs bosons are phys-
ical ones. There are two electrically neutral CP-even Higgsosonsh® and H?,
one CP-oddA° and two electrically charged one$l . The mass of the CP-odd
Higgs bosonm, is usually chosen to be the second free parameter of the MSSM
Higgs sector. The masses of the other Higgs bosons at treeeleare then

1 q
Maoio =5 m2+m2  (m2+m2)° 4m2m3c3 (3.57)

my =mi+ ma (3.58)

These relations receive large corrections at higher ordevhich must be taken into
account when one wants to obtain realistic predictions. Thene-loop corrections
are known completely 46, 47, 48 49. On the two-loop level the calculation
of the supposedly dominant corrections in the Feynman diagmmatic approach
[50 of O( { ) [51 52 53 54, 55, O( ?) [51, 56, 57], O(  s) [58 59 and
O( t b+ 2)[60, a calculation in the e ective potential approach 1] and the
evaluation of momentum-dependent e ectsg2] have been performed. As these
expressions are rather lengthy they are not written out hereFor the numerical
evaluation the expressions given ir6@ have been used.

As in the Standard Model, electroweak symmetry breaking turs the W' and
B gauge bosons into the mass eigenstatésé , Z and the photon . W and Z
bosons acquire g mass, where the single vacuum expectatiatue of eq. 2.1) is
replaced byv = vZ + v3.

The gauge bosons ddU(3)c are the eight massless gluons. Their mass eigen-
states are identical to the interaction eigenstateg® = G2.

3.6.2 Higgsinos and Gauginos

All particles which have the same quantum numbers can mix witeach other. As
the SU(2). U(1)y symmetry is broken, only theSU(3)c and U(1)q quantum
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numbers have to match.
In the sector of non-colored, charged particles there areehWinosW and

the charged Higgsino;ﬂl+ and H; with |

i~ L H2
w = W By = 2 Hy = — (3.59)
Y H1 H
As for the W bosons the relation
1 _ .
W= p—é Y \2,\, (3.60)

holds.
These four two-component Weyl spinors combine into two fottomponent
Dirac fermions called charginos. Their mass matrix is diaqahzed by
p _ H
M, 2my S m- O
_ VY = 1 : 61
2my C 0 m_ (3.61)

2
U and V are two unitary matrices which are chosen such thamn_. ~are both
positive and m, m.. The chargino mass eigenstates are given by

u p

0 1
|
. v
E— :% T'z § : (3.62)
i W
| U Hf

The uncolored neutral higgsinos and gauginos also mix amoagch other. We
have the two r'leutral HiggsinoicFrl1 and H2, the IZino Z and the PlhotinoA~
L. HE i~ ~a

1 - _2 7 = _ 4 K= _
i 2 2 i~ i~A

0 (3.63)

The latter two are obtained, as in the case oZ and , by rotating ~3, and 7
by the Weinberg angle

~ ~3 ~

z=0w w Sw B ~A:SW~\3;v+C\N~B : (3.64)
The four Weyl spinors form four Majorana fermions, called neralinos, whose
mass matrix is also diagonalized by a unitary matrixN

0 1
M4 0 Mz Sw C mzSwS
N % 0 M, M5 Gy C mZQNS§Ny

Mz Sy C Mz Cy C 0

My Sw S Mz Cy S 0 0 1
m_o 0 0 0
0O mo O 0

- % 0 0 my 0 (3.69)

0 0 0 mu
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Again the remaining freedom in the choice dN is used to order the neutralino
masses such thamo my my m. The neutralino mass eigenstates are
given by

0 1
1

0o 1 0o .
~ i 7B
-8 i
=N : .
3 1 (3.66)
3

0

4

The gauginos ofSU(3)c, the gluinos, do not mix with other particles as they
are the only fermions which are subject to the strong interdion exclusively.
There are eight gluinos with massng = jM3j. Gluinos are Majorana particles
and have the following form

= =° (3.67)

3.6.3 Leptons and Quarks

Leptons and quarks have similar properties as in the StandhModel. The Weyl
spinors of left- and right-handed fermions can be combinedto one Dirac spinor

G U =

- e(Ii;l ! uf?’;l dl -

(3.68)

wherel is again the generation index. The down-type quarkd, are not exact
mass eigenstates. A rotation

o = Vi ds (3.69)

by a unitary matrix, the Cabibbo-Kobayashi-Maskawa(CKM)-matrix Vcxm [64],
is required to turn the avor eigenstatesd; into mass eigenstatesl?. As the
CKM-matrix is close to a unity matrix and avor-mixing e ect s do not play any
role in the processes which are calculated in this thesis ets induced by the
CKM-matrix will be neglected and the CKM-matrix is set to exactly the unity
matrix.

Leptons and quarks receive their masses via the Yukawa ternmsthe super-
potential which are bilinear in the lepton and quark elds:

Me = &V my = yVo Mg = gV1 (3.70)

These equations are often rewritten such that the Yukawa cglings are expressed
in terms of the fermion masses and the mass of th& boson
mee mye mge
T Pp—0 U= p——— 4=p=—; (3.71)
2my, C 2my S 2my C

e denoting the elementary charge.
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3.6.4 Sleptons and Squarks

In the sfermion sector mixing between di erent interactioneigenstates can occur
in the same way as for the gauginos. In general the 33 trilinear coupling ma-
trices and mass matrices in the soft supersymmetry breakingart of the MSSM
Lagrangian can be fully occupied, thus leading to mixing beeen the sfermions
of di erent generations. Such mixing results in contributons to avor changing
neutral currents (FCNCs) besides the contribution of the CKA-matrix which is
already present in the Standard Model. Experimental limit§17] show that such
additional contributions have to be small §5. Additionally, most popular mod-
els of supersymmetry breaking mediate this breaking from ¢hhidden sector by
avor-blind interactions. Therefore the soft breaking mas matrices and trilinear
couplings are chosen purely diagonal. Then the mass matigcef the electron-like
sleptons and the squarks decompose into 22 matrices where only the left- and
right-handed elds of each generation mix. These can be wi@n as
!
ME-+mZ mg MR

M. =
f LR RR 2
m; M - MZ™ + mg

(3.72)

MZ for left-handed sleptons

ML =m2 |f 2 o4
z s Qrsw @ MZ  for left-handed squarks

(3.73)
2 Mé for right-handed electron-like sleptons
MR =mZ Qsf, ¢ + S M2 for right-handed up-like squarks (3.74)
( ' Mé for right-handed down-like squarks
MR = A L for up-like squarks _
f t  for electron-like sleptons and down-like squarks

(3.75)

Qs is the electromagnetic charge of the sfermiom; denotes the quantum number
of the third component of the weak isospin operatof; which is +2 for up-like
squarks and % for down-like squarks and electron-like sleptons. These s&

matrices can again be diagonalized by a unitary matrix
[

y mf?, 0
Uf~Mf~Uf~: 01 m2 : (3.76)
>
The elds then transform as
P=u- b (3.77)

2 R
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In the sneutrino sector only left-handed elds exist. For tls reason the mass ma-
trix consists only of theM - element given in eq.8.73. M- is therefore a free
parameter of the theory which directly gives the squared masf the sneutrinos
according to

2

m“1

1
= Smic; + M2 (3.78)

The interaction eigenstates ~are identical to the mass eigenstates.






Chapter 4

Regularization and
Renormalization

In general the Lagrangian of a model contains free paramesewhich are not
xed by the theory, but must be determined in experiments. Ortree-level these
parameters can be identi ed directly with physical observales like masses or
coupling constants. If one goes to higher-order perturbain theory these rela-
tions are modi ed by loop contributions. Additionally the integration over the
loop momenta is generally divergent which further compli¢as the situation. To
achieve a mathematically consistent treatment it is neceassy/ to regularize the
theory before predictions can be made. This introduces a autin the relations
between the parameters and the physical observables. As ansequence, the
parameters appearing in the basic Lagrangian, the so-call&bare" parameters,
have no longer a physical meaning. This physical meaning isen restored via
renormalization. The renormalized parameters obtained ithis way are again
nite. Their value is xed by renormalization conditions.
The details of this procedure are described in the followinggections.

4.1 Regularization

The ultra-violet divergences appearing in the integratiomver loop momenta must
be treated via a regularization scheme. Therefore a regutzation parameter
is introduced into the theory which leads to nite expressias, but leaves the
expressions dependent on the renormalization parameter.

There exist di erent regularization schemes, three of whic are shortly de-
scribed in the following:

Pauli-Villars Regularization
This regularization scheme@6] is very simple. Originally the integration region
over the four-dimensional loop momentum ranges from plus tainus in nity. In

31
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this scheme it is restricted such that the absolute value ohe loop momentum
is below a certain nite value. This cuto parameter must be much larger than
any other mass scale appearing in the theory. Performing agw@arization in this
way usually destroys gauge symmetry, so it is not used for priécal calculations
and not further taken into account in this dissertation.

Dimensional Regularization

Loop integrals are divergent if the dimension of the integten is exactly four.
Dimensional regularization 7] exploits this fact. If one shifts the dimension of
the loop momentum by an in nitesimal value and performs thentegration in
D =4 2 dimensions, the integral becomes nite. The divergenceswappear
as poles in the in nitesimal parameter . Additionally, the dimensions of all elds
are also set toD dimensions and the gauge couplings are multiplied by? . The
parameter has the dimension of a mass and speci es the regularizatiocate.
It is introduced to keep the coupling constants dimensionds. This scheme is
normally used in Standard Model calculations as it presersegauge symmetry.
It does, however, not preserve supersymmetry. As the eldgeD -dimensional,
additional degrees of freedom are introduced so that the ndomar of fermionic
degrees of freedom no longer equals the number of bosonicrdeg of freedom
and therefore supersymmetry is broken.

Dimensional Reduction

This scheme§8, 69] is similar to dimensional regularization in the respect tht the
loop integration is performed inD dimensions and the divergences are recovered
as poles in . In this scheme the elds are kept four-dimensional in ordeio avoid
explicit supersymmetry breaking. The mathematical condiency of dimensional
reduction has long been questioned()], but recently a consistent formulation 1]
could be established. It could be shown that supersymmetrg iconserved for
matter elds at least up to the two-loop order.

4.2 Renormalization

The dependence on the unphysical scalecan be removed via renormalization.
It consists of a set of rules which consistently replaces tware parameters in the
Lagrangian by new nite ones.

There exist di erent degrees of renormalizability. One pasbility are super-
renormalizable theories. They are characterized by the fathat the coupling has
positive mass dimension. In these theories only a nite nunds of basic Feynman
diagrams diverge. These divergences can, however, appesrsabdiagrams at
every order in perturbation theory. An example for such a thery is scalar 3-
theory. Here apart from vacuum polarization graphs only th@ne- and two-loop
tadpoles and the one-loop self-energy diagram are divergien
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In renormalizable theories only a nite number of amplituds diverge, but
these divergences occur at all orders of perturbation thgor In such theories
there are also dimensionless couplings but none with a magmednsion smaller
than zero. To cancel the divergences a nite set of rules isecessary. Non-Abelian
gauge theories like the Standard Model and the MSSM belong this category.
Their renormalizability was rst proven in ref. [72].

Finally a theory can be non-renormalizable. In this case admplitudes are
divergent if the order of perturbation theory is su ciently high. The set of
rules to absorb the divergences is in nite and new ones appea each order of
perturbation theory. This means that the theory loses its pedictive power. It
might at rst sight look like such models would be useless, bthis is not the case.
Non-renormalizable models are often used for e ective thees. Here operators
of a mass dimension greater than four appear in the Lagrangia As the nal
expression in the Lagrangian must be of mass dimension fothis is compensated
by an appropriate power of a cut-o mass appearing in the demainator. This
cut-0 mass de nes the energy scale up to which the e ectivetteory is valid and
above which it must be replaced by the full renormalizable #ory. In the overlap
region where both theories give a useful result, a matchingetveen the two is
performed, thereby xing the renormalization conditions ad allowing meaningful
predictions.

4.2.1 Counter terms

One of the most popular renormalization approaches nowadays multiplicative

renormalization with counter terms. In this scheme the bar@arametersgq, i.e.

couplings and masses appearing in the Lagrangian, are reygd by renormalized
onesg, which are related to the bare ones via the renormalizatioroastant Z4

W=2¢9= 1+ 2P+ 2P+ g (4.1)

where on the right-hand side the renormalization constantds been expanded in
orders of perturbation theory and the order is denoted by theuperscript. The
renormalizedg have a nite value. The Z{’ absorb the divergences which ap-
pear in the loop integrals and are parametrized in the regulization parameter.
Therefore they remove the dependence on the unphysical régization parame-
ter. Additionally, nite parts can be absorbed in the renormalization constants,
as the decomposition in eq.4.1) is not unique. Which nite parts are absorbed
in the renormalization constants depends on the chosen renwlization scheme,
which will be discussed below. If one also adds the wave fuloct renormalization
of external particles, the renormalization of the paramets is su cient to obtain
nite S-matrix elements. To achieve the niteness of o -sh# Green functions,
the elds must be renormalized as well. Therefore the bare lds ( are replaced
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by the renormalized ones and the eld renormalization contgant Z

P - 1w 1,02, 1.0
= Z = 1+-Z A + - Z+ : 4.2
0 5 8 > (4.2)
Again on the right-hand side the eld renormalization consant is written out as
an expansion in orders of perturbation theory. Thereby, théerm containing the

squared of the one-loop renormalization constant (% z W 2) is part of the two-
loop contribution. Similarly, for higher orders the ordersof all renormalization
constants which appear in a term must be added up to give thedp order to
which the term contributes.

Using both parameter and eld renormalization all Green funtions are -
nite. We can now insert the renormalized parameters and eflinto the bare
Lagrangian

P —
L(g; o)=L Zg9; Z =L(g;)+ Ler (o ;242 ) (4.3)

and write it as a sum of the renormalized Lagrangiah (g; ) and the counter-
term part which can be expanded in terms of the loop order

Lot (97 1ZgiZ )=Ley @i 12§20 + s
LS g ;20 29,22, 2@ 4+ -

In this thesis only one-loop corrections to processes arenswered. So only
the one-loop counter termsZ @ enter the calculations, hence for simplicity the
superscript (1) on the Z will be dropped from now on.

4.2.2 Renormalization Schemes

The nite part of the renormalization constants is not xed by the divergences,
but can be chosen in a suitable way. The de nition of these e parts together
with an independent set of parameters comprises a renornrtion scheme and
therefore de nes the relation between the observables ante parameters of the
theory. If one adds up all orders of perturbation theory the esult is indepen-
dent of the chosen renormalization scheme. The value of theput parameters,
however, still depends on the renormalization scheme and silbe chosen appro-
priately. For actual calculations only a nite number of orders can be taken into
account. The resulting dependence on the renormalizationleeme is then a mea-
sure for the theoretical uncertainty which is induced by themissing higher-order
terms.

The simplest renormalization scheme is the minimal-subtciion scheme or
short MS-schemeq3). It is based on dimensional regularization as regularizan
scheme. In this scheme the counter terms absorb just the digent 1-terms but
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no nite contributions. This scheme is actually a whole set foschemes, as the
scale , which was introduced in the regularization step, is still pesent. This
scale is now taken as the renormalization scalgg and for specifying a concrete
renormalization scheme r must be xed as well.

A commonly used variant of the MS-scheme is the modi ed minial subtrac-
tion scheme or shortMS schemeT4, 75, 76]. It is based on the observation that
the 1-terms are always associated with other constant terms thagmerge from
the continuation of the loop momentum inD dimensions and are denoted by ",
wheren is the loop order. At one-loop order it has the following exdit form

1
- e+ind (4.5)

where g denotes the Euler-Mascheroni constant. The absorption ohé¢ numer-
ical constants ¢ and In4 corresponds to a rede nition of the renormalization
scale

aMS .o 2dn4 e, (4.6)

If dimensional reduction is used as the regularization same, the renormal-
ization scheme is calledR. Apart from that the procedure is identical to the
MS scheme. The " terms are subtracted by the renormalization constants but
no other nite parts. As before, this corresponds to a rede ition of the renor-
malization scale %DR. On the one-loop level the counter terms are identical,
while at higher orders they di er because the two regularizeon schemes induce
di erent nite parts.

Another, distinct possibility is the on-shell scheme (OS keme) [/7, 78]. The
expression on-shell means that the renormalization conttins are set for particles
which are on their mass shell. The mass of a particle which ia-ghell is given by
the real part of the pole of the propagator and can be interpted as its physical
mass. In the OS scheme the real parts of all loop contributisrio the propagator
pole and consequently to this mass are absorbed in the massumer terms.
Hence the counter terms in the OS scheme also have a non-vaimg nite part
and the dependence on the regularization scaleis completely eliminated in this
scheme. Coupling constants are renormalized in the OS scleeiny demanding
that the coupling constants stay unchanged if all particlesoupling to the vertex
are on-shell. This means that all corrections to the vertexra compensated by
the counter term of the coupling constant. For the on-shellanormalization of
elds one demands that the propagators are correctly normiaked, i.e. the residue
of the renormalized on-shell propagator is equal to one.

The renormalization oft , the ratio of the two Higgs vacuum expectation val-
ues, is performed vieDR also when otherwise the OS scheme is us@@][ As't
does not receive any SUSY-QCD corrections at one-loop ordés renormaliza-
tion is not necessary for the calculations of this thesis. 8 the strong coupling
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constant ¢ is always renormalized in theMS or DR scheme. The details of the
renormalization of ¢ are presented in the next section.

A complete expression of all Standard Model one-loop counteerms in the
OS scheme was given in ref7§. Its extension to the MSSM was performed in
ref. [80]. In this thesis the same conventions as in these two refecss are used.

4.2.3 Renormalization of the strong coupling constant

As every other parameter, the coupling constangs of the strong interaction re-
ceives divergent loop corrections. These divergenlges mbst removed by renor-
malization. As shown in the previous sectiongs 4 < is renormalized mul-
tiplicatively such that

one-loop

RX=Zg0 = 1+ Zg)g : (4.7)

The explicit form of Z 4 depends on the renormalization scheme. Choosing
the OS scheme for this task, however, is not possible. If thermormalization
condition for gs is formulated completely analogous to the renormalizatioaf the
electromagnetic coupling constant, one must demand that écorrections to the
gluon{quark{anti-quark vertex vanish in the limit of zero-momentum transfer.
To formulate this condition the value ofgs would be needed in a region which
is below the QCD scale ocp. Coming from values abovegs formally reaches
in nity at this scale and perturbative methods are no longerde ned. As the
OS scheme is based on the validity of perturbation theory thiwould lead to a
self-contradiction.

Instead another renormalization scheme must be used, whiekoids the de-
pendence orgs at zero-momentum transfer. TheMS and DR schemes share this
property. In these schemes the counter tern¥ ¢, is xed by the condition that
the gluon{quark{anti-quark vertex is nite. Due to a Slavnov-Taylor identity,
which guarantees the universality ofys, this automatically results in nite three-
and four-gluon vertices. The counter term has the followingxplicit form

Zg = 4—5 11 %nf 2 %nf ; (4.8)
where the contributions to the sum originate from gluons, carks, gluinos and
squarks.n; = 6 denotes the number of quark avors. The last two terms orignate
from the supersymmetric particles and are not present in th&tandard Model.

The behavior ofgs with respect to higher-order corrections can be improved by
the use of renormalization group equations (RGE). The one@bp RGE sum up all
leading-log contributions which have the forng?" ( ) (In g)". Their application
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leads to the following expression for the strong coupling ostant! [16]:

(4.9)

The experimental value 17] for ¢ is given in theMS scheme at the scalen; and
using the Standard Model RGE for extracting MS from the data. This must be

converted to PR via

MS
== m
S(mz) = F——— (mz) (4.10)
S
with
|
MS X '
_ s (mz) 1 _|nﬂ o1n M 1 In New 4y Mee
S 2 2 3 m m 6 m m
z z squarks z z
(4.11)

The In - terms in the last equation decouple the particles heavier &m mz from
the runnlng of .

Also the nite part of the one-loop contribution to the gluon{quark{anti-
guark vertex depends on the renormalization scalez. It should best be chosen
in a way that the error, which is induced by missing higher-aler corrections, is
as small as possibleB[l, 82]. SinceR-parity is conserved in the MSSM, the one-
loop diagrams decompose into two distinct sets, where theojp either consists
solely of SUSY particles or does not contain any supersymmietparticles at all.
The latter ones form the corrections which also appear in th8tandard Model.
Except for the top quark, which is decoupled, they take partn the running of

s. For these contributions the same renormalization scaley should be used as
in eq. (4.9 which is typically of the order of the energy scale of the caidered
process.

For the additional SUSY contributions another, special vale ~ is chosen81,
82). This is possible because the two sets of diagrams are distiand all super-
symmetric particles are decoupled from the running ofs. The scale is chosen
such that the contribution of these diagrams vanishes at zeimomentum transfer.
Under this condition g is taken at the scale r, so the procedure is well-de ned.
It is ful lled if

X m
In

=

m?2 2 m?2
2ln79+6 —+In 22 =0 (4.12)
R R R

squarks

1Here the formula for ¢ is quoted as this constant is normally used in calculations ad also
the experimental value of the coupling constant is given in erms of . The corresponding

2
expression forgs can simply be derived from the relation ¢ 2—5.
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'
X
°

Figure 4.1: One-loop SUSY-QCD diagram mediating an e ectes coupling be-
tween the bottom quark andH2. The cross in the gluino line here represents
a mass insertion, i.e. themgy term is chosen when computing the trace over the
fermion line. The subscriptsa and b of the sbottom particles take the values 1
and 2.

Solving for « yields
p_ Y L
R = Mg (Mg, Mg,) 24 (4.13)
squarks

This procedure reduces the numerical value of the one-looprections and there-
fore makes the calculation more stable against the theoreél uncertainty from
missing higher-order terms.

4.3 Bottom-quark Yukawa Coupling

The mass of the bottom quark and its Yukawa coupling to the Higs particles
are intimately related. They originate from the same term inthe unbroken La-
grangian. After the Higgs elds have acquired a vacuum expttion value, the
vacuum-expectation-value component yields the mass ternfi thhe bottom quark
in the Lagrangian and the other components describe the Yuka coupling of the
bottom quark to the various Higgs particles. This relation an be modi ed by
loop corrections, and it turns out that these are very largeni the case of bottom
quarks [7, 8]. A resummation of the leading corrections to all orders ingrturba-
tion theory can be performed, which greatly reduces the thestical uncertainty
originating from unknown higher-order corrections.

At tree-level the bottom quark only couples to the rst Higgsdoublet H; as
can be seen from the superpotential eq338. A coupling to the second one
H, is forbidden. Such a coupling can, however, be generated dymcally at the
one-loop level. Taking into account only SUSY-QCD correans, i.e. corrections
with squarks and gluinos, this is done by the single diagramidr 4.1 Although
this contribution is loop-suppressed, it can induce a potéally large shift in
the tree-level relations, because it is enhanced by. By electroweak symmetry
breaking the Higgs eldH? acquires a vacuum expectation value, and rstly we
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will consider only this part. On tree-level the bottom-quak mass and its Yukawa
coupling |, are related via

Mp = pVi: (4.14)

Adding the vacuum-expectation-value contribution from Fg. 4.1 changes this
equation to

my= pv1 + pVo = Vl( pt+ bt ) = bV1(1 + mb) . (415)

As the numerical value ofmy is xed by experiments, this results in a change of
the e ective Yukawa coupling of the bottom quark
my 1
= e —— . 416
5T U 1+ m (4.16)
Computing the diagram in Fig.4.1in the limit of vanishing external momen-
tum vyields the following explicit form for my,:

2 s
mp = 3—mgt I mg;mg;mg (4.17)
with
!
2 2 2"
m m
. . 2 2 M 2 A2 B 212 g
I my;my;mg = mg Mg, In —=+ mg mgIn — + mgmmlnm—2
B2 9 By
1
(4.18)
2 2 2 2 2 2
my, M, mg mg mg my

and denoting the MSSM parameter which couples the two Higgs dolglts. In
the limit where the squark and gluino masses have approxiney the same value,
denoted by a common SUSY massisysy, the last equation simpli es to

1
I (Msusv: Msusy; Msusy) = 55— (4.19)
SUSY
If additionally is of comparable size, this results in
my = sign( )20 R = Msusv), (4.20)

3

So for large values of this e ect can be of O (1) and does not vanish for heavy
SUSY spectra.

For computations up to one-loop order eq.4.16 can be expanded so that it
contains only corrections up toO ( s). The equation is then modi ed and reads

b= — (1 mb) : (421)
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So for large absolute values of my,, which are phenomenologically very inter-
esting, huge one-loop corrections appear. Ifm, exceeds one, the standard way
of computing one-loop cross sections by adding the interéerce term between
tree-level and one-loop diagrams even yields negative tbtaoss sections which
are obviously wrong. One might even question if perturbatiotheory is still valid
in this regime, but de nitely higher-order calculations waild be needed to reduce
the theoretical uncertainty.

This problem is solved by the observation that these correions do not appear
at higher orders. In ref. [] it was proven that there are no contributions to my

of
n

O t (4.22)

®Msusy
for n > 1. Higher-order corrections either lack the enhancementd@r t or are
suppressed by a mass ratl%— Therefore my is a one-loop exact quantity
and including it as in eq. @. 1@ ‘Contains the corrections to all orders in s which
have the form given in eq. 4.22.

Using the resummed form eq.4.16 is only useful when computing total cross
sections. For a comparison with one-loop cross sections st mecessary to use
eq. @.2]) so that the same order in ¢ is taken into account in both calculations.
This will be explained in more detail in chapter6, where this procedure is applied
to a physical process.

The my corrections are universal. They occur in every coupling ohé¢
bottom quark to the di erent Higgs particles, both neutral and charged ones.
They are also independent of the kinematic con guration.

When the bottom quark couples to the physical Higgs elds andditional
term occurs. It also originates from diagram Fig4.1, but now not the coupling
to the vacuum expectation value but to the remaining neutraHiggs eld 9 is
considered. In addition to the tree-level coupling to the st Higgs doublet

m
this induces another term
m, m
b9~ b b:v_lbtb : (4.24)

After electroweak symmetry breaking the elds ¢ and 9 must be rotated by
the angle to form the two CP-even mass eigenstates’ and H°. Combining
everything this leads to the following e ective couplings bthe bottom quark [7,

83

1 m
_ o __+ b
boh0 — bbh01+ m, 1 1 (425)
1 mpt
wrt = oy e Mt p (4.26)
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where ° denotes the respective tree-level coupling. Expanding the equations
up to the one-loop order yields

1
bro = e L My 1+ = (4.27)
t
Lo = oo 1 mp 1 . ; (4.28)

In the coupling of the top quark to the Higgs elds a similar eect occurs. On
tree-level the top quark couples only tdd, and a coupling to the second doublet
H is generated perturbatively. This results in a modi ed Yukava coupling which
is given by

_ 4.29
Vo 1+ my ( )

in complete analogy to eq.4.16. The correction term m; has the form B4

2 1
m = 3—Smg o omeime;mg (4.30)

In contrast to my this equation has a suppression factor q# Therefore its
numerical impact is much smaller than the -enhanced bottom-quark correction
and it is largest for small values oft . The contribution of this correction is
nevertheless signi cant and therefore it is justi ed to indude its e ect in the
same way as for the bottom-quark correction.

Also the coupling of the top quark to the physical Higgs partles gets an
additional contribution from the coupling to the H; doublet. In this case the
modi ed couplings are

1

ttho — ?thol-}-—rnt(l mtt t ) (431)
1 mt

(O = 3H01+ - 1+ tt : (4.32)

where © denotes the respective tree-level coupling. An expansiomp Wo the
one-loop order yields

tho= ol m(l+tt)) (4.33)

t
tio=9%0 1 m 1 - ; (4.34)






Chapter 5

Hadronic Cross Sections

The cross sections which are obtained by applying the Feynmaules contain,
amongst other particles, quarks and gluons. The leading maction between
these particles is the strong interaction, which is descrdal by quantum-chromo
dynamics (QCD). This theory possesses two characteristicgperties: asymptotic
freedom B9 and con nement. Asymptotic freedom describes the behaviof the
theory at small distances. In this region the interaction isveak and the coupling
constant gets smaller with decreasing distance or, equieatly, with rising energy.
At large distances con nement appears, because the intetaan becomes strong
and binds the particles tightly together. If the space betwen them becomes
even larger, it is energetically favorable to form new quafénti-quark pairs. One
consequence of this behavior is that quarks and gluons cahbe observed as free
particles, but only as constituents of hadrons, i.e. mesonshich are quark{anti-
quark pairs, and baryons, which are states of three quarks tiree anti-quarks.
An example for these hadrons are protons, which are the cdilg particles at the
LHC. To make theoretical predictions it is necessary to reta the interactions at
the parton level to the interactions at the hadron level§6]. The basis for doing
this is the parton model B7], which will be described in the next section.

5.1 Parton Model

The parton model describes the inner structure of hadrons imard collisions. It
starts from the assumption that every observable hadron cersts of constituents,
the so-called partons, which can be identi ed as quarks andupns. Experimental
evidence for this assumption comes from the observation afasing [88] in deep
inelastic electron-proton-scattering. If the hadron cares some momentumP
the partons which take part in the partonic subprocess have omentum xP
with x 2 [0; 1]. As normally the mass of the hadrons is small compared toein
kinetic energy one can assum@? = 0.

The interaction of an electron and a hadron or of two hadronsnaong each
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other can be split into two parts. Because of Lorentz contréion and time dilation
the interaction time of the two incoming particles in the laloratory frame is very
short. Therefore e ectively a static hadron is seen. For théard scattering
process interactions between partons of the same hadron de®t be considered.
Also the process of hadronization after the interaction hggens on time scales
which are much larger than the interaction itself.

From this the theorem of factorization B9 follows immediately. It states that
all diagrammatic contributions to the structure functions can be separated into
a product of two functions C and f, which depend on two mass scalesx and

F. r isthe renormalization scale which was already de ned in cpger 4, ¢ is
the so-called factorization scale and separates the longtdnce from the short-
distance e ects. Slightly simplifying one can say that ever parton propagator
which is o -shell by ¢ or more contributes toC, while those which are below
this value contribute to f .

5.2 Integrated Hadronic Cross Sections

The hard scattering proces€ therefore can be calculated in perturbation theory
by Feynman rules, using partons as incoming particles. It i;xdependent of
long-distance e ects and especially from the type of the daling hadron.

The parton distribution function (PDF) fi-,(X; ¢) contains the long-distance
e ects. Itis independent of the underlying scattering proess, but depends ong
and the type of hadronh. Itis normalized such that it can also be interpreted as a
probability density, namely the probability of nding the p arton i in the hadronh
with a momentumxP . Its behavior as a function of the parameters is determined
by the Altarelli-Parisi integro-di erential equations [90]. Its numerical value,
however, cannot be calculated a priori from the theory. At aisgle reference
point it must be determined by experiments.

Therewith one obtains the expressior8p]

X “1og
pp! fin +X = d d_l\mn! fin (S5 s( r)) (5.1)
fmng ©

for an integrated hadronic cross section with the parton lumosity

dL Zldx 1

d - X1+ .

fm=p(X; F)fn=p ;; F +fn=p(X; F)fm=p ;; F : (52)

P~ , .
Here S denotes the hadronic center-of-mass energy, i.e. the onetbé& two
colliding protons, and “\,n, fin the partonic cross sections of the subprocesses,
where the two incoming partonam and n produce some nal state, labeledin .
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The sum includes all possible parton combinations and n where the order of
appearance is not taken into account. The integration varlde relates the Bar-
tonic and hadronic center-of-mass energies with each othéfore speci cally,
can be interpreted as the part of the hadronic center-of-magnergy which takes
parb in tl‘ﬁﬁirtonic subprocess, as the partonic center-ofiass energy is given
by &= S. The lower limit of the integral o is determined by the kinematic
con guration. = (S is the minimal energy which is necessary to produce the
nal state fin and therefore denotes the production threshold.

The formula given above is valid for processes with two or mepatrticles in the
nal state. For hadronic cross sections it is also possibletcalculate integrated
cross sections for 2 1 processes. One rst obtains for the partonic cross section
of the procesamn ! f

dAmn! f = —p——JM fi (mn! f)JZ pgw + pg p? : (53)
4p?" 8]
Again m and n specify the incoming partonsf denotes the outgoing patrticle,
m; its mass, andp’ the energy of the respective particlé. f, indicates the
three-momentum of particlem in the partonic center-of-mass system ani¥l ¢; is
the matrix element.

When convoluting with the parton distribution functions the single remain-
ing -function in the partonic cross sections solves the integral in eq. (5.1)
analytically. Thus one obtains for the integrated hadronicross section
X

db M ¢ (mn! f)j? (5.4)

fm;ng

5.3 Dierential Hadronic Cross Sections

Additionally one can de ne hadronic cross sections that ardi erential in one
or more parameters. For these parameters it is useful to takariables that are
either invariant under Lorentz transformations or at leasthave very simple trans-
formation properties. In this thesis three di erential hadonic cross sections are
presented which are also implemented in the HadCalc progratimat is described
below in section5.5. They are cross sections di erential with respect to the in-
variant mass of the nal-state particles, the rapidity of ore nal-state particle
and, thirdly, the transverse momentum.

5.3.1 Invariant Mass

The rst di erential hadronic cross section is the one with lespect to the invariant
mass of the nal-state particles. Ttbe_inv?jria_nt mass of a preess is equivalent to
the partonic center-of-mass energy $ S of the process or, in other words,
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the sum of the nal-state momenta of the outgoing particles. The di erential
cross section takes the form

P-
d ou fin § X dL
—pb_— =4 — - Amn! fin ; (5-5)
d § S fmng d =§

wherefin again labeles a general nal state.

5.3.2 Rapidity

The rapidity y of a particle is de ned as

0
y = artanh d }In P P
2
wherep, = p ¢ denotes the fraction of the particle’'s three-momentung that
goes in the direction of the beam axis, labelerl The mass of the particle will
later be referred to asm. Using the rapidity instead of directly taking the angle
between the particle and the beam axis possesses some achg@es because the
rapidity of a particle has a few useful properties. Under a lwst in the z-direction
to a frame with a velocity , the rapidity transforms asy! y artanh . Thus
the shape of the rapidity distribution 3—y stays unchanged. More generally, the
sum of two rapidities when the momenta point into the same daction is given by
the rapidity of the sum of the momenta, added via the formuladr the relativistic

addition of velocities:y (p1)+ y(p2) = ¥ lpj;lpgz . In experimental analyses often

a slightly di erent measure, the pseudo-rapidity , is used. It is derived from the
standard rapidity by taking the limit of a vanishing mass of the particle and is
de ned as

(5.6)

_ }In l+c
21 ¢
In the HadCalc program both normal rapidity and pseudo-raity are imple-

mented. As conversion between both variables can be perfardby the simple
transformation

(5.7)

s !

2
y = artanh 1 5 tanh ; (5.8)

o+ m?

in the following only the shorter expressions for the standd rapidity are given.
The ones for pseudo-rapidity can then be deduced from them.

Using the above-mentioned de nition of the rapidity the di erential hadronic
cross section with respect to the rapidity for 2 2 processes then reads

d "l ddec
dy , d de@y °

(5.9)
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The momenta and masses given in the formulae always refer toet particle for
which the rapidity distribution is calculated. The anglec~ between the particle
and the beam axis in the partonic center-of-mass system isex by the relation

s

2 1 2
Cr = 1+m—2tanh y + élnx— (5.10)

where the second term in the argument of tanh originates frothe boost from the
hadronic center-of-mass system, which is the laboratoryaime, to the partonic
one, in which the partonic subprocess is calculated. Thisdds to
S
2
@C = 1+ m_2 1 5
@y p”costf y+ 3Inx

(5.11)

For processes with three or more particles in the nal statehte formula is
very similar. Additional phase-space integrals appear fdhe further particles
but otherwise eq. 6.9) stays unchanged. In the following equation the di erenti&
cross section for a 2 3 process is given

d _ 21 dL z z z dn @c¢
dy , d

o= 0 0 A = .
d oS 0K O o o Gy

(5.12)

The parametrization of the three-particle phase space issieibed in appendixC.2.

5.3.3 Transverse Momentum

The last implemented di erential h?)dronic Cross section ishe one with respect

to the transverse momentumpr = = pg + py of one of the nal state particles.
For 2! 2 processes it is de ned as
Z
d todLdr
— = _ @: (5.13)
dpr L, d dc-@p
with
ggz Pt (5.14)
pt 2
P P
which follows from
S
2
o= 1 P (5.15)
p

Here two possible solutions arise because of the sign amliguwhen taking the
square root. In principle both solutions have to be taken it account and added
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up unless they are excluded by other constraints as shown &l The lower limit
of the -integral v must be adjusted such thats. is always inside its co-domain
[0;1]

g 2 2 g 2 > 2
mg +prt+ Mg+ pr

S ;

3= (5.16)

f, and f, denoting the two nal state particles.
For 2! 3 processes the extension to include the third nal-state pacle is
straightforward. The lower limit for in these processes is

- q 2
2
mf21 + p_2|_ + (mfz + mfs) + p'lz'

S ;

= (5.17)

when the cross section is di erential in the particlef ;. Therefore the expression
for the di erential cross section reads

y z 7z z
d "t odT T dh @e
o Dd R SR L v m e (5.18)
5.4 Cuts

In order to improve the ratio of the signal-process cross sem to that of the
background processes it can be useful to place appropriatéson the nal-state
particles. Also experimental techniques used in the recdnsction of events like
jet-clustering algorithms can mandate the use of cuts in tloeetical predictions,
so that the behavior of these techniques is emulated there.

In the HadCalc program cuts on three di erent properties of he nal-state
particles are implemented 91]. The rst two are cuts on the rapidity and the
transverse momentum of a particle. The de nition of these te variables was
already presented in the previous section. The third one israutual property of
two particles, the jet separation R;, which is de ned as

q___

Rj = yi+ § (5.19)
yj denotes the rapidity di erence between the two particles andj and
the di erence in the azimuthal angles of the two particles irthe transverse plane.
Its main use are exclusive hadronic cross sections where listiate jets shall be
observed explicitly. It mimics the behavior of jet-clusteng algorithms. There
two jets, which are separated by a jet separation below a carh limit, are seen in
the reconstruction as a single jet which has kinematic proptees that are averaged

over the two nal-state partons.
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For the rst two cut parameters, rapidity and transverse monentum, it is
possible to translate these cuts into a limit on the integrabn parameters of
the phase space. The most general case is assumed here th&g on both the
rapidity y., and the transverse momentunpr ., of a particle shall be applied.
Using eq. 6.15 the transverse-momentum cut can be translated into a cut oo
and one obtains

2 2
CTin 1 pTcut <cn< 1 pTcut Cr/pax . (5_20)
2 2 T

" P p

Likewise, the cut on the rapidity can also be turned into a cubn c~ via eq. (56.10),
yielding

S
m?2 1, x? i
cn> 1+ —tanh  ygu + 5 In — C'I‘y'”
S 2 2
m 1 X
cn< 1+ —tanh yg + > In — C'AT;aX : (5.22)

To shorten the notation the abbreviation

V
H 1 pT(%,zut
r=t P (5.22)
1+ %z

is used in the following. Again the momenta and mass used indlequations all
refer to the particle whose phase space should be constraine

Applying both cuts requires that the conditions onc~ are all ful lled simul-
taneously. This also restricts the integral onx which appears in the parton
luminosity given in eq. 6.2). In total the x-interval divides into ve dierent
regions, which will be labeled by roman numbers. First the tavcases where both
cuts cannot be ful lled simultaneously, are considered, lcause the lower limit of
one cut lies above the upper limit of the other one:

r

. i p— 1 r
. max min Yeut
Region I: c cApT ) X e r T+7 X (5.23)
i i — 1+
Region V:  c" C'I;ax ) X P gYeu 1 : xy :  (5.24)
y T

These two regions are excluded and the cross section vangkigere.
For specifying the other regions rst two special cases ar@wmsidered, where
the lower limits on ¢~ and the upper limits, respectively, coincide. For these cas
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the according value o is determined

. . p_ r
in — in - Yeut .
C'Ay dApT ) X e r 147 Xmin (5.25)
p_— 1+r
ax — ax - Yeut .
C’I; C'R:)T ) X e Ty Xmax (5.26)

Using these two de nitions the other intermediate regionsan be speci ed.
The ranges forca which are deduced from these following regions specify the
allowed area where the cuts are ful lled and therefore the oss section does not
vanish. The next two regions handle the cases where the limibnc~ from rapidity
and transverse momentum overlap and one limit is given by thepidity cut and
the other one by the transverse-momentum cut:

Region II: C'I‘yi” C’I:)': <ca< c’I;aX C'I:ix ) X <X < mMin(Xmin; Xmax)
(5.27)

Region IV: C’I;': ci’;i” <cn< C’I"i" C’I;a" ) max(Xmin; Xmax) <X <X v
(5.28)

Finally the de nition of the last region is the case whether ne cut gives a
range onc- that completely lies inside the other one. Depending on whiotut
this is, the limits on x are di erent:

Region Il a): C'R:)': C'I‘yi” <Cca< crA‘;aX C'R:)E’T‘X ) Xmin <X <X max
(5.29)

Region Il b): c&';‘” 0’1;': <Cca< c&‘;‘i" c&‘;""" ) Xmax <X <X min
(5.30)

In addition to those regions the original constraint forx for a hadronic cross
section without cuts applies:

<x< 1 : (5.31)

Combining the result of all regions one can see that no holesthe integration over
X or ¢~ appear and the nal borders of the integration routine can beimpli ed
to

max(;X;) <x < min(xy;1) (5.32)
and

max(ci™; ¢M") < ca < min(ch; ) (5.33)
PT y PT y
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For a cross section which is di erential with respect to the apidity of a nal
state particle the cut on the transverse momentum yields a sé&riction on ¢~ in
the same way as in eq.5.33

N < ca< M - (5.34)
PT PT
The constraint on x must then be adjusted such thatc~ is always inside this
allowed interval, yielding

r r

1+
.1 .
1 r’) '

1 r
1+r

max( ; P eV ) <x< min(p eV (5.35)

which corresponds to eq.5.32 where the rapidity cut y is replaced by its value
y given as an argument to the cross section.

Similarly, for cross sections that are di erential in the transverse momentum
of a nal-state particle a cut on the rapidity puts a further constraint on the
allowed interval forc :

c&“y"‘ <cn <ch™ (5.36)
with
S 2 2
. 1
a1+ T tanh yeu + SIn X (5.37)
S p 2 2
1
C’A*;ax 1+ % tanh  yeu + 5 In X : (5.38)

Again this leads to a corresponding change in the limits of #x-integration which
are given by

r r

. P Yeut F i p_)’cut 1+1‘--
max(; e 1+ 1;) <x< min(" e 1 o 1) (5.39)
with
v
ui Bt
= { P (5.40)
1+ %}

This again corresponds to eqs.5(32 and (5.22 where instead of the cut on
the transverse momentunpr ., its xed value pr, which is an argument to the
di erential cross section, is taken.
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5.5 HadCalc

For the numerical evaluation of the cross sections presedti the following chap-
ters a program called HadCalc was developed to facilitate ihtask. It is based
on the established program packages FeynArtS][and FormCalc [L1, 12] which
are used to generate the partonic cross sections. The mairskeof HadCalc then
consists of the convolution with the PDFs that are taken from the PDFIlib [92]
or LHAPDF [93] library packages that include PDF ts from various groups.

With this program it is possible to calculate both totally integrated and dif-
ferential hadronic cross sections of processes with up tadle particles in the nal
state. The latter ones can be di erential with respect to thepartonic center-of-
mass energy, or the rapidity or the transverse momentum of erof the outgoing
particles. Several cuts can be applied to the phase space. ddalc operates
either in batch mode, where the parameters are read from a land the cross
sections are written back to disk, allowing for easy post-pcessing with e.g. a
tool that generates plots. It can also be used in interactivenode where in- and
output are done via keyboard and screen and which allows theer for example
to tune the parameters most easily.

A complete manual of HadCalc can be found in appendik. The program
code is available on request from the authér

Lemail: mrauch@mppmu.mpg.de



Chapter 6

Associated Production of W H

The discovery of a charged Higgs boson would be a clear sigonhlan extended
Higgs sector and therefore of physics beyond the Standard M. For relatively
light charged Higgs bosons with a massyy, . m; m, the main production
process igt-production via a subsequent decay sequencé bH* ! b * [94].
Both decay steps are enhanced by large Yukawa couplings. Thgperimental
signature is an excess of pairs in the detector. In the case of charged Higgs-
boson masses above the top-quark mass the dominant prodoctiprocess igb!

tH [95, 96, 97]. Afterwards the Higgs boson mainly decays inttt pairs with a
branching ratio of at least 90%. The top-bottom-quark pairdead to a detector
signature which has a large QCD background at the LHC. The dettion of a
heavy charged Higgs boson is therefore much more di cult. Ltar studies P8, 99,
10Q showed that the cross section is large enough so that the malecay channel
can be ignored. It is su cient to consider only the suppresseH ! decay
channel which has a clear detector signal while still yieldg enough events.

In this chapter we investigate another production mechanis, the production
in association with aW boson. The leptonic decay modes of thé/ boson avoid
large QCD backgrounds and can therefore provide an easierywaf detecting a
charged Higgs boson.

6.1 The H*W nal state

The production of a charged Higgs boson in association with \&W boson was
rst studied in ref. [101]. This process proceeds either via bottom quark{anti-
quark annihilation (Fig. 6.1) or via gluon fusion and an intermediate quark or
squark loop (Fig.6.2). The leptonic decays of theW boson could be used as
a trigger for this process, thereby making charged Higgs lmsdetection easier.
The calculation was updated in ref. 102 and triggered a detailed analysisij03

of the discovery potential at the LHC using this process. Tkipaper concluded
that an e cient separation of the signal process from the baaground processes

53
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(a) s-channel contribution (b) t-channel contribution

Figure 6.1: Tree-level Feynman diagrams contributing to b dominant subpro-
cessbb! H™W

such as top-quark pair production is di cult for semileptonic W boson decays
including both low and high values oft . The cross sections were evaluated at
leading order for both production processes.

The later studies of refs. 98, 99, 100 showed that a discovery is more likely
in the main production channelgh! tH where only the rare decay into a
pair is taken into account. Nevertheless the associated mhaction of a charged
Higgs with a W boson is an interesting process, especially when the existe
of a charged Higgs boson has already been established befdfeat that point
no supersymmetric particles were detected, the question watihher the H orig-
inates from a Standard Model-like theory with an extended Hjgs sector, like
the Two-Higgs-Doublet Model (THDM), or from the MSSM remains pen. In
the latter case the cross section receives an additional ¢apution from virtual
superpartners running in the loop. This can be used to tell #tntwo models apart.

As already mentioned earlier there are two important produ@n processes for
this nal state in proton-proton collisions. The dominant ane is the tree-level pro-
duction (see Fig.6.1) via bottom quark{anti-quark annihilation. The s-channel
diagrams shown in Fig.6.1(a) are mediated by a virtual Higgs boson where all
three neutral Higgs bosons of the MSSMhP, H® and A®) can appear in the in-
termediate state. The appearance of the massive particlesthe s-channel leads
to a propagator suppression of this diagram type. In the t-@dmnel diagrams the
exchange of a top quark occurs and yields the leading contuiiion to the bottom
guark{anti-quark annihilation process. As this class of digrams contributes the
most to the total H*W production rate one-loop corrections to this process are
also important as they can modify the cross section signi cdly. Standard-QCD
corrections ofO ( ) to this process were calculated in ref1p4. Both the DR
and the OS renormalization scheme were considered and gogdegment between
the two schemes could be found. The corrections are typicaibf O (15%) and
can reach up to 30% in the smalt regime. The supersymmetric electroweak
corrections, i.e. corrections where squarks together wittharginos and neutrali-

nos appear in the loop, o0 m §,=mj andO m {,=my, were calculated
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(a) quark contribution

(b) squark contribution

Figure 6.2: Leading-order types of Feynman diagrams cortiiting to the sub-
processgg! H*W

in ref. [105.

The second parton process contributing to thed*W  nal state proceeds
via gluon fusion and an intermediate loop as shown in Fig.2 Since there is
no tree-level process and the leading order contains a quark squark loop it is
suppressed by a factor 2 with respect to the bottom-quark annihilation process.
The higher density of gluons in the proton partly compensatethis e ect, making
both processes comparable in size. The contribution of qlkaloops was already
included in the calculation of ref. 103. The contribution of supersymmetric
particles was calculated later onJ0g and it was shown that they can reach up
to 40%. Together with the QCD corrections this can raise therass section for
smallt so that it becomes comparable in size to the bottom-quark armlation
process which is not loop-suppressed.

In this thesis the missing supersymmetric QCD corrections,e. corrections
with squarks and gluinos running in the loop, to the leading @ttom-quark anni-
hilation process are considered. They are the last contriian of O ( 2 ) to the
associated production of a charged Higgs boson with a W bosonthe MSSM
which has not been calculated so far.
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6.2 SUSY-QCD correctionsto bb! H™W

In this chapter the supersymmetric QCD corrections to the ma production
processb! H*W are calculated. As already shown in chaptet.3it is known
that the coupling of the bottom quark to the Higgs bosons reoees large one-
loop corrections. These can be parametrized by introducing correction term

my, to the bottom-quark Yukawa coupling. Yet other terms also gie signi cant
contributions, as we will see later. So it is necessary to nohly use the tree-
level result with an e ective bottom-quark Yukawa couplingbut to perform a full
one-loop calculation.

The possible types of diagrams which appear in the calculati of SUSY-QCD
corrections are depicted in Fig6.3 A SUSY-QCD self-energy contribution to
the bottom-quark propagator ofO ( s) enters in the t-channel exchange diagram
as shown in Fig.6.3(a). Vertex corrections (Fig.6.3(c)) appear in the s-channel
diagrams in the vertex where the incoming bottom quark and dinquark couple
to the intermediate Higgs boson. The t-channel diagram reses vertex cor-
rections at both the btwW- and btH-vertices. Finally all four external particles
can be connected via a box-shaped loop diagram (Fi§.3e)). Additionally for
the self-energy and vertex corrections appropriate coumtéerm diagrams appear
(Fig. 6.3(b), (d)). L

The cross sections were calculated in both the OS am@R renormalization
schemes. Additionally a my-corrected tree-level cross section was calculated.
As shown in chapter4.3the bottom-quark mass and the bottom-quark couplings
to the Higgs elds receive large contributions from the on&op SUSY-QCD
corrections which are parametrized in the variable m,. To be able to compare
the improved tree-level cross section with the full one-lpocross section it is
necessary to use the same order in perturbation theory for thocalculations.
This means that one must use the non-resummed replacement é4.21)

mp! my (1 mb)

and the non-resummed correction to the bottom-quark Yukawa&oupling as in
eq. @.27. A matrix element with this replacement must be treated as @ne-loop
matrix element. Let us recall that the standard way of compuhg a one-loop cross
section is to add the interference termsI{ L + TL ) to the tree-level cross section
jTj2 and to discard the loop-squared ternij2 which is a two-loop quantity so
that for the squared matrix element

iM ¢ij%=jTi®+2Re(T L) (6.1)

is obtained. In this equationT denotes the tree-level amplitude and the ampli-
tude of the one-loop diagrams. In complete analogy the sqear matrix element
of the my-corrected cross section is de ned as

2
M s = [T’ +2Re(T L ) (6.2)

my



6.2. SUSY-QCD corrections tdb! H*W 57

(a) self-energy correction (b) self-energy counter term

(d) vertex counter terms

(e) box contribution

Figure 6.3: Diagram types yielding SUSY-QCD corrections tahe procesdb !
H*W
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with
L m=Tm T : (6.3)
T m, denotes the tree-level cross section with themy, replacements of eq.4.21)
and eq. @.27. ThereforeL ,, contains the additional contribution which orig-
2

inates from the correction terms. The corresponding crossaion to M

is denoted by in the following.

In order to present the numerical results several relativeocrections using
various contributions are de ned. Firstly there is the reldive correction in the
OS scheme,

my

0s (O

0s = 55— oS e (6.4)
0

The relative correction in the DR scheme is de ned analogously as
DR DR
DR = % : (6.5)
0
The third relation consists of the di erence between the ontop result and the
my-corrected tree-level result which is calculated accordirto eq. 6.2). Hence
it signi es the true one-loop corrections. It is de ned as
oS os
mp = : oS : (66)
The subscript of the cross section always denotes the order of the respective
loop contribution, i.e. O for the tree-level result, 1 for tle one-loop result includ-
ing the SUSY-QCD corrections, and for the my-corrected tree-level result.
The superscript indicates the renormalization scheme in wdh the quantity is
calculated.

6.3 Numerical Results

In this section the numerical results for the production proesstb! H*W are
presented. All quoted cross sections are given for the LHCtlvia proton-proton
center-of-mass energy of 14 TeV. First of all we investigatbe e ect of varying
the MSSM parameters on the SUSY-QCD corrections. To do so arpmeter
point is chosen for which the corrections of the my, term are expected to have
a large impact. To that e ect the parameter point

my+ =200 GeV
t =30

Mg=My=My=  =mg2 [0;10] TeV (6.7)
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Figure 6.4: Hadronic cross section di erences for the praggth! H*W in the
larget regime. The soft SUSY-breaking mass terms in the squark secM sysy,

and the gluino massmgy are xed to the same value and varied over a large
mass range. The parameter set eg6.(/) was used to obtain this plot.

is used as input.t of this point is fairly large to enhance the my contribution.
The soft SUSY-breaking mass terms in the squark sector, jtiyn denoted as
Msusy = Mg = My = My, and the gluino massmg all take the same value
which is varied over a large mass range. E4.17then predicts that the SUSY-
QCD corrections in the OS scheme should be large and indepentof the varied
mass scale as we are in the limit where all these masses areaéqnd the mass
dependence drops out. This is indeed the case as one can séégn6.4. A naive
calculation in the OS scheme yields a correction of above 60%iter subtracting
the my contribution only the real one-loop corrections are left. Meir size is of
around 02%. In the DR scheme the corrections are equally small for small mass
values and show a logarithmic rise with growing mass. This &n artefact of the
mismatch between the renormalization scale and the massdstlte squarks and
gluinos appearing in the loop diagrams The former one wasex to the sum
of the nal-state particle masses r = my + my. Terms of the order InMSUSY
appear in the expression which originate from the dlmenS|ahreguIar|zat|on of
the divergent loop integrals. Thus this logarithmic rise bars no physical meaning
and will vanish if higher orders of perturbation theory are &aken into account.

In the next plot (Fig. 6.5 the squark and gluino masses are now xed and
only is left as a free parameter. The parameter set for this plot is
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Figure 6.5: Hadronic cross section di erences for the pragsbb! H*W using
the parameter set eq. §.8). Only s varied in this plot.

my+ =200 GeV

t =30

At:Ab:O

Mg = My = M =500 GeV

mg = 580 GeV (6.8)

As expected the cross section in the OS scheme grows lineasigh . For
values less than about 750 GeV the corrections even exceed 100%. Again,
when the my corrections are subtracted and only the true one-loop SUSYED
corrections remain the order of the corrections is below 1% @ shows only a very
low variation with . In the DR scheme the corrections are also much smaller
than in the OS scheme and almost constant as a function of as is expected
from the remaining corrections appearing in this scheme.

As next step the dependence of the hadronic cross section eliences as a
function of t is investigated in Fig.6.6. Here a data point with a smaller soft-
supersymmetry breaking mass is chosen to emphasize the ¢ adich will be
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Figure 6.6: Hadronic cross section di erences for the prosshb! H*W as a
function of t . This plot was calculated with the parameter set eq.q.9).

discussed below, namely

my+ =200 GeV

= 200 GeV
At: Ab:0
Mg = My = My, =200 GeV
mg = 580 GeV (6.9)

For large values oft the respective corrections feature the behavior which was
already observed in the previous plots. The my corrections are large, while the
true one-loop corrections almost vanish. The correctiona ithe OS scheme rise
linearly with t as is expected from eq4.17. Fort . 15 however the behavior
changes. There the dierence between the full one-loop cootption and the

my-corrected tree-level cross section can increase up to 10Phis contribution
for smallt originates mainly from the diagram given in Fig.6.7. The Yukawa
coupling of the charged Higgs to the stop and sbottom is propg@mnal to the
top-quark mass if a right-handed stop couples to a left-hared sbottom. Another
factor m; appears in the trace over the fermion line where for the inteal top
quark line the mass term in the Dirac algebra is chosen. Theswd factors
cancel the top-quark propagator which is dominated by the nss term and the
top-quark mass dependence drops out. To get this left-riglmhixing term in the
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Figure 6.7: Dominant one-loop contribution in the case of sniat . The crosses
in this diagram denote a mass insertion, i.e. when calculag the trace over the
fermion line the mass term in the Dirac algebra is chosen.

Yukawa coupling also the mass term for the gluino appears dng the calculation
of the fermion trace, giving a factomyg in the nominator. Accordingly this vertex
correction to thetbH™ vertex is proportional to

S

3

wherel was given in eg. 4.18 and is related to the three-point integral in the
limit of vanishing external momenta. The expression is ingendent oft . So for
small values ot , where the bottom-quark Yukawa coupling is not enhanced, &
gives an important contribution. Whent takes larger values, the bottom-quark
terms dominate. These terms have a factor df appearing in the amplitude so
the cross section increases quadratically wittf. Hence the relative contribution
of Fig. 6.7 is reduced. This plot underlines the importance of performg a
full one-loop calculation because only in such a full calatlon the non-universal
corrections are included and a tree-level calculation wité ective couplings would
give wrong results in the lowt regime.

The variation of the cross section as a function of in the low-t regime is
investigated in Fig.6.8. For this plot t = 6 was chosen and the other parameters
were left unchanged from the last plot. Again the rather smaVvalue of 200 GeV is
chosen for the soft-supersymmetry breaking masses in theuack sector, so that
the function I, which is proportional to méjsv , has a small denominator. One

can clearly see two distinct properties. The one-loop coatons which cannot be
absorbed into a rede nition of the bottom-quark Yukawa coufping now give a sig-
ni cant contribution. The  mjy corrections still yield an important contribution
as can be seen from comparing thegs and  ,, curves. Yet after subtracting
the universal corrections to the bottom-quark Yukawa coujmhg the remaining
non-universal corrections are large. For large values ofthey can reach more
than 50%. They are equally present in th®R scheme where a numerical contri-
bution close to the my-corrected result is obtained. Furthermore the correction
to the cross section increases approximately linearly witthe absolute value of

m gl (My; My; Mg) (6.10)
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Figure 6.8: Hadronic cross section di erences for the prosshb! H*W as a
function of . For all other parameters the parameter set eq.6(9 with t =6
was used.

as is expected from eq.6(10.

Furthermore, in Fig. 6.9 a plot where the complete SUSY mass spectrum,
i.e. soft-supersymmetry breaking mass terms for the squark and the gluino
mass, is xed to the same value and run up to 10 TeV is presentédr the low-t
regime. The behavior as a function of the mass scale is the saas before in the
case of large . After having subtracted the my corrections from the complete
one-loop contributions there is still a correction of the ater of 10% left which
mainly originates from the diagram given in Fig.6.7. For small mass values the
relative correction slightly drops because in this regiontleer diagrams also give
a numerically signi cant contribution.

The scale dependence of the SUSY-QCD corrections is givenFig. 6.1Q
The factorization and renormalization scale of the processe xed to the same
value and varied between 0.1 and 10 times their basic valug = ¢ = my +
my which is used for the other plots. Even for this large scale wations there
is only a mild dependence for the corrections in the OS scheraed the my
corrections. This is due to the fact that the only scale-demelent parameter is
the strong coupling constant ¢ and the PDFs. On-shell conditions render all
other paramaters independent of the scale. In thBR scheme also the quark
masses are scale dependent resulting in a much larger vaonatas a function of
the scale. Including the Standard-QCD corrections which aralready known for
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Figure 6.9: Hadronic cross section di erences for the praggb! H*W in the
low-t regime, i.e.t =6 is used. All other parameters take the values given in
eq. (6.7). The soft SUSY-breaking mass terms in the squark sector, and the
gluino mass are xed to the same value and varied over a largeass range.
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Figure 6.10: Hadronic cross section di erences for the pressbb! H*W as a

function of the renormalization and factorization scale. Te plot was calculated
using the parameter set eq.g.9) with additionally t =6.



6.3. Numerical Results 65

0.1 ¢

s [pb]

0.01 ¢

6 7 8 910 15 20 25 30 35
tan(b)

Figure 6.11: Total hadronic cross sections for the procelbb! H*W as a
function of t using the parameter set eq.§.9).

this process 104 would reduce this variation, but implementing these addibnal
contributions was beyond the scope of this dissertation.

The last plot in Fig. 6.11shows the total hadronic cross section as a function
of t in both OS and DR renormalization schemes. Various cross sections with
di erent contributions taken into account are presented hee. The same param-
eter set as in eq. §.9) is used for this plot. In all cases the total cross section
rises quadratically witht in the region wheret is larger than about 15. This
is the parameter space where the Yukawa coupling to the chadHiggs boson is
dominated by the term proportional to the bottom-quark masswhich scales with

00>  — | Tree-level cross section
os my-corrected tree-level result
05 e One-loop OS cross section
g OS5 One-loop OS cross section including
resummed higher-order my corrections
PR One-loopDR cross section

Table 6.1: Key to the total hadronic cross sections of the peesshb! H*W
plotted in Fig. 6.11
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t , and gives the leading contribution to the cross section. Othe left-hand side
of the plot, wheret is small, in contrast the top-quark mass part is responsible
for the overall behavior of the cross section and leads to aatease witht . In the
intermediate region both terms contribute equally much, lading to a minimum
of the cross section fot 8.

In total ve di erent cross-section types including miscelaneous contributions
are depicted. An overview is givenintabl€.1 (°%, the straight red line, denotes
the tree-level contribution in the OS renormalization sch@e. The short-dashed
blue line, ¢°5, is the one-loop cross section in the OS scheme without hagin
used any further e ective couplings. ¢°%, the long-dashed green line contains
the my-corrected tree-level result. As seen before in the plots tfe relative
corrections, this line agrees with the complete one-loopswdt in the case of large
t as in this region only the universal my corrections are relevant. In the
small+ regime these terms can only account for a part of the total cactions.
There are also non-universal terms, mainly coming from theaus-diagram given
in Fig. 6.1Q which cannot be absorbed into an e ective coupling. Thesenes do
not, as observed before, contain any factors bf and hence their e ects diminish
for highert values as the total cross section scales with. For ¢, ©°, the dotted
pink line, the my corrections are included in the resummed version of e4..16).
Additionally the non-universal one-loop corrections aredded. To avoid double-
counting the non-resummed my contribution must then be subtracted again,
resulting in the following formula

A= emm *oTo %% (6.11)
In this line also phase-space e ects from the reduced bottequark mass are taken
into account, leading to an additional shift with respect tothe tree-level cross
section. Nevertheless the curve again shows the expectedhdngor which can be
deduced from the results given above with rising correctignfor increasingt .
For large values ot they largely exceed the one-loop result because of theny
resummation where contributions are added that in a naive tzulation would
appear in higher-order diagrams of perturbation theory. Tis curve presents
the current best estimate for the total cross section in the ® scheme where
higher-order contributions are included as much as possi#hl Lastly the one-
loop expression in theDR scheme is plotted as dash-dotted light-blue line and
labeled ;PR. It has a shape very similar to the previous curve because them,
corrections appear in the self-energy contributions to théottom-quark mass.
In this renormalization scheme they enter completely at on®op order via the
bottom-quark propagators and no further contributions at igher orders appear.
Hence this corresponds to the resummed result in the OS schenThe remaining
di erence between the two curves is a measure for the theoied! uncertainty of
the calculation because of missing non-leading higher-erdcontributions from
perturbation theory.
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Tree-level cross section o =2:684 fb
mp-corrected tree-level cross section ,,, =2:266 fb
One-loop OS cross section 1 =2.176 fb
Relative one-loop OS correction os = 156 %
Relative true one-loop OS correction m,= 40%

Table 6.2: Hadronic cross sections for the reference poineS1d, which is de-
scribed in appendixA.2.

Finally the numerical results for the parameter point SPS1%16] are given in
table 6.2 This parameter point is described in appendiA.2, it was chosen as a
reference point for MSSM calculations. Because of the pogd sign of the one-
loop cross section is now reduced with respect to the treesdresult. Thet value
of 10 is in a region where the my, corrections are already the dominant ones, but
the non-universal corrections still yield a numerically gini cant contribution.






Chapter 7

Higgs-Boson Production via
Vector Boson Fusion

Proving the existence of a neutral Higgs boson is one of the mdasks of the
LHC. Its main production processes for both SM and MSSM Higdmsons include
Higgs-boson production via vector-boson fusion (Fig.1) [107, 108 109. Its rate
is surpassed only by the gluon-fusion procegg! h° [11J shown in Fig. 7.2
This process has large NLO-QCD corrections with K-factoratger than 2 [L11].
Even after including the NNLO-QCD corrections 112 theoretical uncertainties
of O (10 20%) remain. They make the extraction of coupling constant§om
the gluon-fusion process di cult and lead to large errors.

The Standard-QCD corrections to the vector-boson-fusionrpcess were al-
ready calculated before]13 114. At tree-level the process only consists of a
t-channel exchange of a colorless gauge boson, which is whg tontribution
where an additional gluon connects the two quark lines has materference term
with the tree-level diagram. Only the quark{anti-quark{vector-boson vertex re-
ceives corrections 00 ( s) and hence the overall QCD corrections are relatively
small and typically between 5 and 10%. Therefore, the extraon of Higgs cou-
pling constants leads to much smaller errors than in the glmefusion case, and

Figure 7.1: Generic tree-level Feynman diagram of the vectboson-fusion pro-
cessqq!  qgl?

69
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(a) quark loop (b) squark loop

Figure 7.2: Leading-order Feynman diagrams of the gluondion procesgg! h°

the vector-boson-fusion production process is, despites itower cross section, an
ideal instrument to study the Higgs boson.

This process possesses a clear experimental signature afjgts in the forward
region and thus can be easily separated from background pesses by applying
appropriate cuts fL15. In this chapter the production of the lightest MSSM Higgs
bosonh® via vector-boson fusion is investigated and the SUSY-QCD wections
to this process are calculated.

7.1 The Partonic Process

The partonic processes which contribute to the productionfa Higgs boson via
vector-boson fusion can be summarized in a single generalfman diagram
which is depicted in Fig.7.1 It can be seen as scattering of two quarks which is
mediated via a vector boson in the t-channel with a Higgs bosdeing radiated o
the intermediate vector boson. This is why the process has kear experimental
signature of two jets in the forward region of the detector wich allows one to
easily distinguish the signal from background processes bging appropriate cuts.
In a strict sense, the general diagram given in Fig/.1 is not the only one
which contributes to this nal state. When a quark{anti-quark pair of the same
avor appears in the initial state they can form aZh® pair via an intermediate
virtual Z boson and theZ subsequently decays again into a quark{anti-quark
pair. Hence these diagrams have exactly the same particlentent in both the
external and internal lines. There are also similar process where an interme-
diate W boson can appear in the same way. However, the vector-bodasion
process has a very distinct signature of two jets in the forwd region. Using
only this particular phase-space region the interferencestween the two diagram
types is strongly suppressed by the large momentum transfappearing in the
intermediate gauge bosons. Additionally a color suppressi factor appears in
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the interference term L14. Hence the e ects from these additional diagrams can
be safely neglected if appropriate cutsllLy to the phase space are applied.

An analysis of the statistical accuracies of the cross semti which are achiev-
able at the LHC was done in refs.][16 117. It could be shown that a measure-
ment with an accuracy of 5 to 10% can be performed, also takingcertainties
in the decay branching ratios of the Higgs boson into accoun§o the size of the
NLO-QCD corrections already matches the accuracy which ichievable in ex-
periment. Theoretical uncertainties are not expected tonit the precision with
which the cross sections can be measured.

In the MSSM besides the Standard-QCD corrections also SUSYED cor-
rections appear which are of the same ordé€ ( ) or, in case of the pentagon

diagrams, even enhanced and &f £ inthe coupling constant. A full one-loop

calculation of these corrections has not been done beforedda presented in this
thesis.

7.2 SUSY-QCD Corrections

In this chapter the SUSY-QCD corrections toh®-production via vector-boson
fusion are studied. If their size is larger than the experinméal uncertainties one
might be able to use this to tell the SM and the MSSM apart. In tle limit of large
ma the couplings of theh® become SM-like. So if at the LHC only one Higgs
boson with Standard-Model couplings and a mass below 140 Ge&vfound, the
guestion arises whether a SM or a MSSM Higgs boson was seenhia detector.
The SUSY-QCD corrections, which exist only in the case of a MM Higgs boson,
could modify the Higgs boson coupling by an amount large engln and therefore
make the distinction between the two models possible. Alsé supersymmetry
could be established by other means beforehand, these cotiens give an indirect
contribution to the coupling between the Higgs boson and twgauge bosons. To
be able to extract the value from the experiment as preciselgs possible it is
necessary to include these higher-order corrections.

The possible types of diagrams which appear in the SUSY-QCreections
are depicted in Fig. 7.3 The quark{quark{gauge boson vertices receive cor-
rections which are depicted in Fig.7.3@). Their divergencies are cancelled by
appropriate counter terms which are shown in Fig7.3(b). The contribution of
these diagrams was already investigated beforElg for the special case where all
squarks have equal mass. Additionally one of the gauge bosaran be replaced
by a box-shaped sparticle loop as shown in Fig.3(c). Finally, all external par-
ticles can be coupled via a pentagon-type loop as in Fig.3d). Because of the
Majorana nature of the gluinos also the diagram displayed dhe right-hand side
of the gure, where two quark lines are connected, exists.

All cross sections are calculated in the OS renormalizatisscheme. For the
tree-level diagrams the leading-order parton distributio functions of ref. L19
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L

(a) vertex corrections

X

3

(b) vertex counter terms

(c) box contribution

(d) ve-point contribution

Figure 7.3: Diagram types contributing to SUSY-QCD correctins to h® produc-
tion via vector-boson fusion
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were used. The one-loop cross sections were convoluted vitte NLO-PDFs of
the same group given in ref.120. In both cases the implementation from the
program package LHAPDF 93] was used to obtain the numerical results which
are presented in the next section.

7.3 Numerical Results

In this section numerical results for the SUSY-QCD correatins to h°-production

via vector-boson fusion are presented. The hadronic croscsons for each indi-
vidual process for the MSSM reference point SPS1avhich is described in detail
in appendix A.2, are listed in the following table. The one-loop correcti®are
separated according to the loop type, wherenex includes the contributions
from the diagrams shown in Fig.7.3@a) and (b), pox from the ones of Fig.7.3(c)

and e from the pentagon diagrams depicted in Fig7.3(d).

Partonic subprocess  yee [pb] —erer e s

dd! ddho 1:76 10 2 1:72 10 4 8:34 10 1:24 10 °
du! duh? 346 101 1:60 10 ¢ 6:68 10 ° 1:46 10
ds! dsh® 1:21 10 2 1:58 10 ¢4 7:89 10 ¢4 1:67 10 °
dc! dchH 6:39 10 3 1:58 10 ¢ 2:69 10 ° 1:83 10 ©
dc! ush® 3:34 10 2 1:43 10 ¢ 9:07 10 ° 0
dd! ddh° 1:58 10 2 1:55 10 ¢4 7:77 10 4 2:48 10 6
dd! uuh® 6:33 10 2 1:40 10 4 1:02 10 ° 1:52 10
du! duh® 1:09 10 ? 1:53 10 ¢ 2:16 10 ° 1:66 10 ©
ds! dsh° 1:18 10 2 1:56 10 ¢ 7:83 10 4 8:90 10 ¢
ds! uch® 4:75 10 2 1:41 10 ¢ 1:52 10 ° 0
dc! dch® 6:26 10 3 1:56 10 ¢ 2:86 10 ° 1:96 10 6
uu! uuh® 3:68 10 2 1:86 10 ¢ 6:65 10 4 1:26 10 °
us! dch’ 1:10 101 1:49 10 ¢ 8:16 10 ° 0
us! ush® 2212 102%| 165 10“4| 153 10*| 184 10°
uc! uch® 1:14 102 | 164 10*| 623 10“4| 220 10°
ud! udh® 2:75 10 ? 1:63 10 ¢ 1:56 10 4 1:59 10 6
uu! ddho 1:27 101 1:44 10 4 1:60 10 4 2:00 10 6
uu! uuh® 1:92 10 ? 1:61 10 ¢ 6:05 10 4 3:15 10 °
us! ush® 208 102 | 164 10“4| 152 10%| 182 10°
uc! dsh® 7:45 10 ? 1:46 10 ¢ 1:56 10 4 0
uc! uch® 1:12 10 2 1:63 10 ¢ 6:17 10 4 1:77 10 °
ss! ssh? 8:40 10 4 1:48 10 ¢ 7:62 10 4 7:40 10 ©
sc! schP 4:37 103 1:31 10 ¢ 6:04 10 ° 1:81 10 ¢
sd! sdh? 2:22 10 3 1:41 104 7:34 10 ¢ 7:60 10 ©
sd! cuh® 9:10 103 1:27 10 ¢ 1:93 10 ° 0
su! suh® 1:50 10 8 1:40 10 ¢ 5:07 10 © 1:72 10 6
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Partonic subprocess  yee [pb] e o s
ss! ssh 1:62 10 ° 1:42 10 7:42 10 4 1:58 10 ©
ss! cch? 669 103%| 128 104| 233 10°| 329 108
sc! sch? 8:27 10 4 1:43 10 ¢ 1:79 10 ¢ 1:96 10
cc! cch 1:70 10 ¢ 1:49 10 ¢ 5:99 10 4 6:09 10 ©
cd! cdh? 9:00 10 ¢ 1:41 10 4 1:88 10 4 1:75 10 ©
cu! sdh 4:17 103 1:27 10 ¢ 1:35 10 4 0
cu! cuh 6:09 10 4| 140 10“4| 566 10*| 154 10°
cs! csh 6:56 10 4 1:43 10 ¢ 1:85 10 4 1:91 10 ©
cc! ssh® 2:27 103 1:31 10 ¢ 1:33 10 4 4:08 10 6
cc! cch 331 104 1:44 10 4 5:84 10 4 333 10°
dd! ddh° 1:81 103 1:43 10 ¢ 7:32 10 4 7:41 10 ©
du! duh® 1:36 10 2 1:28 10 ¢ 5:79 10 ° 1:69 10 6
ds! dsh 2:64 10 3 1:40 10 4 7:29 10 4 1:72 10 °
dc! dch? 1:35 10 3 1:41 10 ¢ 4:16 10 1:73 10 ¢
dc! ush® 716 103 | 128 104 | 844 10° 0
uu! uuh® 723 104 | 144 104| 570 10*| 654 10°
us! dch® 830 103 | 1:31 104| 743 10° 0
us! ush® 1:56 10 8 1:44 10 ¢ 1:76 10 4 1:90 10 8
uc! uch® 7:90 10 4 1:45 10 ¢ 5:81 10 4 2:19 10 °
ss! ssh? 8:40 10 4 1:49 10 4 7:63 10 ¢4 7:40 10 ©
sc! sch? 4:37 10 3 1:31 10 ¢ 6:02 10 ° 1:81 10 ©
g:! cch 1:70 10 ¢ 1:49 10 ¢ 5:98 10 4 6:10 10 ©
(h0 via VBF) 1:11 1:53 10 ¢ 7:69 10 ° 344 10’

The quoted cross sections are hadronic ones, where the cdatron with the
PDFs has already been performed. They are given separately &ach partonic
subprocess to facilitate an easier analysis of the charagstic e ects appearing
in this process. Additionally the total hadronic cross sean is stated, which is
the sum of all subprocesses. For some partonic subprocessesve-point loop
diagrams exist at all. In this case the entry in the last colum of the table is
exactly zero. To exploit the unique characteristics of thenal state of this process
cuts were used to obtain the cross sections. A lower limit wgdaced on the
transverse momentumpy and the pseudo-rapidity of the outgoing quarks and
anti-quarks, so that the nal-state jets are clearly separed from the beam pipe,
but still in the forward region of the detector. Also a cut on he jet separation R
between each combination of outgoing particles was set to elate the behavior
of the jet-clustering algorithms used in experimental angses and to be able to
resolve the particles in the detector separately. Thus thepalied cuts were

pr(g;9 40 GeV (g;0) 2 Roqaaqgrogre 0:4 (7.1)

The formal de nition of these quantities was given in chapte5.4.
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There is an interesting observation already at tree-levelThe partonic sub-
processes which enter via Z-boson exchange are suppressed with respect to the
ones with aW boson as intermediate vector boson. Firstly, the couplingf ahe
W boson to the quarks is enhanced by a factor wa— the inverse of the cosine
of the electroweak mixing angle, with respect to the leadingerm of the qqZ-
coupling. Secondly, theZ boson is heavier than theW boson, and the ratio of
the two masses is also equal tgb. As the gauge-boson propagators are domi-

nated by their mass terms this leads to an additional enhanoeent of C\ZNA for each

W boson propagator. So in total the amplitude of &V boson-exchange diagram
is enhanced by aboutcevi over one with aZ boson exchange. Accordingly, this

amounts to a factor%l; = ﬁg ' 4:8 for the tree-level cross section, which

corresponds to the observed partonic cross-section ratidBecause of this e ect
and the large valence-quark densities of the up- and down-ayks in the proton,
the partonic subprocessid ! udhC gives the leading contribution to the hadronic
process.

The vertex corrections all have the same size relative to thespective tree-
level cross section and correspond to the results obtainedref. [11§. Since the
coupling of the W boson to the quarks is purely left-handed, they are largest i
the o -diagonal elements in the squark mixing matrix are smidand therefore left-
and right-handed squarks have almost equal masses. Also tbe intermediate
gluino propagator only the momentum term survives when caldating the trace
over the fermion line. It is proportional to the momentum transfer in the t-
channel and thus small. For diagrams withZ-boson exchange the situation is
more complicated, because thgqZ-coupling contains both left- and right-handed
parts. Nevertheless, any subdiagrams involving a mixing tft- and right-handed
squarks are proportional to the o -diagonal terms in the sgark mixing matrix,
which contain the Yukawa coupling of the corresponding qulrand are hence
small. Hence, the same e ects as in th&/ boson case appear and lead to a
similar relative size of the vertex corrections.

In the case of box diagrams the relative size of the correati® shows a much
wider range. For some partonic subprocesses they exceed Yketex corrections
signi cantly, which underlines the importance of performng a full one-loop calcu-
lation to take all e ects into account. Yet for other subpro@sses they are much
smaller. This is due to the fact that for W-boson exchange large cancellation
is manifest. It occurs between the diagrams on the left-hanside of each row
of Fig. 7.3(c), where the h® couples to the squark with the avor of the out-
going quark, and the ones on the right-hand side which have df-coupling to
the squark with the incoming-quark avor. Because of theN boson one of the
squarks is always up-type and the other one down-type. Theaouplings to the
h® have a minus sign relative to each other. Any e ects from CKMnixing are
neglected, therefore only squarks of the same generatiomappear in a single
diagram. This is also why only the superpartners of the foutight quarks con-
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tribute at all. They all have very similar masses, so the ab&de value of the
gefW-coupling is roughly the same everywhere. Hence the diagraman the left-
and right-hand side of Fig.7.3(c) almost exactly cancel forW-boson exchange,
leading to a strong suppression of this contribution. FoZ-boson exchange no
such e ect occurs and the relative box-diagram contributio is larger by an or-
der of magnitude. Since, as mentioned above, already the erevel amplitude
is smaller for this diagram type, the absolute value of the crection is small as
well and these corrections cannot give a signi cant contriltion to the total cross
section. Again the correction is maximized in the case whetbe o -diagonal
elements in the squarx mixing matrix are small. Also the chage of the coupling
constant between tree-level, which is proportional t& . , to the one-loop one
of s cannot give an important e ect, because the ratio of the twos always
above 09 and approaches 1 in the decoupling scenario, where the adufial Higgs
bosons of the MSSM are heavy and the°-coupling becomes SM-like.

For the ve-point diagrams a cancellation similar to the boxdiagrams occurs
when the corresponding tree-level process is mediated by\&-boson exchange.
Additionally at least twice a left-right mixing term in the squark sector appears
in the amplitude. For this reason a term proportional to the Yikawa coupling
of the four light quarks enters the expression and leads to apression of the
one-loop correction. The choice of parameters which yielthé¢ biggest one-loop
corrections are in this case large terms in the o -diagonaln&ies of the squark
mixing matrices and therefore a larger mass splitting in thequark sector. Ad-
ditionally for both types the larger masses of the gluinos ahsquarks, where
experimental limits require that they are heavier than theWw or Z boson, lead
to a further reduction of the cross section. Yet, there is alsan enhancement
factor. Except for the Higgs coupling, all other four couptigs of the pentagon
diagrams are proportional to the strong coupling constantwhile for the trian-
gular and box-type diagrams two of the couplings are strongnd two of them
are electroweak. Hence this type of diagram contains an emt@ment factor of
- " 14. This is however not su cient to give a signi cant contribution to the
Cross section.

7.4 h%Production with External Gluons

Additionally the production of an h® with one or two gluons in the initial state was
considered. The corresponding Feynman diagrams are shownHFig. 7.4. Since
there is no tree-level coupling of the gluons to the Higgs bmss, these processes
occur at the one-loop level in leading order. This leads to asdditional factor
of s in the cross section so the total amplitude is 0® ( ¢ ), while the vector-
boson-fusion diagram has a factor®. Given that 2 is of the same numerical size
as these contributions might prove important. Additionally, the gluon densities
in the proton are much higher than those of the quarks at typal LHC energies
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(a) vertex corrections

(b) box diagrams

\999999, ,,,,,,,,,,,,,,, %

(c) pentagon diagrams

Figure 7.4: Leading-order diagram types foh®-production with one external
gluon in the initial and nal state. The Feynman diagrams with two gluons in
the initial state have the same topology. They are obtaineddm these ones by
taking both gluons as incoming particles and changing the @oming quark to an

outgoing anti-quark.
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Partonic subprocess one-ioop [PP]
gd! gdh’ 22 10°
gu! guh® 1.7 10°
gs! gsiP 23 106
gc! gctf 9:3 10
gd! gdh® 32 10 °
gu! guh® 25 10°
gs! gsh® 21 10°
gc! gch? 82 10’
gg! ddh° 1.8 10
gg! uuh® 23 107
gg! ssh° 26 10 7
gg! coch® 25 107

Table 7.2: One-loop hadronic cross sections for the subpesses with one or two
gluons in the initial state for the MSSM reference point SP3Hf.

and this further enhances this type of diagram.

The numerical results for these processes with external ghs for the reference
point SPS1& are given in table7.2 In this case the convolution with the PDFs
is also already included in the numbers for the cross sectiofihe same cuts as
for the vector-boson-fusion process, given in ed(.(), were used. Also the same
cuts were applied to the nal-state gluons as to the quarks ahanti-quarks.

Formally this process type constitutes a background to therpviously con-
sidered process df’-production via vector-boson fusion. Therefore one wantst
pursue the question, how large the total contribution of thee diagrams is and if
there are cuts which reduce their size with respect to the sigl process.

The processes with one gluon in the initial and nal state hay a momentum
distribution similar to the vector-boson-fusion one. The lyon densities in the
proton are very large for smallx, but rapidly diminish for larger x. In contrast
the sea-quark densities fall o much slower and the valenaptark densities have
their maximum at about % So the most favorable con guration is the one where
the energy to produce the nal state mostly originates fromhe quark. Thus the
hadronic center-of-mass frame is strongly boosted with sct to the partonic
one, which leads to jets in the forward region of the detectoiT his would mimic
the signature of a vector-boson-fusion process and produseents which cannot
be eliminated by cuts. In contrast for processes with two gans in the initial
state the momentum con guration which maximizes the hadroic cross section
is the one where both gluons have similar values »f This leads to more central
jets which are suppressed by the applied cuts.

As one can see from the cross sections in talle?, the total contribution of
these diagrams is ofD (10 %) and therefore well below the experimental uncer-
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tainties, which are in the range of 5 to 10%. As the total contbution of these
background processes is below the statistical uncertaies which can be reached
in a measurement of the vector-boson-fusion cross sectitimese background pro-
cesses do not a ect the experimental determination of thi®-production rate via
vector-boson fusion.






Chapter 8

Higgs-Boson Production in
Association with Heavy Quarks

The coupling of Higgs bosons to fermions is of the Yukawa typend therefore
proportional to the mass of the fermion. The four light quark, u, d, s and
¢, all have a mass below or of about 1 GeV. This mass should be gqared
to the Higgs vacuum expectation valuev, the scale of electroweak symmetry
breaking, to obtain the strength of their respective Yukawacouplings, which
are therefore small. In contrast the top-quark mass is of theame order as the
electroweak symmetry-breaking scale, making the top-Higgoupling numerically
sizable. The bottom-quark mass of a few GeV also leads to alat weak coupling
to the Higgs boson in the Standard Model. In the MSSM, the colipg to the h° is
enhanced by a factot , so for large values of its size can become comparable to
the top-quark Yukawa coupling. These large Yukawa couplimgmake Higgs-boson
production in association with heavy quarks 121, 122 a phenomenologically
interesting process.

In this chapter the production of the lightest CP-even neutal MSSM-Higgs
bosonh® in association with a bottom or top quark{anti-quark pair is studied.
The top quarks decay rapidly into mainlybW and the outgoing bottom quarks
can be identi ed in the detector via b-quark tagging. Therefore both processes
form distinct nal states which neither interfere with each other nor with the
Higgs-boson production via vector-boson fusion presentedchapter 7. First the
peculiarities of each of the two processes are discussedasaiely. Then the one-
loop SUSY-QCD corrections for both processes are describeflince the same
basic Feynman diagrams appear in both cases, this task is @ojointly. The
Standard-QCD corrections have already been calculated irfs. 123 124 for
bbrP-production and refs. 125 126 127 for tth®-production. Finally in the last
two sections the numerical results for both processes areosin.

81
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(a) s-channel contribution

(b) t-channel contribution

Figure 8.1: Tree-level Feynman diagrams of the procepp! bbH’

8.1 The bbH° Final State

The production of a Higgs boson in association with bottom quks in the Stan-
dard Model was intensively studied in the literature 117, 128 129. At tree-level
it originates from the annihilation of a quark{anti-quark pair or from a gluon fu-
sion process, where the nal-statdb-pair is produced via an intermediate gluon,
and the Higgs boson radiates o from one of the bottom quarksF{g. 8.1(a)).
Besides these s-channel diagrams the partonic gluon-fusjgrocess also proceeds
via a t-channel diagram shown in Fig.8.1(b), where the Higgs boson can be
emitted from both the internal and external bottom-quark lines. The analysis
was soon extended83, 94, 137 to include the lightest MSSM-Higgs bosor®.
The diagram types are exactly the same as in the Standard Mddease. Only
the bottom-quark{Higgs coupling is changed to its supersymetric counterpart,
resulting in

S
mMssm PpP! ol = < sv pp! boH ; (8.1)

where 3- is the ratio of the bottom-quark coupling to the MSSMh° boson and
to the one of the SM Higgs bosoi .

The Standard-QCD corrections 123 124 to this process are also known and
reduce the dependence of the cross section on the factoriaatand renormaliza-
tion scales.
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However, there are subtleties when making a theoretical mhetion for total
integrated h°-production via this process, i.e. when the nal-state bottm quarks
are not explicitly detected. In a four- avor-number schemewhere only gluons
and the four light quarks, but no bottom quarks appear in thenitial state, large

logarithms of O In ﬁ—i in the total cross section emerge, whei@ is of the order

of the Higgs-boson rrblass. They arise from the kinematical cgaration where a
gluon splits into abb-pair and the bottom quarks are collinear to the gluon. These
logarithms can be resummed using bottom-quark parton demigis, thereby using
a ve- avor-number scheme. The bottom-quark densities inlie proton originate
purely from such splitting gluons. So for every bottom quarkvhich appears
in a partonic process another bottom (anti-)quark exists inthe hadronic nal
state. This scheme uses the approximation that the outgoirtgottom quarks have
small transverse momentum and they are assigned zero trapsse momentum at
leading order. In the ve- avor-number scheme the leadingsrder partonic process
is thenbb! h° gg! bbr only appears at NNLO together with the two-loop
corrections to this process13]].

In our case though these large logarithms are avoided by ragng bottom-
quark jets with high transverse momenta and a tagging of thenal-state bottom
qguarks in the detector. The additional cuts reduce the crossection by one or two
orders of magnitude, but also greatly reduce the backgrourahd make this ap-
proach more interesting. The existence of bottom-quark jetwith large transverse
momenta also guarantees that the Higgs boson was emittedrfta bottom quark
and is therefore proportional to the bottom-quark Yukawa copling, allowing its
precise measurement.

The SUSY-QCD corrections to this process were partly calatked in ref. [L33.
There an e ective bbhP-coupling was used which includes the one-loop squark
and gluino contributions, but no box-type or pentagon diagams were added in
their analysis. In this dissertation a full one-loop calcation of the SUSY-QCD
corrections is performed.

8.2 The tth® Final State

The production of a Higgs boson in association with a top quifanti-quark
pair [122 133 134 proceeds in the same way as the one with a bottom quark{
anti-quark pair discussed in the previous section and the & diagrams as in
Fig. 8.1 appear. Since the mass of the top quark is of the same order &t
electroweak symmetry-breaking scale, its Yukawa couplingjves a sizable contri-
bution and the process is an important channel for Higgs-bos production in
the mass region below 125 Ge\85. Furthermore, this process can be used to
measure the top-quark Yukawa coupling preciselft8g. The extension of the SM
tree-level calculations to the MSSM, where the Higgs bosos an h°, is again
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straightforward and amounts to a replacement of the Yukawaazipling such that

2
C
wssm pp! tth® = s sv(pp! ttH) ; (8.2)

where ¢- is the ratio of the top-quark coupling to the MSSMh° boson and to the

Higgs bosonH of the SM. Thus the total cross section in the MSSM is reduced
with respect to the SM one by approximately a factor oﬂe.

The Standard-QCD corrections for this process are availablin the litera-
ture [125 126 127. Their numerical size is ofO (20% 40%) and leads to a
stable prediction of total and di erential cross sections wh respect to variation
of the renormalization and factorization scales.

The large mass of the top quark also reduces the size of thelioglar loga-

rithms to O In g—i . Now the argument of the logarithm is close to 1. So the

higher-order corréctions are small and no resummation oféke terms needs to
be performed. Hence one can safely use the four- avor-nunitscheme for this
process and need not apply any additional cuts to the nal-stte top quarks in

this case.

A calculation of the SUSY-QCD corrections was performed dei recently in
ref. [L37. As the gures of this article include both the Standard-Q® and the
SUSY-QCD one-loop contributions a direct comparison of theumerical results
is dicult. As far as the principal behavior with respect to a variation of the
MSSM parameters is concerned, agreement could be found.

8.3 SUSY-QCD Corrections

In this section the SUSY-QCD corrections td°-production in association with a
heavy quark{anti-quark pair are described. In the Feynman idgrams the heavy
quark is denoted by aQ, which represents & for the bottom-quark and at for
the top-quark nal state. Correspondingly, in part of the diagrams the supersym-
metric partners to the heavy quark appears, which is markedybQ@, specifying
b and t; respectively. A smallg-on the other hand signi es that all squarks can
be inserted in the propagator. Theg%in the qq diagrams denotes the super-
partner to the initial-state quark. In Fig. 8.2(a)-(f) the basic types of Feynman
diagrams which appear as one-loop SUSY-QCD correctionsh®-production via
gluon fusion are depicted. Self-energy corrections (Fi§.2(a)) enter either via
a squark or gluino loop which is inserted into the intermedia gluon propaga-
tor, or a combined squark-gluino two-point loop inserted it the heavy-quark
line. In Fig. 8.2b) the possible vertex corrections are displayed. Squarkdps
induce an e ective gluon-Higgs coupling appearing in the twdiagrams on the
left-hand side of the rst two rows. The diagrams on the righthand side of the
rst two rows contain a correction to the coupling betweenh® and the heavy
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(a) self-energy corrections

(b) vertex corrections

Figure 8.2: Types of Feynman diagrams contributing to SUSQCD corrections
to h%-production in association with heavy quarks
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(c) box diagrams

(e) self-energy counter terms

Figure 8.2: (continued)



8.3. SUSY-QCD Corrections

(f) vertex counter terms

(g) additional diagrams for quark{anti-quark annihilatio n

Figure 8.2: (continued)

87
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quark. The third and fourth row feature corrections to the glion-quark inter-
action and the last row an additional contribution to the triple-gluon vertex.
Diagrams where four particles are connected via a sparticledp are presented
in Fig. 8.2(c). Finally, all ve external particles can be joined by a sgark-
gluino loop as shown in Fig8.2(d). The emerging divergences are cancelled by
counter-term diagrams shown in Fig8.2(e) for the self-energy contributions and
(f) for the vertex corrections. All gluon-fusion s-channetliagrams, where the
two initial-state gluons couple to a further, intermediategluon, also exist in the
guark{anti-quark{annihilation subprocesses. The only cange is the replacement
of the two incoming gluons by a quark{anti-quark pair. The aditional diagrams
which appear for this type of subprocess are depicted in Fi§.2(g). They are
corrections to the quark{anti-quark{gluon coupling togeher with the associated
counter-term diagram as shown in the rst row. Secondly, theoupling of the
incoming light quark to the Higgs boson, which is neglected &ree-level, appears
at one-loop order as indicated by the diagram in the secondwo Finally in the
last row the additional box and pentagon diagrams are shown.

In the remaining sections of this chapter the numerical redts of h°-production
in association with a heavy quark{anti-quark pair are presged. In analogy to
chapter 6 several cross-section di erences are de ned to illustratée results. All
calculations in this chapter were performed in the OS renorafization scheme, so
the label indicating the renormalization scheme will in thdollowing be dropped
for all items. The relative one-loop correction is de ned as

1 0

1= ; (83)
0

where o denotes the tree-level and ; the one-loop cross section. For the calcu-
lation of hadronic cross sections the PDF set of refl2(q was used. Additionally,
a myy-corrected tree-level cross section was calculated in a similar way as
already described in chapte8, i.e. using the non-resummed version of e4.@1)
and treating the my term as a one-loop contribution. Additionally, the contri-
bution to the vertex from the term proportional to the secondmixing angle in the
MSSM-Higgs sector, , was included in  according to egs. 4.27 and (4.33.
The relative correction using only these contributions is & ned as
0

0= : (8.4)
0

Finally, the di erence between the my.-corrected tree-level cross section and
the full one-loop result, which denotes the true one-loop ections, is given by
1

Mpx = : (8.5)
0

The renormalization of the strong coupling constant ¢ was performed as de-
scribed in chapter4.2.3
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Partonic subprocess o [fb] | 1 [fb] 1[%] | o [%]
dd! boh’ 0:107| 0:104 2:48 1:95
uu! bk 0:168| 0:164| 256 1:95
ss! bbi 0:028| 0:028| 2:26 1:95
cc! bbi 0:013| 0:.012 2:20 1:95
89! bbh’ 35647 | 33734 5:37 1:95

pp! boH 35963 | 34042| 534 1:95

Table 8.1: Hadronic cross sections fdibH’-production at the parameter point
SPS14 (see appendixA.2).

8.4 Numerical Results for  bbH°

In this section the numerical results for the procegsp! bbH’ are presented. First
the total hadronic cross section for the MSSM reference poiBPS12 is given in

table 8.1 It is also given separately for each partonic subprocess.s Alescribed
before, the outgoing bottom-quark jets are required to hava high transverse
momentum, so that large logarithms are avoided and the backmgund processes,
where the Higgs boson does not radiate o a bottom quark, areduced. To this

end a cut on the bottom quarks,

pr(b;b) 20 GeV ; (8.6)

was applied to obtain these results. The same cut will also hesed for all other
cross sections of this section.

As one can see in the table, the dominant contribution origates from the
gluon-fusion process and the quark{anti-quark{annihilabn processes are sup-
pressed by two orders of magnitude. Hence their contributiois negligible and
in the following analysis only the gluon-fusion subprocess considered. This
large di erence in the cross sections is due to the fact thahe quark{anti-quark{
annihilation process can only proceed via the s-channel dram shown on the
left-hand side of Fig.8.1(a). It contains a propagator suppression from the in-
termediate gluon which must carry at least the energy to prace the nal-state
Higgs boson and the two bottom quarks. In contrast the gluofusion subprocess
also contains a t-channel diagram (Fig8.1(b)) which does not su er from such
a suppression. In fact, if one takes only the s-channel diagn on the right-hand
side of Fig.8.1(a) into account, the cross section of the gluon-fusion caitbution
is of comparable size (; = 1:103 fb) to the one of quark{anti-quark annihilation.

In the following plots the e ect of varying MSSM parameters a the SUSY-
QCD contributions is investigated. To that end a parameter pint with a fairly
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D [%]
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Figure 8.3: Partonic cross section di erences for the prosgegg! bbH, using
t =30, as a function of M gysy Mg = My = My, All other parameters take
the values given in eq. 8.7).

light SUSY spectrum was chosen, namely

mp =200 GeV
=300 GeV
A= Ay,=0
Msusy Mg = My = My =250 GeV
mg = 400 GeV (8.7)

The MSSM parameters were then varied around this point. Theesnormalization
scale, which appears in 5 (see eq. 4.9), was setto r = 2mp+ mMpo. As the
contribution of the quark{anti-quark annihilation diagrams is negligible compared
to the gluon-fusion subprocess, only the latter one is codsired in the following.
Also for simplicity the qupted cross section di erences arpartonic ones with a
center-of-mass energy of § = 500 GeV.

For the rst plots t is set to the large value 30. In the plot given in Fig8.3
a common mass scal® sysy, where all soft-supersymmetry breaking masses in
the squark sector take the same value, is chosen. Accordirydhapter4.3, where
the bottom-quark Yukawa coupling was studied, one would exget the universal
corrections, which are parametrized in my, to give the dominant contribution.
This is indeed the case for almost alMgysy-values. Also the decrease of the
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Figure 8.4: Partonic cross section di erences fdbh’-production via gluon fusion
in the larget -regime ¢ = 30) as a function of . For the value of the other
parameters see eq.8(7).

corrections with growing SUSY mass scale, which is predididy eq. 4.17) to

fall o as M—zl— can be seen in the plot. Only for rather small values &fl sysy a

deviation from this behavior occurs. Other terms contribug signi cantly in this
region and lead to smaller cross-section di erences than envould expect from
the myterms alone.

The numbers for the second plot (Fig8.4) are also calculated in the regime
of larget , but now is varied. For small values of , the my-corrected tree-
level result and the full one-loop cross section coincide dishow the expected
linear rise with . When becomes large, and thus the o -diagonal elements in
the sbottom mixing matrix lead to a larger split between theighter and heavier
sbottom, this behavior changes and leads to a decelerateaiease with . Also
other terms begin to contribute to the cross section in a sigoant way and
induce a deviation of the full one-loop result from the my, corrections by up to
20%.

The e ect of varying t is studied in Fig. 8.5 The my-corrected tree-level
result grows linearly witht as predicted from eq. 4.17). In the small t -regime
it approximates the full one-loop result rather well with a eviation of only about
one percent. For larger values of the complete one-loop corrections begin to
deviate and additional contributions lead to a slower riseFinally, the absolute
value of the full corrections slightly decreases again. This the same e ect which
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Figure 8.5:t -dependence of the partonic cross section di erences fpy! boh’.
The values of all other parameters are given in eg8(7).

was already observed on the left-hand side of Fi§.3 As the common value of
the soft supersymmetry-breaking masséd sy was chosen to be 250 GeV we are
exactly in this regime. A higher value foilM g5y leads to a one-loop cross-section
di erence which coincides with the my-corrected tree-level one over the whole
range oft . To verify this a value of Mgysy = 400 GeV was chosen to obtain
Fig. 8.6. Additionally, the gluino mass was set tomg = 640 GeV such that the
ratio of the two masses is the same as in the parameter set €§.7. In this
case the discrepancy ., between ; and , stays below one percent for all
t -values.

In the nal two plots the behavior of the cross-section di eences in the small
t -regime, namely fort = 6, is studied. Firstly, in Fig. 8.7 the common mass
scaleM gysy of the soft supersymmetry-breaking masses appearing in teguark
sector is varied. The my-corrected tree-level result is a good approximation of
the full one-loop result over the whole mass range. The di ence is about one
percent for smallMsysy and rapidly vanishes for larger values.

The last plot (Fig. 8.8) depicts the dependence of the cross-section di erences
on fort = 6. It shows a similar behavior as the same plot for large
(Fig. 8.4). For small values of the my-corrected tree-level result and the full
one-loop calculation coincide, while for larger ones sigrant deviations occur.

In the smallt -regime the absolute value of the 4 corrections even grows slightly
larger than the linear behavior of eq. 4.17), which is due to additional e ects
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Figure 8.6:t -dependence of the partonic cross section di erences fpy! boh’.

For this plot a slightly higher Mgysy = 400 GeV and mg = 640 GeV was used
than the one of eq. 8.7).
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Figure 8.7: Partonic cross section di erences fdbh’-production via gluon fusion
for t = 6 as function of a common masMgysy for the soft supersymmetry-
breaking terms. All other parameters take the values givemieq. 8.7).
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Figure 8.8: -dependence of the partonic cross section dierences fobh’-
production via gluon fusion in the smallt -regime ¢ = 6). The values of all
other parameters is given in eq.8.7).

originating from the growing mass splitting between the twsbottoms. The one-
loop corrections in contrast decrease again, once the ahsgelvalue has reached
a maximum at about 1500 GeV, and even change sign and becomsipee. So

in this parameter region true one-loop corrections contrilde signi cantly.

8.5 Numerical Results for  tth©

The numerical results for the second process of Higgs protlon in association
with heavy quarks, pp! tth?, are presented in this section. In table8.2 the
hadronic cross section for the MSSM reference point SP81s denoted. It is
given separately for each partonic subprocess which cobiiies to the tth°- nal

state.

In this case the quark{anti-quark annihilation diagrams g¥e a contribution
which is of comparable size to the gluon-fusion ones. On tharponic level the
same analysis as in the previous section ft¥-production in association with
a bottom quark{anti-quark pair holds. The quark{anti-quark{annihilation pro-
cesses are suppressed because there only a propagatori&gspd s-channel di-
agram exists, while the gluon-fusion subprocess also predse via a t-channel
diagram which does not su er from such a suppression. Aftehé convolution
with the parton distribution functions the situation however changes. The gluon
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Partonic subprocess ¢ [fb] | 1 [fb] 1 [%]
dd! tth© 427 37.6 1177
uu! tth© 719 634 1181
ss! tth® 75 6:6| 1158
cc! tth 2:8 25| 1153
gg! tth° 2737 | 2647 3:30

(pp! tth9) 3990 | 3748 5:96

Table 8.2: Hadronic cross sections fdth®-production at the parameter point
SPS14 which is de ned in appendixA.2.

densities in the proton show a much steeper fall with growingarton-momentum
fraction x than the sea-quark ones. As the top quarks are much heavierath
the bottom quarks, also the energy and thus th& of the incoming partons must
be larger to be above the threshold fotth®-production. For this nal state
it approximately compensates the e ect from the propagatosuppression. The
gluon-fusion process is still the dominant production moddut all processes need
to be taken into account for a complete analysis.

In the following plots the e ect of varying MSSM parameters a the SUSY-
QCD contributions is investigated. To that end the same panmaeter point as in
the previous section with a fairly light SUSY spectrum was asen, namely

my = 200 GeV
t =6
=300 GeV
A= Ay=0
Mg = My = My =250 GeV
mg = 400 GeV (8.8)

The MSSM parameters were then varied around this pointt = 6 was kept
xed for all plots of this section. The renormalization scat, which enters s via
eg. 4.9, and the factorization scale were settor = ¢ = 2m; + muo. The
hadronic cross-section calculations were performed foreglHC with a proton-
proton center-of-mass energy of 14 TeV.

First a common mass scal®sysy, where the soft supersymmetry-breaking
squark mass terms all take the same value, is introduced andried between
200 and 2000 GeV, as shown in Fig.9. The di erence between the tree-level
cross section and the m;-corrected one falls o asj—, as expected from the

form of the m, term given in eq. @.30. The total one Ioop contributions show
a similar decrease, but with a larger coe cient which leadsd a much steeper
descent. This originates from the fact that the m; term only includes vertex
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Figure 8.9: Hadronic cross section di erences for the pragspp ! tth? as a
function of Mgysy Mg = My = My. For the value of the other parameters
see eg. 8.9).

corrections to thetth® vertex. Yet there are many other one-loop diagrams which
also contribute and lead to the modi ed behavior. In contrasto my, which
is enhanced by a factot , the m, corrections are suppressed b;} and their
numerical e ect is expected to be smaller. For small SUSY msas threshold
e ects of the squark masses induce a deviation from the saadi with @

In the second plot (Fig.8.10 the dependence of the relative corrections on,
the mass parameter mixing the two Higgs doublets, is preseat. Also in this case
the m¢-corrected tree-level cross section is not a good approxitiea. Whereas
the term rises with growing , the full one-loop correction decreases in this case.
The slope is constant over a large range of Only for bigger values, when the
o -diagonal entries in the squark mixing matrices become wg large and yield
an additional contribution, also the gradient increases.

Finally, in Fig. 8.11t is varied. The corrections to the m-corrected
tree-level result fall o with growing t . This is again the expected behavior
of eq. @.30. The full one-loop corrections are signi cantly larger insize. They
show a mild dependence on this parameter, with a maximum ate@undt = 15.
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Chapter 9

Quartic Higgs Coupling at
Hadron Colliders

In this chapter another possibility is investigated to testhe means of electroweak
symmetry breaking. This is achieved by measuring the quadiHiggs coupling
and hence fully determining the Higgs potentialZ2].

After the discovery of a light Higgs boson the next step will & to study its
properties, including its couplings to other particles. Atthe planned Interna-
tional Linear Collider (ILC) measuring these couplings wh high precision will
be possible for all Standard Model bosons and fermionk3f. Furthermore, if
supersymmetric particles are found, the coupling of the Hig to charginos and
neutralinos can be measured preciselft39. To fully understand electroweak
symmetry breaking it is important to measure the Higgs selfouplings and to
thereby determine the parameters of the Higgs potential.

9.1 Higgs potential

The Higgs potential of the Standard Model was already givemieq. 2.2). In
this model the trilinear ( 3) and quartic ( 4) Higgs self-coupling are related to
the Higgs mass via

3im?2 _3im3 3
v 4 V2 v’

5= (9.1)
wherev is the vacuum expectation value of the Higgs eld.

In models with more than one Higgs eld, like the MSSM with itstwo fun-
damental Higgs doublets, the relations between the triliree and quartic Higgs
coupling can change signi cantly. For the lighter CP-even NSM Higgs boson
hC the ratio of the self-couplings is

3h0 S +

= : .2
4h0 VCz ’ (9-2)
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wherev = P vZ + vZ and v; and v, are the vacuum expectation values of the two
Higgs elds. If the parameterm, is su ciently large there is a mass splitting
betweenh® and the remaining Higgs sector. Additionally, the angles and
are related vias c in this limit. Therefore >*— approaches 1 and the
h°-coupling becomes Standard Model-like.

In this chapter we will not refer to the MSSM as our underlyingtheory.
Instead we use an e ective theory whose particle content i©i¢ same as the one
of the Standard Model. Its Higgs sector also contains one dalat but the trilinear
and quartic couplings are left as free parameters of the thgo In this way we
are not restricted on a speci ¢ model but can accommodate fonany di erent
ones. Such deviations from the Standard Model couplings céor example be
generated when higher-dimensional powers of the Higgs ddettare added to the
potential as shown in chapter2.2.2 Taking the rst two higher-order terms into
account the Higgs self-couplings become

4= 4 1+ + . (93)

The additional terms are suppressed by which is the scale vare new physics
sets in. Both self-couplings receive di erent contributios from the additional
terms. In general, the self-couplings may even become nagat The stability
of the Higgs potential is guaranteed if the highest non-vasiing term in the
potential has a positive sign. All other terms can have arhiary values as long
as the ground state has a non-vanishing vacuum expectatioalue to break the
electroweak symmetry.

9.2 Trilinear Higgs coupling

As we will see below it is essential for the measurement of tlygartic Higgs
coupling to know the value of the trilinear Higgs coupling aprecisely as possible.
For a Higgs boson with a mass larger than 150 GeV this couplicgn be extracted
at the LHC [14Q 141 143. At least two Higgs bosons must be produced to
measure the three-Higgs coupling. At hadron colliders this performed via a
gluon fusion process. In this process two distinct types ofafjrams appear, as
shown in Fig.9.1 Either (a) an intermediate Higgs boson is produced via a tee-
point top-quark loop diagram which couples to the two nal-sate Higgs bosons
and contains the required trilinear coupling, or (b) the paticles couple via a four-
point box-type top-quark loop. For the detection of the Higg bosons the decay
channel into two W*W boson pairs is analyzedl4d. Two or three of the four
W bosons are required to decay leptonically into a lepton andreeutrino to have
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(@) (b)

Figure 9.1: Leading-order types of Feynman diagrams cortbtting to the process
gg! HH

a clear detector signal and the other two or one, respectiyeldecay hadronically
into two jets.

Additional information can be obtained from the kinematic dstributions of
the Higgs bosons. Not only the total cross section carriesfanmation on the
trilinear Higgs coupling but also the di erential hadronicdistribution with respect
to the invariant mass of the nal state. This can only be calclated correctly if
the top-quark loop is fully taken into account. Using the innite top-quark mass
limit and an e ective gluon-gluon-Higgs coupling will yietl completely incorrect
results, as was shown in ref143.

Using this information it was evaluated 42 with which precision the trilinear
Higgs coupling for Higgs bosons heavier than 150 GeV can beaswered. In the
beginning of LHC a non-zero value can be established with arcdence level
of 95% after having accumulated a luminosity of 300 f3. After a luminosity
upgrade the self-coupling can be measured with a precisioh up to 20% at
the 95% con dence level using an integrated luminosity of 3bal. At a future
high-energy Very Large Hadron Collider (VLHC) with a hadrofic center-of-mass
energy of 200 GeV, the measurement o can be performed with an uncertainty
of about 10% at a con dence level of 95% after having accumtga a luminosity
of 1 ab .

In contrast a linear collider can measure the three-Higgs apling for small
Higgs masses of around 120 GeV, but possibly not for higheremnfl43 144.
The mass region below 140 GeV is more di cult for hadron colliers, because
the dominant decay mode for the Higgs boson is a bottom quarti-quark
pair which has large QCD backgrounds. Anyway, it is still acessible using rare
decays 145. The creation of the two Higgs bosons at ae” e linear collider
happens as double-Higgs strahlung in association with 24 boson or aswwW
double-Higgs fusion in association with a -pair as shown in Fig.9.2and Fig. 9.3
respectively. For a Higgs mass of 120 GeV the planned Intetianal Linear Col-
lider (ILC) with a center-of-mass energy of 500 GeV will be &b to measure the
trilinear Higgs coupling with an accuracy of 20% within onetandard deviation
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(a) (b) (©)

Figure 9.2: Leading-order types of Feynman diagrams corttting to the process
e'e ! ZHH

(a) (b) (©)

Figure 9.3: Leading-order types of Feynman diagrams corthrting to the process
e'e ! HH

after having accumulated a luminosity of 1 ab!. A proposed Compact Linear
Collider (CLIC) with a center-of-mass energy of 3 TeV nallycould measure a
180 GeV Higgs boson with a precision of 8% within one standadeviation using
5 ab ! of integrated luminosity.

In general the proposed future generation of hadron (VLHC)ral linear (CLIC)
colliders will be able to measure the trilinear Higgs couplg with an accuracy
of O (10%). A combination of both collider types thereby covershte whole mass
range where a Standard Model Higgs boson is expected to berfduas derived
from electroweak precision analyse2().

9.3 Quartic Higgs coupling

As the production of two Higgs bosons is needed for measuritng trilinear Higgs
coupling, three nal-state Higgs bosons are necessary fomaeasurement of the
quartic Higgs coupling.

Three-Higgs production at linear colliders has already beetudied in ref. [L44.
It was found that even at CLIC the cross section is too low, wit only about ve
three-Higgs events per year being produced there at a centdrmass energy of
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(@) (b)

(c) (d)

Figure 9.4: Leading-order types of Feynman diagrams cortbting to the process
gg! HHH

10 TeV. Hence it will be impossible to determine the quartic ldgs coupling at
the next generations of linear colliders.

At hadron colliders the three Higgs bosons are dominantly pduced via gluon
fusion and an intermediate top-quark loop, like in the two-kygs case. Four
distinct topologies appear as shown in Fig9.4 (a) continuum production of
three Higgs bosons via a ve-point top-quark loop, (b) prodation of two Higgs
bosons via a box-type loop and subsequent decay of one of thgds$ bosons via
the trilinear self-coupling into two Higgs bosons, and ndy the production of one
intermediate Higgs boson via a three-point loop. This cantéer (c) decay via
a chain of two three-Higgs couplings or (d) through one quad Higgs coupling.
Only the last diagram type contains the coupling we want to masure.

Looking at the diagrams it is clear that a precise knowledgef ¢he trilinear
self-coupling is necessary to obtain results on the quartgelf-coupling. The
process is also very sensitive to the top-quark Yukawa coumy which must be
known very well. In the numerical analysis we have also inaded the diagrams
where the top-quark loops are replaced by bottom-quark losp The contribution
of these diagrams is however less than one percent.

The total cross section as function of the Higgs mass is shownFig. 9.5 for
the (a) LHC and a (b) 200 TeV VLHC. In the following the Higgs b@on mass is
set to 120 GeV for all cross sections and plots.

In Fig. 9.6the dependence of the total cross section on the trilinear diquartic
Higgs coupling is shown. The values of the trilinear and quie self-couplings
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Figure 9.5: Total hadronic cross section for the triple-Higs production process
via gluon fusion with Standard Model couplings as a functioof the Higgs boson
mass.

are varied between minus and plus two times the Standard Moldealue. One can
clearly see the strong dependence on. The variation on 4 is much smaller,
as one can see in more detail in Fig.7. For positive values of 3 and 4 the
variation of the cross section stays below 20% at both the LH&nd the VLHC.
Including negative values of 4 induces changes in the cross section of up to a
factor 2. For negative values of 3 the absolute variation as a function of 4 stays

at the same order of magnitude. While the total cross sectiotiepends strongly
on 3, the relative variation with 4 is heavily suppressed.

As the quartic Higgs coupling contributes only to the singldiagram Fig. 9.4(d)
this behavior is expected. It is also re ected in the partiatontributions from the
di erent diagram types. Taking into account all diagrams lads to a Standard
Model cross section of:@5 10 ? fb at the LHC. Using Standard Model couplings
the ve-(Fig. 9.4(a)), four-(Fig. 9.4(b)) and three-point(Fig. 9.4(c,d)) loop dia-
grams alone yield a cross section of (D7; 8:20; 0:46) 10 ? fb, respectively. The
small size of the triangle-type diagram results from a supgssion factor by the
intermediate Higgs propagator. If one only takes this diagm type into account
and sets either 4 or ; to zero, a cross section of:07 10 2 fb from the trilinear
self-coupling and of @8 10 2 fb from the quartic self-coupling is obtained. For
the VLHC the partial cross sections have similar ratios. Sohe diagram which
contains the quartic self-coupling is almost two orders of agnitude smaller than
the total cross section.

As one would expect from the evaluation of the trilinear Higg coupling in
two-Higgs production fLl47 the interference between the pentagon and the box
diagrams is indeed destructive for positive values of. This results in the large
increase of the cross section wheny gets smaller and therefore the contribution
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Figure 9.6: Total hadronic cross section for triple-Higgs rpduction via gluon
fusion as a function of the trilinear and quartic Higgs coujhg normalized to the
Standard Model values. A color of green denotes the Standakdiodel value. A
deviation of plus and minus 20 % is signi ed by red and blue o, respectively.
The maximum values obtained in the scanning interval are omied white and
black, respectively, using a linear color gradient for intenediate values. The

Standard Model point is additionally marked by a blue cross.A Higgs boson
mass of 120 GeV was used to obtain this plot.
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Figure 9.7: Variation of the hadronic cross section foHHH -production as a
function of , normalized to the value where , takes its Standard Model value.
The Higgs mass was xed to 120 GeV.
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from the box diagram diminishes as one can see in F@6. For negative values of

3 the single three-Higgs vertex in the box diagrams changegsiand therefore
makes this interference constructive, leading to the shamse of the cross section.
The trilinear and pentagon diagrams interfere constructiely, but because the
triangle and box contributions have a more similar kinemat con guration, the
destructive interference between those two results in aght decrease of the cross
section with growing 4. Only for 3 = 0, where the box diagrams do not
contribute any longer, the behavior of the cross section rekses and rises with
increasing 4. The relative signs of the di erent topologies can be undeisod
analytically by using the low-energy theorem for the leadop form factors [L47.
An expansion is performed in the ratid;—j with a partonic center of mass energy
8 mZ. The top-quark mass and the top-quark Yukawa coupling are o
denoted by m;. These form factors are basically the squared matrix elenten
without any couplings or additional propagators which are ot part of the loop
integral. They are obtained starting from the top loop in thegluon self-energy.
An additional Higgs boson can be attached to the loop by usintpe following
recursion relation:

@ I:nH
Fisnyn = Mi—— 9.4
(n+1) H t @m m, ( )
This relation yields
2 m?
I:pentagon = Fpowx = I:triangle = 3 +0 —|-2| (9.5)
mg

Therefore the structure of constructive and destructive iterferences in the dia-
gram types is explained by the relative minus sign in front ahe box-type term.

In the case of two-Higgs production the information on the \ae of 3 was not
only encoded in the total cross section. Also the di erentiehadronic cross section
with respect to the invariant mass carries information on 3. The same is true
for three-Higgs production. In Fig.9.8the normalized cross section as a function
of the partonic center-of-mass energy is shown. The triliae and quartic self-
coupling both take the values 0, 1 and 2 times their respec@vStandard Model
value. When varying 3 the position of the peak changes signi cantly and an
extraction of this coupling is possible, as was already fodrnin the analysis of
two-Higgs production fLl47. When changing 4, and keeping 3 constant, the
size of the shift is about an order of magnitude smaller. Adtonally for ;=0
the order of the ;= sy = 0;1;2 peaks is inverted which is due to the di erent
sign in the interference as explained above.

The total hadronic cross section for triple-Higgs produatin via gluon fusion
using Standard Model Higgs self-couplings isZ 10 2 fb at the LHC for a
Higgs boson with a mass of 120 GeV. This rate is too low to be nsemable even
for the high-luminosity mode of the LHC. At the VLHC with a cernter-of-mass
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Figure 9.8: Di erential hadronic cross section for three-Hjgs production with
respect to the partonic center-of-mass energy, normalizéa the respective total
cross section. The mass of the Higgs boson was set to 120 GeV.
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energy of 200 GeV the cross section is4% fb so three-Higgs production might
be observable at this future collider. The rather strong degndence of the total
cross section on 3, especially for values smaller than the Standard Model vady
allows to extract the value of this coupling, thereby possli con rming the two-
Higgs production result. The variation in 4 is much smaller, typically below
20%. Hence the extraction of this coupling is much harder. kne takes into
account the theoretical uncertainties from missing higheorder corrections and
the experimental error on the measurements of; and the top-quark mass, the
chances to be able to extract the quartic Higgs coupling arény.

Also in the di erential cross section there is a clear e ect o the peak position
when varying 3. This shift will be the mode to extract the trilinear coupling
in double-Higgs production. The size of the shift for a varteon of 4 is much
smaller. If the errors on the measurements of; and the top-quark mass are
again taken into account, the extraction of the quartic Higg self-coupling looks
challenging.






Chapter 10

Conclusions

In this thesis production processes for Higgs bosons at hadr colliders were
considered. In order to facilitate the computation of hadroic cross sections from
a large number of complicated parton processes, a computeide was developed.
The calculation of hadronic cross sections, in particularof the production of
supersymmetric Higgs bosons at the LHC in various processgas examined in
the rst part of this thesis. One-loop SUSY-QCD correctionsi.e. corrections
with squarks and gluinos running in the loop, were calculateand the numerical
results discussed. In the second part triple-Higgs produoh in an e ective theory
was examined and the question whether the quartic Higgs selbupling can be
measured at hadron colliders, pursued.

The calculation of cross sections for processes which canthundreds of sin-
gle Feynman diagrams is not possible without the help of auteated tools. For
partonic cross sections there are already programs, likeettpackages FeynArts,
FormCalc and LoopTools. The latter one was extended, so thdhe ve-point
loop integrals are now included which makes a calculation @f! 3 processes
with these tools possible. Additionally, the numerical sthility of the loop inte-
grals was improved. To obtain hadronic cross sections, whiare the observables
which will be measured at the LHC, the partonic cross sectisnmust be con-
voluted with the parton distribution functions. Therefore a computer program,
called HadCalc, was written which performs this task. Usinghis program it is
possible to calculate both integrated and di erential parbnic and hadronic cross
sections of processes which were generated by FormCalc befand. The cross
sections can be di erential with respect to the invariant mas of the nal state, or
rapidity or transverse momentum of one of the outgoing parties. Additionally,
the possibility to apply cuts on the rapidity, the transvere momentum, and the
jet separation of the nal-state particles was implemented

This program was then used to calculate SUSY-QCD correctierto various
Higgs-boson-production processes at the LHC. The rst coiered process was
the production of a charged Higgs boson in association with\@ boson via bot-
tom quark{anti-quark annihilation. It is known that the bot tom-quark Yukawa
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coupling receives large one-loop corrections for large They are universal and
can be parametrized via the variable my and summed up to all orders in per-
turbation theory. The numerical analysis showed that in thdarget regime this
term indeed represents the dominant contribution and the agloop cross section
is well approximated by the my-corrected tree-level result. For smalt , also
other terms play an important role. The leading subdiagram fothis region was
identi ed and its analytical behavior studied. These contibutions can reach a
signi cant size, yielding corrections of up to 50% for ceria parameter combina-
tions. Itis a true one-loop result and cannot be taken into aount by an e ective
tree-level coupling.

Furthermore, the production of anh® via vector-boson fusion was calculated.
This process has a clear experimental signature of two jets the forward re-
gion of the detector. In the theoretical analysis this phasspace region was
selected by applying corresponding cuts. The numerical sinf the SUSY-QCD
corrections to this process is 00 (10 %), and therefore signi cantly below the
experimental uncertainty which LHC will be able to reach. Tis smallness of the
corrections could be explained by cancellations betweenatient one-loop Feyn-
man diagrams and the appearance of suppression factors. Eenthey do not
induce a su ciently large modi cation of the cross section,which would allow
to distinguish between the SM and the MSSM in the Higgs sectan this way.
Additionally, h°-production with two nal-state jets, where one or two of thein-
coming partons are gluons, was considered. This constitgta background to the
above-mentioned vector-boson-fusion process. Thus foetkbalculation the same
cuts were applied. The total contribution of these processas smaller than the
total vector-boson-fusion cross section by more than fouraers of magnitude,
so they can be safely neglected in an analysis ld¥-production via vector-boson
fusion.

Moreover, the associated production of an® with a heavy, i.e. bottom or top,
quark{anti-quark pair was studied. These processes alsarodiscovery channels
for the Higgs boson. Additionally, they can be used to measaithe respective
Yukawa couplings. In the case of bottom quarks the nal-sta jets are required
to have large transverse momenta to avoid the appearance afde logarithms
and corresponding cuts on the phase space were applied. Foe ttop quarks
no such cuts are necessary and therefore the calculation bétcross section was
conducted over the full phase space. Both times the SUSY-QC&brrections
provide a signi cant contribution to the total cross sectio, which must be taken
into account. For nal-state bottom-quarks the my-corrected tree-level cross
sections give a good estimate of the full one-loop result iarbe regions of the
MSSM parameter space. Only when the o -diagonal elements &ie sbottom
mixing matrix become large, does this approximation breakaivn. Here other
terms also give signi cant contributions, which lead to a giable change in the
numerical result. As the sign of the two terms di ers, the ovall size of the one-
loop corrections is reduced. Nevertheless, they provide igrs cant contribution
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to the total cross section, which can reach up to 40% for certacombinations of
MSSM parameters. In the top-quark case the full one-loop callation is never
well approximated by the m;-corrected tree-level cross section. As them;
term contains a suppression ofl instead of thet -enhancement of my, this

behavior is expected. The total size of the corrections th®-production is of
the order of several percent.

In the last part of this dissertation the production of threeHiggs bosons at
hadron colliders was considered. This process can be use@xtract the quartic
Higgs self-coupling, thereby determining the Higgs poteial. In this calculation
not the MSSM was used as the underlying model, but an e ectivibeory deduced
from the Standard Model, where the three- and four-Higgs $edouplings were
left as free parameters. The numerical analysis showed th#te cross section
is too small to be measured at the LHC. A future Very Large Haadm Collider
with a projected center-of-mass energy of 200 TeV would proce enough three-
Higgs events. However, because of the interference strues of the di erent
diagrams which contribute to this nal state, the extraction of the quartic Higgs
coupling from the invariant-mass distribution will be serously challenging. This
is especially true if the theoretical uncertainties and thetatistical errors on the
measurement of the trilinear self-coupling and the top-quia mass are taken into
account.






Appendix A

Choice of Parameters

A.1 Standard Model Parameters

The parameters of the Standard Model have been measured byrivas experi-
ments. Their current best average isl{/:

Masses:
Quarks:
my = 53:8 MeV me=1:5 GeV m; = 178 GeV
myq = 53:8 MeV ms = 150 MeV my=4:7 GeV
Leptons:

me = 510:999 keV m = 105:658 MeV m =1:777 GeV
m,=0 m =0 m =0

Gauge bosons:
my = 80:45 GeV my; = 91:1875 GeV m =myg=0

Coupling constants
1 Q2=0 =137:0359895 MS(Q%=m2)=0:1172 :

The masses of the rst-generation quarksn, and my are e ective parameters.
They were chosen in a way that the vacuum polarization of thehmton, which
was determined from experimental data via a dispersion reian and is known
more exactly, is correctly reproducedl4§.

The calculations in this thesis were performed with the paraeters quoted
above. Only the masses of the light quarks,, mgq, m; and ms were set to zero
exactly as their contribution is negligible. Also the lepta masses are mentioned
here only for completeness, as they do not enter any diagram.
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A.2 SPA scenario of the MSSM

Even after adding experimental bounds and eliminating regns of the parameter
space which are disfavored by theoretical arguments the ilsle choices of the
miscellaneous MSSM parameters are still plenty. In order tnify the conventions
used in the calculations and to allow for a comparison of theesults of di erent
working groups, an e ort was made to apply the same conventig and use certain
points in the MSSM parameter space as benchmark scenariogr Ehis the SPA
(Supersymmetry Parameter Analysis) conventionslp|] were established.

One of the favored reference points of the MSSM parameter ggain the
SPA conventions is called SPS®a It is de ned in the minimal supergravity
(MSUGRA) scenario. This scenario assumes that all parameseare real, a uni-
cation of the gauge couplings happens at the GUT scale and ¢hsoft super-
symmetry-breaking terms are universal at the high-energycale. Therefore the
number of parameters is greatly reduced to only four. They ara common scalar
massM g, a common gaugino mashkl ;-,, a common trilinear couplingA, and the
ratio of the Higgs vacuum expectation values . Additionally the sign of s
not xed and can be chosen freely. For SPSithese variables take the following
values

Mo =70 GeV M-, =250 GeV  Ap= 300 GeV
t (M) =10 sign( )=+1 (A.1)

This parameter point was chosen in such a way that it is compidle with all
current experimental bounds. The mass parameters are dedeat the GUT
scale and then evolved via renormalization group equatiofRGES) to the SPA
scaleNr =1 TeV which is also the scale wheré¢ is speci ed.

Using this procedure the MSSM parameters take the followingalues at the
SPA scale 16, 80|

t =10 =402:87 GeV ma =431:02 GeV

M; =103:22 GeV M, =193:31 GeV M3 =572:33 GeV
AL2= 7847 Gev = AN*= 10257 GeV  Al?= 4490 GeV

A3 = 5354 GeV A3= 9385 GeV Ad= 4455 GeV
MJ? =526:9 GeV M ? =507:7 GeV M _? =505:5 GeV

Mg =471:3 GeV M3 =384:6 GeV M2 =501:3 GeV
M [? =181:3 GeV M ? =115:6 GeV

M2 =179:5 GeV M3 =109:8 GeV : (A.2)

The RGE evolution leads to di erent values for the soft-breking mass parameters
and trilinear couplings of the rst two and the third generation. In the above-
mentioned table the generation index is denoted by the supsaript.
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These parameters must be interpreted as parameters in tH2R renormal-
ization scheme. As most of the calculations in this thesis erdone using OS
renormalization a further conversion step is necessary. idg theseDR parame-
ters the masses of all supersymmetric particles are compdtat the one-loop level.
Then a minimal set of these masses is chosen and the OS pararetre calcu-
lated using the tree-level relations between parameters édimasses. With this
procedure the physical masses of the particles in both remoalization schemes
are equal. Thus a meaningful comparison of the results of calations in both
schemes is possible.

This conversion procedure yields the following MSSM pararees in the OS
scheme 8Q:

t =10 =399:26 GeV ma =431:02 GeV
M; =100:11 GeV M, =197:55 GeV M3z =612:85 GeV
AL2= 7847 GeV  Aj°= 10257 GeV  Al?2= 4490 GeV
A3 = 5354 GeV A3= 9385 GeV A2 = 4455 GeV
Mg =565:97 GeV M7 =546:78 GeV M7 =544:95 GeV
Mg =565:91 GeV MZ =546:84 GeV M2 =544:97 GeV
Mg =453:05 GeV M3 =460:52 GeV M3 =538:13 GeV
M7 =184:12 GeV Mz =118:02 GeV
MZ =184:11 GeV M2 =117:99 GeV
M2 =182:18 GeV M3 =111:29 GeV : (A.3)

These are the parameters used for the calculations in thiseékis when the SPSfa
parameter set is referred to.






Appendix B

Basic Principles of
Supersymmetry

B.1 Poincae group

Every point in four-dimensional space-time of Minkowski sgce is characterized
by a contravariant vector which is de ned by

x = x%xhx%x® = (t%) (B.1)
as generalized space coordinate. With the metric tensor
g =g =dag(l; 1, 1 1) (B.2)
a covariant vector
X =g X =(t % (B.3)

can also be de ned.
Here and in the following Greek indices run from 0 to 3 and Lationes from
1 to 3 except where denoted otherwise. Einstein's sum contien is implicitly
assumed, i.e. indices which appear once as covariant and ®r&s contravariant
index are summed over. Additionally natural units are used here~= c=1.
Derivatives with respect to generalized space coordinateancbe abbreviated
as

= Q = _@ r~ = _@ e _@ r~
@ = @ @,[r @ : @x ot f (B.4)
The momentum four-vector is de ned as
p =i@ =(E;p (B.5)
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B.2 Spinors

B.2.1 Weyl spinors
Two-component anticommuting objects  which transform under a matrixM of
SL(2;C) as

I M Y
VI LMt (B.6)

are called Weyl spinors. The spinor indices, , and —can take the values 1
and 2. Additionally the relations

= (B.7)

hold. On the right-hand side the two-dimensional totally atisymmetric tensor

8
21 for even permutations off 1; 29

= 1 for odd permutations off 1; 2g (B.8)
"0 else

has been introduced. Along the same lines also three-dimamal

8
21 for even permutations off 1; 2; 3g

k= = _ 1 for odd permutations off 1; 2; 3g (B.9)
"0 else

and four-dimensional versions

8
21 for even permutations off 0; 1; 2; 3g

= = 1 for odd permutations off 0; 1; 2; 3g (B.10)
"0 else

can be de ned, which are needed later.
If one generalizes the de nition of the Pauli matrices-

1. 01 o 0 i 51 0
10 T i 0 T 0 1 (8.11)
to four dimensions via
=(1;~) =1; ~) ; (B.12)

then the Dirac equation can be written in two-component notaon as follows:

( p)- =m- (p)_—=m (B.13)
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B.2.2 Dirac and Majorana spinors

Out of two two-component Weyl spinors a four-component spar

= (B.14)

can be constructed. If = , is called a Majorana spinor, else is called Dirac
spinor. The four-component equivalent to the Pauli matrice are the matrices
which are de ned via the Cli ord algebra

f ; g= + =2g : (B.15)
Their hermitian conjugates are
y= 0 0 - (B.16)

so 0 is hermitian and the ' are antihermitian. There are di erent representa-
tions of the matrices which all ful Il eq. (B.15). The one corresponding to the
form of the spinors in eq. B.14) is called chiral representation and in that one
the matrices have the following form

= B 0 - (B.17)
Additionally one de nes 5 as
s= S=j 0123 om 0 (B.18)
representatlon O
for which the following relations hold:
© 5 =0 ( =0 : (B.19)
Then the projection operators
1 1
P. 5@ ) P 51+ 5) (B.20)
2 2
yield the left- and right-handed part of a Dirac spinor, respetively
_ _ _ _ 0
L=PL = 0 rR=Pr = : (B.21)
The 4 4 tensor matrices  are constructed from the matrices via
[
=_1 : 1 : (B.22)
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The spinor which is adjoint to  is de ned as
= V0= 7 : (B.23)

Starting from eq. (B.13) the Dirac equation can now also be written in a four-
component notation

(p m p m =0 : (B.24)

In the following a few contraction identities and traces owe matrices are
collected which are needed for the calculation of cross seas:

ab=a b i ab
=4
Tr( )=4
Tr( )=0

(B.25)

Tr( )=4(09 99 +99)
Tr = 4
T o =0
" —lz—)

odd number of 's

B.3 Grassmann variables

For the de nition of the supersymmetric anticommutation rdations in chapter3.2
anticommuting numbers, so-called Grassmann numbers, werdgroduced. The
basic relation between two such numbersand is

= : (B.26)

which is equivalent to
f; g=0 : (B.27)

The last relation shows the fermionic character of these nuers. In particular,
the square of any Grassmann number is zero.

Grassmann numbers form an Abelian group under the operatiasf addition.
The multiplication with ordinary complex numbers has the see properties as
scalar multiplication of a vector, in particular the distributive law holds.
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The integral over Grassmann numbers is de ned as
Z

d (A+B)=B ; (B.28)

where A and B are complex numbers. This leads to the expression for di are
tiation with respect to Grassmann numbers

@@(A+B):B : (B.29)

Complex Grassmann numbers can be built out of real and imagiry parts in
the same way as for ordinary complex numbers. It is conventeto de ne the
complex conjugation in such a way that the order of a producsireversed, as is
done in hermitian conjugation of matrices:

()= = : (B.30)

In the integral over complex Grassmann numbers and  are treated as inde-
pendent variables as the real and the imaginary part are ingendent of each
other, so

Z

dd =1 : (B.31)






Appendix C

Phase-space parametrization

In this appendix the parametrization of the phase space for2 2 and 2! 3
processes, as it was used for the calculations of this thesis presented. It
is the same parametrization which is also used in FormCal¢l, 12, 13. The
parametrization is performed in the center-of-mass systeof the two incoming
particles, which de ne the beam axis and carry a center-of-ass energy (;?) S.
For each nal-state particle an integral over its three-morentum K occurs in the
calculation of integrated CEpss sections. The enerdy of the particle is xed by

the on-shell conditionk® = jKj2 + m2, wherem denotes the mass of the particle.
Four of these integrals are eliminated by global energy-m@antum conservation.
In the following sections the parametrizations of the two-1d three-particle phase
space are shown.

C.1 Two-particle phase space

With two particles in the nal state, labeled by the subscrigs 3 and 4 in the
following, the phase-space integral can be written in termsf two angles. They
are the azimuth angle and the polar angle with respect to the beam axis.
Because of rotational invariance around the beam axis thetegration over is
trivial and amounts to a factor of 2 . So the integral over the two-particle phase
space is given by

Zd —Zld 1Kl C.1

2= . C g Pg (C.1)
where
, S*+mij+mi 2m3s 2m3is 2m3im;
B 4s

denotes the squared absolute value of the three-r‘Bomentum thle nal-state
particles, ms; and m, are their respective masses, ands speci es the center-of-
mass energy of the incoming particles.

iKsj? = jKRaj (C.2)
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Figure C.1: Graphical representation of the variables used the parametrization
of the 2! 3 phase space. The gure is taken from refl§].

C.2 Three-particle phase space

For the three-particle phase space, where the outgoing pares are labeled by
the indices 3, 4 and 5, ve independent integration variabkeremain after global
energy-momentum conservation has been applied. They arestenergiek? and
k2, the azimuth angle and the polar angle of the fth particle with respect to
the beam axis, and the angle fvhich rotates particle 3 out of the plane de ned
by particle 5 and the beam axis. A graphical representationféhe angles is given
in Fig. C.1.

The four-momenta of the outgoing particles have the followg explicit form

o p_
ks = (k3; jRaj®s) ka=( s kI k& Rz Rs)
ks = (k& jRsj®) (C.3)
with
0 1 0 1
CCS +S¢C S
=@ ss A &= @0A . (C.4)
ccC S CAS C

The angle , which is also plotted in the gure, is de ned over
p_ o
c= (S Kk kf-,’)f "mi' j Rej® | Rsf® (C5)
2/Rs3jjKs]
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m; again denotes the mass of the respective particland P sis the center-of-mass
energy of the initial-state particles. Due to axial symmetrythe trivial integration
over can be carried out immediately and yields a factor of 2

Then the parametrization of the three-particle phase spadakes the following
form

Z Z (kg)max OZ (kg)max OZ 1 Z Zpi 1
d 3= dk dk dc d—— ; (C.6)
3 ms 5 (kg)min 3 1 0 64 3
where the integration limits are given by
P 2 2
s (mg+ mg)° mg
kO max — _ < N’ 7
(k)" = — Pz ()
and
o1 o
(k)m™™ == (+mem) jRj (- mH( mZ) 5 (C8)
using

='s k? = 2 Rgj? m =ms; my : (C.9)






Appendix D

Loop Integrals

When calculating quantum corrections to physical processd-eynman diagrams
appear which contain loops. The rules for evaluating Feynmadiagrams state
that for every closed loop an integral over the loop momenturappears in the
expression for the amplitude. In this thesis one-loop cowBons are calculated
and thus we are concerned only with one-loop integrals. Theesigeral one-loop
integral which corresponds to the general N-point one-loogiagram depicted in
Fig. D.1is given by

Z
™ :(Z.i d® SERLLLE :
L i 2 [ m2 (q+ k)® m2 i (g+ ky 1)° m3
(D.1)

The notation and conventions used in this chapter correspdnto that used in
ref. [15]. The loop momentum is denoted by, the momentap; are the momenta of
the external propagators and the moment&;, which appear in the denominator,

pl\\ a4+ ks o P2

mo
gqsmg
my
/ g+ Kn 1 *
Pn Pno2

Figure D.1: General one-loop diagram. The arrows denote theomentum ow.
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are related to the former via

p1 = Ku; P2 = ka Ky Ll Pn = kv kn o1
Ki = p1; Ko = p1+ P2 e Kn = pr+  + pa: (D.2)

It is assumed implicitly that all propagators in the denomirator have an in nitely
small positive imaginary part °which is set to zero only after the integration has
been performed. Explicitly this is achieved by replacing t# massesn? with
m? i %everywhere.

The expression given in eq..1) is valid for both dimensional regularization
and dimensional reduction (see chaptet.1). D =4 2 is the dimension of the
integral, where is a small positive number which will be sent to zero at the end
of the calculation. The regularization parameter has the dimension of a mass
and is introduced to keep the dimension of the whole expressi xed when going
from 4 to D dimensions.

Following ref. [149 the loop integrals are denoted by capital letters in ascend
ing order, resulting in

T1= A one-point loop integral,
T2= B two-point loop integral,
T3= C three-point loop integral,
T4= D four-point loop integral,
T>= E ve-point loop integral, ::: .

Scalar integrals, which do not have an index;, are denoted with an index 0, e.g.
Ao.
The scalar one-point integralAo can be calculated analytically and reads

Ag(m) = m? In m—zz +1 +0() (D.3)

where

1
= c+In4 (D.4)

contains the divergent part of the loop integral with the Euér-Mascheroni con-
stant

£ ' 0:577215664901532: (D.5)

This one and expressions for the two-, three- and four-poitbop integrals were
rst given in ref. [ 149 and further improved later [L50 15]]. Scalar loop integrals
with ve and more internal propagators can be reduced to foupoint ones [/8,
152.
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The tensor integrals can be decomposed into linear combinats of Lorentz-
covariant tensors 153. They consist of a basis which is formed of linearly inde-
pendent momenta and the metric tensog , and coe cients which are Lorentz
scalars. This decomposition is not unique. Here the momensae chosen as the
momentak; appearing in the denominator. In this basis the coe cient functions
are totally symmetric in their indices. The decompositiondr tensors up to rank
four reads

w1
™= ka, T (D.6)
a=1
w1
TNl .- 9. 2T0'\é) + Ka 1kb 2Ta'\ll:) (D7)
a;b=1
K 1
TN123: glzkas+923kal+931kazT(l)\Cl)a
a=1
y( 1
+ Ka 1kb 2kC 3Tell\é)c (D-8)
a;b;c=1
TN1234:(91 2gs4+glsgz4+gl4gzs)T(;\(l)OO
w1
+ glzkaskb4+gl3kazkb4+gl4ka2kb3
ab=1
+9, 3ka 1kb4+gz4ka 1kb3+gs 4ka 1kb2 Tol\é)ab
w1
+ ka 1kb sz 3kd

a;b;c;d=1

TNt (D.9)

4

Furthermore the coe cient functions of the tensorial loop ntegrals can be
written as functions of the scalar integrals I53. This is known as Passarino-
Veltman reduction scheme. A complete set of equations fordecing loop inte-
grals up to point rank N = 4 and up to tensor dimensionN + 1 can be found for
example in ref. [53. These are all loop integrals which can appear in processes
with up to four external legs.

In the reduction the inverse of the Gram matrix occurs. The Gam matrix Z
is @ matrix which is built up from the momentak; by Z; = 2k;k;. This matrix
can become singular. For up to four-point loop integrals tki happens only at
the borders of phase space. Care has to be taken when caldaigtphase space
points close to the edges, as the computation can become nuivedly unstable.
A technique to improve stability will be presented in appenck E.1.

For loop integrals with ve and more internal propagators the Gram matrix
can become singular also at points inside the phase spacewdwer the loop mo-
menta are four-component Lorentz vectors, so a linear indepdent combination
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of four of them spans the whole Minkowski space. This allows® to eliminate
the inverse Gram matrix. The reduction is done in such a way #t N -point loop
integrals are reduced to a combination ofN  1)-point loop integrals with the
tensor rank increased by on€elpbZ. Recently a slightly di erent scheme has been
found which even reduces the tensor rank by one in the deconggmn [154.

For phase space points close to those where the Gram matrixcoenes singular
also expansions around vanishing determinant of the Gram imex or methods
which use numerical integration can be applied. An overviewf possible tech-
nigues with explicit formulae for loop functions with pointrank up to six was
given in ref. [L55.

For the numerical evaluation of the loop integrals the Loopdols packagell,
14, which is based on FF154, was used. In this package the stability of calculat-
ing the Passarino-Veltman reduction was improved numeridg with the method
of Gaussian elimination, which will be described in appernxiE.1. Addition-
ally the ve-point functions up to tensor rank four were impkemented based on
ref. [152 and the scalar four-point function amended according to fe[15]] so it
is valid for all cases. The numerical results of the code wecempared to those
of an independent code from DittmaierI57] and very good agreement could be
found. Moreover a Passarino-Veltman reduction of the ve-pint tensor integrals
was implemented. Also here a comparison yielded excellegiraement except for
points very close to the edges of phase space where the deaoositipn algorithm
is known to become numerically unstable.

The explicit formulae for this decomposition are given bela. To shorten the
notation some abbreviations are introduced:

(
s . i
i =1 5 = 0 forf J ij = I for? J : (D.10)
1 fori6 | i1 fori>]

A number in brackets behind the loop integral denotes that tb term in the
denominator with a mass with this index is left out from the inegrand, e.g. the
normal scalar four-point integral

(2 )4 D

1
D
q
[ m7 (q+ki)® m3 (g+ k2)® m3 (g+ ks)® mj

(D.11)

where the second propagator is left out, becomes

4 DZ
Do@= &) —

1
i 2 e md @+ k)2 mZ (q+ ke)? m2
(D.12)
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The resulting integral is a loop integral with the point-rark reduced by one,

as one can see in the example above, which is a three-pointdaategral. For

integrals where the rst propagator is eliminated the integation momentum must

be shifted byq! g k», so that the standard form eq. D.1) is again obtained.
With this the tensorial coe cients of the ve-point loop int egrals are:

Xt .
Ei= z@ s (D.13)
n=1
Xt .
Ey = zZ®W "sZ (D.14)
n=1
Xt .
Ep = Z9 7S (D.15)
n=1
Xt .
Eijkl = Z(4) in Sf]'“d ; (D16)
n=1

fo=ki mp, +mi (D.17)
Sy=Do(n+1) Do(1) faEo (D.18)
S =Dj, (n+1) 5 Dj(1) fqE (D.19)

S =Djk, (N+1) oy e Djc (1) foEj
+2 7® jkl (Doo(n+1) Dgo(1)) (D.20)

Shiki =Djnkata M+ 1) w nkc m Dju (1) frEju

1
+2 Z®W x Doo, (N+1) n Doa (1)

1
+2 2% " Doy, (N+1) o Do (1)

1
+2 Z(4) I DOOkn (n + 1) nk DOOk (1) (D21)

and the Gram matrix

0 1
kiky kiko kiks kika
kik, koko koka kok

Z(4):2 1R2 2R2 2R3 24§: D22
ks koks kaks Kaka (D-22)
Kiks koka ksks kaka

All coe cients which are multiplied by the metric tensor, i.e. have a 00 in the
index, vanish identically

Eoo = Eooi = Eoooo = Eooj =0: (D.23)
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The decomposition into coe cients multiplied by the metric tensor and such
multiplied by the momenta is not unique as the four linearly mdependent mo-

menta k; span the whole Minkowski space and are related to the metrietsor
by

X4 )
g = 2 zW i kik: (D.24)

i =1

The formulae given in ref. 152 use a di erent decomposition in order to avoid
inverse Gram matrices. This leads to a non-vanishingo, which is compensated
by di erent E; and the same happens for higher-tensor ranks.

For a numerical comparison the two expressions must be trdnsmed into
each other by exploiting the relation eq. D.24):

(D.25)
Ei'jDkV :Eiljjk +2 29 ile(I)DOk+2 z® jkl Eq 2 Z¥ kil EODOj (D.26)
EiJPk\ll :EiJDkl +2 z® ile(I)DOkI +2 7@ ikl E(E)Ojl +2 z@ i|lE(|)30jk
+2 2@ EQ +2 ¢ CER +2 2O ER,
+4 z% ijl z® kll+ z® ik1 z® jll+ z® ill z® jkl E Gooo
(D.27)

In the equations above the expressions froml§2 are denoted by a superscript
D and the ones from the Passarino-Veltman reduction by a supsaript P V.



Appendix E

Numerical Methods

The numerical calculation of cross sections is only posshlith the aid of com-
puter programs. Computers can do oating point operations my with a nite
precision so rounding errors occur inevitably in many stepsf the program. Ex-
pressions which are still valid analytically might give a nmerical result which is
utter nonsense. Therefore not only the analytical correcess must be checked
when implementing algorithms, but also that the code is nunmally stable.

E.1 Gaussian Elimination

When calculating one-loop integrals, Gram matrices occurhich contain scalar
products of the momenta, as was shown in chapt@& . For loop integrals with up
to four external legs the inverse of the Gram matrix has to beatculated. This
matrix can become singular at the edges of phase space, ioe forward scattering
or at the production threshold. Already close to the edge nae matrix inversion
can become unstable as will be shown below.

As is often the case in problems where the inverse of a matripears in the
analytical expression the inverse of the Gram matrix itsekctually is not needed
in the Passarino-Veltman reduction scheme. This can be seeasily for example
from the expression for the ve-point loop integrals givenn chapter D. Left-
multiplying egs. (D.13)-(D.16) with the Gram matrix Z® reduces the problem
to the problem of solving a system of linear equations of therim

AX = b; (E.1)

whereA is ann n matrix and x and b are vectors of dimensiom. A and b are
input parameters andx is the solution vector of the system of equations. We are
going to consider the most general case here, that all comgots of the matrix
and the vectors can be complex numbers ariglis a generic vector. The physical
case of real matrice®\ then follows directly from this as a special case.
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Let us rst consider the analytic way of multiplying the input vector with the
inverse matrix. Then eq. E.1) can be written as a functionf

f: x=Al : (E.2)

Calculating the solution vector x in this manner however leads to numerical
instabilities. Let us rst decomposef into the two partial steps

g: AT7TIA! (E.3)
h: A7 x (E.4)

and assume the ideal case that both partial steps can be cdbted in a numer-
ically stable way. Then a stability analysis 15§ vyields, that the error on x is
proportional to (A), the condition of A. The condition is de ned as

.. 1

(A) = jiAji jiA Y= min ””ﬁ A+ A singular ; (E.5)
wherejj jj denotes a matrix norm. In a geometrical interpretation thisis the
distance of A to a singular matrix for which eq. €.1) has no longer a unique
solution.

The numerical evaluation of mathematical expressions wasie in double
precision in this thesis, i.e. oating point arithmetics with double precision as
de ned in ref. [159. These numbers o er about sixteen valid digits, so that foa
condition (A) 10 the matrix cannot be distinguished any longer numerically
from a singular matrix. One also says that the matrix is numecally singular.
When calculating one-loop integrals this case occurs at tleelges of phase space.

Even earlier the error x of the solution vectorx increases,

i Xjj 16.
— (A) 10 (E.6)
Xl
and the result becomes inaccurate. Such a behavior could @&l be observed
while doing the numerical evaluation of the vector boson fimn processes (chap-
ter 7).
To avoid this problem, one decomposes the matri& into a unipotent, i.e.
whose diagonal contains 1, lower triangular matrit. and a non-singular upper
triangular matrix R

1 1

1 0 i
0 T
00 e : (E.7)
0 0 ::: O

0 0
1
A=LR =

= O o
o O

i 1
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here is a place holder for an arbitrary complex number. Thegdrithm partitions
the matrices such that

T T
v uA - v%/ |_O 0 UR (E8)
where
2 C; u;v;w2 c" L A:L;R2chD 0D (E.9)
SO
w= Y (E.10)
LR =A wu': (E.11)

L andR are again a unipotent lower and non-singular upper triangal matrix,
respectively. In the next step of the iteration the matrixL R has to be par-
titioned in this way. After applying this procedure recursvely one obtains the
desired decomposition.

If  happens to be zero, the algorithm breaks down. Therefore, thé is
decomposed, buP A, whereP is ann n permutation matrix and chosen in such
a way, that in every iteration step the rst row and the row whaose rst column
contains the largest element by absolute value are swappe€this method is called
partial pivoting. It can be shown that with partial pivoting every non-singular
matrix A can be decomposed intb and R and the decomposition is unique. The
system of linear equations now has the form

LRx = P b: (E.12)
To solve it one rst solves the system
Ly =P b (E.13)

with an auxiliary vector y. Because of the triangular structure oL this can be
done very easily by a recursive forward substitution

X1
yi = (P 'b), i i=1! n : (E.14)
j=1
The arrow denotes the order in which the; must be calculated. Finally,
Rx =y (E.15)

is solved by backward substitution and one obtains the soligin vector x

Xi =Y X; i=n! 1 : (E.16)



138 Appendix E. Numerical Methods

The algorithm presented here is known in the literature by th name of Gaussian
elimination with partial pivoting [ 158 160Q.
An error analysis yields that the error onx is determined by
jiLj jiRj
= —— (E.17)
IIPA]
i Lj gL

1

= L (E.18)

If one chooses the norm as the maximum norm, the inequalify; j 1 holds
becausel is unipotent and partial pivoting was used. Therefore

jitiia (E.19)
jL fin 2"t [aed; (E.20)

SO
n 2"t (E.21)

When calculating loop integrals only matrices of dimension 4 occur, so the
calculation of x in this manner is absolutely stable.



Appendix F

Manual of the HadCalc Program

For the calculation of hadronic cross sections a computer a@®, called HadCalc,
was written (see chapters.5). In this appendix the manual of the program is
presented.

F.1 Prerequisites and Compilation

F.1.1 Prerequisites

The following programs are required for compiling and runng HadCalc and
must be installed:

a Fortran compiler compliant with the Fortran77 standard,
a C compiler conforming to ANSI-C,

GNU make,

FormCalc 4 [L1],

one of the two following packages that include sets of partadistribution
functions from various groups

{ PDFLIB (CERN Computer Program Library entry W5051) [92], or
{ LHAPDF [93].

Additionally, support for the following two programs is integrated into HadCalc
FeynHiggs 2.1beta or newerlg?,

Condor workload management system for compute-intensivels.
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PDG avor code Particle

0 gluong

1 down quarkd

2 up quarku

3 strange quarks

4 charm quarkc

5 bottom quark b

6 top quark t

-1 down anti-quarkd
-2 up anti-quark u

-3 strange anti-quarks
-4 charm anti-quark c
-5 bottom anti-quark b
-6 top anti-quark t

Table F.1: PDG avor codes

F.1.2 Con guration and Compilation

First the partonic subprocess must be generated and prepdréy following the
instructions in the FormCalc4 manual. Especially the de nions in process.h
have to be updated correctly as HadCalc relies on those. It i®t necessary to
Il in correct MSSM parameters or tune integration parametes, however.

Then the distribution le HadCalc-0.5.tar.gz  should be unpacked. As next
step change into its subdirectory and rurconfigure from there. The following
con gure options are mandatory:

--with-partonprocess=DIR This is the location of the FormCédc-
generated partonic output.

--with-processtype=mn By this option the processtype is xed,
speci ed by the number of incoming par-
ticles m and the number of outgoing par-
ticles n. Note that m and n form a sin-
gle number, i.e. for a 2! 2 process
one would write --with-processtype=22.
Currently, 2! 1,2! 2and 2! 3is
implemented and can be entered here.

--with-partonl=i The type of the rst parton is speci ed
by i, given as the PDG avor code 17
(see tableF.1).

--with-parton2=i Similarly, this is the PDG avor code for
the second parton.
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Additionally the following options are recognized by con gre and enable optional
features:

--enable-antiprotonl Hadron 1 is an anti-proton instead o&
proton.

--enable-antiproton2 Hadron 2 is an anti-proton instead o&
proton.

--with-condor[=DIR] Link the nal code with the Condor
workload management system libraries.
If the binary is not in the standard search
path of your shell, its location can be
speci ed with the optional DIR argu-
ment.

--with-feynhiggs[=DIR] Link the nal code with the Feyn-
Higgs library. This is mandatory if the
FormCalc option to compute the MSSM-
Higgs sector via FeynHiggs is chosen.
The optional DIR speci es the location
of the FeynHiggs library libFH.a, if it is
not in the standard search path of the
compiler.

--with-looptools=DIR  If LoopTools is not in the standard
search path of the compiler, its location
can be speci ed here.

--with-lhapdf[=DIR] Use LHAPDF for the parton distribution
functions. If the LHAPDF library is not
in the standard search path, its location
can be given by the optional DIR argu-
ment. The PDF data is assumed to be
found at the same place.

--with-pd ib[=DIR] Use PDFlIib for the parton distribution
functions. If the PDFlib library is not in
the standard search path and the CERN-
lib environment variables $CERN and
$CERN_LEVEL are not set, the DIR
argument designates where it can be
found.

Only one of the last two options can be given on the command é&n If neither
--with-lhapdf nor --with-pd ib was given, con gure rst tr ies to nd LHAPDF
and, if this fails, probes the existence of PDFlib.

After having run configure , a call to makecompiles the program. When
it successfully nishes, a binary calledHadCalchas been created in the current
path.
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F.2 Running the program

The program is simply started by running./HadCalc . It will then present a
menu which allows one to tune various settings and start theatculation of cross
sections. The following subsections describe the possiBkttings in detail. An
item is chosen by typing the number shown in brackets beforéné¢ item and
pressing \Enter". In every menu \(0)" exits the submenu or, br the top level
menu, quits the program. Invalid input is ignored and an erromessage is written
on the screen.

F.2.1 Physics parameters

This submenu sets the parameters of the MSSM and related tlgs and is divided
in three further submenus.

MSSM parameters

Here all values which correspond to parameters of the MSSMesaset.

First let us look at menu item 16. This decides whether the pgyam should
use a common mas#lsysy in the sfermion sector, or if individual values for
the left-handed squarks and sleptons and the right-handedugs, sdowns and
selectrons are allowed. Depending on this ag either the MS*aviables cannot
be set (because they are xed aMsysy) or Msysy itself cannot be set (because
it is irrevelant and not used in the computation). When choasg a common
SUSY mass scale, the settings in the MS* variables are retath and restored
when deselecting this option.

All other parameter settings can be in two states. They can thier have a
xed setting, then this value is used for all calculations. ©® their value can be
running. In this case a lower and upper bound and the number aftermediate
intervals must be chosen. Then the computation of the crosedion is done
(\intermediate intervals" + 1) times, with the value of the p arameter increasing
from lower bound to upper bound. The distance between two values is equal for
the setting \linear" and exponentially increasing for the stting \logarithmic",
i.e. the values are closer at the lower bound and they have eduistance again
when plotting them on a logarithmic scale. A behavior vice wsa with values
closer at the upper bound can be easily achieved by exchargiower and upper
bound. If more than one parameter is chosen to be running, theeration loops
are nested, with the rst parameter varying fastest.

IDespite its name, the lower bound can be mathematically largr than the upper bound,;
then the value of the parameter is decreasing.
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Kinematic parameters

In this menu all parameters are set which are related to kinemtic variables of
the process.

The underlying parameter of items 3 and 4 depends on the typé process.
For processes with two particles in the nal state, this is tle angle between the
two outgoing particles, for those with three nal particles it denotes the energy
k2 of the fth particle, which is the third nal-state particle . The menu items 8,
12, 14 and 15, which refer to the fth particle, are ignored o2 ! 2 processes
and cannot be changed.

The settings of the parameters are possible in the same way @gseady de-
scribed in the previous item.

Scale parameters

This menu sets the renormalization and factorization scalef the process in the
same way as described above. A negative number for the renalipation scale
has a special meaning. Then the sum of the masses of the n#die particles
is taken, multiplied with the absolute value of the setting,and this number is
taken as the renormalization scale. Additionally it can be lwsen that both
renormalization and factorization scale are always set tdhé same value.

Show ModelDigest (FormCalc)

Finally this choice invokes FormCalc's ModelDigest functio, which takes the pa-
rameters as an input and calculates the physical masses oétparticles. Thereby
it applies lower bounds on the masses established by expegimhand refuses the
calculation if these bounds are violated. The calculated @ss section will also
be zero in that case. The FormCalc manual contains a more dée explana-
tion of this function. There it is also described how the ché&cfor the violation
of experimental bounds can be switched o by ipping a switchin FormCalc's
process.h.

F.2.2 PDF parameters

The set used for the calculation of the parton distribution d@inctions is chosen by
this submenu. The layout and choices presented depends onetiter LHAPDF
or PDFlib is used. For PDFlib three numbers must be entered. Thest de-
notes the type of parton distribution functions and is 1 for poton PDFs. The
second number speci es the respective group which has penfed the t to the
experimental data and the third number chooses a speci c PDFes When using
LHAPDF a string must be entered that directly speci es the lename of the PDF
set in the LHAPDF subdirectory.
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F.2.3 Integration parameters

This submenu chooses the integration routine and sets its f@ameters. Currently
there are six integration routines available:

GAUSSKR One-dimensional Gauss-Kronrod algorithm
GAUSSAD One-dimensional adaptive Gauss algorithm
DCUHRE  Multi-dimensional adaptive Gauss algorithm

VEGAS Monte Carlo integration algorithm

SUAVE Subregion adaptive Monte Carlo integration algoritim
DIVONNE Monte Carlo integration via strati ed sampling

The last four algorithms are part of the CUBA library [163. In the following
only a short description of the possible parameter settings given. The technical
details of these algorithms and the precise impact of the vables are described
in the CUBA manual and shall not be repeated here.

The GAUSSKR and GAUSSAD algorithms can only handle one-dimsional
integrals. If multi-dimensional integrals are attempted 6 be computed, VEGAS
is used as a fallback. In contrast the DCUHRE and DIVONNE algotihms can-
not handle one-dimensional integrals. There the GAUSSKR gdrithm is used
instead. In both cases a warning is printed on the screen.

All integration routines share these two variables:

relative error: the desired relative error
absolute error: the desired absolute error

Additionally, the following variables are available for oe or more of the routines.
Which ones these are is denoted in square brackets after tharg.

maximum # of points: the maximum number of function evaluatons used
[GAUSSAD, DCUHRE, VEGAS, SUAVE, DIVONNE]

# of points for starting: the initial number of points per iteration [VEGAS]

increase in # of points: the number of points the previous nufer is incre-
mented for the next iteration [VEGAS]

# of points for subdivision: the number of points used to samlp a subdi-
vision [SUAVE]

atness # for splits: the type of norm used to compute the uctuation of
a sample [SUAVE]

# of passes: the number of passes after which the partitionjnphase ter-
minates [DIVONNE]
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key 1: determination of sampling in the partitioning phase)IVONNE]
key 2: determination of sampling in the nal integration phae [DIVONNE]
key 3: sets the strategy for the re nement phase [DIVONNE]

maximum 2 for subregion: the maximum 2 value a single subregion is
allowed to have in the nal integration phase [DIVONNE]

minimum deviation for split: a bound which determines whethr it is worth-
while to further examine a region that failed the 2 test [DIVONNE]

F.2.4 Amplitude switches

This submenu sets the type of diagrams used for the computati and how the
cuts should be applied. The value of the cuts is set in the pareeter section and
was already described there.

The rst entry decides whether the tree-level and the one-tup result shall
be computed in one go or only one of them. Possible choices &Feee only”,
\Tree+Loop" and \Loop only". Which way is better depends on the concrete
circumstances and features of the problem. Computing botht ghe same time
might save computation time, but the integration routine ha to optimize its
choices for both at the same time, which might lead to sub-ojphal performance.
On the other hand it is not too likely that there are problemaic regions in the
tree-level cross section which are no longer present in theesloop computation,
so normally this procedure gives satisfactory results. Ifnby one cross section is
computed, the value of the other one is set to zero.

The remaining entries decide if and how the cuts on rapidityransverse mo-
mentum and jet separation should be applied. It is either psghle to have the
particle, or a pair of particles in case of the jet separatigriul Il a cut, violate it
or ignore the cut altogether. Since HadCalc relies on Form(@afor the partonic
process and implementation details, for the cuts for partie three in the 2! 2
case and particle ve inthe 2! 3 case it cannot be chosen that the rapidity and
transverse momentum cut is violated, but they always have tbe ful lled. They
can, however, be switched o by setting the relevant entry inthe parameters
section to zero.

F.2.5 Input/Output options

This submenu allows one to read in a set of parameters from ae land specify
where and how to write the calculation output.

To read in a set of parameters a parameter speci cation mustae been
written into a le and this lename then has to be entered here All possible
variables which can be set in such a le are given in sectidh3. There are three
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basic types of variables. Those which specify a parameterncaither take four
comma-separated values that are the lower and upper boundhe behavior with
respect to increments, i.e. linear or logarithmic, and theumber of intermediate
intervals, or a single number denoting its xed value. The oes of typeboolean
turn on a certain switch and take no arguments. All remainingnes take a single
argument and the variable is assigned to this parameter.

In the following also a formal de nition of the parsing rulesis given:

The le is read line by line.
White space at the beginning of a line is ignored.
Empty lines are ignored.

Lines starting with the character \#" (after optional white space) are com-
ment lines and ignored.

The rst token which is separated by white space from the resof the line
is extracted. This token has to be a token from the list of vadi tokens in
sectionF.3.

If the token type is boolean, its associated parameter is set

If the token type is integer, an attempt to read an integer vale is made
and if it succeeds, this is assigned to the associated paraare

If the token type is double, an attempt to read a double precign oating-
point number is made and if it succeeds, this is assigned todlassociated
parameter.

If the token type is string, the second token is assigned to ¢hassociated
parameter.

If the token type is parameter, the following actions happen
{ An attempt to read four comma-separated double precision ating-
point numbers is made.

{ If this attempt succeeds, the four numbers are assigned taer bound,
upper bound, log and number of intermediate intervals of thearam-
eter. log means linear increase if this variable is zero angp®nential
one otherwise.

{ If this does not succeed, an attempt to read a single doubleqmision
oating point number is made.

{ If this succeeds, this number is the constant value of the pameter.
{ If this also does not succeed, the line is agged as not parsab
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For lines not parsable by the rules above a warning messageigited and
their content is ignored.

Furthermore some integration routines o er the possibily to write interme-
diate results or progress report to the screen. This is turdeon with Verbose
integration output. For hadronic cross sections this also enables writing PDBli
statistics on the screen at the end of the calculation.

Finally one can choose whether the calculation results witle written to the
screen or into a le. In the latter case the variableoutputstring describes which
elements should be written to the output le. The form of thisvariable together
with the valid tokens is described in sectior.4. The output- le format starts
with a \#"-quoted header with a le identi cation and the con tent of output-
string. Then, each on a line by itself, for every scanned parametepipt the
values de ned inoutputstring are written, separated from each other by a space.

F.2.6 Amplitude calculation

This submenu nally allows one to choose the cross section@wants to compute
and does the calculation. During the following integration he process may be
interrupted with \Ctrl-C", after which it aborts the curren t calculation and jumps
back into the main menu. Due to restrictions imposed by Condathis feature
is not available if HadCalc was con gured with the option --with-condor. Here
pressing \Ctrl-C" aborts the whole HadCalc program.

F.3 Allowed tokens in input les

The following list shows all token names that may appear in aimput le together
with its associated type. The tokens are not case-sensitiv@hereby parameter
means that the variable can either be followed by four comnmeeparated values
that denote the lower and upper bound, whether the increass linear or loga-
rithmic, and the number of intermediate intervals, or a sintg number that is the
xed value of this parameter. booleanmeans that a speci ¢ behavior is switched
on. There is a corresponding separate token that switchesetlsame behavior o
again. doubleand integer tokens take a single double-precision or integer value,
respectively, as input.string assigns the remainder of the line to the parameter.
Finally preselectedtakes special values as an argument. The possible choices
for each of these ones were discussed during the descriptajrthe menus given
in section F.2. Any settings referring to particle 5 are relevant only for 2 3
processes and will be silently ignored otherwise.
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token : type description

MAO . parameter mass of the CP-odd Higgs boson

TB . parameter ratio of the Higgs vacuum expecta-
tion values

MUE . parameter parameter in the Higgs sector

MSusy . parameter common SUSY mass scale

MSQ . parameter mass parameter of the left-handed
squarks

MSU . parameter mass parameter of the right-handed
sup-like squarks

MSD . parameter mass parameter of the right-handed
sdown-like squarks

MSL . parameter mass parameter of the left-handed
sleptons

MSE . parameter mass parameter of the right-handed
selectron-like sleptons

At . parameter trilinear coupling of the sup-like
squarks

Ab : parameter trilinear coupling of the sdown-like
squarks

Atau . parameter trilinear coupling of the selectron-
like sleptons

M1 . parameter U(1)y gaugino mass

M2 . parameter SU(2). gaugino mass

MGI . parameter SU(3)c gaugino mass

SQRTS . parameter square root of the hadronic center
of mass energy

SQRTSHAT . parameter square root of the partonic center of
mass energy

THETA . parameter angle between the two outgoing
particles (in degreesy

THETACUT . parameter cut on the angle between the two
outgoing particles (in degrees)

K502 . parameter energy of the third outgoing particle

K50CUT . parameter cut on the energy of the third out-
going particle

PTRANS . parameter transverse momentum

PTRANS3CUT . parameter cut on the transverse momentum of
particle 3

PTRANS4CUT : parameter cut on the transverse momentum of

particle 4
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token : type description

PTRANS5CUT . parameter cut on the transverse momentum of
particle 5

RAPID? . parameter rapidity

RAPID3CUT . parameter cut on the rapidity of particle 3

RAPIDACUT . parameter cut on the rapidity of particle 4

RAPID5CUT . parameter cut on the rapidity of particle 5

DELTAR34CUT . parameter cut on the distance between parti-
cles 3 and 4

DELTAR35CUT . parameter cut on the distance between parti-
cles 3 and 5

DELTAR45CUT . parameter cut on the distance between parti-
cles 4 and 5

RENSCALE . parameter renormalization scale

FACTSCALE . parameter factorization scale

CommonSUSYMassScaleboolean choose a common SUSY mass scale

NoCommonSUSYMassScéalmlean do not choose a common SUSY
mass scale

CommonRenFactScale : boolean choose a common remormalization
and factorization scale

NoCommonRenFactScaleboolean do not choose a common remormal-
ization and factorization scale

AMPLITUDE . preselected choose which amplitude(s) to calcu-
late

Ptrans3>cut : boolean require the transverse momentum
of particle 3 to be larger than the
cut

Ptrans3<cut : boolean require the transverse momentum
of particle 3 to be smaller than the
cut

Ptrans3nocut : boolean disable cut on the transverse mo-
mentum of particle 3

Rapid3>cut : boolean require the rapidity of particle 3 to
be larger than the cut

Rapid3<cut : boolean require the rapidity of particle 3 to
be smaller than the cut

Rapid3nocut : boolean disable cut on the rapidity of parti-
cle 3

Ptrans4>cut : boolean require the transverse momentum
of particle 4 to be larger than the
cut

Sonly for di erential cross sections
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token : type description

Ptrans4<cut : boolean require the transverse momentum
of particle 4 to be smaller than the
cut

Ptrans4nocut : boolean disable cut on the transverse mo-
mentum of particle 4

Rapid4>cut : boolean require the rapidity of particle 4 to
be larger than the cut

Rapid4<cut : boolean require the rapidity of particle 4 to
be smaller than the cut

Rapid4nocut : boolean disable cut on the rapidity of parti-
cle 4

DeltaR34>cut : boolean require the jet separation between
particles 3 and 4 to be larger than
the cut

DeltaR34<cut : boolean require the jet separation between
particles 3 and 4 to be smaller than
the cut

DeltaR34nocut : boolean disable the cut on the jet separation
between particles 3 and 4

DeltaR35>cut : boolean require the jet separation between
particles 3 and 5 to be larger than
the cut

DeltaR35<cut : boolean require the jet separation between
particles 3 and 5 to be smaller than
the cut

DeltaR35nocut : boolean disable the cut on the jet separation
between particles 3 and 5

DeltaR45>cut : boolean require the jet separation between
particles 4 and 5 to be larger than
the cut

DeltaR45<cut : boolean require the jet separation between
particles 4 and 5 to be smaller than
the cut

DeltaR45nocut : boolean disable the cut on the jet separation
between particles 4 and 5

INTMETHOD . preselected choose the integration routine

EPSABS : double absolute integration error

EPSREL : double relative integration error

MAXPTS . integer maximum number of points

VSTARTPTS . integer number of points for starting

VINCREASE . integer increase in number of points

SNNEW . integer number of points for subdivision
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token : type description

SFLATNESS . integer atness number for splits

MAXDPASS . integer number of passes in partitioning
phase

DKEY1 . integer Divonne key 1

DKEY2 . integer Divonne key 2

DKEY3 . integer Divonne key 3

DBORDER : double border of the integration region

MAXDCHISQ : double maximum 2 for subregion

MINDDEV : double minimum deviation for split

VERBOSITY . integer verbosity of integration output

PDFTYPE . double type of the PDF [PDFlib]

PDFGROUP : double group of the PDF [PDFIib]

PDFSET : double set of the PDF [PDFIib]

PDFPATH : string path where the PDF les are
[LHAPDF]

PDFNAME . string name of the PDF [LHAPDF]

ScreenOutput : boolean print output on the screen

OUTPUTFILE : string print output into le

OUTPUTSTRING . string parameters to print in output (see
sectionF.4)

F.4 Allowed variable names for  outputstring

The following list shows all variable names that may appeanioutputstring. The
individual entries are separated from each other by space¥ariables with the
dimension of a mass are output in GeV. Note that these nameseactase-sensitive.

Name . Parameter description

MAO D Ma, mass of the CP-odd Higgs boson

TB : tan ratio of the Higgs vacuum expectation values

MUE X parameter in the Higgs sector

MSusy " Msusy common SUSY mass scale

MSQ . Mg mass parameter of the left-handed squarks

MSU DMy mass parameter of the right-handed sup-like
squarks

MSD S My mass parameter of the right-handed sdown-like
squarks

MSL me mass parameter of the left-handed sleptons

MSE T Me mass parameter of the right-handed selectron-like
sleptons

At DA trilinear coupling of the sup-like squarks
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Name . Parameter description

ADb D Ap trilinear coupling of the sdown-like squarks

Atau T A trilinear coupling of the selectron-like sleptons

M1 My U(1)y gaugino mass

M2 ' My SU(2). gaugino mass

MGl S Mg gluino mass

SQRTS - S square root of the hadronic center-of-mass energy

SQRTSHAT : &
THETA

K507 kO
K50CUT k.,
PTRANS  : Pyans
PTRANS3CUTRE 1 it
PTRANSACUTPY 1c ot
PTRANS5CUTRE ne cut
RAPID :
RAPID3CUT : &

cut

RAPID4CUT : 2

cut

RAPID5CUT : 3,
DELTAR34CUT R34,
DELTAR35CUT R,
DELTAR45CUT R*°,
RENSCALE : R
FACTSCALE: ¢
MhO
MHO
MHpm
MCha(1)
MCha(2)
MNeu(1)
MNeu(2)
MNeu(3)
MNeu(4)
MGl
MSn(1)

3 3
I I3

3333333

O WO NO RO N Ll

3 3
Q@

@

square root of the partonic center-of-mass energy
angle between the two outgoing particles (in de-
grees)

cut on the angle between the two outgoing particles
(in degrees)

energy of the third outgoing particle

cut on the energy of the third outgoing particle
transverse momentum

cut on the transverse momentum of particle 3
cut on the transverse momentum of particle 4
cut on the transverse momentum of particle 5
rapidity

cut on the rapidity of particle 3

cut on the rapidity of particle 4

cut on the rapidity of particle 5

cut on the distance between particles 3 and 4
cut on the distance between particles 3 and 5
cut on the distance between particles 4 and 5
renormalization scale

factorization scale

mass of the lighter CP-even Higgs boson
mass of the heavier CP-even Higgs boson
mass of the charged Higgs boson

mass of the lighter chargino

mass of the heavier chargino

mass of the lightest neutralino

mass of the second-lightest neutralino

mass of the second-heaviest neutralino

mass of the heaviest neutralino

mass of the gluino

mass of the electron sneutrino

4only relevant for the computation of hadronic cross sectios
Sonly relevant for the computation of partonic cross sectiors and di erential hadronic cross
section with respect to invariant mass

Sonly for 2! 2 processes
“only for 2! 3 processes
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Name Parameter description

MSn(2) S m- mass of the muon sneutrino

MSn(3) T me mass of the tau sneutrino

MSI(1) D Mg, mass of the lighter selectron

MSI(2) tm_, mass of the lighter smuon

MSI(3) tmg mass of the lighter stau

MSL(1) D Me, mass of the heavier selectron

MSL(2) tm., mass of the heavier smuon

MSL(3) Tmg, mass of the heavier stau

MSu(1) DMy, mass of the lighter sup

MSu(2) C Mg, mass of the lighter scharm

MSu(3) S my mass of the lighter stop

MSU(1) I My, mass of the heavier sup

MSU(2) I Mg, mass of the heavier scharm

MSU(3) :mg, mass of the heavier stop

MSd(1) P Mg, mass of the lighter sdown

MSd(2) I Mg, mass of the lighter sstrange

MSd(3) LMy, mass of the lighter sbottom

MSD(1) LMy, mass of the heavier sdown

MSD(2) I Mg, mass of the heavier sstrange

MSD(3) LMy, mass of the heavier sbottom

TREE 0 tree-level cross section

LOOP ! one-loop cross section

TREEERR ( o) integration error of the tree-level cross section

LOOPERR : ( i) integration error of the one-loop cross section

TREEPROB : ?( ( o)) probability of the integration error of the tree-level
Cross section

LOOPPROB : ?( ( 1)) probability of the integration error of the one-loop
Cross section

NREGIORS : number of regions used for integration

NEVAL number of function evaluations used for integration

FAILS a non-zero value indicates that the desired accuracy

could not be reached

8only relevant for some integration routines
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