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Chapter 1

Introduction

The quest for the fundamental building blocks and laws of theworld surrounding
us has been a driving force to mankind since its early days. The idea that nature
consists of small, invisible constituents was �rst expressed by the ancient Greek
Democritus in the �fth century BC. It was not until the nineteenth century AD
that this idea was picked up again and embedded in a scienti�ccontext. Over
time experiments discovered ever smaller substructures, from atoms to electrons
and hadrons, and thereon to quarks. From a theoretical pointof view, the aim
is to embed these experimental results in a model which is based on as few
assumptions as possible and can explain all other physical e�ects.

The currently established model which performs this task isthe Standard
Model of elementary particle physics [1, 2]. It is one of the best-tested theories
of contemporary physics. All known elementary particles are accommodated in
this model. Solely the scalar Higgs boson [3] is included in the theory, but could
not be found in experiments so far [4]. It is this particle which is assumed to be
responsible for the masses of the fermions and weak gauge bosons.

In spite of its success, the Standard Model also has its insu�ciencies, and
new theories are searched for, which might provide an even better description
of nature. One of the most popular ones is supersymmetry [5]. It extends the
two, fundamental symmetries of the Standard Model, the Poincar�e group and
the non-Abelian gauge groupSU(3)C 
 SU(2)L 
 U(1)Y of strong, weak and
electromagnetic interactions, by an anticommuting operator which induces an
equal number of bosonic and fermionic states.

The search for supersymmetry and the Higgs boson are main tasks of the Large
Hadron Collider (LHC) at CERN. It will start operation in mid -2007 and provide
a wealth of data. To verify or falsify theories and to relate this data to parameters
of a model, it is necessary to calculate precise theoreticalpredictions, which match
the accuracy which LHC will be able to obtain. As both the Standard Model and
its supersymmetric extension are de�ned as perturbative theories with a series
expansion in Planck's constant~, the inclusion of e�ects beyond leading order is
often necessary.
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2 Chapter 1. Introduction

In this thesis production processes for Higgs bosons in the Standard Model
and its supersymmetric extension, the Minimal Supersymmetric Standard Model
(MSSM) [6], at hadron colliders are considered. The calculations areperformed
at the one-loop level and include the SUSY-QCD corrections,i.e. corrections with
squarks and gluinos running in the loop, for the MSSM Higgs bosons.

The outline of this thesis is as following. First, a short introduction to the
Standard Model (SM) is given in chapter2. Special emphasis is put on the Higgs
sector of the SM. Here also a possible extension including higher-order operators
is discussed. Despite being a well-tested theory, the Standard Model also has its
shortcomings, which are mentioned in the last section of this chapter.

Out of the possible extensions of the Standard Model which aim to solve these
de�cencies, supersymmetry is the most popular one, as it is appealing from both
an experimental and a theoretical point of view. Its discussion in chapter 3 of
this dissertation starts with the basic principles of the theory. After the necessary
ingredients to build a phenomenologically viable model areinvestigated, the focus
is put on the simplest supersymmetric extension of the Standard Model, the
Minimal Supersymmetric Standard Model (MSSM) [6]. The Lagrangian of the
MSSM after supersymmetry breaking is written down and the particle content of
the model is explained.

Chapter 4 is concerned with the methods of regularization and renormaliza-
tion. The �rst one is necessary to cancel the divergences which appear in the
calculation of one-loop cross sections, and renders the amplitudes �nite. Renor-
malization then restores the physical meaning of the calculated cross sections.
After a general introduction to the concepts, the renormalization of the strong
coupling constant� s in the way it is used in this thesis, is presented. The chap-
ter concludes with a discussion of the bottom-quark Yukawa coupling. Here the
mass counter term introduces large one-loop corrections tothe cross section [7, 8].
They are universal, so they can be included in an e�ective tree-level coupling.
Additionally, they are a one-loop exact quantity, so a resummation to all orders
in perturbation theory is possible.

The next chapter deals with the calculation of hadronic cross sections. The
underlying theory, QCD and the parton model, is brie
y introduced. Then ex-
plicit formulae for the calculation of integrated and di�erential hadronic cross
sections are given. An important technique to improve the cross-section ratio
of signal over background processes and to enable the reconstruction of particu-
lar event-types in the detector is the application of cuts to�nal-state particles.
The implementation of these formulae in computer code is done in a program,
called HadCalc, which is developed by the author of this thesis and which is
lastly presented. It is based on the tools FeynArts [9, 10], FormCalc [11, 12, 13]
and LoopTools [11, 14, 15]. The latter is extended to include now the �ve-point
loop integrals, such that a complete one-loop calculation of 2 ! 3 processes is
possible. HadCalc completes the tool set to provide a largely automated way of
calculating hadronic cross sections.
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In the subsequent chapters, this program is applied to the calculation of pro-
cesses which contain supersymmetric Higgs bosons in the �nal state. The full
one-loop SUSY-QCD corrections, i.e. corrections with squarks and gluinos run-
ning in the loop, are included in the numerical results.

The associated production of a charged Higgs bosonH � and a W boson via
bottom quark{anti-quark annihilation is studied in chapter 6. The discovery of a
charged Higgs boson would be a clear sign of physics beyond the Standard Model.
The above-mentioned universal corrections to the bottom-quark Yukawa coupling
are expected to yield a numerically large and dominant contribution for certain
regions of the MSSM parameter space, but the size of the SUSY-QCD corrections
in the other regions is not known and requires a full one-loopcalculation, which
is presented in this thesis.

In chapter 7 the production of the lighter CP-even neutral Higgs bosonh0

via vector-boson fusion is investigated. This process has aclear �nal state of two
jets in the forward region of the detector and forms an important h0-production
mode with small theoretical uncertainties. For the corresponding Standard Model
process with a Standard Model Higgs bosonH in the �nal state, the Standard-
QCD corrections are already known. They are the same as forh0-production
in the MSSM up to the replacement of the Higgs coupling. In theMSSM case
additional SUSY-QCD corrections appear. In this thesis thecomplete one-loop
SUSY-QCD corrections are calculated and their e�ect on the total cross section
is discussed. In the last section of this chapter a background to the vector-boson-
fusion process,h0-production with two outgoing jets and one or two gluons in
the initial state, is considered and its numerical impact studied.

The SUSY-QCD corrections toh0-production in association with heavy, i.e.
bottom or top, quarks are presented in chapter8. Besides being additional dis-
covery channels for the Higgs boson, these processes can also be used to extract
the respective quark Yukawa couplings from the data. This task can only be per-
formed if the theoretical uncertainty of the cross section is small. The Standard-
QCD corrections to these processes are available in the literature and greatly
reduce the dependence on the renormalization and factorization scale. Addi-
tionally, there are SUSY-QCD corrections which can also yield large corrections
and must be taken into account. Therefore, a full calculation of the one-loop
SUSY-QCD corrections is necessary, which is presented in this dissertation.

Lastly, the possibility to measure the quartic Higgs coupling at hadron collid-
ers is analyzed in chapter9. For this purpose triple-Higgs production via gluon
fusion is studied at the leading one-loop order. In this chapter not the MSSM
is used as the underlying model, but an e�ective theory basedon the Standard
Model where the trilinear and quartic Higgs self-couplingsare left as free param-
eters.

In appendix A the numerical values of the Standard Model parameters, which
were kept �xed for all calculations in this thesis, and of theMSSM parameters
for the reference point SPS1a0 [16] are noted. AppendixB contains the de�ni-
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tions of mathematical quantities which are used throughoutthe dissertation, and
appendix C the parametrization of the phase space for two- and three-particle
�nal states.

In loop calculations integrals over the loop momentum appear which can be
solved analytically. The de�nition of these integrals is given in appendixD. Spe-
cial attention is paid to the �ve-point integrals which havenot been implemented
in the package LoopTools [11, 14, 15] before. The numerical method of Gaussian
elimination, which is used to further improve the stability of the loop-integral
calculation, is presented in appendixE.

Finally, the complete user manual of HadCalc is attached in appendix F. The
program itself can be obtained from the author1.

1email: mrauch@mppmu.mpg.de



Chapter 2

Standard Model

2.1 Structure of the Standard Model

The Standard Model (SM) of elementary particle physics [1, 2] is one of the best
tested theories in physics. It consists of an outer symmetryof the Poincar�e group
of space-time transformations and a non-Abelian gauge group of the inner direct
product SU(3)C 
 SU(2)L 
 U(1)Y . SU(3)C is the color gauge group and describes
the strong interactions by the theory of QCD. The productSU(2)L 
 U(1)Y spec-
i�es the electroweak interactions which unify the electromagnetic and weak in-
teractions. The Higgs mechanism, which will be described inchapter 2.2, breaks
this symmetry spontaneously, thereby leaving aU(1)Q symmetry of electromag-
netic interactions which is described by QED. The one remaining interaction,
gravitational interaction, is beyond the scope of the SM. Infact, a consistent
theory which formulates general relativity in terms of a quantum �eld theory
is not known until today. At the center-of-mass energies used at present or at
planned future colliders, which are maximally of the order of a few hundred TeV,
the e�ects due to gravitational interactions are negligibly small. The Standard
Model therefore provides an excellent approximation to describe collider physics.

The fermionic sector of the SM consists of spin-1
2 leptons (� e,� � ,� � ,e,� ,� ) and

quarks (u,c,t,d,s,b) which appear in three di�erent generations. The particlesof
each generation have the same quantum numbers but a di�erentcoupling to the
Higgs �eld which will be introduced below. Left-handed fermions transform as a
doublet underSU(2)L where the upper component forms the neutrinos (� e,� � ,� � )
and up-type quarks (u,c,t), respectively, and the lower component the electron-
type leptons (e,� ,� ) and the down-type quarks (d,s,b). Right-handed fermions
transform as a singlet underSU(2)L the only exception being that there are no
right-handed neutrinos at all. For each group generator a spin-1 gauge boson
exists which transforms under the adjoint representation of the respective group.
Consequently there are eight gauge bosons forSU(3)C , the gluons, three gauge
bosons forSU(2)L , the W bosons, and one forU(1)Y , called B.

5



6 Chapter 2. Standard Model

Experiments show that not all gauge bosons are massless [17]. Adding an ex-
plicit mass term for these gauge bosons is not possible for renormalizable quantum
�eld theories. Such terms are forbidden due to the postulatethat the Lagrangian
should be invariant under gauge transformations. Otherwise the resulting theory
would be non-renormalizable. For this reason another way ofgiving masses to
the gauge bosons is needed. This is achieved by the Higgs mechanism which will
be described in the next chapter.

2.2 Higgs mechanism

2.2.1 Standard Model Higgs sector

As mentioned above, it is a di�cult task to construct a gauge theory which is
renormalizable and has massive gauge bosons. In the Standard Model this prob-
lem is solved by the Higgs mechanism [3]. The idea is to add additional terms to
the Lagrangian, such that the Lagrangian is invariant underthe SU(2)L 
 U(1)Y

gauge transformations with a ground state which does not share this invariance.
To realize this idea one introduces a new complex scalar �eld, the Higgs �eld
�, which behaves like a doublet underSU(2)L gauge transformations and has
hyperchargeY = +1. Its ground state acquires a vacuum expectation valuev,
such that a U(1)Q symmetry of electromagnetic interactions is preserved. The
electromagnetic charge is de�ned asQ = I 3 + Y

2 , whereI 3 is the quantum number
of the third component of the weak isospin operator. Therefore only the lower
component of the doublet can have a vacuum expectation value, as assigning a
vacuum expectation value to the upper component would also break the U(1)Q.
The Higgs �eld can be parametrized as

�( x) =
�

� + (x)
� 0(x)

�
=

�
G+ (x)

v + 1p
2

(H (x) + iG0(x))

�
; (2.1)

where G+ is a complex andH and G0 are two real scalar �elds. The Higgs
potential, i.e. the non-kinematic part of the SM Lagrangianwhich contains only
Higgs �elds, can be written as

V(�) = �
m2

H

2

�
� y�

�
+

m2
H

2v2

�
� y�

� 2
: (2.2)

The breaking of a continuous global symmetry leads to massless scalar par-
ticles, the Goldstone bosons [18]. One Goldstone boson occurs for each broken
generator of the symmetry group. In case of a broken continuous local symme-
try, like a gauge symmetry, these Goldstone bosons are unphysical. They can be
eliminated by an appropriate choice of gauge, the unitary gauge. Their degrees of
freedom are \eaten up" by the gauge bosons which become massive. Once \eaten
up", the Goldstone bosons form the longitudinal modes of thegauge bosons.
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For electroweak symmetry breaking there are three broken generators leading to
three \would-be" Goldstone bosonsG� and G0. Only the �eld H in eq. (2.1) is
physical. It is the �eld of the Higgs boson which has not been discovered yet. Its
massmH is a free parameter of the theory. It is bounded from below by exper-
imental searchesmH � 114:4 GeV [19] and from above by electroweak precision
data where a best �t yieldsmH = 114+69

� 45 GeV [20].
After electroweak symmetry breaking the gauge boson triplet W i

� ; i = 1 : : : 3;
of SU(2)L and the gauge bosonB � (U(1)Y ) no longer form the mass eigenstates
of the theory. The mass eigenstates are obtained by rotations

W �
� =

1
p

2

�
W 1

� � iW 2
�

�
; Z � = cW W 3

� � sW B � ; A � = sW W 3
� + cW B � : (2.3)

sW and cW denote the sine and cosine of the electroweak mixing angle, the Wein-
berg angle. The photon �eld A � stays massless and can be interpreted as the
gauge boson of the remainingU(1)Q symmetry of electromagnetic interactions.
The electromagnetically neutralZ and the chargedW bosons receive a mass,
which is proportional to the vacuum expectation value of theHiggs �eld:

mZ =
e

2sW cW
v; mW =

e
2sW

v (2.4)

wheree is the electromagnetic unit charge. AsW and Z have already been found
in experimental searches these equations determine the Weinberg angle and the
scale of electroweak symmetry breakingv = 247 GeV.

The Goldstone bosonsG� and G0 of eq. (2.1) are absorbed by theW and
Z bosons, respectively. In this thesis the 't Hooft-Feynman gauge is used which
has technical advantages for loop calculations since the gauge boson propagators
in this gauge take a simpler form. In the 't Hooft-Feynman gauge the Goldstone
bosons appear explicitly as internal propagators with a mass equal to that of the
associated gauge boson. For external propagators their contribution is accounted
for in the longitudinal component of the polarization vector of the respective
gauge boson.

In analogy to the inclusion of massive gauge bosons into a renormalizable
quantum �eld theory there is no possibility to introduce fermion mass terms
directly. To generate fermion masses one introduces Yukawainteractions which
couple the fermions to the Higgs �eld

L Yukawa = � � IJ
e L I � eR;J � � IJ

u QI � cuR;J � � IJ
d QI � dR;J + h:c: (2.5)

with

� c = i� 2� � =
�

� 0�

� � + �

�
(2.6)

which is also anSU(2)L doublet but has hyperchargeY = � 1. The vacuum
expectation valuev in the decomposition of � (eq. (2.1)) leads to terms which
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are bilinear in the fermion �elds, i.e. to mass terms for the fermions. The � IJ
f

are 3� 3 Yukawa coupling matrices. They parameterize the masses ofthe quarks
and further mixing e�ects in the quark sector.

2.2.2 Higher-dimensional operators

The realization of the Higgs sector in the SM is minimal in thesense that it
contains just enough additional parameters and �elds to give a consistent the-
ory of the particles known nowadays. In extensions of the SM additional terms
are possible, which lead to the following general parameterization of the Higgs
potential with one doublet � [ 21, 22]:

V (�) =
X

n� 0

~� n

� 2n

�
� y� �

v2

2

� 2+ n

= ~� 0

�
� y� �

v2

2

� 2

+ O
�

1
� 2

�
: (2.7)

The expansion forn = 0 on the right-hand side is identical to the SM Higgs
potential eq. (2.2) with ~� 0 = m2

H
2v2 up to the constant term which is not a physical

observable and leaves the equations of motion unchanged. The additional terms
for n > 0 contain operators of mass dimension 6 and higher. Such terms are non-
renormalizable but can be considered as e�ective terms of anextended theory.
They are suppressed by the scale � which is the scale where newphysics sets
in. The only requirement eq. (2.7) has to ful�ll is that its highest non-vanishing
coe�cient ~� i is positive so that the potential is bounded from below.

2.3 Problems of the Standard Model

Despite its large success there are both experimental and theoretical hints that
the SM is only the low-energy limit of a more general theory.

An experimental clue is the measured value of the anomalous magnetic mo-
ment of the muon [23]. This observable is known to an extremely high precision
from both experiment and theory, where the uncertainty stems from unknown
higher-loop contributions and experimental errors on the input parameters. The
deviation from the SM prediction is about 0.7-3.26 standarddeviations [24].

Another evidence comes from the dark matter problem in the universe [25].
Looking at the rotation of galaxies as a function of the distance from the cen-
ter shows that for large distances the circular velocity is constant, whereas the
observed radiating matter would result in a decrease of the velocity with the
distance. This implies that there is some fraction of matterwhich is contribut-
ing to the overall mass density of the galaxy, but not emitting electromagnetic
radiation, hence the namedark matter. Precision measurements of the cosmic
microwave background [26] yield an average density of the universe that is very
close to the so-called critical density, where the curvature of the universe van-
ishes. Combining these data with our current understandinghow the universe
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emerged and evolves requires that the total matter content of the universe which
contributes to this density is about 27%. The rest is some form of energy, so-
called dark energy. Of these 27% of matter content, only about 4% of the total
matter content consist of the usual baryonic matter, i.e. ofmatter built up of
protons and neutrons. The remaining 23% must be made of non-baryonic, only
weakly-interacting matter. The only particles in the SM which ful�ll this require-
ment are the neutrinos. Current upper limits on their masses[17] imply however
that they cannot account for the whole required dark matter density.

One of the theoretical clues is the uni�cation of coupling constants in Grand
Uni�ed Theories (GUT), where all three SM gauge groups mergein a single
gauge group. Possible GUT gauge groups areSU(5) [27], which is experimentally
not viable due to a too large proton decay rate [28] or SO(10) [29]. Via the
renormalization group equations the coupling constants ofthe three SM gauge
groups can be written as running coupling constants which depend on the energy.
GUT theories predict that at a high energy scale, typically of the order MGUT �
1015 GeV, all three gauge couplings unify. Such a uni�cation doesnot occur in
the SM, even if one takes into account that new particles at the GUT scale might
slightly modify the running.

Another hint is the so-called hierarchy problem. If one considers one-loop cor-
rections to the mass of the Higgs boson quadratic divergences appear [30]. These
divergences can be erased by renormalization. One �nds thatthe corrections are
of the order of the largest mass in the loop. If the SM is indeedthe ultimate the-
ory up to arbitrary high energies, this heaviest particle isthe top quark and the
corrections are well under control. But if the SM is replacedby a new theory at
higher energies, like a Grand Uni�ed Theory which uni�es theelectroweak with
the strong interactions or a quantum theory which includes gravity, new particles
with masses of the order of this new theory will appear, typically with masses of
the Planck scaleMP lanck � 1019 GeV. In such new models extreme �ne-tuning is
necessary to get a Higgs mass of the order of the electroweak scale, as is predicted
by electroweak precision data [20]. In particular there is no symmetry, neither
conserved nor broken, which would explain such a �ne-tuningin a natural way.

The last problem concerns the neutrino sector. Neutrinos are assumed to be
massless in the SM. It is known from the observation of neutrino oscillations [31]
that neutrinos possess a tiny mass. There is no conceptual problem to introduce
such a mass in the SM. As neutrinos are not of importance for the work presented
in this dissertation the exact formulation of the neutrino sector can be ignored.

To solve the problems mentioned above various models have been proposed.
The model widely believed to be the most promising candidateis supersymmetry.
This extension of the Standard Model was studied in this thesis and will be
introduced in the following.





Chapter 3

Supersymmetry

3.1 Basic principles

It was shown by Coleman and Mandula [32] that combining space-time and in-
ternal symmetries is only possible in a trivial way. In the proof of this theorem
only general assumptions on the analyticity of scattering amplitudes and the as-
sumption that the S-matrix is invariant under Lorentz transformations are made.

Later it was realized [33] that besides of Lie-algebras, which are de�ned via
commutation relations, one can also use so-called superalgebras, which also con-
tain anticommutators. Then a new type of operatorsQ is allowed which has the
following properties [6, 34, 35]:

�
Q�

A ; �Q _�B

	
= 2 � �

� _�
P� � A

B
�

Q�
A ; Q�

B
	

=
� �Q _�A ; �Q _�B

	
= 0

�
P� ; Q�

A
�

=
�
P� ; �Q _�A

�
= 0 (3.1)

The supersymmetry generatorsQ and �Q carry Weyl spinor indices� , _� , � and
_� which run from 1 to 2, where the undotted indices transform under the (0; 1

2)
representation of the Poincar�e group and the dotted ones under the (1

2 ; 0) con-
jugated representation. The indicesA and B refer to an internal space and run
from 1 to a number N � 1. For N > 1 chiral fermions are not allowed [36].
These are necessary to construct the observed parity violation via SU(2)L , where
left- and right-handed fermions carry di�erent quantum numbers. Therefore only
(N = 1)-supersymmetries are relevant for phenomenologicallyinteresting energy
ranges and in the following only such supersymmetries will be considered. P�

denotes the generator of Lorentz translations, the energy-momentum operator,
and � �

� _�
= (1 ; � i

� _�
) is the four-dimensional generalisation of the Pauli matrices.

The �rst line of eq. (3.1) shows the entanglement of space-time symmetry and
the internal symmetry. The last line indicates the invariance of supersymmetry
under Lorentz transformations.

11
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As the operators anticommute with themselves, they have half-integer spin
according to the spin-statistics theorem. A detailed calculation shows that their
spin is always1

2 . Therefore we have

Q jbosoni = jfermioni Q jfermioni = jbosoni : (3.2)

The one-particle states belong to irreducible representations of the supersym-
metry algebra, the so-called supermultiplets. Each supermultiplet includes both
bosonic and fermionic states which are called superpartners to each other. They
can be transformed into each other by applyingQ and �Q.

Each supermultiplet contains the same number of bosonic andfermionic de-
grees of freedom. For example the simplest supermultiplet incorporates a Weyl
fermion with two helicity states, hence two degrees of freedom. Its bosonic part-
ners are two real scalars each with one degree of freedom, which can also be
combined into one complex scalar �eld. This is called the scalar or chiral super-
multiplet.

The next possibility is a spin-1 vector boson. To guarantee the renormalis-
ability of the theory this has to be a gauge boson which is massless and contains
two degrees of freedom. It follows that the partner is a massless Weyl fermion.
A spin-3

2 fermion would render the theory non-renormalisable, so it must be a
spin-1

2 fermion. This is called a gauge or vector supermultiplet.
From eq. (3.1) follows

[P� P � ; Q� ] =
�
P� P � ; �Q _�

�
= 0 : (3.3)

P� P � is just M 2, the squared mass of a state in the supermultiplet. Applying
the supersymmetry operator therefore does not change the mass of the state and
all states in a supermultiplet have the same mass if supersymmetry is unbroken.
This will be important later on when the Lagrangian is constructed.

3.2 Super�elds

Starting from the supermultiplets one can construct super�elds. To simplify the
notation Grassmann variables are introduced. These are anticommuting numbers
whose properties are de�ned in chapterB.3. The superalgebra can now be written
in terms of commutators

h
� � Q� ; �Q _�

��
_�
i

= 2 � � � �
� _�

��
_� P � (3.4)

�
� � Q� ; � � Q�

�
=

h
�Q _�

�� _� ; �Q _�
��

_�
i

= 0 : (3.5)

In general a �nite supersymmetric transformation is given by the group ele-
ment

G
�
x � ; � � ; �� _�

�
= ei f x � P � + � � Q � + �� _� �Q _� g ; (3.6)
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in complete analogy to a general non-Abelian gauge transformation ei� a T a
with

the group generatorsTa. P � , Q� and �Q _� are the generators of the supersym-
metry group. The coordinates can be combined into a tuple which represents a
superspace coordinatez =

�
x � ; � � ; �� _�

�
. The set of all possible coordinates spans

the superspace.
The �elds on which these generators operate must then also bea function of

� and �� besidesx � . These are the so-called super�elds �(x � ; �; �� ). In superspace
one can obtain an explicit representation ofQ� and �Q _� as di�erential operators.
For that purpose one considers a supersymmetry transformation of �

G(y� ; �; �� )�( x; �; �� ): (3.7)

Taking the parameters as in�nitesimal and performing a Taylor expansion one
obtains the following explicit representation of the supersymmetric generators

Q� =
@

@��
� i� �

� _�
��

_� @
@x�

(3.8)

�Q _� = �
@

@�� _�
+ i� � � �

� _�
@

@x�
(3.9)

P� = i
@

@x�
: (3.10)

For the further treatment it is su�cient to consider only in� nitesimal super-
symmetric transformations which have the following form

� G(�; �� )�( x � ; �; �� ) =
�
�

@
@�

+ ��
@
@��

� i
�
�� �

�� � �� �
��
� @

@x�

�
�( x � ; �; �� ); (3.11)

where � and �� are also Grassmann variables. Contracted indices which are
summed over have been suppressed in this equation.

Analogously to the covariant derivative in gauge theories one also introduces
covariant derivativesD � and �D _� with respect to the supersymmetry generators.
These derivatives have to be invariant underQ and �Q, which is equivalent to the
postulate

f D � ; Q� g = f �D _� ; Q� g = f D � ; �Q _� g = f �D _� ; �Q _� g = 0: (3.12)

Thus the covariant derivatives are

D � =
@

@��
+ i� �

� _�
��

_� @
@x�

(3.13)

�D _� = �
@

@�� _�
� i� � � �

� _�
@

@x�
: (3.14)

From eqs. (3.8, 3.9, 3.13, 3.14) one can also deduce that the Grassmann variables
� and � have spin� 1

2 , while D and Q have spin +1
2.
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Super�elds can be expanded into component �elds. The general expansion of
super�elds in terms of Grassmann variables is

�( x; �; �� ) = f (x) + �� (x) + �� �� (x)

+ ��m (x) + �� ��n (x) + �� � ��v � (x)

+ �� �� �� (x) + �� ��� (x) + �� �� ��d (x):

(3.15)

Due to the anticommuting properties of Grassmann variables this expansion is
complete, i.e. it truncates with the last shown term.

Up to now all expressions have been written out for general super�elds. To
construct a supersymmetric Lagrangian only two special types of super�elds are
needed. They are irreducible representations of the supersymmetry algebra. One
obtains them by imposing covariant restrictions on a general super�eld. In this
way they still span a representation space of the algebra buthave less components.

3.2.1 Chiral Super�elds

One possibility are chiral super�elds. They are de�ned by applying the covariant
derivative �D _� on the scalar super�eld � as de�ned in eq. (3.15)

�D _� �( z) = 0 : (3.16)

The solution of this di�erential equation leads to a chiral super�eld which can be
expressed in general component �elds as

� = A(x) + i�� � ��@� A(x) +
1
4

�� �� ��@� @� A(x)

+
p

2� (x) �
i

p
2

��@�  (x)� � �� + ��F (x):
(3.17)

A is a complex scalar �eld,� a complex Weyl spinor andF an auxiliary complex
scalar �eld which has mass dimension two. It transforms under supersymmetry
transformations into a total space-time derivative and therefore does not represent
a physical, propagating degree of freedom. The product of chiral super�elds is
again a chiral super�eld. For two chiral super�elds � 1 and � 2 this follows directly
from the product rule for derivatives

�D _� (� 1� 2) =
� �D _� � 1

�
� 2 + � 1

� �D _� � 2

�
= 0: (3.18)

Analogously one can de�ne an antichiral super�eld 	 by the equation

D � 	( z) = 0 : (3.19)

In particular the hermitian conjugate � y of a chiral super�eld � is an antichiral
super�eld.
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3.2.2 Vector Super�elds

The second special type of super�elds are vector super�elds. They are derived
from a general scalar super�eldV by demanding it to be real:

V y(z) = V(z): (3.20)

The name vector super�eld stems from the fact that in the expansion a real vector
�eld appears as a component �eld and that these �elds are usedas generalized
gauge �elds when supersymmetric gauge theories are constructed.

The complete expansion in terms of component �elds is

V(x; �; �� ) = C(x) + i�� (x) � i �� �� (x) +
i
2

�� [M (x) + iN (x)] �
i
2

�� �� [M (x) � iN (x)]

� �� � ��v � (x) + i�� ��
�

�� (x) +
i
2

�� � @� � (x)
�

� i �� ���
�
� (x) +

i
2

� � @� �� (x)
�

+
1
2

�� �� ��
�
D(x) +

1
2

@� @� C(x)
�

:

(3.21)

C, D, M and N are scalar �elds andv� is the vector �eld which gives the name
to this type of super�elds. They all have to be real to ful�ll eq. (3.20). � and �
are Weyl spinors.

For the vector super�eld we can now de�ne a supersymmetric gauge transfor-
mation which is in the general non-Abelian case described by

egV ! e� ig � y
egV eig � ; (3.22)

where � denotes again a chiral super�eld. This simpli�es in the Abelian case to

V ! V + i
�
� � � y

�
: (3.23)

Using this gauge transformation we can simplify eq. (3.21) and choose

� (x) = C(x) = M (x) = N (x) � 0 (3.24)

thereby eliminating unphysical degrees of freedom. This choice of gauge is called
Wess-Zumino gauge [5]. As we have used only three of the four bosonic degrees
of freedom in � the \ordinary" gauge freedom of an Abelian gauge group is still
present and the Wess-Zumino gauge is compatible with the usual gauges.

The vector super�eld is now simpli�ed to

V = � �� � ��v � (x) + i�� �� �� (x) � i �� ���� (x) +
1
2

�� �� ��D (x) (3.25)

with the scalar auxiliary �eld D with mass dimension two. As in the case of chiral
super�elds this auxiliary �eld turns into a total derivativ e under supersymmetry
transformations and does not contribute to the propagatingdegrees of freedom.

Now we have all building blocks to construct a supersymmetric extension of
the Standard Model.
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3.3 A Supersymmetric Lagrangian

A supersymmetric Lagrangian requires the action to remain unchanged under
supersymmetry transformations

� G

Z
d4xL (x) = 0 : (3.26)

This requirement is ful�lled if the Lagrangian L turns into a total space-time
derivative under supersymmetry transformations. A comparison with the trans-
formation properties of chiral and vector super�elds showsthat the F and D
terms of eq. (3.17) and (3.21) show exactly this behavior. Schematically the
Lagrangian can be written simply as

L =
Z

d2� L F +
Z

d2� d2 �� L D : (3.27)

As was noted already in the previous chapter the product of two chiral super-
�elds is again a chiral super�eld. Explicit multiplication of the component �elds
yields a term proportional to i  j which has the form of a fermion mass term. The
product of three chiral super�elds which is by induction also a chiral super�eld
contains terms of the type i  j Ak which describe Yukawa-like couplings between
two fermions and a scalar. Products of four or more chiral super�elds would lead
to terms with a mass dimension greater than four and yield a Lagrangian which
is no longer renormalizable. Thus the terms which can contribute to a supersym-
metric Lagrangian can be written in a compact way with the superpotential

W(� i ) = � i � i +
1
2

mij � i � j +
1
3!

gijk � i � j � k : (3.28)

The product �� y of a chiral super�eld with its hermitian conjugate is self-
conjugate. Therefore it is a vector super�eld according to the de�nition eq. (3.20)
and a possible candidate for a contribution toL D :

Z
d2� d2 �� �� y = FF � � A@� @� Ay � i � � � @�  : (3.29)

The expression contains terms for the kinetic energy of boththe scalar and the
fermionic component. The auxiliary �eldsF do not have any kinematic terms so
they can be integrated out.

Gauge interactions are introduced by a supersymmetric generalization of the
\minimal coupling" � y� ! � ye2gV � with a vector super�eld V with V = TaV a,
whereTa are the generators of the gauge group. Written in component �elds one
can replace the ordinary derivatives by covariant derivativesD � = @� + igva

� Ta.
The terms for the kinetic energy of the gauge �elds can also beexpressed in

terms of a superpotential

W� = �
1
4

� �D �D
�

e� 2gV D � e2gV : (3.30)
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The product WaW a is gauge invariant and also a chiral super�eld, so its�� -term
can appear in the supersymmetric Lagrangian. Again only thegauge bosons and
their superpartners, the gauginos, obtain kinetic terms, but not the auxiliary
�elds, so we can eliminate them.

Therefore the most general form of a supersymmetric Lagrangian has the
following form:

L SUSY =
Z

d2�
��

1
16g2

W a
� W a� + W (�)

�
+ h.c.

�
+

Z
d2� d2 ��

�
� ye2gV �

�
:

(3.31)

As the two auxiliary �elds F and D do not have any terms for the kinetic
energy, their equations of motion have a simple form

@L
@Fi

= 0
@L
@Da

= 0: (3.32)

Solving these equations for theF and D �elds

Fi = �
�

@W(A i )
@Aj

� �

Da = � gA�
i T ij

a A j (3.33)

and inserting these expressions into eq. (3.31) the Lagrangian can be completely
expressed in terms of physical �elds.

3.4 Supersymmetry breaking

As shown in eq. (3.3) all members of a supermultiplet must have the same mass.
This means if the Standard Model was supersymmetrized by just replacing the
�elds with their respective super�elds there would exist for example a supersym-
metric partner to the electron with a mass of 511 keV/c2. This partner particle
is a boson with spin 0, but otherwise with the same quantum numbers as the
electron, i.e. particularly with a charge of one negative elementary charge. Such
a particle would have been discovered experimentally a longtime ago.

This problem can be circumvented by requiring that supersymmetry is bro-
ken. In this way one can give a mass to the supersymmetric partners which is
beyond the current experimental limits. In analogy to spontaneous symmetry
breaking in the electroweak sector the Lagrangian itself should be invariant un-
der supersymmetry transformations, but have a vacuum expectation value which
is not invariant under such transformations. For supersymmetry this problem is
somewhat complicated because additional constraints appear which have to be
ful�lled simultaneously. Such a constraint follows immediately from the de�nition
of the supersymmetry algebra eq. (3.1) which implies

H � P0 =
1
4

� �Q1Q1 + Q1
�Q1 + �Q2Q2 + Q2

�Q2
�

� 0: (3.34)
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Applying the Hamiltonian H onto a state j	 i leads to the result that supersym-
metry is broken if neither theD nor the F term can be made zero simultaneously.

The Fayet-Iliopoulos mechanism [37] achieves supersymmetry breaking by
adding a D term to the Lagrangian which is linear in the auxiliary �eld, while
O'Raifeartaigh models [38] do this via chiral supermultiplets and a superpotential
such that not all auxiliary �elds F can be made zero at the same time. Both mech-
anisms are phenomenologically not viable because they can lead to color breaking
or the breaking of electromagnetism, or need an unacceptable �ne-tuning [39].

Hence one expects that supersymmetry is not broken directlyby renormal-
izable tree-level couplings, but indirectly or radiatively. For these purposes one
introduces a hidden sector of particles in which supersymmetry is broken and
which has only small or no direct couplings at all to the normal visible sector.
The two sectors however share some common interaction whichmediates the
breaking from the hidden to the visible sector and leads to additional super-
symmetry breaking terms. Two possible scenarios for this mediation are widely
discussed in the literature [40]. The �rst one is gravity-mediated supersymmetry
breaking. At the Planck scale gravity is anticipated to become comparable in
size to the gauge interactions. The mediating interaction is associated with the
new gravitational interactions which enter at this scale. Because of the 
avor
blindness of gravity these gravitational interactions areexpected to be 
avor-
blind as well. A second possibility is that the mediating interactions are the
ordinary QCD and electroweak gauge interactions. They connect the visible and
the hidden sector via loop diagrams involving messenger particles. This scenario
is called gauge-mediated supersymmetry breaking.

For a phenomenological analysis it is often not relevant what the exact way
of supersymmetry breaking is but only which additional terms in the Lagrangian
are generated. Thereby the cancellation of quadratic divergences should remain
valid, such that the solution of the naturalness problem of the Standard Model
is not lost. Terms which do not spoil the cancellation are called soft supersym-
metry breaking terms. It was shown [41] that only the following terms are soft
supersymmetry breaking up to all orders in perturbation theory:

� scalar mass terms m2
ij A �

i A j

� trilinear scalar interactions t ijk A i A j Ak + h:c:

� mass terms for gauge particles
1
2

ml
�� l � l

� bilinear terms bij A i A j + h:c:

� linear terms l i A i :

Now all building blocks are in place and we can turn to building a supersym-
metric version of the Standard Model.
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3.5 Minimal Supersymmetric Standard Model

The simplest possibility of a supersymmetric extension of the Standard Model is
called Minimal Supersymmetric Standard Model (MSSM). The underlying alge-
bra is an (N=1)-supersymmetry with soft supersymmetry breaking. As in the
Standard Model the MSSM shall have a local gauge symmetry with respect to
the gauge groupSU(3)C 
 SU(2)L 
 U(1)Y , which describe the strong, weak
and electromagnetic interactions. Its particle content isobtained by replacing all
�elds with their corresponding super�elds.

Each matter �eld is assigned a chiral super�eld. Its fermionic part describes
the usual fermions of the Standard Model and its bosonic partcontains the \scalar
fermions", the sfermions, as superpartners. For each gauge group a vector super-
�eld is introduced whose vector bosons form the usual gauge bosons of the Stan-
dard Model, and the fermionic superpartners are two-component Weyl spinors,
in general calledgauginos. The nomenclature of the new particles usually follows
the convention that the bosonic superpartners carry the name of the fermion with
a pre�x \s", which is short for \scalar", and the fermionic superpartners carry
the name of the gauge boson with the su�x \-ino".

In the Higgs sector of the MSSM it is not su�cient to replace the scalar �eld
by a vector super�eld. One would need both the �eldH and its hermitian con-
jugate H � to give mass to both up- and down-type quarks. This is forbidden
by the requirement that the superpotential must be analyticand so one needs a
second Higgs doublet with negative hypercharge. Additionally the fermion which
emerges from the single Higgs super�eld would carry a non-vanishing hypercharge
Y. This hypercharge contributes to the chiral anomaly [42] which is not com-
pensated by other particles. The quantized version of such atheory would be
inconsistent. In the MSSM the two fermions, one from each Higgs doublet, have
opposite hypercharge and their contribution to the anomalyexactly cancels.

Table (3.1) gives an overview of the particle content of the MSSM in the
interaction basis. For the gauge super�elds we have the following �eld strengths
in the MSSM

WC
a
� = �

1
4

� �D �D
�

e� 2gs ĜD � e2gs Ĝ (3.35)

WL
i
� = �

1
4

� �D �D
�

e� 2gw Ŵ D � e2gw Ŵ (3.36)

WY � = �
1
4

� �D �D
�

e� 2gy B̂ D � e2gy B̂ = �
gy

4
�D �DD � B̂ : (3.37)

Additionally the superpotential must be �xed. In the MSSM it is de�ned as

WMSSM = � ij
�

� IJ
e Ĥ i

1L̂
jI Ê J � � IJ

u Ĥ i
2Q̂jI ÛJ + � IJ

d Ĥ i
1Q̂

jI D̂ J � � Ĥ i
1Ĥ j

2

�
;

(3.38)
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�elds group representation
super�eld fermion �eld boson �eld SU(3)C SU(2)L U(1)Y

matter sector

Quarks Q̂I

�
uL;I

dL;I

� �
~uL;I
~dL;I

�
3 2 1

3

ÛI uc
R;I ~u�

R;I
�3 1 � 4

3

D̂ I dc
R;I

~d�
R;I

�3 1 2
3

Leptons L̂ I

�
� L;I

eL;I

� �
~� L;I

~eL;I

�
1 2 � 1

Ê I ec
R;I ~e�

R;I 1 1 2

gauge sector

SU(3)C Ĝa ~� a
G Ga

� 8(adj.) 1 0

SU(2)L Ŵ i ~� i
W W i

� 1 3(adj.) 0

U(1)Y B̂ ~� B B � 1 1 0

Higgs sector

Ĥ1

� ~H 1
1

~H 2
1

� �
H 1

1

H 2
1

�
1 2 � 1

Ĥ2

� ~H 1
2

~H 2
2

� �
H 1

2
H 2

2

�
1 2 1

Table 3.1: Super�elds and particle content of the MSSM in theinteraction basis.
Super�elds are denoted with a hat and the superpartners all carry a tilde. The
generation indexI of the quarks and leptons runs from 1 to 3. For the gauge
�elds the color index a runs from 1 to 8 and the weak isospin indexi from 1
to 3. The bold numbers in the group representation of the non-Abelian groups
SU(3)C and SU(2)L denote the dimension of the representation, where1 is the
trivial representation and the gauge bosons are in the adjoint representation of
the group. The number for the Abelian groupU(1)Y denotes the hypercharge of
the particle.
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where � e, � u and � d are 3x3 Yukawa coupling matrices andI and J denote the
generation index.

Inserting eqs. (3.35)-(3.38) into eq. (3.31) and adding the F terms to the
Lagrangian yields the supersymmetric part of the MSSM Lagrangian

L SUSY =
Z

d2�
��

1
16g2

s
WC

a
� WC

a� +
1

16g2
w

WL
i
� WL

i�

+
1

16g2
y
WY � WY

� + WMSSM

�
+ h.c.

�

+
Z

d2� d2 ��
h
L̂ ye2gw Ŵ +2 gy B̂ L̂ + Ê ye2gy B̂ Ê

+ Q̂ye2gs Ĝ+2 gw Ŵ +2 gy B̂ Q̂ + Ûye� 2gs ĜT +2 gy B̂ Û + D̂ ye� 2gs ĜT +2 gy B̂ D̂

+ Ĥ y
1e2gw Ŵ +2 gy B̂ Ĥ1 + Ĥ y

2e2gw Ŵ +2 gy B̂ Ĥ2

i
:

(3.39)

Supersymmetry in the MSSM is broken explicitly by soft supersymmetry
breaking terms, i.e. only the terms mentioned at the end of chapter 3.4 are al-
lowed. This leads to the following contributions to the MSSMLagrangian:

� Majorana mass terms for all gauginos

L soft,majoranamass =
1
2

�
M 3

~� a
G

~� a
G + M 2

~� i
W

~� i
W + M 1

~� B
~� B

�
+ h:c: (3.40)

� mass terms for all scalar superpartners of the Standard Model fermions and
for the scalar Higgs �elds

L soft,scalarmass = � M 2
~L

�
~� �

L;I ~� L;I + ~e�
L;I ~eL;I

�
� M 2

~E ~e�
R;I ~eR;I

� M 2
~Q

�
~u�

L;I ~uL;I + ~d�
L;I

~dL;I

�
� M 2

~U ~u�
R;I ~uR;I � M 2

~D
~d�
R;I

~dR;I

� m2
1 jH1j2 � m2

2 jH2j
2 (3.41)

� bilinear term which couples the two scalar Higgs �elds

L soft,bilinear = m2
12

�
� ij H i

1H j
2 + h:c:

�
(3.42)

� trilinear interaction terms for the scalar superpartners of the Standard
Model fermions

L soft,trilinear = � � ij

�
� IJ

e AeH i
1
~L jI ~E J � � IJ

u AuH i
2

~QjI ~UJ + � IJ
d AdH i

1
~QjI ~D J

�

+ h:c: : (3.43)
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In the general case the Yukawa couplings� e, � u and � d as well as the trilinear
couplingsAe, Au and Ad are complex 3� 3 matrices. The scalar mass parameters
M ~L , M ~E , M ~Q, M ~U , M ~D , are hermitian 3� 3 matrices. The scalar Higgs mass
parametersm1 and m2 are real numbers, and the gaugino mass parametersM 1,
M 2 and M 3 as well as the bilinear Higgs couplingm12 are complex numbers.

There is an additional possibility for soft-breaking trilinear couplings [43]
which has the form

L soft,tri2 =
�

A0
e

IJ H i �
2

~L iI ~E J � A0
u

IJ H i �
1

~QiI ~UJ + A0
d

IJ H i �
2

~QiI ~D J
�

+ h:c: : (3.44)

This expression involves charge-conjugated Higgs �elds which, in contrast to the
superpotential, are possible for soft supersymmetry-breaking terms. However, it
turns out that in most scenarios of supersymmetry breaking such terms are not
generated. Therefore they are normally not considered and will also be neglected
in this thesis.

The complete soft supersymmetry breaking Lagrangian is given by

L soft = L soft,majoranamass + L soft,scalarmass + L soft,bilinear + L soft,trilinear (3.45)

As next step gauge �xing terms must be added to the Lagrangian. This is
required so that all Green functions are still calculable. In this dissertation the
R� - or 't Hooft gauge is used

L gauge-�xing = �
1
2�

�
@� Ga

�

� 2
�

1
2�

�
@� W 1

� +
i

p
2

mW �
�
G+ � G�

�
� 2

�
1
2�

�
@� W 2

� �
1

p
2

mW �
�
G+ + G�

�
� 2

�
1
2�

�
@� W 3

� + cW mZ �G 0
� 2

�
1
2�

�
@� B � � sW mZ �G 0

� 2
:

(3.46)

G� and G0 are the Goldstone bosons which were already described for the Stan-
dard Model case in chapter2.2 and appear in the MSSM in the same way.

Setting � = 1 yields the 't Hooft-Feynman gauge which is advantageous for
one-loop calculations, because the propagators take a verysimple shape, while
the Goldstone bosons appear explicitly in the calculation.This kind of gauge is
used throughout this thesis.

Finally unphysical modes which were introduced by the gauge-�xing terms
are compensated by Faddeev-Popov ghost termsL ghost [44].

Adding up all contributions gives the complete Lagrangian of the MSSM

L MSSM = L SUSY + L soft + L gauge-�xing + L ghost: (3.47)

Additional terms could be added to the superpotential in eq.(3.38) which are
also gauge-invariant and analytic in the super�elds, but violate lepton or baryon
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number conservation which has not been observed experimentally so far. Such
terms include the coupling of three lepton or quark super�elds or the coupling
of lepton to quark super�elds. The strictest limits on lepton and baryon number
violation are obtained by searching for a possible decay of the proton which vio-
lates each baryon and lepton number by one unit. Experimentshave established
a lower limit on the proton lifetime of 1029 years [17] while general violating
terms predict a decay time in the order of minutes or hours. Thus a mechanism
must exist which forbids or at least heavily suppresses these terms. The simplest
possibility is to postulate a conservation of baryon and lepton number. Such a
postulate would be a regression with respect to the StandardModel. There the
conservation is ful�lled automatically and a consequence of the fact that there
are no renormalizable lepton and baryon number violating terms. Furthermore,
postulating lepton and baryon number conservation as a fundamental principle
of nature is generally not viable. It is known that there are non-perturbative
e�ects in the electroweak sector which do violate lepton andbaryon number
conservation, although their e�ect is negligible for the energy ranges of current
experiments.

Instead a symmetry should be introduced which has the conservation of these
quantum numbers as a natural consequence. So in the MSSM as a perturbative
theory baryon and lepton number conservation is again guarantueed while the
existence of non-perturbative e�ects is not contradicted by demanding a funda-
mental symmetry. Such a symmetry is given byR-parity [45]. A new quantum
number R is introduced and from that a so-calledR-parity PR = ( � 1)R is de-
rived. It is induced by the generators of supersymmetry, stays intact after spon-
taneous supersymmetry breaking and is multiplicatively conserved. R = 0 for
all Standard Model particles and the additional Higgs scalars and R = 1 for all
supersymmetric partners. The link to lepton and baryon number conservation is
obvious if one writes theR-parity quantum number in terms of baryon number
B, lepton numberL and spin s

PR = ( � 1)2s+3( B � L ) : (3.48)

B is + 1
3 for the left-handed chiral quark super�eldQI , � 1

3 for the right-handed
quark super�elds ÛI and D̂ I , and 0 for all other particles. AnalogouslyL is +1
for the left-handed lepton super�eldL̂ I , � 1 for the right-handed lepton super�eld
Ê I , and 0 for all other particles. Then all Standard Model particles and the Higgs
scalars havePR = +1 and the supersymmetric partners have an oddR-parity of
PR = � 1.

An interesting consequence of this is that each interactionvertex connects an
even number of supersymmetric particles. Therefore they can only be produced
in pairs and the lightest supersymmetric particle (LSP) must be stable.
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3.6 Particle content of the MSSM

3.6.1 Higgs and Gauge bosons

As in the Standard Model theSU(2)L 
 U(1)Y symmetry is broken by the vacuum
expectation values of the Higgs �elds in such a way that aU(1)Q symmetry of
electromagnetic interactions remains. Its associated conserved quantum number
is the usual electromagnetic charge. As shown before the Higgs sector of the
MSSM must consist of two scalar isospin doublets

H1 =
�

v1 + 1p
2

(� 0
1 � i� 0

1)
� � �

1

�
H2 =

�
� +

2

v2 + 1p
2

(� 0
2 + i� 0

2)

�
(3.49)

with opposite hypercharge.� 0
1, � 0

2, � 0
1 and � 0

2 are real scalar �elds, and� �
1 and

� +
2 are complex scalar �elds. In eq. (3.49) an expansion around the vacuum

expectation values has been performed, which satisfy the equation

hH1i =
�

v1

0

�
hH2i =

�
0
v2

�
: (3.50)

Collecting all terms in the Lagrangian which contain only the Higgs �elds we
have contributions to the Higgs potential from theF terms in the superpotential,
from the D terms and �nally from the soft supersymmetry breaking terms

VHiggs = j� j2
�
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1
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�
�
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+ m2
1 jH1j2 + m2

2 jH2j2 � m2
3

�
� ij H i

1H
j
2 + h:c:

�
:

(3.51)

This equation shows the close entanglement between supersymmetry breaking
and electroweak symmetry breaking. Only including the softbreaking terms it
is possible that the minimum of the Higgs potential is not at the origin and the
�elds acquire a vacuum expectation value.

The mass matrices of the Higgs �elds are obtained by di�erentiating twice
with respect to the �elds � and � . This leads to four uncoupled real 2� 2
matrices. To obtain the mass eigenstates these matrices have to be diagonalized
by unitary matrices. In the case of a real 2� 2 matrix this is simply a rotation
matrix. We obtain

�
G�

H �

�
=

�
c� s�

� s� c�

� �
� �

1

� �
2

�
(3.52)

�
G0
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�
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c� s�

� s� c�

� �
� 0

1

� 0
2

�
(3.53)

�
H 0

h0

�
=

�
c� s�

� s� c�

� �
� 0

1
� 0

2

�
: (3.54)
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c� , s� , c� and s� is a short-hand notation for cos� , sin� , cos� and sin� , respec-
tively. Similar abbreviations will also be used for the other angles in this thesis,
as well ast � denoting tan� . The mixing angle � is de�ned as the ratio of the
two vacuum expectation values

t � =
v2

v1
with 0 < � <

�
2

: (3.55)

t � is a free parameter of the MSSM. The mixing angle� is determined by the
relation

t2� = t2�
m2

A + m2
Z

m2
A � m2

Z
with �

�
2

< � < 0 : (3.56)

The restriction on the given interval determines� uniquely and is chosen such
that always mh0 < m H 0 . By electroweak symmetry breaking three group genera-
tors are broken and therefore as in the Standard Model three unphysical would-be
Goldstone bosonsG� and G0 emerge. The �ve remaining Higgs bosons are phys-
ical ones. There are two electrically neutral CP-even Higgsbosonsh0 and H 0,
one CP-oddA0 and two electrically charged onesH � . The mass of the CP-odd
Higgs bosonmA is usually chosen to be the second free parameter of the MSSM
Higgs sector. The masses of the other Higgs bosons at tree-level are then

mh0 ;H 0 =
1
2

�
m2

A + m2
Z �

q
(m2

A + m2
Z )2 � 4m2

A m2
Z c2

2�

�
(3.57)

mH � = m2
A + m2

W : (3.58)

These relations receive large corrections at higher orderswhich must be taken into
account when one wants to obtain realistic predictions. Theone-loop corrections
are known completely [46, 47, 48, 49]. On the two-loop level the calculation
of the supposedly dominant corrections in the Feynman diagrammatic approach
[50] of O (� t � s) [51, 52, 53, 54, 55], O (� 2

t ) [51, 56, 57], O (� b� s) [58, 59] and
O (� t � b + � 2

b) [60], a calculation in the e�ective potential approach [61] and the
evaluation of momentum-dependent e�ects [62] have been performed. As these
expressions are rather lengthy they are not written out here. For the numerical
evaluation the expressions given in [63] have been used.

As in the Standard Model, electroweak symmetry breaking turns the W i and
B gauge bosons into the mass eigenstatesW � , Z and the photon 
 . W and Z
bosons acquire a mass, where the single vacuum expectation value of eq. (2.1) is
replaced byv =

p
v2

1 + v2
2.

The gauge bosons ofSU(3)C are the eight massless gluons. Their mass eigen-
states are identical to the interaction eigenstatesga

� = Ga
� .

3.6.2 Higgsinos and Gauginos

All particles which have the same quantum numbers can mix with each other. As
the SU(2)L 
 U(1)Y symmetry is broken, only theSU(3)C and U(1)Q quantum
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numbers have to match.
In the sector of non-colored, charged particles there are the Winos ~W � and

the charged Higgsinos~H +
1 and ~H +

2 with

~W � =
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!
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(3.59)

As for the W bosons the relation

~� �
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1
p

2

�
~� 1

W � i ~� 2
W

�
(3.60)

holds.
These four two-component Weyl spinors combine into two four-component

Dirac fermions called charginos. Their mass matrix is diagonalized by
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�
M 2

p
2mW s�p
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0 m~� +
2

!

: (3.61)

U and V are two unitary matrices which are chosen such thatm~� +
1;2

are both
positive and m~� +

1
� m~� +

2
. The chargino mass eigenstates are given by
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The uncolored neutral higgsinos and gauginos also mix amongeach other. We
have the two neutral Higgsinos~H 1

1 and ~H 2
2 , the Zino ~Z and the Photino ~A

~H 0
1 =
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1

~H 1
1

!
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2
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: (3.63)

The latter two are obtained, as in the case ofZ and 
 , by rotating ~� 3
W and ~� B

by the Weinberg angle
~� Z = cW

~� 3
W � sW

~� B
~� A = sW

~� 3
W + cW

~� B : (3.64)

The four Weyl spinors form four Majorana fermions, called neutralinos, whose
mass matrix is also diagonalized by a unitary matrixN
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B
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C
C
A : (3.65)
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Again the remaining freedom in the choice ofN is used to order the neutralino
masses such thatm~� 0

1
� m~� 0

2
� m~� 0

3
� m~� 0

4
. The neutralino mass eigenstates are

given by
0
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2

1

C
C
A : (3.66)

The gauginos ofSU(3)C , the gluinos, do not mix with other particles as they
are the only fermions which are subject to the strong interaction exclusively.
There are eight gluinos with massm~g = jM 3j. Gluinos are Majorana particles
and have the following form

~ga =

 
� i ~� a

G

i ~� a
G

!

: (3.67)

3.6.3 Leptons and Quarks

Leptons and quarks have similar properties as in the Standard Model. The Weyl
spinors of left- and right-handed fermions can be combined into one Dirac spinor

eI =
�

eL;I

ec
R;I

�
uI =

�
uL;I

uc
R;I

�
dI =

�
dL;I

dc
R;I

�
; (3.68)

where I is again the generation index. The down-type quarksdI are not exact
mass eigenstates. A rotation

d0
I = V IJ

CKM dJ (3.69)

by a unitary matrix, the Cabibbo-Kobayashi-Maskawa(CKM)-matrix VCKM [64],
is required to turn the 
avor eigenstatesdJ into mass eigenstatesd0

I . As the
CKM-matrix is close to a unity matrix and 
avor-mixing e�ect s do not play any
role in the processes which are calculated in this thesis e�ects induced by the
CKM-matrix will be neglected and the CKM-matrix is set to exactly the unity
matrix.

Leptons and quarks receive their masses via the Yukawa termsin the super-
potential which are bilinear in the lepton and quark �elds:

me = � ev1 mu = � uv2 md = � dv1 : (3.70)

These equations are often rewritten such that the Yukawa couplings are expressed
in terms of the fermion masses and the mass of theW boson

� e =
meep
2mW c�

� u =
mue

p
2mW s�

� d =
mde

p
2mW c�

; (3.71)

e denoting the elementary charge.
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3.6.4 Sleptons and Squarks

In the sfermion sector mixing between di�erent interactioneigenstates can occur
in the same way as for the gauginos. In general the 3� 3 trilinear coupling ma-
trices and mass matrices in the soft supersymmetry breakingpart of the MSSM
Lagrangian can be fully occupied, thus leading to mixing between the sfermions
of di�erent generations. Such mixing results in contributions to 
avor changing
neutral currents (FCNCs) besides the contribution of the CKM-matrix which is
already present in the Standard Model. Experimental limits[17] show that such
additional contributions have to be small [65]. Additionally, most popular mod-
els of supersymmetry breaking mediate this breaking from the hidden sector by

avor-blind interactions. Therefore the soft breaking mass matrices and trilinear
couplings are chosen purely diagonal. Then the mass matrices of the electron-like
sleptons and the squarks decompose into 2� 2 matrices where only the left- and
right-handed �elds of each generation mix. These can be written as

M ~f =

 
M LL

~f
+ m2

f mf

�
M LR

~f

� �

mf M LR
~f

M RR
~f

+ m2
f

!

(3.72)

with
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for left-handed squarks
(3.73)
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M 2
~R

for right-handed electron-like sleptons

M 2
~U

for right-handed up-like squarks

M 2
~D

for right-handed down-like squarks

(3.74)

M LR
~f = A f � � �

(
1
t �

for up-like squarks

t � for electron-like sleptons and down-like squarks
:

(3.75)

Qf is the electromagnetic charge of the sfermion.I f
3 denotes the quantum number

of the third component of the weak isospin operatorT3 which is + 1
2 for up-like

squarks and� 1
2 for down-like squarks and electron-like sleptons. These mass

matrices can again be diagonalized by a unitary matrix

U~f M ~f Uy
~f

=

 
m2

~f 1
0

0 m2
~f 2

!

: (3.76)

The �elds then transform as
� ~f 1

~f 2

�
= U~f

� ~f L
~f R

�
: (3.77)
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In the sneutrino sector only left-handed �elds exist. For this reason the mass ma-
trix consists only of theM LL

~f
element given in eq. (3.73). M LL

~f
is therefore a free

parameter of the theory which directly gives the squared mass of the sneutrinos
according to

m2
~� I

=
1
2

m2
Z c2� + M 2

~L : (3.78)

The interaction eigenstates ~� I are identical to the mass eigenstates.





Chapter 4

Regularization and
Renormalization

In general the Lagrangian of a model contains free parameters which are not
�xed by the theory, but must be determined in experiments. Ontree-level these
parameters can be identi�ed directly with physical observables like masses or
coupling constants. If one goes to higher-order perturbation theory these rela-
tions are modi�ed by loop contributions. Additionally the integration over the
loop momenta is generally divergent which further complicates the situation. To
achieve a mathematically consistent treatment it is necessary to regularize the
theory before predictions can be made. This introduces a cuto� in the relations
between the parameters and the physical observables. As a consequence, the
parameters appearing in the basic Lagrangian, the so-called \bare" parameters,
have no longer a physical meaning. This physical meaning is then restored via
renormalization. The renormalized parameters obtained inthis way are again
�nite. Their value is �xed by renormalization conditions.

The details of this procedure are described in the followingsections.

4.1 Regularization

The ultra-violet divergences appearing in the integrationover loop momenta must
be treated via a regularization scheme. Therefore a regularization parameter
is introduced into the theory which leads to �nite expressions, but leaves the
expressions dependent on the renormalization parameter.

There exist di�erent regularization schemes, three of which are shortly de-
scribed in the following:

Pauli-Villars Regularization
This regularization scheme [66] is very simple. Originally the integration region
over the four-dimensional loop momentum ranges from plus tominus in�nity. In

31
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this scheme it is restricted such that the absolute value of the loop momentum
is below a certain �nite value. This cuto� parameter must be much larger than
any other mass scale appearing in the theory. Performing a regularization in this
way usually destroys gauge symmetry, so it is not used for practical calculations
and not further taken into account in this dissertation.

Dimensional Regularization
Loop integrals are divergent if the dimension of the integration is exactly four.
Dimensional regularization [67] exploits this fact. If one shifts the dimension of
the loop momentum by an in�nitesimal value and performs the integration in
D = 4 � 2� dimensions, the integral becomes �nite. The divergences now appear
as poles in the in�nitesimal parameter� . Additionally, the dimensions of all �elds
are also set toD dimensions and the gauge couplings are multiplied by� 2� . The
parameter � has the dimension of a mass and speci�es the regularization scale.
It is introduced to keep the coupling constants dimensionless. This scheme is
normally used in Standard Model calculations as it preserves gauge symmetry.
It does, however, not preserve supersymmetry. As the �elds are D-dimensional,
additional degrees of freedom are introduced so that the number of fermionic
degrees of freedom no longer equals the number of bosonic degrees of freedom
and therefore supersymmetry is broken.

Dimensional Reduction
This scheme [68, 69] is similar to dimensional regularization in the respect that the
loop integration is performed inD dimensions and the divergences are recovered
as poles in� . In this scheme the �elds are kept four-dimensional in orderto avoid
explicit supersymmetry breaking. The mathematical consistency of dimensional
reduction has long been questioned [70], but recently a consistent formulation [71]
could be established. It could be shown that supersymmetry is conserved for
matter �elds at least up to the two-loop order.

4.2 Renormalization

The dependence on the unphysical scale� can be removed via renormalization.
It consists of a set of rules which consistently replaces thebare parameters in the
Lagrangian by new �nite ones.

There exist di�erent degrees of renormalizability. One possibility are super-
renormalizable theories. They are characterized by the fact that the coupling has
positive mass dimension. In these theories only a �nite number of basic Feynman
diagrams diverge. These divergences can, however, appear as subdiagrams at
every order in perturbation theory. An example for such a theory is scalar � 3-
theory. Here apart from vacuum polarization graphs only theone- and two-loop
tadpoles and the one-loop self-energy diagram are divergent.
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In renormalizable theories only a �nite number of amplitudes diverge, but
these divergences occur at all orders of perturbation theory. In such theories
there are also dimensionless couplings but none with a mass dimension smaller
than zero. To cancel the divergences a �nite set of rules is necessary. Non-Abelian
gauge theories like the Standard Model and the MSSM belong tothis category.
Their renormalizability was �rst proven in ref. [72].

Finally a theory can be non-renormalizable. In this case allamplitudes are
divergent if the order of perturbation theory is su�ciently high. The set of
rules to absorb the divergences is in�nite and new ones appear at each order of
perturbation theory. This means that the theory loses its predictive power. It
might at �rst sight look like such models would be useless, but this is not the case.
Non-renormalizable models are often used for e�ective theories. Here operators
of a mass dimension greater than four appear in the Lagrangian. As the �nal
expression in the Lagrangian must be of mass dimension four,this is compensated
by an appropriate power of a cut-o� mass appearing in the denominator. This
cut-o� mass de�nes the energy scale up to which the e�ective theory is valid and
above which it must be replaced by the full renormalizable theory. In the overlap
region where both theories give a useful result, a matching between the two is
performed, thereby �xing the renormalization conditions and allowing meaningful
predictions.

4.2.1 Counter terms

One of the most popular renormalization approaches nowadays is multiplicative
renormalization with counter terms. In this scheme the bareparametersg0, i.e.
couplings and masses appearing in the Lagrangian, are replaced by renormalized
onesg, which are related to the bare ones via the renormalization constant Zg

g0 = Zgg =
�
1 + �Z (1)

g + �Z (2)
g + : : :

�
g ; (4.1)

where on the right-hand side the renormalization constant has been expanded in
orders of perturbation theory and the order is denoted by thesuperscript. The
renormalizedg have a �nite value. The �Z (i )

g absorb the divergences which ap-
pear in the loop integrals and are parametrized in the regularization parameter.
Therefore they remove the dependence on the unphysical regularization parame-
ter. Additionally, �nite parts can be absorbed in the renormalization constants,
as the decomposition in eq. (4.1) is not unique. Which �nite parts are absorbed
in the renormalization constants depends on the chosen renormalization scheme,
which will be discussed below. If one also adds the wave function renormalization
of external particles, the renormalization of the parameters is su�cient to obtain
�nite S-matrix elements. To achieve the �niteness of o�-shell Green functions,
the �elds must be renormalized as well. Therefore the bare �elds � 0 are replaced
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by the renormalized ones � and the �eld renormalization constant Z �

� 0 =
p

Z � � =
�

1 +
1
2

�Z (1)
� �

1
8

�Z (1)
�

2
+

1
2

�Z (2)
� + : : :

�
� : (4.2)

Again on the right-hand side the �eld renormalization constant is written out as
an expansion in orders of perturbation theory. Thereby, theterm containing the

squared of the one-loop renormalization constant (� 1
8 �Z (1)

�

2
) is part of the two-

loop contribution. Similarly, for higher orders the ordersof all renormalization
constants which appear in a term must be added up to give the loop order to
which the term contributes.

Using both parameter and �eld renormalization all Green functions are �-
nite. We can now insert the renormalized parameters and �elds into the bare
Lagrangian

L (g0; � 0) = L
�

Zgg;
p

Z � �
�

= L (g;�) + L CT (g;� ; Zg; Z � ) (4.3)

and write it as a sum of the renormalized LagrangianL (g;�) and the counter-
term part which can be expanded in terms of the loop order

L CT (g;� ; Zg; Z � ) = L (1)
CT

�
g;� ; �Z (1)

g ; �Z (1)
�

�
+

L (2)
CT

�
g;� ; �Z (1)

g ; �Z (1)
� ; �Z (2)

g ; �Z (2)
�

�
+ : : : :

(4.4)

In this thesis only one-loop corrections to processes are considered. So only
the one-loop counter terms�Z (1) enter the calculations, hence for simplicity the
superscript (1) on the�Z will be dropped from now on.

4.2.2 Renormalization Schemes

The �nite part of the renormalization constants is not �xed by the divergences,
but can be chosen in a suitable way. The de�nition of these �nite parts together
with an independent set of parameters comprises a renormalization scheme and
therefore de�nes the relation between the observables and the parameters of the
theory. If one adds up all orders of perturbation theory the result is indepen-
dent of the chosen renormalization scheme. The value of the input parameters,
however, still depends on the renormalization scheme and must be chosen appro-
priately. For actual calculations only a �nite number of orders can be taken into
account. The resulting dependence on the renormalization scheme is then a mea-
sure for the theoretical uncertainty which is induced by themissing higher-order
terms.

The simplest renormalization scheme is the minimal-subtraction scheme or
short MS-scheme [73]. It is based on dimensional regularization as regularization
scheme. In this scheme the counter terms absorb just the divergent 1

� -terms but
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no �nite contributions. This scheme is actually a whole set of schemes, as the
scale� , which was introduced in the regularization step, is still present. This
scale is now taken as the renormalization scale� R and for specifying a concrete
renormalization scheme� R must be �xed as well.

A commonly used variant of the MS-scheme is the modi�ed minimal subtrac-
tion scheme or shortMS scheme [74, 75, 76]. It is based on the observation that
the 1

� -terms are always associated with other constant terms thatemerge from
the continuation of the loop momentum inD dimensions and are denoted by �n ,
wheren is the loop order. At one-loop order it has the following explicit form

� =
1
�

� 
 E + ln 4 � ; (4.5)

where
 E denotes the Euler-Mascheroni constant. The absorption of the numer-
ical constants
 E and ln 4� corresponds to a rede�nition of the renormalization
scale

� 2
R

MS
:= � 2

Reln 4� � 
 E : (4.6)

If dimensional reduction is used as the regularization scheme, the renormal-
ization scheme is calledDR. Apart from that the procedure is identical to the
MS scheme. The �n terms are subtracted by the renormalization constants but
no other �nite parts. As before, this corresponds to a rede�nition of the renor-
malization scale� 2

R
DR . On the one-loop level the counter terms are identical,

while at higher orders they di�er because the two regularization schemes induce
di�erent �nite parts.

Another, distinct possibility is the on-shell scheme (OS scheme) [77, 78]. The
expression on-shell means that the renormalization conditions are set for particles
which are on their mass shell. The mass of a particle which is on-shell is given by
the real part of the pole of the propagator and can be interpreted as its physical
mass. In the OS scheme the real parts of all loop contributions to the propagator
pole and consequently to this mass are absorbed in the mass counter terms.
Hence the counter terms in the OS scheme also have a non-vanishing �nite part
and the dependence on the regularization scale� is completely eliminated in this
scheme. Coupling constants are renormalized in the OS scheme by demanding
that the coupling constants stay unchanged if all particlescoupling to the vertex
are on-shell. This means that all corrections to the vertex are compensated by
the counter term of the coupling constant. For the on-shell renormalization of
�elds one demands that the propagators are correctly normalized, i.e. the residue
of the renormalized on-shell propagator is equal to one.

The renormalization oft � , the ratio of the two Higgs vacuum expectation val-
ues, is performed viaDR also when otherwise the OS scheme is used [79]. As t �

does not receive any SUSY-QCD corrections at one-loop order, its renormaliza-
tion is not necessary for the calculations of this thesis. Also the strong coupling
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constant � s is always renormalized in theMS or DR scheme. The details of the
renormalization of � s are presented in the next section.

A complete expression of all Standard Model one-loop counter terms in the
OS scheme was given in ref. [78]. Its extension to the MSSM was performed in
ref. [80]. In this thesis the same conventions as in these two references are used.

4.2.3 Renormalization of the strong coupling constant

As every other parameter, the coupling constantgs of the strong interaction re-
ceives divergent loop corrections. These divergences mustbe removed by renor-
malization. As shown in the previous section,gs �

p
4�� s is renormalized mul-

tiplicatively such that

g0
s = Zgs gs

one-loop
= (1 + �Z gs ) gs : (4.7)

The explicit form of �Z gs depends on the renormalization scheme. Choosing
the OS scheme for this task, however, is not possible. If the renormalization
condition for gs is formulated completely analogous to the renormalizationof the
electromagnetic coupling constant, one must demand that the corrections to the
gluon{quark{anti-quark vertex vanish in the limit of zero-momentum transfer.
To formulate this condition the value of gs would be needed in a region which
is below the QCD scale �QCD . Coming from values above,gs formally reaches
in�nity at this scale and perturbative methods are no longerde�ned. As the
OS scheme is based on the validity of perturbation theory this would lead to a
self-contradiction.

Instead another renormalization scheme must be used, whichavoids the de-
pendence ongs at zero-momentum transfer. TheMS and DR schemes share this
property. In these schemes the counter term�Z gs is �xed by the condition that
the gluon{quark{anti-quark vertex is �nite. Due to a Slavnov-Taylor identity,
which guarantees the universality ofgs, this automatically results in �nite three-
and four-gluon vertices. The counter term has the followingexplicit form

�Z gs = �
� s

4�

�
11�

2
3

nf � 2 �
1
3

nf

�
� ; (4.8)

where the contributions to the sum originate from gluons, quarks, gluinos and
squarks.nf = 6 denotes the number of quark 
avors. The last two terms originate
from the supersymmetric particles and are not present in theStandard Model.

The behavior ofgs with respect to higher-order corrections can be improved by
the use of renormalization group equations (RGE). The one-loop RGE sum up all
leading-log contributions which have the formg2n

s (� R ) (ln � R)n . Their application
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leads to the following expression for the strong coupling constant1 [16]:

� DR
s (� R ) =

� DR
s (mZ )

1 � 3
2� � DR

s (mZ ) ln mZ
� R

: (4.9)

The experimental value [17] for � s is given in theMS scheme at the scalemZ and
using the Standard Model RGE for extracting� MS

s from the data. This must be
converted to � DR

s via

� DR
s (mZ ) =

� MS
s (mZ )

1 � � � s
(4.10)

with

� � s =
� MS

s (mZ )
2�

 
1
2

�
2
3

ln
mt

mZ
� 2 ln

m~g

mZ
�

1
6

X

squarks

�
ln

m~q1

mZ
+ ln

m~q2

mZ

� !

:

(4.11)

The ln m
mZ

terms in the last equation decouple the particles heavier than mZ from
the running of � s.

Also the �nite part of the one-loop contribution to the gluon{quark{anti-
quark vertex depends on the renormalization scale� R . It should best be chosen
in a way that the error, which is induced by missing higher-order corrections, is
as small as possible [81, 82]. SinceR-parity is conserved in the MSSM, the one-
loop diagrams decompose into two distinct sets, where the loop either consists
solely of SUSY particles or does not contain any supersymmetric particles at all.
The latter ones form the corrections which also appear in theStandard Model.
Except for the top quark, which is decoupled, they take part in the running of
� s. For these contributions the same renormalization scale� R should be used as
in eq. (4.9) which is typically of the order of the energy scale of the considered
process.

For the additional SUSY contributions another, special value ~� R is chosen [81,
82]. This is possible because the two sets of diagrams are distinct and all super-
symmetric particles are decoupled from the running of� s. The scale is chosen
such that the contribution of these diagrams vanishes at zero-momentum transfer.
Under this condition gs is taken at the scale� R , so the procedure is well-de�ned.
It is ful�lled if

2 ln
m2

~g

~� 2
R

+
1
6

X

squarks

�
ln

m2
~q1

~� 2
R

+ ln
m2

~q2

~� 2
R

�
= 0 : (4.12)

1Here the formula for � s is quoted as this constant is normally used in calculations and also
the experimental value of the coupling constant is given in terms of � s. The corresponding
expression forgs can simply be derived from the relation � s � g2

s
4� .
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Figure 4.1: One-loop SUSY-QCD diagram mediating an e�ective coupling be-
tween the bottom quark andH 2

2 . The cross in the gluino line here represents
a mass insertion, i.e. them~g term is chosen when computing the trace over the
fermion line. The subscriptsa and b of the sbottom particles take the values 1
and 2.

Solving for ~� R yields

~� R =
p

m~g

Y

squarks

(m~q1 m~q2 )
1

24 : (4.13)

This procedure reduces the numerical value of the one-loop corrections and there-
fore makes the calculation more stable against the theoretical uncertainty from
missing higher-order terms.

4.3 Bottom-quark Yukawa Coupling

The mass of the bottom quark and its Yukawa coupling to the Higgs particles
are intimately related. They originate from the same term inthe unbroken La-
grangian. After the Higgs �elds have acquired a vacuum expectation value, the
vacuum-expectation-value component yields the mass term of the bottom quark
in the Lagrangian and the other components describe the Yukawa coupling of the
bottom quark to the various Higgs particles. This relation can be modi�ed by
loop corrections, and it turns out that these are very large in the case of bottom
quarks [7, 8]. A resummation of the leading corrections to all orders in perturba-
tion theory can be performed, which greatly reduces the theoretical uncertainty
originating from unknown higher-order corrections.

At tree-level the bottom quark only couples to the �rst Higgsdoublet H1 as
can be seen from the superpotential eq. (3.38). A coupling to the second one
H2 is forbidden. Such a coupling can, however, be generated dynamically at the
one-loop level. Taking into account only SUSY-QCD corrections, i.e. corrections
with squarks and gluinos, this is done by the single diagram Fig. 4.1. Although
this contribution is loop-suppressed, it can induce a potentially large shift in
the tree-level relations, because it is enhanced byt � . By electroweak symmetry
breaking the Higgs �eldH 2

2 acquires a vacuum expectation valuev2 and �rstly we



4.3. Bottom-quark Yukawa Coupling 39

will consider only this part. On tree-level the bottom-quark mass and its Yukawa
coupling � b are related via

mb = � bv1: (4.14)

Adding the vacuum-expectation-value contribution from Fig. 4.1 changes this
equation to

mb = � bv1 + � � bv2 = v1(� b + � � bt � ) = � bv1(1 + � mb) : (4.15)

As the numerical value ofmb is �xed by experiments, this results in a change of
the e�ective Yukawa coupling of the bottom quark

� b =
mb

v1

1
1 + � mb

: (4.16)

Computing the diagram in Fig.4.1 in the limit of vanishing external momen-
tum yields the following explicit form for � mb:

� mb =
2� s

3�
m~g�t � I

�
m~b1

; m~b2
; m~g

�
(4.17)

with
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�
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~b1
� m2

~b2

� �
m2

~b2
� m2

~g

� �
m2

~g � m2
~b1

� (4.18)

and � denoting the MSSM parameter which couples the two Higgs doublets. In
the limit where the squark and gluino masses have approximately the same value,
denoted by a common SUSY massmSUSY, the last equation simpli�es to

I (mSUSY; mSUSY; mSUSY) =
1

2m2
SUSY

: (4.19)

If additionally � is of comparable size, this results in

� mb = sign(� )
� s(� R = mSUSY)

3�
t � : (4.20)

So for large values oft � this e�ect can be ofO (1) and does not vanish for heavy
SUSY spectra.

For computations up to one-loop order eq. (4.16) can be expanded so that it
contains only corrections up toO (� s). The equation is then modi�ed and reads

� b =
mb

v1
(1 � � mb) : (4.21)
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So for large absolute values of �mb, which are phenomenologically very inter-
esting, huge one-loop corrections appear. If �mb exceeds one, the standard way
of computing one-loop cross sections by adding the interference term between
tree-level and one-loop diagrams even yields negative total cross sections which
are obviously wrong. One might even question if perturbation theory is still valid
in this regime, but de�nitely higher-order calculations would be needed to reduce
the theoretical uncertainty.

This problem is solved by the observation that these corrections do not appear
at higher orders. In ref. [7] it was proven that there are no contributions to � mb

of

O
��

� s
�

mSUSY
t �

� n �
(4.22)

for n > 1. Higher-order corrections either lack the enhancement factor t � or are
suppressed by a mass ratio mb

mSUSY
. Therefore � mb is a one-loop exact quantity

and including it as in eq. (4.16) contains the corrections to all orders in� s which
have the form given in eq. (4.22).

Using the resummed form eq. (4.16) is only useful when computing total cross
sections. For a comparison with one-loop cross sections it is necessary to use
eq. (4.21) so that the same order in� s is taken into account in both calculations.
This will be explained in more detail in chapter6, where this procedure is applied
to a physical process.

The � mb corrections are universal. They occur in every coupling of the
bottom quark to the di�erent Higgs particles, both neutral and charged ones.
They are also independent of the kinematic con�guration.

When the bottom quark couples to the physical Higgs �elds an additional
term occurs. It also originates from diagram Fig.4.1, but now not the coupling
to the vacuum expectation value but to the remaining neutralHiggs �eld � 0

2 is
considered. In addition to the tree-level coupling to the �rst Higgs doublet

� b�b� 0
1

= � b =
mb

v1
(4.23)

this induces another term

� b�b� 0
2

= � b� � b =
mb

v1

� mb

t �
: (4.24)

After electroweak symmetry breaking the �elds� 0
1 and � 0

2 must be rotated by
the angle � to form the two CP-even mass eigenstatesh0 and H 0. Combining
everything this leads to the following e�ective couplings of the bottom quark [7,
83]

� b�bh0 =� 0
b�bh0

1
1 + � mb

�
1 �

� mb

t � t �

�
(4.25)

� b�bH 0 =� 0
b�bH 0

1
1 + � mb

�
1 +

� mbt �

t �

�
; (4.26)
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where � 0 denotes the respective tree-level coupling. Expanding these equations
up to the one-loop order yields

� 1
b�bh0 =� 0

b�bh0

�
1 � � mb

�
1 +

1
t � t �

��
(4.27)

� 1
b�bH 0 =� 0

b�bH 0

�
1 � � mb

�
1 �

t �

t �

��
: (4.28)

In the coupling of the top quark to the Higgs �elds a similar e�ect occurs. On
tree-level the top quark couples only toH2 and a coupling to the second doublet
H1 is generated perturbatively. This results in a modi�ed Yukawa coupling which
is given by

� t =
mt

v2

1
1 + � mt

; (4.29)

in complete analogy to eq. (4.16). The correction term � mt has the form [84]

� mt =
2� s

3�
m~g�

1
t �

I
�
m~t1

; m~t2
; m~g

�
: (4.30)

In contrast to � mb this equation has a suppression factor of1t �
. Therefore its

numerical impact is much smaller than thet � -enhanced bottom-quark correction
and it is largest for small values oft � . The contribution of this correction is
nevertheless signi�cant and therefore it is justi�ed to include its e�ect in the
same way as for the bottom-quark correction.

Also the coupling of the top quark to the physical Higgs particles gets an
additional contribution from the coupling to the H1 doublet. In this case the
modi�ed couplings are

� t �th 0 =� 0
t �th 0

1
1 + � mt

(1 � � mt t � t � ) (4.31)

� t �tH 0 =� 0
t �tH 0

1
1 + � mt

�
1 +

� mt t �

t �

�
; (4.32)

where � 0 denotes the respective tree-level coupling. An expansion up to the
one-loop order yields

� 1
t �th 0 =� 0

t �th 0 (1 � � mt (1 + t � t � )) (4.33)

� 1
t �tH 0 =� 0

t �tH 0

�
1 � � mt

�
1 �

t �

t �

��
: (4.34)





Chapter 5

Hadronic Cross Sections

The cross sections which are obtained by applying the Feynman rules contain,
amongst other particles, quarks and gluons. The leading interaction between
these particles is the strong interaction, which is described by quantum-chromo
dynamics (QCD). This theory possesses two characteristic properties: asymptotic
freedom [85] and con�nement. Asymptotic freedom describes the behavior of the
theory at small distances. In this region the interaction isweak and the coupling
constant gets smaller with decreasing distance or, equivalently, with rising energy.
At large distances con�nement appears, because the interaction becomes strong
and binds the particles tightly together. If the space between them becomes
even larger, it is energetically favorable to form new quark{anti-quark pairs. One
consequence of this behavior is that quarks and gluons cannot be observed as free
particles, but only as constituents of hadrons, i.e. mesons, which are quark{anti-
quark pairs, and baryons, which are states of three quarks orthree anti-quarks.
An example for these hadrons are protons, which are the colliding particles at the
LHC. To make theoretical predictions it is necessary to relate the interactions at
the parton level to the interactions at the hadron level [86]. The basis for doing
this is the parton model [87], which will be described in the next section.

5.1 Parton Model

The parton model describes the inner structure of hadrons inhard collisions. It
starts from the assumption that every observable hadron consists of constituents,
the so-called partons, which can be identi�ed as quarks and gluons. Experimental
evidence for this assumption comes from the observation of scaling [88] in deep
inelastic electron-proton-scattering. If the hadron carries some momentumP � ,
the partons which take part in the partonic subprocess have momentum xP �

with x 2 [0; 1]. As normally the mass of the hadrons is small compared to their
kinetic energy one can assumeP2 = 0.

The interaction of an electron and a hadron or of two hadrons among each

43
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other can be split into two parts. Because of Lorentz contraction and time dilation
the interaction time of the two incoming particles in the laboratory frame is very
short. Therefore e�ectively a static hadron is seen. For thehard scattering
process interactions between partons of the same hadron need not be considered.
Also the process of hadronization after the interaction happens on time scales
which are much larger than the interaction itself.

From this the theorem of factorization [89] follows immediately. It states that
all diagrammatic contributions to the structure functions can be separated into
a product of two functions C and f , which depend on two mass scales� R and
� F . � R is the renormalization scale which was already de�ned in chapter 4, � F is
the so-called factorization scale and separates the long-distance from the short-
distance e�ects. Slightly simplifying one can say that every parton propagator
which is o�-shell by � F or more contributes to C, while those which are below
this value contribute to f .

5.2 Integrated Hadronic Cross Sections

The hard scattering processC therefore can be calculated in perturbation theory
by Feynman rules, using partons as incoming particles. It isindependent of
long-distance e�ects and especially from the type of the colliding hadron.

The parton distribution function (PDF) f i=h (x; � F ) contains the long-distance
e�ects. It is independent of the underlying scattering process, but depends on� F

and the type of hadronh. It is normalized such that it can also be interpreted as a
probability density, namely the probability of �nding the p arton i in the hadron h
with a momentumxP � . Its behavior as a function of the parameters is determined
by the Altarelli-Parisi integro-di�erential equations [90]. Its numerical value,
however, cannot be calculated a priori from the theory. At a single reference
point it must be determined by experiments.

Therewith one obtains the expression [86]

� pp! f in + X =
X

f m;n g

Z 1

� 0

d�
dL
d�

�̂ mn ! f in (�S; � s(� R )) (5.1)

for an integrated hadronic cross section with the parton luminosity

dL
d�

=
Z 1

�

dx
x

1
1 + � mn

�

�
�

f m=p (x; � F ) f n=p

� �
x

; � F

�
+ f n=p (x; � F ) f m=p

� �
x

; � F

��
: (5.2)

Here
p

S denotes the hadronic center-of-mass energy, i.e. the one ofthe two
colliding protons, and ^� mn ! f in the partonic cross sections of the subprocesses,
where the two incoming partonsm and n produce some �nal state, labeledf in .
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The sum includes all possible parton combinationsm and n where the order of
appearance is not taken into account. The integration variable � relates the par-
tonic and hadronic center-of-mass energies with each other. More speci�cally,

p
�

can be interpreted as the part of the hadronic center-of-mass energy which takes
part in the partonic subprocess, as the partonic center-of-mass energy is given
by

p
ŝ =

p
�S . The lower limit of the integral � 0 is determined by the kinematic

con�guration.
p

� 0S is the minimal energy which is necessary to produce the
�nal state f in and therefore denotes the production threshold.

The formula given above is valid for processes with two or more particles in the
�nal state. For hadronic cross sections it is also possible to calculate integrated
cross sections for 2! 1 processes. One �rst obtains for the partonic cross section
of the processmn ! f

d�̂ mn ! f =
�

4p0
f

p
ŝj~pm j

jM f i (mn ! f ) j2�
�
p0

m + p0
n � p0

f

�
: (5.3)

Again m and n specify the incoming partons,f denotes the outgoing particle,
mf its mass, andp0

i the energy of the respective particlei . ~pm indicates the
three-momentum of particlem in the partonic center-of-mass system andM f i is
the matrix element.

When convoluting with the parton distribution functions the single remain-
ing � -function in the partonic cross sections solves the� integral in eq. (5.1)
analytically. Thus one obtains for the integrated hadroniccross section

� pp! f =
X

f m;n g

dL
d�

�
�
�
�
� =

m 2
f

S

�
2mf Sj~pm j

jM f i (mn ! f ) j2 : (5.4)

5.3 Di�erential Hadronic Cross Sections

Additionally one can de�ne hadronic cross sections that aredi�erential in one
or more parameters. For these parameters it is useful to takevariables that are
either invariant under Lorentz transformations or at leasthave very simple trans-
formation properties. In this thesis three di�erential hadronic cross sections are
presented which are also implemented in the HadCalc programthat is described
below in section5.5. They are cross sections di�erential with respect to the in-
variant mass of the �nal-state particles, the rapidity of one �nal-state particle
and, thirdly, the transverse momentum.

5.3.1 Invariant Mass

The �rst di�erential hadronic cross section is the one with respect to the invariant
mass of the �nal-state particles. The invariant mass of a process is equivalent to
the partonic center-of-mass energy

p
ŝ �

p
�S of the process or, in other words,
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the sum of the �nal-state momenta of the outgoing particles.The di�erential
cross section takes the form

d� pp! f in

d
p

ŝ
= 4�

p
ŝ

S

X

f m;n g

dL
d�

�
�
�
�
� = ŝ

S

�̂ mn ! f in ; (5.5)

wheref in again labeles a general �nal state.

5.3.2 Rapidity

The rapidity y of a particle is de�ned as

y = artanh
pz

p0
�

1
2

ln
p0 + pz

p0 � pz
(5.6)

where pz = ~p� c� denotes the fraction of the particle's three-momentum~p that
goes in the direction of the beam axis, labeledz. The mass of the particle will
later be referred to asm. Using the rapidity instead of directly taking the angle
� between the particle and the beam axis possesses some advantages because the
rapidity of a particle has a few useful properties. Under a boost in the z-direction
to a frame with a velocity � , the rapidity transforms asy ! y � artanh � . Thus
the shape of the rapidity distribution d�

dy stays unchanged. More generally, the
sum of two rapidities when the momenta point into the same direction is given by
the rapidity of the sum of the momenta, added via the formula for the relativistic
addition of velocities: y (p1)+ y (p2) = y

�
p1+ p2
1+ p1p2

�
. In experimental analyses often

a slightly di�erent measure, the pseudo-rapidity� , is used. It is derived from the
standard rapidity by taking the limit of a vanishing mass of the particle and is
de�ned as

� =
1
2

ln
1 + c�

1 � c�
: (5.7)

In the HadCalc program both normal rapidity and pseudo-rapidity are imple-
mented. As conversion between both variables can be performed by the simple
transformation

y = artanh

 s

1 �
m2

~p2 + m2
tanh �

!

; (5.8)

in the following only the shorter expressions for the standard rapidity are given.
The ones for pseudo-rapidity can then be deduced from them.

Using the above-mentioned de�nition of the rapidity the di�erential hadronic
cross section with respect to the rapidity for 2! 2 processes then reads

d�
dy

=
Z 1

� 0

d�
dL
d�

d�̂
dc�̂

@ĉ�
@y

: (5.9)
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The momenta and masses given in the formulae always refer to the particle for
which the rapidity distribution is calculated. The anglec�̂ between the particle
and the beam axis in the partonic center-of-mass system is �xed by the relation

c�̂ =

s

1 +
m2

~̂p
2 tanh

�
y +

1
2

ln
x2

�

�
(5.10)

where the second term in the argument of tanh originates fromthe boost from the
hadronic center-of-mass system, which is the laboratory frame, to the partonic
one, in which the partonic subprocess is calculated. This leads to

@ĉ�
@y

=

s

1 +
m2

~̂p
2

1

cosh2
�
y + 1

2 ln x2

�

� : (5.11)

For processes with three or more particles in the �nal state the formula is
very similar. Additional phase-space integrals appear forthe further particles
but otherwise eq. (5.9) stays unchanged. In the following equation the di�erential
cross section for a 2! 3 process is given

d�
dy

=
Z 1

� 0

d�
dL
d�

Z
dk0

3

Z
dk0

5

Z
d�̂

d�̂
dk0

3dc�̂ dk0
5d�̂

@ĉ�
@y

: (5.12)

The parametrization of the three-particle phase space is described in appendixC.2.

5.3.3 Transverse Momentum

The last implemented di�erential hadronic cross section isthe one with respect
to the transverse momentumpT =

p
p2

x + p2
y of one of the �nal state particles.

For 2 ! 2 processes it is de�ned as

d�
dpT

=
Z 1

~� 0

d�
dL
d�

d�̂
dc�̂

@ĉ�
@pT

(5.13)

with

@ĉ�
@pT

=
1

r
~̂p

4

p2
T

� ~̂p
2

(5.14)

which follows from

c�̂ � = �

s

1 �
p2

T

~̂p
2 : (5.15)

Here two possible solutions arise because of the sign ambiguity when taking the
square root. In principle both solutions have to be taken into account and added
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up unless they are excluded by other constraints as shown below. The lower limit
of the � -integral ~� 0 must be adjusted such thats�̂ is always inside its co-domain
[0; 1]

~� 0 =

� q
m2

f 1
+ p2

T +
q

m2
f 2

+ p2
T

� 2

S
; (5.16)

f 1 and f 2 denoting the two �nal state particles.
For 2 ! 3 processes the extension to include the third �nal-state particle is

straightforward. The lower limit for � in these processes is

~� 0 =

� q
m2

f 1
+ p2

T +
q

(mf 2 + mf 3 )2 + p2
T

� 2

S
; (5.17)

when the cross section is di�erential in the particlef 1. Therefore the expression
for the di�erential cross section reads

d�
dpT

=
Z 1

~� 0

d�
dL
d�

Z
dk0

3

Z
dk0

5

Z
d�̂

d�̂
dk0

3dc�̂ dk0
5d�̂

@ĉ�
@pT

: (5.18)

5.4 Cuts

In order to improve the ratio of the signal-process cross section to that of the
background processes it can be useful to place appropriate cuts on the �nal-state
particles. Also experimental techniques used in the reconstruction of events like
jet-clustering algorithms can mandate the use of cuts in theoretical predictions,
so that the behavior of these techniques is emulated there.

In the HadCalc program cuts on three di�erent properties of the �nal-state
particles are implemented [91]. The �rst two are cuts on the rapidity and the
transverse momentum of a particle. The de�nition of these two variables was
already presented in the previous section. The third one is amutual property of
two particles, the jet separation � Rij , which is de�ned as

� Rij =
q

� y2
ij + � � 2

ij : (5.19)

� yij denotes the rapidity di�erence between the two particlesi and j and � � ij

the di�erence in the azimuthal angles of the two particles inthe transverse plane.
Its main use are exclusive hadronic cross sections where �nal-state jets shall be
observed explicitly. It mimics the behavior of jet-clustering algorithms. There
two jets, which are separated by a jet separation below a certain limit, are seen in
the reconstruction as a single jet which has kinematic properties that are averaged
over the two �nal-state partons.
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For the �rst two cut parameters, rapidity and transverse momentum, it is
possible to translate these cuts into a limit on the integration parameters of
the phase space. The most general case is assumed here that cuts on both the
rapidity ycut and the transverse momentumpT cut of a particle shall be applied.
Using eq. (5.15) the transverse-momentum cut can be translated into a cut onc�̂
and one obtains

cmin
�̂ pT

� �

s

1 �
pT

2
cut

~̂p
2 < c �̂ <

s

1 �
pT

2
cut

~̂p
2 � cmax

�̂ pT
: (5.20)

Likewise, the cut on the rapidity can also be turned into a cuton c�̂ via eq. (5.10),
yielding

c�̂ >

s

1 +
m2

~̂p
2 tanh

�
� ycut +

1
2

ln
x2

�

�
� cmin

�̂ y

c�̂ <

s

1 +
m2

~̂p
2 tanh

�
ycut +

1
2

ln
x2

�

�
� cmax

�̂ y
: (5.21)

To shorten the notation the abbreviation

r =

vu
u
u
t

1 � pT
2
cut

~̂p
2

1 + m2

~̂p
2

(5.22)

is used in the following. Again the momenta and mass used in the equations all
refer to the particle whose phase space should be constrained.

Applying both cuts requires that the conditions onc�̂ are all ful�lled simul-
taneously. This also restricts the integral onx which appears in the parton
luminosity given in eq. (5.2). In total the x-interval divides into �ve di�erent
regions, which will be labeled by roman numbers. First the two cases where both
cuts cannot be ful�lled simultaneously, are considered, because the lower limit of
one cut lies above the upper limit of the other one:

Region I: cmax
�̂ y

� cmin
�̂ pT

) x �
p

�e � ycut

r
1 � r
1 + r

� x I (5.23)

Region V: cmin
�̂ y

� cmax
�̂ pT

) x �
p

�eycut

r
1 + r
1 � r

� xV : (5.24)

These two regions are excluded and the cross section vanishes there.
For specifying the other regions �rst two special cases are considered, where

the lower limits on c�̂ and the upper limits, respectively, coincide. For these cases
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the according value ofx is determined

cmin
�̂ y

= cmin
�̂ pT

) x =
p

�eycut

r
1 � r
1 + r

� xmin (5.25)

cmax
�̂ y

= cmax
�̂ pT

) x =
p

�e � ycut

r
1 + r
1 � r

� xmax : (5.26)

Using these two de�nitions the other intermediate regions can be speci�ed.
The ranges forc�̂ which are deduced from these following regions specify the
allowed area where the cuts are ful�lled and therefore the cross section does not
vanish. The next two regions handle the cases where the limits onc�̂ from rapidity
and transverse momentum overlap and one limit is given by therapidity cut and
the other one by the transverse-momentum cut:

Region II: cmin
�̂ y

� cmin
�̂ pT

< c �̂ < cmax
�̂ y

� cmax
�̂ pT

) x I < x < min(xmin ; xmax)

(5.27)

Region IV: cmin
�̂ pT

� cmin
�̂ y

< c �̂ < cmax
�̂ pT

� cmax
�̂ y

) max(xmin ; xmax ) < x < x V :

(5.28)

Finally the de�nition of the last region is the case whether one cut gives a
range onc�̂ that completely lies inside the other one. Depending on whichcut
this is, the limits on x are di�erent:

Region III a): cmin
�̂ pT

� cmin
�̂ y

< c �̂ < cmax
�̂ y

� cmax
�̂ pT

) xmin < x < x max

(5.29)

Region III b): cmin
�̂ y

� cmin
�̂ pT

< c �̂ < cmax
�̂ pT

� cmax
�̂ y

) xmax < x < x min :

(5.30)

In addition to those regions the original constraint forx for a hadronic cross
section without cuts applies:

� < x < 1 : (5.31)

Combining the result of all regions one can see that no holes in the integration over
x or c�̂ appear and the �nal borders of the integration routine can besimpli�ed
to

max(�; x I ) < x < min(xV ; 1) (5.32)

and

max(cmin
�̂ pT

; cmin
�̂ y

) < c �̂ < min(cmax
�̂ pT

; cmax
�̂ y

) : (5.33)
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For a cross section which is di�erential with respect to the rapidity of a �nal
state particle the cut on the transverse momentum yields a restriction on c�̂ in
the same way as in eq. (5.33)

cmin
�̂ pT

< c �̂ < cmax
�̂ pT

: (5.34)

The constraint on x must then be adjusted such thatc�̂ is always inside this
allowed interval, yielding

max(�;
p

�e � y

r
1 � r
1 + r

) < x < min(
p

�e � y

r
1 + r
1 � r

; 1) ; (5.35)

which corresponds to eq. (5.32) where the rapidity cut ycut is replaced by its value
y given as an argument to the cross section.

Similarly, for cross sections that are di�erential in the transverse momentum
of a �nal-state particle a cut on the rapidity puts a further constraint on the
allowed interval for c�̂ � :

cmin
�̂ y

< c �̂ � < cmax
�̂ y

(5.36)

with

cmin
�̂ y

�

s

1 +
m2

3

~̂p
2 tanh

�
� ycut +

1
2

ln
x2

�

�
(5.37)

cmax
�̂ y

�

s

1 +
m2

3

~̂p
2 tanh

�
ycut +

1
2

ln
x2

�

�
: (5.38)

Again this leads to a corresponding change in the limits of thex-integration which
are given by

max(�;
p

�e � ycut

r
1 � ~r
1 + ~r

) < x < min(
p

�eycut

r
1 + ~r
1 � ~r

; 1) (5.39)

with

~r =

vu
u
u
t

1 � pT
2

~̂p
2

1 + m2
3

~̂p
2

: (5.40)

This again corresponds to eqs. (5.32) and (5.22) where instead of the cut on
the transverse momentumpT cut its �xed value pT , which is an argument to the
di�erential cross section, is taken.
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5.5 HadCalc

For the numerical evaluation of the cross sections presented in the following chap-
ters a program called HadCalc was developed to facilitate this task. It is based
on the established program packages FeynArts [9] and FormCalc [11, 12] which
are used to generate the partonic cross sections. The main task of HadCalc then
consists of the convolution with the PDFs that are taken from the PDFlib [92]
or LHAPDF [ 93] library packages that include PDF �ts from various groups.

With this program it is possible to calculate both totally integrated and dif-
ferential hadronic cross sections of processes with up to three particles in the �nal
state. The latter ones can be di�erential with respect to thepartonic center-of-
mass energy, or the rapidity or the transverse momentum of one of the outgoing
particles. Several cuts can be applied to the phase space. HadCalc operates
either in batch mode, where the parameters are read from a �leand the cross
sections are written back to disk, allowing for easy post-processing with e.g. a
tool that generates plots. It can also be used in interactivemode where in- and
output are done via keyboard and screen and which allows the user for example
to tune the parameters most easily.

A complete manual of HadCalc can be found in appendixF. The program
code is available on request from the author1.

1email: mrauch@mppmu.mpg.de



Chapter 6

Associated Production of W � H �

The discovery of a charged Higgs boson would be a clear signalof an extended
Higgs sector and therefore of physics beyond the Standard Model. For relatively
light charged Higgs bosons with a massmH . mt � mb the main production
process ist�t-production via a subsequent decay sequencet ! bH+ ! b� + � � [94].
Both decay steps are enhanced by large Yukawa couplings. Theexperimental
signature is an excess of� � � pairs in the detector. In the case of charged Higgs-
boson masses above the top-quark mass the dominant production process isgb!
tH � [95, 96, 97]. Afterwards the Higgs boson mainly decays intob�t pairs with a
branching ratio of at least 90%. The top-bottom-quark pairslead to a detector
signature which has a large QCD background at the LHC. The detection of a
heavy charged Higgs boson is therefore much more di�cult. Later studies [98, 99,
100] showed that the cross section is large enough so that the main decay channel
can be ignored. It is su�cient to consider only the suppressed H � ! � � � decay
channel which has a clear detector signal while still yielding enough events.

In this chapter we investigate another production mechanism, the production
in association with aW boson. The leptonic decay modes of theW boson avoid
large QCD backgrounds and can therefore provide an easier way of detecting a
charged Higgs boson.

6.1 The H + W � �nal state

The production of a charged Higgs boson in association with aW boson was
�rst studied in ref. [ 101]. This process proceeds either via bottom quark{anti-
quark annihilation (Fig. 6.1) or via gluon fusion and an intermediate quark or
squark loop (Fig. 6.2). The leptonic decays of theW boson could be used as
a trigger for this process, thereby making charged Higgs boson detection easier.
The calculation was updated in ref. [102] and triggered a detailed analysis [103]
of the discovery potential at the LHC using this process. This paper concluded
that an e�cient separation of the signal process from the background processes

53
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Figure 6.1: Tree-level Feynman diagrams contributing to the dominant subpro-
cessb�b ! H + W �

such as top-quark pair production is di�cult for semileptonic W boson decays
including both low and high values oft � . The cross sections were evaluated at
leading order for both production processes.

The later studies of refs. [98, 99, 100] showed that a discovery is more likely
in the main production channelgb! tH � where only the rare decay into a� � �

pair is taken into account. Nevertheless the associated production of a charged
Higgs with a W boson is an interesting process, especially when the existence
of a charged Higgs boson has already been established before. If at that point
no supersymmetric particles were detected, the question whether the H � orig-
inates from a Standard Model-like theory with an extended Higgs sector, like
the Two-Higgs-Doublet Model (THDM), or from the MSSM remains open. In
the latter case the cross section receives an additional contribution from virtual
superpartners running in the loop. This can be used to tell the two models apart.

As already mentioned earlier there are two important production processes for
this �nal state in proton-proton collisions. The dominant one is the tree-level pro-
duction (see Fig.6.1) via bottom quark{anti-quark annihilation. The s-channel
diagrams shown in Fig.6.1(a) are mediated by a virtual Higgs boson where all
three neutral Higgs bosons of the MSSM (h0, H 0 and A0) can appear in the in-
termediate state. The appearance of the massive particles in the s-channel leads
to a propagator suppression of this diagram type. In the t-channel diagrams the
exchange of a top quark occurs and yields the leading contribution to the bottom
quark{anti-quark annihilation process. As this class of diagrams contributes the
most to the total H + W � production rate one-loop corrections to this process are
also important as they can modify the cross section signi�cantly. Standard-QCD
corrections ofO (� s) to this process were calculated in ref. [104]. Both the DR
and the OS renormalization scheme were considered and good agreement between
the two schemes could be found. The corrections are typically of O (15%) and
can reach up to 30% in the smallt � regime. The supersymmetric electroweak
corrections, i.e. corrections where squarks together withcharginos and neutrali-
nos appear in the loop, ofO

�
�m 2

t(b)=m2
W

�
and O

�
�m 4

t(b)=m4
W

�
were calculated
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Figure 6.2: Leading-order types of Feynman diagrams contributing to the sub-
processgg ! H + W �

in ref. [105].

The second parton process contributing to theH + W � �nal state proceeds
via gluon fusion and an intermediate loop as shown in Fig.6.2. Since there is
no tree-level process and the leading order contains a quarkor squark loop it is
suppressed by a factor� 2

s with respect to the bottom-quark annihilation process.
The higher density of gluons in the proton partly compensates this e�ect, making
both processes comparable in size. The contribution of quark loops was already
included in the calculation of ref. [102]. The contribution of supersymmetric
particles was calculated later on [106] and it was shown that they can reach up
to 40%. Together with the QCD corrections this can raise the cross section for
small t � so that it becomes comparable in size to the bottom-quark annihilation
process which is not loop-suppressed.

In this thesis the missing supersymmetric QCD corrections,i.e. corrections
with squarks and gluinos running in the loop, to the leading bottom-quark anni-
hilation process are considered. They are the last contribution of O (� 2� s) to the
associated production of a charged Higgs boson with a W bosonin the MSSM
which has not been calculated so far.
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6.2 SUSY-QCD corrections to b�b ! H + W �

In this chapter the supersymmetric QCD corrections to the main production
processb�b ! H + W � are calculated. As already shown in chapter4.3 it is known
that the coupling of the bottom quark to the Higgs bosons receives large one-
loop corrections. These can be parametrized by introducinga correction term
� mb to the bottom-quark Yukawa coupling. Yet other terms also give signi�cant
contributions, as we will see later. So it is necessary to notonly use the tree-
level result with an e�ective bottom-quark Yukawa couplingbut to perform a full
one-loop calculation.

The possible types of diagrams which appear in the calculation of SUSY-QCD
corrections are depicted in Fig.6.3. A SUSY-QCD self-energy contribution to
the bottom-quark propagator ofO (� s) enters in the t-channel exchange diagram
as shown in Fig.6.3(a). Vertex corrections (Fig. 6.3(c)) appear in the s-channel
diagrams in the vertex where the incoming bottom quark and anti-quark couple
to the intermediate Higgs boson. The t-channel diagram receives vertex cor-
rections at both the btW- and btH-vertices. Finally all four external particles
can be connected via a box-shaped loop diagram (Fig.6.3(e)). Additionally for
the self-energy and vertex corrections appropriate counter-term diagrams appear
(Fig. 6.3(b), (d)).

The cross sections were calculated in both the OS andDR renormalization
schemes. Additionally a � mb-corrected tree-level cross section was calculated.
As shown in chapter4.3 the bottom-quark mass and the bottom-quark couplings
to the Higgs �elds receive large contributions from the one-loop SUSY-QCD
corrections which are parametrized in the variable �mb. To be able to compare
the improved tree-level cross section with the full one-loop cross section it is
necessary to use the same order in perturbation theory for both calculations.
This means that one must use the non-resummed replacement eq. (4.21)

mb ! mb (1 � � mb)

and the non-resummed correction to the bottom-quark Yukawacoupling as in
eq. (4.27). A matrix element with this replacement must be treated as aone-loop
matrix element. Let us recall that the standard way of computing a one-loop cross
section is to add the interference terms (T � L + TL � ) to the tree-level cross section
jTj2 and to discard the loop-squared termjL j2 which is a two-loop quantity so
that for the squared matrix element

jM f i j2 = jTj2 + 2Re (T � L) (6.1)

is obtained. In this equationT denotes the tree-level amplitude andL the ampli-
tude of the one-loop diagrams. In complete analogy the squared matrix element
of the � mb-corrected cross section is de�ned as

�
�
�M f i � mb

�
�
�
2

= jTj2 + 2Re (T � L � mb) (6.2)
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Figure 6.3: Diagram types yielding SUSY-QCD corrections to the processb�b !
H + W �
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with

L � mb = T� mb � T : (6.3)

T� mb denotes the tree-level cross section with the �mb replacements of eq. (4.21)
and eq. (4.27). Therefore L � mb contains the additional contribution which orig-

inates from the correction terms. The corresponding cross section to
�
�
�M f i � mb

�
�
�
2

is denoted by� � in the following.
In order to present the numerical results several relative corrections � using

various contributions are de�ned. Firstly there is the relative correction in the
OS scheme,

� OS =
� OS

1 � � OS
0

� OS
0

: (6.4)

The relative correction in theDR scheme is de�ned analogously as

� DR =
� DR

1 � � DR
0

� DR
0

: (6.5)

The third relation consists of the di�erence between the one-loop result and the
� mb-corrected tree-level result which is calculated according to eq. (6.2). Hence
it signi�es the true one-loop corrections. It is de�ned as

� � mb =
� OS

1 � � OS
�

� OS
�

: (6.6)

The subscript of the cross section� always denotes the order of the respective
loop contribution, i.e. 0 for the tree-level result, 1 for the one-loop result includ-
ing the SUSY-QCD corrections, and � for the � mb-corrected tree-level result.
The superscript indicates the renormalization scheme in which the quantity is
calculated.

6.3 Numerical Results

In this section the numerical results for the production processb�b ! H + W � are
presented. All quoted cross sections are given for the LHC with a proton-proton
center-of-mass energy of 14 TeV. First of all we investigatethe e�ect of varying
the MSSM parameters on the SUSY-QCD corrections. To do so a parameter
point is chosen for which the corrections of the �mb term are expected to have
a large impact. To that e�ect the parameter point

mH + = 200 GeV

t � = 30

A t = Ab = 0

M ~Q = M ~U = M ~D = � � = m~g 2 [0; 10] TeV (6.7)
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Figure 6.4: Hadronic cross section di�erences for the processb�b ! H + W � in the
larget � regime. The soft SUSY-breaking mass terms in the squark sector MSUSY,
� � and the gluino massm~g are �xed to the same value and varied over a large
mass range. The parameter set eq. (6.7) was used to obtain this plot.

is used as input.t � of this point is fairly large to enhance the �mb contribution.
The soft SUSY-breaking mass terms in the squark sector, jointly denoted as
MSUSY = M ~Q = M ~U = M ~D , � � and the gluino massm~g all take the same value
which is varied over a large mass range. Eq.4.17 then predicts that the SUSY-
QCD corrections in the OS scheme should be large and independent of the varied
mass scale as we are in the limit where all these masses are equal and the mass
dependence drops out. This is indeed the case as one can see inFig. 6.4. A naive
calculation in the OS scheme yields a correction of above 60%. After subtracting
the � mb contribution only the real one-loop corrections are left. Their size is of
around 0:2%. In the DR scheme the corrections are equally small for small mass
values and show a logarithmic rise with growing mass. This isan artefact of the
mismatch between the renormalization scale and the masses of the squarks and
gluinos appearing in the loop diagrams. The former one was �xed to the sum
of the �nal-state particle masses� R = mH � + mW . Terms of the order lnM SUSY

� R

appear in the expression which originate from the dimensional regularization of
the divergent loop integrals. Thus this logarithmic rise bears no physical meaning
and will vanish if higher orders of perturbation theory are taken into account.

In the next plot (Fig. 6.5) the squark and gluino masses are now �xed and
only � is left as a free parameter. The parameter set for this plot is
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Figure 6.5: Hadronic cross section di�erences for the processb�b ! H + W � using
the parameter set eq. (6.8). Only � is varied in this plot.

mH + = 200 GeV

t � = 30

A t = Ab = 0

M ~Q = M ~U = M ~D = 500 GeV

m~g = 580 GeV : (6.8)

As expected the cross section in the OS scheme grows linearlywith � . For �
values less than about� 750 GeV the corrections even exceed 100%. Again,
when the � mb corrections are subtracted and only the true one-loop SUSY-QCD
corrections remain the order of the corrections is below 1% and shows only a very
low variation with � . In the DR scheme the corrections are also much smaller
than in the OS scheme and almost constant as a function of� , as is expected
from the remaining corrections appearing in this scheme.

As next step the dependence of the hadronic cross section di�erences as a
function of t � is investigated in Fig. 6.6. Here a data point with a smaller soft-
supersymmetry breaking mass is chosen to emphasize the e�ect which will be
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Figure 6.6: Hadronic cross section di�erences for the processb�b ! H + W � as a
function of t � . This plot was calculated with the parameter set eq. (6.9).

discussed below, namely

mH + = 200 GeV

� = � 200 GeV

A t = Ab = 0

M ~Q = M ~U = M ~D = 200 GeV

m~g = 580 GeV : (6.9)

For large values oft � the respective corrections feature the behavior which was
already observed in the previous plots. The �mb corrections are large, while the
true one-loop corrections almost vanish. The corrections in the OS scheme rise
linearly with t � as is expected from eq. (4.17). For t � . 15 however the behavior
changes. There the di�erence between the full one-loop computation and the
� mb-corrected tree-level cross section can increase up to 10%.This contribution
for small t � originates mainly from the diagram given in Fig.6.7. The Yukawa
coupling of the charged Higgs to the stop and sbottom is proportional to the
top-quark mass if a right-handed stop couples to a left-handed sbottom. Another
factor mt appears in the trace over the fermion line where for the internal top
quark line the mass term in the Dirac algebra is chosen. These two factors
cancel the top-quark propagator which is dominated by the mass term and the
top-quark mass dependence drops out. To get this left-rightmixing term in the
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Figure 6.7: Dominant one-loop contribution in the case of small t � . The crosses
in this diagram denote a mass insertion, i.e. when calculating the trace over the
fermion line the mass term in the Dirac algebra is chosen.

Yukawa coupling also the mass term for the gluino appears during the calculation
of the fermion trace, giving a factorm~g in the nominator. Accordingly this vertex
correction to the tbH+ vertex is proportional to

� s

3�
�m ~gI (m~b; m~t ; m~g) (6.10)

where I was given in eq. (4.18) and is related to the three-point integral in the
limit of vanishing external momenta. The expression is independent oft � . So for
small values oft � , where the bottom-quark Yukawa coupling is not enhanced, this
gives an important contribution. When t � takes larger values, the bottom-quark
terms dominate. These terms have a factor oft � appearing in the amplitude so
the cross section increases quadratically witht2

� . Hence the relative contribution
of Fig. 6.7 is reduced. This plot underlines the importance of performing a
full one-loop calculation because only in such a full calculation the non-universal
corrections are included and a tree-level calculation withe�ective couplings would
give wrong results in the low-t � regime.

The variation of the cross section as a function of� in the low-t � regime is
investigated in Fig.6.8. For this plot t � = 6 was chosen and the other parameters
were left unchanged from the last plot. Again the rather small value of 200 GeV is
chosen for the soft-supersymmetry breaking masses in the squark sector, so that
the function I , which is proportional to 1

m2
SUSY

, has a small denominator. One
can clearly see two distinct properties. The one-loop corrections which cannot be
absorbed into a rede�nition of the bottom-quark Yukawa coupling now give a sig-
ni�cant contribution. The � mb corrections still yield an important contribution
as can be seen from comparing the �OS and � � mb curves. Yet after subtracting
the universal corrections to the bottom-quark Yukawa coupling the remaining
non-universal corrections are large. For large values of� they can reach more
than 50%. They are equally present in theDR scheme where a numerical contri-
bution close to the � mb-corrected result is obtained. Furthermore the correction
to the cross section increases approximately linearly withthe absolute value of�
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Figure 6.8: Hadronic cross section di�erences for the processb�b ! H + W � as a
function of � . For all other parameters the parameter set eq. (6.9) with t � = 6
was used.

as is expected from eq. (6.10).
Furthermore, in Fig. 6.9 a plot where the complete SUSY mass spectrum,

i.e. soft-supersymmetry breaking mass terms for the squarks, � and the gluino
mass, is �xed to the same value and run up to 10 TeV is presentedfor the low-t �

regime. The behavior as a function of the mass scale is the same as before in the
case of larget � . After having subtracted the � mb corrections from the complete
one-loop contributions there is still a correction of the order of 10% left which
mainly originates from the diagram given in Fig.6.7. For small mass values the
relative correction slightly drops because in this region other diagrams also give
a numerically signi�cant contribution.

The scale dependence of the SUSY-QCD corrections is given inFig. 6.10.
The factorization and renormalization scale of the processare �xed to the same
value and varied between 0.1 and 10 times their basic value� R = � F = mW +
mH which is used for the other plots. Even for this large scale variations there
is only a mild dependence for the corrections in the OS schemeand the � mb

corrections. This is due to the fact that the only scale-dependent parameter is
the strong coupling constant� s and the PDFs. On-shell conditions render all
other paramaters independent of the scale. In theDR scheme also the quark
masses are scale dependent resulting in a much larger variation as a function of
the scale. Including the Standard-QCD corrections which are already known for
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Figure 6.9: Hadronic cross section di�erences for the processb�b ! H + W � in the
low-t � regime, i.e.t � = 6 is used. All other parameters take the values given in
eq. (6.7). The soft SUSY-breaking mass terms in the squark sector,� � and the
gluino mass are �xed to the same value and varied over a large mass range.

 0

 5

 10

 15

 20

 25

 30

 0.1  1  10

D
 [%

]

mR/(mW+mH)

DOS
DDmbDDR

Figure 6.10: Hadronic cross section di�erences for the processb�b ! H + W � as a
function of the renormalization and factorization scale. The plot was calculated
using the parameter set eq. (6.9) with additionally t � = 6.
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Figure 6.11: Total hadronic cross sections for the processb�b ! H + W � as a
function of t � using the parameter set eq. (6.9).

this process [104] would reduce this variation, but implementing these additional
contributions was beyond the scope of this dissertation.

The last plot in Fig. 6.11shows the total hadronic cross section as a function
of t � in both OS and DR renormalization schemes. Various cross sections with
di�erent contributions taken into account are presented here. The same param-
eter set as in eq. (6.9) is used for this plot. In all cases the total cross section
rises quadratically with t � in the region wheret � is larger than about 15. This
is the parameter space where the Yukawa coupling to the charged Higgs boson is
dominated by the term proportional to the bottom-quark mass, which scales with

� 0
OS Tree-level cross section

� �
OS � mb-corrected tree-level result

� 1
OS One-loop OS cross section

� full
OS One-loop OS cross section including

resummed higher-order �mb corrections
� 1

DR One-loopDR cross section

Table 6.1: Key to the total hadronic cross sections of the processb�b ! H + W �

plotted in Fig. 6.11.
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t � , and gives the leading contribution to the cross section. Onthe left-hand side
of the plot, wheret � is small, in contrast the top-quark mass part is responsible
for the overall behavior of the cross section and leads to a decrease witht � . In the
intermediate region both terms contribute equally much, leading to a minimum
of the cross section fort � � 8.

In total �ve di�erent cross-section types including miscellaneous contributions
are depicted. An overview is given in table6.1. � 0

OS, the straight red line, denotes
the tree-level contribution in the OS renormalization scheme. The short-dashed
blue line, � 0

OS, is the one-loop cross section in the OS scheme without having
used any further e�ective couplings. � 0

OS, the long-dashed green line contains
the � mb-corrected tree-level result. As seen before in the plots ofthe relative
corrections, this line agrees with the complete one-loop result in the case of large
t � as in this region only the universal �mb corrections are relevant. In the
small-t � regime these terms can only account for a part of the total corrections.
There are also non-universal terms, mainly coming from the sub-diagram given
in Fig. 6.10, which cannot be absorbed into an e�ective coupling. These ones do
not, as observed before, contain any factors oft � and hence their e�ects diminish
for higher t � values as the total cross section scales witht2

� . For � full
OS, the dotted

pink line, the � mb corrections are included in the resummed version of eq. (4.16).
Additionally the non-universal one-loop corrections are added. To avoid double-
counting the non-resummed �mb contribution must then be subtracted again,
resulting in the following formula

� OS
full = � OS

�resum +
�
� OS

1 � � OS
�

�
: (6.11)

In this line also phase-space e�ects from the reduced bottom-quark mass are taken
into account, leading to an additional shift with respect tothe tree-level cross
section. Nevertheless the curve again shows the expected behavior which can be
deduced from the results given above with rising corrections for increasingt � .
For large values oft � they largely exceed the one-loop result because of the �mb

resummation where contributions are added that in a naive calculation would
appear in higher-order diagrams of perturbation theory. This curve presents
the current best estimate for the total cross section in the OS scheme where
higher-order contributions are included as much as possible. Lastly the one-
loop expression in theDR scheme is plotted as dash-dotted light-blue line and
labeled� 1

DR . It has a shape very similar to the previous curve because the� mb

corrections appear in the self-energy contributions to thebottom-quark mass.
In this renormalization scheme they enter completely at one-loop order via the
bottom-quark propagators and no further contributions at higher orders appear.
Hence this corresponds to the resummed result in the OS scheme. The remaining
di�erence between the two curves is a measure for the theoretical uncertainty of
the calculation because of missing non-leading higher-order contributions from
perturbation theory.
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Tree-level cross section � 0 =2:684 fb
� mb-corrected tree-level cross section� � mb =2:266 fb

One-loop OS cross section � 1 =2.176 fb
Relative one-loop OS correction � OS = � 15:6 %

Relative true one-loop OS correction � � mb= � 4:0 %

Table 6.2: Hadronic cross sections for the reference point SPS1a0, which is de-
scribed in appendixA.2.

Finally the numerical results for the parameter point SPS1a0 [16] are given in
table 6.2. This parameter point is described in appendixA.2, it was chosen as a
reference point for MSSM calculations. Because of the positive sign of� the one-
loop cross section is now reduced with respect to the tree-level result. Thet � value
of 10 is in a region where the �mb corrections are already the dominant ones, but
the non-universal corrections still yield a numerically signi�cant contribution.





Chapter 7

Higgs-Boson Production via
Vector Boson Fusion

Proving the existence of a neutral Higgs boson is one of the main tasks of the
LHC. Its main production processes for both SM and MSSM Higgsbosons include
Higgs-boson production via vector-boson fusion (Fig.7.1) [107, 108, 109]. Its rate
is surpassed only by the gluon-fusion processgg ! h0 [110] shown in Fig. 7.2.
This process has large NLO-QCD corrections with K-factors larger than 2 [111].
Even after including the NNLO-QCD corrections [112] theoretical uncertainties
of O (10 � 20%) remain. They make the extraction of coupling constantsfrom
the gluon-fusion process di�cult and lead to large errors.

The Standard-QCD corrections to the vector-boson-fusion process were al-
ready calculated before [113, 114]. At tree-level the process only consists of a
t-channel exchange of a colorless gauge boson, which is why the contribution
where an additional gluon connects the two quark lines has nointerference term
with the tree-level diagram. Only the quark{anti-quark{vector-boson vertex re-
ceives corrections ofO (� s) and hence the overall QCD corrections are relatively
small and typically between 5 and 10%. Therefore, the extraction of Higgs cou-
pling constants leads to much smaller errors than in the gluon-fusion case, and
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q
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0
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W ; Z

Figure 7.1: Generic tree-level Feynman diagram of the vector-boson-fusion pro-
cessqq! qqh0

69
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Figure 7.2: Leading-order Feynman diagrams of the gluon-fusion processgg ! h0

the vector-boson-fusion production process is, despite its lower cross section, an
ideal instrument to study the Higgs boson.

This process possesses a clear experimental signature of two jets in the forward
region and thus can be easily separated from background processes by applying
appropriate cuts [115]. In this chapter the production of the lightest MSSM Higgs
bosonh0 via vector-boson fusion is investigated and the SUSY-QCD corrections
to this process are calculated.

7.1 The Partonic Process

The partonic processes which contribute to the production of a Higgs boson via
vector-boson fusion can be summarized in a single general Feynman diagram
which is depicted in Fig.7.1. It can be seen as scattering of two quarks which is
mediated via a vector boson in the t-channel with a Higgs boson being radiated o�
the intermediate vector boson. This is why the process has a clear experimental
signature of two jets in the forward region of the detector which allows one to
easily distinguish the signal from background processes byusing appropriate cuts.

In a strict sense, the general diagram given in Fig.7.1 is not the only one
which contributes to this �nal state. When a quark{anti-quark pair of the same

avor appears in the initial state they can form a Zh0 pair via an intermediate
virtual Z boson and theZ subsequently decays again into a quark{anti-quark
pair. Hence these diagrams have exactly the same particle content in both the
external and internal lines. There are also similar processes where an interme-
diate W boson can appear in the same way. However, the vector-boson-fusion
process has a very distinct signature of two jets in the forward region. Using
only this particular phase-space region the interference between the two diagram
types is strongly suppressed by the large momentum transferappearing in the
intermediate gauge bosons. Additionally a color suppression factor appears in
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the interference term [114]. Hence the e�ects from these additional diagrams can
be safely neglected if appropriate cuts [115] to the phase space are applied.

An analysis of the statistical accuracies of the cross section which are achiev-
able at the LHC was done in refs. [116, 117]. It could be shown that a measure-
ment with an accuracy of 5 to 10% can be performed, also takinguncertainties
in the decay branching ratios of the Higgs boson into account. So the size of the
NLO-QCD corrections already matches the accuracy which is achievable in ex-
periment. Theoretical uncertainties are not expected to limit the precision with
which the cross sections can be measured.

In the MSSM besides the Standard-QCD corrections also SUSY-QCD cor-
rections appear which are of the same orderO (� s) or, in case of the pentagon

diagrams, even enhanced and ofO
�

� 2
s

�

�
in the coupling constant. A full one-loop

calculation of these corrections has not been done before and is presented in this
thesis.

7.2 SUSY-QCD Corrections

In this chapter the SUSY-QCD corrections toh0-production via vector-boson
fusion are studied. If their size is larger than the experimental uncertainties one
might be able to use this to tell the SM and the MSSM apart. In the limit of large
mA the couplings of theh0 become SM-like. So if at the LHC only one Higgs
boson with Standard-Model couplings and a mass below 140 GeVis found, the
question arises whether a SM or a MSSM Higgs boson was seen in the detector.
The SUSY-QCD corrections, which exist only in the case of a MSSM Higgs boson,
could modify the Higgs boson coupling by an amount large enough and therefore
make the distinction between the two models possible. Also if supersymmetry
could be established by other means beforehand, these corrections give an indirect
contribution to the coupling between the Higgs boson and twogauge bosons. To
be able to extract the value from the experiment as preciselyas possible it is
necessary to include these higher-order corrections.

The possible types of diagrams which appear in the SUSY-QCD corrections
are depicted in Fig. 7.3. The quark{quark{gauge boson vertices receive cor-
rections which are depicted in Fig.7.3(a). Their divergencies are cancelled by
appropriate counter terms which are shown in Fig.7.3(b). The contribution of
these diagrams was already investigated before [118] for the special case where all
squarks have equal mass. Additionally one of the gauge bosons can be replaced
by a box-shaped sparticle loop as shown in Fig.7.3(c). Finally, all external par-
ticles can be coupled via a pentagon-type loop as in Fig.7.3(d). Because of the
Majorana nature of the gluinos also the diagram displayed onthe right-hand side
of the �gure, where two quark lines are connected, exists.

All cross sections are calculated in the OS renormalizationscheme. For the
tree-level diagrams the leading-order parton distribution functions of ref. [119]
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Figure 7.3: Diagram types contributing to SUSY-QCD corrections to h0 produc-
tion via vector-boson fusion
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were used. The one-loop cross sections were convoluted withthe NLO-PDFs of
the same group given in ref. [120]. In both cases the implementation from the
program package LHAPDF [93] was used to obtain the numerical results which
are presented in the next section.

7.3 Numerical Results

In this section numerical results for the SUSY-QCD corrections toh0-production
via vector-boson fusion are presented. The hadronic cross sections for each indi-
vidual process for the MSSM reference point SPS1a0, which is described in detail
in appendix A.2, are listed in the following table. The one-loop corrections are
separated according to the loop type, where� vertex includes the contributions
from the diagrams shown in Fig.7.3(a) and (b), � box from the ones of Fig.7.3(c)
and � �ve-pt. from the pentagon diagrams depicted in Fig.7.3(d).

Partonic subprocess � tree [pb] � vertex
� tree

� box
� tree

� �ve-pt.

� tree

dd ! ddh0 1:76� 10� 2 � 1:72� 10� 4 8:34� 10� 4 1:24� 10� 5

du ! duh0 3:46� 10� 1 � 1:60� 10� 4 6:68� 10� 5 1:46� 10� 6

ds ! dsh0 1:21� 10� 2 � 1:58� 10� 4 7:89� 10� 4 � 1:67� 10� 5

dc ! dch0 6:39� 10� 3 � 1:58� 10� 4 2:69� 10� 5 1:83� 10� 6

dc ! ush0 3:34� 10� 2 � 1:43� 10� 4 9:07� 10� 5 0
d �d ! d �dh0 1:58� 10� 2 � 1:55� 10� 4 7:77� 10� 4 2:48� 10� 6

d �d ! u�uh0 6:33� 10� 2 � 1:40� 10� 4 1:02� 10� 5 1:52� 10� 6

d�u ! d�uh0 1:09� 10� 2 � 1:53� 10� 4 2:16� 10� 5 1:66� 10� 6

d�s ! d�sh0 1:18� 10� 2 � 1:56� 10� 4 7:83� 10� 4 � 8:90� 10� 6

d�s ! u�ch0 4:75� 10� 2 � 1:41� 10� 4 1:52� 10� 5 0
d�c ! d�ch0 6:26� 10� 3 � 1:56� 10� 4 2:86� 10� 5 1:96� 10� 6

uu ! uuh0 3:68� 10� 2 � 1:86� 10� 4 � 6:65� 10� 4 � 1:26� 10� 5

us ! dch0 1:10� 10� 1 � 1:49� 10� 4 8:16� 10� 5 0
us ! ush0 2:12� 10� 2 � 1:65� 10� 4 1:53� 10� 4 1:84� 10� 6

uc ! uch0 1:14� 10� 2 � 1:64� 10� 4 � 6:23� 10� 4 2:20� 10� 5

u �d ! u �dh0 2:75� 10� 2 � 1:63� 10� 4 1:56� 10� 4 1:59� 10� 6

u�u ! d �dh0 1:27� 10� 1 � 1:44� 10� 4 1:60� 10� 4 2:00� 10� 6

u�u ! u�uh0 1:92� 10� 2 � 1:61� 10� 4 � 6:05� 10� 4 � 3:15� 10� 5

u�s ! u�sh0 2:08� 10� 2 � 1:64� 10� 4 1:52� 10� 4 1:82� 10� 6

u�c ! d�sh0 7:45� 10� 2 � 1:46� 10� 4 1:56� 10� 4 0
u�c ! u�ch0 1:12� 10� 2 � 1:63� 10� 4 � 6:17� 10� 4 1:77� 10� 5

ss ! ssh0 8:40� 10� 4 � 1:48� 10� 4 7:62� 10� 4 7:40� 10� 6

sc ! sch0 4:37� 10� 3 � 1:31� 10� 4 6:04� 10� 5 1:81� 10� 6

s �d ! s �dh0 2:22� 10� 3 � 1:41� 10� 4 7:34� 10� 4 � 7:60� 10� 6

s �d ! c�uh0 9:10� 10� 3 � 1:27� 10� 4 1:93� 10� 5 0
s�u ! s�uh0 1:50� 10� 3 � 1:40� 10� 4 � 5:07� 10� 6 1:72� 10� 6
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Partonic subprocess � tree [pb] � vertex
� tree

� box
� tree

� �ve-pt.

� tree

s�s ! s�sh0 1:62� 10� 3 � 1:42� 10� 4 7:42� 10� 4 1:58� 10� 6

s�s ! c�ch0 6:69� 10� 3 � 1:28� 10� 4 2:33� 10� 5 3:29� 10� 8

s�c ! s�ch0 8:27� 10� 4 � 1:43� 10� 4 1:79� 10� 6 1:96� 10� 6

cc ! cch0 1:70� 10� 4 � 1:49� 10� 4 � 5:99� 10� 4 � 6:09� 10� 6

c�d ! c�dh0 9:00� 10� 4 � 1:41� 10� 4 1:88� 10� 4 1:75� 10� 6

c�u ! s �dh0 4:17� 10� 3 � 1:27� 10� 4 1:35� 10� 4 0
c�u ! c�uh0 6:09� 10� 4 � 1:40� 10� 4 � 5:66� 10� 4 1:54� 10� 5

c�s ! c�sh0 6:56� 10� 4 � 1:43� 10� 4 1:85� 10� 4 1:91� 10� 6

c�c ! s�sh0 2:27� 10� 3 � 1:31� 10� 4 1:33� 10� 4 4:08� 10� 6

c�c ! c�ch0 3:31� 10� 4 � 1:44� 10� 4 � 5:84� 10� 4 � 3:33� 10� 5

�d �d ! �d �dh0 1:81� 10� 3 � 1:43� 10� 4 7:32� 10� 4 7:41� 10� 6

�d�u ! �d�uh0 1:36� 10� 2 � 1:28� 10� 4 5:79� 10� 5 1:69� 10� 6

�d�s ! �d�sh0 2:64� 10� 3 � 1:40� 10� 4 7:29� 10� 4 � 1:72� 10� 5

�d�c ! �d�ch0 1:35� 10� 3 � 1:41� 10� 4 4:16� 10� 7 1:73� 10� 6

�d�c ! �u�sh0 7:16� 10� 3 � 1:28� 10� 4 8:44� 10� 5 0
�u�u ! �u�uh0 7:23� 10� 4 � 1:44� 10� 4 � 5:70� 10� 4 � 6:54� 10� 6

�u�s ! �d�ch0 8:30� 10� 3 � 1:31� 10� 4 7:43� 10� 5 0
�u�s ! �u�sh0 1:56� 10� 3 � 1:44� 10� 4 1:76� 10� 4 1:90� 10� 6

�u�c ! �u�ch0 7:90� 10� 4 � 1:45� 10� 4 � 5:81� 10� 4 2:19� 10� 5

�s�s ! �s�sh0 8:40� 10� 4 � 1:49� 10� 4 7:63� 10� 4 7:40� 10� 6

�s�c ! �s�ch0 4:37� 10� 3 � 1:31� 10� 4 6:02� 10� 5 1:81� 10� 6

�c�c ! �c�ch0 1:70� 10� 4 � 1:49� 10� 4 � 5:98� 10� 4 � 6:10� 10� 6
P

(h0 via VBF) 1:11 � 1:53� 10� 4 7:69� 10� 5 3:44� 10� 7

The quoted cross sections are hadronic ones, where the convolution with the
PDFs has already been performed. They are given separately for each partonic
subprocess to facilitate an easier analysis of the characteristic e�ects appearing
in this process. Additionally the total hadronic cross section is stated, which is
the sum of all subprocesses. For some partonic subprocessesno �ve-point loop
diagrams exist at all. In this case the entry in the last column of the table is
exactly zero. To exploit the unique characteristics of the �nal state of this process
cuts were used to obtain the cross sections. A lower limit wasplaced on the
transverse momentumpT and the pseudo-rapidity� of the outgoing quarks and
anti-quarks, so that the �nal-state jets are clearly separated from the beam pipe,
but still in the forward region of the detector. Also a cut on the jet separation � R
between each combination of outgoing particles was set to emulate the behavior
of the jet-clustering algorithms used in experimental analyses and to be able to
resolve the particles in the detector separately. Thus the applied cuts were

pT (q; �q) � 40 GeV � (q; �q) � 2 � Rqq;q�q;�q�q;qh0 ; �qh0 � 0:4 : (7.1)

The formal de�nition of these quantities was given in chapter 5.4.
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There is an interesting observation already at tree-level.The partonic sub-
processes which enter via aZ-boson exchange are suppressed with respect to the
ones with aW boson as intermediate vector boson. Firstly, the coupling of the
W boson to the quarks is enhanced by a factor of1cW

, the inverse of the cosine
of the electroweak mixing angle, with respect to the leadingterm of the qqZ-
coupling. Secondly, theZ boson is heavier than theW boson, and the ratio of
the two masses is also equal to1

cW
. As the gauge-boson propagators are domi-

nated by their mass terms this leads to an additional enhancement of 1
c2

W
for each

W boson propagator. So in total the amplitude of aW boson-exchange diagram
is enhanced by about 1

c6
W

over one with aZ boson exchange. Accordingly, this

amounts to a factor 1
c12

W
= 1

(0:877)12 ' 4:8 for the tree-level cross section, which
corresponds to the observed partonic cross-section ratios. Because of this e�ect
and the large valence-quark densities of the up- and down-quarks in the proton,
the partonic subprocessud ! udh0 gives the leading contribution to the hadronic
process.

The vertex corrections all have the same size relative to therespective tree-
level cross section and correspond to the results obtained in ref. [118]. Since the
coupling of the W boson to the quarks is purely left-handed, they are largest if
the o�-diagonal elements in the squark mixing matrix are small and therefore left-
and right-handed squarks have almost equal masses. Also forthe intermediate
gluino propagator only the momentum term survives when calculating the trace
over the fermion line. It is proportional to the momentum transfer in the t-
channel and thus small. For diagrams withZ -boson exchange the situation is
more complicated, because theqqZ-coupling contains both left- and right-handed
parts. Nevertheless, any subdiagrams involving a mixing ofleft- and right-handed
squarks are proportional to the o�-diagonal terms in the squark mixing matrix,
which contain the Yukawa coupling of the corresponding quark and are hence
small. Hence, the same e�ects as in theW boson case appear and lead to a
similar relative size of the vertex corrections.

In the case of box diagrams the relative size of the corrections shows a much
wider range. For some partonic subprocesses they exceed thevertex corrections
signi�cantly, which underlines the importance of performing a full one-loop calcu-
lation to take all e�ects into account. Yet for other subprocesses they are much
smaller. This is due to the fact that for W-boson exchange large cancellation
is manifest. It occurs between the diagrams on the left-handside of each row
of Fig. 7.3(c), where the h0 couples to the squark with the 
avor of the out-
going quark, and the ones on the right-hand side which have anh0-coupling to
the squark with the incoming-quark 
avor. Because of theW boson one of the
squarks is always up-type and the other one down-type. Theircouplings to the
h0 have a minus sign relative to each other. Any e�ects from CKM-mixing are
neglected, therefore only squarks of the same generation can appear in a single
diagram. This is also why only the superpartners of the four light quarks con-
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tribute at all. They all have very similar masses, so the absolute value of the
~q~qW-coupling is roughly the same everywhere. Hence the diagrams on the left-
and right-hand side of Fig.7.3(c) almost exactly cancel forW-boson exchange,
leading to a strong suppression of this contribution. ForZ -boson exchange no
such e�ect occurs and the relative box-diagram contribution is larger by an or-
der of magnitude. Since, as mentioned above, already the tree-level amplitude
is smaller for this diagram type, the absolute value of the correction is small as
well and these corrections cannot give a signi�cant contribution to the total cross
section. Again the correction is maximized in the case wherethe o�-diagonal
elements in the squarx mixing matrix are small. Also the change of the coupling
constant between tree-level, which is proportional tos� + � , to the one-loop one
of s� � � cannot give an important e�ect, because the ratio of the two is always
above 0:9 and approaches 1 in the decoupling scenario, where the additional Higgs
bosons of the MSSM are heavy and theh0-coupling becomes SM-like.

For the �ve-point diagrams a cancellation similar to the boxdiagrams occurs
when the corresponding tree-level process is mediated by aW-boson exchange.
Additionally at least twice a left-right mixing term in the squark sector appears
in the amplitude. For this reason a term proportional to the Yukawa coupling
of the four light quarks enters the expression and leads to a suppression of the
one-loop correction. The choice of parameters which yield the biggest one-loop
corrections are in this case large terms in the o�-diagonal entries of the squark
mixing matrices and therefore a larger mass splitting in thesquark sector. Ad-
ditionally for both types the larger masses of the gluinos and squarks, where
experimental limits require that they are heavier than theW or Z boson, lead
to a further reduction of the cross section. Yet, there is also an enhancement
factor. Except for the Higgs coupling, all other four couplings of the pentagon
diagrams are proportional to the strong coupling constant,while for the trian-
gular and box-type diagrams two of the couplings are strong and two of them
are electroweak. Hence this type of diagram contains an enhancement factor of
� s
� ' 14. This is however not su�cient to give a signi�cant contribution to the
cross section.

7.4 h0-Production with External Gluons

Additionally the production of an h0 with one or two gluons in the initial state was
considered. The corresponding Feynman diagrams are shown in Fig. 7.4. Since
there is no tree-level coupling of the gluons to the Higgs bosons, these processes
occur at the one-loop level in leading order. This leads to anadditional factor
of � s in the cross section so the total amplitude is ofO (� 4

s� ), while the vector-
boson-fusion diagram has a factor� 3. Given that � 2

s is of the same numerical size
as� these contributions might prove important. Additionally, the gluon densities
in the proton are much higher than those of the quarks at typical LHC energies



7.4. h0-Production with External Gluons 77

h

0

g

q

g

q

~q ~q

~gq q

g g

~q ~q

h

0

~g

q q

g

q q

g

h

0

~q

~q

~q

g

g

g

g

~q ~q

~q

h

0

g

q q

g

(a) vertex corrections

g g

~q ~q

h

0

g

~g

q q

g

~q ~q

~q

h

0

g

q q

g

q

g

g

h

0

q

~q

~q

~q

g

~g

q

q

~q ~q

g

q

h

0

g

~q

q q

~q

g

h

0

~q

g

g

~q

~q

(b) box diagrams

~q

q

~g

~g

h

0

g

~q

~q

g

q

~g

q

~q ~q

g

h

0

~q

q

g

(c) pentagon diagrams

Figure 7.4: Leading-order diagram types forh0-production with one external
gluon in the initial and �nal state. The Feynman diagrams with two gluons in
the initial state have the same topology. They are obtained from these ones by
taking both gluons as incoming particles and changing the incoming quark to an
outgoing anti-quark.
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Partonic subprocess � one-loop [pb]
gd ! gdh0 2:2 � 10� 5

gu ! guh0 1:7 � 10� 5

gs ! gsh0 2:3 � 10� 6

gc! gch0 9:3 � 10� 7

g �d ! g �dh0 3:2 � 10� 6

g�u ! g�uh0 2:5 � 10� 6

g�s ! g�sh0 2:1 � 10� 6

g�c ! g�ch0 8:2 � 10� 7

gg ! d �dh0 1:8 � 10� 7

gg ! u�uh0 2:3 � 10� 7

gg ! s�sh0 2:6 � 10� 7

gg ! c�ch0 2:5 � 10� 7

Table 7.2: One-loop hadronic cross sections for the subprocesses with one or two
gluons in the initial state for the MSSM reference point SPS1a0.

and this further enhances this type of diagram.
The numerical results for these processes with external gluons for the reference

point SPS1a0 are given in table7.2. In this case the convolution with the PDFs
is also already included in the numbers for the cross section. The same cuts as
for the vector-boson-fusion process, given in eq. (7.1), were used. Also the same
cuts were applied to the �nal-state gluons as to the quarks and anti-quarks.

Formally this process type constitutes a background to the previously con-
sidered process ofh0-production via vector-boson fusion. Therefore one wants to
pursue the question, how large the total contribution of these diagrams is and if
there are cuts which reduce their size with respect to the signal process.

The processes with one gluon in the initial and �nal state have a momentum
distribution similar to the vector-boson-fusion one. The gluon densities in the
proton are very large for smallx, but rapidly diminish for larger x. In contrast
the sea-quark densities fall o� much slower and the valence-quark densities have
their maximum at about 1

6 . So the most favorable con�guration is the one where
the energy to produce the �nal state mostly originates from the quark. Thus the
hadronic center-of-mass frame is strongly boosted with respect to the partonic
one, which leads to jets in the forward region of the detector. This would mimic
the signature of a vector-boson-fusion process and produceevents which cannot
be eliminated by cuts. In contrast for processes with two gluons in the initial
state the momentum con�guration which maximizes the hadronic cross section
is the one where both gluons have similar values ofx. This leads to more central
jets which are suppressed by the applied cuts.

As one can see from the cross sections in table7.2, the total contribution of
these diagrams is ofO (10� 4) and therefore well below the experimental uncer-
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tainties, which are in the range of 5 to 10%. As the total contribution of these
background processes is below the statistical uncertainties which can be reached
in a measurement of the vector-boson-fusion cross section,these background pro-
cesses do not a�ect the experimental determination of theh0-production rate via
vector-boson fusion.





Chapter 8

Higgs-Boson Production in
Association with Heavy Quarks

The coupling of Higgs bosons to fermions is of the Yukawa typeand therefore
proportional to the mass of the fermion. The four light quarks, u, d, s and
c, all have a mass below or of about 1 GeV. This mass should be compared
to the Higgs vacuum expectation valuev, the scale of electroweak symmetry
breaking, to obtain the strength of their respective Yukawacouplings, which
are therefore small. In contrast the top-quark mass is of thesame order as the
electroweak symmetry-breaking scale, making the top-Higgs coupling numerically
sizable. The bottom-quark mass of a few GeV also leads to a rather weak coupling
to the Higgs boson in the Standard Model. In the MSSM, the coupling to the h0 is
enhanced by a factort � , so for large values oft � its size can become comparable to
the top-quark Yukawa coupling. These large Yukawa couplings make Higgs-boson
production in association with heavy quarks [121, 122] a phenomenologically
interesting process.

In this chapter the production of the lightest CP-even neutral MSSM-Higgs
bosonh0 in association with a bottom or top quark{anti-quark pair is studied.
The top quarks decay rapidly into mainlybW and the outgoing bottom quarks
can be identi�ed in the detector via b-quark tagging. Therefore both processes
form distinct �nal states which neither interfere with each other nor with the
Higgs-boson production via vector-boson fusion presentedin chapter 7. First the
peculiarities of each of the two processes are discussed separately. Then the one-
loop SUSY-QCD corrections for both processes are described. Since the same
basic Feynman diagrams appear in both cases, this task is done jointly. The
Standard-QCD corrections have already been calculated in refs. [123, 124] for
b�bh0-production and refs. [125, 126, 127] for t �th0-production. Finally in the last
two sections the numerical results for both processes are shown.

81
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Figure 8.1: Tree-level Feynman diagrams of the processpp ! b�bh0

8.1 The b�bh0 Final State

The production of a Higgs boson in association with bottom quarks in the Stan-
dard Model was intensively studied in the literature [117, 128, 129]. At tree-level
it originates from the annihilation of a quark{anti-quark pair or from a gluon fu-
sion process, where the �nal-stateb�b-pair is produced via an intermediate gluon,
and the Higgs boson radiates o� from one of the bottom quarks (Fig. 8.1(a)).
Besides these s-channel diagrams the partonic gluon-fusion process also proceeds
via a t-channel diagram shown in Fig.8.1(b), where the Higgs boson can be
emitted from both the internal and external bottom-quark lines. The analysis
was soon extended [83, 94, 130] to include the lightest MSSM-Higgs bosonh0.
The diagram types are exactly the same as in the Standard Model case. Only
the bottom-quark{Higgs coupling is changed to its supersymmetric counterpart,
resulting in

� MSSM

�
pp ! b�bh0

�
=

�
�

s�

c�

� 2

� SM

�
pp ! b�bH

�
; (8.1)

where� s�
c�

is the ratio of the bottom-quark coupling to the MSSMh0 boson and
to the one of the SM Higgs bosonH .

The Standard-QCD corrections [123, 124] to this process are also known and
reduce the dependence of the cross section on the factorization and renormaliza-
tion scales.
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However, there are subtleties when making a theoretical prediction for total
integrated h0-production via this process, i.e. when the �nal-state bottom quarks
are not explicitly detected. In a four-
avor-number scheme, where only gluons
and the four light quarks, but no bottom quarks appear in the initial state, large
logarithms ofO

�
ln Q2

m2
b

�
in the total cross section emerge, whereQ is of the order

of the Higgs-boson mass. They arise from the kinematical con�guration where a
gluon splits into ab�b-pair and the bottom quarks are collinear to the gluon. These
logarithms can be resummed using bottom-quark parton densities, thereby using
a �ve-
avor-number scheme. The bottom-quark densities in the proton originate
purely from such splitting gluons. So for every bottom quarkwhich appears
in a partonic process another bottom (anti-)quark exists inthe hadronic �nal
state. This scheme uses the approximation that the outgoingbottom quarks have
small transverse momentum and they are assigned zero transverse momentum at
leading order. In the �ve-
avor-number scheme the leading-order partonic process
is then b�b ! h0. gg ! b�bh0 only appears at NNLO together with the two-loop
corrections to this process [131].

In our case though these large logarithms are avoided by requiring bottom-
quark jets with high transverse momenta and a tagging of the �nal-state bottom
quarks in the detector. The additional cuts reduce the crosssection by one or two
orders of magnitude, but also greatly reduce the backgroundand make this ap-
proach more interesting. The existence of bottom-quark jets with large transverse
momenta also guarantees that the Higgs boson was emitted from a bottom quark
and is therefore proportional to the bottom-quark Yukawa coupling, allowing its
precise measurement.

The SUSY-QCD corrections to this process were partly calculated in ref. [132].
There an e�ective b�bh0-coupling was used which includes the one-loop squark
and gluino contributions, but no box-type or pentagon diagrams were added in
their analysis. In this dissertation a full one-loop calculation of the SUSY-QCD
corrections is performed.

8.2 The t �th0 Final State

The production of a Higgs boson in association with a top quark{anti-quark
pair [122, 133, 134] proceeds in the same way as the one with a bottom quark{
anti-quark pair discussed in the previous section and the same diagrams as in
Fig. 8.1 appear. Since the mass of the top quark is of the same order as the
electroweak symmetry-breaking scale, its Yukawa couplinggives a sizable contri-
bution and the process is an important channel for Higgs-boson production in
the mass region below 125 GeV [135]. Furthermore, this process can be used to
measure the top-quark Yukawa coupling precisely [136]. The extension of the SM
tree-level calculations to the MSSM, where the Higgs boson is an h0, is again



84 Chapter 8. Higgs-Boson Production in Association with Heavy Quarks

straightforward and amounts to a replacement of the Yukawa coupling such that

� MSSM

�
pp ! t �th0

�
=

�
c�

s�

� 2

� SM (pp ! t �tH ) ; (8.2)

where c�
s�

is the ratio of the top-quark coupling to the MSSMh0 boson and to the
Higgs bosonH of the SM. Thus the total cross section in the MSSM is reduced
with respect to the SM one by approximately a factor of1t2

�
.

The Standard-QCD corrections for this process are available in the litera-
ture [125, 126, 127]. Their numerical size is ofO (20%� 40%) and leads to a
stable prediction of total and di�erential cross sections with respect to variation
of the renormalization and factorization scales.

The large mass of the top quark also reduces the size of the collinear loga-
rithms to O

�
ln Q2

m2
t

�
. Now the argument of the logarithm is close to 1. So the

higher-order corrections are small and no resummation of these terms needs to
be performed. Hence one can safely use the four-
avor-number scheme for this
process and need not apply any additional cuts to the �nal-state top quarks in
this case.

A calculation of the SUSY-QCD corrections was performed quite recently in
ref. [137]. As the �gures of this article include both the Standard-QCD and the
SUSY-QCD one-loop contributions a direct comparison of thenumerical results
is di�cult. As far as the principal behavior with respect to a variation of the
MSSM parameters is concerned, agreement could be found.

8.3 SUSY-QCD Corrections

In this section the SUSY-QCD corrections toh0-production in association with a
heavy quark{anti-quark pair are described. In the Feynman diagrams the heavy
quark is denoted by aQ, which represents ab for the bottom-quark and a t for
the top-quark �nal state. Correspondingly, in part of the diagrams the supersym-
metric partners to the heavy quark appears, which is marked by ~Q, specifying
~b and ~t, respectively. A small ~q on the other hand signi�es that all squarks can
be inserted in the propagator. The ~q0 in the q�q diagrams denotes the super-
partner to the initial-state quark. In Fig. 8.2(a)-(f) the basic types of Feynman
diagrams which appear as one-loop SUSY-QCD corrections toh0-production via
gluon fusion are depicted. Self-energy corrections (Fig.8.2(a)) enter either via
a squark or gluino loop which is inserted into the intermediate gluon propaga-
tor, or a combined squark-gluino two-point loop inserted into the heavy-quark
line. In Fig. 8.2(b) the possible vertex corrections are displayed. Squark loops
induce an e�ective gluon-Higgs coupling appearing in the two diagrams on the
left-hand side of the �rst two rows. The diagrams on the right-hand side of the
�rst two rows contain a correction to the coupling betweenh0 and the heavy
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Figure 8.2: Types of Feynman diagrams contributing to SUSY-QCD corrections
to h0-production in association with heavy quarks
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Figure 8.2: (continued)
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quark. The third and fourth row feature corrections to the gluon-quark inter-
action and the last row an additional contribution to the triple-gluon vertex.
Diagrams where four particles are connected via a sparticle loop are presented
in Fig. 8.2(c). Finally, all �ve external particles can be joined by a squark-
gluino loop as shown in Fig.8.2(d). The emerging divergences are cancelled by
counter-term diagrams shown in Fig.8.2(e) for the self-energy contributions and
(f) for the vertex corrections. All gluon-fusion s-channeldiagrams, where the
two initial-state gluons couple to a further, intermediategluon, also exist in the
quark{anti-quark{annihilation subprocesses. The only change is the replacement
of the two incoming gluons by a quark{anti-quark pair. The additional diagrams
which appear for this type of subprocess are depicted in Fig.8.2(g). They are
corrections to the quark{anti-quark{gluon coupling together with the associated
counter-term diagram as shown in the �rst row. Secondly, thecoupling of the
incoming light quark to the Higgs boson, which is neglected at tree-level, appears
at one-loop order as indicated by the diagram in the second row. Finally in the
last row the additional box and pentagon diagrams are shown.

In the remaining sections of this chapter the numerical results of h0-production
in association with a heavy quark{anti-quark pair are presented. In analogy to
chapter 6 several cross-section di�erences are de�ned to illustratethe results. All
calculations in this chapter were performed in the OS renormalization scheme, so
the label indicating the renormalization scheme will in thefollowing be dropped
for all items. The relative one-loop correction is de�ned as

� 1 =
� 1 � � 0

� 0
; (8.3)

where� 0 denotes the tree-level and� 1 the one-loop cross section. For the calcu-
lation of hadronic cross sections the PDF set of ref. [120] was used. Additionally,
a � mb;t-corrected tree-level cross section� � was calculated in a similar way as
already described in chapter6, i.e. using the non-resummed version of eq. (4.21)
and treating the � mb;t term as a one-loop contribution. Additionally, the contri-
bution to the vertex from the term proportional to the secondmixing angle in the
MSSM-Higgs sector,� , was included in� � according to eqs. (4.27) and (4.33).
The relative correction using only these contributions is de�ned as

� ~0 =
� � � � 0

� 0
: (8.4)

Finally, the di�erence between the � mb;t-corrected tree-level cross section and
the full one-loop result, which denotes the true one-loop corrections, is given by

� � mb;t =
� 1 � � �

� 0
: (8.5)

The renormalization of the strong coupling constant� s was performed as de-
scribed in chapter4.2.3.
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Partonic subprocess � 0 [fb] � 1 [fb] � 1 [%] � ~0 [%]
d �d ! b�bh0 0:107 0:104 � 2:48 � 1:95
u�u ! b�bh0 0:168 0:164 � 2:56 � 1:95
s�s ! b�bh0 0:028 0:028 � 2:26 � 1:95
c�c ! b�bh0 0:013 0:012 � 2:20 � 1:95
gg ! b�bh0 35:647 33:734 � 5:37 � 1:95P �

pp ! b�bh0
�

35:963 34:042 � 5:34 � 1:95

Table 8.1: Hadronic cross sections forb�bh0-production at the parameter point
SPS1a0 (see appendixA.2).

8.4 Numerical Results for b�bh0

In this section the numerical results for the processpp ! b�bh0 are presented. First
the total hadronic cross section for the MSSM reference point SPS1a0 is given in
table 8.1. It is also given separately for each partonic subprocess. As described
before, the outgoing bottom-quark jets are required to havea high transverse
momentum, so that large logarithms are avoided and the background processes,
where the Higgs boson does not radiate o� a bottom quark, are reduced. To this
end a cut on the bottom quarks,

pT (b;�b) � 20 GeV ; (8.6)

was applied to obtain these results. The same cut will also beused for all other
cross sections of this section.

As one can see in the table, the dominant contribution originates from the
gluon-fusion process and the quark{anti-quark{annihilation processes are sup-
pressed by two orders of magnitude. Hence their contribution is negligible and
in the following analysis only the gluon-fusion subprocessis considered. This
large di�erence in the cross sections is due to the fact that the quark{anti-quark{
annihilation process can only proceed via the s-channel diagram shown on the
left-hand side of Fig.8.1(a). It contains a propagator suppression from the in-
termediate gluon which must carry at least the energy to procuce the �nal-state
Higgs boson and the two bottom quarks. In contrast the gluon-fusion subprocess
also contains a t-channel diagram (Fig.8.1(b)) which does not su�er from such
a suppression. In fact, if one takes only the s-channel diagram on the right-hand
side of Fig.8.1(a) into account, the cross section of the gluon-fusion contribution
is of comparable size (� 1 = 1:103 fb) to the one of quark{anti-quark annihilation.

In the following plots the e�ect of varying MSSM parameters on the SUSY-
QCD contributions is investigated. To that end a parameter point with a fairly
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Figure 8.3: Partonic cross section di�erences for the process gg ! b�bh0, using
t � = 30, as a function ofMSUSY � M ~Q = M ~U = M ~D . All other parameters take
the values given in eq. (8.7).

light SUSY spectrum was chosen, namely

mA = 200 GeV

� = 300 GeV

A t = Ab = 0

MSUSY � M ~Q = M ~U = M ~D = 250 GeV

m~g = 400 GeV : (8.7)

The MSSM parameters were then varied around this point. The renormalization
scale, which appears in� s (see eq. (4.9)), was set to � R = 2mb + mh0 . As the
contribution of the quark{anti-quark annihilation diagrams is negligible compared
to the gluon-fusion subprocess, only the latter one is considered in the following.
Also for simplicity the quoted cross section di�erences arepartonic ones with a
center-of-mass energy of

p
ŝ = 500 GeV.

For the �rst plots t � is set to the large value 30. In the plot given in Fig.8.3
a common mass scaleMSUSY, where all soft-supersymmetry breaking masses in
the squark sector take the same value, is chosen. According to chapter4.3, where
the bottom-quark Yukawa coupling was studied, one would expect the universal
corrections, which are parametrized in �mb, to give the dominant contribution.
This is indeed the case for almost allMSUSY-values. Also the decrease of the
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Figure 8.4: Partonic cross section di�erences forb�bh0-production via gluon fusion
in the large t � -regime (t � = 30) as a function of � . For the value of the other
parameters see eq. (8.7).

corrections with growing SUSY mass scale, which is predicted by eq. (4.17) to
fall o� as 1

M 2
SUSY

, can be seen in the plot. Only for rather small values ofMSUSY a
deviation from this behavior occurs. Other terms contribute signi�cantly in this
region and lead to smaller cross-section di�erences than one would expect from
the � mb terms alone.

The numbers for the second plot (Fig.8.4) are also calculated in the regime
of large t � , but now � is varied. For small values of� , the � mb-corrected tree-
level result and the full one-loop cross section coincide and show the expected
linear rise with � . When � becomes large, and thus the o�-diagonal elements in
the sbottom mixing matrix lead to a larger split between the lighter and heavier
sbottom, this behavior changes and leads to a decelerated increase with� . Also
other terms begin to contribute to the cross section in a signi�cant way and
induce a deviation of the full one-loop result from the �mb corrections by up to
20%.

The e�ect of varying t � is studied in Fig. 8.5. The � mb-corrected tree-level
result grows linearly with t � as predicted from eq. (4.17). In the small t � -regime
it approximates the full one-loop result rather well with a deviation of only about
one percent. For larger values oft � the complete one-loop corrections begin to
deviate and additional contributions lead to a slower rise.Finally, the absolute
value of the full corrections slightly decreases again. This is the same e�ect which
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Figure 8.5: t � -dependence of the partonic cross section di�erences forgg ! b�bh0.
The values of all other parameters are given in eq. (8.7).

was already observed on the left-hand side of Fig.8.3. As the common value of
the soft supersymmetry-breaking massesMSUSY was chosen to be 250 GeV we are
exactly in this regime. A higher value forMSUSY leads to a one-loop cross-section
di�erence which coincides with the � mb-corrected tree-level one over the whole
range of t � . To verify this a value of MSUSY = 400 GeV was chosen to obtain
Fig. 8.6. Additionally, the gluino mass was set tom~g = 640 GeV such that the
ratio of the two masses is the same as in the parameter set eq. (8.7). In this
case the discrepancy �� mb between � 1 and � ~0 stays below one percent for all
t � -values.

In the �nal two plots the behavior of the cross-section di�erences in the small
t � -regime, namely fort � = 6, is studied. Firstly, in Fig. 8.7 the common mass
scaleMSUSY of the soft supersymmetry-breaking masses appearing in thesquark
sector is varied. The � mb-corrected tree-level result is a good approximation of
the full one-loop result over the whole mass range. The di�erence is about one
percent for smallMSUSY and rapidly vanishes for larger values.

The last plot (Fig. 8.8) depicts the dependence of the cross-section di�erences
on � for t � = 6. It shows a similar behavior as the same plot for larget �

(Fig. 8.4). For small values of� the � mb-corrected tree-level result and the full
one-loop calculation coincide, while for larger ones signi�cant deviations occur.
In the small t � -regime the absolute value of the �~0 corrections even grows slightly
larger than the linear behavior of eq. (4.17), which is due to additional e�ects



8.4. Numerical Results forb�bh0 93

-30

-25

-20

-15

-10

-5

 0

 5

 5  10  15  20  25  30

D
 [%

]

tb

D1
D”0

DDmb

Figure 8.6: t � -dependence of the partonic cross section di�erences forgg ! b�bh0.
For this plot a slightly higher MSUSY = 400 GeV and m~g = 640 GeV was used
than the one of eq. (8.7).
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Figure 8.7: Partonic cross section di�erences forb�bh0-production via gluon fusion
for t � = 6 as function of a common massMSUSY for the soft supersymmetry-
breaking terms. All other parameters take the values given in eq. (8.7).
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Figure 8.8: � -dependence of the partonic cross section di�erences forb�bh0-
production via gluon fusion in the smallt � -regime (t � = 6). The values of all
other parameters is given in eq. (8.7).

originating from the growing mass splitting between the twosbottoms. The one-
loop corrections in contrast decrease again, once the absolute value has reached
a maximum at about 1500 GeV, and even change sign and become positive. So
in this parameter region true one-loop corrections contribute signi�cantly.

8.5 Numerical Results for t �th0

The numerical results for the second process of Higgs production in association
with heavy quarks, pp ! t �th0, are presented in this section. In table8.2 the
hadronic cross section for the MSSM reference point SPS1a0 is denoted. It is
given separately for each partonic subprocess which contributes to the t�th0-�nal
state.

In this case the quark{anti-quark annihilation diagrams give a contribution
which is of comparable size to the gluon-fusion ones. On the partonic level the
same analysis as in the previous section forh0-production in association with
a bottom quark{anti-quark pair holds. The quark{anti-quark{annihilation pro-
cesses are suppressed because there only a propagator-suppressed s-channel di-
agram exists, while the gluon-fusion subprocess also proceeds via a t-channel
diagram which does not su�er from such a suppression. After the convolution
with the parton distribution functions the situation however changes. The gluon
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Partonic subprocess � 0 [fb] � 1 [fb] � 1 [%]
d �d ! t �th0 42:7 37:6 � 11:77
u�u ! t �th0 71:9 63:4 � 11:81
s�s ! t �th0 7:5 6:6 � 11:58
c�c ! t �th0 2:8 2:5 � 11:53
gg ! t�th0 273:7 264:7 � 3:30P

(pp ! t�th0) 399:0 374:8 � 5:96

Table 8.2: Hadronic cross sections fort�th0-production at the parameter point
SPS1a0, which is de�ned in appendixA.2.

densities in the proton show a much steeper fall with growingparton-momentum
fraction x than the sea-quark ones. As the top quarks are much heavier than
the bottom quarks, also the energy and thus thex of the incoming partons must
be larger to be above the threshold fort �th0-production. For this �nal state
it approximately compensates the e�ect from the propagatorsuppression. The
gluon-fusion process is still the dominant production mode, but all processes need
to be taken into account for a complete analysis.

In the following plots the e�ect of varying MSSM parameters on the SUSY-
QCD contributions is investigated. To that end the same parameter point as in
the previous section with a fairly light SUSY spectrum was chosen, namely

mA = 200 GeV

t � = 6

� = 300 GeV

A t = Ab = 0

M ~Q = M ~U = M ~D = 250 GeV

m~g = 400 GeV : (8.8)

The MSSM parameters were then varied around this point.t � = 6 was kept
�xed for all plots of this section. The renormalization scale, which enters� s via
eq. (4.9), and the factorization scale were set to� R = � F = 2mt + mh0 . The
hadronic cross-section calculations were performed for the LHC with a proton-
proton center-of-mass energy of 14 TeV.

First a common mass scaleMSUSY, where the soft supersymmetry-breaking
squark mass terms all take the same value, is introduced and varied between
200 and 2000 GeV, as shown in Fig.8.9. The di�erence between the tree-level
cross section and the �mt -corrected one falls o� as 1

M 2
SUSY

, as expected from the
form of the � mt term given in eq. (4.30). The total one-loop contributions show
a similar decrease, but with a larger coe�cient which leads to a much steeper
descent. This originates from the fact that the �mt term only includes vertex
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Figure 8.9: Hadronic cross section di�erences for the process pp ! t�th0 as a
function of MSUSY � M ~Q = M ~U = M ~D . For the value of the other parameters
see eq. (8.8).

corrections to thet�th0 vertex. Yet there are many other one-loop diagrams which
also contribute and lead to the modi�ed behavior. In contrast to � mb, which
is enhanced by a factort � , the � mt corrections are suppressed by1t �

and their
numerical e�ect is expected to be smaller. For small SUSY masses threshold
e�ects of the squark masses induce a deviation from the scaling with 1

M 2
SUSY

.
In the second plot (Fig.8.10) the dependence of the relative corrections on� ,

the mass parameter mixing the two Higgs doublets, is presented. Also in this case
the � mt -corrected tree-level cross section is not a good approximation. Whereas
the term rises with growing� , the full one-loop correction decreases in this case.
The slope is constant over a large range of� . Only for bigger values, when the
o�-diagonal entries in the squark mixing matrices become very large and yield
an additional contribution, also the gradient increases.

Finally, in Fig. 8.11 t � is varied. The corrections to the �mt -corrected
tree-level result fall o� with growing t � . This is again the expected behavior
of eq. (4.30). The full one-loop corrections are signi�cantly larger insize. They
show a mild dependence on this parameter, with a maximum at around t � = 15.
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Chapter 9

Quartic Higgs Coupling at
Hadron Colliders

In this chapter another possibility is investigated to testthe means of electroweak
symmetry breaking. This is achieved by measuring the quartic Higgs coupling
and hence fully determining the Higgs potential [22].

After the discovery of a light Higgs boson the next step will be to study its
properties, including its couplings to other particles. Atthe planned Interna-
tional Linear Collider (ILC) measuring these couplings with high precision will
be possible for all Standard Model bosons and fermions [138]. Furthermore, if
supersymmetric particles are found, the coupling of the Higgs to charginos and
neutralinos can be measured precisely [139]. To fully understand electroweak
symmetry breaking it is important to measure the Higgs self-couplings and to
thereby determine the parameters of the Higgs potential.

9.1 Higgs potential

The Higgs potential of the Standard Model was already given in eq. (2.2). In
this model the trilinear (� 3) and quartic (� 4) Higgs self-coupling are related to
the Higgs mass via

� 3 =
� 3im 2

H

v
� 4 =

� 3im 2
H

v2
=

� 3

v
; (9.1)

wherev is the vacuum expectation value of the Higgs �eld.
In models with more than one Higgs �eld, like the MSSM with itstwo fun-

damental Higgs doublets, the relations between the trilinear and quartic Higgs
coupling can change signi�cantly. For the lighter CP-even MSSM Higgs boson
h0 the ratio of the self-couplings is

� 3h0

� 4h0
= v

s� + �

c2�
; (9.2)

99
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wherev =
p

v2
1 + v2

2 and v1 and v2 are the vacuum expectation values of the two
Higgs �elds. If the parameter mA is su�ciently large there is a mass splitting
betweenh0 and the remaining Higgs sector. Additionally, the angles� and �
are related via s� ' � c� in this limit. Therefore s� + �

c2�
approaches 1 and the

h0-coupling becomes Standard Model-like.
In this chapter we will not refer to the MSSM as our underlyingtheory.

Instead we use an e�ective theory whose particle content is the same as the one
of the Standard Model. Its Higgs sector also contains one doublet but the trilinear
and quartic couplings are left as free parameters of the theory. In this way we
are not restricted on a speci�c model but can accommodate formany di�erent
ones. Such deviations from the Standard Model couplings canfor example be
generated when higher-dimensional powers of the Higgs doublet are added to the
potential as shown in chapter2.2.2. Taking the �rst two higher-order terms into
account the Higgs self-couplings become

� 3 = � 3

 

1 +
~� 1v2

~� 0� 2

!

� 4 = � 4

 

1 +
6~� 1v2

~� 0� 2
+

4~� 2v4

~� 0� 4

!

: (9.3)

The additional terms are suppressed by � which is the scale where new physics
sets in. Both self-couplings receive di�erent contributions from the additional
terms. In general, the self-couplings may even become negative. The stability
of the Higgs potential is guaranteed if the highest non-vanishing term in the
potential has a positive sign. All other terms can have arbitrary values as long
as the ground state has a non-vanishing vacuum expectation value to break the
electroweak symmetry.

9.2 Trilinear Higgs coupling

As we will see below it is essential for the measurement of thequartic Higgs
coupling to know the value of the trilinear Higgs coupling asprecisely as possible.
For a Higgs boson with a mass larger than 150 GeV this couplingcan be extracted
at the LHC [140, 141, 142]. At least two Higgs bosons must be produced to
measure the three-Higgs coupling. At hadron colliders thisis performed via a
gluon fusion process. In this process two distinct types of diagrams appear, as
shown in Fig.9.1. Either (a) an intermediate Higgs boson is produced via a three-
point top-quark loop diagram which couples to the two �nal-state Higgs bosons
and contains the required trilinear coupling, or (b) the particles couple via a four-
point box-type top-quark loop. For the detection of the Higgs bosons the decay
channel into two W+ W � boson pairs is analyzed [142]. Two or three of the four
W bosons are required to decay leptonically into a lepton and aneutrino to have
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Figure 9.1: Leading-order types of Feynman diagrams contributing to the process
gg ! HH

a clear detector signal and the other two or one, respectively, decay hadronically
into two jets.

Additional information can be obtained from the kinematic distributions of
the Higgs bosons. Not only the total cross section carries information on the
trilinear Higgs coupling but also the di�erential hadronicdistribution with respect
to the invariant mass of the �nal state. This can only be calculated correctly if
the top-quark loop is fully taken into account. Using the in�nite top-quark mass
limit and an e�ective gluon-gluon-Higgs coupling will yield completely incorrect
results, as was shown in ref. [142].

Using this information it was evaluated [142] with which precision the trilinear
Higgs coupling for Higgs bosons heavier than 150 GeV can be measured. In the
beginning of LHC a non-zero value can be established with a con�dence level
of 95% after having accumulated a luminosity of 300 fb� 1. After a luminosity
upgrade the self-coupling can be measured with a precision of up to 20% at
the 95% con�dence level using an integrated luminosity of 3 ab� 1. At a future
high-energy Very Large Hadron Collider (VLHC) with a hadronic center-of-mass
energy of 200 GeV, the measurement of� 3 can be performed with an uncertainty
of about 10% at a con�dence level of 95% after having accumulated a luminosity
of 1 ab� 1.

In contrast a linear collider can measure the three-Higgs coupling for small
Higgs masses of around 120 GeV, but possibly not for higher ones [143, 144].
The mass region below 140 GeV is more di�cult for hadron colliders, because
the dominant decay mode for the Higgs boson is a bottom quark{anti-quark
pair which has large QCD backgrounds. Anyway, it is still accessible using rare
decays [145]. The creation of the two Higgs bosons at ane+ e� linear collider
happens as double-Higgs strahlung in association with aZ boson or asWW
double-Higgs fusion in association with a ��� -pair as shown in Fig.9.2and Fig. 9.3,
respectively. For a Higgs mass of 120 GeV the planned International Linear Col-
lider (ILC) with a center-of-mass energy of 500 GeV will be able to measure the
trilinear Higgs coupling with an accuracy of 20% within one standard deviation
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Figure 9.2: Leading-order types of Feynman diagrams contributing to the process
e+ e� ! ZHH
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Figure 9.3: Leading-order types of Feynman diagrams contributing to the process
e+ e� ! ���HH

after having accumulated a luminosity of 1 ab� 1. A proposed Compact Linear
Collider (CLIC) with a center-of-mass energy of 3 TeV �nallycould measure a
180 GeV Higgs boson with a precision of 8% within one standarddeviation using
5 ab� 1 of integrated luminosity.

In general the proposed future generation of hadron (VLHC) and linear (CLIC)
colliders will be able to measure the trilinear Higgs coupling with an accuracy
of O (10%). A combination of both collider types thereby covers the whole mass
range where a Standard Model Higgs boson is expected to be found, as derived
from electroweak precision analyses [20].

9.3 Quartic Higgs coupling

As the production of two Higgs bosons is needed for measuringthe trilinear Higgs
coupling, three �nal-state Higgs bosons are necessary for ameasurement of the
quartic Higgs coupling.

Three-Higgs production at linear colliders has already been studied in ref. [146].
It was found that even at CLIC the cross section is too low, with only about �ve
three-Higgs events per year being produced there at a center-of-mass energy of
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Figure 9.4: Leading-order types of Feynman diagrams contributing to the process
gg ! HHH

10 TeV. Hence it will be impossible to determine the quartic Higgs coupling at
the next generations of linear colliders.

At hadron colliders the three Higgs bosons are dominantly produced via gluon
fusion and an intermediate top-quark loop, like in the two-Higgs case. Four
distinct topologies appear as shown in Fig.9.4: (a) continuum production of
three Higgs bosons via a �ve-point top-quark loop, (b) production of two Higgs
bosons via a box-type loop and subsequent decay of one of the Higgs bosons via
the trilinear self-coupling into two Higgs bosons, and �nally the production of one
intermediate Higgs boson via a three-point loop. This can either (c) decay via
a chain of two three-Higgs couplings or (d) through one quartic Higgs coupling.
Only the last diagram type contains the coupling we want to measure.

Looking at the diagrams it is clear that a precise knowledge of the trilinear
self-coupling is necessary to obtain results on the quarticself-coupling. The
process is also very sensitive to the top-quark Yukawa coupling which must be
known very well. In the numerical analysis we have also included the diagrams
where the top-quark loops are replaced by bottom-quark loops. The contribution
of these diagrams is however less than one percent.

The total cross section as function of the Higgs mass is shownin Fig. 9.5 for
the (a) LHC and a (b) 200 TeV VLHC. In the following the Higgs boson mass is
set to 120 GeV for all cross sections and plots.

In Fig. 9.6the dependence of the total cross section on the trilinear and quartic
Higgs coupling is shown. The values of the trilinear and quartic self-couplings
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Figure 9.5: Total hadronic cross section for the triple-Higgs production process
via gluon fusion with Standard Model couplings as a functionof the Higgs boson
mass.

are varied between minus and plus two times the Standard Model value. One can
clearly see the strong dependence on� 3. The variation on � 4 is much smaller,
as one can see in more detail in Fig.9.7. For positive values of� 3 and � 4 the
variation of the cross section stays below 20% at both the LHCand the VLHC.
Including negative values of� 4 induces changes in the cross section of up to a
factor 2. For negative values of� 3 the absolute variation as a function of� 4 stays
at the same order of magnitude. While the total cross sectiondepends strongly
on � 3, the relative variation with � 4 is heavily suppressed.

As the quartic Higgs coupling contributes only to the singlediagram Fig.9.4(d)
this behavior is expected. It is also re
ected in the partialcontributions from the
di�erent diagram types. Taking into account all diagrams leads to a Standard
Model cross section of 6:25� 10� 2 fb at the LHC. Using Standard Model couplings
the �ve-(Fig. 9.4(a)), four-(Fig. 9.4(b)) and three-point(Fig. 9.4(c,d)) loop dia-
grams alone yield a cross section of (17:07; 8:20; 0:46)� 10� 2 fb, respectively. The
small size of the triangle-type diagram results from a suppression factor by the
intermediate Higgs propagator. If one only takes this diagram type into account
and sets either� 4 or � 3 to zero, a cross section of 0:17 � 10� 2 fb from the trilinear
self-coupling and of 0:08� 10� 2 fb from the quartic self-coupling is obtained. For
the VLHC the partial cross sections have similar ratios. So the diagram which
contains the quartic self-coupling is almost two orders of magnitude smaller than
the total cross section.

As one would expect from the evaluation of the trilinear Higgs coupling in
two-Higgs production [142] the interference between the pentagon and the box
diagrams is indeed destructive for positive values of� 3. This results in the large
increase of the cross section when� 3 gets smaller and therefore the contribution
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Figure 9.6: Total hadronic cross section for triple-Higgs production via gluon
fusion as a function of the trilinear and quartic Higgs coupling normalized to the
Standard Model values. A color of green denotes the StandardModel value. A
deviation of plus and minus 20 % is signi�ed by red and blue color, respectively.
The maximum values obtained in the scanning interval are colored white and
black, respectively, using a linear color gradient for intermediate values. The
Standard Model point is additionally marked by a blue cross.A Higgs boson
mass of 120 GeV was used to obtain this plot.
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Figure 9.7: Variation of the hadronic cross section forHHH -production as a
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The Higgs mass was �xed to 120 GeV.
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from the box diagram diminishes as one can see in Fig.9.6. For negative values of
� 3 the single three-Higgs vertex in the box diagrams changes sign and therefore
makes this interference constructive, leading to the sharprise of the cross section.
The trilinear and pentagon diagrams interfere constructively, but because the
triangle and box contributions have a more similar kinematic con�guration, the
destructive interference between those two results in a slight decrease of the cross
section with growing � 4. Only for � 3 = 0, where the box diagrams do not
contribute any longer, the behavior of the cross section reverses and rises with
increasing� 4. The relative signs of the di�erent topologies can be understood
analytically by using the low-energy theorem for the leading form factors [147].
An expansion is performed in the ratiomH

m t
with a partonic center of mass energy

ŝ � m2
h. The top-quark mass and the top-quark Yukawa coupling are both

denoted by mt . These form factors are basically the squared matrix element
without any couplings or additional propagators which are not part of the loop
integral. They are obtained starting from the top loop in thegluon self-energy.
An additional Higgs boson can be attached to the loop by usingthe following
recursion relation:

F(n+1) H = m2
t

@
@mt

FnH

mt
: (9.4)

This relation yields

Fpentagon = � Fbox = Ftriangle =
2
3

+ O
�

m2
H

m2
t

�
: (9.5)

Therefore the structure of constructive and destructive interferences in the dia-
gram types is explained by the relative minus sign in front ofthe box-type term.

In the case of two-Higgs production the information on the value of � 3 was not
only encoded in the total cross section. Also the di�erential hadronic cross section
with respect to the invariant mass carries information on� 3. The same is true
for three-Higgs production. In Fig.9.8 the normalized cross section as a function
of the partonic center-of-mass energy is shown. The trilinear and quartic self-
coupling both take the values 0, 1 and 2 times their respective Standard Model
value. When varying � 3 the position of the peak changes signi�cantly and an
extraction of this coupling is possible, as was already found in the analysis of
two-Higgs production [142]. When changing� 4, and keeping� 3 constant, the
size of the shift is about an order of magnitude smaller. Additionally for � 3 = 0
the order of the � 4=� SM = 0; 1; 2 peaks is inverted which is due to the di�erent
sign in the interference as explained above.

The total hadronic cross section for triple-Higgs production via gluon fusion
using Standard Model Higgs self-couplings is 6:25 � 10� 2 fb at the LHC for a
Higgs boson with a mass of 120 GeV. This rate is too low to be measurable even
for the high-luminosity mode of the LHC. At the VLHC with a center-of-mass
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Figure 9.8: Di�erential hadronic cross section for three-Higgs production with
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cross section. The mass of the Higgs boson was set to 120 GeV.
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energy of 200 GeV the cross section is 9:45 fb so three-Higgs production might
be observable at this future collider. The rather strong dependence of the total
cross section on� 3, especially for values smaller than the Standard Model value,
allows to extract the value of this coupling, thereby possibly con�rming the two-
Higgs production result. The variation in � 4 is much smaller, typically below
20%. Hence the extraction of this coupling is much harder. Ifone takes into
account the theoretical uncertainties from missing higher-order corrections and
the experimental error on the measurements of� 3 and the top-quark mass, the
chances to be able to extract the quartic Higgs coupling are tiny.

Also in the di�erential cross section there is a clear e�ect on the peak position
when varying � 3. This shift will be the mode to extract the trilinear coupling
in double-Higgs production. The size of the shift for a variation of � 4 is much
smaller. If the errors on the measurements of� 3 and the top-quark mass are
again taken into account, the extraction of the quartic Higgs self-coupling looks
challenging.





Chapter 10

Conclusions

In this thesis production processes for Higgs bosons at hadron colliders were
considered. In order to facilitate the computation of hadronic cross sections from
a large number of complicated parton processes, a computer code was developed.
The calculation of hadronic cross sections, in particular for the production of
supersymmetric Higgs bosons at the LHC in various processeswas examined in
the �rst part of this thesis. One-loop SUSY-QCD corrections, i.e. corrections
with squarks and gluinos running in the loop, were calculated and the numerical
results discussed. In the second part triple-Higgs production in an e�ective theory
was examined and the question whether the quartic Higgs self-coupling can be
measured at hadron colliders, pursued.

The calculation of cross sections for processes which contain hundreds of sin-
gle Feynman diagrams is not possible without the help of automated tools. For
partonic cross sections there are already programs, like the packages FeynArts,
FormCalc and LoopTools. The latter one was extended, so thatthe �ve-point
loop integrals are now included which makes a calculation of2 ! 3 processes
with these tools possible. Additionally, the numerical stability of the loop inte-
grals was improved. To obtain hadronic cross sections, which are the observables
which will be measured at the LHC, the partonic cross sections must be con-
voluted with the parton distribution functions. Therefore a computer program,
called HadCalc, was written which performs this task. Usingthis program it is
possible to calculate both integrated and di�erential partonic and hadronic cross
sections of processes which were generated by FormCalc beforehand. The cross
sections can be di�erential with respect to the invariant mass of the �nal state, or
rapidity or transverse momentum of one of the outgoing particles. Additionally,
the possibility to apply cuts on the rapidity, the transverse momentum, and the
jet separation of the �nal-state particles was implemented.

This program was then used to calculate SUSY-QCD corrections to various
Higgs-boson-production processes at the LHC. The �rst considered process was
the production of a charged Higgs boson in association with aW boson via bot-
tom quark{anti-quark annihilation. It is known that the bot tom-quark Yukawa
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coupling receives large one-loop corrections for larget � . They are universal and
can be parametrized via the variable �mb and summed up to all orders in per-
turbation theory. The numerical analysis showed that in thelarge-t � regime this
term indeed represents the dominant contribution and the one-loop cross section
is well approximated by the � mb-corrected tree-level result. For smallt � , also
other terms play an important role. The leading subdiagram of this region was
identi�ed and its analytical behavior studied. These contributions can reach a
signi�cant size, yielding corrections of up to 50% for certain parameter combina-
tions. It is a true one-loop result and cannot be taken into account by an e�ective
tree-level coupling.

Furthermore, the production of anh0 via vector-boson fusion was calculated.
This process has a clear experimental signature of two jets in the forward re-
gion of the detector. In the theoretical analysis this phase-space region was
selected by applying corresponding cuts. The numerical size of the SUSY-QCD
corrections to this process is ofO (10� 4), and therefore signi�cantly below the
experimental uncertainty which LHC will be able to reach. This smallness of the
corrections could be explained by cancellations between di�erent one-loop Feyn-
man diagrams and the appearance of suppression factors. Hence, they do not
induce a su�ciently large modi�cation of the cross section,which would allow
to distinguish between the SM and the MSSM in the Higgs sectorin this way.
Additionally, h0-production with two �nal-state jets, where one or two of thein-
coming partons are gluons, was considered. This constitutes a background to the
above-mentioned vector-boson-fusion process. Thus for the calculation the same
cuts were applied. The total contribution of these processes is smaller than the
total vector-boson-fusion cross section by more than four orders of magnitude,
so they can be safely neglected in an analysis ofh0-production via vector-boson
fusion.

Moreover, the associated production of anh0 with a heavy, i.e. bottom or top,
quark{anti-quark pair was studied. These processes also form discovery channels
for the Higgs boson. Additionally, they can be used to measure the respective
Yukawa couplings. In the case of bottom quarks the �nal-state jets are required
to have large transverse momenta to avoid the appearance of large logarithms
and corresponding cuts on the phase space were applied. For the top quarks
no such cuts are necessary and therefore the calculation of the cross section was
conducted over the full phase space. Both times the SUSY-QCDcorrections
provide a signi�cant contribution to the total cross section, which must be taken
into account. For �nal-state bottom-quarks the � mb-corrected tree-level cross
sections give a good estimate of the full one-loop result in large regions of the
MSSM parameter space. Only when the o�-diagonal elements ofthe sbottom
mixing matrix become large, does this approximation break down. Here other
terms also give signi�cant contributions, which lead to a sizable change in the
numerical result. As the sign of the two terms di�ers, the overall size of the one-
loop corrections is reduced. Nevertheless, they provide a signi�cant contribution
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to the total cross section, which can reach up to 40% for certain combinations of
MSSM parameters. In the top-quark case the full one-loop calculation is never
well approximated by the � mt -corrected tree-level cross section. As the �mt

term contains a suppression of1t �
instead of the t � -enhancement of �mb, this

behavior is expected. The total size of the corrections tot�th0-production is of
the order of several percent.

In the last part of this dissertation the production of threeHiggs bosons at
hadron colliders was considered. This process can be used toextract the quartic
Higgs self-coupling, thereby determining the Higgs potential. In this calculation
not the MSSM was used as the underlying model, but an e�ectivetheory deduced
from the Standard Model, where the three- and four-Higgs self-couplings were
left as free parameters. The numerical analysis showed thatthe cross section
is too small to be measured at the LHC. A future Very Large Hadron Collider
with a projected center-of-mass energy of 200 TeV would produce enough three-
Higgs events. However, because of the interference structures of the di�erent
diagrams which contribute to this �nal state, the extraction of the quartic Higgs
coupling from the invariant-mass distribution will be seriously challenging. This
is especially true if the theoretical uncertainties and thestatistical errors on the
measurement of the trilinear self-coupling and the top-quark mass are taken into
account.





Appendix A

Choice of Parameters

A.1 Standard Model Parameters

The parameters of the Standard Model have been measured by various experi-
ments. Their current best average is [17]:

� Masses:

Quarks:

mu = 53:8 MeV mc = 1:5 GeV mt = 178 GeV

md = 53:8 MeV ms = 150 MeV mb = 4:7 GeV

Leptons:

me = 510:999 keV m� = 105:658 MeV m� = 1:777 GeV

m� e = 0 m� � = 0 m� � = 0

Gauge bosons:

mW = 80:45 GeV mZ = 91:1875 GeV m
 = mg = 0

� Coupling constants

� � 1
�
Q2 = 0

�
= 137:0359895 � MS

s (Q2 = m2
Z ) = 0 :1172 :

The masses of the �rst-generation quarksmu and md are e�ective parameters.
They were chosen in a way that the vacuum polarization of the photon, which
was determined from experimental data via a dispersion relation and is known
more exactly, is correctly reproduced [148].

The calculations in this thesis were performed with the parameters quoted
above. Only the masses of the light quarksmu, md, mc and ms were set to zero
exactly as their contribution is negligible. Also the lepton masses are mentioned
here only for completeness, as they do not enter any diagram.
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A.2 SPA scenario of the MSSM

Even after adding experimental bounds and eliminating regions of the parameter
space which are disfavored by theoretical arguments the possible choices of the
miscellaneous MSSM parameters are still plenty. In order tounify the conventions
used in the calculations and to allow for a comparison of the results of di�erent
working groups, an e�ort was made to apply the same conventions and use certain
points in the MSSM parameter space as benchmark scenarios. For this the SPA
(Supersymmetry Parameter Analysis) conventions [16] were established.

One of the favored reference points of the MSSM parameter space in the
SPA conventions is called SPS1a0. It is de�ned in the minimal supergravity
(mSUGRA) scenario. This scenario assumes that all parameters are real, a uni-
�cation of the gauge couplings happens at the GUT scale and the soft super-
symmetry-breaking terms are universal at the high-energy scale. Therefore the
number of parameters is greatly reduced to only four. They are a common scalar
massM 0, a common gaugino massM 1=2, a common trilinear couplingA0 and the
ratio of the Higgs vacuum expectation valuest � . Additionally the sign of � is
not �xed and can be chosen freely. For SPS1a0 these variables take the following
values

M 0 = 70 GeV M 1=2 = 250 GeV A0 = � 300 GeV

t � ( ~M ) = 10 sign(� ) = +1 : (A.1)

This parameter point was chosen in such a way that it is compatible with all
current experimental bounds. The mass parameters are de�ned at the GUT
scale and then evolved via renormalization group equations(RGEs) to the SPA
scale ~M = 1 TeV which is also the scale wheret � is speci�ed.

Using this procedure the MSSM parameters take the followingvalues at the
SPA scale [16, 80]

t � =10 � =402:87 GeV mA =431:02 GeV

M 1 =103:22 GeV M 2 =193:31 GeV M 3 =572:33 GeV

A1;2
u = � 784:7 GeV A1;2

d = � 1025:7 GeV A1;2
e = � 449:0 GeV

A3
u = � 535:4 GeV A3

d = � 938:5 GeV A3
e = � 445:5 GeV

M 1;2
~Q

=526:9 GeV M 1;2
~U

=507:7 GeV M 1;2
~D

=505:5 GeV

M 3
~Q =471:3 GeV M 3

~U =384:6 GeV M 3
~D =501:3 GeV

M 1;2
~L

=181:3 GeV M 1;2
~R

=115:6 GeV

M 3
~L =179:5 GeV M 3

~R =109:8 GeV : (A.2)

The RGE evolution leads to di�erent values for the soft-breaking mass parameters
and trilinear couplings of the �rst two and the third generation. In the above-
mentioned table the generation index is denoted by the superscript.
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These parameters must be interpreted as parameters in theDR renormal-
ization scheme. As most of the calculations in this thesis are done using OS
renormalization a further conversion step is necessary. Using theseDR parame-
ters the masses of all supersymmetric particles are computed at the one-loop level.
Then a minimal set of these masses is chosen and the OS parameters are calcu-
lated using the tree-level relations between parameters and masses. With this
procedure the physical masses of the particles in both renormalization schemes
are equal. Thus a meaningful comparison of the results of calculations in both
schemes is possible.

This conversion procedure yields the following MSSM parameters in the OS
scheme [80]:

t � =10 � =399:26 GeV mA =431:02 GeV

M 1 =100:11 GeV M 2 =197:55 GeV M 3 =612:85 GeV

A1;2
u = � 784:7 GeV A1;2

d = � 1025:7 GeV A1;2
e = � 449:0 GeV

A3
u = � 535:4 GeV A3

d = � 938:5 GeV A3
e = � 445:5 GeV

M 1
~Q =565:97 GeV M 1

~U =546:78 GeV M 1
~D =544:95 GeV

M 2
~Q =565:91 GeV M 2

~U =546:84 GeV M 2
~D =544:97 GeV

M 3
~Q =453:05 GeV M 3

~U =460:52 GeV M 3
~D =538:13 GeV

M 1
~L =184:12 GeV M 1

~R =118:02 GeV

M 2
~L =184:11 GeV M 2

~R =117:99 GeV

M 3
~L =182:18 GeV M 3

~R =111:29 GeV : (A.3)

These are the parameters used for the calculations in this thesis when the SPS1a0

parameter set is referred to.





Appendix B

Basic Principles of
Supersymmetry

B.1 Poincar�e group

Every point in four-dimensional space-time of Minkowski space is characterized
by a contravariant vector which is de�ned by

x � =
�
x0; x1; x2; x3

�
= ( t; ~x) (B.1)

as generalized space coordinate. With the metric tensor

g�� = g�� = diag (1; � 1; � 1; � 1) (B.2)

a covariant vector

x � = g�� x � = ( t; � ~x) (B.3)

can also be de�ned.
Here and in the following Greek indices run from 0 to 3 and Latin ones from

1 to 3 except where denoted otherwise. Einstein's sum convention is implicitly
assumed, i.e. indices which appear once as covariant and once as contravariant
index are summed over. Additionally natural units are used where~ = c = 1.

Derivatives with respect to generalized space coordinates can be abbreviated
as

@� :=
@

@x�
=

�
@
@t

; ~r
�

@� :=
@

@x�
=

�
@
@t

; � ~r
�

: (B.4)

The momentum four-vector is de�ned as

p� = i@� = ( E; ~p) : (B.5)
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B.2 Spinors

B.2.1 Weyl spinors

Two-component anticommuting objects� � which transform under a matrixM of
SL(2; C) as

� � ! M �
� � �

�� _� ! M � _�
_�
�� _�

� � !
�
M � 1

�
�

�
� � �� _� !

�
M � 1

� � _�
_�
��

_� (B.6)

are called Weyl spinors. The spinor indices� , _� , � and _� can take the values 1
and 2. Additionally the relations

�� _� � � �
� � � = � �� � � (B.7)

hold. On the right-hand side the two-dimensional totally antisymmetric tensor

� �� = � � �� =
�

0 1
� 1 0

�
=

8
><

>:

1 for even permutations off 1; 2g

� 1 for odd permutations off 1; 2g

0 else

(B.8)

has been introduced. Along the same lines also three-dimensional

� ijk = � ijk =

8
><

>:

1 for even permutations off 1; 2; 3g

� 1 for odd permutations off 1; 2; 3g

0 else

(B.9)

and four-dimensional versions

� ���� = � � ���� =

8
><

>:

1 for even permutations off 0; 1; 2; 3g

� 1 for odd permutations off 0; 1; 2; 3g

0 else

(B.10)

can be de�ned, which are needed later.
If one generalizes the de�nition of the Pauli matrices~�

� 1 =
�

0 1
1 0

�
� 2 =

�
0 � i
i 0

�
� 3 =

�
1 0
0 � 1

�
(B.11)

to four dimensions via

� � = (1 ; ~� ) �� � = (1 ; � ~� ) ; (B.12)

then the Dirac equation can be written in two-component notation as follows:

(�� � p� ) _�� � � = m�� _� (� � p� )� _� ��
_� = m� � : (B.13)
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B.2.2 Dirac and Majorana spinors

Out of two two-component Weyl spinors a four-component spinor

 =
�

� �

�� _�

�
(B.14)

can be constructed. If� = � ,  is called a Majorana spinor, else is called Dirac
spinor. The four-component equivalent to the Pauli matrices are the
 matrices
which are de�ned via the Cli�ord algebra

f 
 � ; 
 � g = 
 � 
 � + 
 � 
 � = 2g�� : (B.15)

Their hermitian conjugates are


 � y = 
 0
 � 
 0 ; (B.16)

so 
 0 is hermitian and the 
 i are antihermitian. There are di�erent representa-
tions of the 
 matrices which all ful�ll eq. (B.15). The one corresponding to the
form of the spinors in eq. (B.14) is called chiral representation and in that one
the 
 matrices have the following form


 � =
�

0 � � � _�

�� _��
� 0

�
: (B.17)

Additionally one de�nes 
 5 as


 5 = 
 5 = i
 0
 1
 2
 3 chiral=
representation

�
� 1 0
0 1

�
; (B.18)

for which the following relations hold:
�


 � ; 
 5
	

= 0 ( 
 5)2 = 0 : (B.19)

Then the projection operators

PL �
1
2

(1 � 
 5) PR �
1
2

(1 + 
 5) (B.20)

yield the left- and right-handed part of a Dirac spinor, respectively

 L = PL  =
�

� �

0

�
 R = PR  =

�
0
�� _�

�
: (B.21)

The 4� 4 tensor matrices� �� are constructed from the
 matrices via

� �� =
i
2

[
 � ; 
 � ] : (B.22)
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The spinor � which is adjoint to  is de�ned as

� =  y
 0 =
�
� a; �� _�

�
: (B.23)

Starting from eq. (B.13) the Dirac equation can now also be written in a four-
component notation

(
 � p� � m)  �
�
=p � m

�
 = 0 : (B.24)

In the following a few contraction identities and traces over 
 matrices are
collected which are needed for the calculation of cross sections:

=a=b = a � b� i� �� a� b�


 � 
 � = 4

Tr ( 1 ) = 4

Tr ( 
 � ) = 0

Tr
�

 5

�
= 0

Tr
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�
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�
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 � 
 � 
 � ) = 4 ( g�� g�� � g�� g�� + g�� g�� )

Tr
�
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 � 
 5

�
= � 4i� ����

Tr
�

 � 
 � : : : 
 � 
 �

| {z }
odd number of 
 's

�
= 0 :

(B.25)

B.3 Grassmann variables

For the de�nition of the supersymmetric anticommutation relations in chapter3.2
anticommuting numbers, so-called Grassmann numbers, wereintroduced. The
basic relation between two such numbers� and � is

�� = � �� ; (B.26)

which is equivalent to

f �; � g = 0 : (B.27)

The last relation shows the fermionic character of these numbers. In particular,
the square of any Grassmann number is zero.

Grassmann numbers form an Abelian group under the operationof addition.
The multiplication with ordinary complex numbers has the same properties as
scalar multiplication of a vector, in particular the distributive law holds.
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The integral over Grassmann numbers is de�ned as
Z

d� (A + B� ) = B ; (B.28)

whereA and B are complex numbers. This leads to the expression for di�eren-
tiation with respect to Grassmann numbers

@
@�

(A + B� ) = B : (B.29)

Complex Grassmann numbers can be built out of real and imaginary parts in
the same way as for ordinary complex numbers. It is convenient to de�ne the
complex conjugation in such a way that the order of a product is reversed, as is
done in hermitian conjugation of matrices:

(�� ) � = � � � � = � � � � � : (B.30)

In the integral over complex Grassmann numbers� and � � are treated as inde-
pendent variables as the real and the imaginary part are independent of each
other, so

Z
d� d� � � � � = 1 : (B.31)





Appendix C

Phase-space parametrization

In this appendix the parametrization of the phase space for 2! 2 and 2 ! 3
processes, as it was used for the calculations of this thesis, is presented. It
is the same parametrization which is also used in FormCalc [11, 12, 13]. The
parametrization is performed in the center-of-mass systemof the two incoming
particles, which de�ne the beam axis and carry a center-of-mass energy of

p
s.

For each �nal-state particle an integral over its three-momentum ~k occurs in the
calculation of integrated cross sections. The energyk0 of the particle is �xed by

the on-shell conditionk0 =
q

j~kj2 + m2, wherem denotes the mass of the particle.
Four of these integrals are eliminated by global energy-momentum conservation.
In the following sections the parametrizations of the two- and three-particle phase
space are shown.

C.1 Two-particle phase space

With two particles in the �nal state, labeled by the subscripts 3 and 4 in the
following, the phase-space integral can be written in termsof two angles. They
are the azimuth angle� and the polar angle� with respect to the beam axis.
Because of rotational invariance around the beam axis the integration over � is
trivial and amounts to a factor of 2� . So the integral over the two-particle phase
space is given by

Z
d� 2 =

Z 1

� 1
dc�

1
8�

j~k3j
p

s
; (C.1)

where

j~k3j2 = j~k4j2 =
s2 + m4

3 + m2
4 � 2m2

3s � 2m2
4s � 2m2

3m
2
4

4s
(C.2)

denotes the squared absolute value of the three-momentum ofthe �nal-state
particles, m3 and m4 are their respective masses, and

p
s speci�es the center-of-

mass energy of the incoming particles.
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~k1

~k2

~k3

~k4

~k5

�
�

�̂

x

y

z

Figure C.1: Graphical representation of the variables usedin the parametrization
of the 2 ! 3 phase space. The �gure is taken from ref. [13].

C.2 Three-particle phase space

For the three-particle phase space, where the outgoing particles are labeled by
the indices 3, 4 and 5, �ve independent integration variables remain after global
energy-momentum conservation has been applied. They are the energiesk0

3 and
k0

5, the azimuth angle� and the polar angle� of the �fth particle with respect to
the beam axis, and the angle ^� which rotates particle 3 out of the plane de�ned
by particle 5 and the beam axis. A graphical representation of the angles is given
in Fig. C.1.

The four-momenta of the outgoing particles have the following explicit form

k3 = ( k0
3; j~k3j~e3) k4 = (

p
s � k0

3 � k0
5; � ~k3 � ~k5)

k5 = ( k0
5; j~k5j~e5) ; (C.3)

with

~e3 =

0

@
c� c�̂ s� + s� c�

s�̂ s�

c� c� � s� c�̂ s�

1

A ~e5 =

0

@
s�

0
c�

1

A : (C.4)

The angle� , which is also plotted in the �gure, is de�ned over

c� =
(
p

s � k0
3 � k0

5)2 � m2
4 � j ~k3j2 � j ~k5j2

2j~k3jj~k5j
: (C.5)
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mi again denotes the mass of the respective particlei and
p

s is the center-of-mass
energy of the initial-state particles. Due to axial symmetrythe trivial integration
over � can be carried out immediately and yields a factor of 2� .

Then the parametrization of the three-particle phase spacetakes the following
form

Z
d� 3 =

Z (k0
5 )max

m5

dk0
5

Z (k0
3 )max

(k0
3 )min

dk0
3

Z 1

� 1
dc�

Z 2pi

0
d�̂

1
64� 3

; (C.6)

where the integration limits are given by

(k0
5)max =

p
s

2
�

(m3 + m4)2 � m2
5

2
p

s
(C.7)

and

(k0
3)max;min =

1
2�

�
� (� + m+ m� ) � j ~k5j

q
(� � m2

+ )( � � m2
� )

�
; (C.8)

using

� =
p

s � k0
5 � = � 2 � j ~k5j2 m� = m3 � m4 : (C.9)





Appendix D

Loop Integrals

When calculating quantum corrections to physical processes Feynman diagrams
appear which contain loops. The rules for evaluating Feynman diagrams state
that for every closed loop an integral over the loop momentumappears in the
expression for the amplitude. In this thesis one-loop corrections are calculated
and thus we are concerned only with one-loop integrals. The general one-loop
integral which corresponds to the general N-point one-loopdiagram depicted in
Fig. D.1 is given by

TN
� 1 :::� P

=
(2�� )4� D

i� 2

Z
dD q

q� 1 : : : q� P

[q2 � m2
1]

�
(q+ k1)2 � m2

2

�
: : :

�
(q+ kN � 1)2 � m2

N

� :

(D.1)

The notation and conventions used in this chapter correspond to that used in
ref. [15]. The loop momentum is denoted byq, the momentapi are the momenta of
the external propagators and the momentaki , which appear in the denominator,

:
:
:

p1 p2

pN � 1pN

q

q+ k1

q+ kN � 1

m1

m2

mN

Figure D.1: General one-loop diagram. The arrows denote the momentum 
ow.
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are related to the former via

p1 = k1; p2 = k2 � k1; : : : pN = kN � kN � 1

k1 = p1; k2 = p1 + p2; : : : kN = p1 + � � � + pN : (D.2)

It is assumed implicitly that all propagators in the denominator have an in�nitely
small positive imaginary part � 0 which is set to zero only after the integration has
been performed. Explicitly this is achieved by replacing the massesm2

i with
m2

i � i� 0 everywhere.
The expression given in eq. (D.1) is valid for both dimensional regularization

and dimensional reduction (see chapter4.1). D = 4 � 2� is the dimension of the
integral, where� is a small positive number which will be sent to zero at the end
of the calculation. The regularization parameter� has the dimension of a mass
and is introduced to keep the dimension of the whole expression �xed when going
from 4 to D dimensions.

Following ref. [149] the loop integrals are denoted by capital letters in ascend-
ing order, resulting in

T1 = A one-point loop integral,
T2 = B two-point loop integral,
T3 = C three-point loop integral,
T4 = D four-point loop integral,
T5 = E �ve-point loop integral, : : : .

Scalar integrals, which do not have an index� i , are denoted with an index 0, e.g.
A0.

The scalar one-point integralA0 can be calculated analytically and reads

A0(m) = m2

�
� � ln

m2

� 2
+ 1

�
+ O (� ) (D.3)

where

� =
1
�

� 
 E + ln 4 � (D.4)

contains the divergent part of the loop integral with the Euler-Mascheroni con-
stant


 E ' 0:577215664901532: : : : (D.5)

This one and expressions for the two-, three- and four-pointloop integrals were
�rst given in ref. [ 149] and further improved later [150, 151]. Scalar loop integrals
with �ve and more internal propagators can be reduced to four-point ones [78,
152].
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The tensor integrals can be decomposed into linear combinations of Lorentz-
covariant tensors [153]. They consist of a basis which is formed of linearly inde-
pendent momenta and the metric tensorg�� , and coe�cients which are Lorentz
scalars. This decomposition is not unique. Here the momentaare chosen as the
momentaki appearing in the denominator. In this basis the coe�cient functions
are totally symmetric in their indices. The decomposition for tensors up to rank
four reads

TN
� 1

=
N � 1X

a=1

ka� 1 TN
a (D.6)

TN
� 1 � 2

= g� 1 � 2 TN
00 +

N � 1X

a;b=1

ka� 1 kb� 2 TN
ab (D.7)

TN
� 1 � 2 � 3

=
N � 1X

a=1

�
g� 1 � 2 ka� 3 + g� 2 � 3 ka� 1 + g� 3 � 1 ka� 2

�
TN

00a

+
N � 1X

a;b;c=1

ka� 1 kb� 2 kc� 3 TN
abc (D.8)

TN
� 1 � 2 � 3 � 4

= ( g� 1 � 2 g� 3 � 4 + g� 1 � 3 g� 2 � 4 + g� 1 � 4 g� 2 � 3 ) TN
0000

+
N � 1X

a;b=1

�
g� 1 � 2 ka� 3 kb� 4 + g� 1 � 3 ka� 2 kb� 4 + g� 1 � 4 ka� 2 kb� 3

+ g� 2 � 3 ka� 1 kb� 4 + g� 2 � 4 ka� 1 kb� 3 + g� 3 � 4 ka� 1 kb� 2

�
TN

00ab

+
N � 1X

a;b;c;d=1

ka� 1 kb� 2 kc� 3 kd� 4 TN
abcd : (D.9)

Furthermore the coe�cient functions of the tensorial loop integrals can be
written as functions of the scalar integrals [153]. This is known as Passarino-
Veltman reduction scheme. A complete set of equations for reducing loop inte-
grals up to point rank N = 4 and up to tensor dimensionN + 1 can be found for
example in ref. [152]. These are all loop integrals which can appear in processes
with up to four external legs.

In the reduction the inverse of the Gram matrix occurs. The Gram matrix Z
is a matrix which is built up from the momenta ki by Z ij = 2ki kj . This matrix
can become singular. For up to four-point loop integrals this happens only at
the borders of phase space. Care has to be taken when calculating phase space
points close to the edges, as the computation can become numerically unstable.
A technique to improve stability will be presented in appendix E.1.

For loop integrals with �ve and more internal propagators the Gram matrix
can become singular also at points inside the phase space. However the loop mo-
menta are four-component Lorentz vectors, so a linear independent combination
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of four of them spans the whole Minkowski space. This allows one to eliminate
the inverse Gram matrix. The reduction is done in such a way that N -point loop
integrals are reduced to a combination of (N � 1)-point loop integrals with the
tensor rank increased by one [152]. Recently a slightly di�erent scheme has been
found which even reduces the tensor rank by one in the decomposition [154].

For phase space points close to those where the Gram matrix becomes singular
also expansions around vanishing determinant of the Gram matrix or methods
which use numerical integration can be applied. An overviewof possible tech-
niques with explicit formulae for loop functions with point rank up to six was
given in ref. [155].

For the numerical evaluation of the loop integrals the LoopTools package [11,
14], which is based on FF [156], was used. In this package the stability of calculat-
ing the Passarino-Veltman reduction was improved numerically with the method
of Gaussian elimination, which will be described in appendix E.1. Addition-
ally the �ve-point functions up to tensor rank four were implemented based on
ref. [152] and the scalar four-point function amended according to ref. [151] so it
is valid for all cases. The numerical results of the code werecompared to those
of an independent code from Dittmaier [157] and very good agreement could be
found. Moreover a Passarino-Veltman reduction of the �ve-point tensor integrals
was implemented. Also here a comparison yielded excellent agreement except for
points very close to the edges of phase space where the decomposition algorithm
is known to become numerically unstable.

The explicit formulae for this decomposition are given below. To shorten the
notation some abbreviations are introduced:

�� ij =1 � � ij =

(
0 for i = j

1 for i 6= j
; i j =

(
i for i < j

i � 1 for i > j
: (D.10)

A number in brackets behind the loop integral denotes that the term in the
denominator with a mass with this index is left out from the integrand, e.g. the
normal scalar four-point integral

D0 =
(2�� )4� D

i� 2
�

Z
dD q

1

[q2 � m2
1]

�
(q+ k1)2 � m2

2

� �
(q+ k2)2 � m2

3

� �
(q+ k3)2 � m2

4

� ;

(D.11)

where the second propagator is left out, becomes

D0 (2) =
(2�� )4� D

i� 2

Z
dD q

1

[q2 � m2
1]

�
(q+ k2)2 � m2

3

� �
(q+ k3)2 � m2

4

� :

(D.12)
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The resulting integral is a loop integral with the point-rank reduced by one,
as one can see in the example above, which is a three-point loop integral. For
integrals where the �rst propagator is eliminated the integration momentum must
be shifted byq ! q � k2, so that the standard form eq. (D.1) is again obtained.

With this the tensorial coe�cients of the �ve-point loop int egrals are:

E i =
4X

n=1

�
Z (4)

� � 1

in
S1

n (D.13)

E ij =
4X

n=1

�
Z (4)

� � 1

in
S2

nj (D.14)

E ijk =
4X

n=1

�
Z (4)

� � 1

in
S3

njk (D.15)

E ijkl =
4X

n=1

�
Z (4)

� � 1

in
S4

njkl ; (D.16)

wherei; j; k; l = 1; : : : ; 4 and with

f n = k2
n � m2

n+1 + m2
1 (D.17)

S1
n = D0 (n + 1) � D0 (1) � f nE0 (D.18)

S2
nj = D j n (n + 1) �� nj � D j (1) � f nE j (D.19)

S3
njk = D j n kn (n + 1) �� nj

�� nk � D jk (1) � f nE jk

+ 2
�
Z (4)

� � 1

jk
(D00 (n + 1) � D00 (1)) (D.20)
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njkl = D j n kn ln (n + 1) �� nj

�� nk
�� nl � D jkl (1) � f nE jkl

+ 2
�
Z (4)

� � 1

jk

�
D00ln (n + 1) �� nl � D00l (1)

�

+ 2
�
Z (4)

� � 1

kl

�
D00j n (n + 1) �� nj � D00j (1)

�

+ 2
�
Z (4)

� � 1

lj

�
D00kn (n + 1) �� nk � D00k (1)

�
(D.21)

and the Gram matrix

Z (4) = 2

0

B
B
@

k1k1 k1k2 k1k3 k1k4

k1k2 k2k2 k2k3 k2k4

k1k3 k2k3 k3k3 k3k4

k1k4 k2k4 k3k4 k4k4

1

C
C
A : (D.22)

All coe�cients which are multiplied by the metric tensor, i.e. have a 00 in the
index, vanish identically

E00 = E00i = E0000 = E00ij = 0: (D.23)
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The decomposition into coe�cients multiplied by the metric tensor and such
multiplied by the momenta is not unique as the four linearly independent mo-
menta ki span the whole Minkowski space and are related to the metric tensor
by

g�� =
4X

i;j =1

2
�
Z (4)

� � 1

ij
k�

i k�
j : (D.24)

The formulae given in ref. [152] use a di�erent decomposition in order to avoid
inverse Gram matrices. This leads to a non-vanishingE00 which is compensated
by di�erent E ij and the same happens for higher-tensor ranks.

For a numerical comparison the two expressions must be transformed into
each other by exploiting the relation eq. (D.24):

E P V
ij = E D

ij + 2
�
Z (4)

� � 1

ij
E D

00 (D.25)

E P V
ijk = E D

ijk + 2
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Z (4)

� � 1
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E D
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E D
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Z (4)
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E D

00j (D.26)
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E D

00ij
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�
E D

0000 :

(D.27)

In the equations above the expressions from [152] are denoted by a superscript
D and the ones from the Passarino-Veltman reduction by a superscript PV.
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Numerical Methods

The numerical calculation of cross sections is only possible with the aid of com-
puter programs. Computers can do 
oating point operations only with a �nite
precision so rounding errors occur inevitably in many stepsof the program. Ex-
pressions which are still valid analytically might give a numerical result which is
utter nonsense. Therefore not only the analytical correctness must be checked
when implementing algorithms, but also that the code is numerically stable.

E.1 Gaussian Elimination

When calculating one-loop integrals, Gram matrices occur which contain scalar
products of the momenta, as was shown in chapterD . For loop integrals with up
to four external legs the inverse of the Gram matrix has to be calculated. This
matrix can become singular at the edges of phase space, i.e. for forward scattering
or at the production threshold. Already close to the edge naive matrix inversion
can become unstable as will be shown below.

As is often the case in problems where the inverse of a matrix appears in the
analytical expression the inverse of the Gram matrix itselfactually is not needed
in the Passarino-Veltman reduction scheme. This can be seeneasily for example
from the expression for the �ve-point loop integrals given in chapter D. Left-
multiplying eqs. (D.13)-(D.16) with the Gram matrix Z (4) reduces the problem
to the problem of solving a system of linear equations of the form

Ax = b; (E.1)

whereA is an n � n matrix and x and b are vectors of dimensionn. A and b are
input parameters andx is the solution vector of the system of equations. We are
going to consider the most general case here, that all components of the matrix
and the vectors can be complex numbers andb is a generic vector. The physical
case of real matricesA then follows directly from this as a special case.
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Let us �rst consider the analytic way of multiplying the input vector with the
inverse matrix. Then eq. (E.1) can be written as a functionf

f : x = A � 1b : (E.2)

Calculating the solution vector x in this manner however leads to numerical
instabilities. Let us �rst decomposef into the two partial steps

g : A 7! A � 1 (E.3)

h : A � 1 7! x (E.4)

and assume the ideal case that both partial steps can be calculated in a numer-
ically stable way. Then a stability analysis [158] yields, that the error on x is
proportional to � (A), the condition of A. The condition is de�ned as

� (A) = jjAjj � jj A � 1jj =
�

min
�

jj � Ajj
jjAjj

: A + � A singular
�� � 1

; (E.5)

where jj � jj denotes a matrix norm. In a geometrical interpretation thisis the
distance ofA to a singular matrix for which eq. (E.1) has no longer a unique
solution.

The numerical evaluation of mathematical expressions was done in double
precision in this thesis, i.e. 
oating point arithmetics with double precision as
de�ned in ref. [159]. These numbers o�er about sixteen valid digits, so that fora
condition � (A) � 1016 the matrix cannot be distinguished any longer numerically
from a singular matrix. One also says that the matrix is numerically singular.
When calculating one-loop integrals this case occurs at theedges of phase space.

Even earlier the error � x of the solution vectorx increases,

jj � xjj
jj xjj

� � (A) � 10� 16; (E.6)

and the result becomes inaccurate. Such a behavior could indeed be observed
while doing the numerical evaluation of the vector boson fusion processes (chap-
ter 7).

To avoid this problem, one decomposes the matrixA into a unipotent, i.e.
whose diagonal contains 1, lower triangular matrixL and a non-singular upper
triangular matrix R

A = LR =

0

B
B
B
B
B
@

1 0 0 : : : 0
� 1 0 : : : 0

� � 1
. . . 0

...
...

. . . . . . 0
� � : : : � 1

1

C
C
C
C
C
A

0

B
B
B
B
B
@

� � � : : : �
0 � � : : : �
0 0 � : : : �
...

...
. . . . . .

...
0 0 : : : 0 �

1

C
C
C
C
C
A

: (E.7)
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� here is a place holder for an arbitrary complex number. The algorithm partitions
the matrices such that

�
� u T

v A�

�
=

�
1 0
w L �

� �
� u T

0 R�

�
(E.8)

where

� 2 C; u; v; w 2 Cn� 1; A � ; L � ; R� 2 C(n� 1)� (n� 1) (E.9)

so

w =
v
�

(E.10)

L � R� = A � � wuT : (E.11)

L � and R� are again a unipotent lower and non-singular upper triangular matrix,
respectively. In the next step of the iteration the matrixL � R� has to be par-
titioned in this way. After applying this procedure recursively one obtains the
desired decomposition.

If � happens to be zero, the algorithm breaks down. Therefore, not A is
decomposed, butPA, whereP is ann� n permutation matrix and chosen in such
a way, that in every iteration step the �rst row and the row whose �rst column
contains the largest element by absolute value are swapped.This method is called
partial pivoting. It can be shown that with partial pivoting every non-singular
matrix A can be decomposed intoL and R and the decomposition is unique. The
system of linear equations now has the form

LRx = P � 1b: (E.12)

To solve it one �rst solves the system

Ly = P � 1b (E.13)

with an auxiliary vector y. Because of the triangular structure ofL this can be
done very easily by a recursive forward substitution

yi = ( P � 1b) i �
i � 1X

j =1

yj i = 1 ! n : (E.14)

The arrow denotes the order in which theyi must be calculated. Finally,

Rx = y (E.15)

is solved by backward substitution and one obtains the solution vector x

x i = yi �
nX

j = i +1

x j i = n ! 1 : (E.16)
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The algorithm presented here is known in the literature by the name of Gaussian
elimination with partial pivoting [ 158, 160].

An error analysis yields that the error onx is determined by

� =
jjL jj � jj Rjj

jjPAjj
(E.17)

� jj L jj � jj L � 1jj = � (L) (E.18)

If one chooses the norm as the maximum norm, the inequalityjL ij j � 1 holds
becauseL is unipotent and partial pivoting was used. Therefore

jjL jj1 � n (E.19)

jjL � 1jj1 � 2n� 1 [161]; (E.20)

so

� � n � 2n� 1 : (E.21)

When calculating loop integrals only matrices of dimensionn � 4 occur, so the
calculation of x in this manner is absolutely stable.
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Manual of the HadCalc Program

For the calculation of hadronic cross sections a computer code, called HadCalc,
was written (see chapter5.5). In this appendix the manual of the program is
presented.

F.1 Prerequisites and Compilation

F.1.1 Prerequisites

The following programs are required for compiling and running HadCalc and
must be installed:

� a Fortran compiler compliant with the Fortran77 standard,

� a C compiler conforming to ANSI-C,

� GNU make,

� FormCalc 4 [11],

� one of the two following packages that include sets of partondistribution
functions from various groups

{ PDFLIB (CERN Computer Program Library entry W5051) [92], or

{ LHAPDF [ 93].

Additionally, support for the following two programs is integrated into HadCalc

� FeynHiggs 2.1beta or newer [162],

� Condor workload management system for compute-intensive jobs.

139
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PDG 
avor code Particle
0 gluon g
1 down quarkd
2 up quark u
3 strange quarks
4 charm quarkc
5 bottom quark b
6 top quark t
-1 down anti-quark �d
-2 up anti-quark �u
-3 strange anti-quark �s
-4 charm anti-quark �c
-5 bottom anti-quark �b
-6 top anti-quark �t

Table F.1: PDG 
avor codes

F.1.2 Con�guration and Compilation

First the partonic subprocess must be generated and prepared by following the
instructions in the FormCalc4 manual. Especially the de�nitions in process.h
have to be updated correctly as HadCalc relies on those. It isnot necessary to
�ll in correct MSSM parameters or tune integration parameters, however.

Then the distribution �le HadCalc-0.5.tar.gz should be unpacked. As next
step change into its subdirectory and runconfigure from there. The following
con�gure options are mandatory:
--with-partonprocess=DIR This is the location of the FormCalc-

generated partonic output.
--with-processtype=mn By this option the processtype is �xed,

speci�ed by the number of incoming par-
ticles m and the number of outgoing par-
ticles n. Note that m and n form a sin-
gle number, i.e. for a 2! 2 process
one would write --with-processtype=22.
Currently, 2 ! 1, 2 ! 2 and 2 ! 3 is
implemented and can be entered here.

--with-parton1= i The type of the �rst parton is speci�ed
by i , given as the PDG 
avor code [17]
(see tableF.1).

--with-parton2= i Similarly, this is the PDG 
avor code for
the second parton.
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Additionally the following options are recognized by con�gure and enable optional
features:
--enable-antiproton1 Hadron 1 is an anti-proton instead ofa

proton.
--enable-antiproton2 Hadron 2 is an anti-proton instead ofa

proton.
--with-condor[=DIR] Link the �nal code with the Condor

workload management system libraries.
If the binary is not in the standard search
path of your shell, its location can be
speci�ed with the optional DIR argu-
ment.

--with-feynhiggs[=DIR] Link the �nal code with the Feyn-
Higgs library. This is mandatory if the
FormCalc option to compute the MSSM-
Higgs sector via FeynHiggs is chosen.
The optional DIR speci�es the location
of the FeynHiggs library libFH.a, if it is
not in the standard search path of the
compiler.

--with-looptools=DIR If LoopTools is not in the standard
search path of the compiler, its location
can be speci�ed here.

--with-lhapdf[=DIR] Use LHAPDF for the parton distribution
functions. If the LHAPDF library is not
in the standard search path, its location
can be given by the optional DIR argu-
ment. The PDF data is assumed to be
found at the same place.

--with-pd
ib[=DIR] Use PDFlib for the parton distribution
functions. If the PDFlib library is not in
the standard search path and the CERN-
lib environment variables $CERN and
$CERN LEVEL are not set, the DIR
argument designates where it can be
found.

Only one of the last two options can be given on the command line. If neither
--with-lhapdf nor --with-pd
ib was given, con�gure �rst tr ies to �nd LHAPDF
and, if this fails, probes the existence of PDFlib.

After having run configure , a call to makecompiles the program. When
it successfully �nishes, a binary calledHadCalchas been created in the current
path.
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F.2 Running the program

The program is simply started by running./HadCalc . It will then present a
menu which allows one to tune various settings and start the calculation of cross
sections. The following subsections describe the possiblesettings in detail. An
item is chosen by typing the number shown in brackets before the item and
pressing \Enter". In every menu \(0)" exits the submenu or, for the top level
menu, quits the program. Invalid input is ignored and an error message is written
on the screen.

F.2.1 Physics parameters

This submenu sets the parameters of the MSSM and related things and is divided
in three further submenus.

MSSM parameters

Here all values which correspond to parameters of the MSSM are set.
First let us look at menu item 16. This decides whether the program should

use a common massMSUSY in the sfermion sector, or if individual values for
the left-handed squarks and sleptons and the right-handed sups, sdowns and
selectrons are allowed. Depending on this 
ag either the MS* variables cannot
be set (because they are �xed atMSUSY ) or MSUSY itself cannot be set (because
it is irrevelant and not used in the computation). When choosing a common
SUSY mass scale, the settings in the MS* variables are retained and restored
when deselecting this option.

All other parameter settings can be in two states. They can either have a
�xed setting, then this value is used for all calculations. Or their value can be
running. In this case a lower and upper bound and the number ofintermediate
intervals must be chosen. Then the computation of the cross section is done
(\intermediate intervals" + 1) times, with the value of the p arameter increasing
from lower bound to upper bound1. The distance between two values is equal for
the setting \linear" and exponentially increasing for the setting \logarithmic",
i.e. the values are closer at the lower bound and they have equal distance again
when plotting them on a logarithmic scale. A behavior vice versa with values
closer at the upper bound can be easily achieved by exchanging lower and upper
bound. If more than one parameter is chosen to be running, theiteration loops
are nested, with the �rst parameter varying fastest.

1Despite its name, the lower bound can be mathematically larger than the upper bound;
then the value of the parameter is decreasing.
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Kinematic parameters

In this menu all parameters are set which are related to kinematic variables of
the process.

The underlying parameter of items 3 and 4 depends on the type of process.
For processes with two particles in the �nal state, this is the angle� between the
two outgoing particles, for those with three �nal particles, it denotes the energy
k0

5 of the �fth particle, which is the third �nal-state particle . The menu items 8,
12, 14 and 15, which refer to the �fth particle, are ignored for 2 ! 2 processes
and cannot be changed.

The settings of the parameters are possible in the same way asalready de-
scribed in the previous item.

Scale parameters

This menu sets the renormalization and factorization scaleof the process in the
same way as described above. A negative number for the renormalization scale
has a special meaning. Then the sum of the masses of the �nal-state particles
is taken, multiplied with the absolute value of the setting,and this number is
taken as the renormalization scale. Additionally it can be chosen that both
renormalization and factorization scale are always set to the same value.

Show ModelDigest (FormCalc)

Finally this choice invokes FormCalc's ModelDigest function, which takes the pa-
rameters as an input and calculates the physical masses of the particles. Thereby
it applies lower bounds on the masses established by experiment and refuses the
calculation if these bounds are violated. The calculated cross section will also
be zero in that case. The FormCalc manual contains a more detailed explana-
tion of this function. There it is also described how the check for the violation
of experimental bounds can be switched o� by 
ipping a switchin FormCalc's
process.h.

F.2.2 PDF parameters

The set used for the calculation of the parton distribution functions is chosen by
this submenu. The layout and choices presented depends on whether LHAPDF
or PDFlib is used. For PDFlib three numbers must be entered. The�rst de-
notes the type of parton distribution functions and is 1 for proton PDFs. The
second number speci�es the respective group which has performed the �t to the
experimental data and the third number chooses a speci�c PDF set. When using
LHAPDF a string must be entered that directly speci�es the �lename of the PDF
set in the LHAPDF subdirectory.
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F.2.3 Integration parameters

This submenu chooses the integration routine and sets its parameters. Currently
there are six integration routines available:

GAUSSKR One-dimensional Gauss-Kronrod algorithm
GAUSSAD One-dimensional adaptive Gauss algorithm
DCUHRE Multi-dimensional adaptive Gauss algorithm
VEGAS Monte Carlo integration algorithm
SUAVE Subregion adaptive Monte Carlo integration algorithm
DIVONNE Monte Carlo integration via strati�ed sampling

The last four algorithms are part of the CUBA library [163]. In the following
only a short description of the possible parameter settingsis given. The technical
details of these algorithms and the precise impact of the variables are described
in the CUBA manual and shall not be repeated here.

The GAUSSKR and GAUSSAD algorithms can only handle one-dimensional
integrals. If multi-dimensional integrals are attempted to be computed, VEGAS
is used as a fallback. In contrast the DCUHRE and DIVONNE algorithms can-
not handle one-dimensional integrals. There the GAUSSKR algorithm is used
instead. In both cases a warning is printed on the screen.

All integration routines share these two variables:

� relative error: the desired relative error

� absolute error: the desired absolute error

Additionally, the following variables are available for one or more of the routines.
Which ones these are is denoted in square brackets after the entry.

� maximum # of points: the maximum number of function evaluations used
[GAUSSAD, DCUHRE, VEGAS, SUAVE, DIVONNE]

� # of points for starting: the initial number of points per ite ration [VEGAS]

� increase in # of points: the number of points the previous number is incre-
mented for the next iteration [VEGAS]

� # of points for subdivision: the number of points used to sample a subdi-
vision [SUAVE]

� 
atness # for splits: the type of norm used to compute the 
uctuation of
a sample [SUAVE]

� # of passes: the number of passes after which the partitioning phase ter-
minates [DIVONNE]
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� key 1: determination of sampling in the partitioning phase [DIVONNE]

� key 2: determination of sampling in the �nal integration phase [DIVONNE]

� key 3: sets the strategy for the re�nement phase [DIVONNE]

� maximum � 2 for subregion: the maximum� 2 value a single subregion is
allowed to have in the �nal integration phase [DIVONNE]

� minimum deviation for split: a bound which determines whether it is worth-
while to further examine a region that failed the� 2 test [DIVONNE]

F.2.4 Amplitude switches

This submenu sets the type of diagrams used for the computation and how the
cuts should be applied. The value of the cuts is set in the parameter section and
was already described there.

The �rst entry decides whether the tree-level and the one-loop result shall
be computed in one go or only one of them. Possible choices are\Tree only",
\Tree+Loop" and \Loop only". Which way is better depends on the concrete
circumstances and features of the problem. Computing both at the same time
might save computation time, but the integration routine has to optimize its
choices for both at the same time, which might lead to sub-optimal performance.
On the other hand it is not too likely that there are problematic regions in the
tree-level cross section which are no longer present in the one-loop computation,
so normally this procedure gives satisfactory results. If only one cross section is
computed, the value of the other one is set to zero.

The remaining entries decide if and how the cuts on rapidity,transverse mo-
mentum and jet separation should be applied. It is either possible to have the
particle, or a pair of particles in case of the jet separation, ful�ll a cut, violate it
or ignore the cut altogether. Since HadCalc relies on FormCalc for the partonic
process and implementation details, for the cuts for particle three in the 2! 2
case and particle �ve in the 2! 3 case it cannot be chosen that the rapidity and
transverse momentum cut is violated, but they always have tobe ful�lled. They
can, however, be switched o� by setting the relevant entry inthe parameters
section to zero.

F.2.5 Input/Output options

This submenu allows one to read in a set of parameters from a �le and specify
where and how to write the calculation output.

To read in a set of parameters a parameter speci�cation must have been
written into a �le and this �lename then has to be entered here. All possible
variables which can be set in such a �le are given in sectionF.3. There are three
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basic types of variables. Those which specify a parameter can either take four
comma-separated values that are the lower and upper bound, the behavior with
respect to increments, i.e. linear or logarithmic, and the number of intermediate
intervals, or a single number denoting its �xed value. The ones of typeboolean
turn on a certain switch and take no arguments. All remainingones take a single
argument and the variable is assigned to this parameter.

In the following also a formal de�nition of the parsing rulesis given:

� The �le is read line by line.

� White space at the beginning of a line is ignored.

� Empty lines are ignored.

� Lines starting with the character \#" (after optional white space) are com-
ment lines and ignored.

� The �rst token which is separated by white space from the restof the line
is extracted. This token has to be a token from the list of valid tokens in
sectionF.3.

� If the token type is boolean, its associated parameter is set.

� If the token type is integer, an attempt to read an integer value is made
and if it succeeds, this is assigned to the associated parameter.

� If the token type is double, an attempt to read a double precision 
oating-
point number is made and if it succeeds, this is assigned to the associated
parameter.

� If the token type is string, the second token is assigned to the associated
parameter.

� If the token type is parameter, the following actions happen:

{ An attempt to read four comma-separated double precision 
oating-
point numbers is made.

{ If this attempt succeeds, the four numbers are assigned to lower bound,
upper bound, log and number of intermediate intervals of theparam-
eter. log means linear increase if this variable is zero and exponential
one otherwise.

{ If this does not succeed, an attempt to read a single double precision

oating point number is made.

{ If this succeeds, this number is the constant value of the parameter.

{ If this also does not succeed, the line is 
agged as not parsable.
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� For lines not parsable by the rules above a warning message isprinted and
their content is ignored.

Furthermore some integration routines o�er the possibility to write interme-
diate results or progress report to the screen. This is turned on with Verbose
integration output. For hadronic cross sections this also enables writing PDFlib
statistics on the screen at the end of the calculation.

Finally one can choose whether the calculation results willbe written to the
screen or into a �le. In the latter case the variableoutputstring describes which
elements should be written to the output �le. The form of thisvariable together
with the valid tokens is described in sectionF.4. The output-�le format starts
with a \#"-quoted header with a �le identi�cation and the con tent of output-
string. Then, each on a line by itself, for every scanned parameter point the
values de�ned inoutputstring are written, separated from each other by a space.

F.2.6 Amplitude calculation

This submenu �nally allows one to choose the cross section one wants to compute
and does the calculation. During the following integration the process may be
interrupted with \Ctrl-C", after which it aborts the curren t calculation and jumps
back into the main menu. Due to restrictions imposed by Condorthis feature
is not available if HadCalc was con�gured with the option --with-condor. Here
pressing \Ctrl-C" aborts the whole HadCalc program.

F.3 Allowed tokens in input �les

The following list shows all token names that may appear in aninput �le together
with its associated type. The tokens are not case-sensitive. Thereby parameter
means that the variable can either be followed by four comma-separated values
that denote the lower and upper bound, whether the increase is linear or loga-
rithmic, and the number of intermediate intervals, or a single number that is the
�xed value of this parameter. booleanmeans that a speci�c behavior is switched
on. There is a corresponding separate token that switches the same behavior o�
again. doubleand integer tokens take a single double-precision or integer value,
respectively, as input.string assigns the remainder of the line to the parameter.
Finally preselectedtakes special values as an argument. The possible choices
for each of these ones were discussed during the descriptionof the menus given
in section F.2. Any settings referring to particle 5 are relevant only for 2! 3
processes and will be silently ignored otherwise.
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token : type description
MA0 : parameter mass of the CP-odd Higgs boson
TB : parameter ratio of the Higgs vacuum expecta-

tion values
MUE : parameter � parameter in the Higgs sector
MSusy : parameter common SUSY mass scale
MSQ : parameter mass parameter of the left-handed

squarks
MSU : parameter mass parameter of the right-handed

sup-like squarks
MSD : parameter mass parameter of the right-handed

sdown-like squarks
MSL : parameter mass parameter of the left-handed

sleptons
MSE : parameter mass parameter of the right-handed

selectron-like sleptons
A t : parameter trilinear coupling of the sup-like

squarks
A b : parameter trilinear coupling of the sdown-like

squarks
A tau : parameter trilinear coupling of the selectron-

like sleptons
M1 : parameter U(1)Y gaugino mass
M2 : parameter SU(2)L gaugino mass
MGl : parameter SU(3)C gaugino mass
SQRTS : parameter square root of the hadronic center

of mass energy
SQRTSHAT : parameter square root of the partonic center of

mass energy
THETA2 : parameter angle between the two outgoing

particles (in degrees)3

THETACUT2 : parameter cut on the angle between the two
outgoing particles (in degrees)

K503 : parameter energy of the third outgoing particle
K50CUT : parameter cut on the energy of the third out-

going particle
PTRANS3 : parameter transverse momentum
PTRANS3CUT : parameter cut on the transverse momentum of

particle 3
PTRANS4CUT : parameter cut on the transverse momentum of

particle 4

2only for 2 ! 2 processes



F.3. Allowed tokens in input �les 149

token : type description
PTRANS5CUT : parameter cut on the transverse momentum of

particle 5
RAPID3 : parameter rapidity
RAPID3CUT : parameter cut on the rapidity of particle 3
RAPID4CUT : parameter cut on the rapidity of particle 4
RAPID5CUT : parameter cut on the rapidity of particle 5
DELTAR34CUT : parameter cut on the distance between parti-

cles 3 and 4
DELTAR35CUT : parameter cut on the distance between parti-

cles 3 and 5
DELTAR45CUT : parameter cut on the distance between parti-

cles 4 and 5
RENSCALE : parameter renormalization scale
FACTSCALE : parameter factorization scale
CommonSUSYMassScale: boolean choose a common SUSY mass scale
NoCommonSUSYMassScale: boolean do not choose a common SUSY

mass scale
CommonRenFactScale : boolean choose a common remormalization

and factorization scale
NoCommonRenFactScale: boolean do not choose a common remormal-

ization and factorization scale
AMPLITUDE : preselected choose which amplitude(s) to calcu-

late
Ptrans3>cut : boolean require the transverse momentum

of particle 3 to be larger than the
cut

Ptrans3<cut : boolean require the transverse momentum
of particle 3 to be smaller than the
cut

Ptrans3nocut : boolean disable cut on the transverse mo-
mentum of particle 3

Rapid3>cut : boolean require the rapidity of particle 3 to
be larger than the cut

Rapid3<cut : boolean require the rapidity of particle 3 to
be smaller than the cut

Rapid3nocut : boolean disable cut on the rapidity of parti-
cle 3

Ptrans4>cut : boolean require the transverse momentum
of particle 4 to be larger than the
cut

3only for di�erential cross sections
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token : type description
Ptrans4<cut : boolean require the transverse momentum

of particle 4 to be smaller than the
cut

Ptrans4nocut : boolean disable cut on the transverse mo-
mentum of particle 4

Rapid4>cut : boolean require the rapidity of particle 4 to
be larger than the cut

Rapid4<cut : boolean require the rapidity of particle 4 to
be smaller than the cut

Rapid4nocut : boolean disable cut on the rapidity of parti-
cle 4

DeltaR34>cut : boolean require the jet separation between
particles 3 and 4 to be larger than
the cut

DeltaR34<cut : boolean require the jet separation between
particles 3 and 4 to be smaller than
the cut

DeltaR34nocut : boolean disable the cut on the jet separation
between particles 3 and 4

DeltaR35>cut : boolean require the jet separation between
particles 3 and 5 to be larger than
the cut

DeltaR35<cut : boolean require the jet separation between
particles 3 and 5 to be smaller than
the cut

DeltaR35nocut : boolean disable the cut on the jet separation
between particles 3 and 5

DeltaR45>cut : boolean require the jet separation between
particles 4 and 5 to be larger than
the cut

DeltaR45<cut : boolean require the jet separation between
particles 4 and 5 to be smaller than
the cut

DeltaR45nocut : boolean disable the cut on the jet separation
between particles 4 and 5

INTMETHOD : preselected choose the integration routine
EPSABS : double absolute integration error
EPSREL : double relative integration error
MAXPTS : integer maximum number of points
VSTARTPTS : integer number of points for starting
VINCREASE : integer increase in number of points
SNNEW : integer number of points for subdivision
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token : type description
SFLATNESS : integer 
atness number for splits
MAXDPASS : integer number of passes in partitioning

phase
DKEY1 : integer Divonne key 1
DKEY2 : integer Divonne key 2
DKEY3 : integer Divonne key 3
DBORDER : double border of the integration region
MAXDCHISQ : double maximum � 2 for subregion
MINDDEV : double minimum deviation for split
VERBOSITY : integer verbosity of integration output
PDFTYPE : double type of the PDF [PDFlib]
PDFGROUP : double group of the PDF [PDFlib]
PDFSET : double set of the PDF [PDFlib]
PDFPATH : string path where the PDF �les are

[LHAPDF]
PDFNAME : string name of the PDF [LHAPDF]
ScreenOutput : boolean print output on the screen
OUTPUTFILE : string print output into �le
OUTPUTSTRING : string parameters to print in output (see

sectionF.4)

F.4 Allowed variable names for outputstring

The following list shows all variable names that may appear in outputstring. The
individual entries are separated from each other by spaces.Variables with the
dimension of a mass are output in GeV. Note that these names are case-sensitive.

Name : Parameter description
MA0 : mA 0 mass of the CP-odd Higgs boson
TB : tan � ratio of the Higgs vacuum expectation values
MUE : � � parameter in the Higgs sector
MSusy : mSUSY common SUSY mass scale
MSQ : m~q mass parameter of the left-handed squarks
MSU : m~u mass parameter of the right-handed sup-like

squarks
MSD : m ~d mass parameter of the right-handed sdown-like

squarks
MSL : m~l mass parameter of the left-handed sleptons
MSE : m~e mass parameter of the right-handed selectron-like

sleptons
A t : A t trilinear coupling of the sup-like squarks
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Name : Parameter description
A b : Ab trilinear coupling of the sdown-like squarks
A tau : A � trilinear coupling of the selectron-like sleptons
M1 : M 1 U(1)Y gaugino mass
M2 : M 2 SU(2)L gaugino mass
MGl : m~g gluino mass
SQRTS4 :

p
S square root of the hadronic center-of-mass energy

SQRTSHAT5 :
p

ŝ square root of the partonic center-of-mass energy
THETA6 : � angle between the two outgoing particles (in de-

grees)
THETACUT6 : � cut cut on the angle between the two outgoing particles

(in degrees)
K507 : k0

5 energy of the third outgoing particle
K50CUT7 : k0

5cut cut on the energy of the third outgoing particle
PTRANS : ptrans transverse momentum
PTRANS3CUT: p3

trans cut cut on the transverse momentum of particle 3
PTRANS4CUT: p4

trans cut cut on the transverse momentum of particle 4
PTRANS5CUT: p5

trans cut cut on the transverse momentum of particle 5
RAPID : � rapidity
RAPID3CUT : � 3

cut cut on the rapidity of particle 3
RAPID4CUT : � 4

cut cut on the rapidity of particle 4
RAPID5CUT : � 5

cut cut on the rapidity of particle 5
DELTAR34CUT: � R34

cut cut on the distance between particles 3 and 4
DELTAR35CUT: � R35

cut cut on the distance between particles 3 and 5
DELTAR45CUT: � R45

cut cut on the distance between particles 4 and 5
RENSCALE : � R renormalization scale
FACTSCALE: � F factorization scale
Mh0 : mh0 mass of the lighter CP-even Higgs boson
MH0 : mH 0 mass of the heavier CP-even Higgs boson
MHpm : mH � mass of the charged Higgs boson
MCha(1) : m� 1 mass of the lighter chargino
MCha(2) : m� 2 mass of the heavier chargino
MNeu(1) : m� 0

1
mass of the lightest neutralino

MNeu(2) : m� 0
2

mass of the second-lightest neutralino
MNeu(3) : m� 0

3
mass of the second-heaviest neutralino

MNeu(4) : m� 0
4

mass of the heaviest neutralino
MGl : m~g mass of the gluino
MSn(1) : m~� e mass of the electron sneutrino

4only relevant for the computation of hadronic cross sections
5only relevant for the computation of partonic cross sections and di�erential hadronic cross

section with respect to invariant mass
6only for 2 ! 2 processes
7only for 2 ! 3 processes
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Name : Parameter description
MSn(2) : m~� � mass of the muon sneutrino
MSn(3) : m~� � mass of the tau sneutrino
MSl(1) : m~e1 mass of the lighter selectron
MSl(2) : m~� 1 mass of the lighter smuon
MSl(3) : m~� 1 mass of the lighter stau
MSL(1) : m~e2 mass of the heavier selectron
MSL(2) : m~� 2 mass of the heavier smuon
MSL(3) : m~� 2 mass of the heavier stau
MSu(1) : m~u1 mass of the lighter sup
MSu(2) : m~c1 mass of the lighter scharm
MSu(3) : m~t1

mass of the lighter stop
MSU(1) : m~u2 mass of the heavier sup
MSU(2) : m~c2 mass of the heavier scharm
MSU(3) : m~t2

mass of the heavier stop
MSd(1) : m ~d1

mass of the lighter sdown
MSd(2) : m~s1 mass of the lighter sstrange
MSd(3) : m~b1

mass of the lighter sbottom
MSD(1) : m ~d2

mass of the heavier sdown
MSD(2) : m~s2 mass of the heavier sstrange
MSD(3) : m~b2

mass of the heavier sbottom
TREE : � 0 tree-level cross section
LOOP : � 1 one-loop cross section
TREEERR : � (� 0) integration error of the tree-level cross section
LOOPERR : � (� 1) integration error of the one-loop cross section
TREEPROB : � 2(� (� 0)) probability of the integration error of the tree-level

cross section
LOOPPROB : � 2(� (� 1)) probability of the integration error of the one-loop

cross section
NREGIONS8 : number of regions used for integration
NEVAL8 : number of function evaluations used for integration
FAIL8 : a non-zero value indicates that the desired accuracy

could not be reached

8only relevant for some integration routines
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