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Summary

This thesis studies the dimensional crossover from antiferromagnetic 3D order to 1D
Heisenberg behavior of antiferromagnetic half odd integer spin chains upon changing the
doping concentration in Ca2+xY2−xCu5O10 and increasing the temperature in CsVBr3.

The crystal structure of the S =1/2 cuprate compounds Ca2+xY2−xCu5O10 shows edge
sharing CuO2 chains. By means of hole doping in terms of increasing the Ca/Y ratio,
the magnetic Cu2+ ions are canceled out in the chains. Instead, the number of holes in-
creases from zero in Ca2Y2Cu5O10 to 0.34 holes/Cu in Ca0.83CuO2 (x=2.15), respectively.
Dimerization of adjacent spins in the CuO2 chains is favored with an increasing number
of holes.
Neutron spectroscopy, susceptibility and specific heat measurements resolve complex mag-
netic properties that arise from a doping independent Néel state below ∼ 29K, disorder
in the CuO2 chains and 1D Heisenberg behavior. The order temperature and the mag-
netic moment of the 3D antiferromagnetic phase decrease from ∼ 29K to ∼ 12K and from
∼ 0.92µB to ∼ 0.28µB for the parent compound Ca2Y2Cu5O10 and Ca0.83CuO2, respec-
tively. The collinear magnetic structure of samples with 0≤x≤ 1.5 shows ferromagnetic
exchange along the chain axis that changes to antiferromagnetic correlations for the dop-
ing concentration x=2.15. The chain exchange is well understood within the J1-J2 model
for edge sharing CuO2 chains and classifies the chain behavior as frustrated with a doping
independent antiferromagnetic next nearest neighboring spin interaction.
Hole doping lifts the frustration of nearest neighboring spins and leads to disorder in terms
of a spin glass-like state in Ca3.5Y0.5Cu5O10. Higher doped samples Ca3.5Y0.5Cu5O10 and
Ca0.83CuO2 show 1D Heisenberg behavior, where the magnetic intrachain exchange of
∼ 60K is almost spatially isotropic. The distance of two coupled spins corresponds to two
times the copper distance along the chain yielding next nearest neighboring spin interac-
tion.

Below its Néel temperature of 20.4K the triangular antiferromagnet CsVBr3 (S =3/2)
is characterized by a strong antiferromagnetic intrachain exchange along the crystallo-
graphic c axis, weak interaction in the hexagonal basal plane and a XY-like anisotropy
that forces spins in a 120◦ structure. Studying the spin wave energy gap at the magnetic
zone center (0 0 3) in the paramagnetic phase resolves its upward renormalization upon
increasing temperature. This unusual behavior contradicts the general belief of a gapless
excitation spectrum for antiferromagnetic half odd integer spin chains. In contrast, the
temperature evolution of the gap energy can be consistently described within the frame
of a hexagonal Heisenberg model that emphasizes 3D magnetic correlations and neglects
anisotropy.
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Chapter 1

Introduction

Quantum phase transitions have been extensively studied over the last decades both from
a theoretical and an experimental point of view. It is well known that a magnetic system
can show a crossover from a long range ordered state to quasi 1D magnetic behavior or
even high-Tc superconductivity [1]. This drastic change in the spin correlations might
be evoked by an external parameter that influences the spin system. Among those are
for instance an external magnetic field, pressure that is applied to the system or doping
of substitutes into the investigated compound. In this sense much attention was drawn
to the investigation of charge doping into a Mott insulator that shows three dimensional
antiferromagnetic order. By doping, lower Néel temperatures are achievable until long
range order completely vanishes for a particular doping concentration. Instead, high-Tc

superconductivity or low dimensional magnetism appears to dominate microscopic and
macroscopic properties. In particular, the discovery of high-Tc superconductivity in
La2−xBaxCuO4 by J. G. Bednorz and K. A. Müller [2] increased the attention given to
transition metal oxides such as nickelates and cuprates as possible candidates exhibiting
these kinds of generic phase diagrams.

1.1 Quasi 1D magnetism in cuprates

Among the transition metal oxides only cuprate compounds feature low dimensional mag-
netic properties. It is assumed that high-Tc superconductivity and magnetic short range
correlations are exclusively observed for one doping concentration. The existence of both
phenomena are attributed to the exceptional crystal structure of copper oxides that favors
well isolated Cu-O planes [3]. Between these planes e.g. alkaline earth elements, yttrium
or lanthanum are localized that represent a reservoir for charge doping. For high-Tc su-
perconductors the four fold CuO4 units in the Cu-O planes are typically arranged in a
way that two of these share a corner. Magnetic exchange is mediated via the covalent
180◦ Cu-O-Cu bond. Furthermore, an angle of almost 90◦ can be found for the Cu-O-Cu
bond yielding edge sharing CuO4 units. High-Tc superconductivity is only observed for
the first type of assembling CuO4 units, whereas low dimensional magnetism in terms of
spin chains and spin ladders originate from both types of Cu-O-Cu bonding. Figure 1.1
illustrates both possibilities to assemble CuO4 units. The spin quantum number of copper
1/2 yields either antiferromagnetic spin chains or ladders.
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Figure 1.1: Illustration of
an edge sharing CuO2 chain
(above) and a three-leg lad-
der (below). Here, CuO4

units assemble in a corner
sharing way with a bond-
ing angle of 180◦. Mag-
netic exchange is mediated
along and perpendicular to
the rungs of the ladder. In
the limit of infinite legs the
spin ladder approaches the
conventional 2D magnet.

In general, a spin chain is characterized by one dimensionally coupled spins [4]. How-
ever, chains are locally separated from each other preventing magnetic exchange between
them. The degree of freedom for the spins can vary between Ising, XY and three dimen-
sional Heisenberg behavior. Ladder systems of variable width are formed of parallelly
arranged spin chains that show an equivalent magnitude of the exchange measured along
the chains as well as along the rungs. The number of legs might vary from two for a
simple two-leg ladder to higher values for a n-leg ladder. In the limit of infinite number
of chains the ladder system approaches the conventional two dimensional magnet.

Much effort was put into theoretically describing the ground state properties as well
as those of the excited spin system of the antiferromagnetic S =1/2 and S =1 spin chains
and the S =1/2 ladders. For an overview of these systems refer to [5, 6] and citations
therein. All of these spin systems show properties of pure quantum mechanical origin,
whereas those exhibiting 2D or 3D magnetic correlations still behave classically. True
magnetic order is expected to occur at temperatures that are low compared to the en-
ergy of the system. In case of the antiferromagnetic S =1/2 chain this happens only at
zeroKelvin [7]. Moreover, collective dynamics of these highly correlated electron systems
are extraordinary in the sense that magnetic properties are only observed for one dimen-
sional order and show no equivalent for 2D or 3D order. For instance, only spin 1/2 chains
exhibit a gapless excitation spectrum. Based on this finding it is assumed that all antifer-
romagnetic half integer spin chains feature equivalent characteristics in their ground state
properties and their excitation spectrum. In contrast, Haldane predicted for integer spin
chains a finite spin gap between the ground state and the first excited energy level [8]. The
transition from a single chain to the two dimensional magnet whose magnetic structure
is formed of numerous coupled spin chains or ladders amplifies the unusual properties.
It has turned out that the ground state properties of ladders crucially depend on their
width. An odd number of legs are expected to behave in analogy to antiferromagnetic
spin 1/2 chains. The excitation spectrum is gapless and spin correlations fall off with a
power law of the site separation of spins. An even-leg ladder shows short range order at
low temperatures. Excited S =1 states are separated from the ground state by a finite
energy gap and the spin correlation exponentially decreases with the site distance.

In order to verify these theoretical approaches, neutron scattering turned out to be a
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valuable tool. It offers the possibility to directly probe on interatomic length scales char-
acteristic properties of a sample such as the excitation spectrum and the density of states.
In this sense, numerous experiments were carried out on cuprate compounds or materials
with spin 1/2. For instance, the 3D antiferromagnet KCuF3 shows the spinon contin-
uum1 of an antiferromagnetic spin 1/2 chain [9]. (VO)2P2O7, SrCuO3 and La2Cu2O5 are
experimentally proven as realizations of two-leg ladders with spin 1/2 [10, 11, 12]. In
contrast, Sr2Cu3O5 exhibits properties of a three-leg ladder (S =1/2) [13]. The widely
known ’phone-number’ compound (Sr,Ca)14Cu24O42 features characteristics of both the
antiferromagnetic spin chain and a two-leg ladder [11]. Its complex crystal structure of
corner sharing ladders and edge sharing CuO2 chains turned it difficult to distinguish be-
tween both types of CuO4 assemblies [14, 15, 16, 17]. Besides low dimensional magnetism
high-Tc superconductivity was found in Sr0.4Ca13.6Cu24O42 under an applied pressure of
5GPa [18]. When doping the two-leg ladders with holes, singlets that are formed along
the rungs of the ladder are broken up. Non magnetic Cu3+ pair along the rungs and it is
believed this tendency provokes superconductivity.
Another remarkable phenomenon of pure quantum mechanical origin is found in the
cuprate CuGeO3 that is formed of GeO2 tetrahedrons and edge sharing CuO2 chains
[19]. It exhibits a spin-Peierls transition around 14K, where a spin gap opens up in the
dispersion. Above this transition temperature the uniform CuO2 chains exhibit isotropic
exchange and the excitation spectrum is gapless. Owing to a magnetoelastic coupling be-
tween lattice vibrations and the electronic structure the lattice distorts, i.e. the exchange
measured along the chain now depends on the spin distance. The uniform chain dimerizes
in terms of singlet formation and a spin gap occurs in the spin-Peierls phase. Besides this
cuprate organic molecules like MEM(TCNQ)2 [20] or the compound α’-NaV2O5 [21] show
a spin-Peierls transition below their transition temperatures of 18K and 34K, respectively.

1.2 Outline of this thesis

In this thesis we focus on two examples of quasi one dimensional systems that are stud-
ied by means of bulk measurements and/or neutron spectroscopy. We chose the cuprate
compounds Ca2+xY2−xCu5O10 whose crystal structure shows edge sharing CuO2 chains.
Antiferromagnetic 1D Heisenberg behavior is expected to occur upon increasing the Ca/Y
ratio from x=0 to 2. Dilution of the magnetic chains of undoped Ca2Y2Cu5O10 leads to
dimerization2. Our study is devoted to the evolution of both the magnetic long and short
range behavior with respect to charge doping by holes. Experimental findings are analyzed
for the antiferromagnetic 1D Heisenberg chain with alternating exchange and the 3D an-
tiferromagnetic phase that coexist depending on temperature and doping concentration.
Susceptibility and specific heat measurements demonstrate for higher doped compounds
quasi 1D properties originating from the 1D Heisenberg chain. Although doping leads to
a dilution of the magnetic chains, the long range order does not vanish. The quasi 1D
behavior is close to that of the uniform chain. In order to probe the excitation spectrum
of these samples, inelastic neutron scattering experiments were performed. Besides triple
axis spectrometers that allow for probing a particular (Q, ω) point in reciprocal space,

1The gapless excitation spectrum of the antiferromagnetic S = 1/2 Heisenberg chain is called the
spinon continuum. Spinons are the elementary excitation particles with S = 1/2.

2Dimerization describes the coupling of two neighboring spins, when the magnetic exchange in the
chain is not spatially uniform.
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we used a time of flight instrument. It provides access to the inelastic coherent scatter-
ing function. Based on the observed spin dynamics we characterized the different phases
with respect to the doping concentration x. In agreement with bulk measurements we
observe in Ca2Y2Cu5O10 spin wave dynamics that arise from the antiferromagnetic Néel
state. Moreover, we found evidence of a spin glass phase in Ca3.5Y0.5Cu5O10. A highly
doped compound Ca0.83CuO2, that corresponds to the doping concentration x=2.15, can
be characterized in terms of 1D Heisenberg behavior. Singlet formation between next
nearest neighboring spins is observed. In order to adhere experimental findings to theory,
we calculated for this sample the structure factor and the scattering law based on the
model of dimerized chains.
During this work polycrystalline samples were used. Owing to the synthesis conditions
with an oxygen pressure of more than 200 bar and a reaction temperature of ∼ 1100K no
single crystals were at our disposal.

Besides cuprate systems, the class of ABX3 compounds3 are expected to show quasi
1D magnetic properties in terms of antiferromagnetic spin chains. In these systems the
temperature serves as external parameter provoking quasi 1D chain behavior. It originates
from antiferromagnetically coupled B ions that run along one crystallographic direction.
With increasing temperature the weaker interchain coupling of adjacent chains is expected
to be destroyed. Only the stronger intrachain correlations should dominate the dynamical
behavior in the paramagnetic regime. Below the order temperature these samples exhibit
various ground states depending on the kind of anisotropy and the strength of their ex-
change parallel and perpendicular to the chain direction. In this thesis we investigated
the compound CsVBr3 that is characterized as a triangular frustrated antiferromagnet,
when 3D order sets in. Although the spin quantum number 3/2 does not yield proper-
ties of the antiferromagnetic S =1/2 chain, we probe general aspects of antiferromagnetic
spin chains with a half odd integer spin value. It is assumed that in contrast to the
Haldane conjecture for integer spin chains the excitation spectrum of these chains is gap-
less. We clearly show that in the paramagnetic phase the observed degenerate in-plane
dispersion branches4 feature an excitation gap. In addition, we found an unusual upward
renormalization of the gap energy with temperature. Comparing these findings to other
members of the ABX3 family such as CsMnBr3 (S =5/2) and CsNiCl3 (S =1) elucidates
that this behavior appears to be independently of the spin quantum number a general
feature of the paramagnetic spin dynamics of these three compounds. A recent theo-
retical approach that emphasizes 3D magnetic correlations without anisotropy explains
the observed spin dynamics in the disordered phase. This appears to question the model
character of CsVBr3 and its related representatives of the ABX3 class for studying quasi
1D behavior.

The outline of this thesis is as follows: chapter 2 will provide an overview of theoreti-
cal results in the field of quasi one dimensional magnetism for antiferromagnetic S =1/2
and S =1 spin chains. We explain the model of the antiferromagnetic S =1/2 alternating
Heisenberg chain that describes dimerization between neighboring spins. In addition, im-

3ABX3 compounds are formed of an alkali metal A, a 3d transition metal B and an halide X . A
general description of ABX3 compounds is presented in chapter 2.5.

4CsVBr3 shows three magnon branches: the optic out-of-plane branch, the acoustic and the optic
in-plane modes.
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portant aspects of the two model systems Ca2+xY2−xCu5O10 and CsVBr3 are presented.
The complex magnetic order in copper oxide compounds and CsVBr3 require various
experimental methods to elucidate their inherent properties. Chapter 3 is devoted to
these experimental techniques applied to resolve the magnetic behavior of both systems.
Among those are macroscopic bulk measurements, such as D.C./A.C. magnetization and
specific heat, as well as neutron spectroscopy that probes microscopic properties of the
samples.
In sequence, the investigation of the magnetic behavior of Ca2+xY2−xCu5O10 samples is
presented in chapter 4, that is followed by the results of the study on CsVBr3 (see chapter
5). Chapter 4.1 reports on the sample synthesis, the chemical characterization and the
nuclear structure of the Ca2+xY2−xCu5O10 compounds. Afterwards, we present macro-
scopic and microscopic investigations of Ca2+xY2−xCu5O10. We will focus on the low
dimensional behavior of the compound series that is revealed by susceptibility and spe-
cific heat measurements (see chapter 4.2 and 4.3). Furthermore, results of the magnetic
structure in the long range ordered state are presented in chapter 4.4 that were obtained
by neutron diffraction. Chapter 4.5 summarizes data of the dynamical behavior of the
compound series with doping. We will show that the spin dynamics of the undoped parent
compound Ca2Y2Cu5O10 is understood in terms of spin waves. Ca3.5Y0.5Cu5O10 provides
evidence of a spin glass phase below ∼ 17K. The highly doped compound Ca0.83CuO2

(x=2.15) is characterized as model of the 1D Heisenberg chain. We found the dimer
extent to be compatible with the next nearest copper distance. Finally, in chapter 4.6 the
obtained data are discussed in comparison to literature. In particular, we will construct a
phase diagram of Ca2+xY2−xCu5O10 with respect to the Ca/Y ratio and explain the effect
of dimerization of the CuO2 chains within competing nearest and next nearest neighbor
interactions.
Chapter 5 reports on the investigation of the triangular antiferromagnet CsVBr3. We
present an introduction to its 3D behavior below the Néel temperature of ∼ 20.4K (see
chapter 5.1 and 5.2). Moreover, inelastic neutron scattering data of the paramagnetic
phase of this sample are shown (chapter 5.3) and discussed within the framework of con-
ventional linear spin wave theory, dipolar exchange and a recently developed theoretical
approach describing one dimensional behavior in ABX3 compounds (see chapter 5.4). We
further compare CsVBr3 to the structural related compounds CsMnBr3 and CsNiCl3.
Chapter 6 concludes important aspects of this thesis work.
Detailed mathematical calculations of the dynamical behavior of Ca2+xY2−xCu5O10 sam-
ples are presented in appendix A and B. The first one covers a brief introduction to linear
spin wave theory that was applied to calculate the 3D dispersion of Ca2Y2Cu5O10 in a
semi classical approach. The second appendix summarizes the powder averaged structure
factor and scattering law of dimerized chains. These calculations apply for Ca0.83CuO2.
The model of the damped harmonic oscillator is illustrated in appendix C. Based on the
time dependence of the equation of motion for the damped harmonic oscillator we derive
the scattering law in the frequency domain. This formula is used for fitting purposes of
CsVBr3 data.
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Chapter 2

Theory - antiferromagnetic
Heisenberg spin chains

This chapter serves as introduction to antiferromagnetic spin chains with integer and half
integer spin value. We chronologically arrange major steps in theory and collect the most
important characteristics of both systems. The interested reader is referred to references
given in the text and citations therein. Chapter 2.2 explains the model system of the
antiferromagnetic spin 1/2 Heisenberg chain with alternating exchange to which this thesis
work is devoted. Thermodynamical properties of the 1D Heisenberg chain are discussed in
chapter 2.3. Finally, it is briefly noted why the investigated compounds Ca2+xY2−xCu5O10

and CsVBr3 are recognized as model systems for the antiferromagnetic S = 1/2 chain (see
chapter 2.4 and 2.5).

2.1 General properties

For theory, solving the one dimensional antiferromagnetic quantum chains for S =1 and
S =1/2 was a challenge ever since the first exact solution by Bethe in 1931 [7]. Based on
the Hamiltonian for nearest neighbor coupling between spins Ŝi and Ŝi+1

H = J
∑

i

ŜiŜi+1 , (2.1)

the ground state properties of the antiferromagnetic spin 1/2 Heisenberg chain and its
massless excitations are explained. Ŝi denotes the spin operator of the spin system and
J the exchange constant measured along the chain. Within the chain the magnetic cor-
relation with respect to the left and right neighbor of one particular spin is isotropic (see
Figure 2.1). The obtained dispersion relation ω ∝ sin (Q) is periodic over the Brillouin
zone with Q representing the wavevector and ω the energy of excited states. The non
symmetry breaking ground state of the chain was found to consist of singlets with S =0.
Excitations from the ground state in terms of threefold degenerate triplets describe the
lowest lying excited states. They are pictured as movable domain walls1 called spinons
that can be continuously excited from the ground state without a finite energy gap at the
zone center. Des Cloiseaux and Pearson [22] derived the dispersion of the lowest lying

1A domain wall denotes the boundary between two domains with different spin alignment. In case of
the well known Bloch wall the two adjacent domains feature antiferromagnetic spin coupling. Within the
wall the spin is rotating by 180◦ to compromise for the opposite spin orientation.
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excitations εl = π
2
J |sin (Q)| which they interpreted as bosons (S =1). Today it is well un-

derstood that the basic excitations have fermionic character [23]. The gapless excitation
spectrum, the spinon continuum, consists of elementary particles with S =1/2 that can
couple to pairs with the energy ε(Q) = ε1(Q1) + ε2(Q2). Based on the numerical Müller
ansatz [24] the upper boundary of the spinon continuum εu = πJ |sin (Q/2)| was found.
Figure 2.2 (a) illustrates the excitation spectrum of the antiferromagnetic S =1/2 spin
chain. It was further found that in the quasi ordered Kosterlitz-Thouless phase [25] the
spin-spin correlation function falls off with the power of the distance r of two spins [26]

〈

Ŝα
0 Ŝβ

r

〉

∝ (−1)rδαβ

√
ln r

r
. (2.2)

Ŝα denotes the α coordinate of the spin operator with α, β ∈ {x, y, z}. True order only
holds at zero temperature, where no thermal fluctuations are present. It is commonly
accepted that all half odd integer spin chains feature gapless excitations [4].

Figure 2.1: Scheme of the antifer-
romagnetic uniform spin 1/2 chain
with a spatially isotropic exchange
J between left and right neighboring
spins.

Haldane investigated the properties of the S =1 spin chain [8]. His most striking result
was that the ground state of the spin 1 chain is highly correlated. A finite spin gap
of ∆' 0.4J separates the ground state energy from the lowest excitations. The latter
are interpreted as massive S =1 particles that are threefold degenerate. Visualized as
domain walls they are expected to disturb the hidden order in the Haldane phase of the
antiferromagnetic spin 1 chain [27] by moving through the chain. At early stages argued
these predictions are now widely accepted and contributions were made in terms of the
excitation spectrum for the antiferromagnetic spin 1 chain [28]. It follows the relation

ω =
√

v sin2 (Q) + ∆2 with the effective spin velocity v and the energy gap ∆. The
correlation was found to fall off exponentially with the site separation r

〈

Ŝα
0 Ŝβ

r

〉

∝ (−1)rδαβ exp {−r/ξ}√
r

, (2.3)

where ξ denotes the correlation length. Higher integer spin quantum numbers yield a
decrease in the gap energy with ∆ ∝ JS exp {−πS} [29], attributing the S =1 case to a
purely quantum mechanical origin.

In contrast, linear spin wave theory describes the excitation spectrum of a long range
ordered spin system that allows for three dimensional magnetic correlations. This ap-
proach was developed around 1950 with major contributions by Anderson [30]. Within
this framework magnons were introduced as quasi particles of an excitation wave moving
through the lattice. Ferromagnetic and antiferromagnetic correlations between spins yield
a dispersion relation ~ω(Q) that is proportional to Q2 and Q at the magnetic zone center,
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respectively. From the beginning it was obvious that the restriction of an antiferromag-
netic 3D Hamiltonian to the 1D case did not correspond to the antiferromagnetic uniform
chain. Excitations of the long range ordered Néel state that arises from two sublattice
magnetizations of opposite spin value are only twofold degenerate. Obeying Bose statis-
tics they bear the spin quantum number one. The dispersion relation of these states only
holds in the reduced Brillouin zone, as antiferromagnetic order yields a doubling of the
unit cell extension. For a mathematical introduction to linear spin wave theory refer to
appendix A.1.

2.2 Alternating exchange in the S = 1/2 spin chain

As soon as the exchange constant between the left (J1) and right (J2) neighbor spin differs,
preferred magnetic correlations based on

H =
∑

i

(

J1Ŝ2iŜ2i−1 + J2Ŝ2iŜ2i+1

)

= J
∑

i

(

Ŝ2iŜ2i−1 + αŜ2iŜ2i+1

)

(2.4)

are introduced in the uniform antiferromagnetic S =1/2 chain. Here, J2 =αJ is reduced
in strength compared to J1 =J . The alternation parameter α is a measure of the magnetic
exchange to the adjacent left and right spin with 0≤α≤ 1. A modification in the spatially
isotropic exchange of the uniform chain may be evoked by changing the coupling distance
of magnetic ions or the relative strength of J and αJ . Dimerization of spins within an
uniform chain leads to a modification of the excitation spectrum. Bougourzi and coworkers
[31], Barnes and coworkers [32, 33], Harris and coworkers [34] and Uhrig and Schulz [35]
exactly and numerically solved the ground state and the low lying excitations for this
model, respectively. Uhrig and Schulz used a different convention for the Hamiltonian for
dimerized chains (here given in the limit of nearest neighbor interaction)

H = J̃
∑

i

(

1 + (−1)iδ
)

ŜiŜi+1 = J
∑

i

(

Ŝ2iŜ2i−1 + λŜ2iŜ2i+1

)

, (2.5)

where δ denotes the alternation parameter of the coupling of a particular spin with re-
spect to the left and right neighbor. Note the relations α = λ = (1 − δ)/(1 + δ) and
J̃ = J(1 + δ) = J(1 + α)/2. δ =0 (α =1) represents the limit of the uniform chain,
whereas δ =1 (α =0) defines spin singlets without coupling to one of its neighboring
dimers.

The gapless spinon continuum changes to a magnon mode and the n-magnon continua for
0<α < 1. The lower boundary of the continuum develops a dispersion that is separated
from the ground state by a gap ∆<J at Q=0 and π. This magnon branch accounts for
the lowest lying excitations with S =± 1 and 0. Furthermore, the remaining n-continuous
excitation bands are themselves separated from the triplet branch by a gap of the order
of n∆ at Q equal to zero and π. In the limit of a chain with isolated dimers the discrete
energy levels are infinitively degenerate with energies J , 2J , 3J , ... . Figure 2.2 illustrates
the excitation spectrum of the antiferromagnetic spin 1/2 chain. Decrease in the alterna-
tion parameter α yields the formation of dimers, i.e. coupled spins that interact with the
exchange parameter J .
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Figure 2.2: Excitation spectrum of the (a) uniform chain (α =1) that evolves with dimerization
(0≤α<1). (b) to (d) illustrate how the gapless spinon continuum changes to the triplet and
the first magnon continuum for α equal to 0.75, 0.5 and 0.25. (e) The solid lines correspond to
the discrete excitation levels for a chain with isolated dimers (α =0). The excitation spectra are
sketched based on [22, 24, 31, 32, 33, 34, 35].

2.3 Thermodynamical properties of the alternating

S = 1/2 chain

Thermodynamical properties of the antiferromagnetic spin 1/2 Heisenberg chain are de-
duced from the internal energy U of the spin system. U is assumed to behave power law
like and proportional to ANJ (kBT/J)γ, where T denotes the temperature, J the mag-
netic exchange between adjacent spins and N the number of spins [36]. The constants
γ and A are equal to ∼ 2.06 and ∼ 0.175, respectively. Numerical approximation in the
limit of infinite spins yields the desired quantities such as susceptibility and specific heat.
For a broad overview of thermodynamical behavior of low dimensional systems refer to
Jongh and Miedema [37].

The susceptibility of the uniform chain is obtained by Bonner and Fisher [36] using finite
chain calculations (see dashed line in Figure 2.3). It displays a rounded maximum at
kBT/J ' 0.641 of the absolute height χmaxJ/(g2β2)' 0.149. kB denotes the Boltzmann
constant, g the paramagnetic Landé factor and β =1/(kBT ) the inverse temperature. The
energy scale of the system is approximately defined by the temperature, where the maxi-
mum occurs. Upon approaching zero temperature, the susceptibility yields a finite value.
The energy of the lowest lying excitations is infinitely close to the ground state energy.
Thus, even in the limit T → 0 these excitations are populated visualized in a finite value
of χ(T = 0). Results given by Eggert and coworkers [38] and Frischmuth and coworkers
[39] agree well with the study of Bonner and Fisher. When α is less than one, an en-
ergy gap opens up between the ground state and the density of lowest lying excitations.
Susceptibility exponentially vanishes with the strength of the energy gap ∆, when the
temperature reduces to zero. Bulaevskĭı [40] and Bonner and coworkers [41] calculated
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the behavior of χ(T ) for 0<α < 1 using Hartree-Fox approximation. Numerical results in
the dimer limit are given by Barnes and Riera [42].

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

kBT/J

χJ
/(

N
g2 µ B

2 )

α = 1

α = 0

Figure 2.3: Reduced susceptibility of the al-
ternating Heisenberg spin chain. The solid line,
the dashed line and the dot-dashed lines indi-
cate the susceptibility of the purely dimerized
spin chain (α =0), of the uniform spin chain
(α =1) and of the alternating spin chain model
(α =0.2, 0.4, 0.6 and 0.8), respectively. Taken
from [38, 39, 40, 41].

Numerical approximations of the theoretical curves for χ(T ) depending on the alterna-
tion α were obtained by investigating model systems. Notice, that the following formulas
follow the convention of the magnetic exchange J as introduced in Eq. (2.1) and Eq. (2.4).
Estes and coworkers [43] fitted the Bonner-Fisher results for susceptibility of Dihalo-
bis(thiazole)copper(II) complexes yielding the closed form for the uniform chain (uni)

χuni =
Nunig

2µ2
B

kBT

0.25 + 0.07498x + 0.07524x2

1 + 0.99310x + 0.17214x2 + 0.75783x3
. (2.6)

Here, x denotes the reduced interaction exchange J/(kBT ), Nuni the number of magnetic
spins in units of the Avogadro number NA, g the Landé factor and µB the Bohr magneton.
Susceptibility of the alternating Heisenberg chain (ahc) was derived by Hall and coworkers
[44] analyzing data of various organic compounds in terms of

χahc =
Nahcg

2µ2
B

kBT

A + Bx + Cx2

1 + Dx + Ex2 + Fx3
. (2.7)

Similarly to Eq. (2.6), Nahc denotes the number of magnetic spins contributing to the
magnetic response of the sample and x the reduced magnetic exchange J/(kBT ). The
constants A, B, ... F are numerically determined and depend up to the fourth order
on α. Susceptibility of a chain with isolated dimers (α =0) was obtained by Matsuda
and Katsumata [45] and Carter and coworkers [46] for the spin chain/ladder compound
Sr14Cu24O41 and doped compositions of (La,Sr,Ca)14Cu24O41, respectively. With Nd de-
noting the number of involved magnetic spins that equals twice the number of formed
dimers in the chain, susceptibility reads

χd =
Ndg

2µ2
B

kBT

1

3 + exp (J/kBT )
. (2.8)

Specific heat of an antiferromagnetic spin 1/2 Heisenberg chain features a characteristic
behavior that distinguishes at first glance from that of a dimerized chain. For comparison
of the corresponding curves see Figure 2.4. The low temperature limit (T . 0.4J/kB) of
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the uniform antiferromagnetic chain is given by the linear approximation of Takeda and
coworkers [47] according to

C(T )uni =
2Nunik

2
BT

3J
, (2.9)

where Nuni denotes the number of magnetic spins in units of the Avogadro constant and
J the antiferromagnetic exchange. This result is compatible with the numerical Bonner-
Fisher approximation [36] yielding the constant of proportionality equal to 2/3 instead of
' 0.7. At intermediate temperatures (0.4J/kB .T . 0.75J/kB ) specific heat features a
broad maximum of the height Cmax/(NkB)' 0.35 at the temperature kBTmax/J ' 0.481.
In the dimer approximation specific heat reads

C(T )d =
3

2
Nd

(

J

T

)2
exp (−J/T )

(1 + 3 exp (−J/T ))
(2.10)

with the number of dimerized Cu2+ spins Nd. This value equals twice the number of
formed dimers in the chain. Comparable with the behavior of susceptibility for a dimerized
chain specific heat exponentially falls off with the exchange parameter J measured along
the chain in the limit T → 0. The finite energy gap between the ground state and the
density of the lowest lying excitations requires thermal energy to overcome this energy
barrier.

0 0.25 0.5 0.75 1
0

0.15

0.3

0.45

kBT/J

C
/N

k B

α=0

α=1 Figure 2.4: Specific heat of the alternating
S =1/2 antiferromagnetic Heisenberg chain.
The solid line indicates the chain with isolated
dimers (α =0) and the dashed line the uniform
chain (α =1). Taken from [36, 37].

2.4 Model system Ca2+xY2−xCu5O10

The crossover from long range order to antiferromagnetic 1D Heisenberg behavior can be
evoked by an external parameter that influences the spin system. In order to illustrate
this effect, this thesis work will focus on the cuprate oxide compounds Ca2+xY2−xCu5O10.
The electronic configuration of the magnetic Cu2+ ions yields a spin quantum number of
1/2. Charge doping into CuO2 chains serves as decisive parameter that should lead to
quasi 1D magnetic behavior in terms of the alternating 1D Heisenberg chain.

The compound series is structurally related to the NaCuO2 type of materials [48]. Early
investigations of the parent compound2 Ca2Y2Cu5O10 revealed that the monoclinic crystal

2The parent compound of an at least binary alloy, e.g. A1−xBx, represents the undoped sample A1,
where the doping concentration of the substitute x equals zero.
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structure exhibits CuO2 chains of edge sharing CuO4 square units [49, 50]. The bonding
angle of the Cu-O-Cu exchange path is almost 90◦. The CuO2 chains are separated by
planes bearing Ca and Y atoms. Within the chains chemical bonding is mediated by a
hybridization of the 3dx2−y2 Cu orbital and the 2px,y orbitals of the oxygen ions. Each
copper donates two holes to close-by oxygens forming a covalent bond. Owing to the
bonding angle, two hybrid orbitals at the site of one oxygen ion are almost orthogonal to
each other.

It is known that the magnetic exchange of the edge sharing CuO2 chain follows the
Hamiltonian

H =
∑

i

(

J1ŜiŜi+1 + J2ŜiŜi+2

)

, (2.11)

where J1 describes nearest neighbor and J2 next nearest neighbor interaction between
spins Ŝi, Ŝi+1 and Ŝi, Ŝi+2 [51]. In contrast, Eq. (2.4) accounts for the alternating Heisen-
berg chain with not spatially uniform nearest neighbor interaction. The correlation J1

mediates the superexchange along the Cu-O-Cu path. Its sign and magnitude follows
the Anderson-Kanamori-Goodenough rules [52, 53, 54] and depends on the orthogonal-
ity of the two hybrid orbitals, i.e. on the Cu-O-Cu bonding angle θ. In case of θ =90◦,
these orbitals do not overlap yielding ferromagnetic coupling of the holes due to Hund’s
rule. Around 95◦ the nearest neighbor exchange vanishes, whereas θ > 95◦ evokes an-
tiferromagnetic correlations. In the overlapping hybrid orbitals Pauli’s principle forces
antiferromagnetic hole pairing. The antiferromagnetic next nearest neighbor exchange J2

along the Cu-O-O-Cu path is almost θ independent for 80◦ ≤ θ≤ 100◦. Respecting the
Cu-O distance along the exchange path its magnitude is of the order of ∼ 75K. Moreover,
the magnetic order of the chains crucially depends on θ, i.e. the ratio of J2/|J1| and vary
e.g. between frustrated chains, a ferromagnetic phase or the resonating valence bond state
[55, 56, 57, 58, 59]. Figure 2.5 illustrates the competing magnetic exchanges of the edge
sharing CuO2 chain.

Figure 2.5: Scheme of the J1-J2 model for the
edge sharing CuO2 chain. The magnetic ex-
change to the nearest neighboring spin J1 dif-
fers from that to the next nearest neighboring
spin J2. While J2 is antiferromagnetic and θ
independent, J1 depends on the Cu-O-Cu an-
gle and changes its sign from ferromagnetic to
antiferromagnetic exchange around 95◦.

While increasing the Ca/Y ratio in the compound series, holes are introduced into the
spin system. These are strongly bound to the central Cu2+ ion of the CuO4 square and
the chains turn diluted. The effective Hamiltonian of the single-band Hubbard model in
the limit of a large on-site repulsion at the Cu site applies for describing the motion of
these holes [60]. Spins of Cu2+ ions are canceled out and nonmagnetic units (S =0) are
created. These Zhang-Rice singlets consist of a nonmagnetic Cu3+ and four oxygen ions.
As they repel each other, they are assumed to be homogeneously distributed in the spin
chain. Magnetic exchange via the Cu-O-Cu bond is reduced. Consequently, dimerization
occurs owing to interaction of magnetic Cu spins whose strength depends on the exchange
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path and the relative magnitude of J1 and J2. Figure 2.6 illustrates both the uniform and
the dimerized antiferromagnetic copper oxide spin chain.

Figure 2.6: Scheme of an antiferromagnetic spin 1/2 Heisenberg spin chain. The left hand part
displays the uniform spin chain with an isotropic exchange J between one spin and its left and
right neighbor. Superexchange mediates the coupling via a Cu-O-Cu bond. The right hand part
of the spin chain illustrates the effect of dimerization. Nonmagnetic CuO4 units that bear one
Cu3+ and four oxygen ions changes the isotropic magnetic exchange between spins (J and αJ)
and lead to a preferred bonding in the chain. These units are called Zhang-Rice singlets (ZRS).

Hole doping of Ca2+xY2−xCu5O10, i.e. diluting the CuO2 spin chains, increases the formal
copper valence from 2+ to 2.4+ for Ca2Y2Cu5O10 and Ca4Cu5O10, respectively. Table 2.1
collects the formal Cu valence of selected Ca2+xY2−xCu5O10 samples that are investigated
in this study. We obtained these values considering charge balance of a compound, where
the valence of Ca, Y and O ions are +2, +3 and -2. For instance, the formal valence per
one copper ion of Ca2Y2Cu5O10 is calculated to be |(2 ·2+3 ·2−2 ·10)/5| = 10/5 = 2. In
addition, the hole and spin density are noted that are derived from the valence. Besides
the stoichiometric compound Ca4Cu5O10 higher doped concentrations of the compound
series exist. In this thesis results are presented for Ca4.15Cu5O10. In literature this com-
pound is referred to as Ca0.83CuO2 and we will adhere to this convention. When showing
concentration dependent properties of the compound series, the concentration of this sam-
ple is called x=2.15.

Sample Concentration x Cu-valence Holes/Cu N

Ca2Y2Cu5O10 0 2 0 1
Ca2.5Y1.5Cu5O10 0.5 2.1 0.1 0.9
Ca3Y1Cu5O10 1 2.2 0.2 0.8
Ca3.5Y0.5Cu5O10 1.5 2.3 0.3 0.7
Ca4Cu5O10 2 2.4 0.4 0.6
Ca0.83CuO2 2.15 2.34 0.34 0.66

Table 2.1: Formal copper valence, number of holes and number of magnetic spins N in units of
the Avogadro number NA that depend on the doping concentration x. The values are calculated
based on the stoichiometric composition of each sample. Upon charge doping the Cu valence
and the number of holes per copper increases, whereas the number of spins in turn decreases.

The first successful synthesis of various doping concentrations of the compound series was
achieved by Hayashi and coworkers [61] in 1996 using high pressure oxygen annealing.
Electrical transport measurements characterized these polycrystalline samples to be elec-
trically insulating. Susceptibility showed for all samples in the doping range of 0≤x≤ 2
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antiferromagnetic three dimensional order. The Néel temperature decreases with increas-
ing Ca/Y ratio yielding ∼ 28K for the parent compound and 16K for Ca3Y1Cu5O10.
Moreover, Susceptibility data of samples with x≤ 1 were interpreted as a complex be-
havior of antiferromagnetic 3D order superimposed to 1D antiferromagnetic spin chain
behavior. The concentration x∼ 1.5 was characterized as the critical doping point, where
a dimensional crossover from long range to short range behavior occurs. In Ca4Cu5O10

only short range order in terms of the antiferromagnetic 1D Heisenberg chain was found.
Chabot and coworkers [62] derived from susceptibility and specific heat that the magnetic
order in Ca2+xY2−xCu5O10 is of long range order type for small doping concentrations.
Around x∼ 1 one dimensional chain behavior shall exist evolving into the formation of
clusters. Neutron diffraction of the parent compound revealed ferromagnetic correlations
along the chain direction [63, 64]. This was confirmed by measuring the spin wave dis-
persion in the Néel state [65, 66]. Highly doped Ca0.83CuO2 revealed antiferromagnetic
exchange along the chain [67].

This study focuses on the one dimensional properties of the compound series. In par-
ticular, we discuss the model of the antiferromagnetic 1D Heisenberg chain for these
systems. In addition, we will investigate the effect of hole doping into the CuO2 chains
in terms of dimerization of neighboring spins.

2.5 Model system CsVBr3

Besides charge doping temperature serves as effective parameter that induces low dimen-
sional order into a magnetic system. In this sense we will focus on the ABX3 compound
CsVBr3 that is expected to feature antiferromagnetic spin chain behavior above its Néel
temperature [68].

In general, ABX3 systems are formed of a single charged alkali metal (A), a 3d transition
ion of double charge (B) and a halide anion (X). The magnetic ions are arranged in one
dimensional chains favoring 1D behavior [68]. It has turned out that the magnetic ex-
change between spins along the chain is approximately three orders of magnitude higher
than the interchain coupling. Furthermore, anisotropy found in these kind of systems
varies from easy-axis to easy-plane anisotropy. It is of the same order as the interchain
exchange. Magnetic correlations in the paramagnetic phase are thus dominated by the
intrachain exchange, as temperature destroys the interchain exchange.

In particular, the ABX3 compound CsVBr3 belongs to the hexagonal space group [69].
Vanadium ions are located at the corners of the nuclear unit cell. The chains of S =3/2
spins run along the c axis, i.e. perpendicular to the basal plane. The compound is char-
acterized as a triangular frustrated spin system below its Néel temperature of 20.4K.
Antiferromagnetic exchange is found along the c axis and within the basal plane. Dipolar
exchange gives raise to an XY -like anisotropy, that forces spins within the hexagonal
plane. In the ordered phase the ratio of the intrachain to the interchain exchange yields
∼ 1012. It is expected that the interchain exchange is destroyed upon increasing tem-
perature. In the paramagnetic phase the strong intrachain exchange dominates the spin
dynamics, which turns CsVBr3 into an ideal candidate for studying low dimensional spin
dynamics. Moreover, the temperature dependence of susceptibility, measured in a tem-
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perature range from 1K to 400K, follows the antiferromagnetic 1D Heisenberg model [70].

From a theoretical point of view the comparison of different ABX3 compounds that
differ in the strength of the magnetic exchange, the anisotropy or the spin quantum
number addresses general aspects of antiferromagnetic integer and half odd integer spin
chains. Based on the gapless spinon continuum of the antiferromagnetic S =1/2 chain
it is commonly accepted that the dispersion of all half odd integer spin chains is gap-
less. In contrast, as predicted by Haldane, spin dynamics of integer spin chains feature
the Haldane gap. The quasi 1D system CsVBr3 approaches the quantum chain with its
spin number 3/2. We will test the assumption of a gapless excitation spectrum in this
compound.
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Chapter 3

Experimental Methods

Chapter 3 introduces the experimental methods that were applied to elucidate the magnetic
behavior of quasi 1D Ca2+xY2−xCu5O10 and CsVBr3. Besides macroscopic measurement
techniques that probe the thermodynamical behavior of samples neutron scattering allows
the investigation of the static and dynamic order on interatomic length scales.

3.1 Bulk investigations

The first characterization of a sample is usually done by X-ray diffraction, in order to
determine the crystal structure. The existence of magnetic order in the sample and
macroscopic properties such as susceptibility and heat capacity are probed by bulk mea-
surements. During this thesis a conventional calorimeter (Physical Property Measurement
System, PPMS, by Quantum Design, Inc.) was employed [71]. The basic unit supplies a
cryostat with superconducting coils next to the sample chamber (see Figure 3.1). These
coils provide a stable external magnetic field up to ± 9T. Next to them a set of pick-
up coils are placed for measuring the magnetic response of the sample by detecting the
induced voltage when the sample is transported through the pick-up coils. Various sup-
plementary measurement options can be installed into the sample chamber allowing for
the investigations of magnetic phenomena such as static and dynamic susceptibility or
magnetic phase transitions.

3.1.1 Magnetization

Both the D.C. and A.C. magnetization measurement technique are based on the princi-
ple of inductive magnetometry. The magnetic response of the sample is determined by
voltage changes induced in the pick-up coils according to Faraday’s law. The accuracy of
both options depends on the measured quantity and vary from 3 ·10−5 emu to 1 ·10−8 emu
for D.C. and A.C. magnetization, respectively. The D.C. technique determines the mag-
netization M(T, H) of the sample that is proportional to the susceptibility χ(T, H), while
A.C. magnetization probes its derivative. The latter technique is thus more sensitive to-
wards small changes of M(T, H).

During D.C. measurements a sample that is premagnetized by the time-constant ex-
ternal field H moves through the cylindrical detection coils and induces a voltage. The
amplitude of this signal is proportional to the speed of the sample (∼ 100 cm/s) during
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the extraction. The voltage is proportional to the rate of the change of the magnetic
flux through them, i.e. the voltage profile is the time derivative of the net flux through
the coils. The sample moment is obtained by numerically integrating the voltage profile
and fitting the known waveform for a dipole moving through the detection coils to the
resulting data. Using this technique the susceptibility of the sample χ(T )=M(T )/H is
deduced.

In A.C. measurements a small drive field with frequency ω is used that can be super-
imposed to an external D.C. field. It causes a time-dependent moment in the sam-
ple. The field of the time-dependent moment induces a current in the pick-up coils
allowing measurements without sample motion. The derivative of the magnetization
χA.C. = dM(T )/dH is thus extracted from the sample. At high frequencies the A.C. mo-
ment of the sample does not follow the D.C. magnetization curve owing to dynamic effects
in the sample (the A.C. susceptibility is often known as the dynamic susceptibility). The
magnetization of the sample may lag behind the drive field and therefore yields two quan-
tities, the magnitude of the susceptibility and the phase shift via χA.C. = χ′ + iχ′′, where
χ′ represents the real part of the dynamical susceptibility. The imaginary part χ′′ has a
character of an absorption coefficient. The angle ϕ = arctan (χ′′/χ′) describes a phase lag
of the magnetization behind the external field H.

Figure 3.1: Left figure: The Physical Property
Measurement System (PPMS, Quantum Design,
Inc.) allows for a temperature range of 1.8 K to
400 K with an external vertical field from zero Tesla
to ± 9T. Figure above: straw sample holder, in
which a solid or powder sample is placed and that
would be loaded into the sample chamber.

During an experiment powder or solid samples were mounted into a straw sample holder
(see Figure 3.1). The end of the sample holder is closed using Kapton tape. After insert-
ing the sample holder into the cryostat chamber, the sample center with respect to the
magnetic signal is placed to be in the middle of the coils.
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3.1.2 Heat capacity

Using the heat capacity option of the PPMS specific heat of a sample is measured by
the relaxation technique [72]. A heater attached to the sapphire sample platform of the
sample holder induces a constant heat pulse in the sample whose relaxation to the equilib-
rium temperature of the sample holder is measured (see Figure 3.2). The applied fitting
algorithm results in the sample heat capacity CP (T )= (dQ/dT )P at constant pressure P
at zero or applied external field, respectively. Here, Q denotes the applied energy to the
system in terms of thermal heat. In order to maintain a defined equilibrium pressure,
the sample space is evacuated. The sample holder wires connecting the outer frame and
the sapphire platform are calibrated in each magnetic field below a temperature of 20K,
since a Shottky anomaly of the wire material yields changes in the signal of up to the
order of two. Thermal contact between the sample and the sample platform is provided
by a thermal joint compound whose contribution to the sample specific heat has to be
calibrated for each sample in every measured field.
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Figure 3.2: Scheme of the specific heat measurement principle. Side and top view of the sample
holder. A sapphire platform is hold by eight wires that are used for the measurement of the
time relaxation of the sample temperature to the platform temperature after having applied a
heat pulse. The sample is attached to the platform by a thermal joint compound providing a
thermal coupling of the sample to the platform.

3.2 Neutron scattering

Neutron spectroscopy is particular valuable for investigating microscopic structural and
dynamical properties of polycrystalline and single crystalline ordered systems. For a de-
tailed overview of this technique refer to [73, 74, 75, 76].

Neutrons directly interact with the nuclei of atoms in the target. Moreover, although
uncharged, neutrons bear a magnetic moment µn with spin 1/2 yielding an interaction
with unpaired electrons of the target atoms. During the scattering process microscopic
nuclear and magnetic properties of the target are simultaneously probed.

The scattering event is characterized by the change of the momentum and energy of the
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scatterer and the target. Neutrons with a defined incident wavevector k and energy E that
are monochromatized from a white beam with an Maxwellian distribution scatter on the
sample. This yields a changed wavenumber k′ and energy E ′ of the neutron. The sample
that was initially in the state λ and is transfered to its scattered state λ′ gains or looses the
momentum transfer Q=k−k′ and energy ~ω =E −E ′ = ~

2 (k2 − k′2) /(2m)=Eλ′ − Eλ

where m denotes the neutron mass (see Figure 3.3). Elastic scattering is defined by no en-
ergy exchange between probe and target (k = k′) that leads to Bragg’s law Q=G=2π/d.
Here, G denotes a reciprocal lattice vector on the Ewald sphere that is equivalent to the
scattering vector and d the corresponding interplanar spacing. Inelastic scattering results
in a change of the sample and the neutron energy with the scattering vector Q=G±q.
In this notation q refers to the reduced scattering vector in the first Brillouin zone.

Figure 3.3: Scheme of the two dimen-
sional reciprocal space of a square lattice.
The elastic scattering geometry is defined
by Q=G=k−k′. k, k′ and Q denote
the incident/final neutron wavevector and
the scattering vector. During an inelastic
scattering event the momentum conservation
Q=G±q=k′ −k applies, where q represents
the reduced scattering vector in the first Bril-
louin zone.

Respecting Fermi’s Golden Rule as well as the energy conservation for the scattering
process the number of neutrons, scattered at the potential V per time interval into an
angular region dΩ and energy interval [E ′ , E ′ + dE] and normalized to the incoming flux,
are given by the partial differential cross section

(

d2σ

dΩdE ′

)

k,λ→k′,λ′

=
k′

k

( m

2π~2

)2 ∣
∣

∣

〈

k′λ′|V̂ |kλ
〉∣

∣

∣

2

δ(Eλ − Eλ′ + E + E ′). (3.1)

Assuming the scattering potential weak and only of short range order compared to the
neutron wavelength the evaluation of the matrix element is equivalent to the first Born
approximation with plane waves for the incident and final neutron states. The measured
partial differential cross section includes the ensemble average over all incident and final
states of the target weighted by pλ =exp (−Eλβ)/Z, where Z =

∑

λ exp (−Eλβ) denotes
the partition function and β =(kBT )−1 the inverse temperature.
The double differential cross section can be split into a coherent and incoherent part, re-
spectively. For the first kind of scattering interference effects between different atoms lead
to a distinct Q dependence, whereas for incoherent scattering the random distribution of
the deviations of the scattering lengths from their mean value owing to fluctuations, iso-
tope mixtures or lattice defects give raise to Q independent scattering.

Further evaluation of the double differential cross section yields the scattering function
S(Q, ω) via

d2σ

dΩdE ′
∝ k′

k
S(Q, ω) . (3.2)
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This quantity accounts for the sample response during an experiment and has to be cal-
culated for each type of scattering potential. In the following section important equations
for the scattering function used in this thesis shall be briefly derived, with emphasis on
magnetic scattering. A more profound explanation of selected expressions are provided
in the corresponding chapters of this work, where the data analysis is noted.

3.2.1 Coherent nuclear and magnetic scattering

For nuclear scattering the Fermi pseudo-potential

V̂ (r) =
2π~

2

m

∑

j

bjδ(r − Rj) (3.3)

describes the interaction between scattered neutrons and different scattering centers (nu-
cleus j with scattering length bj) at position Rj in the sample. Elastic scattering probed in
a diffraction experiment only yields response at reciprocal lattice vectors G. Considering
the corresponding differential cross section

dσ

dΩ

∣

∣

∣

∣

el,N

coh

=

∞
∫

0

d2σ

dΩdE ′
dE ′ = N

(2π)3

vo

∑

G

δ(Q − G)|FN(G)|2e−2W (3.4)

the nuclear structure factor FN(G)=
∑

j bje
iG·dj accounts for the scattering intensity at

the reciprocal lattice point G. It results from all atoms j in the unit cell at position dj

(1≤ j ≤N). Temperature dependent displacement u of the atoms from their mean posi-
tion are comprised in the Debye-Waller factor e−2W with W = 1

2
〈(Q · u)2〉. The quantity

v0 denotes the volume of the investigated nuclear unit cell.
The inelastic scattering function is related to the imaginary part of the dynamical sus-
ceptibility χ′′(Q, ω) by the fluctuation-dissipation theorem

S(Q, ω) = (n(ω) + 1)χ′′(Q, ω) (3.5)

with n(ω) = (e~ωβ − 1)−1 denoting the Bose function. Note the asymmetry of the scat-
tering function, known as the principle of detailed balance S(−Q,−ω)= e−~ωβS(Q, ω),
putting an increased statistical weight on the the particle creation than on the particle
annihilation process. Accounting for the nuclear dissipative part of the linear response
various models can be used, among those such of the damped harmonic oscillator (see
appendix C). The latter usually describes the lineshape of the scattering function in the
frequency domain.

Magnetic scattering occurs owing to the interaction of the magnetic dipole moment of
the neutron µn =−γµNσ with the moment of unpaired electrons µe =−2µBs in the tar-
get. The quantity γ =1.913 defines the gyromagnetic ratio, µN and µB denote the nuclear
and Bohr magneton, σ =2s/~ the Pauli spin operator and s the spin angular momentum
operator. The scattering potential VM(R) at the position R arises from the electron dipole
moment µe and the motion of the electron of momentum p

VM(R) = VS(R) + VL(R) (3.6)

= −µNµB
µ0

4π
σ

(

∇×
(

s × R̂

R2

)

+
1

~

p × R̂

R2

)

,
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where R̂ denotes the unit vector in R direction.
Evaluating the matrix element 〈k′λ′σ′|Vm|kλσ〉 for the wave vector dependence k yields
〈λ′σ′|σ · S⊥|λσ〉. Here, the magnetic interaction vector S⊥ is introduced

S⊥ = Q̂ × (S × Q̂) = S − Q̂(Q̂ · S) , (3.7)

where Q̂ is the unit vector of the scattering vector.
To derive the magnetic coherent double differential cross section, we have to consider the
the magnetic scattering amplitude that is given by

p =
(γr0

2

)

gf(Q) . (3.8)

Here, r0 represents the classical electron radius, g the Landé splitting factor with respect to
the electron configuration of the magnetic atom in the target and f(Q) the magnetic form
factor. The latter is defined as the Fourier transformation of the normalized distribution
of the magnetization density operator M(r) of the particular atom

f(Q) =

〈

λ
∣

∣

∫

M(r)eiQ·rdr
∣

∣λ
〉

〈

λ
∣

∣

∫

M(r)dr
∣

∣λ
〉 . (3.9)

M(r) comprises both the spin and orbital part of the magnetization density assumed
as delta function at the particular spin positions for the spin contribution and the line
integral of the orbital current density, respectively. The magnetic scattering amplitude p
is of the order of the nuclear scattering length b.
The coherent double differential cross section for magnetic scattering thus reads

d2σ

dΩdE ′

∣

∣

∣

∣

coh

= Ne−2W p2k′

k

∑

αβ

(

δαβ − Q̂αQ̂β

)

Sαβ(Q, ω) , (3.10)

where α and β denote the Cartesian coordinates x, y and z. The factor
∑

αβ

(δαβ − Q̂αQ̂β) (3.11)

is often called the selection rule for magnetic scattering. Only fluctuations perpendicular
to the scattering vector contribute to the magnetic cross section. The response function

Sαβ(Q, ω) =
1

2π

∞
∫

−∞

dt e−iωt
∑

l

eiQrl

〈

Sα
0 (0)Sβ

l (t)
〉

(3.12)

is the time and space Fourier transformed quantity of the spin pair correlation function
〈

Sα
0 (0)Sβ

l (t)
〉

and explains the interference between a spin at the position r0 =0 and time

equal to zero to other spins l at the position rl at time t> 0.
According to elastic nuclear scattering the elastic magnetic coherent cross section is de-
fined by

dσ

dΩ

∣

∣

∣

∣

el,M

coh

= NM
(2π)3

vM

∑

GM

δ(Q − GM)|FM(GM)|2e−2W , (3.13)

where GM describes a magnetic reciprocal vector, vM the volume of the magnetic unit cell
and NM the number of atoms in the unit cell. The magnetic structure factor FM(GM) =
∑

j pjS⊥je
iGM ·dj defines the amplitude of magnetic scattering at GM to which the different

magnetic atoms in the unit cell contribute.
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3.2.2 Triple axis and time of flight spectroscopy

Two different types of spectrometers apply for measuring inelastic response of a target.
The first type of instruments is a triple axis spectrometer (TAS, see Figure 3.4) that is
based on the principle of B. N. Brockhouse. During a scan one particular point (Q,ω) is
probed. Using a time of flight (tof) spectrometer a broad (Q, ω) space is instantaneously
reached. In the following important aspects of both principles will be briefly presented,
beginning with the TAS principle.

Out of a primarily collimated white neutron beam with a Maxwellian distribution a cer-
tain wavelength λ is selected by a crystal monochromator (lattice spacing d). Bragg’s law
2d sin (θM )=nλ defines the desired wavelength λ from the incoming wavevector k = 2π/λ.
2θM defines the scattering angle of the neutrons on the monochromator crystal. Common
monochromator materials are pyrolytic graphite (PG(002)), Heusler alloys (Heusler(111))
or copper crystals (Cu(111)). Higher orders of the incoming beam are effectively reduced
by inserting a filter (beryllium or graphite) providing resonance absorption for certain
neutron energies. The scattered neutrons will reach the sample after further collimation.
Energy exchange with the sample modifies the wavevector of the scattered neutrons to
k′ (scattering angle 2θS). Though neutrons are scattered into a solid angle dΩ = 2θS2Φ
only neutrons in the scattering plane (defined by the scattering angle) are counted by the
detector. Before reaching the detector neutrons scatter on the analyzer crystal (similar
materials compared to the monochromator, scattering angle 2θA) with possible collimation
before and after the analyzer. The final neutron energy is thus again defined by Bragg’s
law. The detector itself consists of a 3He beam tube counting arriving neutrons. In order
to normalize for the incoming neutrons, a monitor is installed before the monochromator.

Figure 3.4: Scheme of a triple axis spectrometer in W configuration. The energy and momentum
change of the sample is given by three axis (monochromator, sample and analyzer) with its
corresponding scattering angles 2θM , 2θS and 2θA.

The TAS instrument can be operated in two different modii. Using a fixed final energy
the final wavevector k′ of the scattered neutrons is kept constant, whereas the scatter-
ing vector Q and the incoming wavevector k vary. Keeping the incident energy of the
neutrons constant defines the sample energy and momentum transfer by changing the
scattering vector Q and the final wavevector k′. Here, k′3/ tan θA has be multiplied to the
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measured intensity to obtain the true partial differential cross section. This geometrical
factor accounts for the dependence of the energy resolution on the final wavevector.
In order to account for the probability that a neutron in a scattering process at (Q0,ω0) is
detected within a particular deviation ∆ω and ∆Q from this point, the four dimensional
resolution function R(Q−Q0, ω−ω0) has to be included. It describes the reduced detec-
tion probability with respect to Gaussian angular distributions of a finite collimation and
the mosaic spread of the monochromator, sample and analyzer crystal [77, 78]. Moreover,
the curvature of the monochromator and analyzer, the sample geometry as well as the
spatial configuration of the instrument set-up can be considered for the resolution function
[79]. The measured intensity is proportional to the convolution of the partial differential
cross section with the resolution function.

A complimentary technique to triple axis spectroscopy makes use of a time of flight
instrument. For this purpose a pulsed neutron beam is required. Whereas a spallation
source already provides time separated neutrons, the continuous flux of a reactor has to
be interrupted with a defined frequency. The primary spectrometer provides the pulse
sequence of neutrons obtained by a chopper system. The wavelength selection of the
neutrons is achieved by either using the latter or by monochromator crystals according
to Bragg’s law. A suppressor chopper that rotates at a fraction of the frequency of the
previous choppers allows for the possibility to cancel out additional neutron pulses. In
case of a crystal monochromated spectrometer higher orders of λ shall be suppressed by
a Beryllium filter. Directly in front of the sample chamber a monitor is installed in or-
der to normalize for the incoming neutron flux. The secondary spectrometer allows for
determining both the momentum transfer Q of the scattered neutrons at the sample site
as well as their energy transfer ~ω. It consists of a detector box equipped with detector
banks in various heights at the distance L from the sample site. The distance L defines
the flightpath. Typically an angular range 2θ from ∼ 15◦ to ∼ 120 ◦ is covered with 3He
beam tubes. Ideally, the whole flightpath of the neutron is purged with helium or argon,
in order to avoid diffuse scattering on molecules in air.
The momentum transfer of the neutron is given by the angle 2θ between the incoming
and outgoing wavevector via Q2 = k2 +k′2−2kk′ cos θ. The energy transfer to the sample
is obtained as the difference of the initial energy of the neutron compared to the scattered
neutron using the energy-wavelength dependence E ∝ 1/λ2. Using the de-Broglie relation
λ=3956/v the wavelength is determined by the non relativistic neutron velocity v =L/t.
t denotes the time that a neutron needs passing from the sample to the detector.

3.2.3 Reduction of time of flight data

We introduce to the raw data reduction of time of flight data by explaining the neces-
sary correction factors that have to be applied to the measured intensity I(2θ, tof) [80].
Important quantities of neutron scattering such as the scattering law and the resolution
function are related to I(2θ, tof).

We recall the relation between the scattering law S(Q, ω) and the partial differential
cross section d2σ/(dΩdE ′)

d2σ

dΩdE ′
∝ k′

k
S(Q, ω) , (3.14)
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where Q=k − k′ denotes the scattering vector, E ′ =E − ~ω the final neutron energy
and dΩ the solid angle, to which neutrons scatter. Separating coherent from incoherent
scattering S(Q, ω) reads

S(Q, ω) =
σinc

4π
Sinc(Q, ω) +

σcoh

4π
Scoh(Q, ω) (3.15)

with the weighting factor σinc and σcoh that denote the total coherent and incoherent
cross section, respectively. The measured intensity I(Q, ω) is the convolution of the
partial differential cross section and the resolution function R(Q − Q′, ω − ω′)

I(Q, ω) ∝
∫

dω′dQ′S(Q′, ω′)R(Q − Q′, ω − ω′) (3.16)

respecting the wavevector and energy broadening of the measured (Q, ω)-point.

During a time of flight experiment data are simultaneously obtained for an angular range
2θimin

≤ 2θi ≤ 2θimax
(i∈ [imin, imax]). For each angle 2θi the measured intensity I(2θ, tof)

depends on time of flight tof measured in units of time/length. tof is related to the time
t neutrons need to cover the flight path L and thus the neutron energy E =m/(2tof 2).
Here, m denotes the neutron mass. Elastically scattered neutrons arrive at the detector
at time tofel that is defined by the incident neutron energy E. An inelastic scattering
event of a neutron yields a modified neutron velocity and consequently a shift of the ar-
riving time at the detector compared to elastically scattered neutrons. The measurement
process is continuous in time and is realized by equidistant time channels.

When deducing the scattering law based on the measured intensity I(2θ, tof), important
aspects have to be paid attention to. The scattering law depends on the norm of the scat-
tering vector Q, since the accessible (Q,ω) space is defined by Q=

√
k2 + k′2 − 2kk′ cos θ.

The resolution function defined in the (2θ,ω) space is thus a function of the energy transfer
for a constant scattering angle. The observed intensity yields a broadening in ω. Several
correction factors are applied to I(2θ, tof) for deducing S(Q, ω) that will be presented in
the following. Among those are the normalization of the measured intensity to the incom-
ing neutron flux Φ, the correction for different detector efficiencies and the self absorption
of both the sample and its surrounding container. Moreover, interpolation to constant
wavenumbers has to be considered.

The measured intensity I(2θ, tof) counts the number of neutrons N being detected with
a probability pi at a particular scattering angle 2θi within a time interval ∆ti and the
solid angle ∆Ωi

Ni = piASΦ∆tiI(2θ, tof)∆Ωi . (3.17)

AS denotes the illuminated area of the sample and ∆ti the detection time that is divided
into a certain number of time channels of equidistant width. Normalization of the detector
counting rate to that of the monitor NM ,

NM = pMAMΦ∆ti , (3.18)

yields the quantity Ñ with

Ñ =
piAS

pMAM
I(2θ, tof)∆Ωi . (3.19)
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AM and pM defines the monitor area and the monitor efficiency, respectively. Ñ turns
independent of the incoming neutron flux and the measured time.
Correcting this quantity for the monitor normalized number of neutrons scattered on the
standard sample vanadium that was measured in equal experimental conditions compared
to the sample results in Ĩ(2θ, tof). We obtain the sample intensity that is corrected for
the efficiency of each detector.
Figure 3.5 (a) shows typical sample and empty can data depending on tof for one scat-
tering angle 2θi that are corrected for the monitor counts and vanadium. Figure 3.5 (b)
depicts the corresponding vanadium data that are summed over the elastic line. This plot
illustrates different detector efficiencies for each scattering angle 2θi. The two observed
peaks originate from scattering on the aluminum sample holder.
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Figure 3.5: Ca0.83CuO2 (ca083), vanadium (van) and empty can (ec) data measured on IN4
with an incident wavelength of 2.6 Å at 2K. (a) Sample and empty can data are obtained at
2θ = 22.3◦ (summed over ten detector angles and three time channels). Both data sets are
normalized to the monitor and vanadium. The inset illustrates the accessible (Q,ω) space. (b)
Vanadium data summed over the elastic line. The two Bragg reflections originate from scattering
on the aluminum sample container.

Further transfer of Ĩ(2θ, tof) to Ĩ(2θ, ω) considers a factor tof 4 that results from the
relation
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and k′ ∝ 1/tof . This factor turns evident at ω > 0 (neutron energy loss). A proper sub-
traction of the instrumental background at small tof reduces the effect before converting
the monitor and vanadium normalized data to Ĩ(2θ, ω) (see Figure 3.6 (a)).
Considering absorption effects on the sample and the sample container during the scat-
tering process a simple subtraction of the container signal from the combined sample and
container signal does not hold. Two absorption factors have to calculated accounting
for both contributions depending on the chosen sample geometry [81]. The scattering
function of the sample S(2θ, ω) is thus related to the combined sample and empty can
intensity ĨS,C(2θ, ω) and the empty can intensity ĨC(2θ, ω)

S(2θ, ω) =
1

AS(θ, ω)
ĨS,C(2θ, ω) − Arel(2θ, ω)

AS(θ, ω)
ĨC(2θ, ω) , (3.21)
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where AS(2θ, ω) denotes the absorption coefficient for a scattering process of a neutron on
the sample and its absorption while passing the latter. Arel(2θ, ω) = AC(2θ, ω)/AS(2θ, ω)
is defined as the relative absorption between scattering on the container and scattering on
the sample, respectively. For all time of flight experiments performed during this thesis
a hollow cylinder with an annular sample geometry was chosen. In this case the angular
dependence of Ai(2θ, ω) (i ∈ {A, C}) is almost negligible, whereas a clear energy depen-
dence is observed. ω > 0 corresponding to neutron energy loss processes yields a decrease
of both absorption coefficients. The strength of this effect depends on the accessible en-
ergy transfer and is more pronounced for larger ω. Figure 3.6 (b) displays the absorption
coefficient As(2θ, ω) of Ca0.83CuO2 at 2.6 Å.
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Figure 3.6: Data of Ca0.83CuO2 (ca083) measured on IN4 with an incident wavelength of 2.6 Å
at 2K. (a) S(2θ, ω) not corrected/corrected (wbg/bg) for the instrumental background in tof ,
respectively. The measured data are shown on a constant energy grid. (b) Self absorption factor
AS(2θ, ω) of Ca0.83CuO2.

Interpolation to constant wavenumbers Q yields the desired quantity S(Q, ω), where the
nonlinear relation between Q and the incoming and outgoing wavevector are taken into
account.
Weighting S(Q, ω) with the detailed balance factor results in the symmetric scattering
function. This correction is indispensable for low temperatures or large energy transfer.
Obtaining the scattering function in absolute units the difference between the scattering
power of the sample and the used vanadium has to be considered by a Q independent
factor.

3.2.4 Neutron scattering experiments

During this thesis work the compound series Ca2+xY2−xCu5O10 and the triangular frus-
trated antiferromagnet CsVBr3 were studied by means of neutron spectroscopy, in oder
to elucidate their quasi 1D magnetic behavior. Elastic and inelastic neutron scattering
experiments were performed at the Forschungsreaktor München II (FRMII, Germany),
Institut Laue-Langevin (ILL, France), the NIST Center for Neutron Research (NCNR,
USA) and Paul Scherrer Institut (PSI, Switzerland). Table 3.1 provides an overview of
the investigations contributing to this thesis.

For all experiments at the ILL, NIST and PSI orange cryostats were employed providing
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a temperature range from 1.8K to 300K and a temperature stability of ∼ 0.1K. At the
FRMII closed cycle refrigerators were used allowing for the temperature range of 3.5K
to 300K and a temperature stability of better than 0.2K.

Ca2+xY2−xCu5O10 samples were finely grounded and densely filled into vanadium or alu-
minum sample holders under helium atmosphere. CsVBr3 was sticked into its sample
holder using glue. The particular sample geometry of each experiment will be described
in the experimental part of this thesis. Furthermore, necessary experimental details of
each experiment are noted later.

Sample Static order Dynamics

Ca2Y2Cu5O10 DMC, SPODI, TASP TASP, SPINS
Ca2.5Y1.5Cu5O10 DMC, SPODI, TASP -
Ca3Y1Cu5O10 DMC, HRPT -
Ca3.1Y0.9Cu5O10 DMC -
Ca3.2Y0.8Cu5O10 DMC, HRPT -
Ca3.5Y0.5Cu5O10 HRPT PANDA
Ca0.83CuO2 D20, HRPT IN3, IN4
CsVBr3 - TASP

Table 3.1: Overview of the neutron scattering investigations performed on instruments of the
FRM II, ILL, NIST and PSI for Ca2+xY2−xCu5O10 compounds and CsVBr3. The instrumental
set-up and the particular sample geometry is noted in the corresponding chapter.
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Chapter 4

Quasi 1D behavior in
Ca2+xY2−xCu5O10

Literature reports a complex magnetic behavior of Ca2+xY2−xCu5O10 samples. To re-
solve this, we used various experimental techniques such as susceptibility and specific heat
measurements as well as elastic and inelastic neutron spectroscopy. This chapter reports
the experimental findings of these measurements. We introduce general properties of the
compound series (see chapter 4.1) and present experimental findings (see chapter 4.2 to
chapter 4.5). Finally, the obtained results are discussed with respect to other CuO2 chain
compounds (see chapter 4.6).
For clarity, each section of this chapter will contain a short summery.

4.1 Sample preparation and characterization

This section is devoted to the sample preparation process of polycrystalline
Ca2+xY2−xCu5O10 compounds and the analysis of their chemical composition (see chapter
4.1.1 and 4.1.2). Chapter 4.1.3 introduces the crystal structure of the investigated com-
pound series. Electron paramagnetic resonance measurements were performed to define
the Landé splitting factor g that is used for data analyzing of susceptibility measurements
(see chapter 4.1.4).

4.1.1 High pressure oxygen annealing

The sample synthesis of copper oxide compounds Ca2+xY2−xCu5O10 simultaneously en-
forces experimental conditions of temperatures of about ∼ 1100K and an oxygen pressure
at the synthesis volume of higher than 200 bar. Single crystals of such materials are syn-
thesized using a mirror furnace offering these requirements. During this work only powder
samples were used.

Ca2+xY2−xCu5O10 samples with stoichiometric concentrations of 0 ≤ x ≤ 2.15 were syn-
thesized by a solid state reaction from the precursor materials CaO/CaCO3, CuO and
Y2O3[61]. The parent compound, undoped Ca2Y2Cu5O10, was prepared at 1000K and
ambient pressure based on CuO, Y2O3 and CaCO3 (each material 99.999%, Alfa Ae-
sar). Doped samples (0<x≤ 1.5) were obtained from CuO (99.995%, Alfa Aesar), Y2O3

(99.995%, Alfa Aesar) and CaO (99.9%, Alfa Aesar). During the synthesis the reaction
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temperature and the oxgen pressure was about ∼ 1100K and ∼ 200 bar, respectively. For
highly doped Ca0.83CuO2 CuO and CaO was used at similar experimental conditions com-
pared to the synthesis of less doped samples. Substituting CaO for CaCO3 during the
synthesis of doped samples prevents the decomposition of CaCO3 and CuO into CO2 in
the closed volume of the oven.

In order to prove the sample quality, we performed susceptibility measurements after
the sample synthesis. Doped samples with 1≤x≤1.5 provided evidence of a not totally
completed sample synthesis reaction in terms of a too low D.C. magnetization signal
compared to literature [61, 62]. Moreover, the second order phase transition from the
paramagnetic to the Néel state that is visible in specific heat appeared very broad. A
second annealing was performed, where the samples were reground, again pressed into
pellets and heated in similar conditions compared to the first reaction. During this syn-
thesis the oxygen pressure was increased yielding a higher sample homogeneity owing to
an increased oxygen penetration of the samples.

Experimental conditions of the synthesis reaction of doped samples required a sample
preparation in collaboration with Dr. S. Kazakov and Dr. J. Karpinski of the Labora-
tory for Solid State Physics, Eidgenössische Technische Hochschule, Switzerland. We
synthesized the parent compound Ca2Y2Cu5O10 at the Walter Meissner Institute for low
temperature physics, Munich, using the technical equipment of the crystal growth labora-
tory. Table 4.1 provides an overview of the available samples obtained during this thesis.

Sample composition Precursor material T (K) P (bar) Time (h)

Ca2Y2Cu5O10 CuO, Y2O3, CaCO3 1000 ambient 36
Ca2.5Y1.5Cu5O10 CuO, Y2O3, CaO 1100 200 20
Ca2.75Y1.25Cu5O10 CuO, Y2O3, CaO 1100 200 20
Ca2.9Y1.1Cu5O10 CuO, Y2O3, CaO 1100 200 20
Ca3Y1Cu5O10 CuO, Y2O3, CaO 1100 500 20
Ca3.1Y0.9Cu5O10 CuO, Y2O3, CaO 1100 500 20
Ca3.2Y0.8Cu5O10 CuO, Y2O3, CaO 1100 450 45
Ca3.5Y0.5Cu5O10 CuO, Y2O3, CaO 1100 530 50
Ca0.83CuO2 CuO, CaO 1050 200 36

Table 4.1: Stoichiometric compositions, precursor materials and reaction conditions (tem-
perature, oxygen pressure and time) of Ca2+xY2−xCu5O10 samples. The parent compound
Ca2Y2Cu5O10 was synthesized at the Walter Meissner Institute, doped samples at the Eid-
genössische Technische Hochschule, Switzerland.

In the following, the steps for synthesizing ∼ 15 g undoped Ca2Y2Cu5O10 is described in
detail, which is representative for the synthesis of all Ca2+xY2−xCu5O10 samples.
Based on the reaction equation

Y2O3 + 2CaCO3 + 5CuO → Ca2Y2Cu5O10 + 2CO2 (4.1)

Y2O3, CuO and CaCO3 were separately annealed for 6 h at 740 ◦C, 6 h at 650◦ and 4 h
at 500 ◦C, respectively. Afterwards, the dry powder were homogeneously mixed under
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Figure 4.1: Technical equipment that was used during the sample synthesis process at the Walter
Meissner Institute. Left figure: Mortar with basin and crucible for grinding the components into
fine powder and heating up the pellets in the oven. Right figure: Moulding press for pressing
the loose powder into pellets.
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consideration of their required amount for 15 g sample mass (4.6040 g of Y2O3, 4.0814 g
of CaCO3 and 8.1093 g of CuO). The mixture was reheated at 900◦ in an Al2O3 crucible
for 12 h in air atmosphere. The powder was again ground and pressed into 12 pellets
(diameter ∼ 1 cm, height of each pellet ∼ 0.3 cm) and reheated at 950 ◦C for 10 h. Two
times the pellets were reground and again pelletized. Each time the sample pellets were
held at 1000 ◦C for 24 h and 36 h, respectively. During the heating and cooling procedure
a temperature ramp of 100◦/h was used. The sample synthesis was performed using a
conventional oven (LH 30/14 by Nabertherm GmbH, Lilienthal). Figure 4.1 illustrates
the used eqipment during the sample synthesis.

4.1.2 Sample stoichiometry

The magnetic behavior of Ca2+xY2−xCu5O10 is decisively influenced by the composition of
the investigated sample. Deviations from the stoichiometric concentrations of the oxygen
content and the calcium, copper and rare earth concentrations in terms of site vacancies or
an additional amount of one particular ion will result in lattice distortions. In particular,
it was shown for Ca0.83CuO2 that a small increase of the oxygen concentration yields a
lower copper valency [82]. The number of magnetic copper ions within the chain increases
and the degree of dimerization becomes less. The variation of the element concentrations
are easily observed in bulk properties such as resistance, magnetization and specific heat.

We chose two approaches to verify the quality of the synthesized samples with respect
to their element concentrations. The oxygen content was determined by Dr. E. Pom-
jakushina (Chemistry Department of the Paul Scherrer Institut, Switzerland) using iodo-
metric titration [83]. The method of induced coupled plasma optical emission spectroscopy
(ICP-OES) was applied to determine the stoichiometric concentration of yttrium, copper
and calcium. The measurements were performed by S. Buchheit at the Radiochemistry
Department of the Ludwigs-Maximilians-Universität München, Germany. Table 4.2 shows
the results of both investigations.

Nominal stoichiometry Ca (p.f.u.) Y (p.f.u.) Cu (p.f.u.) O (p.f.u.)

Ca2Y2Cu5O10 2.00(7) 1.92(1) 4.80(2) 9.98
Ca2.9Y1.1Cu5O10 not performed not performed not performed 10.00
Ca3Y1Cu5O10 3.00(1) 0.85(0.3) 4.74(2) 10.08
Ca3.2Y0.8Cu5O10 3.20(1) 0.78(0.3) 4.93(2) 10.02
Ca3.5Y0.5Cu5O10 3.50((1) 0.49(0.2) 5.00(0.2) 9.96
Ca0.83CuO2 0.830(2) - 0.996(4) 2.026

Table 4.2: Chemical analysis of synthesized Ca2+xY2−xCu5O10 samples. The element
concentrations are given per formula unit (p.f.u.). Ca, Y, Cu concentrations were deter-
mined by means of ICP-OES, the oxygen content by iodometric titration. The error of
the oxygen concentration is better than 0.2% of the absolute value.

Almost all samples show a Cu deficiency of 3% that may origin from Cu evaporation
during the heating procedure. However, no evidence of this effect was found during the
sample preparation and no compensation of the lost material was possible.
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4.1.3 Crystal structure

The layered crystal structure of the compounds Ca2+xY2−xCu5O10 is closely related to the
phases NaCuO2 [84] and CaCuO2 [85]. These samples feature edge sharing planar CuO2

chains that are separated by planes with either alkali or rare earth ions [49, 50]. The
copper oxide chains reside on an orthorhombic face centered sublattice that belongs to
the space group Fmmm. The approximate lattice constants are a' 2.8 Å, b' 6.3 Å and
c' 10.6 Å. The CuO2 chains run along the a direction and are stacked along the two
perpendicular directions. It is further known that the Ca/Y ions form an orthorhombic C
centered sublattice, where the unit cell parameters are a' 3.4 Å, b' 6.3 Å and c' 5.3 Å.
A mismatch of five copper ions to four Ca/Y ions along the a direction yields an in-
commensurate structure. In order to account for this modulation in the compounds, two
approaches can be used: a large monoclinic unit cell and a superstructure.

Within the superstructure approach the strong nuclear satellite reflections in a diffraction
pattern are indexed as (h − δa, k, l ± δc) based on the CuO2 subcell. The coefficients
1/δa and 1/δc are of the order of five and four and strongly depend on the Ca/Y ratio.
Raising x leads to an increase in the factor 1/δa from five to six and an increase in 1/δc
from four to five. The propagation vector [δa 0 δc] describes the satellite reflections of the
modulated superstructure.
The second approach employs the monoclinic space group P21/c, where the volume of the
unit cell is about 1000 Å3. The lattice parameters ã, b̃ and c̃ are equal to a/δa' 14.2 Å,
b' 6.3 Å and c/ sin β ' 15.5 Å, respectively. The angle between the ã and c̃ direction sat-
isfies the relation β ' 180◦−arctan ((δa · c)/((1 − δc) · a)) and is of the order of 135◦. One
chemical unit cell comprises 16 Ca/Y ions, 20 copper ions and 40 oxygen ions. Figure 4.2
illustrates the crystal structure of Ca2+xY2−xCu5O10 compounds.

4.1.4 Landé splitting factor g

Considering Eq. (2.6) to Eq. (2.8) (see chapter 2.3) the Landé factor g significantly in-
fluences the multi parameter fit function of susceptibility that contains g, the number of
magnetic spins N , the alternating parameter α and the exchange J as free parameters.
We used electron paramagnetic resonance (EPR) to determine the effective g-factor of
Ca2+xY2−xCu5O10 samples. For an overview of this technique refer to [86].

During an EPR experiment the sample is exposed to an external magnetic field B and ir-
radiated by a microwave with frequency ν. Owing to the Zeeman splitting the two energy
levels WMs

E = gµBBresMs (4.2)

are non degenerate, where Ms =± 1/2 denotes the projection of the electron spin. Res-
onant absorption between the two levels is observed, when the energy difference ∆E
between both non degenerate states and the energy of the external field Bres

∆E = hν = gµBBres (4.3)
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Figure 4.2: Crystal structure of the copper oxide compounds Ca2+xY2−xCu5O10. View along
the a axis, where b runs horizontally and c vertically. Copper ions are sketched in red color,
oxide ions in yellow color and Ca/Y in blue color. The copper oxide chains are formed along
the a axis.
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coincide. Usually, the frequency is kept constant in the experiment and the field is scanned.

EPR experiments were performed at the Physik Department E17, Technische Univer-
sität München, on a Brucker Elexsys 580 Spectrometer that is equipped with an ESP
380-1010 microwave bridge and operates in the X band (microwave frequency 9.5GHz).
Ca2Y2Cu5O10, Ca3Y1Cu5O10, Ca3.5Y0.5Cu5O10 and Ca0.83CuO2 were measured above its
3D order temperature up to 300K.

Figure 4.3 (a) displays the first derivative of the obtained reflection signal. The reso-
nant field Bres that corresponds to the absorption from the lower energy state to the
higher one is derived from the first derivative of the signal. Since the lineshape of the
actual resonant absorption peak is almost symmetric, the position of the maximum of
that peak corresponds to the value for zero intensity of the first derivative. The lineshape
of the absorption peak further implies a maximum and a minimum of the first derivative
at an equidistant position from the center field Bres. We obtained Bres by determining the
fields corresponding to the maximum and minimum of the first derivative. The resonant
field is given by the half distance of the minimum and maximum position of the measured
curve.
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Figure 4.3: Electron paramagnetic resonance measurement of Ca2+xY2−xCu5O10. (a) First
derivative of the resonance absorption measured at 230 K for Ca0.83CuO2 (ca083). (b) Concen-
tration dependence of the g-factor in Ca2+xY2−xCu5O10.

Data evaluation yields a temperature and concentration independent g-factor for the in-
vestigated samples of the compound series (see Figure 4.3 (b)). Table 4.3 collects the
results of the Landé factor for x=0, 1, 1.5 and Ca0.83CuO2, respectively. The obtained
experimental values agree well with literature values of similar S = 1/2 systems such as
Ca0.85CuO2 [87] and Sr0.73CuO2 [88]. Both samples exhibit a Landé factor of 2.08.

Landé factor g

Ca2Y2Cu5O10 2.08(1)
Ca3Y1Cu5O10 2.09(1)
Ca3.5Y0.5Cu5O10 2.08(1)
Ca0.83CuO2 2.10(1)

Table 4.3: Landé factor g of particular
Ca2+xY2−xCu5O10 samples that were deter-
mined by means of electron paramagnetic res-
onance. The obtained values are both temper-
ature and concentration independent in the in-
vestigated temperature range.
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4.2 Magnetization study

This section reports the investigation of magnetic order in Ca2+xY2−xCu5O10 by means of
D.C. and A.C. magnetization measurements. The first part is devoted to the observation
of a complex magnetic phase diagram in terms of 3D antiferromagnetic phase, disorder
and 1D Heisenberg behavior in higher doped samples (see chapter 4.2.1). Analyzing the
high temperature data by means of the Curie Weiss law shows that hole doping effec-
tively reduces the magnetic Cu2+ ions in the chain (see chapter 4.2.2). Susceptibility data
at low and medium temperatures are discussed within the frame of the alternating 1D
Heisenberg chain model (chapter 4.2.3).

We measured D.C. and A.C. magnetization for Ca2+xY2−xCu5O10 samples with
0≤x≤ 2.15 in the temperature range of 1.9K to 300K. D.C. measurements were per-
formed in an external field between 0.1T to 9T, in order distinguish between long range
order and short range correlations. Between 1.9K and 70K the samples were measured in
0.4K steps. Above 70K the difference between two data points was extended to 0.8K. For
illustration purposes all data are displayed in a semilogarithmic plot with 70 to 100 points
per decade. Besides the temperature dependence at constant fields, data were obtained
probing the field dependence at fixed temperatures.

Solid pieces of each sample were mounted into straw sample holders that were closed with
Kapton tapes at the sample end. Both the straw and the tape provide a diamagnetic
contribution to the sample signal that might even mask the latter one. Experimentally
ascertained, these two additives strongly depend on the used sample holder and may vary
in strength. Avoiding uncertainties for data analysis the sample volume to which the
magnetic response is proportional was adjusted in such a way that the diamagnetic part
of the sample environment represents even in the paramagnetic regime only 1% of the
overall obtained signal. Furthermore, error bars of the D.C. and A.C. magnetization are
drastically reduced compared to the first measurements of both quantities. Figure 4.4
illustrates the absolute D.C. magnetization signal of the straw sample holder in 1T in
comparison to data of Ca0.83CuO2.
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Figure 4.4: D.C. magnetization of the empty
sample holder (straw) and of the combined
sample holder and Ca0.83CuO2 (ca083) in 1 T.
The diamagnetic contribution of the straw and
the Kapton tape differ by 2 orders of magnitude
from the overall sample and sample holder sig-
nal. The accuracy of D.C. measurements is of
the order of 3 · 10−5 emu. This kind of sample
holder was used for D.C. and A.C. magnetiza-
tion measurements.

Depending on the sample density the investigated pieces weight between ∼ 150mg and
∼ 400mg. In order to further exclude inhomogeneities of each sample during the data
analysis process, we measured at least two pieces of each sample.
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4.2.1 Magnetic phases

Figure 4.5 (a) and (b) displays the susceptibility of Ca2Y2Cu5O10 and
Ca3Y1Cu5O10 in units of emu/mole, respectively. The data are obtained by means of
D.C. magnetization measurements in an external field of 1T.
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Figure 4.5: Susceptibility of (a) Ca2Y2Cu5O10 (ca2y2) and (b) Ca3Y1Cu5O10 (ca3y1), measured
in 1 T. Upon doping, the antiferromagnetic phase transition temperature TN decreases. Below
7 K, χ(T ) increases in magnitude, what is attributed to antiferromagnetic correlations. The
solid lines indicate a fit using the Curie Weiss law (cw, see chapter 4.2.2).

The parent compound exhibits typical signs of an antiferromagnetic phase transition
around ∼ 30K. Susceptibility increases up to a maximum and again decreases upon low-
ering the temperature. At the lowest experimentally accessible temperature χ(T ) yields a
constant value of ∼ 5.7 · 10−3 emu/mole. Single crystal data of a conventional 3D antifer-
romagnetic system show χ‖(T )→ 0 for T → 0 or exhibit a constant value below χmax(TN).
This low temperature behavior depends on the applied magnetic field that is either ori-
entated parallel to the sample magnetization M(T ) or perpendicular to it. In contrast,
a 3D ferromagnetic phase is characterized by an increase of the susceptibility χ(T → 0)
until the spontaneous magnetization saturates.
Further Ca2+ doping leads to a decrease in the absolute value of susceptibility. Moreover,
the second order phase transition shifts to lower temperatures. Ca3Y1Cu5O10 shows an
order temperature of ∼ 20K. The transition changes from a sharp feature for χ(T ) to a
broad maximum. Below 7K susceptibility continuously increases in this compound. This
feature is an overall signature of the investigated samples with the doping concentration
0.75≤x≤ 1.5. We do not observe a saturation of χ(T ) within the highest applied field of
9T for T → 0.
Figure 4.6 (a) displays the susceptibility of Ca3.5Y0.5Cu5O10. Th signal increases upon
decreasing temperature. Around 12K the slope of χ(T ) changes. We observe below this
temperature antiferromagnetic correlations that are revealed by a linear fit to the inverse
susceptibility (see inset of Figure 4.6 (a)). This low temperature antiferromagnetic phase
might mask the long range order temperature that is visible in less doped samples.
In Ca0.83CuO2 the absolute signal of the susceptibility further decreases compared to
Ca3.5Y0.5Cu5O10 (see Figure 4.6 (b)). It shows signatures of the antiferromagnetic 1D
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Heisenberg chain in terms of a very broad rounded maximum around ∼ 33K and a con-
stant value for T → 0. Around ∼ 12K χ(T ) exhibits a change in its slope. Upon increasing
field, susceptibility data clearly shows an increase in χ(T ) with decreasing T (see inset of
Figure 4.6 (b)). This feature is attributed to a magnetic phase transition. Based on the
position of the rounded maximum in the curve the magnetic exchange J measured along
the chain is estimated to be J/kB 'Tmax/0.641' 55K (see chapter 2.3).
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Figure 4.6: Susceptibility of (a) Ca3.5Y0.5Cu5O10 (ca35y05) and (b) Ca0.83CuO2 (ca083), mea-
sured in 1T. The susceptibility of Ca3.5Y0.5Cu5O10 features a change in its slope around 12 K.
Below this temperature 1/χ(T ) reveals antiferromagnetic correlations (see inset in plot (a)).
The susceptibility of highly doped Ca0.83CuO2 resembles that of the 1D Heisenberg chain. The
inset in plot (b) enlarges the low temperature behavior of χ(T ) for the applied fields of 1 T, 2 T,
4.5 T and 9 T. We note a magnetic phase transition around 12 K. The solid lines indicate a fit
using the Curie Weiss law (cw, see chapter 4.2.2).

The low temperature increase in doped samples might be a sign of disorder that leads to a
spin glass state. Both D.C. and A.C. magnetization should reveal a distinct behavior for
such a magnetic state. Zero field cooled and non zero field cooled susceptibility usually
show a significant change that starts around the spin glass temperature. This feature
originates from an increased spin orientation with respect to the field, when cooling in
an external field. However, we do not observe a change within these two quantities for
all samples. We further investigated the frequency dependent A.C. magnetization that
should feature a shift of the real part of χ(T ) to higher temperatures when increasing
the applied frequency [89]. In agreement with zero field and non zero field cooled D.C.
magnetization no frequency dependence of the signal is visible between 10Hz up to 1 kHz.

In order to support the results of the low temperature magnetic behavior around the
phase transition temperature, we obtained M(H) for temperatures T <TN , T ∼TN and
T >TN . Figure 4.7 displays the field dependence of the D.C. magnetization in units of
µB/Cu at various temperatures for Ca2Y2Cu5O10, Ca3Y1Cu5O10, Ca3.5Y0.5Cu5O10 and
Ca0.83CuO2. We notice a decreasing signal upon raising the doping concentration x. Fur-
thermore, the shown magnetization curves feature a linear behavior of M(H) up to 9T in
the investigated temperature range. Ca3.5Y0.5Cu5O10 shows a deviation from this linear
behavior starting around 4.5T.
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Figure 4.7: Field dependence of the D.C. magnetization of (a) Ca2Y2Cu5O10 (ca2y2), (b)
Ca3Y1Cu5O10 (ca3y1), (c) Ca3.5Y0.5Cu5O10 (ca35y05) and (d) Ca0.83CuO2 (ca083) in units
of µB/Cu for temperatures T <TN up to T >TN . The solid lines display linear fits to the
experimental data. Increasing the Ca/Y ratio leads to a smaller absolute value of the magne-
tization. We observe a linear dependence of the magnetization on the applied field up to 9 T.
Only Ca3.5Y0.5Cu5O10 features deviations from this linear behavior around 4.5 T.
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Ca3.5Y0.5Cu5O10 shows a deviation from this linear behavior starting around 4.5T.

4.2.2 Curie Weiss behavior in the paramagnetic regime

The paramagnetic phase of a magnetic system is characterized by thermal induced spin
fluctuations. Long range order is destroyed and only short range correlations dominate
the magnetic response. In this sense, high temperature susceptibility data are described
using the Curie Weiss law [90]

χcw =
Ncwg2µ2

BS(S + 1)

3kB(T − θcw)
(4.4)

for free Cu2+ spins (S =1/2). Ncw denotes the number of magnetic copper ions that con-
tribute to the signal. We use a g-factor equal to 2.09 for all samples that was determined
by EPR measurements (see chapter 4.1.4)1. µB denotes the Bohr magneton and kB the
Boltzmann constant. The Curie Weiss temperature θcw distinguishes between ferromag-
netic and antiferromagnetic correlations in the paramagnetic regime for values θcw > 0 and
θcw < 0, respectively. The fit range was estimated from the inverse susceptibility. Within
the Curie Weiss approach, χ−1(T ) follows a linear behavior with χ−1(T ) ∝ T − θcw. The
interpolation of the inverse susceptibility to χ−1(θcw)= 0 served as start parameter for the
Curie Weiss temperature during the fitting process. Examples of Curie Weiss fits to the
susceptibility of the Ca2+xY2−xCu5O10 samples are indicated by the solid lines in Figure
4.5 (a), (b), Figure 4.6 (a) and (b).

Table 4.4 collects the fit results for the number of copper spins participating in the mag-
netic signal. For comparison, the expected numbers of magnetic copper ions are provided
which are derived from the copper valence. We note that for 0≤x≤ 1.5 Ncw is by 10%
larger compared to the number of magnetic spins in each sample based on the stoichio-
metric formula. Ca0.83CuO2 almost exactly exhibits the expected spin density of magnetic
Cu2+ based on the sample valence. Hole doping into the CuO2 chains effectively cancels
out magnetic Cu2+ spins. Holes, i. e. non magnetic Cu3+, transform CuO4 units into
Zhang-Rice singlets that induces singlet pairing of neighboring spins [5].

x 0 0.75 1 1.2 1.5 2.15

N 1 0.85 0.8 0.76 0.7 0.66
Ncw 1.10(1) 0.98(2) 0.89(1) 0.86(1) 0.78(1) 0.67(1)

Table 4.4: Number of free spins Ncw per formula unit obtained by a Curie Weiss fit to the
susceptibility of Ca2+xY2−xCu5O10 samples. For comparison, the expected number of magnetic
spins N based on the copper valence are noted.

The obtained Curie Weiss temperature θcw indicates the magnetic correlations in the in-
vestigated temperature range (see Figure 4.8). The parent compound exhibits a small
ferromagnetic contribution, which is in agreement with susceptibility measurements from

1We note that most of the susceptibility studies of Ca2+xY2−xCu5O10 use a g-value that is derived
from a fit of the Curie Weiss law in the paramagnetic phase, where the number of magnetic ions is set to
unity for Ca2Y2Cu5O10. The obtained values vary from 2.1 to 2.24 [61, 62, 91] and significantly change
fitting parameters of the alternating chain model.
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literature [63]. Hole doping decreases the Curie Weiss temperature θcw that indicates
strong antiferromagnetic correlations in the disordered phase.
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Figure 4.8: Curie Weiss temperature θcw of
Ca2+xY2−xCu5O10 samples. θcw is obtained
from a fit to the susceptibility in a tempera-
ture range of ∼ 170 K to 290 K. The dashed line
is a guide to the eye. A negative Curie Weiss
temperature indicates antiferromagnetic corre-
lations in the investigated temperature range,
whereas θcw > 0 yields ferromagnetic exchange.
Upon increasing the Ca/Y ratio, magnetic cor-
relations are antiferromagnetic and increase in
strength.

4.2.3 1D Heisenberg behavior

At first sight analyzing the susceptibility of the parent compound and slightly doped
Ca2.75Y1.25Cu5O10 in terms of 1D Heisenberg chains is at odds with the data. The anti-
ferromagnetic transition clearly dominates the magnetic signal and turns it impossible to
decompose χ(T ) into different processes. Moreover, assuming for all Ca2+xY2−xCu5O10

samples the magnetic exchange J ∼ 55K of Ca0.83CuO2 as the overall energy scale of the
chain contribution a Néel temperature of 30K of Ca2Y2Cu5O10 definitively masks the
quasi 1D term.

Susceptibility of medium doped samples (x=1, 1.2 and 1.5) exhibits an increase at lowest
temperatures that shifts to 10K in Ca3.5Y0.5Cu5O10. Furthermore, the prominent transi-
tion from the paramagnetic to the Néel state becomes less pronounced compared to lower
doped samples. Fitting the data below 10K by means of the Curie Weiss law reveals
antiferromagnetic correlations. We thus assume three contributions for χ(T ),

χ(T ) = χ0 + χcw(T ) + χahc(T ) , (4.5)

that superpose in the investigated temperature range. χcw(T ) and χahc(T ) denote the
Curie Weiss term (see Eq. (4.4)) and the contribution of the alternating Heisenberg chain
(see Eq. (2.7)), respectively. χ0 represents temperature independent bulk diamagnetic
and Van Vleck contributions. During data analysis this quantity was treated as fitting
parameter. We reduce the number of free parameters in the fitting equation by fixing g
to 2.09 and setting the total spin density N = Ncw + Nahc to the expected value from
the sample valence. The Curie Weiss temperature θcw of the low temperature antiferro-
magnetic phase was determined from the fit of a straight line to the linear behavior of
the inverse susceptibility χ−1(T ). We kept θcw fixed to these values for each sample. The
number of spins of the Curie Weiss term and the 1D Heisenberg chain contribution as
well as the energy scale J of the chain were treated as free parameters. We thus fitted
the data in the limit of the antiferromagnetic chain with isolated dimers (α =0), the semi
dimerized chain (α =0.5) and the uniform chain (α =1).
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Data fitting only yields a reasonable description of χ(T ) for Ca3.5Y0.5Cu5O10, while for
samples with x=1 and 1.2 the lineshape cannot be matched. We attribute the observed
deviations of the fit from the data to the dominant long range ordered phase that stills
significantly contributes to the total susceptibility. Figure 4.9 displays the fit of Eq. (4.5)
to the data. The black solid, the red dashed and the blue dotted line indicate the fits for
α =1, 0.5 and 0. As illustrated in the inset of this plot, all fits with the chosen values for
α deviate from the experimental data at low temperature. In the high temperature range
all curves describe the data equally well.
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Figure 4.9: Susceptibility of Ca3.5Y0.5Cu5O10

(ca35y05). The black solid, the red dashed and
the blue dotted line indicate a fit of Eq. (4.5)
to the data in case of the uniform chain, the
semi dimerized chain and the chain with isolated
dimers. During fitting the data the Curie Weiss
temperature θcw of the low temperature contri-
bution, the Landé factor g and the total number
of magnetic spins N = Ncw +Nahc was kept con-
stant. At high temperature the data are equally
well described independently of α. Below 30 K
the agreement between the data and the fits does
not favor a particular value for α (see inset).

Table 4.5 collects the results obtained by a fit to the measured data of Ca3.5Y0.5Cu5O10.
The number of magnetic copper spins Nahc that contribute to the spin chain behavior
varies between ∼ 0.23 and ∼ 0.35 for the chain with isolated dimers (α =0) and the uni-
form chain, respectively. On average, the 1D Heisenberg chain term contributes ∼ 35% to
the total susceptibility. The energy scale of the exchange J yields values between ∼ 50K
and ∼ 70K.

α =0 α =0.5 α =1

Nahc 0.23(2) 0.22(4) 0.34(8)
J/kB (K) 71(7) 71(17) 48(10)
Ncw 0.47(2) 0.48(4) 0.36(8)
|θcw| (K) 28.95(3) 28.95(3) 28.95(3)
χ0 (emu/mole) 2.5(4) · 10−4 2.9(9) · 10−4 2.7(9) · 10−4

Table 4.5: Fit parameters of the alternating Heisenberg chain model to the susceptibility of
Ca3.5Y0.5Cu5O10. During the fit θcw, the total number of spins N and the alternating parameter
α was kept fixed.

The susceptibility of Ca0.83CuO2 resembles the susceptibility of the uniform Heisenberg
chain. Since no Curie Weiss contribution is observed at low temperatures, we will use

χ(T ) = χ0 + χ1D(T ) , (4.6)

where χ0 represents the temperature independent contribution (see above) and χ1D(T )
the 1D Heisenberg term. In a first approach the approximation of Bonner and Fischer for
the uniform chain is used (α=1, see Eq. (2.6)). Furthermore, the alternating Heisenberg
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chain is used as fitting function. Table 4.6 summarizes the fit results of both approaches.
The spin density N1D contributing to the 1D Heisenberg term deviates from both the
number of spins deduced from the Curie Weiss fit and from the value that is expected
from the formal copper valence.

We further consider a 3D coupling of the isolated chains that was successfully included into
the 1D Heisenberg chain model to describe the susceptibility of Ca0.83CuO2+δ [82]. Schulz
[92] used a mean field treatment of loosely coupled chains in terms of the Hamiltonian

H = J
∑

i

(

Ŝ2iŜ2i−1 + αŜ2iŜ2i+1

)

+ J⊥

∑

i,δ

Ŝ2iŜ2i+δ (4.7)

to account for an exchange J⊥ perpendicular to the chain direction. In agreement with
the earlier introduced convention J denotes the magnetic exchange parallel to the chain.
The summation over the nearest neighbor spins perpendicular to the chain is indicated
by δ. Schulz further derived an expression for J⊥ using the long range order temperature
TN and the exchange J along the chains to be

J⊥ =
kBTN

4A(ln (ΛJ/(kBTN )))1/2
. (4.8)

Here, A and Λ are numerically determined to be 0.32 and 5.8. Based on the uniform chain
model we calculated J⊥ to be 5.1K. In a first order approach the transverse exchange
is introduced into the closed form of the analytical approximation of Eq. (2.7) as the
Curie Weiss temperature θCW is introduced in Eq. (4.4). In this sense, the energy of the
exchange measured parallel to the chain is rescaled by J⊥. We expect the introduction of
the transverse exchange into the chain model accompanied by an increase in the number
of magnetic spins within the chain. Moreover, the transverse interaction influences the
intrachain coupling and a preferential dimerization is evoked.
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Figure 4.10: Susceptibility of Ca0.83CuO2

(ca083). The black solid line represent a fit
to the data based on the uniform chain ap-
proximation of Bonner and Fischer. The red
dashed and the blue dotted line indicate the fit
using the 1D Heisenberg chain model without
and with a transverse exchange between the
chains. We observe over a large temperature
range an agreement between the 1D Heisen-
berg chain model and the data.

Table 4.6 summarizes the obtained fit results for the Bonner Fisher approximation and
the alternating Heisenberg chain using J⊥ =0K and J⊥ =5.1K, respectively. The black
solid, the red dashed and the blue dotted line in Figure 4.10 display the corresponding fits
to the data. All curves reproduce well the data within a broad temperature range of 35K
to 200K. Above 200K the model of loosely coupled chains describes the data best. We
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remind of the restriction of χahc to temperatures T & 0.5J to understand the deviation of
the fits from the experimental data below 35K. We observe both an increase in N1D and J
and a decrease of the alternating parameter α upon introducing an transverse interaction
of the chains.

α N1D J/kB (K) J⊥/kB (K) χ0 (emu/mole)

1 0.51(3) 58(2) - 3.1(7) · 10−4

0.98(1) 0.55(2) 59(1) - 2.1(4) · 10−4

0.95(1) 0.58(2) 66(1) 5.1 1.4(4) · 10−5

Table 4.6: Fit results of Ca0.83CuO2 based on the model of the uniform (α =1) and the al-
ternating 1D Heisenberg chain with a transverse interaction J⊥. N1D denotes the number of
magnetic spins in the chain, J the exchange measured along the chain and χ0 the temperature
independent diamagnetic and Van Vleck contribution.

Based on Eq. (4.7) Schulz estimated the staggered magnetization that depends on the
intrachain and the interchain exchange. Applying this model to Ca0.83CuO2 the ordered
moment is estimated to be

m0 ' 1.017µB

√

J⊥/J ' 0.28µB . (4.9)

Here, we used the values for J and J⊥ as displayed in Table 4.6.

In summary, susceptibility measurements of Ca2+xY2−xCu5O10 compounds show that the
compound series exhibit a long range ordered state below ∼ 29K. This 3D antiferromag-
netic phase diminishes with doping, however, it does not vanish. Despite a dilution of
0.33 holes/Cu the highly doped sample Ca0.83CuO2 still exhibits a Néel state. Its order
temperature is reduced by a factor of 2.5 compared to the parent compound.
Low and medium doped compounds with 0.75≤x≤ 1.5 show an increase in susceptibil-
ity below ∼ 10K. A Curie Weiss fit to the data resolves antiferromagnetic correlations,
whose contribution to the total susceptibility increases with doping. The origin of the
term might be explained by magnetic impurities, that only contribute at low temperatures
to the overall signal. However, since we observe a concentration dependence of the Curie
Weiss temperature and of its weight to the total signal, this explanation is most unlikely.
One apt to think that this term results from the CuO2 chains. Upon doping, disorder in
terms of holes are introduced into the chains. Amazingly, this Curie Weiss term vanishes
upon further Ca2+ increase and does not lead to a spin glass state in Ca0.83CuO2, but
a 3D antiferromagnetic ground state. This argument can be judged as a precursor of a
change in the magnetic properties of Ca2+xY2−xCu5O10 between x=1.5 and 2.15.
We only observe 1D Heisenberg behavior in higher doped samples. In contrast to the
clear 1D behavior of Ca0.83CuO2, χ(T ) of Ca3.5Y0.5Cu5O10 features the large Curie Weiss
term that prevents a definite determination of the alternating parameter and the chain
exchange. We observe values of J between ∼ 48K and ∼ 70K in case of the uniform and
the dimerized chain model. The highly doped compound shows an α value close to the
uniform chain. The exchange measured along the chain is of the order of 60K.
Susceptibility data of Ca2+xY2−xCu5O10 above 170K show that hole doping in terms
of increasing the Ca/Y ratio effectively reduces the number of magnetic Cu2+ ions in
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the chains. In addition, the positive Curie Weiss temperature of the parent compound
indicates that the dominant correlation within the CuO2 chains is ferromagnetic. Obvi-
ously, this sample might not be an example of the 1D antiferromagnetic Heisenberg chain.
Higher doped samples exhibits antiferromagnetic interactions. Assuming a ferromagneti-
cally coupled spin chain, dilution of the spin chain provokes antiferromagnetically coupled
spins.

4.3 Specific heat study

By means of specific heat measurements we resolve the 3D order temperature (see chap-
ter 4.3.1) and analyze data of higher doped compounds in terms of the antiferromagnetic
uniform Heisenberg chain (see chapter 4.3.2).

Specific heat was measured for Ca2+xY2−xCu5O10 samples in the temperature range of
2K to 300K without external field. Furthermore, we investigated the field dependence
of the second order phase transition temperature with respect to the applied field up to
9T. Below ∼ 40K temperature steps were chosen to be about 0.05K. This coincides with
the temperature accuracy of the PPMS specific heat option. Owing to long measurement
times beyond the phase transition temperature we used a logarithmic temperature scale.
Each obtained data point was measured two to four times, in order to decrease the error
bars of C(T ). We performed field dependent calibration measurements for the wire resis-
tances of the sample holder platform. In addition, the specific heat contribution of the
used amount of the thermal joint compound was calibrated before each sample measure-
ment.
During the first measurements the vacuum grease Apiezon N (Quantum Design, Inc.) was
used by default as thermal joint compound in the temperature range of 2K to 320K [93].
However, we observed disadvantages of the grease in terms of its random distribution
on the sample platform wires, when heating up the sample platform. This effect may
short-circuit the platform wires that are attached to the sample platform and falsify the
obtained sample specific heat values. Avoiding a very time consuming cleaning process
after each sample measurement, we further employed the silicone oil based Wakefield com-
pound 120-2 (Wakefield Thermal Solutions, Inc.) as thermal coupling in the temperature
range of 2K to 320K. Besides a very easy experimental handling, it offers the advantage
of a factor of two to three less in its specific heat contribution below 50K compared to the
Apiezon N grease. In addition to the literature provided calibration of the specific heat of
the Wakefield compound 120-2 for 2K to 40K and 20K to 100K [94, 95], the calibration
was extended to the temperature range of 100K to 320K using a polynomial function.
With respect to the instrumental options of applying the heat pulse the best experimental
parameters were determined providing the highest accuracy for the reported specific heat
curve of the standard sample silver [96, 97].
The mass of the investigated samples varied between 12mg to 25mg. In order to increase
the thermal coupling of the sample to the thermal joint compound, the polycrystalline
samples were polished by hand.
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4.3.1 Phase transition temperature

Susceptibility measurements of undoped and low doped Ca2+xY2−xCu5O10 samples al-
ready provide evidence of a long range ordered state below ∼ 30K. Upon doping up to the
concentration x=1.5, the visible peak in χ(T ) broadens and is masked by antiferromag-
netic correlations at low temperatures. Only Ca0.83CuO2 that is doped with 0.3 holes/Cu
features again a phase transition to a long range ordered state. It is worth noting this
result, as the diluted CuO2 chains of this compound show an antiferromagnetic coupling
to adjacent chains. A Néel phase coexists with short range correlations that originate
from the 1D spin chain behavior. In the following, we investigate the long range ordered
state that can be observed by specific heat measurements.

Figure 4.11 (a) displays the temperature dependence of C(T )/T of the parent compound
in units of J/(mole K2) per Cu ion. In agreement with all doped samples C(T) yields
a room temperature value of C(T ) between 20 J/(mole K) to 25 J/(mole K). This value
approximately coincides with the Dulong-Petit2 value of the specific heat at high temper-
atures. Around ∼ 29K specific heat significantly increases and features a λ-type anomaly.
This temperature corresponds to the maximum in susceptibility and is a clear sign of a
second order phase transition. In contrast, the λ anomaly resulting from a lattice dis-
tortion increases more pronounced within a much smaller temperature range. At low
temperature the signal tends to zero.
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Figure 4.11: C(T )/T per Cu of polycrystalline Ca2+xY2−xCu5O10 samples for (a) Ca2Y2Cu5O10

(ca2y2) and (b) Ca2Y2Cu5O10 (ca2y2), Ca3.5Y0.5Cu5O10 (ca35y05) and Ca0.83CuO2 (ca083).
Data were obtained without external field. The inflection point of C(T )/T that corresponds to
the minimum in the first derivative yields the order temperature.

Upon doping, the λ anomaly shifts to lower temperatures as it was already observed in sus-
ceptibility. Moreover, the phase transition broadens and at x=1.5, only a broad plateau
is observable (see Figure 4.11 (b)). Similarly, C(T → 2 K)/T significantly increases up
to 0.07 J/(mole K2) in Ca3.5Y0.5Cu5O10 compared to 0.009 J/(mole K2) in Ca2Y2Cu5O10.
Highly doped Ca0.83CuO2 features a λ anomaly around 12K that coincides with the kink
in χ(T ).

2The Dulong-Petit approximation of specific heat holds at high temperatures, where C(T ) → 3NAkB

applies [90].
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The temperature of the second order phase transition is given by the inflection point
in the λ anomaly of the temperature normalized specific heat [98]. This coincides with
the minimum of the first derivative of C(T )/T . Undoped and less doped samples clearly
exhibit a sharp minimum yielding a well defined transition temperature. We account for
the broadening of the transition at medium doped samples by fitting a Gaussian function
to the first derivative. The lineshape of this function reproduces the data better than
e.g. a parabola. The error bar is given as the full width half maximum of the Gaussian
peak. As Ca3.5Y0.5Cu5O10 exhibits a broad plateau in C(T )/T no clear sign of a minimum
can be observed in the derivative. Table 4.7 collects the transition temperatures of the
investigated samples.
The field dependence of the transition temperature was probed for H =0T up to 9T. No
sample features a broadening of the λ anomaly or a change in TN . We conclude that the
magnetic field does not influence the phase diagram of the compounds Ca2+xY2−xCu5O10

for the investigated fields.

TN (K)

Ca2Y2Cu5O10 28.8(2)
Ca2.5Y1.5Cu5O10 26.3(9)
Ca2.75Y1.25Cu5O10 25.7(11)
Ca3Y1Cu5O10 18.5(12)
Ca3.2Y0.82Cu5O10 16.4(26)
Ca3.5Y0.5Cu5O10 -
Ca0.83CuO2 11.5(3)

Table 4.7: Phase transition temperature TN of
Ca2+xY2−xCu5O10 obtained from specific heat mea-
surements without applied field. The transition
temperature is deduced from the inflection point
in C(T )/T . Larger error bars of TN for medium
doped samples account for the broadening of the λ
anomaly. Specific heat of Ca3.5Y0.5Cu5O10 features
a broad plateau without any phase transition.

4.3.2 1D Heisenberg behavior

In order to elucidate the 1D Heisenberg behavior of Ca2+xY2−xCu5O10 samples, the ob-
tained specific heat was fitted by

C(T ) = Clat(T ) + Cmag(T ) , (4.10)

with Clat(T ) and Cmag(T ) denoting the phonon and the magnetic contribution to the
specific heat. The magnetic term is given by Eq. (2.9) and Eq. (2.10) in case of the uni-
form and the solely dimerized Heisenberg chain, where Cmag(T ) is proportional to T and
exp (J/(kBT )), respectively. In case of the uniform chain the linear approximation holds
for kBT . 0.4J that corresponds for J ' 60K3 to a temperature of ∼ 24K.

The lattice contribution Clat(T ) was fitted based on the Debye approximation of spe-
cific heat at low temperatures with Clat(T ) = βT 3. Here, the constant β is given by
[90]

β ' 12π4

5
NAkB

(

1

θD

)3

' 234NAkB

(

1

θD

)3

. (4.11)

with the Debye temperature θD. This kind of modeling the phonon term is valid up to
temperatures of ' 0.2 θD. For fitting reasons an empirical term γT 5 was further included

3The value for the magnetic exchange J is chosen in agreement with fit results for susceptibility.
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in the phonon part Clat(T ). We note the Debye temperatures of calcium, yttrium and
copper to be 230K, 280K and 343K [90]. This corresponds to a maximum fitting range
up to ∼ 70K and to β values between 0.16mJ/(mole K4) and 0.05mJ/(mole K4).

By fitting experimental data in the temperature range of TN .T . 0.2 θD, values for the
number of magnetic spins N , the intrachain exchange J and the lattice contribution con-
stants β and γ are derived. However, data fitting converges neither for the model of
the uniform chain nor the chain with isolated dimers with reasonable fitting parameters.
We thus limit the number of magnetic ions contributing to Cmag(T ) to its expected value
from the copper valence and show consistency with the exchange parameters derived from
susceptibility measurements.

In a first approach, we use the 1D uniform Heisenberg chain as the magnetic contri-
bution to the specific heat. Similarly to susceptibility, only higher doped samples are
described with reasonable parameters in the proper fit range. Table 4.8 summarizes the
derived parameters for Ca3.5Y0.5Cu5O10 and Ca0.83CuO2. Since the Debye temperatures
shows similar values to θD of the pure sample elements, the phonon contribution is rea-
sonably approximated. Figure 4.12 displays fits to specific heat data of Ca3.5Y0.5Cu5O10

and Ca0.83CuO2 using the uniform Heisenberg chain (black solid lines). The magnetic
term Cmag(T )/T (red dashed line) of the investigated samples follows a temperature in-
dependent value above the phase transition. This is compatible with the uniform chain
behavior. The blue dotted lines indicate the lattice contribution to the total specific heat.
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Figure 4.12: C(T )/T of (a) Ca3.5Y0.5Cu5O10 (ca35y05) and (b) Ca0.83CuO2 (ca083). The black
solid lines represent the fits of Eq. (4.10) using the uniform Heisenberg chain approach for the
magnetic term. The red dashed lines display the magnetic specific heat term Cmag(T )/T that
yields a temperature independent value. The lattice contribution Clat(T ) is indicated by the
blue dotted lines.

Fitting specific heat in terms of a chain with isolated dimers does not describe the line-
shape of C(T ) for any investigated sample. Here, we used the low temperature Debye
approximation for the lattice contribution as start parameters for β and γ. It follows, that
only antiferromagnetic 1D Heisenberg behavior of the uniform chain or slightly dimerized
chains can be observed in higher doped samples of Ca2+xY2−xCu5O10.
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N J/kB (K) β (mJ/(mole K4)) θD (K) γ (mJ/(mole K6))

Ca3.5Y0.5Cu5O10 0.7 41(1) 0.072(6) 300 2.7(40) · 10−6

Ca0.83CuO2 0.66 58(1) 0.161(4) 229 -6.1(4) · 10−5

Table 4.8: Fitting parameters of the uniform chain model to specific heat of Ca3.5Y0.5Cu5O10

and Ca0.83CuO2: number of Cu2+ ions N , intrachain exchange J , lattice contribution constant
β, Debye temperature θD and lattice contribution constant γ. The error of θD is less than 1 K.

Specific heat of Ca2+xY2−xCu5O10 samples agrees well with susceptibility measurements
and reveal both 3D order that coexists with 1D Heisenberg behavior at higher doped
samples. The order temperature decreases from ∼ 29K to ∼ 12K for Ca2+xY2−xCu5O10

and Ca0.83CuO2, respectively.
For Ca3.5Y0.5Cu5O10 and Ca0.83CuO2 the data can be consistently described with the
model of the uniform Heisenberg spin chain. The extracted value of the intrachain ex-
change J ' 41K of Ca3.5Y0.5Cu5O10 approximately coincides with that of susceptibility
measurements for the α =1 approach. The value of the magnetic correlation J that was
found for Ca0.83CuO2 is in best agreement with those of susceptibility measurements.
We observe an increase of C(T → 0) for medium doped samples. This feature might
be correlated to the low temperature Curie Weiss type term in susceptibility that was
attributed to disorder of the CuO2 chains. However, a profound explanation of this fea-
ture requires a measurement techniques that microscopically probes magnetic properties
in these samples. We expect, that Ca3.5Y0.5Cu5O10 represents the best candidate for such
an investigation, since the behavior of χ(T ) and C(T ) is most pronounced compared to
less doped samples.

4.4 Neutron diffraction study

Bulk measurements elucidated a magnetic phase transition from a paramagnetic to an an-
tiferromagnetic state for Ca2+xY2−xCu5O10 samples. The concentration dependent study
of the ordered magnetic structure by means of elastic neutron scattering reveals the sign
of the magnetic exchange along the chain direction as well as the value of the Cu-O-Cu
bonding angle (see chapter 4.4.2). These results represent the key in understanding the
adaptability of the antiferromagnetic 1D Heisenberg behavior within the frame of the
J1-J2 model of edge sharing CuO2 chains. Furthermore, investigating the sublattice mag-
netization of Ca2Y2Cu5O10 and Ca2.5Y1.5Cu5O10 resolves the magnetic character of the
phase transition (see chapter 4.4.3).

4.4.1 Experimental details and data analysis

In order to determine the magnetic structure, we performed experiments on the diffrac-
tometers DMC and HPRT (PSI), D20 (ILL) and SPODI (FRMII) for numerous
Ca2+xY2−xCu5O10 samples. Table 4.9 provides an overview of the investigated samples,
the wavelength λ and the diameter d of the vanadium sample holder for each experi-
ment. Besides a low temperature pattern data were collected at an elevated temperature

49



above the order temperature. The value of TN was estimated from specific heat measure-
ments (see Table 4.7). Furthermore, the sublattice magnetization of Ca2Y2Cu5O10 and
Ca2.5Y1.5Cu5O10 were probed on the cold triple axis spectrometer TASP, PSI (80’-80’-
sample-80’, fixed final wavevector k′ =1.97 Å, aluminum sample holder).

x λ (Å) d (mm)

DMC 0≤x≤ 1.2 2.56 7
HRPT 1≤x≤ 2.15 1.89 7
SPODI 0, 0.5 1.54 8
D20 2.15 1.89 10

Table 4.9: Overview of the performed ex-
periments at the PSI, FRM II and ILL, in
order to elucidate the magnetic structure of
Ca2+xY2−xCu5O10 in the ordered phase. For
each spectrometer the investigated samples, the
wavelength λ and the diameter d of the vana-
dium sample holders are mentioned.

Owing to the importance of these results numerous neutron diffraction experiments were
performed. The cold powder diffractometer DMC provides access to an Q range of 0.5 Å−1

to 3.5 Å−1. The low background level shall help to elucidate weak magnetic Bragg reflec-
tions in a first test experiment after the sample synthesis. The powder diffractometers
HRPT and SPODI allow the investigation of the magnetic structure of Ca2+xY2−xCu5O10

samples within a reasonable Q range up to 7 Å−1. The high intensity diffractometer D20
offers a neutron flux of ∼ 107 n/(s cm2) at the sample site. We probed the magnetic order
of highly doped Ca0.83CuO2, as a magnetic moment of only 0.28µB is expected from the
intrachain and the interchain exchange values (see chapter 4.2.3). The measurement of
the sublattice magnetization offers a direct means to probe the temperature dependence
of the order parameter around TN . The observed second order phase transition can be
unambiguously attributed to the magnetic order, as for instance a lattice distortion also
yields a diverging heat capacity signal at its transition temperature.

Fine polycrystalline powder was sealed under helium into vanadium sample holders. Ex-
pecting from the moment of free copper spins a magnetic moment of less than 1µB, the
material of the sample holder appeared to be a crucial point during the experiment. The
ratio R of the incoherent background level of the sample holder to that of the sample
itself [99]

R =
σsh

σs
· nsh

ns
· 2∆R

R
(4.12)

correspond to 1.3 and 0.002 for vanadium and aluminum, respectively. Here, σsh and
σs denote the incoherent cross section per atom of the sample holder and the sample.
The average incoherent cross section of Ca2+xY2−xCu5O10 samples is calculated to be
' 0.2 barn. The atomic concentration of both the sample holder and the sample, nsh

and ns, is approximately of the order of one. The wall thickness ∆R and the radius of
the sample holder R are assumed to be equal to 0.1mm and 4mm for both materials.
Aluminum sample holders shall only little contribute to the overall background level.
Besides the sample holder the sample itself and the cryostat may significantly add to the
incoherent background. The chemical composition of the sample in terms of site vacancies
or distributions of different elements at the same site might play an important role. A
test experiment elucidated a similar background level for a vanadium and an aluminum
sample holder (see Figure 4.13). As aluminum coherently contributes to the measured
signal, only vanadium samples holders were used for the investigation of the magnetic
structure.
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Figure 4.13: Part of the diffraction pattern
of Ca3Y1Cu5O10 (ca3y1), measured on HRPT,
PSI, with an aluminum (alu) and vanadium
(van) sample holder of equivalent dimensions.
The intensity of both data sets is normalized
with respect to the monitor. The Bragg re-
flection (0 0 2) originates from the nuclear pat-
tern. The incoherent background for both sam-
ple holders coincide. Thus, the sample itself or
the sample environment dominates the back-
ground level, which might originate from the
chemical composition of the sample in terms of
site vacancies or element distributions on equiv-
alent sample sites.

For data analyzing we reconsider the general expressions of the partial cross sections for
coherent nuclear and magnetic scattering presented in chapter 3.2.1. For coherent nuclear
Bragg scattering the intensity of a powder peak with the Miller indices (h k l) is given by
[74]

dσ

dΩ

∣

∣

∣

∣

el,N

coh

= C · |FN(G)|2 mhkle
−2WP(θ)A(θ) . (4.13)

The constant C comprises the details of the instrumental configuration as well as those
of the sample itself. The quantity FN(G) represents the nuclear structure factor of the
reciprocal lattice vector G

FN (G) =
∑

j

cjbje
iG·dj (4.14)

that is summed over all atoms j (1 ≤ j ≤NN ) with their occupancy oj and scattering
length bj in the nuclear unit cell. The vector dj describes the copper atom position in
real space. mhkl denotes the multiplicity of the reflection (h k l) [100], e−2W the Debye
Waller factor and P(θ) = 1/ (sin(θ) sin(2θ)) the phase space factor for the scattering angle
θ depending on a cylindric sample geometry. The factor A(θ) accounts for the absorption
of neutrons that depends on the scattering angle θ and the cylindric sample geometry
[101]. The cross section for coherent magnetic elastic scatting

dσ

dΩ

∣

∣

∣

∣

el,M

coh

= C · (γr0)
2
〈

µ2
z

〉

|f(Q)|2(1 − 〈Q̂2
z〉) |FM(GM)|2 mhkle

−2WP(θ)A(θ) (4.15)

defines the integrated intensity of a magnetic reflection (h k l), where the neutron electron
dipole coupling constant − γr0 equals to − 0.539 · 10−12 cm. 〈µz〉 denotes the thermal
average of the z-component of the magnetic moment in units of Bohr magnetons µB. The
magnetic form factor f(Q) is the Fourier transform of the magnetization density operator
in a single atom [102]. It is calculated within the diploe approximation for the Cu2+

electronic configuration 3d9. The factor 1 − 〈Q2
z〉 = 1− 〈 cos2 α〉 arises from the selection

rule for magnetic scattering. The intensity of a powder peak depends on the relative
orientation of the unit vector direction of the moment with respect to the unit scattering
vector Q̂z. α denotes the angle between these two quantities. For powder data this factor
has to be summed over all equivalent reflections (h k l) contributing to one lattice spacing
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dhkl. In case of an orthorhombic lattice 1 − 〈Q2
z〉 corresponds to [103]

1 − 〈Q2
z〉 = 1 −

(

(ha?)2 cos2 φa + (kb?)2 cos2 φb + (lc?)2 cos2 φc)
2
)

· d2

4π2
, (4.16)

where a?, b? and c? denotes the lattice constants of the unit cell in reciprocal space, d
the lattice spacing in real space and φi the angle between the magnetic moment and the
crystallographic a, b or c axis. The magnetic structure factor FM(GM) of a magnetic
reciprocal lattice vector is determined according to Eq. (4.14) with bj =1 and NM equals
to the number of magnetic atoms in the cell.

We used the Rietveld refinement program Fullprof [104], the structure analysis program
Modi [105] and the crystallographic programs Supercell [106] and Ball & Sticks [107] for
determining the magnetic unit cell as well the propagation vectors of the incommensu-
rable nuclear structure. In particular, Fullprof was used to define the lattice parameters
and to model the magnetic intensity with respect to the spin orientation. Furthermore,
the magnetic and nuclear intensities of particular Bragg reflections were independently
calculated. The magnetic moment was estimated based on the given formula Eq. (4.13)
to Eq. (4.15), where the Debye Waller factor was set to unity.

4.4.2 Antiferromagnetic Néel state

Figure 4.14 shows the magnetic relevant CuO2 subcell that belongs to the orthorhombic
F centered space group (No. 69 [102]). Copper and oxygen ions are sketched in red and
yellow color, respectively. CuO2 chains run along the a direction and are stacked along
the c direction. Within the asymmetric unit cell copper and oxygen hold the 4a and 16m
position with the fractional coordinates (x, y, z) = (0, 0, 0) and (0,∼ 0.05,∼ 0.6), respec-
tively [85, 108]. Ca and Y atoms are assumed to be stoichiometrically distributed on the
16l position with (∼ 0.4, 0.25, 0.25).

Figure 4.14: Scheme of the face centered or-
thorhombic CuO2 subcell of the Ca2+xY2−xCu5O10

compounds. The lattice parameters are a' 2.8 Å,
b' 6.3 Å and c' 10.6 Å. Respecting the unit cell di-
mensions, the Cu-O-Cu exchange path along the a
axis is preferred. Thus, edge sharing CuO2 chains
formed by CuO4 units run along the a axis and are
stacked along the c axis.

During the Rietveld refinement of the lattice constants the occupancies of each sample is
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adjusted to its chemical formula. We account for the incommensurate structure by using
a second face centered phase with a propagation vector as described in chapter 4.1.3. This
phase was treated in the powder matching mode of Fullprof.
The lattice constants of the CuO2 cell are shown in Figure 4.15. The values are obtained
for the 2K data and are on average a' 2.80 Å, b' 6.25 Å and c' 10.575 Å. Within the
error bars we do not observe a significant change of them with respect to the pattern
above TN . Increasing the Ca/Y ratio leads to smaller lattice constants along the a and
c direction. In contrast, the lattice spacing along the b direction increases with raising
x. Substituting yttrium with an ion radius of 212 pm by calcium with an ion radius of
194 pm, smaller atoms are inserted in the structure. This might explain the concentration
dependent change of the lattice constants. Both the value of the lattice constants and
their evolution with x is in agreement with the first synthesized samples of Hayashi and
coworkers [61].

According to Mizuno and coworkers [51] the angle θ of the Cu-O-Cu bond sensitively
determines, whether ferromagnetic or antiferromagnetic exchange is found between near-
est neighbor spins of the CuO2 chain (see chapter 2.4). We remind that around 95◦

the nearest neighbor exchange J1 changes its sign from ferromagnetic to antiferromag-
netic interaction. The next nearest antiferromagnetic exchange J2 does not change upon
increasing θ. Table 4.10 summarizes the obtained bonding angles for the investigated sam-
ples. The observed value of θ of the undoped and the highly doped compound agree well
with those obtained by Fong and coworkers [63] and Meijer and coworkers [82]. For sam-
ples with a doping concentration 0≤x≤ 1.5 the Cu-O-Cu angle θ increases from 92.1(2)◦

to 94.0(2)◦, respectively. We thus expect ferromagnetic nearest neighbor exchange along
the chain that decreases in strength. The highly doped compound shall feature antiferro-
magnetic nearest neighbor and next nearest neighbor interaction. In this way, a change
of the magnetic exchange along the a axis is expected.

θ (deg)

Ca2Y2Cu5O10 92.1(2)
Ca2.5Y1.5Cu5O10 92.8(2)
Ca3Y1Cu5O10 92.6(1)
Ca3.2Y0.8Cu5O10 92.8(2)
Ca3.5Y0.5Cu5O10 94.0(2)
Ca0.83CuO2 95.6(2)

Table 4.10: Cu-O-Cu bonding angle θ of
Ca2+xY2−xCu5O10 samples along the chain
axis. With increasing Ca/Y ratio the bonding
angle increases. The nearest neighbor interac-
tion J1 along the chain changes its sign from
ferromagnetic to antiferromagnetic correlations
around 95◦.

In order to determine the magnetic structure of Ca2+xY2−xCu5O10 samples, we collect
all magnetic reflections that are visible in the difference pattern of obtained data be-
low and above the order temperature TN . For 0≤x≤ 1.5 samples only Bragg reflections
with even-even-odd and odd-odd-even Miller indices are observed that correspond to
the propagation vector [0 0 1] [102]. We conclude that ferromagnetic ab planes are an-
tiferromagnetically stacked along the c axis. In agreement with the allowed Shubnikov
groups representation analysis for the Fmmm space group with the propagation vector
k = [0 0 1] and the Cu-position (0, 0, 0) shows that there are three possible antiferromag-
netic solutions that correspond to the τ3, τ5 and τ7 irreducible representations with the
spin direction along a, b or c-axis respectively [105, 109]. The observation of the most
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Figure 4.15: Lattice constants of the face centered orthorhombic Fmmm CuO2 subcell of
Ca2+xY2−xCu5O10 along the (a) a, (b) b and (c) c direction. Increasing the Ca/Y ratio leads
to an increase in b, while a and c decrease. These results coincide with Hayashi and coworkers
[61].
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prominent magnetic Bragg reflection (0 0 1) excludes the spin orientation parallel to the c
axis. Modeling the spin direction with respect to the a and b axis will reveal the magnetic
structure.

In a first approach a diffraction experiment on the cold powder diffractometer DMC was
performed for samples with 0≤x≤ 1.2. This experiment provides an accessible Q-range
of 0.51 Å−1 to 3.5 Å−1. Only few magnetic reflections indexed as (0 0 1) corresponding to
∼ 0.59 Å−1, (0 0 3) (∼ 1.8 Å−1) and the double peak formation (0 2 3)/(1 1 2) (∼ 2.7 Å−1)
were observed. Owing to the magnetic form factor the peak intensities strongly decrease
with higher scattering angles. In comparison to the integrated intensity of the most promi-
nent peak (0 0 1), all other peak areas are smaller by a factor of 25. Figure 4.16 displays
the ratios of the integrated intensities (0 0 3)/(0 0 1) and (0 2 3)+ (1 1 2)/(0 0 1) of these
reflections. For comparison, data of Ca2Y2Cu5O10 obtained by the studies of Fong and
coworkers [63] and Matsuda and coworkers [64] are included in the figure. Changing the
doping concentration x yields constant peak ratios. Furthermore, both literature values
coincide with this study. This is the first indication for minor or no modifications of
the magnetic structure with doping in this particular concentration range. Respecting
the powder averaged selection rule (see Eq. (4.16)) the spin orientation of the collinear
antiferromagnetic structure cannot be derived from peaks such as (0 0 l).
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Figure 4.16: Ratios of the magnetic reflec-
tions (0 0 3) and (0 2 3) + (1 1 2) to (0 0 1) in the
doping range 0≤x≤ 1.2. Larger error bars ac-
count at higher x for a weaker magnetic sig-
nal. For comparison the corresponding values
for Ca2Y2Cu5O10 obtained by the work of Fong
and coworkers [63] and Matsuda and cowork-
ers [64] are indicated. Since we observe con-
stant ratios of the magnetic Bragg reflections,
we conclude that the magnetic structure does
not significantly change compared to that of the
parent compound.

Data collected at the HRPT (PSI) and SPODI (FRMII) offers an Q range up to of
∼ 6.5 Å−1 and 7 Å−1. Figure 4.17 displays how modeling the magnetic structure with
the magnetic moment parallel to the a and to the b direction appears for Ca3Y1Cu5O10.
Obviously, the model with the magnetization m parallel to b agrees better with the given
data. This plot is representative for all samples with 0≤x≤ 1.5. In order to verify this
result for all investigated samples, we calculated the magnetic intensities with m ‖ a and
m ‖ b using Eq. (4.15) and (4.16). Table 4.11 summarizes the values of the calculated mag-
netic intensities for sample with x equal to 0, 0.5, 1, 1.2 and 1.5. Moreover, the observed
integrated intensities are provided that were determined by means of Gaussian functions
to the magnetic Bragg reflections of the difference pattern. For comparison, all values
are normalized in such a way that the integrated intensity of the (0 0 1) Bragg reflection
equals to 100. The error bars of the observed peak areas account for the small peak
intensities. Furthermore, strong nuclear reflections superimpose on the magnetic pattern,
where the scattering angle of nuclear and magnetic reflections coincide. This is the case
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Figure 4.17: Difference pattern of Ca3Y1Cu5O10 (ca3y1), obtained on HRPT (PSI) with an
incident wavelength of 1.89 Å. For illustration purposes, the error bars of the data are removed
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profile, where the magnetization is fixed parallel to the a and b axis, respectively. The green
ticks indicate the positions of the magnetic Bragg reflections. The corresponding Miller indices
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(h k l) |Q| (Å−1) Data m ‖ a m ‖ b

Ca2Y2Cu5O10 (0 0 1) 0.59 100(1) 100 100
(0 0 3) 1.78 4.7(6) 8.1 8.1
(0 2 1) 2.10 1.4(9) 10.0 0.8
(1 1 0) 2.46 4.0(7) 1.1 5.3

(0 2 3)/(1 1 2) 2.70/2.72 11(1) 4.6/2.9 2.0/7.6
(1 1 4) 3.41 6.4(1) 2.1 3.3

Ca2.5Y1.5Cu5O10 (0 0 1) 0.59 100(2) 100 100
(0 0 3) 1.78 6(1) 8.1 8.1
(0 2 1) 2.10 1.3(9) 10.1 0.8
(1 1 0) 2.46 2.8(2) 1.1 5.3

(0 2 3)/(1 1 2) 2.70/2.72 9(2) 4.6/2.9 2.0/7.6
(0 0 5) 2.97 2(1) 1.6 1.6
(1 1 4) 3.41 6(2) 2.1 3.3

Ca3Y1Cu5O10 (0 0 1) 0.59 100(1) 100 100
(0 0 3) 1.78 5.0(6) 8.2 8.2

(0 2 3)/(1 1 2) 2.70/2.72 8.6(7) 4.8/2.9 2.1/7.8
(1 1 4) 3.77 6.7(5) 2.2 3.5

Ca3.2Y0.8Cu5O10 (0 0 1) 0.59 100(1) 100 100
(0 0 3) 1.78 4(1) 8.2 8.2

(0 2 3)/(1 1 2) 2.70/2.72 9(2) 4.8/2.9 2.1/7.8
(1 1 4) 3.77 8(1) 2.2 3.5

Ca3.5Y0.5Cu5O10 (0 0 1) 0.59 100(5) 100 100

Table 4.11: Integrated intensities of the observed magnetic Bragg reflections for
Ca2+xY2−xCu5O10 samples. For comparison, both the calculated and the observed intensi-
ties are normalized in such as way that the peak area of the (001) reflections is equal to 100.
The peak area of the (001) reflection is by a factor of 25 larger compared to the integrated
intensity of all other reflections. The magnetic structure factor FM (GM ) is calculated based on
Eq. (4.14). The multiplicities mhkl are defined with respect to the space group [100].
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for all reflections except the (0 0 1) and (0 0 3) peak position. Data analysis thus becomes
difficult in terms of residuals of those peaks that are of the order of the weak magnetic
peaks. We still observe that a better agreement between the data and the calculated
models is given for the spin orientation parallel to the b direction.

Specific heat of the highly doped compound Ca0.83CuO2 indicates a phase transition
from the paramagnetic to a 3D ordered phase [82]. Diffraction experiments on HRPT
(PSI) and D20 (ILL) both provide evidence of long range order in terms of a magnetic
Bragg reflection close to the strong nuclear one (0 0 2) (see Figure 4.18). Within the given
magnetic CuO2 subcell the observed peak can be indexed as ( 1

2
0 1). This finding suggests

a doubling of the magnetic unit cell along a compared to less doped samples. Antifer-
romagnetic exchange is observed along the a and the c axis. No further magnetic Bragg
reflections were observed in both experiments. This is understandable, since the esti-
mated magnetic moment of this sample is only ' 0.28µB. This peak was not observed for
Ca3.5Y0.5Cu5O10. We conclude that the magnetic structure of the 3D antiferromagnetic
Néel state for Ca2+xY2−xCu5O10 samples with 0≤x≤ 1.5 differs from that of Ca0.83CuO2.
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Figure 4.18: Neutron diffraction pattern of
Ca0.83CuO2 (ca083) between 19◦ and 30◦ mea-
sured above and below the order temperature.
The data are obtained on D20 with an inci-
dent wavelength of λ=1.89 Å. The high tem-
perature data are offset for clarity. The differ-
ence pattern are shown below the spectra: Be-
sides the residuals of the strong nuclear (002)
reflection (∼ 21◦) the magnetic reflection ( 1

2 0 1)
around 23◦ is observable.

In order to calculate the magnetic moment µ, we extracted the instrumental constant
C for each sample using the (1 1 3), (1 1 5), (1 3 3) and (1 3 5) nuclear reflections. These
Bragg peaks are well isolated from other nuclear and magnetic Bragg reflections. Within
the asymmetric unit cell they originate from the magnetic CuO sublattice with almost
no contributions of Ca/Y sites. In order to further exclude uncertainties with respect to
the spin orientation and the statistical data quality, only the (0 0 1) magnetic reflection
was used for calculating µ. Table 4.12 provides an overview of the concentration depen-
dence of the calculated magnetic moments in units of µB. As already expected from the
decreasing integrated intensity of the most prominent (0 0 1) reflection, an increase in the
Ca/Y ratio leads to a decrease of the magnetic moment from 0.92(1)µB to 0.22(6)µB for
Ca2Y2Cu5O10 and Ca3.5Y0.5Cu5O10, respectively. The magnetic moment of the parent
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compound coincides with the moment of 1µB of the free copper ion. In addition, this
value agrees well with the magnetic moment deduced by Fong and coworkers [63] and
Matsuda and coworkers [64] for a powder sample and a single crystal.

µ (µB)

Ca2Y2Cu5O10 0.92(1)
Ca2.5Y1.5Cu5O10 0.81(1)
Ca3Y1Cu5O10 0.49(1)
Ca3.2Y0.8Cu5O10 0.31(1)
Ca3.5Y0.5Cu5O10 0.22(6)
Ca0.83CuO2 0.28

Table 4.12: Magnetic moment of
Ca2+xY2−xCu5O10 samples in units of
Bohr magneton µB . The value of the magnetic
moment in undoped compound Ca2Y2Cu5O10

agrees well with literature [63, 64] and coin-
cides with the moment 1 µB of a free copper
ion. Upon doping, we notice a decrease in the
magnetic moment. The magnetic moment of
Ca0.83CuO2 was estimated from susceptibility
measurements (see chapter 4.2.3).

4.4.3 Sublattice magnetization

The sublattice magnetization M(T ) proves whether the second order phase transition
that is observed in susceptibility and specific heat measurements is attributed to magnetic
order. It is derived as the square root of the temperature dependence of the integrated
intensity of a magnetic reflection. The Neél temperature is determined by least square
fitting using the scaling law [4]

M(T ) ∼
(

TN − T

TN

)β

(4.17)

in the temperature range of 0.8TN ≤T ≤TN . The quantity β denotes the critical exponent
that classifies the universality calls of the investigated sample.

We probed the sublattice magnetization of Ca2Y2Cu5O10 and Ca2.5Y1.5Cu5O10 on TASP
(PSI) using the most prominent (0 0 1) magnetic peak. Figure 4.19 (a) illustrates the
(0 0 1) reflection at four temperatures obtained for Ca2.5Y1.5Cu5O10. We observe that the
amplitude of the reflection is decreasing with temperature. Above the order tempera-
ture the antiferromagnetic reflection vanishes. The solid lines are fits to the data using a
Gaussian function with a constant background. Figure 4.19 (b) displays the temperature
dependence of the square root of the integrated intensity of the (0 0 1) reflection for both
samples. In order to match the absolute value of the integrated intensity, the presented
data are normalized using the Bloch T 3/2 theorem for T → 04. Data evaluation based
on Eq. (4.17) yields an order temperature of 28.6(1)K and 26.2(2) as well as the critical
exponents β =0.31(2) and 0.42(6) for x=0 and 0.5, respectively.
Within the error bars the first exponent is compatible with Ising behavior, whereas the
latter one corresponds to the β value of 3D Heisenberg behavior5 [110]. We notice that
we expect from the magnetic structure analysis Heisenberg behavior with an easy-axis
anisotropy for the spin degree of freedom. The latter accounts for the spin orientation

4The Bloch T 3/2 theorem describes the spontaneous magnetization M(T ) within one domain, where
M(T )/M(T = 0)∝ 1 − aT 3/2 [4].

5For Ising, XY and Heisenbeg behavior β is equal to 0.326, 0.346 and 0.367 [110].
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parallel to the b axis. The value of the extracted critical exponent is highly sensitive
towards the number of measured points within the fitting range. In case of the parent
compound the estimated order temperature TN coincide with the values that were ob-
tained by Fong and coworkers [63] and Matsuda and coworkers [64]. Furthermore, TN

shows consistency with the values deduced from specific heat measurements (see chapter
4.3.1).
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Figure 4.19: (a) Intensity of the (0 0 1) magnetic reflection at various temperatures obtained in
Ca2.5Y1.5Cu5O10 (ca25y15). The solid lines display fits to the data using a Gaussian function.
(b) Sublattice magnetization M(T ) of Ca2Y2Cu5O10 (ca2y2) and Ca2.5Y1.5Cu5O10 (ca25y15).
The data are scaled respecting the Bloch T 3/2 theorem at low temperatures. The error bars of
the integrated intensities are smaller than the data symbols.

In summary, neutron diffraction elucidates the Cu-O-Cu angle along the chain direc-
tion as well as the magnetic structure in the ordered phase. For a doping concentration of
0≤x≤ 1.5 the magnetic structure is described as collinear with ferromagnetic ab planes
that are antiferromagnetically stacked along c. The spin orientation is found to be par-
allel to the b direction. Only for the highly doped sample the observed ( 1

2
0 1) reflection

indicates a change in the chain correlation.
As Ca2Y2Cu5O10 features a Cu-O-Cu angle θ =92◦, theory predicts competing strong fer-
romagnetic nearest neighbor exchange and weaker antiferromagnetic next nearest neighbor
correlations along the chain [51]. The structure analysis resolved an effective ferromag-
netic chain exchange. This result excludes the parent compound as realization of the
antiferromagnetic S =1/2 Heisenberg chain. In contrast, the highly doped compound ex-
hibits antiferromagnetic exchange along the chain with a Cu-O-Cu angle of 95.5◦ turning
this sample into an ideal candidate for studying 1D behavior of the antiferromagnetic spin
chain by means of inelastic neutron spectroscopy.

4.5 Spin dynamics

This section reports inelastic neutron scattering experiments of three members of the
quasi 1D compound series Ca2+xY2−xCu5O10. We focused on the undoped parent com-
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pound whose low temperature spin dynamics are understood by linear spin wave the-
ory (see chapter 4.5.1). Furthermore, the investigation of the medium doped compound
Ca3.5Y0.5Cu5O10 provides evidence of a spin glass state below ∼ 17K (see chapter 4.5.2).
The 1D Heisenberg behavior of the highly doped compound Ca0.83CuO2 reveals an in-
tradimer extent of next nearest neighboring copper ions (see chapter 4.5.3).

4.5.1 3D antiferromagnet Ca2Y2Cu5O10

Previous experiments of undoped Ca2Y2Cu5O10 resolve a 3D antiferromagnetic state be-
low ∼ 29K. The analysis of its ordered magnetic structure elucidated ferromagnetic ex-
change within the ab plane and antiferromagnetic correlations perpendicular to this plane.
One expects the dynamical behavior below TN to be dominated by a spin wave with these
type of magnetic interactions.

In order to obtain the magnon dispersion relation ~ω(q) all possible interactions within
the magnetic unit cell have to be considered. Figure 4.20 displays the appropriate model
based on the derived magnetic structure of the parent compound. Within each magnetic
unit cell we observe ferromagnetic interaction along the a, b and thus along the [ 1

2
1
2
0]

direction. Along the c direction we observe antiferromagnetic correlations, i.e. the spins
along the [1

2
0 1

2
] and [3

2
0 1

2
] direction show antiferromagnetic correlations, whereas along

[0 0 1] spins are ferromagnetically coupled. An easy-axis anisotropy term is expected, since
the spins are oriented parallel to the b axis.

Figure 4.20: Model to obtain the magnon dis-
persion relation ~ω(q) of Ca2Y2Cu5O10. Cop-
per ions (sketched in red color) are located at
the corner of the orthorhombic unit cell as well
as on each face side. Within one magnetic unit
cell ferromagnetic exchange is found along the
[1 0 0] and [0 1 0] direction. Thus, the mag-
netic correlations in the ab plane are also fer-
romagnetic. Two magnetic unit cells are anti-
ferromagnetically coupled along the [ 1

2 0 1
2 ] and

[32 0 1
2 ] direction. The exchange along [0 0 1] is

ferromagnetic. Ji denotes the particular mag-
netic exchange, where the index i is chosen with
respect to the direction of the correlation be-
tween the copper ions.

The dispersion relation is calculated based on the Hamiltonian

H =
∑

ij

JijŜiŜj +
∑

ij

J̃ijŜ
z
i Ŝ

z
j , (4.18)

where Jij and J̃ij denote the Heisenberg exchange and the anisotropy parameter between

spins i and j, respectively. Ŝi represent the spin operator of the spin i. The summation is
carried out over nearest and next nearest neighbor spins in all crystallographic directions.
We only consider magnetic correlations between spins within the largest distance of the
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magnetic unit cell in real space. Linear spin wave theory yields the dispersion relation

~ω(q) =
[(

2Ja1( cos (qaa) − 1) + 2Ja2( cos (2qaa) − 1) + 2Jb( cos (qbb) − 1)

+2Jc( cos (qcc) − 1) + 4Jab( cos (
qaa

2
)cos(

qbb

2
) − 1) + 4Jac1 + 4Jac2

−D
)2

−
(

4Jac1 cos (
qaa

2
) cos (

qcc

2
) + 4Jac2 cos (

3qaa

2
) cos (

qcc

2
)
)2] 1

2

,(4.19)

where the anisotropy D is defined by D = −2J̃a1 − 2J̃a2 − 2J̃b − 2J̃c − 4J̃ab +4J̃ac1 +4J̃ac2.
The quantities qa, qb and qc represent the reduced scattering vector qx in units of 2π/x
(x ∈ {a, b, c}) that transforms to the reciprocal lattice units via ξ = qxx/(2π). The ex-
change constants Ji denote the magnetic correlations, where the index i corresponds to
the particular direction between two spins. The detailed mathematical derivation of the
dispersion relation is presented in appendix A.2

Matsuda and coworkers performed an inelastic neutron scattering study on single crystal
Ca2Y2Cu5O10 below TN [65]. Table 4.13 summarizes the fitted exchange and anisotropy
parameters of the spin wave dispersion Eq. (4.19). The exchange Jac2 was fixed to Jac1/2
during the fit. Furthermore, next nearest neighbor correlations along the c axis do not
contribute to the observed excitation spectrum and were set to zero. Within the J1-J2

model for edge sharing CuO2 chains the magnetic exchange along the chain axis should
arise from ferromagnetic nearest neighbor and antiferromagnetic next nearest neighbor
interaction, where |J1|>J2 is expected [51]. Lacking data points at the zone boundary
along [1 0 0] the low energy dispersion is equally described using an approach with an
effective ferromagnetic interaction and an approach with Ja1 and Ja2.

Cu position Ji (meV)

2Ja1 (a 0 0) -6.9(1)/-8(1)
2Ja2 (2a 0 0) 0/0.4(3)
2Jb (0 b 0) -0.061(6)
2Jab (1

2
a 1

2
b 0) -0.030(3)

2Jc (0 0 c) 0
2Jac1 (1

2
a 0 1

2
c) 1.494(3)

2Jac2 (3
2
a 0 1

2
c) 0.747

Dab (a b 0) -0.399(1)
Dac (a 0 c) -0.262(3)

Table 4.13: Exchange Ji of single crystal
Ca2Y2Cu5O10 between the Cu ion at (0 0 0) and
the corresponding counterpart in real space and
anisotropy D [65]. Ji < 0 and Ji > 0 account
for ferromagnetic and antiferromagnetic inter-
action, respectively. Next nearest interaction
along the a and c axis does not contribute to the
spin wave dispersion. The single ion anisotropy
Di was treated as fitting parameter, thus two
terms are necessary to describe the dispersion
relation along the axes of the magnetic unit cell.

Figure 4.21 displays the spin wave dispersion of the parent compound along the [a 0 0],
[0 b 0] and [0 0 c] direction of the magnetic unit cell. The three branches are indicated by
the black, red and blue solid line, where the fit with Ja2 =0 and Ja2 6=0 are indicated
by the dashed and solid line, respectively. Respecting the absolute value of the exchange
constants we expect the maximum of the dispersion corresponding to ω(q) ‖ a. The spin
wave dispersion along the chain axis yields ∼ 20meV at the Brillouin zone boundary,
while the maximum in energy transfer along c is only about 5meV at the zone boundary.
Along the b direction the dispersion is almost flat. Owing to the easy-axis anisotropy that
forces spins parallel to the b axis, we observe a spin gap of the order of 1.5meV to 2meV
in all three crystallographic directions.
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Figure 4.21: Dispersion relation of
Ca2Y2Cu5O10 along the [a 0 0], [0 b 0] and
[0 0 c] direction in reciprocal lattice units
(sketched in black, red and blue color). The
solid black and the dashed black curve cor-
respond to the exchange values Ja2 =0 and
Ja2 6=0. Data points are taken from [65]. A
spin gap is present in the spin wave dispersion
that originates from the spin orientation along
the b direction of the magnetic unit cell. As
the lattice constants of the magnetic unit
cell differ, the distance to the next Brillouin
zone center along a, b and c corresponds to
2.24 Å−1, 0.99 Å−1 and 0.59 Å−1, respectively.
The dashed vertical lines indicate Q=0.59 Å−1

for each crystallographic direction.

A powder sample limits the possibility to obtain a wavevector dependent dispersion re-
lation ~ω(q). We thus restricted our investigation to the wavevector Q=0.59 Å−1 that
corresponds to the most intense magnetic Bragg reflection (001). Within the orthorhom-
bic unit cell this Q value coincides with ξ' 0.26 r.l.u. along the a axis, ξ ' 0.6 r.l.u. along
b and the magnetic zone center of the next Brillouin zone along the c direction. Owing to
the dispersion relation of Ca2Y2Cu5O10 the energy dependence of the excitation spectrum
features a spin gap of ∼ 1.8meV. In a very naive picture, one apt to think that constant Q
scans in a powder sample cut through the dispersion branches along the crystallographic
axis. We expect defined excitation energies of ∼ 1.8meV, ∼ 2meV and ∼ 12meV for the
corresponding qx values along the c, b and a direction.

In order to elucidate the magnon dispersion of polycrystalline Ca2Y2Cu5O10, we per-
formed a neutron scattering experiment on the cold triple axis spectrometer NG-5 (SPINS,
NIST). The instrument was operated in the fixed final energy mode (E ′ =5meV) with
the horizontally focusing analyzer (HFA) and the collimation 80’-sample-radial collimator-
HFA. Owing to the focusing condition the measured intensity is increased compared to a
flat analyzer (FA) at the expense of the Q resolution. Raising energy transfer ~ω yields
smaller scattering angles θS. Around 3meV the instrumental background drastically in-
creases, which results from an instrumental set-up close to the direct beam. Furthermore,
an experiment was carried out on the cold triple axis spectrometer TASP (PSI). During
this experiment a fixed final energy of 8meV and the instrumental set-up 80’-sample-80’-
FA-80’ was employed.

Figure 4.22 (a) depicts the observed 2K excitation spectrum at Q=0.59 Å−1 on NG-5.
We clearly observe the energy gap of 1.5meV to 2meV in the excitation spectrum. By
means of constant energy scans at ~ω =1meV and 2meV the gaped dispersion was ap-
proved (data are not shown). Owing to the decreasing scattering angle with raising energy
transfer, the background significantly increases at energy transfers beyond 3meV. Figure
4.22 (b) displays the equivalent spectrum measured on TASP with a flat analyzer. Two
excitation peaks are observed around 2meV and 3.9meV. The solid line is a guide to
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the eye using three Gaussian functions with a constant background for the quasielastic
contribution and the two inelastic peaks. We remind the dispersion ~ω of single crystal
Ca2Y2Cu5O10. We expect scattering between 2meV and 5meV, since a powder average
over all Q directions has to be carried out. Measurements above the order temperature
show that these excitations vanish. The magnetic signal thus originates from a spin wave
excitation.
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Figure 4.22: Excitation spectra of Ca2Y2Cu5O10 (ca2y2). Constant Q scans at 0.59 Å−1 are
measured on (a) NG-5 (Spins, NIST) with an horizontally focused analyzer (HFA) and (b) TASP
(PSI) using a flat analyzer (FA). (a) A spin gap of ∼ 1.8 meV is visible in the dispersion that
originates from the easy-axis anisotropy in this sample. The focusing condition increases the
intensity at the expense of the Q resolution. (b) Using a set-up with a flat analyzer reveals two
distinct excitation peaks around 2meV and 3.9 meV. The solid line is a guide to the eye.

The investigation of the polycrystalline sample confirmed the significant feature of the
low energy dispersion of Ca2Y2Cu5O10: a spin gap that originates from an easy-axis
anisotropy. This results is compatible with the dispersion relation of a single crystal of
undoped Ca2+xY2−xCu5O10 and our magnetic structure study (see chapter 4.4). At this
point it might be possible to calculate the powder averaged magnetic cross section for
coherent scattering based on the derived exchange parameters of Matsuda and cowork-
ers [65] for this particular Q value (see e.g. Lovesey [75]). However, due to the complex
dispersion relation the numerical very demanding calculation will not be done in this
thesis work. In particular, only the lineshape at low energies can be compared to the
experimental data. No further information about the high energy excitation spectra can
be deduced in terms of the importance of the antiferromagnetic next nearest interaction
along the frustrated CuO2 chain.

4.5.2 Spin glass state in Ca3.5Y0.5Cu5O10

Bulk measurements provided evidence of a disordered state in Ca3.5Y0.5Cu5O10 below
∼ 10K. Susceptibility shows an increase, where the magnetic correlations are of antifer-
romagnetic type. In addition, specific heat elucidates a broad plateau yielding a constant
value for T → 0. To determine the low temperature phase in this sample, we performed a
neutron scattering study on the cold triple axis spectrometer PANDA (FRMII) using the
fixed final energies E ′ =4.7meV, 8.0meV and 14.7meV. For the last two final energies
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a pyrolytic graphite filter was installed before the analyzer, whereas for measurements
with 4.7meV a cooled beryllium filter was used. The primary collimation was fixed to
60’ during the experiment and the monochromator remained vertically focusing. Inelastic
measurements made use of a slit with the dimensions 4 cm× 3 cm (height×width) located
before the detector. During elastic measurements this slit was replaced by one that offered
the similar height and does not horizontally restrict the beam.

Probing whether a spin glass-like state is present in Ca3.5Y0.5Cu5O10, an elastic neu-
tron scattering study of the most intense magnetic Bragg reflection (0 0 1) was performed
using two different instrumental energy resolutions. Neutrons with a final energy 4.7meV
show an energy resolution of ∼ 0.2meV, whereas those with 14.7meV probe fluctuations
in the range of ∆(~ω)∼ 0.9meV.
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Figure 4.23: Comparison between data obtained with E ′ =4.7 meV and 14.7 meV for
Ca3.5Y0.5Cu5O10 (ca35y05). (a) The nuclear (0 0 2) reflection exhibits a different linewidth
with respect to the instrumental resolution. The displayed data are normalized to the absolute
amplitude of each other. (b) Background subtracted integrated intensity of the most intense
magnetic Bragg peak (0 0 1). The data are normalized using the integrated intensity of the
nuclear (002) reflection at 2.5 K.

Figure 4.23 (a) depicts the nuclear (0 0 2) Bragg reflection measured with these two en-
ergy resolution. For comparison, the shown data are normalized to match the amplitude
of both peaks. The temperature dependence of the background subtracted integrated
intensity of the (0 0 1) reflection is displayed in Figure 4.23 (b). The obtained peak areas
are normalized with respect to the peak areas of the (0 0 2) reflection that were measured
at 2.5K for both energy resolutions. We observe a resolution dependent decrease in the
integrated intensity of the (0 0 1) reflection. The broader resolution yields a higher order
temperature (T > 20K), when spin fluctuations are slowed down. 4.7meV data reveal at
∼ 17K the absence of the (0 0 1) reflection.

The dependence of the critical temperature on the instrumental resolution is considered
as a typical sign of a spin glass. Spins are correlated within domains of a certain extent.
Increasing temperature yields a decreasing correlation length on which spins fluctuate.
Measuring the (0 0 1) reflection with a lower resolution probes a smaller correlation length
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compared to data obtained with a smaller linewidth. Thus, we observe still fluctuations
at an elevated temperature.

This result coincides with literature for a single crystal Ca3.5Y0.5Cu5O10 sample that
exhibits a spin glass-like phase below 15K [66, 91]. This phase was elucidated both by
means of susceptibility measurements and inelastic neutron scattering. It was found that
the spin glass state originates from magnetic spins that are coupled along the a axis. The
spin glass temperature that was observed by neutron scattering is a factor of two higher
compared to that of susceptibility measurements.

4.5.3 1D Heisenberg behavior in Ca0.83CuO2

Susceptibility and specific heat measurements show evidence of 1D Heisenberg behavior
in Ca0.83CuO2, where α was found to be close to the uniform chain and the exchange
J ∼ 60K (see chapter 4.2 to 4.3). The number of magnetic spins almost coincides with
the expected value of 2/3. Although the CuO2 chains in this sample are diluted by 33%,
we observe a long range ordered state below 12K. Neutron diffraction elucidated antifer-
romagnetic correlations along the chain direction. Owing to these findings the dynamical
behavior of highly doped Ca0.83CuO2 shall be dominated by quasi 1D properties. In the
following, we investigate the structure factor and the scattering law S(Q, ω) for this sam-
ple. Both quantities behave in a typical way in case of the antiferromagnetic Heisenberg
spin chain with alternating exchange.

Data were collected on the triple axis spectrometer IN3 and the thermal time of flight
instrument IN4 that are installed at ILL. Both offer the possibility to instantaneously
probe the excitation spectrum for a broad (Q, ω) range.
The spectrometer IN3 is equipped with a multi detector allowing the investigation of
an elastic Q range of 0.3 Å−1 to 3.9 Å−1. During the experiment the fixed final energy
E ′ =31.16meV and a collimation of 60’ between the monochromator and the sample were
chosen. Ca0.83CuO2 and the aluminum empty can was measured for both 2K and 20K.
The sample was mounted into a cylindric aluminum sample holder with an diameter of
∼ 1 cm. Correcting for the different detector efficiencies required the measurement of a
vanadium sample.
Furthermore, an experiment was performed on IN4 that offers detectors within the an-
gular range of 2.4◦≤ 2θ≤ 120◦. The chosen incident energies of 67.5meV and 16.1meV
allows for an elastic Q range of 0.2 Å−1 ≤Q≤ 9.7 Å−1 and 0.1 Å−1 ≤Q≤ 4.8 Å−1, respec-
tively. The maximum in the accessible energy transfer range varied from ∼ 60meV and
15meV (neutron energy loss). We measured vanadium, the polycrystalline sample and
the empty can in the temperature range of 2K up to 80K. The aluminum cylinder with
an outer and inner diameter of 20mm and 19mm provided an annular hollow geometry.
The wall thickness of the outer and the inner container was chosen to be 0.5mm and
0.4mm, respectively. With a mass of 6.4 g the transmission of the sample was about
94%. Absorption effects of the aluminum can leads to a transmission factor of about
98%. The obtained data are analyzed as described in chapter 3.2.3.

Excitations of the dimerized antiferromagnetic spin 1/2 chain features a characteristic
structure factor. S(Q) of coupled dimers reveals typical distances of two coupled spins
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within one dimer: the intradimer distance d [32, 111, 112, 113]. This quantity corresponds
to the first maximum in the structure factor. Moreover, the structure factor is almost
insensitive towards the coupling between dimers, i.e. the alternating parameter α. The
interdimer distances b (the distance between two dimers) give raise to small modulations
of the amplitude of the structure factor. However, the position of the maxima and minima
in the structure factor are unaffected.
The mathematical derivation of the powder averaged structure factor S(Q) in O (α) is
presented in appendix B.1. We use the analytical expression of S(Q) that is obtained by
Barnes and coworkers [32]. The spherical integrated structure factor results in

S(Q)/|f(Q)|2 = 1− sin (Qd)

Qd
+

α

2

(sin (Qb)

Qb
− sin (Q(d − b))

2Q(d − b)
− sin (2Q(b + d))

2Q(d + b)

)

, (4.20)

where d and b denotes the intradimer and the interdimer distance, respectively. The form
factor f(Q) corrects for a decreasing intensity upon increasing wavevector Q. In order to
obtain the quantity d from a fit to the experimental data, we use a constant background
that accounts for incoherent scattering contributions. Fits on an extended Q range in-
cluded a phonon term ∝Q2 and results in compatible results for the intradimer distance d.

Figure 4.24 (a) to (d) depict S(Q) that is obtained by the experiments on IN3 and IN4
(E =16.1meV). The presented data at 2K and a higher temperature above TN are inelas-
tically summed over a broad energy range. We estimated this energy range reasonably
large enough based on the exchange value J that was revealed by susceptibility measure-
ments for Ca0.83CuO2. For all plots data points at low Q are removed, as in case of the
IN3 experiments these data points correspond to a instrumental geometry near the direct
beam. For IN4, the background of the small angle detectors are increased compared to
detectors installed at higher scattering angles.
The structure factor clearly displays a broad maximum around 0.7 Å−1. In a first approach
we restricted the fit to the model of isolated dimers (α =0) in a Q range up to ∼ 2.5 Å−1.
Above this Q value phonon scattering contributes to the signal. Moreover, the magnetic
form factor of Cu2+ is already decreased by 30% around 2.5 Å−1. The intradimer distance
measured on IN3 turns out to be 6.1(1) Å and 5.8(2) Å at 2K and 20K, respectively. In
agreement, fits to the IN4 data yield values of 5.4(1) Å and 5.7(1) Å for 2K and 25K.
The low statistics of the data prevent from extracting the interdimer distance. When
restricting α equal to one, the deduced interdimer distance b strongly depends on the
starting parameters.

Both experiments consistently reveal a maximum in the structure factor around 0.7 Å−1.
This corresponds to the distance of two spins of about 5.7 Å in real space. Considering the
distance of two copper atoms along the chain direction a of 2.8 Å the intradimer distance
is about twice this value. This result is understood within the frame of the J1-J2 model
for a Cu-O-Cu angle of 95.5◦, as the stronger magnetic exchange arises from the antifer-
romagnetic next nearest neighbor interaction [51]. The equivalent results for data below
and above the Néel temperature demonstrate that the dynamical behavior of Ca0.83CuO2

follows the 1D Heisenberg model for antiferromagnetic spin chains. No ambiguity arises
from the coexisting Néel state, since the long range antiferromagnetic order only sets
in below 12K. Although the interdimer distance cannot be revealed by the experimental
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Figure 4.24: Structure factor S(Q) of Ca0.83CuO2 (ca083), obtained from experiments on
the spectro- meters IN3 and IN4 (E ′ =16.1 meV) for two temperatures. The shown data are
summed over the energy range 4 meV≤ ~ω≤ 12 meV and 4 meV≤ ~ω≤ 8 meV, respectively. In
case of IN3 data, points at low Q are removed that corresponds to a instrumental geometry
close to the direct beam. For IN4 plots, points of the low angle detectors are removed, as their
instrumental background is increased compared to detectors at higher scattering angles. Raising
intensity above 2 Å−1 is attributed to phonon scattering. The solid lines represent fits of the
structure factor for α =0. We observe for the IN3 data at the two temperatures an overall
agreement between both data and the fit. The discrepancy between the 2 K and 25 K data of
IN4 starting around 1.2 Å−1 is attributed to increased phonon scattering with respect to the
elevated temperature.
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data, we expect this value to be three times the copper distance 8.4 Å. It corresponds to
the length of the unit cell of the alternating chain [32]. In contrast, the unit cell length
of the spatially uniform chain yields the distance between two adjacent spins d.

We now consider the scattering law S(Q, ω) that is composed of two terms

S(Q, ω) = Smag(Q, ω) + Scont(Q, ω) . (4.21)

The first contribution Smag(Q, ω) describes the spectral density that arises from the triplet
excitations. To obtain the scattering law, we make use of the conventional approach
S(Q, ω) ∝ S(q) · g(ω), where S(q) denotes the instantaneous spin-spin correlation func-
tion and g(ω) the density of states function [114]. While S(q) is given by Uhrig and Schulz
[35], g(ω) is obtained using the approach g(ω) = |d(~ω(q))/dq|−1. The dispersion relation
~ω(q) is given up to the order O(α), O(α3) and O(α5) by Uhrig and Schulz [35], Harris and
coworkers [34] and Barnes and coworkers [32], respectively. Within the O(α) approach of
Uhrig and Schulz scattering occurs in the energy range of 1−α/2 . ~ω/J̃ . 1+α/2 with
the two Van Hove singularities at the energy band edges ~ω/J̃ ' 1±α/2. We remind the
relation between the exchange J and J̃ to be J̃ = J(1 + α)/2 (see chapter 2.2).
The quantity Scont(Q, ω) originates from scattering on the magnon continuum. Uhrig and
Schulz [35] numerically calculated the spectral density of this term by means of random
phase transition. This approach is only valid in the limit of weakly coupled dimers such
as the spin-Peierls compound CuGeO3 or - as we have seen - the copper oxide system
Ca0.83CuO2. The Q integrated scattering law

∫

Scont(Q, ω)dQ of the continuum features

a large scattering intensity within the energy interval 2−α . ~ω/J̃ . 2 +α. Around the
energy ~ω/J̃ ' 2 − α/2 we observe a significant maximum in S(ω). A detailed mathe-
matical presentation of the scattering law is given in appendix B.2.

0

1

2

S
(ω

) 
 (

a.
 u

.)

Smag(ω)
Scont(ω)

(a)

0 5 10 15
0

1

2

Q
 /π

hω  (meV)

(b)

Figure 4.25: (a) Scattering intensity S(ω), in-
tegrated over the Brillouin zone. The solid and
the dashed line display the magnon and the
continuum contribution to S(ω), respectively.
Both curves are calculated with the parameters
J =5.1 meV and α =0.98 based on the model
of for weakly coupled dimers [35]. The scat-
tering intensity that results from the magnon
band displays two sharp Van Hove singularities
around ~ω ' J(1 ± α/2). (b) For comparison,
the dispersion relation of the triplet excitations
(solid line) and the magnon continuum (dashed
lines) are indicated [32, 35]).

Figure 4.25 (a) illustrates the calculated scattering intensity S(ω) that we expect for a
magnetic exchange J ' 60K' 5.1meV and the alternating parameter α =0.98. The Q
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integration was carried out numerically over the Brillouin zone. For comparison, the
dispersion relation ~ω(q) is shown below the scattering intensity in Figure 4.25 (b). Con-
verting the magnitude of the magnetic correlation J to J̃ does not change the energy scale
of the scattering law, as for the given α both parameters are nearly equivalent.

The measured intensity is obtained by a convolution of S(ω) with the instrumental res-
olution. Considering a constant energy resolution in terms of a Gaussian function with
1.4meV full width half maximum (FWHM) broadens the calculated S(ω) in such a way
that the Van Hove singularities at ~ω/J̃ ' 1±α/2 of the triplet excitations shift to higher
and lower energy transfers, respectively. Moreover, the sharp maximum of the continuum
states turns more smoother. This energy resolution is compatible with the quasielastic
energy resolution measured on IN3 and that on IN4 with an incident energy of 16.1meV.
For an energy resolution of 3.4meV FWHM that correspond to the 1.1 Å measurement
on IN4 the significant features of the triplet and the continuum density of states vanishes
into one broad peak.

To extract the magnetic scattering intensity from the nuclear one, a non magnetic refer-
ence compound is usually used [115]. In such a sample the magnetic ion is replaced by
a nonmagnetic one that features an equivalent electron valence and a similar ion radius.
The measured excitation spectrum is purely credited to the nuclear scattering. In case
of Cu2+ both requirements are hardly fulfilled with a nonmagnetic substitute. Thus, the
nuclear contribution of the total intensity will be deduced using an incoherent approach
for phonon scattering. Ideally, the total measured scattering intensity S(Q, ω) consists of
a magnetic and a phonon term [75]

S(Q, ω) ∝ |f(Q)|2Smag(Q, ω) + Q2Sphon(Q, ω) . (4.22)

The magnetic contribution Smag(Q, ω) scales with the form factor f(Q), while the phonon
part Sphon(Q, ω) increases with the squared wavevector. This assumption neglects mul-
tiple scattering. The nuclear intensity is estimated from the measured data, where the
form factor equals zero. This corresponds in Ca0.83CuO2 to a Q value of ∼ 8 Å−1.
Figure 4.26 shows the scattering intensity S(ω) for Q values from 1.4 Å−1 to 7.9 Å−1.
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Figure 4.26: Scattering intensity of
Ca0.83CuO2 (ca083), measured on IN4
(E =67.5 meV, T =25 K). The data are
summed over ∆Q∼ 0.8 Å−1, where Q value
represents the average value of these ranges.
Around Q=7.9 Å−1 the magnetic form factor
is decreased to zero. The observed intensity
originates from coherent and incoherent
phonon scattering. Owing to the dominant
coherent cross section and the large monoclinic
unit cell of this sample a complex Q dependent
phonon dispersion is observed with significant
peaks around 10 meV, 18 meV and 35 meV.
The quasielastic resolution of 3.4 meV leads to
a broad tail up to 8 meV for ~ω > 0meV.
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We observe at high Q only phonon scattering that scales between 6 Å−1 and 8 Å−1 pro-
portional to Q2. However, the shown spectra show a Q dependent phonon dispersion with
major peaks around ∼ 10meV, ∼ 18meV and ∼ 38meV. Owing to the large monoclinic
unit cell of this sample we expect a complex phonon dispersion that has to be taken
into account for the phonon part of the scattering cross section. Ca0.83CuO2 represents
a mixed coherent-incoherent scatterer with a dominant coherent cross section (18.3 barn
versus 0.6 barn per formula unit, respectively). The incoherent approach, i.e. a simple Q2

rescaling of the high Q data, cannot be valid for the phonon term in the scattering law.
In addition, the quasielastic energy resolution of 3.4meV FWHM prevents from resolving
any features of the expected scattering function of the 1D chain with J ' 5.1meV and
α' 0.98 behavior that appears from 2meV on.

Although the nonmagnetic background cannot be reduced, we try to quantitatively match
the expected scattering intensity S(ω) to data with a higher energy resolution than the
measurement on IN4 with the incident energy of 67.5meV. Figure 4.27 displays the energy
dependence of the intensity that is obtained by the IN3 experiment at 20K. The data are
summed between 0.5 Å−1≤Q≤ 1.5 Å−1 and corrected for the empty aluminum can and
the magnetic form factor. The quasielastic peak at zero energy transfer that is fitted by
a Voigt function is subtracted. This function accounts best for the observed lineshape
of the peak. For illustration purposes, the residual points and their error bars around
~ω =0meV are removed.
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Figure 4.27: Excitation spectrum of
Ca0.83CuO2 (ca083), obtained on IN3
at 20 K. The data are summed within
0.5 Å−1≤Q≤ 1.5 Å−1 and corrected for the
form factor. Both the empty aluminum can
and the quasielastic peak at zero energy
transfer in terms of a Voigt function are
subtracted. The red and the blue line indi-
cate the expected S(ω) that arises from the
alternating Heisenberg chain for the exchange
parameters of 50 K and 40 K, respectively.
The scattering function is convoluted with the
energy resolution of the spectrometer.

We observe a broad scattering contribution within 2meV. ~ω . 7meV and around 10meV.
In agreement with the IN4 measurement we at least partially identify the latter one with
the phonon contribution to the scattering intensity. Assuming that the first peak of the
data only corresponds to the magnetic intensity, we conclude that the major contribu-
tion of S(ω) should account for this. Modeling the scattering intensity with J =60K
and α =0.98 does not describe the shown spectrum. Here, the Q integration of the
scattering law S(Q, ω) was performed with respect to the experimental Q range of the
data. The red and the blue curve represent the calculated scattering function S(ω) for
J =4.2meV=50K and J =3.4meV=40K, respectively. Both curves are scaled in such
a way that the experimental data are well described. In case of a pure magnetic origin
of this peak the better agreement between the data and the model is given for the mag-
netic exchange equal to 40K. Respecting both curves the exchange differs from that of
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susceptibility and specific heat by 14% and 31%, respectively. We admit, this calculation
should only serve as qualitative comparison between the model for dimerized chains and
the shown data.

In summery, experimental results of inelastic neutron scattering experiments for un-
doped Ca2Y2Cu5O10, medium doped Ca3.5Y0.5Cu5O10 and the highly doped compound
Ca0.83CuO2 are presented. The 3D antiferromagnetic parent compound shows below TN

a magnon dispersion that is compatible with that of a single crystal sample. Upon
doping, the long range ordered phase diminishes and a spin glass behavior occurs in
Ca3.5Y0.5Cu5O10. Further doping leads to a dynamical behavior that arises from the
dimerized CuO2 chains. We have found the singlet extension to be equal to the next
nearest copper distance in the chain.

4.6 Discussion

This section summarizes the experimental results of Ca2+xY2−xCu5O10 samples and com-
pares them to literature. In this sense, a generic phase diagram is presented that reflects
the long range order (see chapter 4.6.1). We further discuss in the frame of the J1-J2

model how far the approach of the 1D Heisenberg chain applies to the compound series
(see chapter 4.6.2).

4.6.1 Generic phase diagram

Figure 4.28 illustrates the obtained phase diagram of Ca2+xY2−xCu5O10 samples. Both
bulk measurements and neutron spectroscopy provide evidence of a long range ordered
state at low temperatures that depends on the doping concentration x. It arises from the
coupling of adjacent CuO2 chains. Compounds with 0≤x≤ 1.5 show a collinear antifer-
romagnetic structure. The disorder of the CuO2 chains leads to a spin glass-like phase
in Ca3.5Y0.5Cu5O10 and the highly doped compound Ca0.83CuO2 exhibits again a Néel
state. In this sample the exchange measured along the chain changes from ferromagnetic
to antiferromagnetic interaction. The shown phase transition temperatures are obtained
by heat capacity measurements (hc) and neutron diffraction (neutron) of the magnetic
reflection (0 0 1).
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In best agreement with known literature [63, 64] the magnetic unit cell of the parent com-
pound belongs to the face centered orthorhombic space group with the lattice constants
a' 2.8 Å, b' 6.3 Å and c' 10.6 Å. The Cu-O-Cu bond angle within one CuO4 unit was
found to be about 92◦. Spins are confined to the ab plane, where the spin orientation is
parallel to the b axis. Moreover the magnetic propagation vector [0 0 1] yields ferromag-
netic interaction within the ab plane and antiferromagnetic correlations perpendicular to
this plane. The observed spin wave dispersion of single crystal Ca2Y2Cu5O10 [65, 66] co-
incides with the results of the magnetic structure analysis with respect to the sign of the
exchange integrals. The investigation of the polycrystalline parent compound supports
these results by resolving a spin gap in the dispersion of the order of the gap predicted
by the dispersion relation of the single crystal.
Upon doping, the magnetic structure remains unchanged until the doping concentration
x=1.5. Both the Néel temperature and the magnetic moment decrease from ∼ 29K to
∼ 16K and ∼ 0.92µB and ∼ 0.22µB, respectively. Ca0.83CuO2 shows antiferromagnetic
correlations along the chain axis. This result agrees with Meijer and coworkers [82].

Below TN the change in the magnetic correlations along the chain direction can be ex-
plained by the change in the Cu-O-Cu bonding angle. Figure 4.29 displays the con-
centration dependence of the Cu-O-Cu angles θ that were derived by means of neutron
diffraction (see chapter 4.4.2). The values increase from ∼ 92◦ to ∼ 95.5◦ for Ca2Y2Cu5O10

and Ca0.83CuO2, respectively. The J1-J2 model of CuO2 chains describes the magnetic
exchange between nearest (J1) and next nearest neighbor spins (J2) [51]. We remind
that J2 is angle independent, while both the sign and the magnitude of the exchange
J1 depends on θ. As depicted in the figure the nearest neighbor exchange changes from
ferromagnetic to antiferromagnetic correlations for θc ' 95◦ in case of Ca2+xY2−xCu5O10.
The precise value of the critical angle θc strongly depends on the Cu-O distance along the
Cu-O-Cu bond. These theoretical predictions coincide with the observed ferromagnetic
nearest neighbor interactions of Ca2+xY2−xCu5O10 samples up to x=1.5. In agreement,
Ca3.5Y0.5Cu5O10 does not show the magnetic Bragg reflection ( 1

2
0 1). A bond angle of

∼ 95.5◦ that was observed for Ca0.83CuO2 anticipates antiferromagnetic nearest neighbor
interaction, where J1 <J2 applies.
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Figure 4.29: Cu-O-Cu bonding angle θ of
Ca2+xY2−xCu5O10 samples. The values are
obtained by means of neutron diffraction. In-
creasing Ca/Y ratio yields an increase in θ from
∼ 92◦ to 95.5◦ for the parent compound and
highly doped Ca0.83CuO2, respectively. Within
the frame of the J1-J2 model [51] the magnetic
correlations of the chain change from ferromag-
netic to antiferromagnetic nearest neighbor in-
teraction around 95◦.

Increasing x leads to a decrease of the 3D antiferromagnetic phase. Owing to hole doping
into the CuO2 chains, these chains become diluted. One expects that the coupling of
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neighboring spin chains is reduced. This effect is visible when considering the decrease
of the order temperature and the magnetic moment with doping. In the spin glass phase
of Ca3.5Y0.5Cu2O10 the chains are still loosely assembled to each other. Amazingly, the
compound series Ca2+xY2−xCu5O10 still exhibits a long range order for the highly doped
compound Ca0.83CuO2. Even the isomorphic cuprate system Sr0.73CuO2 exhibits an an-
tiferromagnetic state below 12K, although its CuO2 chains are doped with 0.6 holes/Cu
[82].

4.6.2 1D Heisenberg behavior

In Ca2+xY2−xCu5O10 compounds hole doping leads to the dilution of the CuO2 chains
in terms of a spin/charge order. As nonmagnetic Zhang-Rice singlets are known to re-
pel each other [60], Cu2+ ions are homogeneously distributed in the chains. We further
observe a change in the Cu-O-Cu bonding angle. These two parameters, the number of
magnetic spins in the chain and θ, decisively influence the properties of the CuO2 chains.

We first consider the undoped compound Ca2Y2Cu5O10 in the idealized situation of the
assembly of planar CuO4 units. Effects of a strong interchain coupling of adjacent spin
chains as it was found in edge sharing Li2CuO2 [116] are neglected. In the chains of
undoped Ca2Y2Cu5O10 every copper ion is magnetic. The observed value for θ leads to
ferromagnetic and antiferromagnetic nearest neighbor and next nearest exchange along
the chains, where |J1| and J2 are of the order of 200K and 75K [51]. Owing to the ratio
J2/|J1| the chains are frustrated and show zero magnetization [55]. Figure 4.30 (a) dis-
plays the corresponding spin chain. We observe that half of the nearest neighbor bonds
are frustrated. The strong ferromagnetic nearest neighbor interaction might explain the
ferromagnetic Curie Weiss temperature that was observed in the paramagnetic tempera-
ture range for susceptibility (see chapter 4.2.2).

While doping and leaving θ constant, spins are removed from the chain. The nonmagnetic
holes equally distribute over the chain and lift the frustration of nearest neighbor bonds.
When reaching a doping concentration of 0.5 holes/Cu, half of the spins are canceled out
in the chain. Only antiferromagnetic next nearest neighbor interaction holds. Such a
chain resembles the antiferromagnetic uniform chain that was introduced in chapter 2.1.
Figure 4.30 (b) to (d) illustrates this effect. Further increase in the number of holes leads
to dimerization of adjacent spins, as the exchange paths with respect to the left and right
neighboring spins 2i−1 and 2i+1 differ. For instance, the spin chain compound Sr0.73CuO2

shows a Cu-O-Cu angle of 92.5(1)◦ and 0.6 holes/Cu. It was found by means of neutron
scattering that dimers are formed between next nearest neighboring copper ions [117].
Similarly, Sr14Cu24O41 reveals for an equivalent number of holes in the chain and a bond-
ing angle of ∼ 91◦ a dimer coupling between next nearest neighboring spins [14, 15, 16, 17].

Doped samples of Ca2+xY2−xCu5O10 exhibit an increase in the bonding angle θ. The
ferromagnetic interaction |J1| decreases from ∼ 200K to ∼ 100K for x=0 and 1.5, re-
spectively. In contrast, the next nearest interaction J2 ∼ 75K remains angle indepen-
dent. The chains are frustrated [51, 55]. Upon doping, the dilution of the chains re-
move frustrated bonds. Figure 4.30 (b) and (c) sketch possible spin arrangements for
Ca3Y1Cu5O10 and Ca3.5Y0.5Cu5O10. The number of holes are chosen according to the
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Figure 4.30: CuO2 spin chains with a Cu-O-Cu bonding angle θ < 94◦. Oxygen, Cu3+ and Cu2+

ions are sketched in white, gray and black color. Zhang-Rice singlets (units of Cu3+ and four
oxygen ions) are illustrated by dashed squares. (a) Uniform chain with ferromagnetic and anti-
ferromagnetic nearest and next nearest neighbor interaction J1 and J2, respectively. Half of the
nearest neighbor interactions are frustrated. This situation is found in Ca2Y2Cu5O10. (b) and
(c) Spin chain with 0.2 and approximately 0.3 holes/Cu. The dilution of the chains with nonmag-
netic ions removes frustrated bonds as it can be found in Ca3Y1Cu5O10 and Ca3.5Y0.5Cu5O10,
respectively. (d) Spin chain with 0.5 holes/Cu. Owing to the equivalent ratio of magnetic and
nonmagnetic CuO4 units the frustration of the nearest neighbor interactions in the chain is lifted.
Such a spin chain resembles the ideal case of the antiferromagnetic uniform spin chain. (e) Spin
chain with 0.6 holes/Cu. This picture corresponds to Sr0.73CuO2 [88, 117] and Sr14Cu24O41

[14, 15, 16, 17], where θ < 94◦ and an intradimer distance of two copper ions along the chain
were found.
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copper valence. In the case of Ca3.5Y0.5Cu5O10 a hole density of 0.33 holes/Cu instead of
0.3 holes/Cu is displayed for illustration purposes. A closer look at the diluted frustrated
chains in this sample reveals disorder in terms of ferromagnetic nearest neighbor and both
antiferromagnetic nearest and next nearest neighbor spins. In this way, susceptibility and
specific was interpreted within the model of 1D antiferromagnetic spin chains.

The highly doped compound features a spin density of ∼ 2/3 that is experimentally as-
certained by susceptibility measurements (see chapter 4.2). In this sense approximately
every third ion is nonmagnetic. Owing to a bonding angle of 95.5(2)◦ we expect both
antiferromagnetic correlations for J1 and J2. Here, J2 >J1 & 0 applies that leads to al-
most negligible nearest neighbor interactions. Although the susceptibility characterizes
the chain exchange to be almost spatially uniform, we expect from the number of holes/Cu
different exchange paths of magnetic ions along the chain. Figure 4.31 displays the two
possible types of dimerization. One might expect that dimers are either formed between
next nearest neighboring spins (Figure 4.31 (a)) or between nearest neighboring spins
(Figure 4.31 (b)). Considering the relative magnitudes of J1 and J2 obviously the first
possibility is preferred. We identified the dimer extent by measuring the structure factor.
It corresponds to two times the distance of copper ions along the chain. In this way,
dimerization in this samples occurs between next nearest neighboring spins.
Another cuprate with an Cu-O-Cu bond θ > 95◦ is the spin-Peierls compound GeCuO2.
However, dimerization between neighboring Cu2+ takes place owing to a lattice distortion
that shift the ions closer together.

Figure 4.31: Spin chains of Ca0.83CuO2 with 1/3 holes/Cu. Dimerization in the chains takes
place along the (a) Cu-O-Cu or the (b) Cu-O-O-Cu path. The picture (a) depicts the experi-
mentally observed situation in this sample.

In conclusion, we have shown that in Ca2+xY2−xCu5O10 low dimensional order is evoked
by substituting calcium for yttrium ions. However, the coexisting long range order does
not vanish upon doping. Due to a lower ion radius of calcium compared to yttrium the
increase of the Ca/Y ratio leads to smaller lattice constants a and c of the magnetic unit
cell. Accordingly, the increase in the Cu-O-Cu bond angle provokes a transition from fer-
romagnetic to antiferromagnetic nearest neighbor exchange along the chain. Frustration
in these chains is lifted by means of hole doping. The dilution of the magnetic ions in the
CuO2 chains further evokes the properties of the antiferromagnetic 1D Heisenberg chain
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in terms of dimers with an extent of two times the copper distance along the chain at the
doping concentration of x=2.15.
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Chapter 5

Paramagnetic excitations in CsVBr3

This chapter summarizes the investigation of the triangular antiferromagnet CsVBr3,
whose spin dynamics in the paramagnetic phase is supposed to be dominated by one dimen-
sional behavior. We performed inelastic neutron scattering to elucidate this with respect
to its temperature dependence crossing TN . The outline of this chapter is as follows:
static and dynamic properties of CsVBr3 are briefly presented in chapter 5.1 and 5.2,
respectively. Afterwards, the results obtained by inelastic neutron scattering are shown
(see chapter 5.3). Finally, the obtained results are discussed within different theoretical
approaches and compared to other members of the ABX3 family (see chapter 5.4).

5.1 Crystal and magnetic structure

The triangular antiferromagnet CsVBr3 belongs to the hexagonal space group Pm3/mmc,
in which most of the related ABX3 compounds such as CsNiCl3 and CsMnBr3 crys-
tallize [69]. Vanadium, cesium and bromine ions are located on the crystallographic
2a, 2d and 6h position, where the corresponding fractional coordinates are (0, 0, 0),
(0.33, 0.66, 0.75) and (0.16, 0.32, 0.25), respectively. The lattice constants at room tem-
perature are a' b' 7.57 Å and c' 6.32 Å. Upon lowering the temperature to 6K they
isotropically decrease by ∼ 1% compared to those at 300K. The angle of the basal plane
ab is 120◦. Two CsVBr3 molecules are comprised in one chemical unit cell with the mag-
netic V2+ ions located at the corners of the unit cell. This kind of structure is well known
for showing face sharing BX6 octahedra along the c direction that are separated by the
alkali ions. The angle between the vanadium-bromine direction and the c axis is given
by 53◦ (300K). Figure 5.1 displays the on-site view of the nuclear structure of CsVBr3,
where vanadium, cesium and bromide ions are sketched in red, blue and yellow color.

Figure 5.1: Hexagonal unit cell of CsVBr3

with a' b' 7.57 Å and c' 6.32 Å [69]. View
parallel to the [0 0 1] direction. It is a 120◦

structure, where the unit cell contains two
molecules of CsVBr3, i.e. two vanadium(II) ions
(sketched red) are each bound to one cesium ion
(blue) and three bromide ions (yellow).
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The spin configuration of vanadium ([Ar]3d3) yields a spin quantum number S of 3/2.
Magnetic neutron diffraction exhibits a second order phase transition to an antiferromag-
netically ordered phase below the Néel temperature of 20.4◦. Analyzing the magnetic
structure Hauser and coworkers [69] determined the magnetic propagation vector to be
[1
3

1
3
1] with the magnetic unit cell dimensions

√
3a,

√
3a and c (see Figure 5.2). With re-

spect to the nuclear one the magnetic unit cell is rotated by 30◦ along the crystallographic
c axis and contains 6 V2+ ions. The interchain exchange mediated via one bromide and
one cesium ion as well as the intrachain exchange along the c direction is antiferromag-
netic. Dipolar interaction leads to a confinement of the spins into the basal plane resulting
in an easy-plane (XY-like) anisotropy [118]. The opening angle of the hexagonal plane of
120◦ forces the V2+ spins on a triangular lattice. Vanadium spins are thus geometrically
frustrated owing to an equal distribution of the magnetic moment per vanadium ion. The
actual magnetic moment of 1.87(7)µB is reduced by one half compared to the magnetic
moment of a free vanadium ion (3µB). The discrepancy of both values is assigned to zero
point fluctuations as well as the covalency of the bromide ions.

Figure 5.2: Magnetic structure of CsVBr3. View parallel to [0 0 1]. V2+ spins are confined
in the basal plane ab. Superexchange within the plane is mediated via one bromine and one
cesium ion, whereas perpendicular to the basal plane superexchange arises via one bromine ion.
Adjacent spins located on the triangular lattice are frustrated by 120◦, in order to compromise
for the antiferromagnetic exchange within the plane. Antiferromagnetic chains run along the
crystallographic c axis. The magnetic unit cell consists of three sublattices sketched in blue
color. The nuclear unit cell (green color) is rotated by 30◦ with respect to the magnetic one.

5.2 Spin wave dispersion in the ordered state

Based on the presented magnetic structure model Kadowaki and coworkers [119] intro-
duced a procedure for determining the spin wave dispersion of CsVBr3. Taking into
account the intrachain and interchain exchange J and J ′ as well as an XY-like anisotropy
D that forces the V2+ spins into the basal plane perpendicular to the chain direction
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(D > 0), the appropriate Hamiltonian of the system reads1

H = 2J
∑

i,j

ŜiŜj + 2J ′
∑

i,j

ŜiŜj + D
∑

i

(

Ŝz
i

)2

. (5.1)

Linear spin wave theory leads to the dispersion relation ~ω(q) of the system that describes
the time dependent propagation of the spin Ŝ. Here, it is presumed that only the mean
value of the z-component of the spin direction (Ŝz) is time independent, while the much
smaller perpendicular components (Ŝx, Ŝy � Ŝz) follow a time-oscillatory behavior. This
kind of motion is referred to as a spin wave with magnons as its quantized quasi particles.

Using the spin quantum number S =3/2 and the magnetic propagation vector k0 = [1
3

1
3
1]

the dispersion of CsVBr3 reads

~ωq = ~ω (q) = 2S
√

u(q)v(q) (5.2)

with

u (q) = 4J sin2
(π

2
ξz

)

+ J ′ [3 − f (ξx, ξy)] ,

v (q) = 4J cos2
(π

2
ξz

)

+ J ′ [3 + 2f (ξx, ξy)] + D ,

f (ξx, ξy) = cos (2πξx) + cos (2πξy) + cos [2π(ξx + ξy)] .

The energy ωq denotes the excitation energy and q the reduced wave vector. The quan-
tities ξi are coordinates of the scattering vector q and are defined in reciprocal lattice
units (r. l. u.). Following Eq. (5.2) three different dispersion branches can be observed
that are degenerate at particular points in reciprocal lattice. ~ω(q) describes the optic
out-of-plane mode (perpendicular to the basal plane), whereas ~ω(q±k0) refer to the two
in-plane branches. When considering the reciprocal lattice point ( 1

3
1
3
1) these two modes

correspond to the acoustic excitation for q−k0 and to the optic branch for q+k0.

Feile and coworkers determined the exchange values and the anisotropy parameter by
means of inelastic neutron scattering to be J =7.1meV, J ′ =0.0018meV and
D =0.002meV [120]. A later study by Nagler and coworkers extracted the parameters
somewhat different to J =10.4(9)meV, J ′ =0.010(1)meV and D =0.045(4)meV [121]. In
the following we will refer to the exchange values of Nagler and coworkers, as these are
obtained with a crystal of a smaller mosaicity compared to the earlier study.

Figure 5.3 illustrates the calculated dispersion in different directions in reciprocal space
using the interaction parameters of Feile and Nagler, respectively. Notice the increased
excitation maximum for the dispersion relation given by Nagler and coworkers that is
evoked by the higher intrachain exchange. Moreover, the impact of the anisotropy pa-
rameter can be observed by the out-of-plane mode along the [0 ξ 1] direction. The lower
D, the more tends the dispersion to zero energy at the zone center. Along this direction
the two in-plane branches are degenerate, while in other crystallographic directions the
energy degeneracy is lifted.

1In literature of ABX3 compounds the convention J < 0 is usually used for antiferromagnetic inter-
action [68]. However, we will adhere to the used denotation J > 0 and J < 0 for antiferromagnetic and
ferromagnetic exchange, respectively.
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Figure 5.3: Dispersion relation of CsVBr3 along the [ξ ξ 1], [0 ξ 1], [0 0 ξ] and [ 1
3

1
3 ξ] direction

using the exchange couplings by Feile and coworkers [120] (left figures) and Nagler and coworkers
[121] (right figures). Respecting ( 1

3
1
3 1) the acoustic and optic in-plane and the optic out-of-plane

modes are indicated by the dashed, the dot-dashed and the solid line, respectively.
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5.3 Spin dynamics in the disordered phase

When approaching the Néel temperature, thermal fluctuations destroy the 3D long range
order. While the anisotropy and the interchain exchange turn negligible in the paramag-
netic phase, spins are still magnetically coupled along the chain direction within domains
of a finite extension ξ(T ). However, owing to strong fluctuations the crystal is macros-
copically considered as paramagnetic.
Scattering around the ordering temperature is dominated by the spin dynamics of the an-
tiferromagnetic exchange along the c axis. In first approximation the dispersion relation
of the 1D spin system around the magnetic zone center is directly proportional to the
momentum transfer q with ~ωq = ~cq with c denoting the stiffness of the excitation.

5.3.1 Experimental details and data analysis

In order to investigate the spin dynamics of CsVBr3, we used a cylindric single crystal
with the dimensions 22mm× 8mm (height × diameter). The crystal was grown by K.
Krämer, University Bern, Switzerland, and mounted into a cylindric aluminum sample
holder. The inelastic neutron scattering experiment was performed on the cold triple axis
spectrometer TASP (Paul Scherrer Institut, Switzerland). The set-up was chosen using a
fixed final energy E ′ =8meV, a focusing monochromator and analyzer and the collimation
open-80’-open-open. The single crystal was aligned within the (h h l) scattering plane.
Measurements were performed in the temperature range of 10K to 200K around the mag-
netic Bragg reflection (0 0 3), where the magnon dispersion features an excitation gap of
4meV and 8meV (see Fig. 5.3). In particular, the temperature and the wavevector de-
pendence of the dispersion was investigated by means of constant-Q scans. Furthermore,
the origin of the gap was proved by constant energy scans for different energy transfers
and temperatures at (0 0 3).

Data analysis for both constant-Q and constant energy scans includes a deconvolu-
tion of the measured intensity I(Q, ω) with the four dimensional resolution function
R(Q − Q0, ω − ω0). The latter was chosen using the approach of Popovici [79] that
includes the neutron source and guides, the spectrometer configuration and the sample
properties. The obtained quantity, the double differential cross section, is proportional
to the scattering function that we derive for constant-Q and constant energy scans as
presented in the following paragraphs. In order to compare data that are measured in
different experimental conditions we normalized the counting time with respect to the
monitor.

Constant-Q scans are analyzed based on the model of the damped harmonic oscillator that
has been successfully used for describing the lineshape of one-phonen excitations [122].
We refer to appendix C for presenting the time and frequency dependence of damped
harmonic oscillator and evaluating the corresponding scattering law. The lineshape of
S(Q, ω) corresponds to a double Lorentzian function accounting for the Stokes and the
Antistokes line of the excitation. Within this approach the scattering function is given by

S(Q, ω) = (n(ω) + 1) · χq ·
Ω2

q

ωq

· 1

2π

[

Γq

(ω − ωq)2 + Γ2
q

− Γq

(ω + ωq)2 + Γ2
q

]

, (5.3)
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where Ωq =
√

ω2
q + Γ2 is the eigenfrequency, ωq the frequency of the damped oscillation

and Γq the linewidth of the Lorentzian function2. χq denotes the q-dependent suscepti-
bility. For convenience the mathematically identical expression

S(Q, ω) = (n(ω) + 1) · χq ·
Ω2

q

π
· 2ωΓq

(ω2 − Ω2
q)

2 + 4ω2Γ2
q

(5.4)

is used as fitting function.

While fitting, the q-dependent frequency of the damped oscillator ωq, the linewidth Γq

and an overall scaling factor A = 1
2
χqΩ

2
q are extracted as fitting parameters. Owing to

the increased counting time at the neutron energy loss side compared to energies at neu-
tron energy gain the background increased with time (≈ 0.5 cts/min). In the first step
of data analyzing the background parameter was kept free yielding results with an error
bar of the order of the value itself for the linewidth Γq and the q-dependent suscepti-
bility χq. In a second approach the background was kept constant as an average over
all temperature scans. Its value was estimated from measured points near ω =0, where
the quasi elastic contribution decreases and the magnetic one is still not dominating the
signal (≈ 20 cts/mon) as well as by the most far measured point at neutron energy loss
(≈ 19 cts/mon). These fits yielded compatible results compared to fits with free param-
eters, the error bar for the Γq and χq significantly decreased. Notice, the frequency ωq

of the damped oscillation as well as its error is independent of any assumption for the
background. Figure 5.4 (a) shows representative examples of constant-Q scans at the
magnetic Bragg reflection (0 0 3) for the temperatures 40K and 100K. The solid lines
indicate the fit based on the model of the damped harmonic oscillator, where Eq. (5.4) is
convoluted with the resolution function.

Besides constant-Q scans additional constant-energy scans at (0 0 3) were performed in the
disordered phase for two purposes. First, the existence of the gaped dispersion was traced
by changing the energy transfer at constant temperature. Furthermore, the tempera-
ture dependence of the gap energy was studied by keeping the energy transfer constant
and increasing the temperature. For convenient parametrization the spectral weight was
assumed to be of Lorentzian type

S(Q, ω) ∝ A · Γ2

Γ2 + (q − q0)2
. (5.5)

Here, Q denotes the scattering vector and q the reduced scattering vector within the first
Brillouin zone, respectively. q0 defines the center position of the excitation in reciprocal
space. As fitting parameters the Lorentzian amplitude A, the center position q0 in units
of r. l. u. as well the Lorentzian full width half maximum Γ are derived. The integrated
area F of the Lorentzian function is defined by the relation F =πAΓ. Figure 5.4 (b)
shows typical constant energy scans around (0 0 3) for different temperatures. The solid
lines are fits based on Eq. (5.5) convoluted with the resolution function.

2The frequency of the damped oscillator ωq represents the maximum of an excitation peak. The eigen-

frequency Ωq is increased compared to ωq via Ωq =
√

ω2
q + Γ2

q . Upon raising temperature the magnetic

excitations shift to zero energy transfer, as the anisotropy of a system decreases. In case of D =0 the
excitation energy ωq corresponds to zero energy, while the eigenfrequency of the damped oscillator yields
Ωq 'Γa > 0. In this sense ωq represents the physical quantity that describes the excitation energy.
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Figure 5.4: Examples of (a) constant-Q and (b) constant energy scans around the (0 0 3)
reflection. The measurement temperature is indicated in each plot. The solid lines display
the fit to the experimental data based on the model of the damped harmonic oscillator and a
Lorentzian type function, respectively. For clarity, both the data and the fit curves at 50 K and
100 K in plot (b) are offset by 35 a. u. and 70 a. u., respectively.

5.3.2 Upward renormalization with T

The first data set of constant-Q scans is obtained at the (0 0 3) reflection with a scattering
vector Q along the [001] direction. The selection rule of the double differential scattering
cross section (see chapter 3.2.1, Eq. (3.11)) yields only in-plane fluctuations as origin of
the scattering. The temperature dependence of the excitation gap was investigated above
the Néel temperature up to 110K.
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Figure 5.5: Energy gap at the magnetic zone
center (0 0 3). The solid and the dashed line
indicate the out-of-plane and the degenerate
in-plane dispersion branches that are observed
below TN . Raising temperature leads to an in-
crease in the frequency ωq of the damped os-
cillator at (0 0 3). This quantity corresponds to
the energy gap at the zone center.

Figure 5.4 (a) displays two constant-Q scans at 40K and 100K. The solid lines indicate
the fit to the data convoluted with the resolution function. The data show a shift of the
excitation peaks upon raising temperature. In addition, the linewidth of the peaks in-
crease with temperature. Figure 5.5 shows the temperature dependence of the frequency
ωq of the damped oscillator that corresponds to the excitation energy at the zone center.
The values of ωq are obtained by fitting the data within the model of the damped har-
monic oscillator. For comparison, the degenerate in-plane and the out-of-plane modes of
the magnon dispersion are indicated by the dashed and the solid line, respectively.
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Analyzing the temperature dependence of the frequency of the damped oscillator ωq and
the eigenfrequency Ωq resolve a linear upward renormalization of both quantities between
∼ 25K and 110K with

ωq = (0.05 ± 0.02)
meV

K
· T + (5.81 ± 1.08) meV , (5.6)

Ωq = (0.053 ± 0.021)
meV

K
· T + (5.76 ± 1.02) meV . (5.7)

Furthermore, we observe an increase in the excitation linewidth Γq upon increasing tem-
perature. In agreement with ωq and Ωq this behavior is linear with temperature

Γq = (0.037 ± 0.002)
meV

K
· T + (0.35 ± 0.08) meV . (5.8)

The excitation peaks become broader at higher temperature. However, they are still well
defined at 100K, as Γq <ωq applies.
Figure 5.6 shows the temperature dependence of the eigenfrequency Ωq, the frequency of
the damped oscillator ωq and the linewidth Γq between 15K and 110K. The solid lines
represent linear fits to the data points.
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Figure 5.6: Temperature dependence of the
fit parameters ωq and Γq within the damped
harmonic oscillator model and the eigenfre-
quency Ωq for constant-Q scans at (0 0 3). The
solid lines indicate linear fits to Ωq, ωq and
Γq between 25 K and 100 K. The linewidth Γq

remains almost constant up to 50 K yielding
equivalent values for eigenfrequency Ωq and the
frequency ωq of the damped oscillation.

Furthermore, the wavevector dependence of the excitation energy for points (h 0 3) was
investigated by means of constant-Q scans. With respect to the scattering vector [ξ 0 1]
both in-plane and out-of-plane fluctuations contribute to the cross section for coherent
scattering.
Figure 5.7 displays the wavevector dependence of the frequency ωq of the damped os-
cillator. The data are obtained at T =40K. In addition, the optic out-of-plane and the
degenerate in-plane branches of the spin wave dispersion are shown as solid and dashed
line. Within the error bars we observe a general increase of the excitation energy, when
comparing the data to the spin wave dispersion. This result is compatible with the ob-
served upward renormalization of the gap energy at (0 0 3). Furthermore, no distinct q
dependence of the excitation energy is revealed by the measurements, as the dispersion is
almost flat along this direction in reciprocal space. Consequently, the eigenfrequency Ωq

and the linewidth Γq show no visible q dependence.
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Figure 5.7: Wavevector dependence of the fre-
quency ωq at 40 K along the (ξ 0 3) direction.
The solid and the dashed line indicate the out-
of-plane and the degenerate in-plane spin wave
branches of CsVBr3. No distinct q dependence
is observed within the investigated q range.
This behavior is expected from the flat disper-
sion modes along this particular direction in
reciprocal space.

In order to prove the unusual temperature dependence of the gap energy at (0 0 3),
constant-energy scans were performed for numerous energy transfers and temperatures.
Figure 5.8 (a) presents an overview of the performed constant-energy scans. Selected
data points of the frequency ωq are included for comparison. In addition, the degenerate
in-plane modes, the out-of-plane branch and the temperature induced renormalization of
the in-plane dispersion branch are indicated.
We probed the evolution of the excitation at (0 0 3) for 2meV≤~ω ≤ 9meV at T =100K.
The excitation energy ωq is equal to ∼ 11meV for this particular temperature and the peak
width is not supposed to vary much with increasing energy transfer. Thus, the amplitude
A and the peak area F of the excitations are expected to increase with raising energy
transfer. Furthermore, the temperature dependence of the excitation was investigated for
~ω =7meV between 20K and 100K. As the peak width Γ might slightly increase with
temperature, the temperature induced upward renormalization of ωq yields a decrease of
both quantities A and F .
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Figure 5.8: (a) Overview of constant energy scans at (0 0 3). The solid, the dashed and the
dotted line indicate the out-of-plane mode, the degenerate in-plane dispersion branches and their
temperature renormalized counterpart, respectively. (b) Fitting parameter Lorentzian linewidth
Γ. Although raising temperature leads to a slight increase in the linewidth, the excitations
remain well defined in the disordered phase up to 100 K. The dashed line is a fit to the 7meV
data points.
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Figure 5.8 (b) displays the Lorentzian full width half maximum Γ of the excitation peaks.
It slightly increases with raising energy transfer and temperature. The dashed line indi-
cates a linear fit to the 7meV data for 20K≤T ≤ 100K. In agreement with the performed
constant-Q scans all excitation peaks are well defined in the paramagnetic phase. The
3D dispersion persists above the ordering temperature without a peak broadening that is
usually observed for conventional 3D compounds such as LiCuO2 [123] and RbMnF3 [124].

We first discuss the opening of the gap with respect to an increasing energy transfer
at a constant temperature. Data were obtained for ~ω =2meV, 6meV, 7meV, 8meV
and 9meV in the disordered phase. Figure 5.9 (a) shows the amplitude A and the inte-
grated intensity F of the Lorentzian peak. Data point at 2meV are linear interpolated
values of the two investigated temperatures at 40K and 116K. Within the error bars data
analysis reveals no temperature dependence of Γ and A.
Both the amplitude A and the peak area F follow an upward trend with raising energy
transfer. The slight increase of Γ does not influence the overall behavior of the integrated
intensity of the excitation peaks, although F ∝ Γ. This behavior agrees well with the
upward renormalization of the gap energy with temperature.

The temperature dependence of the gap was elucidated using a constant energy transfer
of 7meV in the temperature range of 20K≤T ≤ 100K. Obtained raw data at 20K, 50K
and 100K are presented in Figure 5.4 (see chapter 5.3.1). The solid lines indicate the
fit curves with respect to Eq. (5.5). At first sight we observe that the peak amplitude
is decreasing with increasing temperature. Figure 5.9 (b) shows the temperature depen-
dence of the amplitude A and the peak area F . Both quantities decrease with higher
temperature, what is compatible with the upward renormalization of the gap energy.
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Figure 5.9: Amplitude A and peak area F of constant energy scans at (0 0 3) for (a) different
energy transfers (T =100 K) and (b) changing the temperature (~ω =7meV). Higher energy
transfers lead to an increase in both the amplitude and the integrated intensity of the Lorentzian
peak, while increasing temperature yields a decrease in both quantities.

In summary, we have presented inelastic neutron scattering data of CsVBr3. Both
constant-Q and constant-energy scans are consistently explained by a linear upward renor-
malization of the gap energy of the degenerate in-plane modes at the magnetic zone center
(0 0 3) upon increasing temperature.
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5.4 Discussion

In the following, we present different theoretical approaches to describe the unusual up-
ward renormalization of the energy gap at (0 0 3) in CsVBr3. Moreover, we compare the
experimental findings of CsVBr3, CsMnBr3 and CsNiCl3 to a hexagonal Heisenberg model
with strong intrachain and weak interchain exchange.

5.4.1 Theoretical approaches for ABX3 systems

Competing interactions lead to curious magnetic properties of ABX3 compounds. The
hexagonal lattice structure with magnetic ions located at the corner sites leads to frus-
tration of adjacent spins [68]. In order to explain the complex spin dynamics that arises
from these magnetic structure, various theoretical approaches can be considered.

Linear spin wave theory describes the collective spin dynamics of a magnetic system
far below its ordering temperature [30]. A mathematical introduction to this approach
it presented in appendix A.1. Within the frame of this theory Kadowaki and cowork-
ers determine the magnon dispersion of ABX3 compounds in the ordered phase [119].
The gaped dispersion arises from the XY-like anisotropy D. Upon increasing tempera-
ture thermal fluctuations destroy 3D magnetic correlations that dominate in the ordered
phase. Furthermore, the anisotropy vanishes at the order temperature. Near the critical
temperature the decrease of the magnetic order parameter follows the universal scaling
law M(T ) ∝ (T − Tc)

β [4]. It is expected that only the strong intrachain exchange holds
above TN in CsVBr3. In this way, neither a gaped dispersion nor its upward renormaliza-
tion is understood.

Hummel and coworkers showed that dipolar exchange plays an important role for the
spin dynamics of ABX3 compounds [118]. This long range order interaction follows an
inverse power law of the distance of the particular spin (∝ r−3) and it is several orders of
magnitude smaller than the inter- and intrachain exchange. The assumption that dipolar
forces are the most important source of the XY-like anisotropy in particular ABX3 com-
pounds such as CsVBr3 and CsMnBr3 is justified, as their orbital angular momentum is
almost zero and crystal field anisotropy only contributes by 20% to the total anisotropy
energy [125]. Considering this interaction as source of anisotropy in CsVBr3 the gaped
dispersion in the ordered phase is understood. However, both the existence of the energy
gap at (0 0 3) and the upward renormalization of the gap energy cannot be explained from
a theoretical point of view. In the disordered phase only magnetic exchange along the
chain holds. Thermal fluctuations evoked by increasing temperature lead to a softening3

of the magnon dispersion.

In the paramagnetic phase the dynamical behavior of ABX3 systems is considered to
originate from their quasi 1D properties. Haldane conjectured for antiferromagnetic spin
systems with an integer spin value that the dispersion features a spin gap. Based on
the theoretical findings for the antiferromagnetic S =1/2 chain [7, 22, 24] it is generally
assumed for spin systems with half odd integer S that the dispersion is gapless.

3In analogy to phonons softening of a magnon dispersion is explained by a decreasing energy of the
dispersion energy at the zone center. A dispersion becomes harder, when the excitation energy increases.
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Only recently, Rastelli and coworkers developed a theoretical approach for hexagonal
ABX3 materials with half odd integer S [126]. The results are restricted to the disor-
dered phase, since the model represents an extension of calculations for antiferromagnetic
Heisenberg spin chains [127]. It considers 3D magnetic correlations without anisotropy,
where the interchain exchange is weak compared to the strong intrachain interaction.
This approach gives two predictions for the evolution of the magnon dispersion with
temperature. First, the excitation energy minimizes at ( 1

3
1
3
1). Furthermore, the in-plane

modes are observable above TN and exhibit a wavevector dependent downward and upward
renormalization, when the temperature increases. For points (0 0 ξ) with ξ < 2/3 r.l.u. the
dispersion softens, whereas for ξ > 2/3 r.l.u. the dispersion renormalizes upwards. Figure
5.10 (a) and (b) shows the calculated out-of-plane and in-plane dispersion branches of
CsMnBr3 at different temperatures above TN .
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Figure 5.10: Dispersion relation of CsMnBr3 along the (a) [0 0 1] and (b) [1 1 0] direction for
different temperatures in the disordered phase. Data points are taken from [131]. The lines
indicate the calculated dispersion by Rastelli and coworkers [126].

5.4.2 Comparison to CsVBr3, CsMnBr3 and CsNiCl3

We discuss experimental observations for the S =5/2 compound CsMnBr3, CsVBr3 and
the Haldane material CsNiCl3 (S =1) within the frame of the approach by Rastelli and
coworkers and the predictions for antiferromagnetic spin chains. We focus on these rep-
resentatives of the ABX3 class, as they exhibit different kinds of anisotropy and spin
quantum numbers. Table 5.1 collect the spin value S, the order temperature TN , the in-
trachain and interchain exchange and the anisotropy parameter of these compounds [68].
In addition, the ratio J/J ′ is given that is a measure for the quasi 1D character in the
disordered phase.

All samples crystallize in the P63/mmc space group. XY-like anisotropy in CsMnBr3

and CsVBr3 forces spins into a frustrated 120◦ structure, where they are oriented in the
the basal place. Antiferromagnetic spin chains run perpendicular to the basal plane. The
magnetic ground state is degenerate, since rotational invariance yields equivalent spin
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configurations (for comparison see Figure 5.2). CsMnBr3 and CsVBr3 show a Néel tem-
perature of 8.3K and 20.4K, respectively.

S TN (K) J (meV) J ′ (µeV) D (µeV) J/J ′

CsMnBr3 5/2 8.3 0.89 1.7 12 524
CsVBr3 3/2 20.4 10.4 10.28 45.19 1012
CsNiCl3 1 4.4/4.84 2.28 44 -4.0 52

Table 5.1: Spin quantum number S, order temperature TN , exchange parameters J and J ′

measured along the chain and in the basal plane, anisotropy D and the ratio J/J ′ for CsMnBr3,
CsVBr3 and CsNiCl3 [68]. D > 0 and D < 0 leads to XY-like and single-ion anisotropy, respec-
tively. The compounds are good realizations of quasi 1D spin systems. Owing to its spin value
CsNiCl3 is a representative of a Haldane material and CsMnBr3 is assumed to be classically
treated.

Owing to a small easy-axis anisotropy the low temperature magnetic structure of CsNiCl3
is characterized by frustrated spins that point out of the basal plane (see Figure 5.11).
The spins lie on a triangle that contains the c axis and is perpendicular to the hexag-
onal basal plane. One magnetic moment is oriented parallel to the crystallographic c
axis and for two spins the canting angle θ between the c axis and the opposite pointing
spins is nearly 60◦. Along the a axis spins form a spiral, where the moments rotate by
120◦. The large antiferromagnetic intrachain exchange yields antiferromagnetic stacked
spin triangles along the c axis. Figure 5.11 shows the magnetic structure of CsNiCl3.
Besides a magnetic field dependence the complex phase diagram of CsNiCl3 features two
temperature induced phase transitions at TN1 =4.4K and TN2 =4.84K ending up with
paramagnetic order above TN2. Between TN1 and TN2 the magnetic order of spins is
collinear with all spins pointing parallel to the chain axis.

Figure 5.11: Magnetic structure of CsNiCl3
below 4.4 K [128]. The spins form a triangle
and lie in the ac plane. One spin is parallel to
the c axis. The angle between the two other
spins and the c axis is almost 60◦. Along the a
axis the magnetic moments form a spiral with
spins rotating by 120◦. Spin chains are antifer-
romagnetically stacked along c.

The compound CsMnBr3 was extensively investigated by means of inelastic neutron spec-
troscopy above TN . In summary, it was found that the optic in-plane and optic out-of-
plane mode exhibit a temperature induced upward renormalization, whereas the acoustic
in-plane branch becomes softer upon increasing temperature [129, 130, 131].
Collins and Gaulin [129, 130] investigated in-plane fluctuations between 15K≤T ≤ 40K
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along the [0 0 1] direction and observed an upward renormalization of the excitation energy
with temperature. Reich and coworkers investigated the spin dynamics in the tempera-
ture range of 20K≤T ≤ 40K for points around (0 0 1), ( 1

3
1
3
1) and (1

3
0 1) [131]. Similarly

to CsVBr3, the dispersion energy as well as the linewidth Γq linearly increase with tem-
perature at the zone center (0 0 1) and along [ξ 0 1]. Furthermore, no Q dependence of
the linewidth was revealed. Surprisingly, it was found that along [ξ 0 1] the acoustic in-
plane mode becomes softer with increasing T and the optic in-plane mode renormalizes
upwards.
Figure 5.10 (a) and (b) displays the experimentally observed dispersion relation along the
[0 0 1] and [1 1 0] for different temperatures above TN , respectively. Data points are taken
from [131]. Upon increasing temperature the dispersion renormalizes upwards. The solid
lines represent the calculated curves using the approach of Rastelli and coworkers [126].
The calculations reproduce the measured data well over a large temperature and Q range.
We note that within this theoretical approach no explanation of the unusual behavior of
the in-plane dispersion branches is provided. Describing the dispersion of CsMnBr3 in
the paramagnetic phase within the frame of the theoretical calculations by Rastelli and
coworkers resolves the importance of 3D correlations above TN . Obviously, this compound
is not capable of serving as model system for the antiferromagnetic half odd integer spin
chain. The observed dynamical behavior might be ascribed to its large spin value 5/2.

Paramagnetic spin dynamics of CsVBr3 are also expected to originate from 1D Heisen-
berg behavior of antiferromagnetic half odd integer spin chains. Owing to its spin value
3/2 the dynamical behavior above TN shall be closer to the spin 1/2 chain compared to
CsMnBr3. Respecting the predictions for antiferromagnetic half odd integer spin chains
the dispersion should not exhibit a gap at the magnetic zone center.
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Figure 5.12: Temperature dependence of the
frequency ωq at (0 0 3). The blue and the
red solid line indicate the theoretical calcula-
tions of Rastelli [132] using the exchange con-
stants of Feile and coworkers [120] and Nagler
and coworkers [121], respectively. In the latter
case J =10.4 meV and J/J ′ =0.001 are used,
while the blue curve is based on the param-
eters J =7.1 meV and J/J ′ =0.0013. The in-
crease in the excitation energy at the zone cen-
ter is reproduced by the theoretical prediction
for this compound. The deviation of the abso-
lute value of the excitation energy from the the
data results from the not well defined exchange
constants of the spin wave dispersion.

In order to prove the adaptability of these predictions, we recall the obtained results of
our neutron scattering study. Figure 5.12 shows the temperature dependence of the gap
energy at (0 0 3) up to 100K. We observe a gaped dispersion at (0 0 3) in the disordered
phase, where the energy gap linearly increases with temperature within the investigated
temperature range of TN <T < 5TN . Both the existence of the spin gap and the tem-
perature induced upward renormalization of the gap energy at (0 0 3) can be explained
by Rastelli [132]. The blue and the red solid line in this figure display the theoretical
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predicted upward renormalization of the gap energy in CsVBr3 using the exchange pa-
rameters of Feile and coworkers [120] and Nagler and coworkers [121]. The slope of both
curves compare well with the measured data. We attribute the deviation of the absolute
value of the calculated excitation energies from the data to the not precisely measured spin
wave dispersion in the ordered phase. The exchange parameters and the anisotropy sig-
nificantly differs in these studies. Respecting the measured data, the exchange constants
obtained by the earlier work of Feile and coworkers reproduce the upward renormaliza-
tion of the excitation energy better. The applicability of the hexagonal Heisenberg model
with strong intrachain and weak interchain exchange demonstrates the 3D character of
the magnetic exchange in CsVBr3. We do not observe short range behavior in terms of
the antiferromagnetic spin chain.

Spin dynamics of the Haldane material CsNiCl3 was investigated by means of neutron
spectroscopy. It is reported that the energy gap of the spin wave dispersion decreases
when approaching TN2 [133]. This softening of the magnon dispersion at ( 1

3
1
3
1) is com-

patible with a decrease of the easy-axis anisotropy upon raising temperature. In agreement
with the Haldane conjecture an excitation gap for all modes was observed above TN2 by
Buyers and coworkers [134] and Kenzelmann and coworkers [135]. In addition, an upward
renormalization of the energy at ( 1

3
1
3
1) [133, 136] and (0.81 0.81 1) [135] was found in

the disordered phase. Moreover, measurements of the dispersion branch along the (ξ ξ 1)
direction showed the energy minimum at ( 1

3
1
3
1) [134]. The observation of the gaped dis-

persion supports the quasi 1D behavior of CsNiCl3 in the disordered phase. However, the
unusual upward renormalization of the dispersion is also compatible with the theoretical
model of Rastelli and coworkers.

The three ABX3 representatives CsVBr3, CsMnBr3 and CsNiCl3 differ in their anisotropy
parameter and their inherent spin value, however, the observed spin dynamics in the para-
magnetic phase exhibit a similar behavior. All systems show an upward renormalization
of the excitation energy with increasing temperature. The temperature dependence of
the dispersion in the disordered regime can be understood using the theoretical approach
given by Rastelli and coworkers. This model emphasis 3D magnetic correlations that
dominates the paramagnetic spin dynamics of the ABX3 compounds mentioned above.
This result appears to generally question the model character of ABX3 for antiferromag-
netic 1D Heisenberg behavior. Even the S =3/2 compound CsVBr3 that is expected to
similarly behave compared to the S =1/2 chain demonstrate that the general belief of the
adaptability of 1D magnetism in these compounds does not hold.
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Chapter 6

Conclusion and outlook

This chapter summarizes the results of this thesis work. In addition, we discuss central
aspects for continuing research.

This thesis is devoted to two model systems for 1D Heisenberg behavior that originates
from antiferromagnetic half odd integer spin chains. We have investigated the complex
magnetic properties of the cuprates Ca2+xY2−xCu5O10 and the ABX3 compound CsVBr3.
The crystal structure of both systems favors one dimensional spin chains.

6.1 Ca2+xY2−xCu5O10

We first investigated the magnetic behavior of the compound series Ca2+xY2−xCu5O10.
The crystal structure shows edge sharing CuO2 chains along the a direction of the mag-
netic relevant CuO-sublattice, where both the magnitude and the sign of the nearest
neighbor interaction crucially depend of the Cu-O-Cu bond angle.

Macroscopic measurements such as susceptibility and specific heat resolve antiferromag-
netic long range order that is superimposed to 1D Heisenberg behavior (see chapter 4.2 and
4.3). The evident characteristics of the Néel state, the order temperature TN , decreases
from 29K to 12K upon hole doping into the CuO2 chains from x=0 to 2.15. In contrast
to the general belief, no evidence of a dimensional crossover in magnetic correlations from
3D to 1D is observed within this doping regime. The antiferromagnetic Néel state persists
even in Ca0.83CuO2 that exhibits 0.33 holes/Cu. Furthermore, susceptibility and specific
heat of the the higher doped compounds Ca3.5Y0.5Cu5O10 and Ca0.83CuO2 are interpreted
in terms of antiferromagnetic 1D Heisenberg chain behavior. A large Curie Weiss like
contribution at low temperatures turned data analyzing difficult for the medium doped
compound Ca3.5Y0.5Cu5O10, as this contribution masks the 1D properties. On average,
we found for both systems an exchange value J of ∼ 60K. The alternating parameter
α that measures the spatial isotropy of the exchange along the chain was found to be
close to the uniform chain for Ca0.83CuO2. Above 30K susceptibility of Ca3.5Y0.5Cu5O10

is equally well described for α equal to 0, 0.5 and 1, while specific heat shows an almost
isotropic exchange. Analyzing Ca0.83CuO2 in terms of weakly 3D coupled chains predicts
an ordered moment of 0.28µB. Besides these two phases, a Curie Weiss like term below
∼ 10K is observed whose strength increases with raising the Ca/Y ratio. However, no
experimental evidence of this feature was found in Ca0.83CuO2. This finding anticipates
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that a change within the magnetic structure occurs between the doping concentrations
x=1.5 and 2.15.

Chapter 4.4 describes the investigation of the microscopic magnetic structure of the com-
pound series by means of neutron diffraction. This study represents a central issue in
understanding the adaptability of the 1D Heisenberg model to the cuprate compounds.
We observe an increase in the Cu-O-Cu bond angle from 92◦ to 95.5◦ for Ca2Y2Cu5O10

and Ca0.83CuO2, respectively. The average lattice constants are extracted to be a' 2.8 Å,
b' 6.28 Å and c' 10.5 Å. The lattice constants along the a and c direction decrease with
a raising Ca/Y ratio, while b increases. In agreement with theoretical predictions for pla-
nar CuO2 chains with θ < 95◦ magnetic correlations along the chain are ferromagnetic for
samples with the doping concentration 0≤x≤ 1.5. The magnetic unit cell corresponds to
the CuO2 sublattice, where the ab planes show ferromagnetic interaction. Furthermore,
an easy-axis anisotropy forces spins parallel to the b direction. The ab planes are antifer-
romagnetically stacked along c. We observe a doubling of the magnetic unit cell along a
for the highly doped sample, i.e. the magnetic correlations along the CuO2 chains are of
antiferromagnetic type. This was already expected from the Cu-O-Cu angle of 95.5◦. In
agreement with bulk measurements the order parameters of undoped Ca2Y2Cu5O10 and
slightly doped Ca2.5Y1.5Cu5O10 exhibit a critical order temperature of 29K and 26K. We
further observe a decrease in the magnetic moment upon doping from 0.92µB to 0.22µB

for x=0 and 1.5, respectively.

To get further insight into the unusual magnetic properties of the compounds, we in-
vestigated the dynamical behavior of the three magnetic phases by means of inelastic
neutron spectroscopy on triple axis and time of flight spectrometers. It is worth noting
that triple axis spectrometers with a multi detector or time of flight spectrometers are
versatile tools for probing the excitation spectrum of powder samples. Both types of in-
struments offer the advantage to instantaneously reach a broad (Q, ω) space.
The spin wave dispersion of the parent compound is consistently understood based on
the observed magnetic structure. Resolving the most prominent features of the magnon
dispersion, a spin gap of ∼ 1.8meV, confirms the three dimensional nature of the magnetic
order. Studying the energy resolution dependent integrated intensity of the (0 0 1) reflec-
tion with increasing temperature in Ca3.5Y0.5Cu5O10 provides evidence of a spin glass like
state. This result confirms the proposed explanation for the low T upturn in susceptibil-
ity and the relatively high value of specific heat C(T → 0) in terms of disordered chains.
This effects might originate from a random distribution of Cu2+ or Cu3+ ions along the
chains. We further characterized the structure factor S(Q) and the scattering law S(Q, ω)
of highly doped Ca0.83CuO2 in terms of the 1D Heisenberg behavior. Data are analyzed
for S(Q) and reveal an intradimer distance of ∼ 5.7 Å. This value corresponds to two times
the copper distance along the chain, i.e. dimers are formed between next nearest neighbor
spins. We found an approximate agreement between the exchange value J extracted from
χ(T ) and the scattering law.

Although the results describing the complex magnetic order in Ca2+xY2−xCu5O10 can
be consistently understood for different measurement techniques, this work still leaves
questions not satisfactorily answered. For instance, the long range order of the highly
doped sample Ca0.83CuO2 is still not confirmed by a complete magnetic structure analy-
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sis. Based on the CuO2 subcell the indexation ( 1
2
0 1) of the observed Bragg reflection at

Q=1.27 Å−1 supports antiferromagnetic exchange along the chain. In addition, adjacent
spin chains are antiferromagnetically coupled along c. From an academic point of view it
is indispensable to compare the magnetic structure of this sample to lower doped com-
pounds. Owing to the low magnetic moment 0.29µB this task will be difficult.
We note that the moderate neutron data quality of Ca0.83CuO2 limits the extraction of the
chain parameters J and α from the scattering law. A further inelastic neutron scattering
study might resolve the approximate agreement between these values for susceptibility
and neutron spectroscopy data. Despite the consistent description of the structure factor
for IN3 and IN4 data in terms of next nearest neighboring spin coupling, the distance
of two dimers along the chain is still not experimentally proved. As already mentioned,
theory predicts for the nominal number of holes in the chains that this value corresponds
to three times the copper distance along the chain. We note that this distance is inde-
pendent of nearest and next nearest neighboring dimer coupling.

In analogy to previous studies of Ca2+xY2−xCu5O10 samples and related edge sharing
CuO2 chain materials such as Ca1−xCuO2, Sr0.73CuO2 or Sr14Cu41O24, we dismissed the
aspect of a distorted structure for the spin/charge ordering. It is proposed that spa-
tially tilted CuO2 chains represents the origin of the antiferromagnetic long range order
in cuprate compounds [137]. In addition, dimerization is preferred, as the distance of
adjacent spins depends on the deformation of the chains from their ideal planar structure.
The coexistence of both phenomena is reported for the cuprates CuGe1−xSrxO3, where
Sr ions act as magnetic impurity and locally induce disorder in the chains [138, 139].
The possibility of systematic calcium doping into Ca2+xY2−xCu5O10 presents a promising
starting point for continuing work on this effect.

6.2 CsVBr3

The ABX3 compound CsVBr3 was studied by means of inelastic neutron spectroscopy.
Its hexagonal crystal structure favors spin chains along the c axis, that are formed by
vanadium ions (S =3/2). Below the Néel temperature of 20.4K the spin wave excita-
tions results from a 120◦ spin structure, where magnetic moments are confined to the
hexagonal basal plane. In contrast to weaker interchain exchange and XY-like anisotropy,
the strong intrachain exchange is expected to persist upon increasing temperature and
to dominate the dynamical behavior in the paramagnetic phase. Within the frame of
linear spin wave theory or a theoretical approach using dipolar exchange, the spin wave
dispersion should soften upon approaching TN . In this way, this compound is expected to
be a model system for 1D Heisenberg behavior that originates from the antiferromagnetic
half odd integer spin chains. Theory predicts a gapless dispersion in the disordered phase.

We investigated the temperature evolution of the gap energy at the magnetic zone cen-
ter (003) above TN by means of constant-Q and constant energy scans. Owing to the
scattering vector [0 0 1] only in-plane fluctuations contribute to the magnetic excitations.
The dispersion is still gaped above the order temperature. In addition, the gap energy
shows a linear upward renormalization between 20K≤T ≤ 100K. This finding shows that
this compound does not serve as model system for quasi 1D behavior. A recent theoret-
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ical approach explains the unusual observation using 3D magnetic interactions without
anisotropy. Owing to similar experimental results for the in-plane modes of the isomor-
phic samples CsMnBr3 (S =5/2) and CsNiCl3 (S =1), this might be a general feature of
these ABX3 compounds.

Time limitation does not allow for a detailed study of the temperature dependence of
the in-plane and out-of-plane modes. In particular, it is reported for CsMnBr3 that at
(1

3
1
3
1) the acoustic in-plane branch softens above TN , whereas the optic branch shows

an upward renormalization with temperature [131]. It is evident to test this finding for
CsVBr3 by means of polarized neutron scattering. Resolving this behavior as general fea-
ture, further theoretical progress is required to understand the 3D character of magnetic
correlations in the paramagnetic phase.
As theoretical calculations strongly depend on the correct value of the exchange parame-
ters, the spin wave dispersion has to be reinvestigated in the ordered phase.

98



Appendix A

Spin wave dispersion of Ca2Y2Cu5O10

This appendix provides an introduction to the calculation of the dispersion relation of
undoped Ca2Y2Cu5O10 by means of linear spin wave theory.

A.1 Linear spin wave theory

Basic equations of classical linear spin wave theory are repeated in order to derive the
dispersion relation ~ω(q) of a long range ordered system.

For this purpose the equation of motion for this system

dŜj

dt
=

1

i~

[

Ŝj, H
]

(A.1)

has to be solved. The Hamiltonian

H =
∑

i,j

JijŜiŜj (A.2)

comprises specific magnetic interactions of the spins Ŝi, Ŝj based on the preferred exchange

paths of the crystallographic structure. Ŝ=(Ŝx, Ŝy, Ŝz)T is the spin operator defined by
the spin Pauli matrices with Ŝ = ~

2
σ. Notice that the spin is a physical observable, thus

Ŝz is an hermitian operator. Ŝl
i follows the relations

[

Ŝl
i, Ŝ

m
i

]

= iεlmnŜn
i and

[

Ŝl
i, Ŝ

l
i

]

= 0

for l, m, n ∈ {x, y, z}.

For simplicity, first assume a Heisenberg spin system with only nearest neighbor interac-
tion in one dimension. Moreover, single ion anisotropy is neglected. The corresponding
Hamiltonian H is given by nearest neighbor exchange between two spins j and j + 1

H =
∑

i<j

JijŜiŜj = mJ
∑

j

ŜjŜj+1 (A.3)

with J < 0 for ferromagnetic and J > 0 for antiferromagnetic interaction. It is assumed
that the magnetic correlations Jjj±1 along both directions of the chain are equal. m

denotes the coordination of the spin Ŝj to its nearest neighboring spins. For an one
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dimensional spin chain m is equal to two. The equation of motion reduces to

dŜj

dt
=

2J

i~

[

Ŝj, .. + Ŝj−1Ŝj + ŜjŜj+1 + ..
]

=
2J

i~

([

Ŝj, Ŝj−1Ŝj

]

+
[

Ŝj, ŜjŜj+1

])

=
−2J

~

(

Ŝj ×
(

Ŝj−1 + Ŝj+1

))

.

The ground state is classically treated with spins arbitrarily oriented along the z-axis, i.e.
Ŝz

j = S, Ŝx
j = Ŝy

j = 0. Linearizion of these equations follows the assumption that only

small deviations of the ground state shall occur. Thus Ŝz
j = S and Ŝx

j , Ŝy
j � S apply.

When solving the equation of motion one has to distinguish between ferromagnetic and
antiferromagnetic correlations in the spin system.
Respecting ferromagnetic exchange the equation of motion in Cartesian coordinates reads

dŜx
j

dt
=

−2JS

~

(

2Ŝy
j − Ŝy

j−1 − Ŝy
j+1

)

(A.4)

dŜy
j

dt
=

2JS

~

(

2Ŝx
j − Ŝx

j−1 − Ŝx
j+1

)

(A.5)

dŜz
j

dt
= 0 . (A.6)

Solving Eq. (A.4)-(A.6) employs the ansatz for normal modes

Ŝx
j (t) = uei(jqxx−ωt) (A.7)

Ŝy
j (t) = vei(jqxx−ωt) , (A.8)

where qx denotes a wavevector in reciprocal space along the chain axis (here chosen along
the x axis) and u and v arbitrary amplitudes of the plane waves. Inserting the ansatz
into the equation of motion yields

~ω = 4JS(cos (qxx) − 1) (J < 0) . (A.9)

Note the relation v =−iu for the amplitudes of the x and y coordinate of the spin opera-
tor Ŝ. At the zone center (small qx) the dispersion relation can be linearized resulting in
~ω ∝ q2

x.

Considering antiferromagnetic exchange two sublattices with spins 2j and 2j + 1 have
to be chosen. Each of them exhibits ferromagnetic exchange between the sublattice spins,
whereas the z component of the spin operator Ŝ changes its sign for one sublattice com-
pared to the other one. The equation of motion for one sublattice is given by

dŜx
k

dt
=

−2JS

~

(

−2Ŝy
k − Ŝy

k−1 − Ŝy
k+1

)

(A.10)

dŜy
k

dt
=

2JS

~

(

−2Ŝx
k − Ŝx

k−1 − Ŝx
k+1

)

(A.11)

dŜz
k

dt
= 0 (A.12)
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with k equals to 2j or 2j + 1. The normal modes

Ŝx
2j(t) = uei(2qxjx−ωt) Ŝy

2j(t) = −iuei(2qxjx−ωt) (A.13)

Ŝx
2j+1(t) = vei(qx(2j+1)x−ωt) Ŝy

2j+1(t) = −ivei(qx(2j+1)x−ωt) (A.14)

solve the equation of motion yielding the antiferromagnetic magnon dispersion relation

~ω = 4JS sin (qxx) (J > 0) . (A.15)

This result can be linearized at the zone center yielding ~ω ∝ qx.

In case of an one dimensional chain with single-ion anisotropy that forces spins along
a particular direction the corresponding Hamiltonian reads

H =
∑

i<j

J̃ijŜ
z
j Ŝ

z
j+1 = 2J̃

∑

j

Ŝz
j Ŝ

z
j+1 . (A.16)

This expression is equivalent to the often used convention H = D
∑

i(Ŝ
z
i )

2 that leads
to the energy shift ∆ of the q dependent dispersion. For D > 0 spins are forced within
the XY -plane (easy-plane anisotropy), whereas D < 0 describes an easy-axis anisotropy.
Accounting for ferromagnetic (k = j) and antiferromagnetic (k =2j , 2j + 1) interaction
Eq. (A.1) is given in the most general form by

dŜk

dt
=

2J

~





−Ŝz
k−1Ŝ

y
k − Ŝz

k+1Ŝ
y
k

Ŝz
k−1Ŝ

x
k + Ŝz

k+1Ŝ
x
k

0



 . (A.17)

Using Eq. (A.7)/(A.8) and (A.13)/(A.14) for normal modes the magnon dispersion rela-
tions reads

~ω = 4SJ (J < 0) (A.18)

~ω = −4SJ (J > 0) (A.19)

for the ferromagnetic and antiferromagnetic case, respectively. No q dependence of the
excitation energy is found and the dispersion is only shifted by a constant energy term.

A.2 Spin wave dispersion of undoped Ca2Y2Cu5O10

Based on the nuclear structure of the magnetic relevant CuO2 sublattice Matsuda and
coworkers [65] suggested for undoped Ca2Y2Cu5O10 a 3D model Hamiltonian with uniaxial
anisotropy

H =
∑

ij

JijŜiŜj +
∑

ij

J̃ijŜ
z
i Ŝ

z
j . (A.20)

Jij and J̃ij denote the Heisenberg exchange and the anisotropy parameter between spins i
and j, respectively. The summation is carried out over nearest and next nearest neighbor-
ing spins in all crystallographic directions respecting the probability of magnetic exchange
according to the spin distances in real space.
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Figure A.1: Structure of edge sharing CuO2 squares in the (a) ac- and (b) ab-plane [65].
Ferromagnetic interaction is given along the crystallographic a and b axis of the face centered
orthorhombic CuO2 sublattice (Ja1 and Ja2 along [1 0 0], Jb along [0 1 0] and Jab along [ 12

1
20]).

Antiferromagnetic exchange is found along the c direction with Jac1 and Jac2 along [ 12 0 1
2 ] and

[32 0 1
2 ]. The next nearest interaction along [0 0 1] is ferromagnetic (Jc).

Figure A.1 (a) and (b) show the top view of the face centered orthorhombic CuO2 sub-
lattice along the [0 1 0] and the [0 0 1] direction, respectively. The lattice constants of the
magnetic relevant unit cell are a' 2.8 Å, b' 6.3 Å and c' 10.6 Å.

Recall the findings of the 3D magnetic structure for undoped Ca2Y2Cu5O10 (see chapter
4.4). Data analysis yields ferromagnetic exchange in the ab-plane and antiferromagnetic
correlations along the c direction. Easy-axis anisotropy forces the spins parallel to the b
axis.
Applying this model to Eq. (A.20) ferromagnetic interaction is found along the a axis be-
tween nearest (Ja1) and next nearest neighbor spins (Ja2). Ja2 is considered as the lattice
constant a and thus the spin distance is reasonable small in real space. The exchange inte-
gral Jb along the b axis is ferromagnetic. Since an easy-axis anisotropy forces spins parallel
to b, the magnetic exchange within the ab-plane (Jab) along the side diagonal [ 1

2
1
2
0] of

the unit cell is also ferromagnetic. Antiferromagnetic exchange along the c axis yields
Jac1 > 0 and Jac2 > 0 along the [ 1

2
0 1

2
] and [3

2
0 1

2
] directions, respectively. Ferromagnetic

exchange is thus realized between next nearest neighboring spins along the c direction (Jc).

This model yields the Hamiltonian H summed over all interactions

H = Ha1 + Ha2 + Hb + Hab + Hc + Hac1 + Hac2 + Haniso , (A.21)

where ferromagnetic and antiferromagnetic interactions are accounted for by a Hamilto-
nian ∝J

∑

j ŜjŜj+1 with J < 0 and J > 0, respectively. The Hamiltonian Haniso describes
the easy-axis anisotropy in the system and is given according to Eq. (A.16).

102



The linearity of the Hamiltonian H allows a separation of the equation of motion for each
part Hs =

∑

i<j

JijŜiŜj (1≤ s≤N) by

[

Ŝj,

N
∑

s=1

Hs

]

=
[

Ŝj, H1

]

+ ... +
[

Ŝj, HN

]

. (A.22)

For convenience the coordination system is chosen in such a way that the a, b and c axis
are parallel to the Cartesian axis x, y and z. Consider an exchange path that is along the
crystallographic axis a, b or c. The solution of the equation of motion for ferromagnetic
and antiferromagnetic interaction as well as for easy-axis anisotropy are presented in the
last section A.1 of this appendix. Magnetic correlations that are arbitrarily oriented in
the unit cell require a space dependent ansatz for the normal modes in terms of plane
waves

Ŝl
k(t) = Aei(qrk−ωt) , (A.23)

where q denotes the wave vector and r the position of the particular copper atom k in
reciprocal space. l defines the Cartesian coordinates x, y, z. The convention of the ampli-
tude A for ferromagnetic and antiferromagnetic interaction is explained in appendix A.1.

Taken into account all exchange integrals with its multiple occurrence in reciprocal space
(coordination m, n) the 3D dispersion of undoped Ca2Y2Cu5O10 reads

~ω(q) =

[

(

∑

m∈{−1,1}

2SJa1( cos (mqaa) − 1) +
∑

m∈{−1,1}

2SJa2( cos (2mqaa) − 1)

+
∑

m∈{−1,1}

2SJb( cos (mqbb) − 1) +
∑

m∈{−1,1}

2SJc( cos (mqcc) − 1)

+
∑

m,n∈{−1,1}

2SJab( cos (
mqaa

2
− nqbb

2
) − 1)

+
∑

m,n∈{−1,1}

2SJac1(1 + cos (
mqaa

2
+

nqcc

2
))

+
∑

m,n∈{−1,1}

2SJac2(1 + cos (
3mqaa

2
+

nqcc

2
)) + D̃

)

·

(

∑

m∈{−1,1}

2SJa1( cos (mqaa) − 1) +
∑

m∈{−1,1}

2SJa2( cos (2mqaa) − 1)

+
∑

m∈{−1,1}

2SJb( cos(mqbb) − 1) +
∑

m∈{−1,1}

2SJc( cos (mqcc) − 1)

+
∑

n,m∈{−1,1}

2SJab( cos (
mqaa

2
− nqbb

2
) − 1)

+
∑

m,n∈{−1,1}

2SJac1(1 − cos (
mqaa

2
+

nqcc

2
))

+
∑

m,n∈{−1,1}

2SJac2(1 − cos (
3mqaa

2
+

nqcc

2
)) + D̃

)

]
1

2

(A.24)
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with the anisotropy parameter D̃ = 4SJ̃a1+4SJ̃a2+4SJ̃b+4SJ̃c+8SJ̃ab−8SJ̃ac1−8SJ̃ac2.
For Cu2+ the spin quantum number S is equal to 1/2.

Mathematical calculations1 yield the dispersion

~ω(q) =
[(

2Ja1( cos (qaa) − 1) + 2Ja2( cos (2qaa) − 1) + 2Jb( cos (qbb) − 1)

+2Jc( cos (qcc) − 1) + 4Jab( cos (
qaa

2
)cos(

qbb

2
) − 1) + 4Jac1 + 4Jac2

−D
)2

−
(

4Jac1 cos (
qaa

2
) cos (

qcc

2
) + 4Jac2 cos (

3qaa

2
) cos (

qcc

2
)
)2] 1

2

,(A.25)

where the anisotropy D is defined by D = −2J̃a1 − 2J̃a2 − 2J̃b − 2J̃c − 4J̃ab +4J̃ac1 +4J̃ac2.

This result was used by Matsuda and coworkers [65] as basis for data analysis. Note
a factor of two between the above given exchange interaction J and that obtained by
Matsuda owing to the different convention of the exchange interaction J . An iteratively
fitting procedure yielded the exchange constants along the c-direction Jac1 = 2Jac2 =
1.494(3)meV, Jc = 0 and Dac = −0.262(3)meV. The dispersion along b is characterized
by Jb = −0.061(6)meV, Jab = −0.030(3)meV and Dab = −0.399(1)meV and the ex-
change integrals along the chain direction are given by Ja1 = −6.9(1)meV and Ja2 = 0 or
Ja1 = −8(1)meV and Ja2 = 0.4(3), respectively (see Figure A.2).

1Here, the symmetry of cosines (cos (−x) = cosx) and the theorem cosα cosβ = [cos (α + β) +
cos (α − β)]/2 for trigonometrical functions are used.
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Figure A.2: Theoretical predicted 3D magnon dispersion relation along the (a) a, (b) b and (c)
c axis of edge sharing Ca2Y2Cu5O10. The solid and the dashed line in (a) indicate the dispersion
without and with Ja2. Data points are taken from [65]. The excitation gap at the magnetic zone
center originates from an easy-axis anisotropy along the b axis.
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Appendix B

Structure factor and scattering law
of Ca0.83CuO2

In the following we present the powder averaged structure factor and the scattering law of
dimerized chains that apply to Ca0.83CuO2.

B.1 Powder averaged structure factor

Dimerization in a spin chain occurs owing to not equivalent interactions with respect to
the left and right neighboring spin. In the simple case of isolated dimers the magnetic
exchange is interrupted by nonmagnetic ions reducing superexchange between those ions.
No coupling between single dimers (space extension d) is thus possible. However, the
model of an alternating chain allows for the formation of dimers that are coupled between
themselves. The center of two dimers are located at the distance b (see Figure B.1).

The excitation spectrum of both approaches is dominated by transitions from the singlet
ground state |0, 0〉 of a single dimer with its spin quantum number S =0 and z-projection
mz =0 to the triplet states |1, 1〉, |1, 0〉 and |1,−1〉 corresponding to S =1 and mz =1, 0
and -1.

Figure B.1: Scheme of the alternating chain model for an edge sharing CuO2 chain. Hole doping
leads to the existence of nonmagnetic CuO4 units called Zhang-Rice singlets (ZRS). Dimers of
the extent d are formed due to the magnetic interaction J ≥αJ between magnetic Cu2+ ions.
The interdimer distance is called b.

The Q dependence of the scattering law of an isolated dimer results from the evaluation
of Fermi’s Golden Rule (see Chapter 3, Eq. (3.1)) by means of tensor operator methods
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[111]. It results in S(Q, ω) ∝ 1
2
sin2 (1

2
Qd) · δ(ω − ∆), where ∆ denotes the energy gap

to the triplet state. To obtain the powder average scattering law, the relative orientation
between the chain axis and the reduced scattering vector q has to be taken into account
via

S(Q, ω) = |f(Q)|2 1

4πQ2

∫

q=q‖+q⊥
q=Q

S(q‖, ω)dq (B.1)

The quantities q‖ and q⊥ denote the the projections of the reduced scattering vector
parallel and perpendicular to the chain axis, respectively. Spherical integration results in
[112, 113]

S(Q, ω) = |f(Q)|2 1

4πQ2

∫ 2π

θ=0

dθ

∫ π

φ=0

dφ2Q2 sin φ sin2 (
1

2
Qd cos φ) (B.2)

= |f(Q)|2(1 − sin (Qd)

Qd
) .

Based on the Q dependence of the scattering function the intradimer distance d can be
derived. In leading order it is defined by the first maximum in the structure factor still
decreasing with the form factor.

To obtain the Q dependence of the structure factor for an alternating chain, we refer to
the analytical expression of Barnes and coworkers [32]

S(Q) = |f(Q)|2
(

1 − cos (Q · d)
)

(B.3)

·
[

1 − 5

16
α2 − 3

32
α3 +

(1

2
α − 1

8
α2 − 5

192
α3
)

cos (Q · b)

+
( 3

16
α2 +

7

48
α3
)

cos (2Q · b) +
5

64
α3 cos (3Q · b)

]

.

For powder averaging the structure factor we also spherical integrate S(Q, ω). This results
in first order of α in

S(Q) = |f(Q)|2 1

4πQ2

∫ 2π

θ=0

dθ

∫ π

φ=0

dφ sin φ
(

1 − cos (Qd cosφ)
)

(B.4)

·
(

1 +
1

2
α cos (Qb cos φ)

)

= |f(Q)|2
(

1 − sin (Qd)

Qd
+

α

2

(sin (Qb)

Qb
− sin (Q(d − b))

2Q(d − b)
− sin (2Q(b + d))

2Q(d + b)

)

)

.

For α =0 this result coincides with the structure factor for the isolated dimer chain. The
position of the first maximum in S(Q) resolves the intradimer distance d.

Figure B.2 (a) shows S(Q)/|f(Q)|2 for different values of α, where b=1.5d is chosen.
A change of α yields almost equivalent positions of the structure factor maxima. Figure
B.2 (b) displays the structure factor for different values of the interdimer distance b in
units of d. Here, α was set equal to one. We observe a modulation of the amplitude of
S(Q), however, the overall lineshape does not vary much.
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Figure B.2: Powder averaged structure factor of the dimerized chain model for different values
of (a) α and (b) the interdimer distance b. In plot (a) b=1.5d and in plot (b) α =1 was chosen,
respectively. Within the purely dimerized chain approach the intradimer distance d is given by
the first maximum of S(Q). Increase in α and b yield a modulation of the absolute amplitude
of the structure factor.

B.2 Powder averaged scattering law

We remind the excitation spectrum of the antiferromagnetic alternating spin 1/2 chain
that is presented in chapter 2. Besides threefold degenerate triplet excitations the 2-
magnon continuum is observed.

The scattering function S(Q, ω) of dimerized chains is composed of two parts that ac-
count for the density of states of the magnon branch (Smag(Q, ω)) as well as the continuum
(Scont(Q, ω))

S(Q, ω) = Smag(Q, ω) + Scont(Q, ω) . (B.5)

To estimate the scattering law of the magnon branch, we use the approach
Smag(Q, ω) ∝ S(q) · g(ω), where the g(ω) = |d(~ω(q))/dq|−1 represents the density of
states function [114]. The amplitude S(q) is given by Uhrig and Schulz [35]. Harris and
coworkers [34] analytically derived the dispersion relation to order O(α3) by means of
perturbation theory

~ω(q)/J̃ =
(

1 − 1

16
α2 +

3

64
α3
)

−
(1

2
α +

1

4
α2 − 1

32
α3
)

cos (2q) (B.6)

−
( 1

16
α2 +

1

32
α3
)

cos (4q) − 1

64
α3 cos (2q) .

Barnes and coworkers [32] extended this result to the order O(α5), Uhrig and Schulz [35]
used a O(α) first order approach to determine the scattering law. To obtain Smag(Q, ω) the
wavevector dependence can be explicitly substituted by the inverted dispersion relation. In
O(α) a non zero contribution to the density of states will appear within the energy interval
1−α/2. ~ω/J̃ . 1+α/2 with the two Van Hove singularities at ~ω/J̃ ' 1±α/2. Figure
B.3 displays the magnon term in the scattering law of coupled dimers. The calculation of
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S(Q, ω)mag are performed using the first order O(α) approach for the dispersion relation.
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Figure B.3: Cut through the scattering law
Smag(Q,ω) at Q=2π/3 for the alternating pa-
rameter α=0.25, 0.5, 0.75 and 1. We note
that intensity appears within the interval 1 −
α/2 . ~ω/J̃ . 1 + α/2.

Uhrig and Schulz determined in leading order an analytical solution of the spectral density
of the continuum states

Rcont(Q, ω) =
α

4
· 1 − cos (q)

ω̃−2
α

+ 0.5 + sgn
(

ω̃−2
α

)

√

(

ω̃−2
2

)2 − cos (q)2
(B.7)

with the reduced energy ω̃ = ω/J̃. The scattering law is proportional to the imaginary
part of the spectral density via S(Q, ω) = ω · =(Rcont(Q, ω)). The maximum in the
density of states for the continuum is expected to occur at ~ω/J̃ ' 2 − α/2 with a non
zero scattering contribution within the interval 2 − α . ~ω/J̃ . 2 + α.

Figure B.4 displays a simulation of Scont(Q, ω) for the magnon continuum. For illustration
purposes, α =0.5 was chosen.
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Figure B.4: Illustration of Scont(Q,ω) for the continuum states. Here, the exchange J̃ and the
alternation parameter α equals to 1 meV and 0.5, respectively.
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Appendix C

Damped harmonic oscillator

Here, we calculate the scattering law of CsVBr3 that can be probed by inelastic neutron
scattering. We use the model of the damped harmonic oscillator that has been success-
fully used for describing one-phonon processes. Introducing this approach the time and
frequency dependent motion is presented (see appendix C.1). Afterwards, the line shape
of S(Q, ω) is derived from the spin pair correlation function.

C.1 Motion in the time and frequency domain

The model of a damped harmonic oscillator can be applied for describing the line shape of
the scattering function S(Q, ω) in the frequency domain. Thermal fluctuations that occur
with raising temperature and influence the time response of an excitation are included
via a temperature independent damping constant.

In the time domain any harmonic excitation is described by the model of an undamped
harmonic oscillator. The time behavior of its amplitude z(t) = Aeiλt follows the equation
of motion

z̈ + Ω2
qz = 0 (C.1)

with its eigenfrequency λ = Ωq. Only excitations at zero temperature can be described
within this model, since thermal fluctuations are neglected that yield a time dependent
decrease of the excitation amplitude.

In contrast, the damped harmonic oscillator includes a damping term ∝ ż (damping con-
stant Γq) that results in a decreasing amplitude with time. With respect to the corre-
sponding equation of motion

z̈ + 2Γqż + Ω2
qz = 0 (C.2)

its solution employing the standard ansatz z(t) = eλt leads to the eigenvalues λ1,2 of the
damped harmonic oscillator

λ1,2 = −Γq ±
√

Γ2
q − Ω2

q (C.3)

and the time dependent motion z(t) = A1e
λ1t + A2e

λ2t. Depending on the damping
constant Γq three different time dependences of the amplitude can be observed (see Fig.
C.1).
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• Assuming a small damping (Γq < Ωq) the eigenvalues of Eq. (C.3) turn to be equal
to −Γq ± iωq. The general solution is found to be z(t) = e−Γqt · (A1e

iωqt + A2e
−iωqt).

ωq =
√

Ω2
q − Γ2

q denotes the frequency of the damped harmonic oscillation. This
case applies for evaluating the scattering function of the magnetic excitations in
CsVBr3 for a constant value of Γq.

• The critically damped regime of the damped harmonic oscillator corresponds to a
damping constant approximately equivalent to the eigenfrequency of the undamped
harmonic oscillator (Γq ≈ Ωq). Since the eigenvalues are degenerate (λ1 = λ2), the
time dependent solution is given by z(t) = e−Γqt · (A1t + A2). Exciting the system
will lead to decrease of the amplitude with time without any oscillatory behavior.

• In the overdamped limit (Γq > Ωq) the amplitude shows an exponential decay with

time according to z(t) = e−Γqt ·
(

A1e
√

Γ2
q−Ω2

qt + A2e
−
√

Γ2
q−Ω2

qt
)

.

Figure C.1 illustrate the time behavior of the damped oscillation with respect to the
underdamped, critically damped and the overdamped case.

C.2 Scattering Law

In order to calculate the scattering law, we remind the partial differential cross section
for inelastic magnetic scattering that is presented in chapter 3. The scattering law is
proportional to the spin pair correlation function

〈

Sα(0)Sβ(t)
〉

. Describing the dynamical
behavior of CsVBr3 in the disordered phase we use the Heisenberg approach that accounts
for isotropically orientated spins. Only elements with α = β thus retain in the spin pair
correlation function leading to 〈Sx(0)Sx(t)〉 = 〈Sy(0)Sy(t)〉. The spin pair correlation
function reads

〈Sx
l (0)Sx

l′(t)〉 ∝
[

∑

q

(n(ω) + 1) · e−iq(rl−rl′) · eiΩqt +
∑

q

n(ω) · eiq(rl−rl′) · e−iΩqt

]

, (C.4)

with n(ω) =
(

e~ωβ − 1
)−1

denoting the Bose function and β = kBT the inverse tempera-
ture. The first term on the right side of Eq. (C.4) represents the magnon creation process,
whereas the second term denotes the magnon annihilation. Consequently, the inelastic
part of the scattering function results in

S(Q, ω) ∝ 1

ωq

∑

q,Gm

(

n(ω) +
1

2
± 1

2

)

· δ (ω ∓ Ωq) · δ(Q ∓ q − Gm) . (C.5)

The factor 1/ωq explains the decreasing spin wave intensity with increasing energy ωq. We
express the spectral weight functions with respect to the model of the damped harmonic
oscillator that corresponds to a double Lorentzian function accounting for the Stokes and
the Antistokes line of the excitation.

The line shape of the S(Q, ω) is proportional the time Fourier transformation of the
time motion

z(ω) =
1

2π

∞
∫

−∞

z(t)e−iωtdt =
1

2π

∞
∫

−∞

A · sin(ωqt + Φ)e−iωtdt (C.6)
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that was earlier presented. Here, boundary conditions are chosen in such a way that A
and Φ are set to unity and zero, respectively. Using the relation

sin (ωqT ) =
1

2i

(

eıωqt − e−iωqt
)

(C.7)

mathematical calculations yields z(ω) in terms of two Lorentzian functions

z(ω) =
−i

2π

(

Γq

(ω − ωq)2 + Γ2
q

− Γq

(ω + ωq)2 + Γ2
q

)

=
−i

π

(

2ωωqΓq

(ω2 − ω2
q)

2 + 4ω2
qΓ

2
q

)

. (C.8)

This result is equivalent to the known expression for the damped harmonic oscillator.
The scattering function S(Q, ω) is deduced as the imaginary part of z(ω) multiplied with
the Bose factor n(ω) + 1. In the high temperature limit (n(ω) + 1 → T/ω) the energy
integration of the unnormalized scattering function yields the normalization constant C
by

C =

∞
∫

−∞

(n(ω) + 1) z(ω)dω =
ωqT

Ω2
q

. (C.9)

Analytical calculation of Eq. (C.9) employs the standard integral

∫

dx

xQ
=

1

2c
ln

x2

Q
− 2b√

D
arctan

2ax + b√
D

(C.10)

where the relations Q = ax2 + bx+ c and D = 4ac− b2 are used. The inverse temperature
dependence of the normalized scattering function is accounted for by the q-dependent
susceptibility

χq =
χ0

q2 + κ2
(C.11)

with the static susceptibility at the zone center χ0 ∝ 1/T . The correlation length κ(T )

κ(T ) ∝
(

T − TN

TN

)ν

(C.12)

describes the size expansion of the spin waves in reciprocal space within the paramagnetic
phase. Its counterpart in real space ξ(T ) = 1/κ(T ) explains the size expansion in which
the relaxation process takes place.

Within the approach of the damped harmonic oscillator the normalized scattering function
is written

S (Q, ω) = (n(ω) + 1) · χq ·
Ω2

q

ωq

· 1

2π

(

Γq

(ω − ωq)2 + Γ2
q

− Γq

(ω + ωq)2 + Γ2
q

)

(C.13)

= (n(ω) + 1) · χq ·
Ω2

q

π
· 2ωΓq

(ω2 − Ω2
q)

2 + 4ω2Γ2
q

.

Figure C.1 illustrates the scattering law S(Q, ω) for a small damping constant Γq, the
critically damped case and the aperiodic limit.
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Figure C.1: Model of the damped harmonic oscillator. (a), (b) and (c) illustrate the
underdamped, critically damped and overdamped case, respectively. Left figures: In the
time domain the amplitude of the harmonic motion decreases with time according to the
damping constant Γq. Right figures: The corresponding scattering function S(Q, ω) in
the frequency domain.
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[114] H. Mutka, C. Payen, P. Molinié, J. L. Soubeyroux, P. Colombet, and A. D. Taylor,
Phys. Rev. Lett. 67, 497 (1991)

[115] A. P. Murani, Phys. Rev. B 50, 9882 (1994)

[116] Y. Mizuno, T. Tohyama, and S. Maekawa, Phys. Rev. B 60, 6230 (1999)

[117] G. I. Meijer, R. S. Eccleston, H. Mutka, C. Rossel, J. Karpinski, S. Kazakov, and
P. Wachter, Phys. Rev. B 60, 9260 (1999)

[118] M. Hummel, F. Schwabl, and C. Pich, Phys. Rev. B 63, 094425 (2001)

[119] H. Kadowaki, K. Hiarakawa, and H. Ubukoshi, J. Phys. Soc. Jpn. 52, 1799 (1983)

[120] R. Feile, J. K. Kjems, A. Hauser, H. U. Güdel, U. Falk, and A. Furrer, Solid State
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