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Chapter 1

Introduction

1.1 Gravitational wave astronomy

We can propagate [gravitational waves] with the speed of thought.
Sir Arthur Eddington

In the early days of the theory of general relativity, the existence of gravitational waves was
strongly under discussion. The debate focused on the problem whether gravitational waves are
a consequence of general relativity or whether they are pure gauge effects (see e.g. [34]). Due
to the nonlinear nature and the complexity of general relativity, it took almost 40 years to
unambiguously show [18] that gravitational waves involve energy transfer and thus are a real
prediction of the theory.

More than one decade later, R.A. Hulse and J.H. Taylor discovered the binary pulsar system
PSR B1913+16 [73], on which further analysis revealed very convincing, but indirect evidence
for the existence of gravitational waves [147, 156].1 Newer measurements for the binary pulsar
system PSR B1534+12 are also in agreement with general relativistic predictions [140].

Gravitational waves are weak fluctuations of the geometry of spacetime, which manifest
themselves in small changes of the measured distances. The strongest gravitational waves are
created by the aspherical movement of large masses, in particular by the variation of large (mass)
quadrupole moments. As a consequence, astrophysical sources are the most promising sources
of gravitational radiation. In contrast to electromagnetic waves, the amplitude of a gravitational
wave decays linearly with the distance from the source. Optimistic estimates for astrophysical
sources predict a relative length change on earth due to passing gravitational waves of the order
of δL/L = 10−20. In addition, gravitational waves only carry a tiny proportion of the source’s
energy away. As the effect of gravitational waves on earth is so weak, there are no successful
direct measurements yet. However, the experimental effort for their detection has increased
dramatically within the last years. Many different experiments around the world exist, which
can be subdivided into resonant detectors and gravitational wave laser interferometers.

1They measured the change in the orbital period of the system as Ṗb = (−2.403 ± 0.002) × 10−12, in
comparison to the value predicted due to emission of energy in gravitational waves using the quadrupole formula
Ṗb = (−2.40± 0.09)× 10

−12.
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CHAPTER 1. INTRODUCTION

Resonant detectors were first implemented in the seminal experiment of Weber [154, 155].
They consist of bars of cryogenic2 material (e.g. aluminium) with masses of several tons.
Gravitational waves passing through the detector create mechanical resonances, i.e. oscillations
of the mass which can be potentially measured. Currently, five resonant detectors, sensitive in
the frequency range between 700− 900 Hz, are in operation. These are [3] ALLEGRA (USA),
AURIGA and NAUTILUS (Italy), EXPLORER (at CERN) and NIOBE (Australia). With
sensitivities of up to 10−19 localized in a small frequency window, current resonant detectors
are at the threshold of what is generally believed to be necessary for successful detections. New
spherical gravitational wave resonant detectors with improved sensitivity are planned.

Gravitational wave laser interferometers

Figure 1.1: Sketch of a gravitational wave laser
interferometer. The beam splitter separates the
laser beam into orthogonal paths. The differ-
ence in the paths length can be measured as
interference pattern at the photodiode. The in-
put mirrors aim at increasing the effective arm
length by forming Fabry-Perot cavities with the
end mirrors. The recycling mirror enhances the
laser power.

(Michelson interferometers), on the other
hand, are based on a completely different ap-
proach. They measure the length change due
to passing gravitational waves in an interfer-
ence pattern, which is created from a split
laser beam running along orthogonal paths
(Fig. 1.1, see also [72] and references therein
for more details). Earth-bound detectors
have typical arm lengths of several hundred
meters.3 Currently, the TAMA300 (Japan),
the GEO600 (Germany, UK), the VIRGO
(Italy, France) and LIGO (USA, two detec-
tors) interferometers are in operation or will
start operation later this year. One addi-
tional detector in Australia, AIGO, is under
construction. After a first period of opera-
tion, LIGO will be updated to a second gen-
eration detector starting in 2005. Another
experiment in space, LISA, will be launched
in 2011, if the test mission SMART-2
(planned for 2006) is successful. With LISA,
due to the extreme arm length of the de-
tector, 5 × 106 km (comparable to the dis-
tance earth - sun), the low frequency range
between 10−4 and 10−1 Hz will be accessi-
ble, where ground-based gravitational wave

detectors are not sensitive because of gravity gradient noise at the earth’s surface. There are
already plans for third generation gravitational wave detectors (e.g. the European project
EURO), which, due to an increased laser power and due to signal recycling aim to reach much
higher sensitivities.

Independent of the type of detector, several experiments are needed to localize a burst of
gravitational waves in the sky with the help of triangulation techniques. Once the capabilities
to detect gravitational waves are developed enough, one could in principle localize a source
and point optical telescopes towards the region of interest. Furthermore, gravitational wave
astronomy will open in itself a new window in the sky beyond the electromagnetic spectrum.

In the following we will enumerate different astrophysical scenarios, which are believed to
2Strong cooling is necessary to lower the thermal noise as much as possible.
3Note, however, that with the use of Fabry-Perot cavities, the effective optical path length is much larger.
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1.2. SUPERNOVA PHYSICS

be important sources of gravitational waves to be detected with the current or next genera-
tion gravitational wave detectors, without going into the details of the current estimates (the
evaluation of the efficiency of the different scenarios is still under discussion [66]).

• Coalescence of compact binaries
By a “compact binary” we mean a binary system consisting of compact objects, i.e. a
neutron star (NS) or a black hole (BH). The coalescence of these objects is estimated
to be the most promising source of gravitational waves to be detected with the current
generation of gravitational wave laser interferometers. For recent, comprehensive studies,
see [9, 80].

• Stellar core collapse
Non-spherical collapse of stellar configurations is believed to be a strong source of
gravitational waves. However, because stellar collapse is not yet well understood there
are still large uncertainties in the understanding of gravitational wave emission [72]. For
a comprehensive overview, see [112, 50] - more details will be given in Sec. 1.3.

• Non-radial oscillations of neutron stars
In the absence of instabilities, gravitational waves from pulsating neutron stars are be-
lieved to be rather weak. Nevertheless, as there are many neutron stars in our galaxy
a possible detection with the next generation gravitational wave detectors seems feasi-
ble [84]. Neutron stars exhibit a rich spectrum of oscillation modes, which depend on the
radius and mass of the star, and hence on the equation of state (EoS) (see e.g. [83, 85]).
The main goal in studies about oscillations of neutron stars (once it is possible to detect
gravitational waves from them) is the determination of the EoS at supra-nuclear densi-
ties. The current estimates of the gravitational waves from oscillating neutron stars can
be found in [84].

For the currently operating gravitational wave detectors it is of great importance to have a
detailed knowledge of wave forms expected from astrophysical sources. This allows the use of
matched filtering techniques to improve the sensitivity of the experiments enormously. Obtain-
ing reliable estimates for gravitational wave signals emitted from the different sources is one of
the key motivations for numerical relativity, where the partial differential equations of general
relativity are solved with the help of computers. Except for the black hole binary system, all
mentioned sources of gravitational waves involve matter, which makes necessary to solve the
hydrodynamic equations as well.

1.2 Supernova physics

Supernovae [4] are very violent cosmic explosions of stars, which are related to a sudden and
intense increase of the measured luminosity of the object, which in general outshines the rest
of the whole host galaxy for several days. Supernovae are not only very promising sources of
gravitational waves, but are also very important phenomena of astrophysics as a whole. In a
supernova explosion, large amounts of matter, including heavy elements, are transferred to the
interstellar medium, which is important for the formation of stars. Moreover, supernovae pro-
duce galactic winds, and a substantial contribution of cosmic rays is created in these explosions.

3



CHAPTER 1. INTRODUCTION

1.2.1 Historical supernovae

Only a few supernova explosions have been doubtlessly observed in our own galaxy within the
last 1000 years [93, 26]. The earliest one of those was the supernova explosion of the year
1006, which is recorded in Arabic, Japanese and Chinese sources [109]. A further record of a
supernova explosion in the Milky Way dates back to the year 1054, when Chinese and Japanese
astronomers discovered a new luminous object which left behind today’s famous Crab nebula, a
supernova remnant with a faint neutron star in its center. More than 300 years later, two of the
most prominent astronomers of the Renaissance period, the Danish astronomer Tycho Brahe
and Johannes Kepler, each observed a supernova explosion. In 1572, Tycho Brahe observed a
“new star” in the constellation of Cassiopeia, and in 1604, Johannes Kepler observed another
supernova in the constellation of Ophiuchus. Unfortunately, since the invention of the telescope
shortly afterwards, which was first used in 1609 by Galileo, no further supernova event has
been recorded in the Milky Way.4 The first supernova explosion beyond our own galaxy was
discovered in 1885 by E. Hartwig and independently by L. Gully in the Andromeda galaxy. At
that time is was not yet known that Andromeda is an independent galaxy. In 1933, Walter
Baade and Fritz Zwicky concluded (see [109]) that due to the large distances of supernovae
explosions, the total radiated energy in supernovae must be of the order of 1051 to 1053 erg
(which corresponds to about 5 × 10−4 to 5 × 10−2 times the rest mass energy of the sun). A
very important step forward in the understanding of supernova explosions came in 1987. On
2/23/1987 a supernova explosion was discovered in the Large Magellanic Cloud (about 170 000
light years away). Supernova 1987A was not only the most luminous one since the supernova
event in 1604, it also was possible for the first time to identify a progenitor star related to
the explosion, the blue supergiant Sanduleak -69 202 with an estimated mass of about 18M¯.
Moreover, a hail of neutrinos from this event arrived on earth. About two dozen of these
neutrinos were detected independently by three different neutrino experiments.

1.2.2 The classification of supernovae

Historically [102], supernovae were subdivided into two classes, supernovae I and supernovae II
(henceforth SN I and SN II). Whereas SN II display hydrogen Balmer absorption lines in their
spectrum, these lines are absent for SN I. Both classes can be further subdivided according to
their spectra and light curves: SN I are subdivided into SN Ia, SN Ib and SN Ic, according
to the presence of the absorption lines for He λ 5876 Å and for Si λ 6355 Å. In the spectrum
of SN Ia, both absorption lines are present. In contrast, SN Ib only show the He λ 5876 Å
absorption line. Finally, both lines are absent for a SN Ic. Type II supernovae are further
classified as SN II-L and SN II-P, according to the presence of a linear decay in the light curves
or a specific plateau. Fig. 1.2 shows the typical spectra and Fig. 1.3 the typical light curves of
the different types of supernovae. A comprehensive treatment of light curves from supernovae
can be found in [37].

This historical classification based on observations is not reflected in our current understand-
ing of the energy source and the progenitors (see [107]). When classifying supernovae according
to the energy source, the main division line lies between SN Ia and the other types. Observa-
tionally, SN Ia occur in all types of galaxies, and in particular in elliptical galaxies where the
proportion of old stars is high. This observation strongly suggests that the progenitors of SN Ia

4However, there is indirect evidence from recent observations of the supernova remnant Cas A which suggests
that Cas A exploded in the late 17th century, probably in 1680.
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1.2. SUPERNOVA PHYSICS

Figure 1.2: Typical spectra of the different
types of supernovae averaged over the the
first week after maximum (taken from Filip-
penko. [37]).

Figure 1.3: Typical lightcurves of the different
types of supernovae. Plotted is the absolute
magnitude M in the blue frequency band (B
band) as a function of time in days (taken
from Cappellaro et al. [24]).

are old stars. According to the favorite models the progenitors are carbon-oxygen white dwarfs
in a binary system. The companion star, which has lost its hydrogen envelope to the white
dwarf, further transfers mass to the white dwarf, until the latter reaches the Chandrasekhar
mass, i.e. the maximum mass of a white dwarf for which the pressure exerted by the relativistic
gas of degenerate electrons exactly balances the gravitational force. Close to the Chandrasekhar
mass limit, the mass transfer from the companion can ignite a thermonuclear explosion. The
light curves of SN Ia are powered by the decay of 56Ni (synthesized during the explosion) into
56Co and finally into 56Fe. The γ-rays created in the decay are Compton scattered (i.e. scat-
tered by electrons), which finally creates the observed light curves and spectra. The total energy
released during the explosion is of the order of 1051 erg. For the other types of supernovae the
favorite model prescribes the observed energies to the release of gravitational binding energy in
a gravitational collapse. Host galaxies of SN II, SN Ib and SN Ic are spiral galaxies, where they
occur in the spiral arms with a large number of hydrogen-rich, young massive stars. Hence,
there is strong evidence that the progenitors are massive young stars. SN Ib/Ic progenitors may
have lost their hydrogen or even part of the helium envelope by either stellar wind (Wolf-Rayet
stars with masses M ≥ 30M¯) or due the mass transfer to a close companion. Stellar evolution
models show that SN II progenitors must have massesM ≥ 9M¯ in order to produce sufficiently
high temperatures to form a central iron core through several stages of nuclear burning. The
iron core finally undergoes a gravitational collapse. The progenitors of SN II-L and SN II-P
probably differ in the amount of mass of their hydrogen envelope, but are caused by the same
explosion mechanism. As already mentioned, the rate of supernovae depends on the type of

5



CHAPTER 1. INTRODUCTION

the host galaxy. For our own galaxy, one expects [24] on average about 0.4 SN Ia events, 0.2
SN Ib/c events and 1 SN II event per century.

1.2.3 Core collapse supernovae

After having gone through successive nuclear burning stages, during which heavy elements have
been synthesized, stars with a mass of M ≥ 9M¯ have developed an onion-like shell structure
with an iron core in the central region (see Fig. 1.4). This iron core consists of elements of the

Figure 1.4: Onion-like shell structure of a type II supernova progenitor. The diagram shows
the inner structure of a 25M¯ evolved star. Due to successive nuclear burning stages, shells of
hydrogen, helium, carbon, oxygen and silicon have formed. The iron core in the central region
has a radius of about 1500 km. The figure was taken from [110].

iron group (Fe, Ni and Co, i.e. those elements with the largest binding energy per nucleon).
The iron core can be further characterized by a central density of about ρc = 1010 g cm−3,
a temperature of T = 1010K, and an average number density of electrons per baryon of
Ye = 0.46. For these densities and temperatures, the pressure is mainly generated by the
degenerate relativistic electron gas. The electron pressure is much more important than the
pressure due to the ions and the radiation pressure, pe À pion À prad. Hence the microphysics
of the iron core can be modeled well by a polytropic relation p = κρΓ with adiabatic exponent
Γ = 4

3 (see [133]). For such a configuration, the Chandrasekhar mass limit is to first order
MCh ≈ 5.83 Y 2

e M¯. This formula was derived under simplified assumptions. Corrections tak-
ing into account the finite temperature, the Coulomb repulsion of the nuclei, surface effects
(the outer boundary of the iron core does not have zero density), as well as general relativity
are necessary. Above the Chandrasekhar mass limit, the degenerate electron pressure cannot
counterbalance gravity any longer, and the iron core undergoes catastrophic collapse. This can
either happen as a consequence of further Si burning, which increases the mass of the iron core,

6



1.2. SUPERNOVA PHYSICS

or due to electron capture by iron group elements (this occurs due to the high densities, and
hence high electron Fermi energies), which diminishes the value of Ye. For the densities of the
iron core in the initial phase of the collapse, the neutrinos produced by electron captures can
leave the core without further interaction. Another process, which can lead to the onset of
the gravitational instability is the photodisintegration of iron group elements as a consequence
of the interaction with energetic thermal γ-radiation. However, photodisintegration is only
important for very massive progenitors.

At the onset of the gravitational instability, the trajectories of mass shells in the iron core
are well modeled by the effective adiabatic index

Γ1 =
∂ ln p

∂ ln ρ
= Γ +

4

3

1

Ye

∂Ye
∂ ln ρ

< Γ, (1.1)

with a typical value of Γ1 = 1.3. The collapse phase only lasts for several 10 ms. As a
consequence, the outer stellar burning shells have no time to react to the collapse of the central
region, and the collapse of the iron core can be modeled independently. In the collapse phase,
any viscosity and heat transport can be neglected. It is therefore possible to model the collapsing
material as an ideal fluid. Furthermore, the evolution is close to adiabatic. Approximately, the
core can be divided into two regions: The inner part of the infalling material can be described
by a homologous (self-similar) solution [54, 165], where the infall velocity as a function of the
radius r is proportional to the radius r. This region is called the inner core. The outer part
of the fluid consists of supersonically infalling material and makes up the outer core. These
two regions are separated by the sonic point, where the amplitude of the infall velocity equals
the local speed of sound. At the sonic point, maximum infall velocities of up to 0.2c are
reached. For non-rotating models, the collapse can be only stopped when the central density
reaches nuclear matter density, ρn ≈ 2 × 1014 g cm−3. At that density, nuclear repulsive
forces between protons and neutrons become important. Finally, the pressure of degenerate
nucleons can counterbalance gravity. Since the extreme conditions encountered in this phase
can not be reproduced in laboratory experiments, it is not surprising that the EoS is highly
uncertain [71, 5]. Approximately, it can be modeled by an effective adiabatic index Γ2 = 2 ... 3.
On a maximum timescale of only a few milliseconds, the infall of inner core is stopped. Sound
waves traveling through the inner core focus at the sonic point, which is located at a radius
including a mass of about 0.5M¯ at that time. A shock wave is created, which travels out with
speeds of about 0.1c. Interior to the sonic point, a neutron star forms. Assuming a mass M
and a radius R of the neutron star, the gravitational binding energy

E ≈ 3× 1053
( M
M¯

)( R

10 km

)−1

erg, (1.2)

is released. Most of this energy is stored in a sea of neutrinos and is radiated away after a
time of about 1 s. The neutron star cools down, due to this emission of neutrinos. Analytic
arguments show [166] that the shock initially has an energy of about 5 × 1051 erg. This is in
principle sufficient energy to unbind the outer layers of the star and to produce a supernova
explosion. However, as the shock travels out, it loses a large amount of its energy, mainly due
to photodisintegration of iron into free nucleons. As a consequence, the shock stalls.

Despite intensive efforts to understand the supernova core collapse explosion mechanism,
many important questions have not been solved yet. Neutrinos can in principle deposit enough
energy behind the shock to explode the outer layers of the collapsing star (this is the so-called

7



CHAPTER 1. INTRODUCTION

delayed explosion mechanism, see [157, 10]). However, the delayed explosion mechanism is only
a relevant mechanism under very specific assumptions. Recent work tries to model neutrino
transport consistently and to include general relativistic aspects. For more details, the reader
should refer to [77].

Observations during the last decade have found strong evidence that neutron stars receive
large kick velocities (of a few hundreds to a thousand km/s) at birth. The origin of these
large kick velocities is still unclear. Possible explanations range from hydrodynamically driven
asymmetries [22] over neutrinos to asymmetries in the radiated electromagnetic fields (for a
recent review see [86]).

1.2.4 Going further

As the end product of a core collapse and supernova explosion, a strongly pulsating neutron
star (a so-called proto-neutron star) will be created. Protoneutron stars are hot and lepton
rich objects. The predominant cooling mechanism immediately after formation is neutrino
emission, by which they transform to ordinary neutron stars over a timescale of several seconds.
Until today, the inner structure of neutron stars, i.e. the EoS under the extreme condition of
highly condense matter, is only very poorly known. As a consequence, there is a variety of
competing theories of the inner structure of neutron stars. Although the models’ predictions
vary substantially, present observations are far from being decisive concerning the correctness
of the different theories.
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Figure 1.5: Inner structure of a neutron star for different models of the EoS. The typical radius
of a neutron star is R ≈ 10km, the typical massM ≈ 1.4M¯. The diagram was taken from [153].

In Fig. 1.5, several different scenarios are visualized. All the scenarios model the outer layers
of the star by a crust. In the traditional picture of neutron stars, the interior region consists
of neutrons, protons and electrons, which are surrounded by a shell of superfluid neutrons (see
e.g. [133]). Alternatively, a high density EoS with pion condensation has been proposed [100,
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1.3. SIMULATIONS OF GRAVITATIONAL COLLAPSE

132]. The possibility of kaon condensation was discussed [19], which would give rise to a nucleon
star. Finally, many authors have examined the possibility of stars composed of strange quark
matter, either in the form of stable quarks, or bound in hyperons, or as a mixture of hadrons
and quarks.

Since neutron stars are very compact (masses of more than a solar mass are compressed
inside a radius of about 10 km) and have a cold surface, they cannot be observed at large
distances in the electromagnetic spectrum. Moreover, the radiation emitted in X-rays stems
from the stellar surface. The natural candidate (besides neutrinos in the early stage of the
neutron star formation [23]) for obtaining insight into the internal structure of neutron stars
are gravitational waves. As in the case of helioseismology, the study of oscillations of the sun,
astroseismology could result in detailed measurements of the interior structure of neutron stars,
which would allow to decide between the different models for their inner structure.

Gamma Ray Bursts (GRB), which were first detected in the late 1960s by military satellites,
are even more violent processes than supernovae. The observed GRB fluxes imply energy emis-
sion in γ-rays of up to 1052 erg (assuming isotropic emission, the value would be even higher),
liberated in a region of the size . 100 km (for recent reviews, see [98, 99]). The most prominent
candidates for such an energy outburst are the coalescence of a binary neutron star system or
a neutron star - black hole system, and two scenarios directly linked to gravitational collapse.
These are the collapsar/hypernova model proposed by Woosley [164, 94] and Paczinsky [114]
and the supranova model proposed by Vietri and Stella [151]. Whereas the collapsar/hypernova
model proposes a “failed” supernova as the energy source for a GRB (i.e., either the direct or
delayed collapse of an evolved star to a black hole), the supranova model explains the observed
energies by the collapse of a rotating, overcritically massive neutron star, which cools down or
loses angular momentum due to the radiation of electromagnetic waves and gravitational waves,
and finally becomes unstable. Hence, gravitational collapse may be also very important for the
understanding of GRB. For recent observational indications of the link between GRB and SN
see [15].

Independent of whether gravitational collapse is the energy source of a GRB, other gravita-
tional collapse scenarios than supernova core collapse are expected to exist in nature. For the
theory of general relativity and for gravitational wave astronomy, the gravitational collapse to
black holes is particularly interesting (see [112]). For example, the accretion induced collapse
of neutron stars, the collapse of population III stars (first generation stars) and the collapse of
supermassive stars could all lead the formation of black holes.

1.3 Simulations of gravitational collapse

There exists a large number of numerical simulations concerning gravitational collapse, and in
particular core collapse supernovae in the literature. An adequate physical description of core
collapse supernovae is very demanding, and would have to include a large amount of input
from different branches of physics, e.g. multidimensional hydrodynamics, nuclear physics (in
particular neutrino physics) and plasma physics, detailed models of nuclear burning, radiation
transport and last but not least, general relativity. In general, due to the complexity of the
problem, the simulations only focus on particular aspects. Here, we subdivide the simulations
according to whether they were performed in Newtonian physics or in general relativity.

9



CHAPTER 1. INTRODUCTION

1.3.1 Newtonian simulations

The physics of supernova core collapse has been studied quite extensively in Newtonian physics.
For example, axisymmetric rotational core collapse (neglecting neutrino transport) was stud-
ied by Müller and Hillebrandt [108], by Bodenheimer and Woosley [16], by Symbalisty [145]
and by Bonazzola and Marck [17]. Several investigations, including those of Mönchmeyer and
Müller [104], Janka and Mönchmeyer [78], Mönchmeyer et al. [105], Imshennik and Nadezhin [74],
Fryer and Heger [49] and Fryer et al. [50] treated neutrino transport approximatively. Without
including neutrino physics or a detailed description of the microphysics, Yamada and Sato [167]
performed systematic numerical simulations of core collapse supernovae. Finn and Evans [39]
focussed on different numerical methods for the gravitational wave extraction based on the
quadrupole approximation. Zwerger and Müller [169] performed parameter studies of core col-
lapse supernovae and extracted the (quadrupole) gravitational wave signal for a comprehensive
sample of models. As summarized in [106], the typical gravitational wave amplitudes of the
simulated supernova events are in the range which could be detected by the first generation
gravitational wave laser interferometers, provided the supernova explosion takes place in our
galaxy. Rampp et al. [127] and Brown [20] first studied the problem beyond axisymmetry.
Whereas all these simulations focused on the dynamics of the core collapse and bounce, a few
other simulations examined the later phase of the explosion (e.g. Kifonidis et al. [81]).

1.3.2 General relativistic simulations

Numerical simulations in general relativity were performed already in the early days of com-
puters. The seminal work on relativistic collapse was performed by May and White [97].5 The
field equations of general relativity are a highly complicated and nonlinear set of partial differ-
ential equations. Due to their complexity early numerical relativity codes could not be applied
to studies of astrophysical interest, except in spherically symmetric situations. In contrast to
a Newtonian approximation where the computational problem is well defined and attention
can be devoted to astrophysical details, there is no consensus as to what is the optimal, or
at least adequate, framework for developing relativistic simulations. The numerical relativist
must overcome a daunting list of problems, including the long term stable formulation of the
initial value problem and the reliable extraction of physical information (including gravitational
waveforms).

Apart from a series of spherically symmetric studies following the early work of May and
White, which were all based on Cauchy slicings (see Romero et al. [128] for more details), there
is a small number of investigations, e.g. the work of Miller and Motta [101], which used a null
slicing of spacetime to calculate gravitational collapse (see the next section for an explanation
of the different slicings). With an approach based on null slices Baumgarte et al. studied
supernova collapse [7] and the collapse of neutron stars to black holes [8]. Recently, Linke et
al. [92] analyzed the spherical collapse of supermassive stars.

Going from spherical symmetry to 2D or 3D simulations, the complexity of the general
relativistic field equations increases substantially. This can already be understood from the fact,
that there are no gravitational waves in a spherically symmetric spacetime. Early approaches
did not only have to face problems of limited computer power, but also the problems of numerical
instabilities arising from the formulation of the Einstein equations. Nakamura [111] and Stark
and Piran [141, 142] studied the formation of a black hole as the end product of the collapse

5The authors refer to “digital” computers, which seems to be redundant from our today’s point of view.
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of a rotating massive star. Evans [36] developed an axisymmetric relativistic code, but only
applied it to spherical simulations of stellar core collapse. In total, only a few multidimensional
simulations of general relativistic gravitational collapse exist today which are of astrophysical
interest. Recent studies by Dimmelmeier et al. [30, 31, 32] of axisymmetric rotational core
collapse rely on an approximation of general relativity, the so-called conformally flat metric
approach [158], in which the gravitational wave degrees of freedom are suppressed. Although the
dynamics and the gravitational wave signal are very different in these simulations in comparison
to the Newtonian results of [169] for particular models, the overall estimates for the gravitational
wave amplitudes are unchanged. There are simulations of axisymmetric rotating stellar collapse
to black holes in full general relativity by Shibata [134]. Moreover, Shibata et al. [136] studied
rotational collapse of neutron stars to black holes without imposing any symmetry. However,
apart from a very recent study by Shibata [135] where no gravitational waves were analyzed,
until now, there are no studies of supernova core collapse beyond spherical symmetry in full
general relativity, which would be needed to obtain reliable estimates of the gravitational wave
signals for this process.

1.4 The characteristic formulation of numerical relativity

General relativity is a covariant theory, mathematically formulated as a set of tensor equations.
For numerical solutions of the field equations, however, a coordinate system has to be chosen,
i.e. one has to formulate the equations as an initial value problem. Interestingly, depending on
the choice of coordinates and depending on the choice of metric variables, the mathematical
character of the field equations can change.

Starting with a vector field of four dimensional spacetime, spacetime is foliated (i.e. sliced)
into a family of hypersurfaces orthogonal to the vector field. Choosing this vector field to be
timelike6 the approach is called 3+1 formalism or Cauchy approach. Of course, for a given
spacetime, there is an infinite possible choice of timelike vector fields corresponding to different
foliations. In the Cauchy approach, the streamlines of the vector field can be used to define a
(time) coordinate to label the different spacelike hypersurfaces. On the other hand, choosing
a null vector field as normal to the hypersurfaces defines the characteristic approach or null
cone approach of numerical relativity [163]. Fig. 1.6 visualizes the definition of Cauchy slices
and null slices. In the case of null slices, the streamlines of the vector field are tangential to
the surface itself (a null vector is orthogonal to itself)7 and hence they cannot serve to label
different hypersurfaces. There are different characteristic initial value formulations, where the
difference arises from the choice of coordinates on the hypersurfaces and the coordinates to label
the null hypersurfaces. The approach followed in this thesis is based on the characteristic initial
value problem of Bondi et al. [18] and Sachs [131] and, in particular, on the worldtube-nullcone
formalism of Tamburino and Winicour [146]. The formalism has been developed specifically
for addressing ambiguities concerning gravitational radiation and is well adapted to handle the
propagation of signals.

As pointed out in the last section there are a few numerical simulations of gravitational
collapse in spherical symmetry based on the foliation of spacetime by light cones, i.e. based

6We chose the signature of the spacetime metric gab in such a way, that a vector v
a is timelike, if gabv

avb < 0,
and spacelike, if gabv

avb > 0. For gabv
avb = 0, va is a null vector.

7In an vector space V with indefinite scalar product, the orthogonal complement W⊥ of a subspace W in
general does not fulfill W⊥ +W = V , although dim(W ) + dim(W⊥) = dim(V ).
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space space

time time

Figure 1.6: Definition of Cauchy slices (left) and characteristic slices (right). We have plotted
a spacetime diagram, where null lines are represented by curves of 45◦ and where we have
suppressed two spacelike coordinates. The slices are shown in red, with normal vectors indicated
by the blue arrows. These normals are timelike and null respectively.

on null slices. So far, however, no multidimensional numerical simulations of stellar dynamics
exist in this approach. At the same time, there is a lot of experience on numerically solving the
field equations of general relativity on light cones beyond spherical symmetry in vacuum [163].

Before we can point out the advantages of the characteristic approach, some aspects of the
Cauchy approach have to be described. In order to obtain initial data on an initial hypersurface,
a set of nonlinear elliptic equations has to be solved, the so-called constraint equations. These
constraint equations determine the geometry and the extrinsic curvature on the initial surface,
i.e. the first and second fundamental forms. An additional set of equations, the so-called
evolution equations determines the time evolution of the internal geometry and the extrinsic
curvature from one hypersurface to the next. Making use of the freedom of choosing variables
for the evolution equations, it is possible to write them as a system of symmetric hyperbolic
equations [47, 48], for which local existence and uniqueness theorems apply. As numerical
experience has shown, this alone is not enough to obtain stable algorithms for their numerical
solution. Further numerical complications arise from the fact that the numerical evolution will
violate the constraint equations (although, fulfilled exactly on the initial slice, they should be
fulfilled forever) and from the boundary treatment of the numerical domain.

The characteristic approach has a number of advantages compared to the Cauchy approach:

• It is physically motivated; the light cones offer a simple and unambiguous physical gauge
on which to base the numerical spacetime grid.

• It is unconstrained; the evolved variables capture rather directly the true degrees of free-
dom of the gravitational field. No elliptic equations have to be solved to determine
consistent initial data.

• It is very efficient; even in 3D, there are but two partial differential equations to solve,
along with a set of radial integrations along the light cones. No second time derivatives
appear in the equations.
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• It allows for a well defined compactification [123] of the domain, by which the global
spacetime extending to infinity is mapped onto a finite region. For example, Minkowski
spacetime with metric ηab can be mapped onto a finite region of the so-called Einstein
static universe with metric η̃ab using a conformal transformation, η̃ab = Ω2ηab. The
boundary of the finite region of the Einstein static universe corresponds to infinity in the
Minkowski spacetime. In particular, it is possible to define future null infinity, where all
null geodesics end. Similar compactification techniques can be applied for a general class
of spacetimes describing isolated astrophysical systems, the so-called asymptotically flat
spacetimes. For more details concerning the Penrose compactification and the mathe-
matical definition of asymptotical flatness, the reader is referred to the textbook [152].
Covering the finite region with a numerical grid leads to perfect outer boundary condi-
tions. In addition, gravitational waves can be extracted without approximation. Since
each null hypersurface of the foliation extends to infinity in the physical spacetime, the
gravitational radiation can be calculated immediately with no need to resolve the wave
forms propagating across the grid.

• Finally, and perhaps most importantly, the above theoretical advantages have been shown
in a series of works to translate to remarkably robust and stable numerical codes (see
e.g. [58]).

For a recent review of the approach the reader is referred to [163].

All characteristic schemes have as a common disadvantage the necessity either to deal with
light caustics or to avoid them altogether. In the presence of caustics, i.e. when different light
rays emanating from a point in space refocus, it is not possible to foliate a spacetime with
the help of null surfaces without forming coordinate singularities. There have been attempts
to include the evolution of caustics into the characteristic approach [28, 144], but in general,
to avoid complications, one has tried to eliminate them. Therefore, for the very strong field
regime of general relativity, e.g. the merger of binary black holes, it is believed to be simpler
to use the 3+1 formalism in the region where caustics may occur and to match this region to
an exterior characteristic grid for the gravitational wave extraction. This approach is called
Cauchy-characteristic matching (CCM). Until today, CCM has been demonstrated to work
reliably in spherical symmetry [57] and for the 3D scalar field equation in Minkowski space [13].

In the characteristic approach, to obtain a complete regular spacetime (in contrast to a
black hole spacetime where singularities occur), the computational domain must include the
vertex of the light cones. This involves prescribing specific regularity conditions at the vertex
of the light cones (and for explicit integration methods, severe time-step restrictions), which
at present have been resolved only up to axisymmetric configurations [60]. Nevertheless, the
approach has remarkable economy and stability, which makes it a good candidate for studies
of isolated relativistic objects emitting gravitational radiation. This is the principal motivation
for the current work.

The results presented in this thesis show that for a wide and astrophysically interesting class
of spacetimes it is sufficient to use the characteristic initial value formulation of the Einstein
equations without matching it to a Cauchy region. In particular the study of the nonlinear
dynamics of isolated relativistic stars and supernova core collapse is optimally performed within
this framework.

The incorporation of perfect fluid matter fields in the characteristic formulation of the Ein-
stein equation was first considered by Isaacson et al. [75] as early as 1983 but the successful
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integration of the coupled system had to wait for the development of stable algorithms for the
vacuum Einstein problem. Gomez et al. developed one dimensional schemes in [64]. Algorithms
for axisymmetric spacetimes, including a regular origin, were presented in [60]. Recently, using
similar techniques, Papadopoulos [116] evolved axisymmetric vacuum black hole spacetimes.
Techniques for extending finite difference algorithms to 3D were presented in [59]. Three di-
mensional codes excluding the origin of the light cones (hence presently unsuitable for studies
of stellar dynamics) were presented in [11, 56]. For an alternative approach see Bartnik and
Norton [6].

With reliable algorithms for the vacuum Einstein equations available, Papadopoulos and
Font [118] initiated a new line of research for the incorporation of relativistic hydrodynam-
ics into characteristic numerical relativity. This approach carries over the modern machinery
from Computational Fluid Mechanics to general relativistic hydrodynamics on light cones.
In this procedure, the evolution equations for the matter fields are solved using relativistic
high-resolution shock-capturing (HRSC) schemes [40, 119] based upon (exact or approximate)
Riemann solvers. A general formalism has been developed. First applications in spherical sym-
metry have already been presented in the literature: investigations of accreting dynamic black
holes can be found in [118, 120]. Studies of the gravitational collapse of supermassive stars
are discussed by Linke et al. [91]. We note that there has been already a proof-of-principle
demonstration of the inclusion of matter fields in three dimensions by Bishop et al. [12].

1.5 A summary of the results presented in this thesis

We have written a new numerical code which solves the coupled Einstein-perfect fluid system
in axisymmetry [138]. Our approach relies on the Bondi metric, which uses a foliation based on
a family of light cones, emanating from a regular center, and terminating at future null infinity.
In our geometric setup we solve the nonlinear equations of general relativity in axisymmetry
and the nonlinear equations of general relativistic fluid dynamics for the case of a perfect fluid.
Our coordinate system is well adapted to the study of dynamical spacetimes associated with
isolated relativistic compact objects such as neutron stars. In particular, the approach allows
the unambiguous extraction of gravitational waves at future null infinity and avoids spurious
outer boundary reflections.

In order to solve the Einstein equations, we rely on the experience of solving the characteris-
tic field equations in vacuum [163]. Using a compactified spacetime where future null infinity is
part of our numerical grid, we solve the partial differential equations of the Einstein-perfect-fluid
system to determine the geometry of spacetime. We extract global quantities as the Bondi mass,
the total mass of spacetime, and gravitational wave signals at future null infinity without ap-
proximation. For the fluid evolution, we use general relativistic high-resolution shock-capturing
schemes [40]. Despite of being standard techniques in computational fluid dynamics and being
widely used in astrophysical simulations with Newton’s law of gravity, we have for the first time
applied the techniques to multidimensional fluid evolutions in the characteristic approach of
general relativity.

We have thoroughly tested our implementation. Unlike previous numerical relativity codes,
our code is long-term stable. It can accurately maintain long-term stability of polytropic equi-
librium models of neutron stars. We have demonstrated global energy conservation in a strongly
perturbed neutron star spacetime, for which the total energy radiated away by gravitational
waves corresponds to a significant fraction of the Bondi mass. Moreover, the code can handle
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strong shock fronts moving at ultrarelativistic speeds, which are commonly encountered in as-
trophysical situations involving large velocities and strong gravitational fields (neutron stars
and black holes). We have applied our code to three different topics:

• First, we study the interaction of massless scalar fields with neutron stars by means
of numerical simulations of the Einstein-Klein-Gordon perfect fluid system in spherical
symmetry [139]. The massless scalar field serves as a simple model for gravitational
waves in spherical symmetry, by which many of the concepts of the later multidimensional
analysis become relevant. We analyze the nonlinear dynamics of scalar fields scattered off
neutron stars with different masses and radii. Depending on the compactness of the stellar
model, the scalar wave forces the star either to oscillate in its radial modes of pulsation or
even triggers the gravitational collapse to a black hole. We study the transfer of energy
from the scalar field to the fluid star. It increases with the compactness of the star,
inducing linear or nonlinear oscillations and even the gravitational collapse for the most
compact models. The radiative signal, read off at future null infinity, shows quasi-normal
oscillations before the setting of a late time power-law tail.

• The second analysis focuses on axisymmetric pulsations of neutron stars [138]. We extract
the frequencies of the different fluid modes in fully relativistic evolutions of the Einstein-
perfect fluid system. In cases where we can compare our results with independent results
based on perturbation theory, we find very good agreement for the frequencies of the
different fluid modes. As expected, the gravitational waves from quadrupolar oscillations
show the largest amplitude. We also perform a comparison between the gravitational
news function, i.e. the exact gravitational wave signal extracted at future null infinity,
and the predicted wave using the approximation of the quadrupole formula. Finding good
agreement between the two we conclude that the quadrupole radiation formula is a valid
approximation for the study of gravitational waves from (weak) pulsations of neutron
stars.

• In a third analysis, we study axisymmetric supernova core collapse in full general relativity.
The nonlinear dynamics of the collapse is analyzed for a sample of models which differ on
the particular parameterized deviation imposed in the equilibrium models of the initial
“iron core”. Modeling the iron core by a relativistic polytrope, we follow the increase of
the central density by more than four orders of magnitude, where the iron core bounces
due to nuclear forces. We study the formation of the neutron star in the central region and
the propagation of the outwards traveling shock. Moreover, we analyze the gravitational
wave signals obtained from the parametrized collapse models. For these simulations,
the validity of the quadrupole approximation breaks down. There are strong indications
that this is a consequence of our particular coordinate system, in which we calculate
the quadrupole moment of the simulated matter distribution. We extract the Bondi news
function for the collapse models, finding a typical principal frequency for the gravitational
wave signals of the order of 0.3 kHz to 1 kHz.

1.6 Organization of the thesis

We have structured the thesis as follows: In Chapter 2 we summarize the mathematical frame-
work of the characteristic formulation of general relativity. Sec. 2.1 describes the field equations
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of general relativity on the light cone. In Sec. 2.2 we discuss the equations of general relativistic
fluid dynamics. Finally, Sec. 2.3 deals with the compactification of spacetime and the extrac-
tion of gravitational waves in the characteristic approach. Chapter 3 describes the numerical
implementation of the Einstein-perfect fluid system. In Sec. 3.1, we describe the high-resolution
shock-capturing schemes to solve the fluid equations. We discuss the different reconstruction
schemes and approximate Riemann solvers implemented for the fluid update. Sec. 3.2 describes
the numerical algorithms, which solve the characteristic Einstein equations. We discuss the
numerical methods used for the coupling of the metric and fluid equations (Sec. 3.3) and the
extraction of gravitational waves (Sec. 3.4). Chapter 4 describes the comprehensive tests, we
have performed to validate the different regimes of our code. These tests assess both the imple-
mentation of the Einstein equations alone (Sec. 4.1) and the fully coupled Einstein-perfect fluid
system (Sec. 4.2 and Sec. 4.3). In the next three chapters, we describe the results obtained with
our code when applying it to the different scenarios already mentioned: Chapter 5 summarizes
our findings for the study of the interaction of neutron stars and scalar fields. Since we have
included in this chapter a scalar field as an additional matter field, we describe the necessary
mathematical foundations and numerical implementations first. Sec. 5.4 describes the outcome
of the numerical simulations. In Chapter 6 we present our results on the oscillations of neutron
stars. In order to excite the different fluid modes we use the fluid perturbations described in
Sec. 6.1. Before solving the full set of equations of the Einstein-perfect fluid system described in
Sec. 6.3, we perform nonlinear hydrodynamic simulations in a fixed background (see Sec. 6.2).
We discuss the gravitational wave signal from the full simulations in Sec. 6.4. Chapter 7 de-
scribes the studies of supernova core collapse. In Sec. 7.1 we introduce the models we use as
initial data for our simulations of supernova core collapse. We describe the dynamics of the
collapse as extracted from our numerical simulations in Sec. 7.2. Finally, the gravitational wave
signals from supernova core collapse are presented in Sec. 7.3. The results of the thesis are
briefly summarized in Chapter 8.
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Chapter 2

Characteristic numerical

relativity and hydrodynamics

In the field equations of general relativity, the geometry of spacetime, i.e. the Einstein tensor
Gab is related to the stress energy tensor Tab of matter. For a given stress energy tensor, the
Einstein equation is a second order partial differential equation which determines the metric
tensor gab of spacetime. We work with the coupled system of Einstein and relativistic perfect
fluid equations,

Gab = κTab , (2.1)

∇aT ab = 0 , (2.2)

∇a(ρua) = 0, (2.3)

with the latter two equations being the local conservation laws of stress-energy and current
density. As usual, ∇a denotes the covariant derivate of spacetime (a ∈ (0, 1, 2, 3)), and we
use the summation convention, where summation is performed over repeated indices. The
energy-momentum tensor of a perfect fluid has the form

Tab = ρhuaub + pgab. (2.4)

In this expression ρ denotes the rest mass density, h = 1 + ε + p
ρ is the specific enthalpy, ε

is the specific internal energy and p is the pressure of the fluid. The four-vector ua, the 4-
velocity of the fluid, fulfills the normalization condition gabu

aub = −1. Using geometrized units
(c = G = 1) the coupling constant reduces to κ = 8π.Whenever we deal with stellar objects, we
further useM¯ = 1, which defines a natural length scale L = GM¯c

−2, i.e. L = 1.477×105 cm
in cgs units. In order to close the system of fluid equations, an equation of state (EoS) has to
be prescribed, p = p(ρ, ε).

The physical setup described in Chapter 5, where we include a scalar field as an additional
matter field, deviates slightly from what is described in the present chapter. In order to facilitate
the presentation, we will discuss the necessary modifications introduced by the scalar field in
Chapter 5.

17



CHAPTER 2. CHARACTERISTIC NUMERICAL RELATIVITY AND

HYDRODYNAMICS

2.1 The Einstein equations for the Bondi metric

As a geometric and coordinate framework we use the Bondi (radiative) metric [18] to describe
line element of spacetime ds2 = gabdx

adxb as

ds2 = −
(
V

r
e2β − U2r2e2γ

)
du2 − 2e2βdudr − 2Ur2e2γdudθ + r2(e2γdθ2 + e−2γ sin2 θdφ2),(2.5)

with coordinates (x0, x1, x2, x3) = (u, r, θ, φ), where the u coordinate is defined by the level
surfaces of a null scalar (i.e., a scalar u satisfying ∇au∇au = 0). r is the radial coordinate
whose level surfaces (two-spheres) have area 4πr2, and θ and φ are angular coordinates propa-
gated along the different null directions, i.e., they parameterize the light rays on the null cone.
Restricting to axisymmetry, φ is a Killing coordinate, the metric tensor is independent of the
particular value of the coordinate φ.1 The metric functions V , U , β and γ only depend on the
coordinates u, r and θ. We choose the origin of the coordinate system r = 0 to lie on the axis
of our axisymmetric stellar configurations. Fig. 2.1 shows the physical setting of our coordinate
system.

time

u = uI +∆u

u = uI

θ

r

Figure 2.1: Foliation of the spacetime by null hypersurfaces (light cones): Starting from the
geodesic of a freely falling particle, which defines the origin of the coordinate system, surface
forming light rays are emitted. We define a new time coordinate u to be constant along each
outgoing light cone. The Killing coordinate φ is suppressed in the diagram. The origin of the
coordinate system coincides with the symmetry axis of the star.

1Mathematically, a Killing vector Xa is defined by the Killing equation ∇aXb +∇bXa = 0. Killing vectors
are related to the symmetries of spacetime. Adapting coordinates to the symmetry defines a Killing coordinate.
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2.1. THE EINSTEIN EQUATIONS FOR THE BONDI METRIC

With the above assumptions, the gravitational field equations expressed in terms of the
Ricci tensor Rab, which is related to the Einstein tensor Gab as

Rab −
1

2
gabR = Gab (2.6)

(where R = gcdRcd), read explicitly

Rab = κ

(
ρh(uaub +

1

2
gab)− pgab

)
, (2.7)

where the relevant components are

r

4
Rrr = β,r −

r

2
(γ,r)

2 , (2.8)

2r2Rrθ = (r4e2(γ−β)U,r),r − 2r2(β,rθ − γ,rθ + 2γ,rγ,θ −
2

r
β,θ − 2γ,r cot θ) , (2.9)

−r2e2βgABRAB = 2V,r +
1

2
r4e2(γ−β)(U,r)

2 − r2U,rθ − 4r U,θ − r2U,r cot θ

−4r U cot θ + 2e2(β−γ){−1− (3γ,θ − β,θ) cot θ − γ,θθ + β,θθ

+(β,θ)
2 + 2γ,θ(γ,θ − β,θ)} , (2.10)

−r2e2βgφφRφφ = 2r(rγ),ur + (1− rγ,r)V,r − (rγ,rr + γ,r)V − r(1− rγ,r)U,θ
−r2(cot θ − γ,θ)U,r + e2(β−γ){−1− (3γ,θ − 2β,θ) cot θ − γ,θθ
+2γ,θ(γ,θ − β,θ)}+ r U(2rγ,rθ + 2γ,θ + rγ,r cot θ − 3 cot θ) . (2.11)

In Eq. (2.10) A,B denote the angular coordinates, A,B = 2, 3. As usual a comma is used to
denote a partial derivative.

The Einstein equations decompose into hypersurface equations, evolution equations and
conservation laws. The hypersurface equations, Eqs. (2.8)-(2.10), form a hierarchical set for
β,r, U,r and V,r. The evolution equation is an expression for (rγ),ur given by Eq. (2.11). The
light-cone problem is formulated in the region of spacetime between a timelike worldtube Υ,
which in our case is located at the origin of the radial coordinate r = 0, and future null infinity
J +. Initial data for γ is prescribed on an initial light cone u = 0 in this domain. Boundary
data for β, U , V and γ is also required on Υ.

As shown in the original paper of Bondi [18], the contracted Bianchi identities ∇bG
b
a = 0 for

the vacuum field equations enforce all other Ricci tensor components to vanish, if they vanish
on a worldline. In the same way one can show, that the contracted Bianchi identities for the
matter system guarantee the validity of all other components of the Einstein equation (2.7)
(see [75]).

The reformulation of the above form of the equations for numerical integrations follows
the work of Ref. [60]. First, in order to be able to compactify spacetime and to better resolve
interesting parts of a spacetime(e.g. a stellar configuration centered at r = 0) we allow, starting
from a radial coordinate x ∈ [0, 1], for a coordinate transformation of the radial coordinate

x→ r(x), (2.12)

with an associated derivative needed later

dx/dr = f2(x) . (2.13)
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This transformation generalizes the results of [60], where the fixed grid r(x) = x/(1 − x)
was used. Furthermore, in order to eliminate singular terms at the poles we use the new
coordinate [115]

y = − cos θ (2.14)

and we substitute the metric fields (V,U, γ) by the new variables (S, Û , γ̂)

S =
V − r
r2

, (2.15)

Û =
U

sin θ
, (2.16)

γ̂ =
γ

sin2 θ
. (2.17)

The metric, Eq. (2.5), hence, takes the form

ds2 =

(
−V
r
e2β + U2r2e2γ

)
du2 − 2f−2e2βdudx− 2Ûr2e2γdudy

+r2(e2γ sin−2 θdy2 + e−2γ sin2 θdφ2). (2.18)

The hypersurface equations (2.8)-(2.10) thus read

β,x =
r

2
f2ȳ2(γ̂,x)

2 +
r

4
f2Rxx , (2.19)

(
r4f2e2(γ̂ȳ−β)Û,x

)
,x

= 2r2
{
β,xy −

2

rf2
β,y + 4yγ̂,x + ȳ[2γ̂,x(ȳγ̂,y − 2yγ̂)− γ̂,xy]

}

+2r2Rxy , (2.20)

r2f2S,x + 2rS = −1− 4ryÛ − r2f2yÛ,x + 2rȳÛ,y + ȳ
(r2
2
f2Û,xy

−r
4

4
f4e2(γ̂ȳ−β)(Û,x)

2
)
− e2(β−γ̂ȳ)

{
− 1− 12γ̂ − 2yβ,y

+ȳ[10γ̂ + 8yγ̂,y + 8γ̂2 + 4yγ̂β,y + β,yy + (β,y)
2]

−ȳ2[8γ̂2 + 2γ̂,yβ,y + γ̂,yy + 8yγ̂γ̂,y] + 2ȳ3(γ̂,y)
2
}

−r
2

2
e2βgABRAB . (2.21)

We have used here the notation ȳ = 1 − y2 and (),x and (),y to denote the partial derivatives
with respect to x and y, in contrast to the partial derivatives with respect to r and θ. Note,
that the Ricci tensor components are those in x, y-coordinates.

Due to this choice of variables, the Einstein equations are non-singular on the polar axis,
where y = ±1. Note, that the y-component of the four-velocity fulfills

uy =
uθ
sin θ

, (2.22)

which is in analogy to Eq. (2.16).
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The evolution equation for γ̂ is written in the form of a wave equation for the quantity ψ̂

ψ̂ = rγ̂, (2.23)

g̃ab∇̃a∇̃bψ̂ = −e−2βĤ, (2.24)

where quantities denoted with a tilde are defined with respect to the 2-metric

dσ2 = −V
r
e2βdu2 − 2e2βdu dr, (2.25)

i.e. explicitly

g̃ab∇̃a∇̃bψ̂ = −e−2β(2ψ̂,ur − (
V

r
ψ̂,r),r), (2.26)

and

Ĥ = −r
2
f2Û,xy − Û,y − rf2γ̂,xÛ,y ȳ +

r3

4
f4e2(γ̂ȳ−β)(Û,x)

2 −
(
S + rf2S,x

)
γ̂

+
1

r
e2(β−γ̂ȳ)(β,yy + (β,y)

2) + 4γ̂Ûy + 2rf2γ̂Û,xy + 6rf2γ̂,xÛy

−ȳ
(
rf2γ̂,yÛ,x + 2rf2γ̂,xyÛ + 2γ̂,yÛ

)
+

1

2r
e2(β−γ̂ȳ)κρhuyuy . (2.27)

For the derivation of the last equation, we have used Eqs. (2.10)-(2.11), the coordinate relations
Eqs. (2.12)-(2.14) and Eq. (2.7).

2.2 The relativistic perfect fluid equations

In this section, we will describe the form of the hydrodynamic equations for our axisymmetric
perfect fluid system. We will further present the equations of state used in our simulations and
the method to obtain initial data for the stellar objects.

2.2.1 General relativistic hydrodynamics in axisymmetry

Whereas Eq. (2.3) is a strict conservation law, Eq. (2.2) involves source terms when writing the
covariant derivatives in terms of partial derivatives. In the presence of a Killing vector field it
can be recast as a conservation law. Following [117], the number of source terms in Eq. (2.2) is
minimized using the equivalent form

∇aT ab = 0. (2.28)

Nevertheless, in our hydrodynamics code we use the form given by Eq. (2.2) in order to set up
the evolution equation for the radial momentum. This is motivated by stability considerations
when evolving spherical neutron star models. However, to set up the evolution equation for
the polar component of the momentum we use Eq. (2.28). This form of the conservation law
eliminates singular behavior of the y-component of the velocity at the polar axis.

We work with two mathematically equivalent systems for the hydrodynamics. In the first
system we include the square root of the metric determinant

√−g in the definition of the
conserved quantities. After defining the conserved quantities Uu =

√−gTuu, Ux =
√−gT ux,
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Uy =
√−gT uy and U4 =

√−gρuu, the fluid equations can be cast into a first-order flux-
conservative, hyperbolic system for the state-vector U = (Uu, Ux, Uy, U

4)

∂uU
u + ∂jF

ju = Su , (2.29)

∂uU
x + ∂jF

jx = Sx , (2.30)

∂uUy + ∂jF
j
y = Sy , (2.31)

∂uU
4 + ∂jF

j4 = S4. (2.32)

The flux vectors are defined as

F ju =
√−g T ju , (2.33)

F jx =
√−g T jx , (2.34)

F j
y =

√−g T jy , (2.35)

F j4 =
√−g ρ uj , (2.36)

and the corresponding source terms read

Sa = gab Sb +
√−gT cb(gab),c , (2.37)

Sa =
√−g T bcΓ c

ab

= −
√−g
2

ρhucud(g
cd),a + p(

√−g),a , (2.38)

S4 = 0 , (2.39)

where all expressions are evaluated in the coordinate system (u, x, y, φ), and Γabc are the Christof-
fel symbols.

In a second system, we do not incorporate the metric determinant in the definition of the
conserved quantities. For such a system, the continuity equation is in general not a strict
conservation law any longer. However, this system has the advantage, that the recovery of the
primitive fluid variables from the conserved quantities U at the origin does not involve terms
which have to be otherwise regularized (as the metric determinant vanishes there). We use this
system for the studies of supernova core collapse in Chapter 7. With the definitions for the
conserved quantities U = (Uu, Ux, Uy, U

4), Uu = Tuu, Ux = Tux, Uy = Tuy and U4 = ρuu, the
fluxes read

F ju = T ju , (2.40)

F jx = T jx , (2.41)

F j
y = T jy , (2.42)

F j4 = ρ uj , (2.43)

and the corresponding source terms read

Sa = −
(
ln(
√−g)

)
,b
T ab + gab Sb + T cb(g

ab),c , (2.44)

Sa = −1

2
ρhucud(g

cd),a + p−
(
ln(
√−g)

)
,b
T ba , (2.45)

S4 = −
(
ln(
√−g)

)
,b
ρub . (2.46)
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2.2.2 Equations of state

We turn next to summarize all equations of state (EoS) used in this work. These EoS describe
the physical conditions encountered in neutron stars and during supernova core collapse only
approximately, more detailed modeling is needed for a realistic description. We note that the
understanding of the EoS of neutron stars is still quite limited [71, 5]. Therefore we only con-
sider simple model EoS since the focus of this work lies on a general relativistic description.

We start with the thermodynamical relation [103] for the total energy η = ρ(1 + ε)

dη =
η + p

ρ
dρ+ ρTds, (2.47)

where s denotes the specific entropy of the fluid. The relativistic generalization of the speed of
sound (see e.g. [43]) is

c2s =
∂p

∂η

∣∣∣
s
. (2.48)

Assuming adiabaticity in Eq. (2.47), we find dε = p
ρ2 dρ. Using this equation in the formula for

the sound speed (2.48), we obtain

hc2s =
∂p

∂ρ

∣∣∣
ε
+

p

ρ2
∂p

∂ε

∣∣∣
ρ
. (2.49)

The ideal fluid EoS

For the ideal fluid equation of state, the pressure is proportional to the internal energy as

p = (Γ− 1)ρε (2.50)

with the adiabatic index Γ. The sound speed can be easily calculated as

hc2s =
p

ρ
Γ. (2.51)

The polytropic EoS

The polytropic EoS [148] is a special case of a barotropic EoS p = p(ρ). The pressure reads

p = κρΓ, (2.52)

where κ is the polytropic constant and Γ the adiabatic exponent. The polytropic index n is
related to Γ by Γ = 1+ 1

n . The internal energy is defined according to Eq. (2.50). For adiabatic
flows, it can be easily shown, that assuming the relations (2.50) and (2.52) the thermodynamical
identity dη = hdρ (which is equivalent to Eq. (2.47) under the assumption of constant entropy,
ds = 0) is trivially fulfilled (without recourse to the hydrodynamical equations). Moreover, it
follows from the thermodynamical identity dη = hdρ and the continuity equation, that

ub(∇aT ab) = 0. (2.53)

Hence, choosing an index c with uc 6= 0 and imposing Eqs. (2.50), (2.52), the continuity equa-
tion and all fluid equations ∇aT ab = 0 with b 6= c, the remaining equation ∇aT ac = 0 is trivially
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fulfilled.

The polytropic EoS is widely used in the literature to obtain general relativistic models of
neutron stars (this is the so-called relativistic star model). For our models of neutron stars, we
mainly choose a stiff adiabatic exponent of Γ = 2.

The hybrid EoS

For the simulation of supernova core collapse in Chapter 7, we refine the polytropic EoS to
include the effect of stiffening at nuclear densities and the effect of thermal heating due to the
appearance of shocks. Our EoS was first considered in the work of Janka [79], and was already
used for Newtonian supernova core collapse simulations [169, 127] and for general relativistic
simulations in the conformally flat metric approximation [30, 31, 32].

For the hybrid EoS, the total pressure consists of a polytropic part, which takes into account the
contribution from the degenerate electron gas, as well as the nuclear forces (at high densities),
and a thermal part due to the heating of the material by a shock,

p = pp + pth. (2.54)

More precisely, the polytropic part is assumed to follow the relation

pp =

{
κ1ρ

Γ1 for ρ ≤ ρn,
κ2ρ

Γ2 for ρ > ρn,
(2.55)

where we assume a nuclear density ρn = 2 × 1014 g cm−3. For a degenerate electron gas, we
have [133] Γ = Γini = 4/3 and κ = 4.8974894×1014 [cgs]. To model the physical processes which
lead to the onset of the collapse, we reduce the effective adiabatic index from Γ to Γ1 setting
κ1 = κ at our initial slice. To model the stiffening of the equation of state at nuclear densities,
we assume Γ2 = 2.5. The value of the polytropic constant κ2 follows from the requirement
that the pressure is continuous at nuclear density. The thermodynamically consistent internal
energy distribution reads

εp =

{
κ1

Γ1−1ρ
Γ1−1 for ρ ≤ ρn,

κ2

Γ2−1ρ
Γ2−1 + E for ρ > ρn.

(2.56)

The requirement that εp is continuous at nuclear density leads to

E =
(Γ2 − Γ1)κ1

(Γ2 − 1)(Γ1 − 1)
ρΓ1−1
n . (2.57)

For the thermal contribution to the total pressure, we assume an ideal fluid EoS

pth = (Γth − 1)ρεth, (2.58)

with an adiabatic index Γth = 3
2 describing a mixture of relativistic and non-relativistic gases.

The internal thermal energy εth is simply obtained from

εth = ε− εp. (2.59)
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We can summarize the EoS in a single equation

p = κ
(
1− Γth − 1

Γ− 1

)
ρΓ + (Γth − 1)ρε− (Γth − 1)(Γ− Γ1)

(Γ2 − 1)(Γ1 − 1)
κρΓ−1

n ρ, (2.60)

where Γ and κ change discontinuously at nuclear density ρn from Γ1 to Γ2 and κ1 to κ2. For
the sound speed cs, we obtain

hc2s =
1

ρ
(Γpp + Γthpth). (2.61)

2.2.3 Equilibrium models for spherically symmetric stars

In order to set up equilibrium models for relativistic stars we numerically solve the Tolman-
Oppenheimer-Volkoff equations in outgoing null coordinates [119]

p,r =

(
1

2r
− 1

2Y
(1 + 8πr2p)

)
ρh, (2.62)

Y,r = 1 + 8πr2(p− ρh), (2.63)

where Y = V e−2β . Starting with this equilibrium solution, we also prescribe perturbations
for the study of stellar oscillations (Chapter 6) and gravitational collapse (Chapter 7). In
these cases, in order to obtain consistent initial data, we have to solve the hypersurface equa-
tions (2.8)-(2.10) imposing the normalization condition of the 4-velocity.

2.3 Gravitational waves

One of the main advantages of the characteristic approach is the possibility of treating grav-
itational waves without approximation. By using a compactified coordinate x ∈ [0, 1] with
limx→1 r(x) =∞ to cover an asymptotically flat spacetime, we have future null infinity J + on
our grid, where we can unambiguously extract waveforms (see [45] for a recent review). Fig 2.2
shows a schematic Penrose diagram of spacetime of an isolated neutron star or a supernova
event. The figure includes two null slices, which start at the origin of the coordinate system
and extend to future null infinity. For a comparison, Fig 2.3 shows the same diagram, now
with two Cauchy slices. Extending these Cauchy slices to infinity, they would end at spacelike
infinity i0. However, this approach cannot be used for a numerical evolution of data forward
of time, as outgoing waves at large distances cannot be resolved any more. As a consequence,
the Cauchy approach has to deal with outer boundaries of the numerical domain. These outer
boundaries are difficult to handle - not only because of possible numerical instabilities - one
also has to ensure that no incoming gravitational radiation is created due to the boundary
treatment. Moreover, for the gravitational wave extraction in the Cauchy approach, one in
general linearizes the metric equations at the outer boundary around a background metric.

In contrast, having included J + on the grid, the characteristic approach can work with
gravitational waves in the fully nonlinear theory of general relativity. Hence, it does not suffer
from the problem most Cauchy numerical relativity codes have to deal with, i.e. extracting
approximate gravitational waveforms at a finite distance (for a comparison, see [63, 76]).

We will describe the gravitational wave extraction at null infinity in more detail in Sec. 2.3.1.
At the same time it is possible to establish the quadrupole radiation formula on the null cone,
which we describe in Sec. 2.3.2.
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i−

J +

i0

i+

Figure 2.2: Penrose diagram of a neutron star
spacetime. With the help of a conformal map-
ping, the physical spacetime is mapped onto
the compactified region defined by the trian-
gle. The dark pattern shows the part of space-
time filled by the neutron star. All timelike
curves, like the radius of the star, start at past
timelike infinity i− and end at future timelike
infinity i+. The diagonal lines correspond to
two null slices, which start at the origin and
end at future null infinity J +.

i−

J +

i0

i+

Figure 2.3: Same diagram as Fig. 2.2, but now
with two Cauchy slices. Every spacelike curve
extending to infinity ends at spatial infinity i0.
In the case of Cauchy slices, it is not possible
to extend the slices to (spatial) infinity in the
initial value problem. Boundary conditions
have to be prescribed at a finite distance.

2.3.1 Gravitational waves at null infinity

In the original paper of Bondi [18], it was shown how to identify the quantities related to the
total mass of spacetime (Bondi mass) and to the gravitational radiation (Bondi news) in an
asymptotic expansion of the metric fields at future null infinity. In what we describe here,
we follow the work of [75]. The main difference between the two approaches stems from the
definition of the coordinate systems. In contrast to the original work, where the coordinates
were chosen in such a way, that they reduce to Minkowski coordinates for large radii, we
have imposed regularity conditions at the vertex of the light cones. Imposing the regularity
conditions at the origin, which is necessary to work with regular spacetimes of a neutron star or
core collapse, the coordinate system does not reduce to a Minkowski coordinate system for large
radii. As a consequence, additional gauge terms appear in the definition of global quantities
read off at future null infinity.

Covering the entire radial domain from the origin to infinity with a light cone, we perform a
power series expansion of γ around future null infinity in inverse powers of the radial coordinate r

γ = K +
c

r
+O(r−2), (2.64)

where K = K(θ) and c = c(θ). Under this assumption the hypersurface equations (2.8)-(2.10)
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yield an asymptotic expansion [75] at infinity as

β = H +O(r−2), (2.65)

U = L+O(r−1), (2.66)

V = r2(L sin θ),θ/ sin θ + re2(H−K)[1 +K,θθ + 2(H,θ sin θ),θ/ sin θ + 3K,θ cot θ

+4(H,θ)
2 − 4H,θK,θ − 2(K,θ)

2]− 2e2HM +O(r−1), (2.67)

where H = H(θ), L = L(θ), and M = M(θ) denotes the Bondi mass aspect, which results
in the total mass of spacetime when integrated over the angular domain. A straightforward
determination of M(θ) at J + by simply reading of the corresponding coefficient in a numerical
simulation will be corrupted by numerical errors appearing in the leading, diverging terms in
Eq. (2.67). Therefore we follow the procedure proposed in [61] to determine the Bondi mass
of a numerical spacetime. We numerically solve the hypersurface equations for the new metric
variables (τ, µ) defined by

2τ = (1− y2)−1/2r3e2(γ−β)U,r + 2rβ,y − r2(1− y2)−1e2γ [(1− y2)e−2γ ],ry, (2.68)

2µ = −V + r2[(1− y2)1/2U ],y + r3e2β
[
1

2r
(1− y2)e−2γ

]

,yyr

+ e2β [(1− y2)e−2γτ ],y (2.69)

(see [61] for more details). The mass aspect enters the leading term of µ in an asymptotic
expansion at null infinity. More precisely, the Bondi mass MB can then be readily computed
as

MB =
1

4π

∫
ω−1e−2Hµ|x=1 sin θ dθ dφ, (2.70)

where ω denotes the conformal factor relating the two-geometry

dŝ2 = e2Kdθ2 + sin2 θe−2Kdφ2 (2.71)

to the two-geometry of a unit sphere

dŝ2B = dθ2B + sin2 θBdφ
2
B , (2.72)

i.e.

dŝ2B = ω2dŝ2. (2.73)

The total energy emitted by gravitational waves during the time interval [u, u+ du] in angular
directions [θ, θ + dθ]× [φ, φ+ dφ] is [75]

dE =
1

16π
ω−1e−2H

{
2c,u +

(sin θ c2 L),θ
sin θ c

+ e−2Kω sin θ
[ (e2Hω),θ
ω2 sin θ

]
,θ

}2

sin θdθdφdu.(2.74)

The quantities K, c,H and L (see Eqs. (2.64)-(2.66)) are read off from the metric variables at
J +, e.g. c = −(r2f2 dγdx )|x=1 (our coordinate transformations r = r(x) fulfill the requirement
that r2f2 is finite).

For the extraction of waveforms seen by a distant inertial observer, we have to transform
our coordinate system to a Bondi coordinate system (uB , yB). Only by introducing inertial
observers at infinity, it is possible to rigorously identify gravitational waves in the full theory of
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general relativity. Following [11] the Bondi coordinate time uB is related to the retarded time
u as

du =
1

ω
e−2HduB , (2.75)

whereas the angular Bondi coordinate yB = − cos(θB) can be calculated from

dy =
1

ω2
dyB . (2.76)

With the definition of the Bondi news function

N =
1

2

e−2H

ω2

{
2c,u +

(sin θ c2 L),θ
sin θ c

+ e−2Kω sin θ
[ (e2Hω),θ
ω2 sin θ

]
,θ

}
, (2.77)

and after integrating over angles φ = φB , one recovers the expression for the total energy
radiated according to Bondi [18]

dE =
1

2
N2dyB duB . (2.78)

This relation allows us to check global energy conservation

ec :=MB(u)−MB(u = 0) +

∫ u

0

∫ 1

−1

dE = 0. (2.79)

For the calculation of the Bondi mass, Eq. (2.70), as well as for the calculation of the Bondi
news, Eq. (2.77), we have to determine the conformal factor ω. Using the definition Eq. (2.73)
and the relation dφ = dφB , it can be shown that the coordinate yB = − cos(θB) reads

yB(y) = tanh

(
1

2

∫ y

−1

e2K − 1

1− ỹ2 dỹ +
1

2

∫ y

1

e2K − 1

1− ỹ2 dỹ +
∫ y

0

1

1− ỹ2 dỹ
)
. (2.80)

The choice of the integration constants in the integrals ensures regularity of yB , i.e. limy→±1yB =
±1 and for spacetimes with equatorial plane symmetry, yB is symmetric as well. The conformal
factor can be written as

ω =
2eK

(1 + y)e∆ + (1− y)e−∆
, (2.81)

where

∆(y) =
1

2

∫ y

−1

e2K − 1

1− ỹ2 dỹ +
1

2

∫ y

1

e2K − 1

1− ỹ2 dỹ. (2.82)

In order to show, that the conformal factor is regular, we write Eq. (2.82) as

∆(y) =

∫ y

−1

dỹ

∫ 1

0

dαe2αKK̂ +

∫ y

1

dỹ

∫ 1

0

dαe2αKK̂, (2.83)

where using Eq. (2.17) we have defined

K̂ =
K

sin2 θ
. (2.84)
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2.3.2 Approximate gravitational waves

The common approach to the description of gravitational waves for a fluid systems relies on
the quadrupole formula [87, 103]. The standard quadrupole formula is valid for weak sources
of gravitational waves under the assumptions of slow motion and wave lengths of the emitted
gravitational waves much smaller than the typical extension of the source. The requirement
that the sources of gravitational waves are weak includes the requirement that the gravitational
forces inside the source can be neglected. This first approximation can be extended based on
Post-Newtonian expansions (for a detailed description see the recent review [14] and references
therein, in particular [124]).
Winicour established in a series of papers [159, 160, 76, 161] that the quadrupole radiation
formula can be derived in the Newtonian limit of the characteristic field equations. Let Q be
the quadrupole moment transverse to the (θ, φ) direction

Q = qAqB
(xi
r

)
,A

(xj
r

)
,B
Qij , (2.85)

where

Qij =

∫
ρ(xixj − δijr2/3)d3x (2.86)

is the quadrupole tensor and qA, A = 2, 3, is the complex dyad for the unit sphere metric

dθ2 + sin2 θdφ2 = 2q(AqB)dx
AdxB . (2.87)

For our axisymmetric setup, Eq. (2.85) reads

Q = π sin2 θ

∫ R

0

dr′
∫ π

0

sin θ′dθ′r′4ρ
(3
2
cos2 θ′ − 1

2

)
. (2.88)

On the level of the quadrupole approximation [161] the quadrupole news N0 reads

N0 =
d3

du3B
Q. (2.89)

With our null foliation it is natural to evaluate the quadrupole moment (2.88) as a function
of retarded time, i.e., for the evaluation of the integral we completely relax the assumption of
slow motion.

It is well known [38] that the third numerical time derivative appearing in Eq. (2.89) (see
also [105]) can lead to severe numerical problems resulting in numerical noise which dominates
the quadrupole signal. Hence we make use of the fluid equations in the Newtonian limit to
eliminate one time derivative. Defining the “Newtonian velocities”

v1 = ur =
dr

dx
ux, (2.90)

v2 = ruθ = r
uy

sin θ
, (2.91)

the quadrupole radiation formula (2.89) can be rewritten with the use of the continuity equation
as the so-called first moment of momentum formula

N0 =
d2

du2B

(
π sin2 θ

∫ R

0

dr′
∫ π

0

sin θ′dθ′r′3ρ(v1(3 cos
2 θ′ − 1)− 3v2 sin θ

′ cos θ′)
)
. (2.92)
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In reference [38] it was further shown how to eliminate one additional time derivative making use
of the Euler equations. However, the resulting stress formula involves the Newtonian potential,
which is not easily defined in our null coordinate system. As the use of the first moment of
momentum formula gives already good results for the quadrupole news, we henceforth work
with Eqs. (2.89) and (2.92) for the estimate of the quadrupole radiation.
Based on the quadrupole approximation, it is straightforward to define the relation between
quadrupole strain (i.e. the gravitational wave signal) and the Bondi news. In the quadrupole
approximation, the total power radiated in gravitational waves reads [105]

dE

duB
=

1

32π

(dAE2
20

duB

)2
, (2.93)

AE2
20 arises as coefficient for the quadrupolar term in the expansion of the quadrupole strain h+

in spherical harmonics2

h+(uB) =
1

8

√
15

π
sin2 θ

AE2
20 (uB)

R
(2.94)

and can be obtained in the quadrupole approximation as

AE2
20 =

d2

du2B
ME2

20 , (2.95)

where

ME2
20 sin2 θ = 16

√
π

15
Q. (2.96)

R denotes the distance from the observer to the source. Comparing Eqs. (2.93) and (2.78) we
find for the quadrupole strain (with the identification θB = θ and under the assumption that
the news function has angular dependence N ∝ sin2 θ)

h+(uB) =
2

R

(∫ uB

0

Ndu′B + const
)
. (2.97)

As mentioned above, the quadrupole formula is only the first term in a Post-Newtonian expan-
sion for the gravitational radiation. The next, non-vanishing contribution to the gravitational
strain for our axisymmetric configuration is the hexadecapole contribution, which reads [105]

hHD+ =
9

8

√
5

π
sin2 θ(1− 7

6
sin2 θ)

AE2
40

R
. (2.98)

The quantity AE2
40 is defined as

AE2
40 =

d4

du4B
ME2

40 , (2.99)

ME2
40 =

√
5

63
π

3
2

∫ R

0

dr′
∫ π

0

sin θ′dθ′r′6ρ(7 cos4 θ′ − 6 cos2 θ′ +
3

5
), (2.100)

2Our notation follows the work [105]. E2 denotes the electric part, 20 denotes the l = 2, m = 0 quadrupolar
part in an expansion of the gravitational wave strain in tensor harmonics.
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or alternatively

AE2
40 =

d4

du3B
NE2

40 , (2.101)

NE2
40 =

4
√
5

63
π

3
2

∫ R

0

dr′
∫ π

0

sin θ‘dθ′r′5ρ
(
v1(7 cos

4 θ′ − 6 cos2 θ′ +
3

5
)

+v2(3− 7 cos2 θ′) sin θ′ cos θ′
)
. (2.102)
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Chapter 3

The numerical implementation

We use an equidistant grid covering the numerical domain (x, y) ∈ [0, 1] × [−1, 1] with grid
spacings ∆x = 1/Nx, ∆y = 1/Ny, where Nx + 1 is the number of grid points in the radial
direction and 2Ny + 1 is the number of grid points in the angular direction (Ny is the number
of angular grid zones per hemisphere). All variables are defined on the grid (un, xi, yj) =

i+2

i+1

i

i−1

i−2

i−3

j−3 j−2 j−1 j j+1 j+2 j+3

angular coordinate y

ra
di

al
 c

oo
rd

in
at

e 
x ∆x

∆y

Figure 3.1: Distribution of the spatial grid cells. The vertical lines denote the curves of constant
y, the horizontal lines the curves of constant x. All fluid quantities and the metric fields γ, β,
S (and µ) are defined at the cross section of two solid lines. The dashed lines correspond to
the cell interfaces.

(n∆u, i∆x, j∆y) (see Fig. 3.1), except for the quantities Û and τ which are defined on a
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staggered grid (un, xi+1/2, yj+1/2) = (n∆u, (i+ 1/2)∆x, (j + 1/2)∆y). As it was shown by [60]
for an axisymmetric characteristic code in vacuum, the use of a staggered grid is necessary for
stability. This result carries over to the general relativistic matter system, since the matter
terms enter the metric equations only on the level of non-principal terms.

Fig. 3.2 shows a schematic flow chart of

Initialization of the grid

Initial data

Courant condition

Fluid evolution

Metric evolution

Recovery of the fluid

Gravitational waves

final
evolution time

reached?

y

n

Figure 3.2: Flow chart sketching the numer-
ical implementation for the evolution of the
coupled general relativistic fluid system.

our numerical implementation. In a first step,
the numerical grid as shown in Fig. 3.1 has to
be created. Having the grid at hand, the initial
data can be constructed, which is going to be
evolved forward in time. In order to fulfill the
stability requirements of the explicit numerical
algorithms, we have to calculate the Courant
conditions (i.e. the maximal time step) for
our data. Concerning the time update, we
first evolve the fluid variables forward in time.
Since we use high-resolution shock-capturing
schemes for the fluid update, we solve the equa-
tions not directly for the primitive quantities
w = (ρ, ux, uy, ε), but for the conserved quanti-
ties (see Sec. 2.2.1). Having obtained the con-
served quantities at the new time step, we solve
for the metric variables at the new time slice.
As the evolution of the metric equations re-
quires the knowledge the primitive variables,
we have to recover the latter from the metric

and conserved quantities at the new time slice solving a nonlinear system of algebraic equations.
In the last step of the evolution loop, the physical information, in particular the gravitational
wave content of the data, can be extracted. We repeat the evolution in time, until the final
time has been reached.

In the following sections, we describe the different parts of the numerical implementation in
more detail.

3.1 Implementation of the fluid equations: High-resolution

shock-capturing methods

Having written the equations of general relativistic fluid dynamics in the form of Eqs. (2.29)-
(2.32), they form of first order hyperbolic system of balance laws, or - in the absence of source
terms - a first order hyperbolic system of conservation laws. There is a detailed mathemati-
cal theory about the well-posedness of systems of conservation laws [51] and a detailed theory
about their numerical solution [90, 52]. The explicit knowledge of the characteristic informa-
tion of hyperbolic systems of conservation laws provides the mathematical framework for their
numerical integration by means of exact or approximate Riemann solvers. These solvers are
based on the solution of local Riemann problems, i.e the solution of discontinuous initial data
together with the system of conservation laws. Hence, featuring a shock capturing property
by construction, they are very well suited to deal with weak solutions (e.g. shocks) as they
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are encountered in astrophysical situations like the supernova core collapse. High-resolution
shock-capturing schemes are capable of resolving steep gradients and discontinuous data, while
providing a high order of accuracy in smooth parts of the solution. The numerical order of
a particular high-resolution shock-capturing scheme depends on the procedure how the local
Riemann problems are constructed from a smooth solution. This procedure is the so-called
reconstruction scheme.

In our implementation of the fluid equations we closely follow the work of Papadopoulos
and Font [117] (see also [40]). Making use of the hyperbolic mathematical character of the
fluid equations we construct a (local) Riemann problem at each cell-interface of the numerical
grid. At cell i, j the state-vector U is updated in time (from un to un+1) using a conservative
algorithm

Un+1
i,j = Un

i,j − ∆u

∆x
(F̂xi+1/2,j − F̂xi−1/2,j)

− ∆u

∆y
(F̂yi,j+1/2 − F̂

y
i,j−1/2)

+ ∆uSi,j , (3.1)

where the numerical fluxes, F̂x and F̂y, are evaluated at the cell interfaces according to some
particular exact or approximate Riemann solver or flux-formula which makes explicit use of the
full spectral decomposition of the system. For our particular formulation of the hydrodynamic
equations such characteristic information was presented in [117, 119]. The state vector is

U = (
√−g)×




Tuu

Tux

Tuy
Ju


 . (3.2)

The parentheses around the square root of the metric determinant are a visual reminder that
we have included this term only in some cases (see the discussion in Sec 2.2.1). We note, as
it was explicitly demonstrated in [117], that the eigenvalues and eigenvectors needed for the
computation of the local Riemann problems are not affected by the inclusion or omission of the
metric determinant in the above definition of the state vector. We have implemented a variety
of reconstruction schemes and two approximate Riemann solvers.

3.1.1 Reconstruction schemes

Starting with initial dataU for the fluid variables at time un, we set up directional local Riemann
problems at each cell interface by splitting up the two dimensional data into one dimensional
data sets along the curves y = const and x = const, respectively. In the following, let us restrict
the presentation to the description of the local Riemann problems along the curves y = const.
With the location of the cell centers defined by xi, the local Riemann problems are defined
at interfaces xi+ 1

2
(see Fig. 3.3). With the data of the fluid variables U(x) along the curve

y = const, we define the reconstructed quantities of the fluid fields at xi+ 1
2
as UR

i and UL
i+1,

where the upper indices R denotes right (to indicate the location of the interface with respect
to the grid center xi) and L left, respectively. For the explicit definition of the reconstructed
quantities, see the different reconstruction schemes below.
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Ui−1 Ui+1

UR
i UL

i+1UL
iUR

i−1

i i+ 1i+ 1
2i− 1

2i− 1

Ui

Figure 3.3: Definition of the reconstructed quantities at the interfaces UR
i and UL

i+1 defining a
local Riemann problem at xi+ 1

2
.

Godunov scheme

The simplest reconstruction scheme goes back to Godunov [53]. Continuous data, which is
going to be evolved in time, is split into local Riemann problems defining the quantities at the
cell interfaces by the requirement, that the data are constant inside each cell (see Fig. 3.4), i.e.

UR
i = Ui, (3.3)

UL
i+1 = Ui+1. (3.4)

We use the term Godunov scheme only for the piecewise constant reconstruction, in contrast

i+2x x x x

discontinuous solution

continuous solution

i−1 i i+1

Figure 3.4: Godunov’s scheme: At every interface xi− 1
2
, xi+ 1

2
, xi+ 3

2
, a local Riemann problem

is set up. The evolution of these data forward in time involves three elementary waves: shocks,
rarefaction waves and contact discontinuities.

to the original paper [53], where in addition an exact Riemann solver was presented.

MUSCL scheme

In contrast to the Godunov scheme, which is only first order accurate (even in smooth, monotonous
parts of the flow), the MUSCL scheme (Monotonic Upstream Scheme for Conservation laws)
is second order accurate [150]. The quantities at the interface UR and UL are calculated from
the requirement

UR
i = Ui + σi(xi+ 1

2
− xi), (3.5)

UL
i+1 = Ui+1 + σi+1(xi+ 1

2
− xi+1), (3.6)

36



3.1. IMPLEMENTATION OF THE FLUID EQUATIONS: HIGH-RESOLUTION

SHOCK-CAPTURING METHODS

with linear slope

σi = minmod
(Ui −Ui−1

∆x
,
Ui+1 −Ui

∆x

)
. (3.7)

Here, the function “minmod” is defined as

minmod(a, b) =





a if |a| ≤ |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 if ab ≤ 0.

(3.8)

As a consequence of the linear reconstruction, the MUSCL reconstruction scheme is second
order accurate in smooth, monotonous parts of the flow.

PPM scheme

The PPM method (piecewise parabolic method) by Colella and Woodward [27] is widely used
in hydrodynamical simulations with the Euler equations. We have also implemented it for
our general relativistic fluid system. The PPM scheme is third order accurate in smooth,
monotonous parts of the flow. We refrain from presenting the details of the PPM scheme here,
the interested reader is referred to the original work [27].

MC scheme

The MC slope limiter (monotonized central-difference slope limiter) by van Leer [149] is second-
order accurate in smooth, monotonous parts of the flow. It uses a linear reconstruction scheme
with slope

σi = MC
(Ui −Ui−1

∆x
,
Ui+1 −Ui

∆x

)
, (3.9)

where the function “MC” is defined as

MC(a, b) =

{
min(|2a|, |2b|, |c|)× sgn(a) if ab > 0,

0 if ab ≤ 0,
(3.10)

with c = a+b
2 .

We have mainly used the MC scheme for our numerical simulations of general relativistic
hydrodynamics, for the following reasons: The shock capturing properties and the accuracy of
the MC scheme are superior to that of the Godunov and MUSCL schemes, and comparable
to that of the PPM scheme (for an independent comparison, see [42]). Comparing it to the
PPM scheme, the MC scheme is substantially simpler and thus more efficient. In our numerical
simulations, the advantage of the PPM scheme of being third order accurate in contrast to
second order accurate for smooth parts of the flow does not pay off, as the metric equations,
and hence the global coupled fluid-metric-equations, are only solved to second order accuracy.

3.1.2 Approximate Riemann solvers

For the time update of the fluid equations (3.1), which are based on the local Riemann problem
with initial data

U =

{
UR
i for xi ≤ x < xi+ 1

2
,

UL
i+1 for xi+ 1

2
≤ x ≤ xi+1,

(3.11)
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(see Fig. 3.3) the numerical fluxes have to be defined. These numerical fluxes include numerical
viscosity terms needed for the evolution of discontinuous data.

The HLL solver

The Harten, Lax, van Leer (HLL) solver [69], later improved by Einfeldt [35], defines the
numerical viscosity term as a function of the characteristic speeds. It uses a single intermediate
state for every local Riemann problem. The numerical flux function in the coordinate direction
j reads

F̂
j
HLL =

ajR+ FjL − ajL− FjR + ajR+ ajL− (UR −UL)

ajR+ − ajL−
. (3.12)

Here FjL and FjR denote the fluxes evaluated at the right and left state of the interface.
Furthermore, we have

ajL− = min{0, λjL1 , ..., λjL4 }, (3.13)

ajR+ = max{0, λjR1 , ..., λjR4 }, (3.14)

with characteristic speeds λjk. Theses characteristic speeds are [117]

(λj1, ..., λ
j
4) = (λje, λ

j
e, λ

j
+, λ

j
−) (3.15)

with

λje =
uj

uu
, (3.16)

λx± =
1

1− c2s

(
− gux

(uu)2
c2s +

ux

uu
(1− c2s)

±cs
√

(cs
gux

(uu)2
)2 + (1− c2s)(

gxx

(uu)2
− 2

guxux

(uu)3
)
)
. (3.17)

The Marquina solver

The numerical flux according to Marquina [33] in the coordinate direction j is defined as

F̂
j
Marq =

1

2
(FjR + FjL −∆qj) (3.18)

where the viscosity term ∆qj reads

∆qj = RjR|Λ|jmaxL
jRUR −RjL|Λ|jmaxL

jLUL. (3.19)

The matrix |Λ|jmax involves the characteristic speeds described in the last section and reads
explicitly

|Λ|jmax = diag(max(λjR1 , λjL1 ), ...,max(λjR4 , λjL4 )). (3.20)

Rj and Lj are the matrices of right and left eigenvectors of the Jacobi matrix ∂Fj

∂U , i.e.

(
∂Fj

∂U
− λjI)Rj = 0. (3.21)
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The right eigenvectors are explicitly given in [117]. The state vector there Û, however, differs
slightly from our definition. It can be transformed by the linear transformation

U = GÛ (3.22)

with the matrix G, which differs from the unity matrix only in the components

(G)yu = gyu, (3.23)

(G)yy = gyy. (3.24)

Explicitly, the matrix of right eigenvectors (R = GR̂) takes in the x-direction the form

Rx =




uu uyu
u uu − Λx

+

uu g
ux uu − Λx

−

uu g
ux

ux uyu
x ux +

Λx
+

(uu)2 (u
xgux − uugxx) ux +

Λx
−

(uu)2 (u
xgux − uugxx)

uy uyuy + gyy uy uy
1
α uy(

1
h − 1

α )
1
h

1
h


 (3.25)

and in the y-direction the form

Ry =




uu uxu
u uu uu

ux uxu
x + 1 ux +

Λy
+

(uu)2 (u
ygux − uugxy) ux +

Λy
−

(uu)2 (u
ygux − uugxy)

uy uxuy uy −
Λy

+

uu uy −
Λy

+

uu

1
α ux(

1
h − 1

α )
1
h

1
h


 . (3.26)

Following the work of [117], we have used the notation

α = 1 + ε− ρ
∂p
∂ρ |ε
∂p
∂ε |ρ

(3.27)

and

Λx± =
c2s

(u
x

uu − λ±)(1− c2s)− c2s gux

(uu)2

, (3.28)

Λy± =
c2s

(u
x

uu − λ±)(1− c2s)
. (3.29)

From the matrix of right eigenvectors, we calculate the matrix of left eigenvectors by matrix
inversion using the linear algebra package of MAPLE.

3.1.3 The recovery of the primitive variables

After every time step, we have to calculate the primitive variables w = (ρ, ux, uy, ε) from
the conserved quantities and the metric variables. The basic concepts for this recovery were
presented in [117]. Defining the tensors Ja = ρua and Sab = gcdT

acT bd, a short calculation
using the normalization condition of the four velocity results in

Suu =
(p
ρ
− 1− ε

)(p
ρ
+ 1 + ε

)
(Ju)2 + p2guu. (3.30)
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Assuming p = ρE(h) and using the definition of stress energy T uu, a nonlinear equation for the
enthalpy h can be derived,

(Tuu)2Suu − h(2E(h)− h)(Ju)2(Tuu)2 − (Suu − h(E(h)− h)(Ju)2)2guu = 0. (3.31)

The recovery simplifies in our null coordinate system, where guu = 0. Note, that Ju and Tuu

are, up to the square root of the metric determinant, conserved quantities.

The recovery for the ideal fluid EoS

For the ideal fluid EoS (2.50) we have

E(h) =
Γ− 1

Γ
(h− 1). (3.32)

For this choice and our null coordinate system guu = 0, Eq. (3.31) simplifies to a quadratic
equation in h,

Γ− 2

Γ
h2 − 2

Γ− 1

Γ
h =

Suu

(Ju)2
, (3.33)

and can thus be solved analytically. Once having the enthalpy at hand, it is easy to solve for
the remaining primitive quantities. We solve for the primitive variables ε, ρ, ux and uy and
then use the normalization condition to determine uu.

The recovery for the polytropic EoS

As we have shown in Sec. 2.2.2, the 4 conserved quantities are no longer independent when
imposing the polytropic EoS (2.52) and the ideal fluid EoS (2.50). As a consequence the
general procedure for the recovery cannot be used. We choose the conserved quantities Ju,
Tuu, Tuy as dynamic fields, from which we recover the primitive variables. For the polytropic

EoS, the enthalpy is h = 1 + κ Γ
Γ−1ρ

Γ−1. We can thus define the implicit equation to recover
the rest mass density ρ,

fimp(ρ) := 1 + κ
Γ

Γ− 1
ρΓ−1 − Tuu

(Ju)2
ρ = 0. (3.34)

In the special case Γ = 2, this equation can be solved analytically. For all other values of Γ we
solve it with the help of the Newton-Raphson procedure. With an initial guess ρ∗ (where we
use the value of the rest mass density on the previous time slice), we get an improved result for
the rest mass density by

ρ = ρ∗ − fimp(ρ
∗)

f ′imp(ρ
∗)
. (3.35)

The recovery for the hybrid EoS

For the hybrid EoS, the recovery algorithm is slightly more complicated. Let F (ρ, ε) = p
ρ . From

Eqs. (3.30), (2.60) and the definition of the specific enthalpy h we obtain the 3 equations for
the 3 unknowns F , ρ and ε

F (ρ, ε) =
√
L+ (1 + ε)2, (3.36)

F (ρ, ε) = (Γth − 1)ε+G(ρ), (3.37)

ρ = H(1 + ε+ F (ρ, ε)). (3.38)
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In these equations we made use of the abbreviations

L =
Suu

(Ju)2
, (3.39)

G(ρ) = κ
(
1− Γth − 1

Γ− 1

)
ρΓ−1 − (Γth − 1)(Γ− Γ1)

(Γ2 − 1)(Γ1 − 1)
κρΓ−1

n , (3.40)

H =
(Ju)2

Tuu
. (3.41)

From Eqs. (3.36)-(3.38) we deduce a single implicit equation for the rest mass density ρ

fimp(ρ) :=
( ρ
H

)2
− 2

ρ

H
(1 + ε)− L = 0, (3.42)

where we consider the internal energy as function of ρ

ε =
1

Γth

( ρ
H
− (1 +G(ρ))

)
. (3.43)

Again, we solve Eq. (3.42) with a Newton-Raphson method.

3.2 Implementation of the metric equations

Our numerical implementation of the metric equations relies on experience of solving the vacuum
field equations of general relativity in the characteristic approach [163], and in particular on
[60]. For the presentation here, we focus the discussion on the necessary adaptations and
generalizations.

3.2.1 Solving the wave equation

For the time update of the metric field γ̂, we have implemented two different algorithms to solve
the wave equation (2.24). The first algorithm, which is used almost everywhere in this work, is
the so-called parallelogram algorithm [60]. The second algorithm is due to Lehner [89]. In this
second approach, dissipation can be included. Hence, we will call it dissipative algorithm.

The parallelogram algorithm

In the parallelogram algorithm, the time update for the metric field γ̂ is based on a parallel-
ogram consisting of ingoing and outgoing characteristics [64, 60, 162]. We closely follow the
implementation of [60] to which the reader is referred for more details. In contrast to this work,
however, the wave equation is formulated for a single quantity in the whole numerical domain,
which ensures regularity at future null infinity J +, i.e. in the limit r →∞. This regularization
is accomplished by writing the parallelogram identity in terms of the quantity

Φ = ψ̂f, (3.44)

where the quantities on the right hand side were defined in Eq. (2.23) and Eq. (2.13). Explicitly,
for a parallelogram Σ with left upper corner P , right upper corner Q, left lower corner R and
right lower corner S (see Fig. 3.5) the algorithm reduces to
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Q
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S

R
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i+1i

B
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u

Σ

Figure 3.5: Parallelogram PQRS consisting of ingoing and outgoing light cones. We have
displayed the outgoing light cones at two different coordinate values u, A and B, foliating our
spacetime. For simplicity, all null lines have angles 45◦. In addition to the parallelogram we
have marked radial grid points at i and i+ 1.

ΦQ =
1

4
∆u rQf |Q Ĥc +

f |Q
f |P

(ΦP −
1

4
∆u rP f |P Ĥc)

+
f |Q
f |S

(ΦS +
1

4
∆u rSf |S Ĥc)−

f |Q
f |R

(ΦR +
1

4
∆u rRf |R Ĥc). (3.45)

Using suitable interpolation techniques one obtains the field Φi+1 at the new time level to
second order accuracy. In the above equation Ĥc denotes the expression defined in Eq. (2.27)
approximated to second order accuracy at the center of the parallelogram . The regularity of
Eq. (3.45) can be easily seen for our compactified grids

r(x) = a
x

1− xb , b ≥ 1, (3.46)

as
rf =

√
a

x√
1 + (b− 1)xb

. (3.47)

Moreover, as limr→∞ f = 0, regularity of the quotient
f |Q
f |S

has to be established (note that f |P
and f |R are always finite). To this aim, we observe that

f |Q
f |S

=
1− xQ
1− xS

∑b−1
i=0 x

i
Q∑b−1

j=0 x
j
S

√
1 + (b− 1)xbS√
1 + (b− 1)xbQ

. (3.48)
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All the terms on the right hand side of Eq. (3.48) are explicitly regular for x → 1 (r → ∞),
except for the first factor which is regular according to the discussion in [60]. Similar results
hold for the grid function

r(x) = a tan
(π
2
x
)
. (3.49)

The dissipative algorithm

Starting with the wave equation (2.24) in the form

2ψ̂,ux −
(V
r
f2
)
,x
ψ̂,x −

(V
r
f2
)
ψ̂,xx = f−2Ĥ (3.50)

we discretize it with the stencils proposed in [89]. Evaluating the derivatives at the time interface
n+ 1

2 and radial interface i− 1
2 to second order accuracy, we obtain

ψ̂,ux

∣∣∣
n+ 1

2

i− 1
2

=
ψ̂n+1
i − ψ̂n+1

i−1 − (1− ε̂)(ψ̂ni − ψ̂ni−1)− 1
3 ε̂(ψ̂

n
i+1 − ψ̂ni−2)

∆u ∆x
, (3.51)

ψ̂,x

∣∣∣
n+ 1

2

i− 1
2

=
ψ̂n+1
i − ψ̂n+1

i−1 + ψ̂ni − ψ̂ni−1

2∆x
, (3.52)

ψ̂,xx

∣∣∣
n+ 1

2

i− 1
2

=
ψ̂n+1
i − 2ψ̂n+1

i−1 + ψ̂n+1
i−2 + ψ̂ni+1 − 2ψ̂ni + ψ̂ni−1

2(∆x)2
. (3.53)

We have included a parameter ε̂ describing the numerical dissipation. For ε̂ = 0, the numerical
dissipation is switched off. As we have not taken special care to regularize the wave equation
here, we cannot use the described approach in the neighborhood of future null infinity. Instead,
we use the parallelogram algorithm at J +.

3.2.2 Solving the hypersurface equations

We discretize the hypersurface equation (2.19) (and similarly Eq. (2.21)) as

βi,j = βi−1,j +Hβi−1/2,j∆x, (3.54)

where Hβ denotes the right hand side of Eq. (2.19). To solve the hypersurface equation (2.20),
we discretize the alternative equation

2xf
(
r4f4Ûx

)
,x4

+ r2f2
(
−1

2

(
f2
)
,x

r2

x2
f2
) 1

2

− r
2

x2
(
f2
) 3

2 (β,x − γ̂,xȳ) Û,x =
r2

x2
f3e2(β−ȳγ̂)HU , (3.55)

where the right hand side of Eq. (2.20) has been denoted by 2r2HU . The derivative ∂/∂x4 =
1

4x3 ∂/∂x was introduced to ensure regularity at the origin.
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3.2.3 The Courant condition

In order to obtain stability in our explicit algorithms when solving the fluid and metric equations
they have to fulfill the Courant-Friedrichs-Levy condition - the numerical domain of dependence
must include the analytical domain of dependence. This condition limits the maximal time step
allowed in each time update. Calculating the characteristic speeds for the fluid system, the fluid
update sets a limit on the time step as

∆u ≤ min(c1∆x, c2∆y), (3.56)

where c1 and c2 are constants and the minimum is calculated for the entire fluid grid. For
the metric update, it can be shown [115] that the evolution near the origin sets the stricter
theoretical limit

∆u = c3∆r(∆y)
2, (3.57)

with c3 = 0.5. In numerical experiments we found, however, that with our coupled code
c3 ≈ 10, in good agreement with the result c3 = 8 reported in [115]. With this result the
time step restriction from Eq. (3.57) is not much stronger than the time step restriction from
Eq. (3.56), at least for the angular resolutions we can afford. As a consequence, it is not
necessary to implement implicit methods for the metric update.

3.2.4 The origin treatment

As for the vacuum equations the origin of coordinates, where we assume that the coordinate
system is a local Fermi system1, needs special care. We establish the regularity conditions by
performing a power-series expansion of the metric and fluid variables at the origin. The main
change in the falloff behavior of the metric variables due to the presence of the fluid is in β.
We impose a falloff behavior of the metric field γ̂ as

γ̂ = a r2 + b r3, (3.58)

where a and b are constants. At the origin the radial dependence of β is β = O(r2), instead
of β = O(r4) for the vacuum case (from Eq. (2.19)). To ensure regularity of the fluid at the
origin, we have to impose [75]

ur = D + Ey +O(r), (3.59)

uy = Er +O(r2), (3.60)

where D and E fulfill −D2 + E2 = −1. With the definitions (the leading terms of the power-
series expansion can be extracted from the hypersurface equations)

β =
r2

8
κρh(D + Ey)2 + F (y)r3, (3.61)

Û = 4y(ar +
3

5
br2) +

1

2
κρh(D + Ey)Er + C(y)r2, (3.62)

κρhuyuy = κρhE2r2 +G(y)r3, (3.63)

1In a Fermi normal coordinate system, the metric takes Minkowski form along the entire world line (e.g.
r = 0), see [103].
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the quadratic terms in r in the wave equation reduce to an equation for a

a,u =
6

5
b− 1

3
C,y +

1

6
F,yy +

1

12
G. (3.64)

(In the absence of matter this reduces to a,u = 6
5b, see [60]). We extract a, b, C, F and G at

the old time slice and then solve Eq. (3.64) to obtain a at the new time slice. Inserting this
value into the leading order in r of Eq. (3.58) and Eq. (3.62), we calculate γ̂ and Û at the two
first grid points, which then allows us to start the marching algorithms described above for the
metric update.

3.3 The fluid metric coupling

In the following, we describe the order of the time update from light cone A at time u to light
cone B at time u + ∆u, as shown in Fig. 3.5. Let us assume that we know the primitive and
conserved fluid variables, and the metric quantities γ̂, β, Û and S on the light cone A. In a
first step we globally determine the conserved fluid variables on B. To this aim, we determine
the fluxes and sources of the fluid system on A which allows us to obtain the conserved fluid
variables on B according to Eq. (3.1). For the metric update, in contrast, we march from
the origin to the exterior of the light cone B, solving the wave and hypersurface equations.
Having previously obtained the variables up to grid point i (either from the specific boundary
treatment at the origin or during the marching process), we first determine γ̂ at grid point
i+ 1. In a second step we solve for β, Û and S at i+ 1 in that particular order, recovering the
primitive variables with the metric thus obtained. Since the hypersurface integration for the
metric depends on the primitive variables at the grid point to be determined, we iterate the
hypersurface and recovery algorithm until convergence at each radial location.

In order to obtain a second order accurate evolution in time, we perform the time update
with the second order Runge-Kutta algorithm of Shu and Osher [137].

3.4 Gravitational wave extraction

The theory of gravitational waves was already developed in detail in Sec. 2.3. The numerical
integration of the relevant equations closely follows the description there.

3.4.1 Numerical extraction of the Bondi news

In our numerical implementation we use a standard second order integration for the double
integrals in Eq. (2.83) and we determine the conformal factor according to Eq. (2.81) afterwards.
Moreover, to solve the hypersurface equations for the auxiliary variables τ and µ defined in
Eqs. (2.68)-(2.69) (µ is needed for the Bondi mass, Eq. (2.70)), we also use a second order
discretization. By simply reading off the metric values at J +, it is finally possible to determine
the Bondi mass and news.

3.4.2 Numerical extraction of approximate gravitational waves

If we introduce our angular coordinate y = − cos θ in the numerical calculation of the multipole
moments, i.e. in Eqs. (2.88), (2.92) and in Eqs. (2.100), (2.102), we could simply make use of
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a standard second order discretization scheme for the numerical integration. However, in our
numerical analysis, we found much faster convergence, if we identify in the integrals over the
angle the Legendre polynomials

P (2)(y) =
1

2
(3y2 − 1), (3.65)

P (4)(y) =
5

8
(7y4 − 6y2 +

3

5
) (3.66)

and integrate the corresponding terms separately. Making use of a relation between Legendre
polynomials of degree l, l + 1 and l − 1,

P (l)(y) =
1

2l + 1

(dP (l+1)(y)

dy
− dP (l−1)(y)

dy

)
, (3.67)

we discretize the angular integration as

∫ 1

−1

dyf(r, y)P (l)(y) ≈
j=Ny−1∑

j=−Ny

f(r, yj+ 1
2
)

1

2l + 1

(
P (l+1)(y)

∣∣∣
yj+1

yj

− P (l−1)(y)
∣∣∣
yj+1

yj

)
, (3.68)

where y−Ny
= −1 and yNy

= 1.
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Chapter 4

Code tests

We have performed various tests aimed at checking the implementation and the accuracy of the
numerical code. To the best of our knowledge we do not know of any regular exact (analytic)
solution of the Einstein equations in axisymmetry with a non-vanishing perfect fluid matter
field. Hence, it is even more important to check the different regimes of our implementation.
Moreover, to test the overall implementation of the code we examine the global conservation
properties which can be rigorously established due to the compactification of spacetime.

4.1 Tests for the metric solver

Our numerical code is based on the vacuum code of [60]. However, as we have generalized the
coordinate system, we used two vacuum tests to establish the correctness of our metric solver.
Going to the linearized regime around flat space time, one can find exact (linear) solutions of
the metric equations. These are used as a testbed for our nonlinear code, when we study small
amplitude gravitational waves in Sec. 4.1.1. In addition, there is an exact solution for the full
vacuum equations which was already used to check the vacuum code of [60]. We use it here
again for our generalized implementation.

4.1.1 Linearized gravitational waves

Linearizing the vacuum Einstein equations around Minkowski space, global analytic multipole
solutions of the field equations can be found [115]. For example, the quadrupole solution reads
explicitly

γ̂ = 8A
( r

r + 1

)2 u r
r+1 − u− 1

(u+ 1)4
(
u r
r+1 − r

r+1 − u− 1
)3 , (4.1)

where A is the free amplitude of the linearized equations. As we are going to use this solution
as a testbed for our fully nonlinear metric solver, we have to ensure that A is small. We choose
A = −10−4, for which we can reproduce the linear solution with our code (see Fig. 4.1). Similar
results hold for higher multipoles.
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Figure 4.1: For a low amplitude gravitational wave, we reproduce the linear wave solution with
our fully nonlinear evolution to second order accuracy. Upper Panel: Time evolution of the
gravitational wave shear γ̂ at future null infinity (x = 1) for a l = 2 linearized wave. Lower
Panel: Difference of the gravitational wave shear γ̂ taken from our numerical simulations and
the exact linear result. The solid (dashed and dotted-dashed) line corresponds to a resolution
(Nx, Ny) = (100, 8) ((Nx, Ny) = (150, 12) and (Nx, Ny) = (200, 16)).

4.1.2 SIMPLE

Following the work of [60] the Bondi metric (2.5) with metric functions

eγ =
1

2
(1 + Σ), (4.2)

e2β =
(1 + Σ)2

4Σ
, (4.3)

U = −a
2g cos θ

Σ
, (4.4)

V =
r

Σ
(2a2g2 − a2r2 + 1), (4.5)

is a solution of the vacuum field equations for

Σ =
√

1 + a2g2, (4.6)

g = r sin θ, (4.7)

where a is a constant. In the following, we choose a = 0.1. Being cylindrically symmetric,
the above solution, which is called “SIMPLE”, is clearly not asymptotically flat. Hence, the
solution cannot be used with a compactified grid. Instead, we impose boundary conditions at
a finite radius r, thus restricting the solution to a compact region which includes the vertex at
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r = 0. We define a suitable L2-norm to measure deviations from the exact solution by

norm(r) =
(∫ 1

−1

4∑

k=1

(fk(r, y)− fek(r, y))2dy
) 1

2

. (4.8)

Here, the summation includes the four metric fields fk ∈ (β, γ, S, U), fek denotes the exact
solution. Using this norm we have checked that our metric solver is second order convergent
(see Fig. 4.2).

0.0 2.0 4.0 6.0 8.0 10.0
radial coordinate r

1e−07

1e−06

1e−05

1e−04

1e−03

no
rm

24 gp
48 gp
96 gp
192 gp

Figure 4.2: Convergence test for the exact vacuum solution SIMPLE. Plotted is a local norm
measuring the deviation from the analytic solution (see text for more details) as a function of
the radial coordinate r at time u = 1 for different resolutions. In the diagram, we have indicated
the number of radial zones Nx used, the number of angular zones was chosen as Ny = 1

3Nx.
The results show that our metric solver is second order convergent.

4.2 Tests concerning relativistic stars

In this section we describe tests of our code in dealing with relativistic stars. In the first
subsection, we consider spherically symmetric equilibrium stars. We mention, that the code’s
ability to maintain spherical symmetry for spherically symmetric initial data is a first important
test. The following subsection describes the conservation properties of a strongly perturbed,
aspherical relativistic star.

4.2.1 Equilibrium relativistic stars

In order to obtain initial data for equilibrium relativistic stars, we solve the TOV equa-
tions (2.62)-(2.63) for a polytropic EoS (2.52).
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Numerical stability of stable relativistic stars

We experimented with different polytropic indices in the polytropic EoS. In what we describe
here, we restrict ourselves to a particular model, for which the equilibrium properties are: an
adiabatic exponent Γ = 2 (i.e. a polytropic index n = 1), a polytropic constant κ = 100 and a
central density ρc = 1.28× 10−3 (in our units c = G =M¯ = 1). The equilibrium model has a
total mass M = 1.4M¯. The time light needs to travel across this neutron star corresponds to
about 17 units in our coordinate time u. With complete initial data at hand we evolve stable
equilibrium configurations in time. Both, for finite grids which only cover the star, as well
as for compactified grids, where we cover the star and its entire exterior spacetime, the code
is able to maintain the initial equilibrium profiles of the star, for times much longer than the
light-crossing time. As a typical example Fig 4.3 shows the density profile of the neutron star at
various integration times up to a final evolution time u = 10000 for a small resolution run with
50 radial zones. Even though this corresponds to a very long-term, fully general relativistic
hydrodynamic evolution, the density profile almost does not change, the equilibrium of the star
being maintained to very good precision. The upper line corresponds to the initial model, the
lowest line to the density profile at the time u = 10000, which corresponds to roughly 590
light-crossing times. Due to the discretization error, the star is excited to oscillate in its radial
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Figure 4.3: Density profile of the neutron star
at the initial and subsequent times. The final
time corresponds to u = 10000 (roughly 590
light-crossing times). The equilibrium model
is maintained to a very good precision after
such very long integration times.
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Figure 4.4: Radial velocity of the star, aver-
aged over the radial coordinate, as a function
of time. In order to resolve the oscillation
pattern in the plot, the final evolution time
is u = 1000, which corresponds to about 59
light-crossing times.

modes of pulsations. The amplitude of these radial oscillations does not increase during the
evolution, which reflects the long-term stability of our numerical implementation (see Fig. 4.4).
For similar evolutions, the extraction of the frequency of the pulsations will be discussed in
Chapter 5.

Deviations from equilibrium converge to zero with increasing resolution with a second order
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convergence rate. Figure 4.5 shows a suitable norm of all variables,

norm(r) =
(∫ 1

−1

8∑

k=1

(fk(r, y)− fek(r, y))2dy
) 1

2

, (4.9)

as a function of the radial coordinate, which measures the deviation from the initial solution
for different grid resolutions. The summation includes the field fk ∈ (β, γ, S, U, ρ, ε, ux, uy).
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Figure 4.5: Convergence test for the Tolmann-Oppenheimer-Volkoff solution. Plotted is a
suitable norm of all variables, which measures the deviation from equilibrium, for the indicated
number of radial grid points (gp), after about two light-crossing times. To good approximation
the solution is second order convergent.

Migration of an unstable relativistic star

Following [42] we have checked the code on the dynamical evolution of an unstable spherical
star. In such a model the sign of the discretization error of the numerical scheme controls the
fate of the evolution: the star may either expand or collapse. In our code this sign is such that
the unstable star “migrates” to the stable branch of the sequence of equilibrium models. In such
a situation, the rest-mass of the star has to be conserved throughout the evolution. Despite
being an academic problem this simulation represents an important test of the accuracy and
self-consistency of the code in a highly dynamical situation.

As in [42] we have constructed a Γ = 2, κ = 100 polytropic star with mass M = 1.447 M¯

and central rest-mass density ρc = 8.0 × 10−3 (in units G = c = M¯ = 1). With this value
of the central density, the equilibrium model is unstable with respect to radial oscillations,
in contrast to the model we used above. As the radius of the star strongly increases during
the evolution, we surround the star by a low density atmosphere (ρatm ≈ 10−6ρc). In order to
avoid numerical problems in these zones we reset the fluid variables to their original atmosphere
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Figure 4.6: Evolution of the central rest-mass density during the migration of an unstable
relativistic star (Γ = 2, κ = 100,M = 1.447M¯, ρc = 8.0 × 10−3;G = c = M¯ = 1) to a
stable model with the same rest-mass. The central density of the (final) stable configuration is
ρc = 1.35× 10−3. The evolution shows the expected behavior. Since we use a polytropic EoS,
the amplitude of the oscillations is essentially undamped for the evolution times shown.

values once they have fallen below a threshold value (see [43] for more details). This artificial
resetting enables the star to expand and to contract. Despite the use of an atmosphere the
energy conservation properties are well satisfied.

Fig. 4.6 shows the evolution of the central density up to a final time of uB = 10 ms. On
a very short dynamical timescale the star rapidly expands and its central rest-mass density
drops well below its initial value. It finally reaches a value of less than ρc = 1.35 × 10−3, the
central rest-mass density of the stable model of the same rest-mass. During the rapid decrease
of the central density, the star acquires a large radial momentum. The star then enters a
phase of large amplitude radial oscillations around the stable equilibrium model. As Fig. 4.6
shows the code is able to accurately recover (asymptotically) the expected values of the stable
model. Furthermore, the displayed evolution is completely similar to that obtained with an
independent fully three-dimensional code in Cartesian coordinates [42]. The evolution shown
in Fig. 4.6 allows to study large amplitude oscillations of relativistic stars.

4.2.2 Global energy conservation

In this section we focus on a global energy conservation test. Starting with the equilibrium
model of a neutron star with adiabatic exponent Γ = 2, polytropic constant κ = 100 and
central density ρc = 1.28× 10−3, we use a strong gravitational wave to perturb the star,

γ̂ = 0.2 e−3(r−4)2y. (4.10)

Prescribing such a large gravitational wave amplitude we do not aim to model an astrophys-
ical situation, but we choose it to test our numerical implementation in the nonlinear regime.
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Figure 4.7: Contour plot of the initial gravitational wave shear γ̂, Eq. (4.10). The axes labels
denote the value of the radial coordinate x along the equator (horizontal axis) and the symmetry
axis (vertical axis), and they run from the origin of the coordinate system at x = 0 to future
null infinity J + at x = 1. The numerical domain comprises the half circle to the right of the
vertical line at x = 0 (the symmetry axis), the left half is obtained from axisymmetry. The
gravitational wave shear perturbation is located in a small ring at radius r ≈ 4.

Fig. 4.7 shows a contour plot of the initial gravitational wave shear. In what follows we use a
radial grid with r = 3 x

1−x .
Fig. 4.8 shows the deviation from global energy conservation (see Eq. (2.79)) as a function

of the grid resolution (circles) and the total energy radiated away in gravitational waves. The
deviations from exact energy conservation converge to zero, as expected, which represents a
very severe global test for our numerical implementation.

There are two additional consistency conditions we can use to check the code, which relate
the metric quantities at J +. These are [115]

S − U,θ − U cot θ = 0, (4.11)

γ,u +
1

2
e−2γ sin θ

(
e2γ

U

sin θ

)

,θ

= 0. (4.12)

Our code reproduces these conditions, the errors converging to zero with a convergence rate
of 1. Fig. 4.9 shows the deviation from zero for the first condition, thus checking the leading
term in the falloff behavior of the quantity S at J +.

The obtained first-order convergence rate can be explained by the use of a total variation
diminishing high-resolution shock-capturing scheme for the fluid evolution, which, although it
is second-order accurate in smooth, monotonous parts of the flow, reduces to first-order at local
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Figure 4.8: Global energy conservation test for a neutron star and a strong gravitational wave.
Plotted are the deviation from global energy conservation ec (dark circles, see Eq. (2.79)) and
the total energy emitted by gravitational waves as a function of the grid resolution. The final
integration time is uB = 2× 10−8 s, the total number of angular grid points Ny = Nx/20. We
find linear convergence for the global energy conservation.

extrema, which are present in the interior of the numerical domain in this test (see [44] for
alternative essentially nonoscillatory schemes).

4.3 Tests concerning supernova core collapse

In this section, we present tests aimed to calibrate our code specifically to the studies of super-
nova core collapse presented in Chapter 7.

4.3.1 Shock reflection test

So far, we have not made any statement about the shock-capturing properties of our hydrody-
namical schemes. In order to assess these properties in our code, we perform a shock reflection
test in Minkowski space. This is a standard problem to calibrate hydrodynamical codes [96]. A
cold, relativistically inflowing ideal gas is reflected at the origin of the coordinate system, which
gives rise to a strong shock. We start the simulation with a constant density region, where
ρ = ρ0, u

r = urR and ε = εR = 0 (we set ε ≈ 10−11 for numerical reasons). From the continuity
equation it follows immediately, that the rest mass density in the unshocked region obeys

ρR(u, r) = ρ0

(
1− urR

uuRr
u
)2
. (4.13)
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Figure 4.9: Consistency check for the global norm of Eq. (4.11) at J +. Plotted are deviations
from zero as a function of the angular coordinate y and for the same resolutions used in Fig. 4.8.
The errors decrease with resolution. The convergence rate is one.

From momentum conservation, it is clear that the velocity in the shocked region vanishes,
urL = 0. Evaluating the Rankine-Hugoniot jump conditions for the fluid equations, we obtain

s =
(Γ− 1)εL

uuR − 1− ΓεL
, (4.14)

εL = uuR + urR − 1, (4.15)

ρL = ρs
Γ(urR)

2 − (Γ− 1)εL
(Γ− 1)εL

, (4.16)

pL = (Γ− 1)ρLεL. (4.17)

Here, s denotes the shock speed and ρs = ρR(u, r = su) the rest mass density in front of the
shock.

We used this test with different values of the fluid velocity, and different methods for the fluid
evolution. Fig. (4.10) shows a typical result for the shock reflection test for an ultrarelativistic
flow (ur = −0.9999c). For this result, we used the HLL solver and increased the numerical
viscosity by a factor 2 in order to damp small post-shock oscillations. With the use of shock-
capturing schemes, the shock front is very steep, we resolve it with only one or two radial
zones. The deviation close to the origin, the so-called wall heating, is a well-known failure of
finite-difference schemes for this problem [113], which is not important for our purposes.

4.3.2 Convergence tests

In the following, we will describe some tests which check various properties of the spherical
collapse for the core collapse supernova studies. We choose a particular collapse model, for
which the initial central density is ρc = 1.62× 10−8 (in units G = c =M¯ = 1), the polytropic
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Figure 4.10: Shock reflection test for an ultrarelativistic flow with ur = −0.9999c and ρ0 = 8
and EoS p = 5 × 10−4ρ

5
3 , which is reflected at the origin of the coordinate system. We have

plotted different fluid quantities after the evolution time u = 2.029 as a function of the radial
coordinate r. Top panel: fluid velocity ur. Middle Panel: pressure p. Bottom Panel: rest
mass density ρ. The solid line corresponds to the exact solution, the crosses are taken from
our numerical simulation. For the above result, we made use of a non-equidistant radial grid
r = x/(1−x 5

2 ) with 800 radial zones, the MC slope limiter and the HLL approximate Riemann
solver.

constant is κ = 0.46, and the collapse is induced by resetting the adiabatic exponent to Γ1 = 1.3
(for the equilibrium model with Γ = 4

3 ). We use the hybrid EoS (see Sec. 2.2.2).

Thermal energy during the infall phase

Before the central density of the collapsing core reaches nuclear densities, the collapse is exactly
adiabatic. Hence, the thermal energy, which vanishes initially, should vanish throughout this
phase. This can be easily checked and used for convergence tests. Fig. 4.11 shows the result
after an integration time of 30 ms (when the central density has increased by roughly a factor
10). We find, that the errors from the exact result εth = 0 converge to zero, the convergence
rate is 2. Note that, although εth ≥ 0 from the physical point of view, the numerical errors can
result in negative values for εth.
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Figure 4.11: Thermal energy as a function of the radial coordinate x after 30 ms for a com-
pactified grid r = 200x

1−x2 for different resolutions. Due to numerical errors, the thermal energy
is different from zero. Deviations converge to zero, the convergence rate is 2.

Time of bounce

Using the axisymmetric code developed by Dimmelmeier et al. based on the conformally flat
metric approach [32], we can perform comparisons between the evolutions of the same initial
models. As the conformally flat metric approximation is exact for spherical models, comparisons
in spherical symmetry are unambiguous.

We define the time of bounce as the time, when the central density reaches its maximum. In
order to start with the same initial data, we started our collapse by ray-tracing the evolution of
Dimmelmeier’s code to obtain the initial data on our null cone.1 Fig 4.12 shows the evolution of
the central density for the relativistic code of [32] and the results of our null code for two different
grid functions. In Table 4.1, we have summarized our results for the time of bounce. Assuming

code grid function radial resolution time of bounce [ms]

1 CFC code [32] see [32] 80∗ 38.32
2 null code r = 150x

1−x4 600 40.86

3 null code r = 150x
1−x4 800 39.90

4 null code r = 150x
1−x4 1000 39.45

5 null code r = 100 tan(π2x) 1200 38.92

∗ This number for the radial resolution cannot be directly compared to the values for our code, as we resolve
the exterior vacuum region up to future null infinity with our code as well.

Table 4.1: Summarized times of bounce for the grid functions and resolutions.

1There is no principal advantage in starting with initial data on a null cone or on a Cauchy slice. Ideally,
results from stellar evolution would give exact initial conditions for the core collapse, thus eliminating the
artificial procedure of resetting Γ to initiate the collapse.
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Figure 4.12: Evolution of a central density for a supernova core collapse induced by resetting
the adiabatic exponent to Γ1 = 1.30. The central density increases by almost 5 orders of
magnitude, before the core bounces. In the late phase, when a neutron star has formed in
the interior region, the central density stays almost constant. The different lines correspond to
different grid functions and resolutions, see run 1, 4 and 5 in Table 4.1.

our code is exactly second order convergent and extrapolating our results to an hypothetical
infinite resolution, we obtain from runs 3 and 4, that the infinite resolution run bounces after
38.65 ms. This is internally consistent, a comparison of runs 2 and 4 results in a value of 38.66
ms. Using an even higher resolution for a different grid function in run 5, we observe a time
of bounce close to the converged result. Our results on the time of bounce are in very good
agreement with the result of [32], who find a value of 38.32 ms. The observed difference of less
than 1% should be either due to the fact that the result of [32] is not converged, or due to the
different radial coordinates used in both codes, and thus small differences in the initial data.

As it can be seen in Fig. 4.12, the comparison does not only give very good agreement for
the time of bounce, but also for the dynamics of the central density in general. This is very
important, since it shows that the global dynamics of the core collapse is correctly described
for our numerical implementation.
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Chapter 5

Relativistic stars interacting with

scalar fields

This chapter describes the first example of the use of characteristic numerical relativity in an
astrophysical context. We study dynamical relativistic star spacetimes, collapse and generation
of radiative signals. The numerical investigation is performed in spherical symmetry and uses
a self-gravitating, massless scalar field. The latter serves as a simple matter model in general
relativity which mimics gravitational waves. This analogy is motivated by the observation,
that - despite of fundamental physical differences (e.g. concerning the spin) - the dynamical
equation for the scalar field (i.e. the Klein-Gordon-equation) exhibits a similar mathematical
structure as the evolution equation for gravitational waves in multidimensional general relativ-
ity. Scalar fields have been frequently used in studies of global properties of spacetimes, black
hole formation and the properties of radiative signals. These studies include the interaction of
scalar waves and black holes (e.g. [63, 95]) and especially the emergence of power-law tails in
the radiative signal [67, 68, 65, 121], which arise from the late time backscattering of the scalar
field at the exterior spacetime geometry [125, 126]. In contrast, there are only few studies of
the interaction of scalar fields with fluid stellar objects. Recently [70] analyzed the scattering
of scalar fields off boson stars and the emergence of critical phenomena for this setup. They
found that the scalar field can either make the boson star collapse to a black hole or to disperse
its mass to infinity.

Time-dependent simulations of the scattering of gravitational wave packets off relativistic
stars, as a means of computing the frequency spectrum of the relativistic star (see, e.g. [85] for
a recent review), have been studied by Allen et al. [1] for polytropic EoS, and by Ruoff [129]
for more realistic EoS. Both simulations were performed using linear perturbation techniques.
Pavlidou et al. [122] studied the radiative falloff of scalar fields in neutron star spacetimes, using
(idealized) analytic, constant density relativistic star models and assuming stationarity for the
fluid and the geometry.

In the present chapter we show results from the nonlinear dynamics of relativistic stars
interacting with scalar fields. We are especially interested in the following questions: How
does a stable relativistic star react when it interacts with the scalar field? Can the scalar
field induce gravitational collapse? What is the result of the interaction on the scalar field?
In order to answer these questions we numerically obtain spherically symmetric evolutions of
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the Einstein-Klein-Gordon perfect fluid system. We study the reflection of finite scalar wave
packets off relativistic stars for a series of models, parametrized by the central density, for
a given polytropic EoS of polytropic index n = 1. Our study focuses on the dynamics of
the system during the interaction, both the generation of nonlinear fluid oscillations and the
gravitational collapse of the fluid component to a black hole.

5.1 Mathematical framework

We consider a general spherically symmetric spacetime with a two component stress energy
tensor of a perfect fluid and a scalar field, T ab = T abF + T abΦ . The geometry of our setup follows
the Tamburino-Winicour-formalism [146], as already described in Sec. 2.1.

5.1.1 Einstein equations

By adopting the Bondi-Sachs [18, 131] form of the metric element in spherical symmetry,

ds2 = −e
2βV

r
du2 − 2e2βdudr + r2(dθ2 + sin θ2dφ2), (5.1)

the spacetime geometry is completely described by the two functions β(u, r) and V (u, r).
A sufficient set of Einstein equations for obtaining the spacetime development is grouped as

Gur = κTur, (5.2)

Grr = κTrr, (5.3)

Guu|Υ = κTuu|Υ, (5.4)

where the u coordinate is defined by the level surfaces of a null scalar.1 The angular coordinates
(x2, x3) = (θ, φ) are both Killing coordinates here. The first two Einstein equations, Eqs. (5.2)
and (5.3), contain only radial derivatives and are to be integrated along each null surface. The
last equation (5.4) is a conservation condition, satisfied on the vertex of the null cones Υ due to
the regularity conditions. As in Sec 2.1, we choose Υ to be a timelike geodesic which coincides
with the origin of a relativistic star at r = 0. Equation (5.3) may be substituted for by the
equivalent expression gABRAB = 8πgAB(TAB − gABT/2), where Rab is the Ricci tensor and
the indices (A,B) run over the angular coordinates x2, x3. T is the trace of the stress energy
tensor Tab , T = gabTab.

Using the line element and Eqs. (5.2) and (5.3) the β and V hypersurface equations are
given by

β,r = 2πrTrr , (5.5)

V,r = e2β(1− 4πr2(gABTAB − T )) . (5.6)

The comma in the above equations indicates, as usual, partial differentiation. Boundary condi-
tions for (β(u)Υ, V (u)Υ), needed for the radial integrations, are provided by imposing regularity
at the origin, where the coordinate system is assumed to be a local Fermi system, leading to

1Note however, that the coordinate vector
(

∂
∂u

)a
is timelike.
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β = O(r2), V = r + O(r3). By imposing such conditions at the origin, the lapse of coordi-
nate time du is related to the corresponding lapse of “retarded time” dτ measured by distant
observers at r →∞ by

dτ = e2Hdu, (5.7)

where H = limr→∞ β.

5.1.2 Scalar field equations

The dynamics of a scalar field Φ is governed by the minimally coupled Klein-Gordon equation
in spherical symmetry,

∇a∇aΦ = 0, (5.8)

where ∇a is the covariant derivative. The corresponding stress energy tensor is given by

T abΦ = ∇aΦ∇bΦ+ Lgab , (5.9)

where L is the massless scalar field Lagrangian (2L = −∇aΦ∇aΦ). Using a characteristic
foliation, Eq. (5.8), takes the form

2(rΦ,u),r =
1

r
(rV Φ,r),r. (5.10)

In terms of the intrinsic 2-metric of the (u, r) sub-manifold,

ηCDdx
CdxD = −e2βdu(V

r
du+ 2dr), (5.11)

where the indices (C,D) run over the coordinates (u, r), Eq. (5.10) reduces to

¤(2)g =
e−2βg

r

(
V

r

)

,r

, (5.12)

where
g = rΦ (5.13)

and ¤(2) is the D’Alembertian operator associated with ηCD.

5.1.3 Hydrodynamic equations

The evolution of the fluid is determined by the local conservation laws of stress energy and
density current

∇aT abF = 0, (5.14)

∇a(ρua) = 0, (5.15)

where T abF is the stress energy tensor of a perfect fluid

T abF = ρhuaub + pgab. (5.16)
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Following [119], after introducing the definitions D = ρu0, Sr = T 0r
F and E = T 00

F , the fluid
equations can be cast into a first-order flux-conservative, hyperbolic system for the state-vector
U = (D,Sr, E) :

D,u + F r0
,r = −(ln√−g),uD

−(ln√−g),rF r0 , (5.17)

Sr,u + F r1
,r = −(ln√−g),uSr

−(ln√−g),rF r1 − ΓrabT
ab
F , (5.18)

E,u + F r4
,r = −(ln√−g),uE

−(ln√−g),rF r4 − ΓuabT
ab
F , (5.19)

Γcab are the Christoffel symbols. In contrast to the description in Sec 2.2, we solve the fluid
equations on the radial grid r and we have explicitly used the Christoffel symbols in the source
terms. The precise form of the vector of fluxes F can be obtained by using Eqs. (5.14)-(5.15)
(see also [119]). The explicit relations between the primitive variables w = (ρ, ε, ur) and the
conserved variables U = (D,Sr, E), for a perfect fluid EoS, p = (Γ − 1)ρε, where Γ is the
adiabatic index of the fluid, are given in Sec 2.2.2.

With the above definitions, the metric equations (5.5)-(5.6) read, for the combined stress
energy tensor of a fluid-scalar field system,

β,r = 2πr(ρh(ur)
2 + (Φ,r)

2) , (5.20)

V,r = e2β(1− 4πr2(ρh− 2p)) . (5.21)

Following [92] we express the hydrodynamic quantities on the right-hand side of Eqs. (5.20)-
(5.21) solely in terms of the conserved hydrodynamic quantities U. This procedure has the
advantage, that no iterations in the numerical integration of the hypersurface equations are
necessary, as long as we use explicit algorithms for their solution.

In summary, the initial value problem consists of equations (5.4), (5.12), (5.17)-(5.19),
(5.20), (5.21), the scalar field initial data Φ(r, u0) and initial and boundary data for the fluid
variables (ρ, ε, ur) on the initial slice Σ0 (at time u0). These equations and initial data are
sufficient for obtaining a global solution to the problem.

5.1.4 Global quantities

Making use of the characteristic formulation of general relativity and covering the infinite range
of the radial coordinate with a finite grid allows us to refer to some global quantities of the
spacetime such as the Bondi mass and the news function. Apart from their physical relevance,
these quantities can be used in global tests of our numerical evolutions, as we will show below.

Instead of extracting the Bondi mass directly at future null infinity we use the expression

M = 4π

∫ ∞

0

r2e−2βTrudr (5.22)

for the Bondi mass at time u in our numerical implementation. Similarly, the news can be
rewritten as [62]

N =
1

2
e−2H

∫ ∞

0

V

r
Φ,rdr. (5.23)
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With these definitions, global energy conservation can be established,

M(u)−M(0) =

∫ u

0

−4πN(û)2e2H(û)dû. (5.24)

5.2 Numerical implementation

In order to study the interaction of the scalar field and the relativistic star in a global spacetime
we use non-equidistant grids for the radial coordinate r extending to infinity. Furthermore, to
avoid dealing with complicated stencils in the numerical implementation, we make use of the
coordinate transformation given by Eq. (2.12). Unless otherwise stated we use the relation

r =
15x

1− x4 (5.25)

for all computations presented in this chapter. Using such a coordinate transformation, the
repartition of grid points in the coordinate r is almost equidistant for small radii and gets
infinitely sparse for x→ 1, which corresponds to future null infinity J +.

We use a second order Runge Kutta method to solve the metric equations (5.20) and (5.21).
To determine the equilibrium models for the fluid configuration, we also use the Runge Kutta
method to solve the Tolman-Oppenheimer-Volkoff equations, formulated on a null hypersurface,
Eqs. (2.62) and (2.63).

The integration of the evolution equation for the scalar field, Eq. (5.12) (or equivalently
Eq. (5.10)), proceeds with the specification of initial data Φ(u0, r) on the initial null cone u0.
For the characteristic evolution we have used and compared the two different algorithms which
were described in Sec. 3.2.1. This is possible, since Eq. (5.12) and Eq. (2.24) have the same

principal part when identifying the variables ψ̂ in Eq. (2.23) and g in Eq. (5.13). For the second
algorithm we use the non-dissipative form of the algorithm setting ε̂ = 0.

Due to the stencils of the two algorithms, we cannot use them at the origin, where regular
behavior of the scalar field as Φ = a+ br + cr2 is assumed. The linear term introduces a kink
at the origin, but this is necessary in our foliation - as can be seen from the analytic solution
for the wave equation in Minkowski space consisting of an in-going and outgoing wave. Note
that the scalar field enters the metric only through Eq. (5.20), thus respecting the regularity
conditions at the origin. Substituting this ansatz for Φ into Eq. (5.10) and grouping those terms
with the same powers of r we find that a,u = b, b,u = 1.5c. Extracting the coefficients a, b and
c on the null cone u0, we update a and b to obtain the scalar field at the first two grid points
of the new hypersurface, which then allows us to start the marching procedure along the null
hypersurface with either of the two algorithms described in Sec. 3.2.1.

By experimenting with both algorithms we found that, on the one hand, the scheme based
upon a direct discretization of the wave equation is more accurate in the long-term behavior in
the interior of the numerical domain. This was relevant to resolve the late time fall-off behavior
of the scalar field, as we describe below in Sec. 5.4. On the other hand, the algorithm based
upon the null parallelogram is superior close to future null infinity, where we regularized the
equations following the work of [60]. Therefore, for the results presented in this chapter we have
used a “hybrid algorithm”, in which a direct discretization of the Klein-Gordon equation (5.10)
is used in the interior of the computational domain and the parallelogram algorithm is used
close to future null infinity J +.
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Concerning the numerical integration of the system of hydrodynamic equations, we employ
the high-resolution shock-capturing schemes described in Sec. 3.1. In more precise terms the
hydrodynamics solver uses the piecewise linear reconstruction procedure MUSCL at each cell-
interface and the HLL approximate Riemann solver.

5.3 Code calibration

The assessment of the numerical implementation is achieved primarily by comparing with in-
dependent physical results and performing global energy conservation tests.

5.3.1 Null cone evolution of stable stars

As a first step to calibrate our algorithms we quantify our results on the stability of neutron
stars described in Sec 4.2.1. We use evolutions of stable relativistic stars to compute the
frequencies of the radial modes of pulsation. Those frequencies are compared with results of
linear evolutions from perturbation theory.

For all simulations presented in this chapter the star models are approximated by a poly-
tropic EoS with polytropic constant κ = 100 and adiabatic exponent Γ ≡ 1 + 1/n = 2. Hence,
the index of the polytrope is n = 1. For the simulation presented in this section we choose the
model with central density ρc = 1.5× 10−3 (recall that we use units in which G = c =M¯ = 1
- the value corresponds to ρc = 9.3× 1014 g cm−3). This model is located in the stable branch
of the central density - total mass - diagram (see Fig. 5.1).
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Figure 5.1: Stability curve for neutron star models with the polytropic equation of state p = κρΓ,
with κ = 100 and Γ = 2. Models lying to the left of the maximum of the curve, at about
ρc = 3.2 × 10−3, are stable against gravitational collapse. The circles are calculated with our
initial data solver and are connected by straight lines. We use units in which G = c =M¯ = 1.
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To compute the frequencies of radial pulsation modes, we allow the star to (radially) contract
and expand during the evolution. Following [43] (see also [44]), we surround the star with a few
zones representing an artificial “atmosphere” filling an otherwise vacuum region. The density
in this atmosphere is set to sufficiently small values such that its presence does not affect the
dynamics of the system. Typical values we choose are 10−7 − 10−8 times the central density
of the star. Furthermore, to avoid any numerical problems due to (shock) heating in the
atmosphere (the fluid in those zones is not in equilibrium and, therefore, it will collapse/accrete
onto the star), we follow the recipe described in [43] and enforce adiabatic evolution (by using
the polytropic EoS) in the atmosphere and in the outer layers of the relativistic star (comprising
the outermost 10 grid points). After each time step, if the density has fallen below 1.5 times the
density of the atmosphere, the hydrodynamic quantities are reset to their atmosphere values.
The innermost location where this procedure is done defines the radius of the star. As described
in more detail in the next section the above values of the atmosphere density are small enough
to guarantee conservation of energy despite the artificial resetting procedure.
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Figure 5.2: Time evolution of the radial velocity ux at half radius of the star. The stellar
model has a central density ρc = 1.5× 10−3. The oscillations are essentially undamped for the
evolution shown, which reflects the small viscosity of the hydrodynamic scheme employed.

When evolving our stellar model in time, we find small deviations around the equilibrium
values due to the discretization errors. As a result, the star oscillates in a superposition of
radial modes. Figure 5.2 shows the radial velocity at half stellar radius for the above model as
a function of retarded time measured by distant observers. This simulation was performed with
a grid of 800 zones covering the complete radial domain. This amounts to using about half of
the available grid in resolving the relativistic star (We choose this resolution here to allow for
comparisons with the results of Sec. 5.4, where we resolve the scalar field as well.) As shown
in [44] one can use such evolutions to obtain the frequencies of the excited modes of pulsation
of the star by simply Fourier transforming those data. In general, however, the excitation of
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Figure 5.3: Fourier transform of the time evolution shown in Fig. 5.2. The peaks in the Fourier
transform indicate the mode frequencies of the fundamental radial mode (around f = 1.4 kHz)
and the first two harmonics. The relativistic star model has a central density ρc = 1.5× 10−3.
The dashed vertical lines indicate the corresponding frequencies obtained with a perturbative
(linear) code. The units in the y-axis are arbitrary.

the different modes by the truncation error of the numerical schemes may not be sufficient
to accurately determine the mode frequencies. The discretization error introduces at each
grid point a non-stationary perturbation. The pointwise nature of those perturbations implies
that the spectrum of induced oscillations is fairly broad, practically covering all wavenumbers
representable on a given grid resolution, but with varying power in different regimes. In order
to excite the relevant modes more strongly, we perturb the density of the equilibrium models
with an explicit function ρ = ρo + Aρc sin(πr/R), where R denotes the radius of the star (see
Table 5.1) and ρo is the density of the unperturbed star. The typical amplitude we use for this
perturbation is A = 10−6.

Figure 5.3 shows the frequencies of the fundamental mode and the first two overtones ob-
tained by a Fourier transform of the radial velocity profiles. The dashed vertical lines in this
plot were obtained using a code [130] which solves the linearized perturbation equations. The
agreement between the two codes is very good. Similar results were obtained for a relativistic
polytrope with ρc = 2.8 × 10−3, for which the fundamental mode is already rather small, the
star being close to the unstable branch. We note that the code is able to track considerably
higher overtones as well, but for the sake of clarity in the comparison it is sufficient to show
only the first two harmonics.
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5.3.2 Scalar field dynamics in a regular spacetime

In this section we present results aimed to validate the numerical implementation of the Einstein-
Klein-Gordon solver. For this purpose we investigate the reflection of a scalar field at the origin
of the coordinate system, turning off the hydrodynamics module of the code. The initial data
for the scalar field packet are

Φ0 = 2× 10−3e−(r−14)2 . (5.26)

The location of this Gaussian pulse is chosen in such a way that, if superposed on the relativistic
star spacetimes of the previous section, the scalar field data would initially lie outside the
relativistic star. Evolving these data, the initial pulse approaches the origin, is reflected there
(i.e. the pulse of ingoing waves is transformed to a pulse of outgoing waves), and radiates away,
leaving behind Minkowski space. Such a sequence can be followed in Fig. 5.4, for a simulation
employing a grid of 800 zones. We note the stability and smoothness of the solution, both
at the origin and at J +. By evaluating global energy conservation, according to Eq. (5.24),
after the pulse has reflected off the origin, we find that the energy is conserved (as expected)
to second order accuracy. As an aside we note that by simply changing the origin treatment
in the code, it is possible to study the evolution of a scalar field outside a spherical black hole.
We performed such a simulation finding agreement with the results of [65].
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Figure 5.4: Radial profiles of the scattering of a scalar field off the origin of the coordinate
system. The number labels refer to the time coordinate u. For times u ≥ 35 the pulse has
completely radiated away leaving Minkowski spacetime behind.

5.3.3 Global energy conservation

We consider now the full set of equations and prescribe initial data consisting of a scalar field
component given by Eq. (5.26), together with a stable, equilibrium, relativistic star model with
initial central density ρc = 1.28× 10−3, κ = 100 and Γ = 2. We calculate for this stellar model
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Figure 5.5: Bondi mass of the spacetime and total radiated energy of the scalar field as a
function of retarded time for different resolutions. At the beginning, the scalar field contributes
to the Bondi mass of the spacetime (1.405M¯), before the Bondi mass drops in a small time
interval, when the main part of scalar field mass (about 5× 10−3M¯) is emitted to future null
infinity J +. As the sum of the two curves is constant, the energy is globally conserved (with
a relative error of about 5 × 10−6 for the run with 1600 zones.). The mass drops in two steps
around 0.2 ms, which can be seen from the magnified figure obtained for the case of 1600 zones.

a total mass of 1.4 M¯, in agreement with [44]. We perform simulations of the scalar field
scattering off the relativistic star, focusing our study in this Section on the assessment of the
global energy conservation properties of the coupled numerical algorithm. A comprehensive
study of the dynamics of the scattering is deferred to Sec. 5.4.

Fig. 5.5 shows the Bondi mass of the relativistic star - scalar field spacetime as a function
of retarded time, combined with the total mass of the scalar field radiated away to null infinity.
As one can clearly see from this figure, the spacetime loses exactly the same amount of mass,
which is radiated to null infinity by the scalar field.

By computing Eq. (5.24) at a fixed retarded time of τ = 0.5 ms for different grid resolutions,
we find that our code conserves globally the energy with a convergence rate which lies in between
1 and 2. The fact that the convergence rate drops now below second order is, however, to be
expected, since the approximate Riemann solver used for the integration of the hydrodynamic
equations is only (locally) first order accurate at discontinuities (i.e., the surface of the star) and
at local extrema (i.e., the center of the star) (see the related discussion in [44]). Nevertheless,
for the highest resolution we have used, 2000 radial grid points, the relative error in the energy
conservation is of the order of 2× 10−6 for this very dynamical simulation.

At first sight the decay of the scalar field mass in two steps (as shown in Fig. 5.5 around 0.2
ms) seems surprising. However, looking at the radiated power dMB

du = −4πe−2H(limr→∞ g,u)
2

and approximating the solution of Eq. (5.12) by the solution in Minkowski space g(u, r) =
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f(u2 + r) − f(u2 ), where f is determined by the initial profile with suitable falloff behavior for

large radii, the radiated power reads dMB

du = −πe−2Hf ′(u2 )
2. Hence the radiated power as a

function of time measures the square of the derivative of the initial scalar field profile.

5.4 Dynamics of scalar field - relativistic star interactions

In this section we present our main results concerning the scattering of a scalar field pulse off a
relativistic star. As mentioned before, we use n = 1 relativistic polytropes as the underlying star
model. All configurations we construct are stable and are characterized by increasing central
densities and compactness. Their basic properties are summarized in Table 5.1.

Table 5.1: Equilibrium properties of the κ = 100, n = 1 relativistic star models in units in
which c = G =M¯ = 1. The entries are as follows: ρc is the central density, M and R are the
mass and radius of the star, respectively, and C = 2M/R is the compactness parameter.

ρc (10
−3) M R C = 2M/R

1.5 1.47 9.26 0.317
2.2 1.60 8.45 0.379
2.8 1.63 7.91 0.412
2.9 1.64 7.84 0.418
3.0 1.64 7.76 0.423

On the initial outgoing light cone, in addition to the fluid data we introduce a scalar field
component in the shape of a Gaussian pulse (according to Eq. (5.26)), thus fixing the pulse
amplitude, width and location. For these initial data there is no significant initial overlap
between the star and the scalar field which then makes it possible to associate a specific initial
mass with each one of the matter fields.

In our exploration of the parameter space, we use the central density as the only free pa-
rameter, maintaining a single polytropic EoS and fixing the profile and amplitude of the scalar
field. This is clearly a severe restriction in the parameter space of the scattering problem. Nev-
ertheless, we choose this particular setup since we are interested in investigating the relativistic
effects of the interaction, where the scalar field has a strong impact on the dynamics of the
relativistic star. A detailed analysis of the whole parameter space is beyond the scope of this
work.

When evolving in time the initial data, the scalar field travels inwards, enters the relativistic
star and it is finally reflected at the origin of the coordinate system. Contrary to the Einstein-
Klein-Gordon system in vacuum (which was discussed in Sec. 5.3.2), the presence of the star
and its associated potential well may give rise to a phase of multiple reflections of the scalar
field. This, in turn, reflects itself in the existence of quasi-periodic signals (trapped modes), as
discussed, e.g., by [122], before its energy is radiated away. Furthermore, our relativistic star
models have been chosen conveniently close to the maximum of the stability curve at about
ρc = 3.2×10−3 (see Fig. 5.1). Depending on the compactness of the neutron star onto which the
wave pulse impacts, the stars are forced to either oscillate violently, or to collapse to a black
hole on a dynamical timescale. Fig. 5.6 shows the spacetime diagram for the least compact
relativistic star model of our sample, with ρc = 1.5 × 10−3. For this model, the scalar field is
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Figure 5.6: Spacetime diagram of the reflection of a Gaussian scalar field pulse off a relativistic
star (κ = 100, n = 1 and ρc = 1.5× 10−3). The diagram focuses on the strong field region but
was obtained from a global simulation of the spacetime. The dotted curves covering the whole
diagram are outgoing light cones, which bend due to the spacetime curvature (the thicker dashed
line corresponds to the initial light cone). The scalar field pulse, initially located at r = 14,
travels inwards, enters the relativistic star and is reflected at the origin of the coordinate system
(the solid line corresponds to the maximum value of the scalar field). The interaction with the
scalar field triggers the oscillation of the relativistic star, which can be seen from the vertical
solid line of varying location in the diagram, which indicates the radius of the star.

able to force the star to contract and to expand, pulsating radially, as can clearly be identified
by the varying location of the star’s radius (the vertical solid line in Fig. 5.6).

Fig. 5.7 displays the time evolution of the central density of the different relativistic stars
in our setup. The solid lines correspond to the relativistic star-scalar field system. Corre-
spondingly, the dashed horizontal lines indicate the evolution of the equilibrium relativistic
star models without the presence of the scalar field. As already mentioned the initial fluid
configurations are stable. The evolution is characterized by the appearance of small-amplitude
oscillations associated with the radial modes of pulsation of the star (which are too small to be
seen in the figure). On the other hand, all relativistic star-scalar field models with initial central
density below 2.8 × 10−3 also oscillate around the stable equilibrium model. The oscillation
frequencies of the two least compact models correspond to the frequencies calculated in the
linear regime, even though the amplitude of the oscillations is now much larger due to transfer
of energy from the scalar field. This is no longer the case for the model with a central density
of ρc = 2.8× 10−3. For this model, which is close to the threshold of black hole formation, the
amplitude of the oscillations is big enough to show nonlinear effects, the oscillation frequency
being much smaller than the value obtained from linear studies. For the models with central
densities of ρc = 2.9× 10−3 and ρc = 3.0× 10−3 the interaction with the scalar field is able to
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trigger their gravitational collapse to a black hole on a dynamical timescale. Unfortunately,
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Figure 5.7: Central density of the relativistic stars interacting with the scalar field as a function
of retarded time. The curves are labelled according to the stellar compactness in Table 5.1. The
three least compact models, with ρc ≤ 2.8 × 10−3, oscillate strongly around their equilibrium
configuration after interacting with the scalar field. he other two more compact models collapse
to a black hole on a dynamical timescale instead. The dashed lines are taken from our evolutions
of the equilibrium model without the presence of the scalar field.

as a consequence of the violent dynamics, we are not able to follow the collapse process once
the event horizon is about to form (similar problems were reported in [92] for the collapse of
supermassive stars using a spherically symmetric characteristic code). However, convergence
studies show clear evidence that these models collapse to black holes. Further evidence is given
by the evolution of the relativistic star radii, as shown in Fig. 5.8, and the blow-up of the red-
shift between the stellar center and future null infinity. We have plotted in Fig. 5.9 the redshift
factor e2H relating the lapse of local proper time at the origin to the lapse of proper time at
infinity according to Eq. (5.7). For example, for the model with central density ρc = 2.9×10−3,
initially, the redshift factor e2H between the center of the star and observers located at r →∞
is 2.1. By the end of the simulation it has increased to a value of 59.5. This strong increase
in the redshift factor explains that the increase of the central density is stopped towards the
end of our numerical evolution (see Fig. 5.7). We note that global energy conservation is well
maintained, even for these extreme hydrodynamic simulations. The relative deviation from
energy conservation according to Eq. (5.24) when the evolution stops is of the order of 10−4.

By analyzing the energy transfer from the scalar field to the relativistic star during the
interaction we find that it increases with the compactness of the stellar model. This behavior
is shown in Table 5.2. We remark that the initial mass of the scalar field is not strictly the
same in all cases considered, due to the different underlying geometry (determined by the stellar
models) on which the initial scalar field data are prescribed. We evaluate the total radiated
mass in the scalar field at a retarded time of τ = 0.6 ms (see Eq. (5.7)). The mass radiated
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Figure 5.8: Time evolution of the radius of the different relativistic stars interacting with the
scalar field. The radius of the two most compact models decreases dramatically, indicating that
these models undergo gravitational collapse to a black hole.
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Figure 5.9: Time evolution of the redshift factor e2H relating the lapse of proper time at the
origin to the lapse of proper time at infinity according to Eq. (5.7). The rapid increase in the
redshift factor for the two most compact models gives clear evidence for the formation of black
holes.
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away to infinity after this time is negligible.

Table 5.2: Energy transfer from the scalar field to the relativistic star during the scattering
process. The entries are as follows: ρc is the central density of the relativistic star, MΦ

0 is the
initial mass of the scalar field, Erad is the total radiated mass, and Etrans is the percentage of
the energy transferred in the interaction. We use units in which G = c =M¯ = 1.

ρc (10
−3) MΦ

0 (10−3) Erad (10−3) Etrans (%)

1.5 4.90 4.86 0.8
2.2 4.80 4.72 1.7
2.8 4.76 4.65 2.3
2.9 4.75 4.63 2.5
3.0 4.75 4.62 2.7

Next we analyze the behavior of the scalar field in these scattering simulations. In Fig. 5.10
we plot the (retarded) time evolution of the news, Eq. (5.23), for the whole sample of our stellar
models. The scalar field signal measured at null infinity can be divided into three phases. The
first phase, before the main pulse reflects off the origin (not shown in the figure), is dominated
by an initial backscattering with small signal amplitude. The second phase, whose duration
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Figure 5.10: Time evolution of the news function during the scattering problem. The different
lines correspond to the different models in our sample of Table 5.1, and are labelled in the plot
with respect to the compactness parameter. The duration of the more dynamic quasi-normal
ringing phase strongly depends on the compactness of the relativistic star model, increasing as
the compactness increases. The late time behavior of the signal decays as an inverse power-law.

depends on the compactness of the relativistic star [122], is characterized by the reflection of
the main scalar field back and forth between the origin and the maximum of the relativistic
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star curvature potential, which, in turn, induces the appearance of quasi-normal oscillations on
the scalar field. Most of the energy is radiated away in this period. Once the pulse has lost
sufficient energy it enters a third phase, during which the behavior of the signal is dominated
by a power-law tail N ∝ t−α, with α = 3, due to the reflection of the scalar field at the
exterior Schwarzschild geometry [125, 126, 67, 68, 122]. Since the compactness of our models
is well below the Buchdahl limit2, C = 8/9, the quasi-normal mode ringing phase does not last
for an extended period of time. Therefore, after a few reflections trapped inside the curvature
potential, the signal enters rapidly the power-law tail phase. From Fig. 5.10 one can see that the
more compact the relativistic star, the larger the quasi-normal ring-down phase. We also point
out that by going to more compact models, increasing the central density of the relativistic star
beyond the maximum of the stability curve (i.e., going to the unstable branch) and freezing the
hydrodynamics and metric evolution to avoid gravitational collapse, we are able to find a much
longer ring-down phase. Our results, obtained for fully self-gravitating, polytropic relativistic
star models, are in good agreement with previous findings by Pavlidou et al. [122], who used a
more idealized setup consisting of constant density, static stars.

The study of the late time power-law tails requires increased resolution, especially for large
radii. We have hence used a different radial coordinate for these simulations, r = 30x/(1−x4).
This allowed us to resolve the power-law behavior in Fig. 5.10, avoiding the evolution from
being dominated by numerical noise mainly due to reflections. By performing a linear regression
study of the tails in the time interval log(τ [ms]) ∈ [0.3; 0.7], we obtain the results summarized
in Table 5.3. We find the correct power-law behavior of the scalar field in our fully dynamical

Table 5.3: Late time power-law behavior of the news N ∝ t−α for the (stable) relativistic star
- scalar field scattering problem. The results agree with the value α = 3 predicted by linear
theory.

ρc (10
−3) α

1.5 3.06
2.2 3.05
2.8 3.05

evolutions, as predicted by both, linear analysis and by nonlinear numerical evolutions of scalar
fields in the exterior black hole geometry [67, 68, 65]. Note that we measure the tails of the
news, whereas the results of the above references read off the quantity g at future null infinity
J +. Both quantities are related by

N = e−2Hg,u. (5.27)

2The Buchdahl limit sets a general limit on the compactness of a general relativistic static fluid sphere, whose
density does not increase outwards [21].
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Chapter 6

Non-radial pulsations of

relativistic stars

Non-radial oscillations of neutron stars, although believed to emit only weak gravitational waves
(at least in the absence of instabilities) are interesting sources for future gravitational wave
detectors. In general, large amplitude oscillations of neutron stars, as they are expected to be
generated especially during the formation process, are a nonlinear effect. In general relativity,
however, most of the work on stellar pulsations which has been done so far, relies on the
linearization of the general relativistic fluid equations around the equilibrium model of the star.
The spacetime of a nonrotating star in equilibrium is static and spherically symmetric. A general
linear perturbation can be written as a sum of quasi-normal modes, that are characterized by the
indices (l,m) of the spherical harmonic Yl,m, i.e. an arbitrary scalar quantity A is decomposed
as 1

A(r, θ, φ) =
∑

l,m

fl,m(r)Yl,m(θ, φ). (6.1)

Furthermore, according to the radial dependence of the functions fl,m(r), we can define sub-
classes of the oscillation modes. The first such classification of the different pulsation modes
goes back to Cowling [29]. In the following, we aim at giving a short overview of the different
non-radial oscillation modes of neutron stars, when the stars are approximated by a polytropic
EoS, thus neglecting effects like magnetic fields etc. The radial dependence of the oscillation
is classified with respect to the restoring force. The fundamental mode (f -mode) is a coherent
oscillation, with no oscillation nodes in the stellar interior (it is therefore often referred to as
a surface mode). We use upper indices to denote the angular structure of the mode, e.g. 2f
denotes the l = 2 fundamental mode. As in the case of the pressure mode (p-mode), the restor-
ing force for the fundamental mode is the pressure, which counterbalances gravity. In order to
distinguish between the different pressure modes arising from different numbers of oscillation
nodes, one uses subscripts p1, p2 etc. Typical frequencies of the f -mode for neutron stars are of
the order f ≈ 1−2 kHz, and f > 4 kHz for the p-modes. Assuming, that the modes are damped
only due to the radiation in gravitational waves, typical damping times τ for the f -mode are
τ < 1 s and τ > 1 s for the p-modes. The rotational mode (r-mode) has recently attracted a lot

1Assuming, that the perturbations respect the Killing coordinate φ with surface-orthogonal trajectories, it
suffices to consider the case m = 0.
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of interest. The restoring force for the rotational mode is the Coriolis force. The mode has been
shown to be generically unstable with respect to the Chandrasekhar-Friedman-Schutz mecha-
nism [25, 46], and hence it is a promising source strong gravitational radiation. Finally, the
gravitational wave mode (w-mode) is an oscillation mode of spacetime curvature with almost
no matter movement. This mode is rapidly damped, typical damping times are of the order of
τ < 10−4 s. Here, we focus on the f -mode and p-modes only. More details on pulsations of
relativistic stars can be found in [83, 143, 84] and references therein.

In order to show, that gravitational waves from oscillating relativistic stars can be detected
with second or third generation gravitational wave detectors, Fig. 6.1 shows the sensitivity curve
of several experiments along with the expected gravitational wave amplitude of the f -mode,
the first p-mode and the w-mode.
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Figure 6.1: The spectral noise density for the new generation of laser interferometric gravita-
tional wave detectors. The figure shows the sensitivity curves for the first generation detectors
LIGO I and VIRGO, and for the second generation detector LIGO II. EURO is a third gener-
ation detector with idealized characteristics for gravitational wave astroseismology. The boxes
represent the sensitivity needed to detect a mode into which an energy of 10−6M¯c

2 is de-
posited. The upper limit of each box corresponds to an event in our galaxy and the lower limit
to an event in the Virgo cluster. The figure was taken from [84].

Up to date, there are only few nonlinear simulations of non-radial pulsations of relativistic
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stars. Most of the work was done in the so-called Cowling approximation, where the geometry
of the spacetime is kept fixed (see e.g. [44, 41]). The importance of solving the field equations
of general relativity along with the field equations of general relativistic fluid dynamics for the
study of pulsations of relativistic stars can be already seen from the fact, that there are no
w-modes in the Cowling approximation. A more detailed analysis shows [168] that the errors
for the frequencies of the f -mode and the p-modes using the Cowling approximation can be up
to 20% and more.

Along with the studies presented in [42], we present here the first studies of non-radial
oscillations of relativistic stars solving the nonlinear field equations of general relativity and
general relativistic fluid dynamics in axisymmetry. We focus our analysis on one specific stellar
model. We choose a relativistic polytrope (2.52) with with adiabatic exponent Γ = 2, polytropic
constant κ = 100 and central density ρc = 1.28 × 10−3 (in units in which c = M¯ = G = 1).
This model, which has a mass ofM = 1.4M¯ has already been used in previous work [44, 41, 42],
which allows us to compare our results for the radial frequencies and fixed background evolutions
in axisymmetry.

6.1 The perturbations

Due to the discretization error introduced in the numerical solution of differential equations,
different fluid modes will, in general, be excited in a numerical evolution of an equilibrium star.
Here, in order to excite particular (non-radial) modes strongly, we further add deviations to the
equilibrium model of the star in the initial data. In order to excite the radial oscillation modes
of the star (l = 0), we perturb the equilibrium configuration using the perturbation of density
and pressure

δρ = Aρc sin

(
πr2

R2

)
, (6.2)

δp = (1 +
1

n
)p
δρ

ρ
, (6.3)

where A is the amplitude of the perturbation.
Additionally, to excite the l = 1, 2 non-radial modes we perturb the meridional velocity

component according to

uy = A sin

(
πr2

R2

)
, (6.4)

uy = A sin

(
πr2

R2

)
cos θ, (6.5)

respectively. Fig. 6.2 shows the initial setup and a contour plot of the perturbation given by
Eq. (6.5).

Following [44, 41], in order to determine the different oscillation modes, we analyze the time
evolution of different (fluid and metric) variables at a fixed coordinate location. We have checked
that the frequencies of the oscillation modes are largely independent of the specific location.
Hence, for the results presented here, we restrict ourselves to extracting the frequencies at

coordinates (x, y) = ( Ñx

2 ∆x,
Ny

2 ∆y), where Ñx denotes the number of radial zones covering the
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Figure 6.2: Contour plot of the meridional velocity perturbation uy, Eq. (6.5). The axes labels
denote the value of the radial coordinate x along the equator (horizontal axis) and the symmetry
axis (vertical axis), and run from the origin of the coordinate system at x = 0 to future null
infinity J + at x = 1. The star corresponds to the inner circle, where the velocity perturbations
are non-zero, with the north pole above.

star. In addition we use a radial coordinate

r = 15
x

1− x4 , (6.6)

and we choose a perturbation amplitude of A = 10−3. We focus on the time evolution of the
radial velocity ux for the extraction of radial modes and on the meridional velocity uy for the
extraction of non-radial modes. The calculation of mode frequencies follows the work of [41], i.e.
we determine the zeros of the first derivative of the Fourier transform. These zeros correspond
to maxima in the Fourier transform which are associated with the excited modes of oscillation.

6.2 Fixed background evolutions

We start by presenting the results for the mode frequencies of the above stellar model obtained
in evolutions in which we fix the background geometry of the spacetime (i.e. we adopt the
Cowling approximation [29]). We compare the results to those in the literature, thus testing
the hydrodynamics solver of our code.

Table 6.1 shows the results for the fundamental radial mode (F ) and the first three overtones
(H1−H3)

2 and the f and p modes for both, the l = 1 and l = 2 perturbation. Our results are in
2The standard nomenclature of the radial modes differs from that of the non-radial modes. Instead of calling
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Table 6.1: Mode frequencies obtained in the Cowling approximation for a relativistic polytrope
with κ = 100, n = 1 and central density ρc = 1.28 × 10−3 in units in which c = G = M¯ = 1.
The first column labels the different modes. The second column shows the frequencies obtained
with our code, the third column the results obtained with a different nonlinear code based
on Cauchy slices [41]. The fourth column indicates the frequencies obtained from a linear
perturbation code [44] for the quadrupolar modes. The last column shows the relative difference
between the present code and the results of [41] in percent.

Mode Present Code Code [41] Perturbation [44] Difference
[kHz] [kHz] [kHz] [%]

F 2.690 2.706 - 0.59
H1 4.636 4.547 - 1.96
H2 6.532 6.320 - 3.35
H3 8.418 8.153 - 3.25
1f 1.388 1.335 - 3.97
1p1 3.504 3.473 - 0.89
1p2 5.510 5.335 - 3.28
1p3 7.400 7.136 - 3.70
2f 1.871 1.852 1.884 1.03
2p1 4.143 4.100 4.110 1.05
2p2 6.135 6.019 6.035 1.93
2p3 8.087 7.867 7.873 2.80

good agreement (with an error smaller than 4% for each individual mode) with both, a different
nonlinear code [41] and an independent linear code based upon perturbation theory [44]. There
are several reasons which explain the observed differences: First, the angular grid resolution
used in our simulations is rather low (we use resolutions with 451 × 21 grid points in x and
y, respectively) compared to the finer angular grids used in [41] (200 × 80). For the current
setup - in contrast to [41] - only about one half of the radial zones is used to cover the star. We
note that we use this choice here for comparisons with the results of the next section, where
we also have to resolve gravitational waves in the exterior spacetime. Second, we have not
implemented an atmosphere surrounding the star in [41], which enables the star to radially
contract and expand. Therefore, the surface of the star may be too rigid, which may affect the
mode frequencies slightly. Third, and perhaps most importantly, as described in Sec. 2.2 we use a
second order reconstruction scheme at the cell interfaces, and not a third order scheme as in [41].
It is worth emphasizing the importance of using high-order schemes for the hydrodynamics in
order to improve the frequency identification (see related discussion in [44]). Nevertheless, for
our only purpose of assessing the validity of the code we think that the overall agreement found
is satisfactory.

the radial modes 0f , 0p1 etc., they are in general denoted as F , H1 etc.
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Figure 6.3: Pulsations of a κ = 100, n = 1, ρc = 1.28 × 10−3 polytrope (c = G = M¯ = 1).
Top panel: Time evolution of the radial velocity ux for the l = 0 perturbation. Bottom panel:
Fourier transform of the radial velocity. We have labeled the different oscillation modes, F
(fundamental) and H1 −H3 (first three overtones).
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6.3 Metric-fluid coupled evolutions

In this section we calculate the mode frequencies of the above stellar model from fully coupled
evolutions of the fluid and the geometry. Apart from here (see also [138]), only in [42] non-radial
pulsations of relativistic stars have been studied in general relativity using a time dependent
evolution of the Einstein-perfect fluid system. Analyzing oscillations of relativistic stars in the
characteristic approach has never been accomplished before.

Fig. 6.3 shows the (Bondi) time evolution of the radial velocity ux for the l = 0 perturbation
(top panel), as well as the Fourier transform of this quantity. In the same way, Figs. 6.4 and 6.5
display the meridional velocity evolution uy and the Fourier transform for the l = 1 and l = 2
perturbation, respectively. The final evolution time in Figs. 6.3-6.5 corresponds to 5 ms. The
distinctive oscillatory pattern depicted in these figures is mainly a superposition of the lowest-
order normal modes of oscillation of the fluid. The high-frequency modes are usually damped
fast by the intrinsic viscosity of the numerical schemes, and at late times the star mostly pulsates
in its lowest frequency modes.

We summarize our results on the mode frequencies in Table 6.2. Note that due to the
conservation of linear momentum the 1f mode does not exist in Fig. 6.4 [41]. As in the Cowling
simulations of the previous section we also find good agreement when comparing to results of
an independent nonlinear code [42] and to results of linear perturbation theory [42, 82]. The
reasons mentioned above for the observed discrepancies are still valid here, together with the
possible new errors introduced by the metric evolution.

Table 6.2: Mode frequencies obtained in the coupled evolution for the relativistic polytrope with
κ = 100, n = 1 and central density ρc = 1.28×10−3 in units in which c = G =M¯ = 1. The first
column labels the different modes. The second column shows the frequencies obtained with our
code and the third column shows the results obtained from linear perturbation theory [42, 82].
The last column shows the deviations in percent.

Mode Present Code Perturbation [42], [82] Difference
[kHz] [kHz] [%]

F 1.422 1.442 1.38
H1 3.993 3.955 0.96
H2 6.021 5.916 1.77
H3 7.968 7.776 2.46
1p1 1.951 - -
1p2 2.844 - -
1p3 5.019 - -
2f 1.587 1.579 0.51
2p1 3.748 3.710 1.02
2p2 5.811 5.689 2.14
2p3 7.848 7.580 3.54
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Figure 6.4: Pulsations of a κ = 100, n = 1, ρc = 1.28× 10−3 polytrope (c = G =M¯ = 1). Top
panel: Time evolution of the meridional velocity uy for the l = 1 perturbation. Bottom panel:
Fourier transform of the meridional velocity.
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Figure 6.5: Pulsations of a κ = 100, n = 1, ρc = 1.28× 10−3 polytrope (c = G =M¯ = 1). Top
panel: Time evolution of the meridional velocity uy for the l = 2 perturbation. Bottom panel:
Fourier transform of the meridional velocity.
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6.4 Gravitational waveform

Gravitational waves from oscillating neutron stars are likely to be detected by future gravita-
tional wave detectors. If the detectors reach the necessary sensitivity, the gravitational waves
of pulsating stars are relatively easy to identify due to the inherent periodicity. Measuring the
frequency and the typical decay of the different oscillation modes, one can in principle deduce
the mass and the radius of the star, and thus the EoS [2, 88].

In this section we use our routines for the gravitational wave extraction in our numerical
implementation to study the gravitational wave signal from pulsating relativistic stars. We
study the gravitational wave signal from the simulations of the above section concerning the
l = 2 perturbation. In Fig. 6.6 we plot the Bondi news function at the equator N(yB = 0)
as a function of the observer time. Due to the equatorial plane symmetry inherent to the
perturbation, which is conserved during the evolution, we have yB(y = 0) = 0. This enables us
to directly plot N(y = 0), thus avoiding suitable interpolations for the wave extraction, which
would be otherwise needed for the coordinate transformation to local Bondi coordinates.

In order to estimate the amplitude of the signal in Fig. 6.6 we have also computed the
gravitational wave emission due to the quadrupole formula Eq. (2.89)

N0 =
...
Q. (6.7)

In contrast to Sec. 2.3.2, in order to account for all gravitating masses, we have included the
contribution of the internal energy ε to the quadrupole moment,

Q = π sin2 θ

∫ R

0

dr′
∫ π

0

sin θ′dθ′r′4ρ(1 + ε)(
3

2
cos2 θ′ − 1

2
). (6.8)

In our specific case, the internal energy gives rise to a 4% increase of the quadrupole news
amplitude. In the numerical calculation of Q we equate the radial and angular coordinates r′

and θ′ with the radial and angular coordinates r and θ. Having included ε into the integral, it
is not possible to use the continuity equation to eliminate one time derivative. In order to avoid
the numerical noise introduced by the three time derivatives in Eq. (6.7) we thus fit a cosine
to the time evolution of the quadrupole moment Q obtained in the numerical simulation. The
dashed line in Fig. 6.6 shows the third time derivative of this curve, where the time derivatives
are taken with respect to Bondi time.

By evaluating the contributions of the gravitational wave signal in Fig. 6.6, we see that the
dominant contribution originates from the 2f mode. The frequency we extract from the wave-
form is 1.57 kHz, in good agreement with the result shown in Table 6.2. There are additional
contributions to the gravitational wave signal. The 1p1 mode is excited at the stellar surface,
where we do not allow the star to radially contract or to expand.

Comparing the amplitude of the Bondi news and the “quadrupole news” Eq. (6.7) for the
2f mode we stress that the amplitudes roughly agree. We cannot exclude that the differences
are mainly due to numerical errors. Due to the different contributions of the time derivative for
γ and of gauge terms the calculation of N is a difficult task [76]. In addition, we note that the
total energy radiated away corresponds only to a tiny fraction of the total mass of the spacetime.
More precisely, whereas the total mass of spacetime is 1.4M¯, the total mass radiated is only
2.8 × 10−9M¯, which is smaller than the typical numerical errors in the determination of the
Bondi mass. Moreover, most of this radiation is a consequence of the initial gravitational wave
content and is radiated away between uB = 0 ms and uB = 0.1 ms. Additional differences in
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Figure 6.6: News function as a function of observer time at the equator at infinity. The
(unphysical) initial part of the signal is due to the gravitational wave content in the initial data.
The main oscillation frequency corresponds to the 2f mode with other frequencies overlayed.
The dotted curve shows a suitable average of the numerical Bondi news smearing out higher
frequencies. The average is calculated for a time interval of 0.3 ms. The dashed line corresponds
to the estimated news of the 2f mode oscillation which is extracted using the quadrupole
formula. See text for a detailed discussion.

the curves for the Bondi news and the quadrupole news in Fig. 6.6 might be caused by the
rough estimate of the quadrupole Q in Eq. (6.8) which does not take into account the curvature
of spacetime.

At late times (after about 3 ms), the Bondi news does not strictly oscillate around zero.
This numerical effect can be weakened using more sophisticated numerical methods for the
fluid update (e.g. third-order cell reconstruction procedures). We note that similar drifts are
reported in [44, 42] in time evolutions of equilibrium models using a perfect fluid EoS. For
the results shown in Fig. 6.6, we have used a polytropic EoS during the fluid evolution. This
is legitimate as the effect of heating is negligible for our stellar object close to equilibrium.
Finally, we note that the maximum deviation from global energy conservation, Eq. (2.79), in
this simulation is 2.5× 10−5M¯, which is very adequate for the long integration time.
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Chapter 7

Simulation of supernova core

collapse

Supernova core collapse marks the final stage of the stellar evolution of massive stars. According
to order of magnitude estimates, the total energy emitted in gravitational waves in such events
can be as high as 10−6M¯c

2. Hence, supernovae are an important source of gravitational waves
which could be directed with current or next generation gravitational wave laser interferometers.
If detected, the gravitational wave signal could be used to probe the models of core collapse
supernovae and to study the formation of neutron stars.

Since the collapse of the iron core and its bounce at nuclear densities is a complicated
dynamical process, an adequate numerical description is demanding. As described in Chapter 2,
we do not aim at modeling the microphysics in detail, but we take into account instead the
most important features only. We use the hybrid EoS described in Sec. 2.2.2 to model the
stiffening of the EoS at nuclear densities and the effects of thermal heating due to the presence
of a shock. At the same time we focus on a fully general relativistic description of the collapse
and bounce in axisymmetry.

7.1 Initial models

In the final stage of the stellar evolution of massive stars, the iron core in the stellar center has
a central density of about ρc = 1010 g cm−3 (see Fig. 1.4). As the pressure of the degenerate
electrons is by far the most important contribution to the total pressure, the pressure in the iron
core can be approximated by a polytropic equation of state Eq. (2.52) with adiabatic exponent
Γ = 4

3 . In order to obtain an initial model for the iron core, we solve the Tolman-Oppenheimer-
Volkoff equation (2.62) - (2.63) with the above central density, which corresponds to a central
density of ρc = 1.6206× 10−8 in code units c = G =M¯ = 1.

To initiate the gravitational collapse of a Γ = 4
3 relativistic polytrope (either perturbed

or in equilibrium), we set the adiabatic index Γ1 in the hybrid EoS (2.60) to a value of 1.30,
which mimics the softening of the EoS due to capture of electrons by iron group elements and
due to the endothermic photodisintegration of heavy nuclei (see Eq. (1.1)). The chosen value
is within the interval range analyzed in previous studies of rotational supernova core collapse
based on Newtonian physics [169] and on the conformal flat metric approximation of general
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relativity [31, 32]. A detailed parameter study of the influence of varying the adiabatic index
Γ1 in the collapse dynamics is beyond the scope of the present analysis.

As we have not included rotation into the characteristic field equations of general relativity
and the general relativistic fluid equations, the equilibrium initial model of the iron core is
spherically symmetric. Furthermore, in the evolution of these data, spherical symmetry is
conserved, i.e. during collapse, bounce and beyond. Therefore, as we are mainly interested in
the core collapse as a source of gravitational waves, we add non-radial perturbations on top
of the spherical data. Our analysis is thus restricted to collapse scenarios where the effects of
rotation can be neglected and in which stellar evolution has led to asymmetries in the iron core,
e.g. due to convection. The strongest gravitational wave signals are expected for perturbations
of quadrupolar form. Hence, we further restrict our analysis to this case, varying the form
and amplitude of the perturbation in the initial data. We note that the evolution of such
data, however, can produce an arbitrary type of perturbation within the class of the imposed
symmetry. We have classified the different models as follows:

• A: the spherical model is unperturbed.

• B: we prescribe a perturbation of the rest mass density

δρ = Aρs sin
(πr2
R2

)
y2, (7.1)

where ρs denotes the spherical density distribution.

• C: we prescribe a perturbation of the meridional velocity component

uy = A sin
(πr2
R2

)
y. (7.2)

Here, A is a free parameter describing the amplitude of the perturbation, and R denotes the
radius of the iron core (R = 1.4× 103 km). Note that we have already used a perturbation of
the form C to study quadrupolar oscillations in relativistic stars, see Eq. (6.5) (Chapter 6). In
the following, we have further classified models B and C according to the amplitude A of the
perturbation. We have summarized the collapse models described in this Chapter in Table 7.1.

Table 7.1: Numerical models for the supernova core collapse. We have classified the models ac-
cording to whether no perturbation was added to the spherical model (Type A), a perturbation
of the form Eq. (7.1) was added (Type B) or a perturbation of the form Eq. (7.2) was added
(Type C).

model amplitude A

A -
B001 0.01
B005 0.05
B01 0.1
C01 0.1

One of the principal challenges of a numerical simulation of core collapse supernovae is
the large radial extension to be covered by the computational domain. In our simulations, we
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need a high radial resolution in order to obtain the converged result for the global dynamics.
Moreover we extend the numerical grid to cover future null infinity for the extraction of grav-
itational waves. In all simulations described in this Chapter we used a radial grid function
r = 100 tan(π2x), the number of radial zones ranging from 450− 800.

7.2 The dynamics of core collapse supernovae

We turn now to describe the dynamics of the iron core collapse we obtain from our numerical
simulations.

7.2.1 Collapse and bounce

When evolving in time the initial models described in the previous section, the core starts to
collapse. Fig. 7.1 shows the time evolution of the central density for model B01. When reaching
nuclear density, the pressure increases strongly according to Eq. (2.55). The central density
grows further, but its increase is soon stopped. Afterwards, it drops below its maximum value,
finally approaching a quasi-equilibrium supra-nuclear value when a “proto-neutron star”1 has
formed in the central region.
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Figure 7.1: Evolution of the central density for the collapse model B01 using a semilogarithmic
scaling. During the collapse phase the central density increases by 4.5 orders of magnitude.
When reaching supra-nuclear densities, the collapse is stopped as a consequence of the stiffening
in the hybrid EoS at about 40 ms after the collapse was initiated. The central density finally
approaches a new equilibrium supra-nuclear value. Shortly after bounce, oscillations appear in
the central density, which can be seen from the inset (note the linear scaling).

Fig. 7.2 shows a spacetime diagram for the core collapse simulation of model A (the main
aspects are similar for all our models). At the beginning of the collapse phase, the spacetime
metric is close to the Minkowski metric, which is reflected in the diagram by the light cones
being almost parallel straight lines. The effects of curvature can be most strongly seen close

1We use this term loosely, without claiming that we model the microphysics realistically.
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Figure 7.2: Spacetime diagram for the collapse model A. Plotted is the lapse of proper time
as a function of the radial coordinate r. The black solid lines correspond to a subset of the
light curves by which we foliate the spacetime (there is one light cone after every 5 ms, where
time is measured by an observer at the origin). The colored curves correspond to different mass
shells: M = 0.2M¯ (yellow), M = 0.4M¯ (orange), M = 0.6M¯ (red), M = 0.8M¯ (green),
M = 1.0M¯ (blue) and M = 1.2M¯ (violet). After about 40 ms, a shock forms in the interior
region close to the origin. This shock travels out, thereby transfering momentum to the infalling
matter, which results in an outflow of material after the shock has passed. The location of the
shock front is shown by the thick dashed line in the diagram. The diagram was obtained from
a global simulation with 800 radial zones, extending the grid to future null infinity.
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Figure 7.3: Snapshots of radial velocity profiles ur, plotted as function of radius r for the
collapse model A. The snapshots were taken between uB = 30 ms and uB = 45 ms, with a
delay of 1 ms between subsequent outputs. The shock formation takes place at about 40 ms. In
the outer part of the plotted region, the infall velocity of matter increases monotonically with
time. For the simulation, we used 800 radial zones.
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to the origin (r = 0) after about 40 ms, when the proto-neutron star has formed. However, in
comparison to the studies presented in the previous chapters, the forming neutron star is less
compact. We observe a redshift factor e2H relating the lapse of local proper time at the origin
to the lapse of proper time at infinity of ∼ 1.12. The diagram shows different mass shells and
the location of the shock front (the dashed line). In order to localize the shock front, we search
for coordinate locations with uxi − uxi+1 ≥ s, where s is a threshold value for a velocity jump to
be adapted (typical values for our simulations are s = 10−5...10−4). In order to calculate the
mass inside a fixed radius, we have made use of Eq. (5.22) with a perfect fluid stress energy
tensor. For collapse model A, the general expression for the Bondi mass, Eq. (2.70), reduces to
this simple form.

Fig. 7.3 shows different snapshots of the radial velocity ur at evolution times close to bounce.
In the late phases of the collapse, a homologous inner core can be distinguished. In this region,
the infall velocity measured as function of radius is proportional to the radius. The homologous
inner core shrinks with time. The outer limit of the homologous region, i.e. the sonic point,
where the local sound speed has the same magnitude as the infall velocity, finally reaches a
radius of less than 10 km after about 40 ms. At that time, a shock front forms, which moves
outwards with a speed of ∼ 0.1c initially. During its propagation it is gradually slowed down by
the interaction with the infalling material in the outer region. It is worth to stress the ability
of the code to resolve the steep shock front with only a few grid points (typically three). This
can be further seen in Fig. 7.4, where we have plotted the rest mass density ρ at the shock front
for a simulation of the collapse model C01.

The propagation of the shock front to the exterior through the infalling material heats the
matter substantially. This can be seen in Fig. 7.5, where we plot the internal energy distribution
ε in the central region shortly after bounce. The figure further shows the contribution to the
internal energy from the polytropic part, Eq. (2.56), and the thermal part, Eq. (2.59). In the
very central region, the polytropic contribution constitutes the dominant part of the internal
energy. In contrast, the thermal energy dominates the total internal energy in the post-shock
region for radii larger than a certain value, ∼ 13 km in the specific situation shown in Fig. 7.5.

We have verified that in the global simulations of core collapse supernovae, the energy
balance given by Eq. (2.79) is well preserved. Typical maximum values for the deviation from
energy conservation are of the order of 0.5− 1% for the simulations described in this section.

Figures 7.6 - 7.7 show various contour plots illustrating the collapse and bounce dynamics
for the collapse model B01. For this particular simulation we used a resolution (Nx, Ny) =
(600, 12). Fig. 7.6 shows contour plots of the rest mass density covering the iron core up to
a radius of 400 km at times 40 ms (i.e. at bounce), at 45 ms (when the shock has reached
a radius of ∼ 140 km) and at 50 ms (when the shock wave has reached a radius of 250 km).
We have plotted velocity vectors on top of the contour plots, normalized to the maximum
velocity in the displayed region. After shock formation, the velocities in the inner region are
small compared to the infall velocities of the core. Fig. 7.7 focuses on the inner region up to
a radius of 30 km. In the collapse phase up to bounce at nuclear densities (upper panel), the
initial aspherical contributions do not play a major role, the radial infall velocities dominate the
dynamics. After bounce (middle and lower panel) the forming neutron star in the central region
shows non-spherical oscillations, with fluid velocities up to about 2× 10−3c. Qualitatively, the
dynamics for the collapse model C01 is very similar to what is shown in Figs. 7.6-7.7 for model
B01. However, the particular form of the non-spherical pulsations created after bounce differs.
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Figure 7.4: Rest mass density distribution ρ around the shock front for the collapse model C01.
50 ms after initiating the collapse, the shock has reached a radius of about 250 km. The figure
shows a surface plot of the corresponding region, as a function of the radial coordinate r and the
angular coordinate θ. We plot every radial zone using a radial grid r = 100 tan( π2x) with 450
radial zones. The shock front is resolved with only three radial zones. The aspherical nature of
the data is most prominent at the shock front.
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Figure 7.5: Radial distribution of the internal energy ε (solid line) shortly after bounce (uB =
41 ms) for the collapse model A. The different contributions from the polytropic part εp (dashed
line) and the thermal part εth (long-dashed line) to the total internal energy are also shown. In
front of the shock which is located at a radius of ∼ 45 km, the thermal energy vanishes.
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Figure 7.6: Contour plot of the rest mass density distribution for model B01 at a Bondi time
uB = 40 ms (upper panel), uB = 45 ms (middle panel) and uB = 50 ms (lower panel), obtained
from a global evolution extending the grid to future null infinity. We only show a fraction of
the core up to a radius of 400 km. Overlayed are velocity vectors. The fluid dynamics after
bounce (middle and lower panel) is dominated by the outgoing shock (located at a radius of
140 km and 250 km respectively).
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Figure 7.7: Same as Fig. 7.6, but focusing on the inner region of the iron core up to a radius of
30 km. At bounce (upper panel), the dynamics is well approximated by the spherical dynamics.
In the later phases (middle and lower panels), the fluid dynamics is characterized by aspherical
flows related to the oscillations of the newborn neutron star. The matter flow shows reflection
symmetry with respect to the equator, which is inherent to the initial data and well preserved
during the evolution.
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7.2.2 Fluid oscillations in the outer core

When analyzing the dynamic behavior of the fluid after bounce, we found that the meridional
velocity oscillates strongly in the entire region in front of the shock. This can be seen in the solid
curve of Fig. 7.8, where we plot the meridional velocity component v2 = ruθ for model B01 at
coordinate location r = 833 km and y = 0.5 as a function of Bondi time. Similar oscillations
are observed in the entire region in front of the shock, where they are created directly after the
formation of the proto-neutron star in the central region of the numerical domain. The only
possibility to propagate information instantaneously (i.e. on a slice with constant retarded time
u) from the central region to the outer layers of the iron core is through the metric, since sound
waves would need several 10 ms to cover the distance. There are two possible explanations for
these oscillations. Either they are created when gravitational wave energy is absorbed in the
region well in front of the shock, or they are created by our choice of coordinates, i.e. they are
gauge effects. In the latter case, the oscillations would not be caused by a real flow, but as a
consequence of the underlying coordinate system in which we describe the flow.

To clarify the origin of the oscillations, we estimate in the following the kinetic energy of
the oscillations, assuming that they are a physical effect. From Fig. 7.8, the average amplitude
of the oscillation2 is of the order of v̂2 = 2 × 10−4c. Taking into account that the total mass
in the pre-shock region is of the order of Mps ≈ 1M¯, the value of the kinetic energy in the
oscillations is approximatively

Ekin ≈
1

2
Mps(v̂2)

2 ≈ 2× 10−8M¯c
2. (7.3)

This energy is comparable to the total energy radiated in gravitational waves in a typical
core collapse supernova. Transferring such an amount of energy to the pre-shock region seems
unphysical, as gravitational waves interact with matter only very weakly. Instead, as we describe
next, we conclude that the oscillations are mainly introduced by our choice of coordinates.

Following the work of Bishop et al. [11] inertial coordinates can be established at future
null infinity J +. The angular inertial coordinate θB can be constructed solving the partial
differential equation

(∂u + U∂θ)θB = 0, (7.4)

with initial data θB(u = 0) = θ(u = 0). Instead of solving the partial differential equation (7.4)
directly, we determine the characteristic curves of Eq. (7.4)

dθ

du
= U(θ, u), (7.5)

θ(u = 0) = θB , (7.6)

along which θB is constant. With suitable interpolations, θB can then be determined for
arbitrary angles θ.

Making use of Eq. (7.4), it is possible to define an “inertial” meridional velocity

uθB =
∂θB
∂θ

∣∣∣
J+

u
(uθ − U

∣∣∣
J+

uu). (7.7)

2Note that v2 vanishes at the polar axis and at the equator, so that the average velocity is substantially
smaller than that shown in Fig. 7.8.
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Figure 7.8: Meridional velocity component as a function of Bondi time at the fixed location
r = 833 km and y = 0.5 for model B01. The radial location was chosen well in front of
the shock. The solid line corresponds to the meridional velocity as extracted in our coordinate
system, v2 = ruθ, in units of the speed of light c. The dashed line corresponds to the meridional
velocity evaluated in inertial Bondi coordinates defined at future null infinity. See text for more
details.

The dashed line in Figure 7.8 shows the corrected (“inertial”) angular velocity ruθB . Remark-
ably, the oscillations have almost disappeared, which clearly shows that gauge effects can play
a major role for the oscillations in the pre-shock region.

7.3 Gravitational waves from core collapse supernovae

After having described the global dynamics, we focus the discussion on the gravitational waves
obtained from our simulations of supernova core collapse.

7.3.1 Quadrupole gravitational waves

There are two possibilities of calculating the gravitational wave strain AE2
20 defined in Eq. (2.95)

from the quadrupole moment (see the discussion in Sec. 2.3.2). Either the quantity is directly
calculated from the quadrupole moment Q (see Eq. (2.88)) according to Eq. (2.95) - (2.96), i.e.,

AE2
20 =

16√
15
π

3
2
d2

du2B

[ ∫ R

0

dr′
∫ π

0

sin θ′dθ′r′4ρ
(3
2
cos2 θ′ − 1

2

)]
, (7.8)
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or, alternatively, using the first moment of momentum formula in order to eliminate one time
derivate analogous to the transition from Eq. (2.89) to Eq. (2.92), i.e.,

AE2
20 =

16√
15
π

3
2
d

duB

[ ∫ R

0

dr′
∫ π

0

sin θ′dθ′r′3ρ(v1(3 cos
2 θ′ − 1)− 3v2 sin θ

′ cos θ′)
]
. (7.9)

As shown in Fig. 7.9 we find good agreement between the two approaches. In order not to
have the time derivatives dominated by numerical noise, we have averaged the quantities in
brackets in Eq. (7.8) and Eq. (7.9) over a few neighboring grid points before calculating the
time derivatives. This result checks the implementation of the continuity equation, and as
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Figure 7.9: Gravitational wave strain AE2
20 for the simulation of the collapse model B01. The

solid curve shows the result using the first moment of momentum approach Eq. (7.9), the dashed
line is based on Eq. (7.8). The good agreement found between both approaches shows that our
general relativistic fluid evolution is internally consistent.

this equation is not calculated separately, but as a part of a system of balance laws, our
implementation of the fluid equations in general. We note that the equivalence between Eq. (7.8)
and Eq. (7.9) is only strictly valid in the Minkowskian limit and for small velocities, which is
the origin for the observed small differences between the curves in Fig. 7.9. Substituting ρ by
ρuue2β in Eq. (7.8) and by ρe2β in Eq. (7.9), by which we restore the equivalence in a general
relativistic spacetime, we find excellent agreement between the two approaches of calculating
AE2
20 .
Since we are imposing only small perturbations from spherical symmetry, we expect a linear

dependence of the non-spherical dynamics and the gravitational wave signal as a function
of the perturbation amplitude. We have verified in a series of runs that the amplitude of
the quadrupole moment (and thus the quadrupole radiation signal) scales linearly with the
amplitude of the initial perturbations (see Fig. 7.10). This observation marks another important
test for the correctness of the global dynamics of our code.
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Figure 7.10: Quadrupole moment (in units c = G = M¯ = 1) as a function of time for three
models of type B with perturbation amplitude A = 0.01, A = 0.05 and A = 0.1. The first two
results are rescaled with respect to A = 0.1 assuming a linear dependence. All three curves
overlap in the diagram. The quadrupole moment (and hence the quadrupole signal) scales
linearly with the amplitude of the perturbation in the chosen parameter region.

On the other hand, when comparing the quadrupole news given by Eq. (2.89) with the
Bondi news signal evaluated at future null infinity, Eq. (2.77), we find important differences.
This can be seen in Fig. 7.11, where we plot both, the Bondi news and the quadrupole news for
model B01. We note that the differences manifest themselves not only in the amplitude of the
oscillations, but also in the frequencies of the signals. This behavior is clearly different from
the one observed in the neutron star pulsation studies in Sec. 6.4, where both signals showed
good agreement. As already mentioned in Sec. 2.3.2, the quadrupole radiation term is only the
first term in a post-Newtonian expansion of the gravitational wave signal. By extracting the
hexadecapole moment for the above result, we found, however, that the associated amplitude
is too small in order to explain the observed differences in Fig 7.11.3

As we have explained in detail above and in Sec. 4.3, the global dynamics of the core collapse
and bounce is correctly reproduced with our numerical code. We have strong evidence that
the quadrupole signals extracted from our collapse simulations do not correspond to physical
gravitational wave signals. In the following, we describe the different arguments which support
the above claim.

First, if the quadrupole radiation signal corresponded to the true physical signal, it would
be very difficult to understand why the Bondi signal has a significantly smaller amplitude.
In the calculation of the Bondi news, Eq. (2.77), the contribution of the different terms are
relatively large and add up to a small signal (see the discussion in the next section). Under the

3In general, one would expect that the contribution of the hexadecapole moment increases the amplitude of
the approximate signal. Note that here, however, the amplitude of the quadrupole news in Fig 7.11 is much
larger than that of the Bondi news evaluated at J+.

98



7.3. GRAVITATIONAL WAVES FROM CORE COLLAPSE SUPERNOVAE

35 40 45 50
Bondi time [ms]

−1e−05

−5e−06

0

5e−06

1e−05

ne
w

s 
fu

nt
io

n

Bondi news 
rescaled quadrupole news

Figure 7.11: Bondi and quadrupole news as a function of time for model B01. The dark solid
curve corresponds to the quadrupole news according to Eq. (2.92), the dashed curve to the
Bondi news signal. For visualization reasons, we have divided the quadrupole news result by
50. We do not find agreement between the Bondi news and the quadrupole news.

assumption that the quadrupole news signal is correct and the Bondi news signal is wrong, it
would be extremely unlikely that the possible errors in the contribution to the Bondi news add
up to a very small signal.

Second, we have performed comparisons between our numerical code and the code of [31],
finding much larger amplitudes for the quadrupole gravitational wave signal in our case. How-
ever, we note that comparing the results of both codes in axisymmetry is ambiguous, as possible
differences might have different explanations. For example, the use of the conformally flat met-
ric approach in [31] is clearly an approximation to general relativity, which should create some
differences. Furthermore, the coordinate systems used in both codes for the computation of the
quadrupole moment are different. Only in our code, the quadrupole moment is evaluated on a
light cone, i.e. as a function of retarded time.

A third and physically motivated argument stems from the spatial distribution of matter in
our simulation. As it can be seen from Fig 7.12, the main contribution in the radial integral
of the quadrupole moment comes from the outer, infalling layers of matter. These outer layers
are responsible for the oscillations in the quadrupole moment, which can be seen in Fig. 7.10.
Following the reasoning of the last section it is natural to conclude that the calculation of the
quadrupole moment is also affected by our choice of coordinates, i.e. by gauge effects.

For all these reasons we extract the quadrupole moment in the angular coordinate system
defined by Eq. (7.4). However, introducing the inertial angular coordinate does not help to find
better agreement between quadrupole and Bondi signals, the extracted quadrupole moment
almost agrees with the results shown in Fig. 7.10. Since the difference of Bondi time between
the different angular directions on our Tamburino-Winicour foliation is in general of the same
order as the lapse of time for one time step, we expect a similar result when evaluating the

99



CHAPTER 7. SIMULATION OF SUPERNOVA CORE COLLAPSE

0 500 1000 1500
radius [km]

−200

0

200

400

600

800

Q
(r

)

Figure 7.12: Radial contribution to the quadrupole moment. We plot the value of the integral
Q(r) = π sin2 θ

∫ r
0
dr′
∫ π
0
sin θ′dθ′r′4ρ( 32 cos

2 θ′ − 1
2 ) as a function of the radial coordinate r for

different values of time . The data is plotted after a fixed number of time steps, starting with
initial data at uB = 0 ms. The data was taken from a simulation of the supernova core collapse
model B01. Large amplitude oscillations of the quadrupole moment, as they can be seen in
Fig. 7.10, can only be created - at least shortly after bounce - in the outer region of the infalling
matter well in front of the shock.

quadrupole moment at a fixed inertial time. However, by prescribing the necessary coordinate
transformations to define Bondi coordinates only at J +, we do not take into account an inertial
radial coordinate, which should be used for the evaluation of the quadrupole moment.

As we have discussed in detail in Sec. 6.4, we find good agreement between the Bondi signal
and the quadrupole signal when calculating gravitational waves from pulsating relativistic stars.
Hence the obvious question of why the quadrupole formula can be applied in the studies of
neutron star pulsations arises. We think, this is mainly a consequence of the small velocities
in the problem of neutron star pulsations. Whereas the typical maximum fluid velocities in
the oscillation problem are of the order of 10−5c − 10−4c, fluid velocities of up to 0.2c are
reached for the supernova core collapse. Furthermore, due to the non-spherical dynamics of
the proto-neutron star formed in the interior of the collapsed region, the metric can pick up
gauge contributions which are created as a consequence of our requirement to prescribe a local
Minkowski frame at the vertex of the light cones. Gauge contributions may also play a more
important role in the collapse scenario due to the enlarged radial extension of the collapsing
iron core (about 1500 km), which is much larger than the corresponding one for neutron star
pulsations (about 15 km).

We note that since the collapse involves fluid velocities of up to 0.2c, it is not obvious
whether the functional form for the quadrupole moment established in the slow motion limit
on the light cone will still be valid. In fact, the situation could be similar to the case of the
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total mass of spacetime, where a naive definition, even in spherical symmetry, as

Mn = 4π

∫ R

0

r′2ρ(1 + ε)dr′, (7.10)

would only be a valid approximation for small fluid velocities. This can be understood from
the comparison with the expression of the Bondi mass, Eq. (5.22), in the form

MB = 4π

∫ R

0

r′2[ρ(1 + ε)(−uuuu)− p(1 + uuuu)]dr
′, (7.11)

(no summation is involved in this expression). Only vanishing fluid velocities, i.e. uuuu = −1,
ensure that the two masses are equal, Mn =MB .

We experimented with possible alternative functional forms for the quadrupole moment
which brings up the existence of significant differences (see Fig. 7.13). An unambiguous clarifica-
tion of which functional form has to be used for the quadrupole moment in the extended regime
of validity of large fluid velocities could only be obtained by a derivation of the quadrupole
formula in the Tamburino gauge. However, technical complications for such a derivation are
so severe that it has only been accomplished for a simplified radiating dust model [75] (see the
related discussion in Winicour [161]).
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Figure 7.13: Time evolution of the quadrupole moment for slightly different definitions, which
all have the correct weak field, slow motion limit. The dashed curve corresponds to the original
quadrupole moment according to Eq. (2.88). The solid line corresponds to the quadrupole
moment after substituting ρ by

√−gρ in Eq. (2.88). Finally, the dotted curve was obtained by
substituting ρ by e2βTru, a choice motivated by Eq. (5.22).

7.3.2 The Bondi news signal

The numerical extraction of the Bondi news is a very complicated undertaking, since reasons for
possible numerical problems are diverse. First, its extraction involves calculating non-leading
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terms from the metric expansion at future null infinity (see the discussion in Sec. 2.3.1). All
the metric quantities are global quantities, and are thus sensitive to any numerical problem
in the entire computational domain. Second, when calculating the gravitational signal in the
Tamburino-Winicour approach, one has to take into account gauge effects. For the present
calculations of the gravitational wave signal from core collapse, the gauge contributions are
indeed the dominant contribution, which can easily influence the physical signal.
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Figure 7.14: Different contributions to the Bondi news. The solid curve corresponds to the term
involving cu (first addend) in Eq. (2.77), the dashed curve to the contribution from the second
and third addend. By summing up both contributions we obtain the Bondi news, which is close
to zero. In addition,we note that when separating the third addend into angular derivatives of
H and ω, each single contribution has an amplitude 23 times larger than what is shown in the
figure.

In order to stress these points, we plot in Fig. 7.14 the different contributions to the Bondi
news for the collapse model B01. As it can be seen in this figure, the metric quantities show
high frequency numerical noise, as soon as the shock forms at bounce (at a Bondi time of about
40 ms). In order to demonstrate that the noise is actually created at the shock, we plot in
Fig. 7.15 the location of the shock together with the gravitational wave signal. Obviously the
noise is created by the motion of the shock across the grid, the temporal behavior of the noise
following the discontinuous jumps of the shock between adjacent grid cells. We would like to
point out that due to the smaller radial resolution used in the outer layers of the core, the
frequency of the noise slowly decreases with time.

As we have pointed out in the previous section, the shock front is well captured in only
a few radial zones with our high-resolution shock-capturing scheme. It might seem surprising
that a small localized error created in a few radial zones can have such a large effect on the
gravitational wave signal. However, one has to keep in mind that the radial integration of the
metric variables picks up this error and propagates it to future null infinity instantaneously. It
is important to stress that the effect of the numerical noise on the dynamics of the collapse and
bounce is negligible. However, the gravitational wave signal, i.e. the Bondi news, is extremely
sensitive to it.
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Figure 7.15: Upper panel: Bondi news as a function of time. High frequency noise is overlayed
on top of a small frequency modulation. Lower panel: Radial location of the cross section
of the shock front with the equator as a function of time. Due to the finite resolution, the
location of the shock wave moves discontinuously. Finding the same frequency for the noise
in the Bondi news, we have established that the noise is created at the shock, and propagated
instantaneously to infinity in the numerical solution of the metric equations.

103



CHAPTER 7. SIMULATION OF SUPERNOVA CORE COLLAPSE

We have verified, that the frequency of the noise - as expected - increases with radial
resolution. Unfortunately, the amplitude of the noise does not decrease substantially with
radial resolution, at least not in the resolution regime accessible to us.4 Therefore, we have
tried to eliminate the noise by different methods. In a first attempt, we tried to smooth out
the shock front, either in the hydrodynamical evolution itself or before using the fluid variables
in the source terms of the metric equations. In both cases, it was impossible to obtain a
smooth signal without changing the dynamics. In a second attempt, we rearranged the metric
equations eliminating second derivatives which might be ill-behaved at the shock.5 Defining a
metric quantity

X = r2f2e2(γ−β)Û,x − 2(β,y − ȳγ̂,y), (7.12)

and solving the hypersurface equations successively for β, X, U and S it is possible to eliminate
all second derivatives from the hypersurface equations. Unfortunately, the noise is not affected
by this rearrangement of the metric equations. Third, going to larger time steps for the fluid
evolution only - solving the metric equations several times between one fluid time step - did not
reduce the noise. After these attempts we decided to eliminate the noise from the gravitational
wave signals only after the numerical evolution. We experimented with two different smoothing
methods. In the first method, we calculate the Fourier transform of the data, and eliminate all
frequencies beyond a certain threshold frequency (of about 5 - 10 kHz). When transforming
back from Fourier space afterwards, all the high-frequency part of the data is removed. In a
second method we simply average the signal over a few neighboring points. We have applied
this second method in what is described below.

Fig. 7.16 shows the Bondi news signal for the collapse model B01. The figure focuses on the
part of the signal around bounce. After the initial gravitational wave content is radiated away
(in the first 5 ms, not depicted in the figure), the signal in the collapse stage is very weak. This
is expected, as the dynamics is well reproduced by a spherical collapse model during this stage.
At the bounce, the Bondi news shows a spike. Afterwards, a complicated series of oscillations
is created due to the oscillation of the forming neutron star and the propagation of the shock
to the exterior. Typical oscillation frequencies are of the order of 0.5 − 1 kHz, for which the
maximum sensitivity is reached for the current gravitational wave laser interferometers (see
Fig. 6.1).

Correspondingly, Fig. 7.17 shows the Bondi news signal for a the collapse model C01. Here
again, after radiating away the initial gravitational wave content, the collapse phase is charac-
terized by very small radiation of gravitational waves. At bounce, we again observe a strong
spike in the signal. Afterwards, the oscillations in the signal are rather rapidly damped.

We stress that - as a consequence of the necessary smoothing techniques applied - only the
main features of the gravitational wave signals in Figures 7.16 and 7.17 are reliably reproduced.
This also applies to possible offsets of the Bondi news, which affect in particular the Bondi
gravitational wave strain, Eq. (2.97). Comparing the Bondi news function for the different
collapse models of type B, we observe to good approximation a linear dependence of the Bondi
news with the perturbation amplitude. This is reflected in the total energy radiated away in

4For a resolution (Nx, Ny) = (600, 12), one time step is accomplished in about 2 s of CPU time on the
DEC-Alpha workstations where we run the simulations achieving a performance of several hundred MFlops.
Taking into account that about 7× 105 time steps are needed to cover the evolution up to uB = 50 ms for this
given resolution, one single simulation takes about 16 days.

5Note that only after rearranging the vacuum field equations, smooth results for the Bondi news are obtained
in [55].
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Figure 7.16: Bondi news as a function of Bondi time for the collapse model B01. The displayed
time interval covers the late collapse stage until several ms after bounce. During the collapse
stage, the gravitational wave signal is negligible. After bounce a complicated series of oscillations
sets in.
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Figure 7.17: Bondi news as a function of time for the collapse model C01. The bounce at about
41 ms is characterized by a large spike in the gravitational wave signal. After bounce, the signal
shows oscillations, with principal frequency of about 0.35 kHz.
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gravitational waves, which scales quadratically with the amplitude of the initial perturbation.
A summary of the results on the gravitational wave energy is listed in in Table 7.2.

Table 7.2: Total energy radiated in gravitational waves in the first 50 ms for the collapse
simulations of type B. The initial gravitational wave content is the dominant contribution to
the total energy. This energy scales quadratically with the amplitude of the initial perturbation,
as can be inferred from the last column, where the corresponding energies have been rescaled
with respect to the collapse model B01.

model total energy radiated [M¯] rescaled result [M¯]

B001 4.305× 10−9 4.305× 10−7

B005 1.077× 10−7 4.308× 10−7

B01 4.322× 10−7 4.322× 10−7

7.4 Summary

The work presented in this Chapter is pioneer in the use of the characteristic formulation of
general relativity in simulations of supernova core collapse and in the extraction of the associated
exact gravitational waves. Although our axisymmetric hydrodynamics code is accurate enough
to allow for a detailed analysis of the global dynamics of core collapse in general, we have not
found a robust method for the (Bondi news) gravitational wave extraction in the presence of
strong shock waves. We note that, to the best of our knowledge, there is no further experience
reported in the literature which could have guided us in our research.

Comparing our results to very recent existing work on relativistic supernova core collapse [30,
31], it is not surprising that numerical noise in the gravitational waveforms is more noticeable
in our approach. Whereas in the conformal flat metric approach employed in [30, 31] the metric
equations of general relativity reduce to elliptic equations, which naturally smooth out high-
frequency numerical noise, we solve for the gravitational wave degrees of freedom directly using
the full set of field equations of general relativity, and hence we have to solve a hyperbolic
equation. It remains to be seen whether a similar numerical noise to the one we find when
extracting the gravitational wave signal will be encountered in core collapse simulations solving
the full set of Einstein equations in the Cauchy approach. In this respect we mention very
recent axisymmetric simulations by Shibata using a conformal-traceless reformulation of the
ADM system [135] where, despite of the fact that long-term rotational collapse simulations
could be accurately performed, gravitational waves could not be extracted, even approximately,
since the signals were entirely dominated by noise.

With the current analysis we have presented in this Chapter, it is not obvious how the
numerical noise of the Bondi news can be effectively eliminated. Including rotation in the sim-
ulations, which would be the natural next step for a more realistic description of the scenario,
could help in this respect. Due to the global asphericities introduced by rotation, one would ex-
pect, in general, gravitational wave signals of larger amplitude, which could make the numerical
noise less important, if not completely irrelevant. In addition to this possibility we propose the
following methods to improve our gravitational wave signals: In a first approach one should try
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to rearrange the metric equations by introducing auxiliary fields which could effectively help to
diminish the importance of high-order derivatives, especially of the fluid variables, which can be
discontinuous. Unfortunately, to the best of our knowledge, there is no clear guideline to what
is really needed to eliminate the numerical noise completely, apart from the hints given by [55].
Our attempts in this direction have not yet been successful, but we believe there is still room
for improvement. Alternatively, one should try to implement pseudospectral methods for the
metric update. Pseudospectral methods would allow a more efficient and accurate numerical
solution of the metric equations. In a third promising line of research we propose to consider
the inclusion of adaptive grids and methods of shock fitting into the current code. With the
help of an adaptive grid, one could try to arrange the entire core collapse simulation in such a
way that the shock front always stays at a fixed location of the numerical grid. By avoiding the
movement of the shock front across the grid, one would expect the noise in the gravitational
wave signals to disappear. But already increasing the radial resolution substantially in the
neighborhood of the shock front could help to obtain an improved representation of the shock.
All these issues are ripe for upcoming investigations.
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Chapter 8

Conclusion and outlook

We have presented numerical algorithms to solve the coupled Einstein-perfect fluid system in
axisymmetry. Our approach is based upon the characteristic formulation of general relativity
in which spacetime is foliated with a family of outgoing light cones emanating from a regular
center. Due to a compactification of the spacetime future null infinity is part of our finite
numerical grid where we extract gravitational waves without approximation.

Applying the nonlinear, fully relativistic code to studies of neutron stars and gravitational
collapse, it has successfully passed several tests, aimed at testing both the fluid evolution as
well as the metric solver in the nonlinear regime. The code can accurately maintain long-term
stability of neutron stars, and it can simulate supernova core collapse and bounce including
strong relativistic shocks.

We have numerically analyzed the interaction of relativistic stars and scalar fields by means
of nonlinear evolutions of the Einstein-Klein-Gordon perfect fluid system in spherical symmetry.
We have built a sequence of stable, self-gravitating, κ = 100, n = 1 relativistic polytropes,
increasing the central density from ρc = 1.5 × 10−3 to 3.0 × 10−3 (G = c = M¯ = 1). Using
a compactified spacetime foliation with outgoing null cones we have studied the fate of the
relativistic stars when interacting with a sufficiently strong scalar field wave packet, as well as
the dynamics and energetics of the process. We have found that by choosing a strong (finite
amplitude) scalar field pulse with energy of the order of 10−3 M¯, the relativistic star is either
forced to oscillate in its radial modes of pulsations or to collapse to a black hole on a dynamical
timescale. The fate of the star depends on its central density and, since we fix the polytropic
equation of state, on its compactness. The energy transferred to the relativistic star increases
with the compactness of the model. As the consequence of the interaction with the scalar field,
depending on the compactness, we can distinguish between linear and nonlinear oscillations of
the star, or finally gravitational collapse for the most compact objects. The radiative signals
we have found consist of several quasi-normal oscillations and a late time power-law tail, in
agreement with the results predicted by (linear) perturbation analysis of wave propagation in
an exterior Schwarzschild geometry.

We have further applied the code to studies of neutron star oscillations. Modeling the
neutron star by a relativistic polytrope with κ = 100, n = 1 and ρc = 1.28 × 10−3 (G =
c = M¯ = 1), we have extracted the frequencies of different radial and non-radial fluid modes
both in evolutions fixing the spacetime geometry and in fully nonlinear simulations of the
Einstein-perfect fluid system. Fixing the background geometry, we compare our results with
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other nonlinear hydrodynamical codes, finding very good agreement. For the fully general
relativistic simulations a comparison to linear perturbation studies was performed which further
confirmed our results. We have also analyzed the gravitational wave signal arising in these time
evolutions of perturbed stellar configurations. As expected, the quadrupolar fluid modes create
the strongest radiation in gravitational waves. We have compared the gravitational wave signal
extracted with the help of the quadrupole radiation formula and the exact gravitational wave
signal extracted at future null infinity. Finding good agreement, we have thus established, that
the application of the quadrupole radiation formula for the extraction of gravitational waves
from (weakly) pulsating neutron stars is valid.

We finally applied our numerical code to studies of supernova core collapse. To this aim, we
modeled the microphysics of the process approximately, focusing on a fully general relativistic
treatment. We approximate the initial data of the iron core by a 4/3 polytrope with central
density ρc = 1010 g cm−3, decreasing the adiabatic exponent to a value of 1.3 afterwards in
order to initiate the collapse. Our equation of state takes into account the stiffening at nuclear
densities and the effects of thermal heating from shock waves. During the collapse phase,
the central density increases by almost 5 orders of magnitude, when the inner core bounces
at supra-nuclear densities. A shock wave travels out from the central region, heating up the
matter on its way out. In order to study the non-spherical dynamics, we add perturbations
to the initial data. Whereas the collapse phase is well approximated by a spherical collapse,
non-spherical oscillations are created after bounce, which cause the emission of gravitational
waves. In our simulations we do not find agreement between the Bondi gravitational wave
signal extracted at infinity and the gravitational wave signal extracted with the help of the
quadrupole formula. We have strong evidence that the gravitational wave signal obtained from
the application of the quadrupole formula is flawed by coordinate effects. The Bondi news
function extracted at infinity after bounce show oscillations, typical oscillation frequencies for
the dominant contribution being of the order of 0.3− 1 kHz.

In this work, for the first time, we have studied relativistic stars and stellar collapse as sources
of gravitational waves in the characteristic formulation of general relativity. In the future, it
will be astrophysically very interesting to include rotation into the current characteristic code.
Rotation introduces global asymmetries which can be responsible for strong gravitational wave
signals. There are various applications of such a generalized code to studies of isolated compact
objects as sources of gravitational waves, in particular supernova core collapse and the process
of black hole formation. One should keep in mind that there is the well-founded hope, that
gravitational waves will be “seen” for the first time in the near future.
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[61] Gómez, R., Reilly, P., Winicour, J., and Isaacson, R. A., “Post-Newtonian behavior of
the Bondi mass”, Physical Review D, 47, 3292–3302, (1993).
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