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Abstract

The extreme behavior of one-dimensional, stationary diffusion processes is well under-
stood. In the multidimensional case however, only a few special processes have been
studied so far. In this thesis, the extremes of a general multidimensional, uniformly ellip-
tic, reversible diffusion process (X;):>o are characterized. We consider the partial maxima
Mr = maxo<i<r ¢(X¢), T > 0, where ¢ is some distance function. The fine tail asymp-
totics of Mr for fixed T > 0 is evaluated, i.e., the asymptotic behavior of the probability
P(Mr > R) as R — oo. Also the long time behavior of My as T — oo is analyzed, in the
spirit of classical extreme value theory.

The key idea is that, under general and tractable assumptions, P(Mr < R) can be
expressed in terms of the principal eigenvalue Ag of the generator of the process (X;);>o,
subject to Dirichlet boundary conditions on some bounded domain Og, R > 0. Hence, it
is sufficient to evaluate the asymptotic behavior of Az as R — oo in terms of the drift
and diffusion coefficient of the process (X;);>o. With the aid of suitable test-functions,
we give conditions for obtaining sharp upper and lower bounds on Ag. Additionally, the
asymptotics of A\g as R — oo is evaluated also via singular perturbation methods.

Stationary diffusion processes are used in mathematical finance to model the term
structure of interest rates, for instance. From the point of view of risk management, it is
important to know about large fluctuations of these processes. We present some multi-
variate short-rate models that incorporate also spatial dependence, and analyze explicitly
their extreme behavior. The theoretical results are corroborated by examination of both

simulated and real life financial data, for which suitable goodness-of-fit tests are developed.
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Chapter 1

Introduction

Extreme value theory is mainly concerned with investigating the probability of very rare
extreme events. The interest in this theory has increased continuously during the last
decades, partly due to the fact that catastrophic events are often followed by large pecu-
niary claims. Hence, extreme value theory has found applications in many different fields,

among others in

- financial risk management to investigate the riskiness of portfolios,

insurance mathematics to quantify the probability of huge claims,

engineering sciences to study the reliability of mechanical structures,

environmental engineering to determine the height of dams or dikes,

environmental statistics to establish limit values for ground-level ozone.

Many models for the above applications describe the development of observations contin-
uously in time. In financial mathematics for instance, continuous-time Markov processes
cover the time dependence in asset price models. Univariate models are well investigated
in this framework. On the other hand, financial risk in practice does not depend only on
one parameter, but is influenced by several correlated factors.

In this thesis, we evaluate the extreme behavior of multidimensional diffusion pro-
cesses. We combine methods of classical extreme value theory with techniques from spec-
tral analysis for differential operators. The theoretical results are applied to real life fi-

nancial data.
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1.1 From Classical Extreme Value Theory to Extremes
of Multidimensional Diffusions

We introduce some basic notations of classical extreme value theory that will be used in
Section 1.2 to give a formal description of the topic of the present work. In addition, a
short overview of extensions to continuous-time processes is given.

The part of extreme value theory which nowadays is called classical extreme value
theory was developed in the late twenties of the last century and deals with the maxima
of independent, identically distributed (i.i.d.) real random variables. The work of Fisher
and Tippett [FT28] and Gumbel [Gum58] have been the milestones of this theory. Let
(X;)ien be a sequence of i.i.d. real random variables distributed according to a distribution

function F', and consider the partial maxima
M, =max{X;:i=1,...,n} n € N.

Motivated by the central limit theorem which describes the limit distribution of normalized
sums of i.i.d. random variables, the objective of extreme value theory is to derive an
analogous result for the maxima, i.e., to determine under which conditions there exist
norming constants ¢, > 0 and d,, € R, n € N, and a non-degenerated limit distribution
function H such that

(1.1) c'(My,—dy) S H  (n— o),

n

where the symbol % denotes convergence in distribution. The central result of extreme
value theory, often referred to as the Extremal Types Theorem, was derived for the first
time by Fisher and Tippett [FT28] and was generalized and formally proved by Gnedenko
[Gne43]. It states that there are only three possible non-degenerated limit distributions,
i.e., the distribution function H is one of the following so-called extreme value distribu-

tions:

0 x>0
(1.2) Fréchet:  ®,(z) = a>0,

exp{—z %} <0

exp{—(—x)¢ <0
Weibull: ¥, (z) = pi=(=2)%) N a>0,
1 x>0
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Gumbel:  A(z) =exp{—e*} z€R.

Relation (1.1) can also be expressed in terms of the distribution function F' using the

following simple calculation

P, (M, —d,) <z)=P{X; <cpx+d,Vi=1,...,n} = Flepz +d,)".

n

Hence (1.1) is equivalent to

(1.3) lim F(c,x +d,)" = H(x) z € R.

n—oo

If a distribution function F satisfies (1.3) for an extreme value distribution H € {®,, ¥,, A}
and norming constants ¢, > 0 and d, € R, n € N, we say that F' is in the domain of
attraction of H (F € DA(H)). Classical extreme value theory gives a characterization
of the domain of attraction DA(H) for each H € {®,,¥,,A} and provides methods to
calculate the norming constants c,, d, in (1.1) and (1.3). For an introduction to classical
extreme value theory we refer to Embrechts et al. [EKM97], Leadbetter et al. [LLR83],
and Resnick [Res87).

In most applications, the risky factors are highly dependent. This was the motivation
to weaken the i.i.d. assumption and to extend the classical extreme value theory to char-
acterize the extreme behavior of dependent random sequences and continuous parameter
processes.

In this thesis we concentrate on extreme value theory for continuous-time processes
with some time dependence structure. The pioneering work in that area was achieved for
one-dimensional Gaussian processes, i.e., processes for which all finite dimensional distri-
butions are multivariate normal. Recall that a one-dimensional, stationary, standardized
Gaussian process (X;)i>o (with zero mean and unit variance) is uniquely determined by its
covariance function r(t) = E(X;Xy), t > 0. Rice [Ric39] showed that for such a Gaussian
process with differentiable sample paths the number of upcrossings over a high threshold
form a stationary point process and evaluated the intensity. For the level u, the process
(Xt)e>0 has an upcrossing at t, if for some € > 0, X; < w in (¢ —€,%) and X; > u in

(to, to + €). From this level-crossing property, a characterization of the extreme behavior
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of the process has been obtained. This result has been extended by Qualls and Watanabe
[QW72], Pickands [Pic69b, Pic69a|, Slepian [Sle61], Berman [Ber71] and many others.
Nowadays we consider that the crucial assumption to control the time dependence in
the framework of Gaussian processes is Berman’s condition on the covariance function 7,

namely that for some C' > 0 and « € (0, 2]
(14) r(t)lnt—-0 (t—o00) and r(t)=1-Clt|*+o(t|]*) (t—0).

For surveys on extremes of one-dimensional Gaussian processes, we refer to Leadbetter et
al. [LLR83|, Leadbetter and Rootzén [LR88], Berman [Ber92|, Adler [Ad190], and Albin
[A1b90].

The extreme behavior of more general one-dimensional stationary diffusion processes
has been investigated by Newell [New62]|, Berman [Ber64], Mandl [Man68], and Davis
[Dav82]. A univariate diffusion process (X;);>o can be described as the solution of a

stochastic differential equation (SDE) in the sense of It
dXt = b(Xt)dt + O'(Xt)dBt t 2 0 ;

where b : R — R denotes the drift, 0 : R — R" is the diffusion coefficient, and (B;)>¢ is
a standard Brownian motion. To guarantee the stationarity of (X;);>¢, several conditions
have to be imposed on the drift term b and the diffusion term o. The partial maxima of
(Xt)i>0 are defined as My := maxo<i<r X¢, T > 0. Note that this definition is related to
the first hitting time 7, := inf{t > 0 : X; = a} of the level a € R, since P(Mr < a) =
P(T, > T) for every T'> 0 and a € R. To apply the methods of classical extreme value

theory, one has to find a distribution function F' such that
(1.5) |\P(Mr < b) — F(a)"] =0 (T,a — o0).

This reduces the asymptotic behavior of the maximum of the process to that of the
maximum of i.i.d. random variables distributed according to F' in the sense of (1.3). Note
that the distribution function F'is in general not related to the stationary distribution of
the diffusion process.

This result has been proved by several authors using different techniques. An analytic
approach was chosen by Newell [New62]. He assumed the existence of a smooth transi-

tion probability density that satisfies the Focker-Planck equation. He then expressed the
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probability P(My < b) in terms of a formal eigenfunction expansion of the associated
Sturm-Liouville problem and gave asymptotically sharp estimates on the eigenvalues and
eigenfunctions. Berman [Ber64] presented a probabilistic proof using discrete approxi-
mation techniques and the regenerative property of the diffusion process (X;);>o. Mandl
[Man68] showed that the Laplace transform of the properly scaled first hitting time 7T, of
the level a converges to the Laplace transform of the function e™*, z > 0, as a — oo. This
convergence result can then be transformed into (1.5). A very elegant approach by Davis
[Dav82] is the reduction of the asymptotic distribution of the maximum of a general one-
dimensional stationary diffusion process to that of an Ornstein-Uhlenbeck process (linear
drift b(z) = —ax and constant diffusion coefficient o(z) = o, z € R). The transformation
of the general process was achieved by the technique of random time change using the

scale function and the speed measure of the diffusion process.

Borkovec and Kliippelberg [BK98| showed that under appropriate conditions the point
process of e-upcrossings of a one-dimensional diffusion process (X;);>o converges in dis-
tribution to a homogeneous Poisson process. For ¢ > 0, the process (X;);>o has an e-
upcrossing for the level u at ¢y, if X; < uw in (¢y — €,tp) and Xy, = u. In addition, the
extreme behavior of term structure models is explicitly studied, such as for the Vasicek
model [Vas77], the Cox-Ingersoll-Ross model [CIR85] and the generalized hyperbolic dif-
fusion, introduced by Bibby and Sgrensen [BS97] and by Eberlein and Keller [EU95].

Whereas the extreme behavior of one-dimensional processes seems to be well under-
stood, the multidimensional case still offers mostly open problems. In the framework
of Gaussian processes, some research has been done on the extremes of vector-valued
Gaussian processes, see Sharpe [Sha78|, Lindgren [Lin80a, Lin80b], Aronowich and Adler
[AA86], Berman [Ber84], and Albin [Alb90], for instance. A central aspect of their work
is the analysis of large fluctuations of the x*-process: let (£})>0, @ = 1,...,d, be indepen-
dent, standardized Gaussian processes; then the x2-process with d degrees of freedom is
given by x7 := Zle(gf)g, t > 0. Note that the maximum of the y2-process corresponds to
the maximum in Euclidean norm of the vector process (&/,...,&%), t > 0. An extension of
Berman’s condition (1.4) is crucial in this context. Lindgren [Lin80a, Lin80b]| investigated

extremes and level crossing properties of the y2-process and other functionals of the vector
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process (£},...,&%), t > 0. Berman [Ber84] analyzed the sojourn times of the y?-process
outside large spheres. For a characterization of the extreme behavior of infinite sequences
of independent Gaussian processes and of Gaussian fields, we refer to Berman [Ber80] and
Piterbarg [Pit96].

Iscoe and McDonald [IM92, IM89] characterized the asymptotics of the maximum of a
multidimensional Ornstein-Uhlenbeck process in Euclidean norm (also the [2-valued case
was considered). Their approach is similar to that of Newell [New62], i.e., they derived
the eigenvalue asymptotics for the generator of the process. Aldous [Ald89] investigated
also for multidimensional diffusion processes the exponential rate of the probability that
the process stays outside a large domain using the heuristic method of Poisson clumping.

The characterization of the extremes of general multidimensional diffusion processes
is still an open problem. In this thesis, the extreme behavior of the class of uniformly

elliptic, reversible diffusions is investigated.

1.2 Objective and Setup

We introduce the necessary notations and basic facts of the theory. An outline of the most
important techniques is given in Section 1.3. A diffusion process (X;);>o with values in

R", n € N, can be specified by a multidimensional It6 SDE

n
(1.6) dX; =b(X)dt + Y o"(X)dB]  i=1,....n,
j=1
where b',0% : R* — R, i,j = 1,...,n, are the drift and diffusion coefficients, respectively,
and (B’ )i>0, 3 = 1,...,n, are independent one-dimensional standard Brownian motions.

Under appropriate conditions on the drift vector b and the diffusion matrix (o%);;, the
process (X;);>o is stationary and the stationary measure y is finite.

In a multidimensional framework it is not immediately clear how to measure extremes
of the diffusion process (X;);>o. We say that an extreme event occurs, if (X;);> exits
a very large domain of R". This corresponds to intuition, since in this case the process
moves far away from the center of its stationary distribution. We try to capture such an

event in the following definition:
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Definition 1.1 An increasing family (Og)gsg, of open, bounded subsets of R* with
smooth boundary which satisfies Jp. p, Or = R, is called ezhausting family of R™. The

distance function q : R* — R associated to an exhausting family (Og)grsrg, is defined by
(1.7) g(z) =inf{R>Ry: 2 € Og} z€R".

Note that the set {R > Ry : x € Og} is not empty for every x € R” and hence ¢ is well
defined. We have chosen the terminology ‘distance function’ and not ‘semi-norm’, since
the sets Og, R > Ry, of an exhausting family need not be convex. The simplest example
of an exhausting family of R" are the open balls By := {z € R" : [z| < R}, R > 0, where
| - | is the Euclidean norm in R". The associated distance function ¢ then coincides with
the Euclidean norm.

We consider the partial maxima of the diffusion process (X;);>o in the sense

(1.8) My = 01;1%)% q(X) T>0,

where ¢ is the distance function associated to some exhausting family (Og)g>g, of R".

Note that this definition is related to the first exit time of the process (X;)i>0
(1.9) Tr:=inf{s >0: X; e R"\Or} R>Ry
of the sets Op, since we obtain by (1.7)

(1.10) P(Mr<R) = P(q(X,) <RVte[0,T))
= P(X,€O0pVte[0,T))

= P(rg>1T) R>Ry, T>0.

Generalizing results mentioned in the previous section, we do not assume that the
diffusion process is Gaussian. The approach of Davis [Dav82] to analyze extremes of one-
dimensional diffusion processes has no obvious generalization to the multidimensional
setting, since there is no multivariate analogue of the concept of scale function and speed
measure, and hence the technique of random time change cannot be used. The method
of Newell [New62], i.e., expressing P(My < R) in terms of spectral properties of the

generator of the process and analyzing the eigenvalue asymptotics, is more promising for
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an extension to the multidimensional framework. For the multivariate Ornstein-Uhlenbeck
process, this techniques have already been successfully used by Iscoe and McDonald [IM92,
IM89]. The approach takes advantage of the very elaborate machinery of spectral analysis
of differential operators which has been developed in mathematical physics with the focus
on multidimensional Schrodinger operators. This holds particularly, if the generator of the
process has an interpretation as a self-adjoint operator on some Hilbert space, because an
even more refined spectral theory is available, see Reed and Simon [RS78] for instance.
We generalize the approach of Iscoe and McDonald [IM92, IM89] for the Ornstein-
Uhlenbeck process to the class of diffusion processes of gradient field type, i.e., the drift
in the SDE (1.6) is given by the gradient of a potential function ® and the diffusion term

is a constant o > 0. Such a process is specified by a SDE of the form
(1.11) dX} = —0,@(X;)dt +0dB} i=1,...,n.

These processes constitute a rich class of diffusions for physical applications but also for
financial models. Diffusion processes of gradient field type are reversible and stationary
and the stationary measure x has a Lebesgue density formally given by e~2%(=)/ o reRe.
The generator of such a process admits a self-adjoint extension on some L2-space. More-
over, there is a very natural extension to the class of uniformly elliptic, reversible diffusion
processes, see Section 2.3.

The objective of this thesis is the following: for a uniformly elliptic, reversible diffusion
process (X;)s;>0, we consider the maxima My as defined in (1.8) for a distance function ¢
associated to some exhausting family (Og)gsg, of R*. The asymptotic behavior of Mr is

characterized in two different manners:

e we derive the tail asymptotics of Mt for fixed T" > 0, i.e., evaluate the fine asymp-
totics of the convergence P,(M7y > R) — 0 as R — oo. Here P, denotes the law of

the process (X;);>o starting with its stationary measure ,

e we evaluate the long term behavior of M7 as T — oo in the sense of classical extreme

value theory. In particular, a multidimensional analogue to (1.5) is established.

To this aim, we focus on two concrete distance functions ¢ and give conditions to obtain

the asymptotic characterization of the maximum Mr. Firstly, we consider the case, where
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the distance function ¢ is given by the Euclidean norm and hence the exhausting family
consists of the open balls Bg, R > 0. Secondly, we assume that the exhausting family
consists of the level sets of the potential, which is more adapted to the geometry of the
problem.

To conclude this section, we give some intuitive explanations of large fluctuations for
a diffusion process of gradient field type. The assumption that the stationary measure p

“222)/0” g e R™ s integrable, implies for the potential

is finite, i.e., that the function e
® that ®(x) " 0o as |z| — oo (at least almost surely). Intuitively, large fluctuations of
a diffusion process (X;);>¢ of gradient field type should occur where |V®| is small (here
V denotes the gradient) and hence the effect of the drift —V® that repulses the process
to the center of the stationary distribution should not be very strong. This means that
extremes of the process (X;);>o can be expected in regions where the potential ® is flat.

Observe the connection with the exit problem of Freidlin-Wentzell and the associated
large deviation principle, see also Freidlin and Wentzell [FW84] and Dembo and Zeitouni
[DZ98]. For a diffusion process whose diffusion matrix vanishes with order ¢, this theory
evaluates asymptotically the exit probability of the process of a fixed domain as ¢ — 0. The
interplay with our situation can be conveniently illustrated for the Ornstein-Uhlenbeck
process, i.e., the process (X;);>o specified by the SDE (1.11) with potential given by
POV (z) := (1/2) Y0, cux?, z € R, with o > 0, ¢ = 1,...,7n (see also Section 4.2.4).
Note that ®°V is of parabolic shape. Consider the maximum of (X;);>o in Euclidean
norm, i.e., the exhausting family is given by the balls Bg, R > 0. Instead of evaluating
the first exit time 75 of (X;);>0 of the ball Bg, one can also rescale the process to the unit
ball B; and analyze the first exit time of the unit ball. The rescaled process is defined by
Xpy:=R'X,,t>0, R >0, and we set 7g := {t > 0: Xg; € R*\ B;}. By (1.10), we
have

An application of It6’s rule yields that the scaled process (Xg;):;>o satisfies the SDE
. 1 . .
Xk, = 3 (=05, ®°Y(RX py)dt + 0dB}) = —0,,@°Y (Xpg,)dt + %ng i=1,...,n.

Note that the potential ®°U remains unchanged under this rescaling procedure. For the
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scaled process (Xg.)i>o the Freidlin-Wentzell theory is applicable and we obtain
(1.12) lim R™?In (T~'P(7p < T)) = _2 min ¢(z) = _2 min o; =: c.
R-00 - 02 |z=1 02 1<i<d '

This means that 7~ 'P(7z < T) behaves on a logarithmic scale asymptotically like e ¢F’

as R — oo. Note that the constant ¢ in (1.12) corresponds to the direction, where the

®OU is minimal, justifying the intuition mentioned above.

slope of
With our approach, we are able to derive the fine asymptotics of the probability

P(tgp <T) = P(My > R) as R — oo, not only on a logarithmic scale as in (1.12).

1.3 Main Results and Outline of the Thesis

The purpose of the present work is to analyze for uniformly elliptic, reversible diffusion
processes the asymptotic behavior of the maximum My defined in (1.8) w.r.t. a distance
function ¢ associated to some exhausting family (Ogr)r>g, of R".

The thesis is divided into three parts. In the first part (Chapters 2 and 3) we explain
how the probability P,(Mr < R) can be expressed in terms of the principal eigenvalue of
the generator of the process. We show how the tail asymptotics and the long term behavior
of My can be derived if the eigenvalue asymptotics is already known. In the second part
(Chapters 4, 5 and 6), the asymptotic behavior of the principal eigenvalue is evaluated in
terms of the drift and diffusion coefficient of the process for special exhausting families of

R™. Chapter 7 is devoted to financial applications.

Chapter 2 and 3: A transformation procedure of the problem into the language of
operator theory is presented. In Chapter 2 we introduce the main ideas, technical details
are deferred to Chapter 3. In order to express P, (M7 < R) in terms of spectral properties
of some differential operator, we combine the following techniques, see Sections 2.1, 3.1,
and 3.2.

The generator L of a diffusion process of gradient field type specified by the SDE
(1.11) is a second order differential operator (given formally by (2.6)). Using the theory
of Dirichlet forms (see e.g. Fukushima et al. [FOT94] and Ma and Rockner [MR92]), the

generator L can be extended to a self-adjoint operator L., on the L2-space L*(R", )
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weighted with the stationary measure p. In Proposition 3.1, we cite a result of Meyer and
Zheng [MZ85] that guarantees also for potentials ® with singularities the existence of a
stationary, weak solution (X;);>o of the SDE (1.11). In addition, (X;);>o is associated to
the operator L., in the sense, that its extended backward semigroup coincides with the
semigroup on L?(R", i) generated by L. A result of the theory of Dirichlet forms (see
Lemma 3.3) states that the part of the process (X;);>o on the set Og, i.e., the process
(Xt)e>0 that is killed when it leaves Og, is associated to the self-adjoint extension Lg on
L?(Og, u) of the generator L with Dirichlet boundary conditions on the set Og.

This enables us to express P,(Mr < R) in terms of the operator Lg. We use an esti-
mation result of Iscoe and McDonald [IM94] on the semigroup generated by the operator

Lg (see Proposition 2.1) to derive the fundamental inequality
(1.13) (1 — Ar/Asg)e 2T < P,(My < R) < e **1

where A is the bottom eigenvalue of the operator —Lg, and A, denotes the spectral gap,
see (2.7).

By (1.13), the asymptotic behavior of Ag as R — oo determines that of the probability
P,(My < R). Assuming that an asymptotic expression {(R) for Ag as R — oo has already
been derived in terms of o and ® appearing in the SDE (1.11), we evaluate in Section 2.2
the tail asymptotics of My (Theorem 2.3) by replacing in (1.13) Ar by the asymptotic
expression /(R). Also the long term behavior of My is analyzed passing in (1.13) formally
to the limit 77 — oo, and we derive a multivariate analogue to (1.5), see Theorem 2.5.
This leads to limit results for the properly normalized maxima My as T — oo in the
sense of classical extreme value theory, see Corollary 2.6. In Section 3.2, we recall also
a standard result to get upper and lower bound on Ar using suitable test-functions, see
Proposition 3.5. Upper bounds are obtained by the variational principle and lower bounds
by Temple’s inequality. Sections 2.3 and 3.3 are devoted to extensions to uniformly elliptic,

reversible diffusions.

Chapter 4: In this chapter, we summarize the results of Kunz [Kun02c|. For a diffusion
process of gradient field type, the asymptotics of the bottom eigenvalue Az as R — oo

is evaluated, where the exhausting family is given by the open balls B, R > 0, see
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Theorem 4.1. Hence the maximum My defined in (1.8) of the process is considered in
Euclidean norm. The idea is to find suitable test-functions (vg)gso such that the upper
and lower bounds on Ag in Proposition 3.5 get sharp in the limit R — oc.

Since the test-functions (vg)gso must satisfy Dirichlet boundary conditions on the
balls Bpg, it is appropriate to use rotationally symmetric functions, which is obviously
the correct choice if the potential ® is spherically symmetric. General non-symmetric
potentials ® are approximated by a rotationally symmetric test-potential ¢; in many
cases, ¢ can be chosen as the spherical minimum of ® as expected from the exit problem
of Freidlin-Wentzell, see (1.12). We show the remarkable fact that also for highly non-
symmetric potentials ® the asymptotics of Ag can be derived using rotationally symmetric
test-functions. The main assumption is an asymptotic growth condition on the asymmetric
part of the potential ® (see Condition (4.5)).

Some examples are presented in Section 4.2. Besides the rotationally symmetric case,
also a non-symmetric potential ® is considered whose asymmetric part factorizes into
radial and spherical component (see Section 4.2.2), and the extremes of a diffusion process

with a bivariate gamma distribution are evaluated (see Section 4.2.3).

Chapter 5: The results of Kunz [Kun02b] are presented in this chapter. We consider
the situation, where the asymptotics of the bottom eigenvalue Ag cannot be obtained
using rotationally symmetric test-functions. This occurs for instance when the exhausting
family is different from the balls Bz, R > 0, or when the conditions of Chapter 4 are not
satisfied. In the latter case, we propose a new exhausting family which is more adapted
to the geometry of the problem, namely the level sets of the potential ® in the SDE
(1.11). Note that this exhausting family focusses on regions where large fluctuations of
the diffusion process of gradient field type are expected, since the level sets are more
extended in the area where the potential ® is flat.

The eigenvalue asymptotics w.r.t. these not necessarily Euclidean level sets is derived
in Theorem 5.2. The test-functions used to obtain sharp upper and lower bounds on Ag
(see Proposition 3.5) must satisfy Dirichlet boundary conditions on the level sets of ®.
Hence, we choose test-functions which are constant on the iso-level sets, i.e., which are of

the form fo®, where f is a real function. Section 5.2 presents some concluding examples.
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Chapter 6: The topics of this chapter correspond to those of Kunz [Kun01]. We
present an additional, fundamentally different approach to evaluate the asymptotics of
the bottom eigenvalue Ag via singular perturbation methods, see Theorem 6.1. The idea
is to derive an asymptotic expansion of the principal eigenfunction corresponding to the
bottom eigenvalue A\ as R — oo. Singular perturbation techniques, though based on
heuristics (the existence of an asymptotic expansion of the principal eigenfunction is a
priori assumed), provide a method to obtain the eigenvalue asymptotics that is more
intuitive and often easier to implement than techniques of the previous chapters.

This approach works for all exhausting families satisfying a scaling property, see (6.1).
We illustrate the techniques for the open balls Bg, R > 0, and hence the maximum My
of the process is considered in Euclidean norm. It is convenient to scale the eigenvalue
problem for the bottom eigenvalue Ag to a fixed domain (here the unit ball By). This
enables us to evaluate asymptotically the rate of decay of the principle eigenfunctions
near the boundary of B; enforced by the Dirichlet boundary conditions. It turns out that
this decay is not isotropic, but depends on the growth of the potential ® in different
directions.

We show for the examples of Chapter 4, that the eigenvalue asymptotics derived by
singular perturbation techniques indeed coincides with that evaluated by the methods of

Chapter 4.

Chapter 7: This chapter exhibits financial applications and is an adapted version
of Kunz [Kun02a]. We describe three diffusion processes of gradient field type serving as
multivariate interest rate modes and evaluate explicitly their extreme behavior, applying
the results of the previous chapters.

Besides a multivariate Vasicek model, we present in Section 7.3 a diffusion process
with a symmetric exponential distribution as stationary measure, designed to model the
semi-heavy tails observed in financial data. A further diffusion process of this kind is
introduced whose stationary measure is a bivariate gamma distribution. It allows for
spatial dependence that is obtained by copula techniques. This model is proposed as an
alternative to the multivariate Cox-Ingersoll-Ross model.

The parameter estimation for these models is fairly easy using maximum likelihood
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techniques, see Section 7.4. Since the theoretical extreme behavior is known, tests can
be constructed to asses the goodness-of-fit of these models to a discrete data set in the
extremes, see Section 7.5. Results of parameter estimation and of the goodness-of-fit tests

for simulated and real world financial data are presented in Section 7.6.



Chapter 2

Large Fluctuations and Eigenvalue

Asymptotics

Let (Ogr)r>g, be an arbitrary exhausting family of R" and ¢ the associated distance
function according to (1.7). We will show in this chapter how for a stationary reversible
diffusion process (X;);>o specified in the sequel the asymptotic behavior of the maximum
My := maxo<;<r q(X;) can be characterized in terms of spectral properties of the genera-
tor of the process (X;);>o. Here we want to focus on the main ideas. In order to avoid too
many technical details in this chapter, a rigorous treatment of the results about Markov

processes and operator theory necessary for the proofs is deferred to Chapter 3.

First we restrict ourselves to the case of diffusion processes of gradient field type. In
Section 2.1 we give conditions that guarantee the existence of a weak solution (X;)i>o
of the SDE (1.11) in a certain sense for a quite general class of potentials ®. Moreover,
this process is symmetric w.r.t. to the stationary measure y and its generator admits
a representation in a Hilbert space setting. We state a result giving upper and lower
bounds on the probability P,(My < R) in terms of the first and second eigenvalue of
the generator of process (X;);>o subject to Dirichlet boundary conditions on the sets Og,
R > R,. Section 2.2 exhibits the asymptotic characterization of My, if the behavior of
the bottom eigenvalue of the generator is only known asymptotically. A generalization of

these results to uniformly elliptic, reversible diffusion processes is given in Section 2.3.

15
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2.1 Weak Solutions and Embedding in L?-Spaces

A diffusion process of gradient field type specified by the SDE (1.11) is known to be
stationary and reversible and the stationary measure p has a Lebesgue density 7 on R™.

This density is related formally to the potential & appearing in the SDE (1.11) by
fi(z) = e 2@/ zeR".

We will allow that the zero set of i is not empty. This implies that the potential ® can
become singular and take the value +oo.
We formulate conditions on the potential ® that guarantee the existence of a weak

solution of the SDE (1.11). Set
(2.1) Z:={zeR": ®(z) = +o0}, Z2°:=R'\Z.

Note that Z coincides with the zero set of the stationary density, i.e., Z = {z € R" :

i(xz) = 0}. Assume the regularity conditions
(2.2) ® € CR",RU{+00}), Pz € C'(25R),

where ®z. denotes the restriction of ® to the set Z¢. These conditions imply that g is

continuous, i.e., i € C(R", [0, 00). Further assume the integrability condition
(2.3) / e~ 1@/ |V d(z)Pdz < o0,

where V denotes the gradient. A result of Meyer and Zheng [MZ85] cited in Proposition
3.1 states the following: under these conditions there exists a process (X;);>¢ that is
symmetric w.r.t. the measure p with Lebesgue density

e—2<I>(z)/a2 T e Zc’

(2.4) fi(z) =
0 T € Z,

and is a weak solution of the SDE (1.11) up to a terminal time T, (the limit of an
increasing sequence of stopping times), where T, < oo with P, probability zero. Here P,

denotes again the law of (X;);>o starting with the stationary measure p.
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Assume further that the stationary measure p is finite, i.e.,
(2.5) |l :=/ e 2@/ < 0.
The infinitesimal generator of the process (X;);>( reads formally

2 n 2 n
(2.6) Lu= % Au—" 0,8 0,u = % 2173, ( o 20/0? 6xiu> |
i=1 =1

In Section 3.1 it is shown how the operator L can be rigorously defined in the Hilbert space
L?(R", ) by the standard techniques of Dirichlet forms. For R € (R, o0], there exists
a self-adjoint extension Lp acting on L?(Og, n) of the operator L subject to Dirichlet
boundary conditions on Of (set Oy := R™ and no boundary conditions are present); the
operator L generates a strongly continuous contraction semigroup (eLRt)tZO on L?(Og, p)-

Assume that — L, enjoys the spectral gap property in the sense that
(2.7) Agg :=inf ¥(—Lo) N (0,00) > 0,

where Y denotes the spectrum of the operator. This condition is the standard one to
ensure ergodicity of the process (X;):>o. In Proposition 3.7 we state a sufficient condition
for (2.7) to hold.

For R € (Ry, o], the bottom of the spectrum of the operator —Lg is denoted by

(28) /\R = 1nfE(—LR) R > R() .

It turns out that \g is a simple eigenvalue for R € (Ry, o0), see Section 3.2. Proposition
3.1 shows that the process (X¢);>o is related to the operator Ly, in the following sense: the
backward semigroup of (X;);> admits an extension to the space L?(R", 11) which coincides
with the semigroup (e“*);5o. Further for R € (Ry, 00), the probability P,(Mr < R) can
be expressed in terms of the semigroup (e“?%);5q, see Lemma 3.3.

The following proposition provides the fundamental estimate, which plays the central
role in this thesis. Upper and lower bounds for the probability P,(Mr < R) are given in
terms of the bottom eigenvalue A\r and the spectral gap As,. The proof, which is defered
to Section 3.2, is based on Theorem 2.13 of Iscoe and McDonald [IM94].
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Proposition 2.1 Let (X;);>0 be a weak solution of the SDE (1.11) in the sense of Propo-
sition 3.1. Assume that (2.5) and (2.7) hold. Then for every T > 0 and sufficiently large
R>0

(1 — Ar/Asg)e 2T < P,(Mp < R) < e =T,

Remark 2.2 (1) Without loss of generality is suffices to prove Proposition 2.1 under

the following additional assumptions: ¢ = v/2 and the potential ® is normalized, so
that the stationary density i defined in (2.4) is a probability density on R". Given a
general o > 0 and potential ®, the result for normalized potentials has to be applied
to the modified potential ®, := (2/0?)® + In |u|. Further the bottom eigenvalue Ag
for the normalized problem has to be multiplied by 02 /2, since also the infinitesimal

generator L defined in (2.6) is multiplied by this constant.

In Iscoe and McDonald [IM94] the spectral gap property (2.7) plays an important
role for the lower bounds on P,(Mr < R) = P,(tr > T). The advantage of this
approach is that the lower bound can be written asymptotically for small Ag in the
form (T + const)Ag, see also Theorem 2.3. The constant becomes unimportant if 7’
is large and this effect allows to analyze the long time behavior of My as T — oo,
see also Theorem 2.5. Lower bounds without assuming spectral gap can be obtained
using capacity inequalities as in Iscoe and McDonald [IM90]. More precisely, for

every R, T > 0 and arbitrary 6 > 0, setting ¢, := /T
P,(tr>T)>1— 0T Cap,, (R* \ Og),

where Capy, (R* \ Op) is the 6,-capacity of the set R \ Og w.r.t. the process (X;):o
(see e.g. Fukushima et al. [FOT94] for a definition). But this lower bound is not

sharp enough to evaluate the long time behavior of My.

2.2 Exploiting the Eigenvalue Asymptotics

Proposition 2.1 tells us that the asymptotics of P,(Mr < R) as R — oo is given by the

behavior of the bottom eigenvalue Ag in the limit R — oo. Evidently A\g — 0 as R — oc.
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Unfortunately Ag is not directly available in general. It suffices however to have an explicit
expression for the convergence A\p — 0 as R — oc.

We make use of the following asymptotic notations: given two real functions a and b,
we write a(t) ~ b(t) and a(t) < b(t) as t — top € RU {£oo} if limy 44, a(t)/b(t) = 1 and
lim sup,_,;, a(t)/b(t) < 1, respectively. By a(t) 2 b(t) we mean that b(t) < a(t) as t — to
and we write further a(t) = o(b(t)) as t — to if limy;_,y, |a(t)/b(t)| = 0.

Aim: Find a simple function | : Rt — RT, given in terms of the potential ®

and the diffusion coefficient o, such that

(2.9) A~ IU(R)  (R— o0).

The main part of this thesis (Chapter 4-6) consists of giving conditions which allow to
find a function [ satisfying (2.9) for particular choices of distance functions g, i.e. for
particular exhausting families (Or) g> g, -

Assume for the moment that a function [ as required is already given. Replacing in
Proposition 2.1 Ag by the asymptotic expression [(R), sharp asymptotic upper and lower

bounds can be obtained for the tail of the maximum M7 for fixed T'.

Theorem 2.3 Assume the situation of Proposition 2.1. Let | be a function satisfying

(2.9). Then for every T > 0
TUR) S Py(Mr>R) S (T+1/As)l(R) (R— 00).

Proor. Fix T > 0. Using Proposition 2.1 and the inequality 1 — z < e * for every

x € R, we get for sufficiently large R > 0

(2.10) 1l—e™T <P (Mr>R) < 1—(1—Ap/Ag)e 2T
< 1— (1= Ar/As)(1—TAp)

(2'11) (T + 1/Asg))‘R + (T/Asg))‘%z :

We deduce that
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The left asymptotic inequality follows since TAgP,(Mr > R)™' < TAg(l — e *=T)~!
by (2.10). The latter converges to 1 as R — oo. Dividing inequality (2.11) by the term
(T + 1/A44)Ag and passing to the limit yields the right asymptotic inequality. Since by

assumption limg o Ar/l(R) = 1, the result follows. O

Theorem 2.3 provides a possibility to compare the maximum My with the maximum
MT = maxo<i<7 ¢(X;) w.r.t. a distance function g associated to a different exhausting
family (67")T>T0 of R”. The exhausting family (OJT)DT0 is called compatible to the exhaust-
ing family (Og)g>r, if the set {R > Ry : 6T C Og} is not empty for every r > ry. In this
case we set

(2.13) R, :=inf{R > Ry : 5T C Or} < o0 r>T1p.

The next corollary describes how asymptotic lower bounds for the bottom eigenvalue X,
associated to (5r)r>r0 and hence also for the tail of the maximum MT can be evaluated
asymptotically.

Corollary 2.4 Assume that there exists a function | satisfying (2.9) with A\gr associated

to (Or)r>r,- Let (Op)rsr, be an ezhausting family of R* compatible to (Or)r>r,- Set

1(r) ;== UR,), r > 10. Then X\, > 1, as T — oo and hence for every T > 0
Ti(r) < PM(MT > ) (r = 00).

PROOF. The proof is based on a comparison result for eigenvalue, see (3.5). Since

O, C Og, we have Xr > Mg, for every r > ry;. Hence we get for the first exit times

{70s, > T} C {75 > T} and weobtain invoking the relation (1.10) that

P, (Mp>R,)<P,(Mp>r) 1>,

Further R, — oo as r — oo since (Og)rsg, and (O, ),sr, are exhausting families of R”.
Hence the result follows from assumption (2.9) on the function [ and from the left asymp-

totic inequality of Theorem 2.3. [l

We present here a new approach to characterize the long time behavior of Mr as

T — oo using the fundamental inequality in Proposition 2.1. More precisely, the possibly
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non-degenerated limit distribution of the properly normalized maximum My can be ob-
tained in the limit 7" — oo in the spirit of classical extreme value theory, see Section 1.1.
Passing in Theorem 2.3 to the limit 7" — oo, the difference between asymptotic upper
and lower bound tends to zero, since the term 1/A,, vanishes in this limit. We obtain the

following theorem, which is a multi-dimensional analog to (1.5).

Theorem 2.5 Assume the situation of Proposition 2.1. Let | be a function satisfying

(2.9). Then for every sequence (Ry)rso, Ry € R, with Ry /o0 as T — oo
|P,(Mp < Rp) —e ' BDT| 50 (T = 0).

PROOF. By assumption Ag ~ I(R) as R — oo and hence A\g = I(R) + ¢(R) where
¢(R) = o(I(R)) as R — oo. Using Proposition 2.1 and the inequality |e® — 1| < |z|(1 +el®l)

for every z € R, we estimate for fixed R > Ry, and T" > 0, having in mind that Ag > 0

o UR)T maX{|ee(R)T 1], ‘ ( iR) o (BT _ 1‘}

efl(R <|€€ RT 1| + )‘R 76 >

= ¢ T (\1 — BT 4 //X\—R>

s9

for every R > Ry:

|Pu(Mr < R) — e HAT

IN

IN

AR
A

A
< eMTIRT[L+ e O]+ 28 (R +
59

Now let (Rr)r>o be an arbitrary sequence with Ry ,* oo as R — oo. Replace in the
above estimations R by Ry. Since limp o, Ag = 0 we also have limy_,o Ag, = 0.

It remains to show that also limy_,. I(Rr) = 0. We choose an arbitrary sequence
(T})ien with T; 7 0o as i — oo and we write for short \; := ARg,; € i= €Ry, and I; =
I(Rr,). Assume for the moment that {\;T;};en C RT is bounded. Then lim;_, ¢,7; = 0,
since lim;_,, A; '¢; = 0 by definition of e(R). Since \;T; > 0, it follows

I < |l&Ti| (1 + €T 50 (1 —» ).

If {\T;}ien C RT is unbounded, then \;7; oo as i — oo after extraction of a subse-

quence. Since lim;_,, /\i_lez- = 0, we have |¢;| < \;/2 for large i. Hence for large ¢

I < (X/2)Ti(e T 4 e~ N/ < \Tiem N/ 50 (45— 00).
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Since the choice of the sequence (T;);cn was arbitrary, the result follows. O

We want to use Theorem 2.5 to derive the the possibly non-degenerated limit dis-
tribution of the properly normalized maximum Mp as T — oo. We use methods from
classical extreme value theory as stated in Section 1.1 (see also Chapter 3 of Embrechts
et al. [EKM97]).

Recall from (1.3) that a cumulative distribution function F' of some real random
variable is in the domain of attraction of an extreme value distribution function H
(F € DA(H)), if there exist norming sequences (¢r)rso and (dr)rso with er > 0, dr € R,
such that
(2.14) lim F(crz +dp)" = H(z) z € R.

T—00

The extreme value distribution function H is one of the following probability laws,
see (1.2): the Gumbel law A, the Fréchet law ®,, and the Weibull law ¥,. This defi-
nition characterizes the long term behavior of the running maxima of an i.i.d. sequence
of real random variables distributed according to F' after appropriate normalization, see
(1.1). By Theorem 2.5, the long term behavior of the maxima Mp := maxo<;<7 ¢(X3),

T > 0, of the process (X;);>o can be reduced to that of the maxima of an i.i.d. sequence.

Corollary 2.6 Assume the situation of Theorem 2.5. Set F(R) := ¢ "B R > 0. If
F € DA(H) for an extreme value distribution H with norming constants (cr)rso, (dr)r>0

according to (2.14), then for every x € R
P, (cz'(Mr — dr) < z) — H(z) (T — o0).

PROOF. Assume that F := e ! € DA(H) for an extreme value distribution H with
norming constants (cr)rso, (dr)r>o according to (2.14). For every x € R we set Ry :=

crx + dT. Then,

‘PN (Cj_wl(MT — dT) S .T) — H(ﬂ?)‘

<

Pu(Mz < Rr) = F(Bp)"| + |F(Rr)" — H()| .

The first term vanishes by Theorem 2.5 and the second by (2.14) as T — 0. O
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2.3 Uniformly Elliptic Reversible Diffusions

Up to now we have restricted ourselves to diffusion processes of gradient field type. Most
of the results obtained in the previous sections can be generalized to uniformly elliptic
reversible diffusions.

Consider the general multidimensional SDE (1.6) and define
ij 1 T\ij -
a¥(x) ::E(o(x)o(x) )" zeR"i,j=1,...,n,

where (0;;)% is the diffusion matrix in the SDE (1.6). Assume that a” € C'(R"), 7,5 =
1,...,n and that the following uniform ellipticity condition: there exist constants 0 <

o, < o such that

(2.15) alff <) ai(@)Eg <a’lEf wEER".

ij=1
A necessary condition for reversibility is that there exists a positive function i such that

the drift in the SDE (1.6) reads formally fori =1,...,n
. 1 < o _
(2.16) b'(x) = =) Z@zj (a¥ (z)f(z)) z €{r eR": u(r) > 0}.
j=1

To any uniformly elliptic reversible diffusion we associate a diffusion process of gradient
field type specified by the SDE (1.11) with ® = —InJz and o = /2. Assume that ® satisfies
Conditions (2.2)-(2.5) and the spectral gap condition (2.7). An extension of Proposition
3.1 guarantees the existence of a weak solution of the SDE (1.6) which is reversible w.r.t.
the measure y with Lebesgue density 1z on R™ (see Section 3.3). The following corollary
is a generalization of Theorem 2.3 to the class of uniformly elliptic reversible diffusions;

the proof is deferred to Section 3.3.

Corollary 2.7 Let (X;)i>0 be a uniformly elliptic reversible diffusion process. Suppose
there exists a function | satisfying Ag ~ [(R) as R — oo, where Ar corresponds to the

associated process of gradient field type. Then for every T > 0

a.TIR) < Pu(My > R) S o (T +1/Ay) I(R) (R — 00).
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Remark 2.8 For Theorem 2.5, which allows to analyze the long term behavior of the
maximum Mrp, there is no straightforward generalization to uniformly elliptic reversible
diffusions. This is due to the fact that in the limit 7" — oo, the difference between

asymptotic upper and lower bound in Corollary 2.7 does not tend to zero.



Chapter 3

Preliminaries: Markov Processes and

Operator Theory

We present here a rigorous treatment of the results of the theory of Markov processes,
operator theory, and spectral analysis necessary for the understanding of the present work.

We first concentrate on diffusion processes of gradient field type specified by the SDE
dX} = —-0,9(X;)dt + 0dB; i=1,...,n,

see also (1.11). Assuming that ® satisfies Condition (2.2), we denote by u the measure on

R™ with Lebesgue density

e—2<I>(z)/tf2 T E Zc’
0 rTEZ,

see also (2.4). We assume without loss of generality according to Remark 2.2.(1) that the

potential ® is normalized, so that
(3.1) c=+v2 and / plx)de =1.

Let (Or)r>g, be an arbitrary exhausting family of R”. We use the following notations: for
R € (Ry, o] we denote by pg the restriction of y to the set Or (where we set Oy := R").
We write for short L? for L*(Og, pg) and || -[|2,z and (-, -)g for norm and scalar product

in LZR, respectively. Further the indicator function of a set A is denoted by I4.

25
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In Section 3.1 we describe how a p-symmetric weak solution of the SDE (1.11) can
be constructed, such that the generator of the process and the generator of the part of
the process on the set Og, R > Ry, extends to a self-adjoint operator on some L2-space.
Section 3.2 provides some standard results on spectral analysis for self-adjoint operators.

Some extensions to uniformly elliptic reversible diffusions are given in Section 3.3.

3.1 Weak Solutions and Embedding in L*-Spaces

We construct a weak solution of the SDE (1.11) which is symmetric (and hence reversible)
w.r.t. the measure u. We denote by C.(R") the continuous functions on R” with compact
support. Recall that for a y-symmetric process (X;);>o the associated backward semigroup
(P)i>0 with Pif(z) == E,[f(Xy)], f € Ce(R*), z € R*, t > 0, extends to a strongly
contraction semigroup on Lioo. The generator of this semigroup stands in one-to-one
correspondence with a Dirichlet form, see e.g. Chapter 1.4 of Fukushima et al. [FOT94].

We define the following operators and quadratic forms: for R € (R, oo] set
(3.2) Ex(u,v) Z/o Opau(x) Opp(x) i) dx u,v € Cg(ORr),

where C2(Og) is the set of two times continuously differentiable functions which can be
extended continuously by 0 to the boundary of Og. Note that on the set Z2¢ = {z € R" :
p(z) > 0} the function ' is continuous by Condition (2.2) and hence is an element
of Lj,.(Z2¢). Thus for every R € (R, o], the quadratic form (£}, CZ(Og)) is closable in
L2 and its closure (g, D(ER)) is a symmetric Dirichlet form, see e.g. Section 11.2.(a) in
Ma and Réckner [MR92]. Let (—Lg, D(Lg)) be the positive, self-adjoint operator on L2
associated to (€, D(Er)). Note that Lp is the self-adjoint extension of the operator L
defined in (2.6) with Dirichlet boundary conditions on Og.

We want to show that the space Ci(Og) is a subset of the domain D(Lg) of the
operator Lp. For every u € C§(Og), the term (3, 0, ® 0pu)lze is an element of L7
by means of the Cauchy-Schwartz inequality and the integrability condition (2.3). Hence
also Lu - Ize € L7, , where L = (0°/2)Au — Y7 | 0;® Oyu is defined in (2.6). Using the
continuity of 7 in R and the differentiability in Z¢ (stated in Condition (2.2)) we obtain
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that Eg(u,v) = (—Lu,v)g for every v € Cg(Og). This implies (see e.g. Proposition 2.16
of Ma and Réckner [MR92])

(3.3) C2(0r) CD(Lg) R € (Ry,o0].

Since the operator —Lpg is positive for every R € (R, oc], the operator Lg induces a
strongly continuous contraction semigroup (e“%");> on LZR.

The connection between the semigroup (e”>');», and weak solutions of the SDE (1.11)
is provided in the following proposition. The conditions on the potential ® are the reg-
ularity assumption (2.2) and the integrability condition (2.3) on the gradient of ®. A
proof can be found in Meyer and Zheng [MZ85], see also Section 6.3 of Fukushima et
al. [FOT94]. Let us define the measurable space € := C([0, 00), R"), equipped with the

natural filtration (F;);>o generated by the canonical projections (X;)i>o.

Proposition 3.1 Assume that the potential ® satisfies (2.2) and (2.3). There ezists
a p-symmetric diffusion process X = (Q, (F), (Xi), (Pr)zern) with life time ( satis-
fying P,(¢ < oo) = 0, where u is the measure with density p defined in (2.4) and
P, := [g. Poli(z)dz. Moreover X never hits the set Z defined in (2.1) in the sense that
P,(6z < 00) =0, where 6z :=inf{t > 0: X; € Z}. X is associated to the Dirichlet form
€, t.€., the Liw—extension of its backward semigroup (Py)i>o coincides with the semigroup
(eF>t)1>0. X solves the SDE (1.11) in the following sense: there ezists an increasing se-
quence (T))nen of stopping times with T, = limy, oo T), such that P,(Te < 00) =0 and
that X is a weak solution of the SDE (1.11) on [0,T,,) for every n € N.

Remark 3.2 (1) The basic idea for the construction of the process X is as follows:
starting with the standard Brownian motion W := (2, (F;)t>0, (Xt)>0, (P2 ) zern)
on R", the law (P,)er» of the process X is obtained by a change of measure gen-

erated by a multiplicative functional.

(2) Section IT of Meyer and Zheng [MZ85] provides a different formulation for X being
a weak solution of the SDE (1.11) without restriction of the time horizon. In this
setting however the process can not start in an arbitrary point z € R”, but a small set

of starting points has to be excluded. Recall that a set N C R" is polar if there exists
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a Borel set N' C R* with N C N’ such that P (o < c0) = 0 for every z € R”,
where oy := inf{t > 0: X; € N'}. Meyer and Zheng have shown that there exists
a polar set NV such that for every z ¢ N the process (X; — Xo + fot VO (X;)ds)i>o is

a standard Brownian motion for the law P,.

Let (X;)i>0 be the process of gradient field type obtained by Proposition 3.1 and we
keep this process fixed for the end of this chapter. For R € (Ry, 00), we denote by (X[);>0
the part of (X;)i>o on Og, i.e., the process (X;)i>o killed when it hits the set R* \ Og.
(XF)i>0 is pr-symmetric and the backward semigroup (Pf)io of (Xf)is0 is given by
PEf(x) := E[f(Xi)Itrp>ny), [ € Ce(R), z € R”, t > 0, where 7 is the first exit time of
the set Op defined in (1.9). We denote by 1 the constant function of value 1.

Lemma 3.3 Let R € (Ry,00).
(i) (X{)e=o0 is associated to the Dirichlet form Eg in the sense that the L2 -extension of
the backward semigroup (PE)i>o of (X[)i>0 coincides with the semigroup (e"#%);5q.

(i) P,(tr > T) = (e"*T1,1)g for every T > 0.

PROOF. (i) Since Og is open, this follows e.g. from the Theorems 4.4.2 and 4.4.3(i) of
Fukushima et al. [FOT94]. (i) Obviously 1 € L? . Hence

P >T) = /O Purn > T)i@de = [ Eilligom) f@)da
R R

— /O PP1(2) i(z)de = ("1, 1)5. O

3.2 Some Topics of Spectral Analysis

We describe some spectral properties of the operators Lg, R € (Rg, 0o]. These results are
standard in the theory of self-adjoint operators on Hilbert spaces, we refer e.g. to Reed and
Simon [RS78]. Recall Definition (2.8) of A\ := inf X(—Lg), R € (Ry, 0], where ¥(—Lg)
is the spectrum of the operator —Lg (w.r.t. the space L? ). Obviously X(—Lg) C [0, 00)
for every R € (Ry, 00] and Ay, = 0. Further we set

(34) )\R,Q = lIle(—LR) N ()\R, OO) R e (R(), OO] .
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For R € (Ry,00), the operator —Lg has discrete spectrum, since the domain Op is
bounded, and hence Ap is an eigenvalue and is known to be simple. Further Ago > Ap > 0
for every R € (Ry, o<].

Let us mention a comparison result for eigenvalues: since Or, C Og, for R, R, €
(Ry, 00| with Ry < Ry, there is an obvious embedding of the form domain D(Eg,) in the

form domain D(Eg,). Hence by the min-max principle
(35) )‘Rl > )\R2 Rl,RQ € (Ro,OO], R < R,.

Similarly we obtain that Aga > A2 for R € (Ry, 00] and Ag N\, 0 as R — oo. Note that
the spectral gap property (2.7) just states that Ayy = Ao 2 > 0.

We cite Theorem 2.13 of Iscoe and McDonalds [IM94] giving upper and lower bounds
for the quantity (e/®7'1, 1) (appearing in Lemma 3.3.(ii)). Since it is of some importance

here, a sketch of the proof is given.

Lemma 3.4 Suppose that the spectral gap property (2.7) and the simplifying assumption
(8.1) hold. Then for every T > 0 and sufficiently large R > 0

(1- )\R/Asg)e’)‘RT < (eLRTl, 1)z < e T

SKETCH OF THE PROOF. For the upper bound we use Cauchy-Schwartz inequality

and the fact that y is a probability measure on R". Then,

("1, ) < " 1z r [1llzp < lle"* NIz o2z, 11500 < e

LrT can be estimated by

For the last inequality note that the norm of the operator e

sup{e™*T : A € ¥(—Lg)} = e *&T using the spectral theorem.
To obtain the lower bound, let ¢ € LiR be an eigenfunction of —Lpg corresponding to

the simple eigenvalue Ap (extended to be 0 outside Og). 1 € L2  and hence there exists

¢ € L2 such that 1 = ¢+ and (¢,1)s = 0. Since "2 is a positive operator we obtain

"1, )r = [Igl3pe " + ("0, 9)r

> (19l 006 = (1= [ll3,00)e ™"
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We need an upper bound for [|4|[3 .- Let {Ex : A € X(—Lo)} be the family of spec-
tral projections associated to —Ly and set py(dA) = d(Ext), ¥)s. With the simplifying

assumption that — L, is bounded (which can be abandoned) we obtain

9o = [ (@) = (B )e+ [ @)
3(—Loo) Asg
1 *© 1
(5:5) < @0+ g [ Aneldh) = (9l + 5 En(w0).
Asg Asg Asg
Further (¢, %) = Ex(d,d) = Arlldll5 = Ar(1 — [|[¢]13 ). Plugging this in (3.6), we
obtain a quadratic inequality in [|1[|3 .., which yields [|¢[|3 ,, < min(Ag/Agg, 1). O

PROOF OF PROPOSITION 2.1. For the process (X;):>o obtained by Proposition 3.1 we
have to show the inequality (1—Ag/Asg)e 2T < P,(My < R) <e T T >0and R > 0
sufficiently large. Having (1.10) in mind, the probability P,(Mr < R) = P,(tg > T) can
be expressed as (¢“271,1)p by Lemma 3.3.(ii). Since the spectral gap condition (2.7)
holds, Lemma 3.4 is applicable and this finishes the proof. O

To estimate the bottom eigenvalue A, we use the variational principle for upper
bounds and Temple’s inequality for lower bounds. For R € (Rg, oo] and a function v €

D(Lg) we define

(3.7) pr(v) = [[vlly & Er(v;v),  IR(v) = |||

o ILRVI5 - -
Note that pg is the Rayleigh quotient. We summarize the bounds on Ag in the following
proposition (for a proof see e.g. Theorems XIII.2 and XIIL.5 of Reed and Simon [RS78]).

Proposition 3.5 Let R € (Ry,00]. Then for every v € D(Lg) with pr(v) < Ag2

(v) — Ir(v) — pr(v)”
Arz2 — Pr(V)

< Ar < pr(v).

Remark 3.6 For the lower bound we need to show that pr(v) < Ags. The situation
simplifies if we assume the spectral gap property (2.7). Since Ago > Moo 2 = Ay, for every
R € (Ry, o), we can replace A2 by A,y in Proposition 3.5 and obtain the following: if

pr(v) < Asg then
_ 2
Asg — pr(V)

Pr(v)
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Next we state a condition on the potential ®, so that the spectral gap assumption
(2.7) holds. Provided that ® € C?*(R",R), we make use of the fact, that the operator

— L, is unitarily equivalent to the Schrédinger operator —A + V3 on R™ with potential

(3.8) Vo(z) := 1|VO(z)]> — $A®(z) zeR".

2
This technique is known as ground state transformation. For a function V' : R* — R we

use the notation liminf|; o V() := limp_ infizs V().

Proposition 3.7 Suppose ® € C*(R",R) and liminf|;_,o Vo(z) > 0. Then the spectral

gap property (2.7) holds.

PRroo¥r. Consider the unitary transform
U:L*(R",dz) —» L2, f+se®’f,

where dz is the Lebesgue measure on R". For functions u,v € C2(R") we get after some

simple calculations using the integration by parts theorem
(3.9) Eoo(Uu,Uv) = Z/ (Opu Opp + Vouv) dz =: Qo (u,v) .
i=1 Y R?

Qs is the quadratic form of the Schrodinger operator Hg := —A + Vg on L?(R",dx). A
standard result in the theory of Schrédinger operators (see e.g. Theorem 3.1 of Berezin
and Shubin [BS91]) tells us that ¢ := liminf|; o Vo(2) > 0 implies that He has discrete
spectrum in (—oo,¢). Since the transform U is unitary we deduce from (3.9) that the
spectra of Hy on L?(R",dz) and of — L, on Lfm coincide. Hence — L, also has a discrete

spectrum in (—oc, ¢). Thus Ay = 0 is an eigenvalue and since ¢ > 0, the result follows. O

3.3 Uniformly Elliptic Reversible Diffusions

Most of the techniques presented in the previous sections are also working for the class of
uniformly elliptic, reversible diffusion processes. Let us construct these class of processes

in the same spirit as the diffusion processes of gradient field type.
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Consider the general multidimensional SDE (1.6) and assume that ¢ € C*(R"),
i,7=1,...,n, where a”(z) = (1/2)(c(z)o” (x))"” and (¢");; is the diffusion matrix in the
SDE (1.6). We suppose that the uniform ellipticity condition (2.15) holds for the matrix
(a*);;. Further assume that the positive function i appearing in the formal definition
(2.16) of the drift in the SDE (1.6) is continuous on R*. We denote by u the measure on
R" with Lebesgue density p and we assume that y is finite. Let us define the associated
operators and quadratic forms. Set for R € (Ry, o]

rl(u,v) Z/o ) Opu(z) Oy v(z) fiz) dz, wu,v € CF(Og).
ij=1
This quadratic form is also closable in L2 (see e.g. Section II.2.(b) in Ma and Réckner
[MR92]) and extends to a symmetric Dirichlet form (&, r, D(&,,r)) With associated posi-
tive, self-adjoint operator (—Lg g, D(L,, r)) and strongly continuous contraction semigroup
(e"”)50 on L7

Recall the definition of the associated diffusion process of gradient field type specified
by the SDE (1.11) with ® = —Inp and o0 = v/2. Assume that ® satisfies the regularity
condition (2.2), which implies that g is differentiable in the set Z¢ = {g > 0}, and the
integrabitily condition (2.3). By a modification of Proposition 3.1 it can be shown that
there exists a p-symmetric weak solution of the SDE (1.6) in the sense of Proposition
3.1, where the drift of the SDE (1.6) is given by bi(z) = fi(z) " > i1 0w, (a¥ (z)fi()),
i=1,...,n, v € 2° see (2.16). Further the Lioo—extension of the associated backward
semigroup coincides with the semigroup (eLaswt)tZO. In the proof of Proposition 3.1, see
Remark 3.2.(1), the Brownian motion W has to be replaced by the strong solution V of
the SDE dV}! = 37, 0"(V;)dW}, i = 1,...,n. The existence of the process V is guaranteed
by the uniform ellipticity condition (2.15).

Assume that the spectral gap condition (2.7) is satisfied for the associated diffusion
process of gradient field type. Then Lemma 3.3, Lemma 3.4, and hence Proposition 2.1
remain valid if we replace the operator Lg by L, g and Ag by A% := inf ¥(—L, g). Com-
paring &, g with the Dirichlet form £ (defined in (3.2)) of the associated diffusion process
of gradient field type, we obtain

. &r(u,v) < Eur(u,v) < a*Eg(u,v) u,v € D(Er), R € (Ry, ).
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Hence we deduce that
(3.10) @ Ar < A, < afAg R € (Ry, ],

where Ag := inf 3¥(—Lg) and — L is the self-adjoint operator associated to Ex.

Proor orF COROLLARY 2.7. For the associated diffusion process of gradient field
type we have derived in the proof of Theorem 2.3 from the fundamental inequality of
Proposition 2.1 the asymptotic estimation for the tail of the maximum M7z in the form
TAr S Py(Mp > R) S (T + 1/A50)Ar as R — o0, see (2.12). Since the fundamen-
tal inequality of Proposition 2.1 remains valid for uniformly elliptic reversible diffusions

replacing Ag by A%, we obtain by the same techniques as in the proof of Theorem 2.3
TAp S P(Mp>R)S(T+1/A59) N (R — 00).

Using (3.10) and replacing Ar by its asymptotic expression [(R), since by assumption

Ar ~ I(R) as R — oo, we obtain the desired result

a.TI(R) < Pu(Mp > R) S o*(T+1/A) I(R) (R — 00).
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Chapter 4

The Euclidean Case

In this chapter we analyze for a diffusion process (X;):>o of gradient field type the asymp-
totics of the maximum My := maxo<;<r |X:|, where |- | denotes the Euclidean norm in
R™. In this case the exhausting family (Og)g>rg, of R" is given by the open balls around
the origin with radius R, i.e., O = Bg := {z € R" : [z| < R}, R > 0, see 77 in the
introduction.

We concentrate on the evaluation of the eigenvalue asymptotics in the spirit of (2.9).
We will give conditions, when an asymptotic expression [/ in terms of the parameters of
the process (X;)i>o can be found, such that Ag ~ I(R) as R — 0o, where Ag is the bottom
eigenvalue of the operator —Lg associated to the ball Br defined in Section 3.1. The tail
asymptotics of the maximum My for fixed 7" > 0 as well as the long time behavior are
then determined by the methods developed in Section 2.2.

The idea is to approximate the potential ® by a rotationally symmetric potential
z — ¢(|z|), where ¢ € C}(RT,R). If the potential ® is already rotationally symmetric, the
process (X;);>0 can be identified with a one-dimensional process for which the eigenvalue
asymptotics is known, see e.g. Newell [New62]. The influence caused by the asymmetric

part of the potential
(4.1) Du5(z) = D(z) — o(|z]) (€ RU{o0}) z eR"

needs to be small (as expressed in the crucial condition (4.5)). The evaluation of the eigen-

value asymptotics is thus reduced to find a rotationally symmetric potential ¢ satisfying

35
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certain conditions.

The main tool for the evaluation of the eigenvalue asymptotics is Proposition 3.5.
We have to find test-functions vy € D(Lg), R > 0 (hence satisfying Dirichlet boundary
conditions on Bg), such that the upper and lower bounds in Proposition 3.5 become
asymptotically sharp in the limit R — oo. If the potential ® is spherically invariant,
the test-functions should be rotationally symmetric. We analyze which non-symmetric
potentials allow an evaluation of the eigenvalue asymptotics using rotationally symmetric

test-functions.

4.1 Main Result and Proof

Let us describe the conditions on the rotationally symmetric test-potential z +— ¢(|z|),
where ¢ € C'(R",R), such that the terms caused by the asymmetric part the potential
®,s of defined in (4.1) can be controlled and admit the evaluation of the eigenvalue
asymptotics. To do this, we introduce the following spherical integral: for a function

f:R* -5 R set

mg[f] = f(RE)do(£),

gn—1
where S™~! is the unit sphere in R” and do the surface measure of S"~!. Note that this
corresponds to the integral over the sphere with radius R normalized to the volume -, of
the unit sphere S"~!. We define two terms measuring the asymmetry of the potential ®
w.r.t. the rotationally symmetric test-potential ¢. Recall the definition of the density

of the stationary measure p in (2.4). Set
(4.2) Sas(R) := 2B/ m ] = mple 2®/”’] R >0,

where e2%2/7" = ( on the set Z defined in (2.1). Note that d,,(R) is finite for every
R > 0, since g is continuous. The term d,5(R) can be interpreted as the spherical mean
of the stationary measure of (X;);>¢ relative to the stationary measure of the rotationally
symmetric test-potential. If @ is already rotationally symmetric, then §o5(R) = 5, R > 0.

Also the derivative of the asymmetric part ®,, must be small. To make this more precise,
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we set
(4.3) M) = | P T 02() —d(e])ze 2\ {0},

0 z € Z\ {0},
(4.4) Dos(R) = "0/ mpliAl] = mgle **/7AL]  R>0.

Note that A, is essentially the derivative of ®,, in radial direction. Further, if & is
already rotationally symmetric, A,, and hence D, vanish identically. The term D,, can be
interpreted as the spherical mean of the square of the radial derivative of the asymmetric
part ®,; of the potential ® weighted with the stationary measure corresponding to ®,;.

The crucial condition that we pose on ¢ is the asymptotic relation

(4.5) Das(R) = 0(80s(R)) (R — o0).

If ® is already rotationally symmetric, this condition is trivially satisfied, since Dys(R) =
0, R > 0. For special non-symmetric potentials, Condition (4.5) can often be shown to
hold with the help of Laplace’s method, see Lemma 4.3 and the examples in Section 4.2.

Further, some weak growth conditions need to be imposed on ¢. To this aim we define

for a measurable real function ¢

(4.6) v[g](R) ::/1 7“17"9(7“)62‘1’(’")/"2 dr,

whenever the integral exists. We set v(R) := v[1](R), where 1 is the constant function
with value 1. Note that the integrand is essentially the reciprocal of the stationary measure
associated to the rotationally symmetric potential integrated over the ball B,.. The growth

conditions on ¢ are as follows:
(4.7) V(R),V[0a5](R) /00, v[das)(R) =0 (v(R)?) (R — 00).

The second condition implies that 6., does not decay so fast that the growth of e2%/ ‘72,
the reciprocal of the stationary measure, is destroyed, whereas the third condition forbids

845 to grow faster than e2¢/7".

Theorem 4.1 Assume that Condition (2.5), the finiteness of the stationary measure,

and the spectral gap condition (2.7) hold. Further suppose that there exists a function
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¢ € CY(RT,R) satisfying (4.5) and (4.7). Set

2

o
Z(R) = m 5,13

(R)v(R) ! R>0,
where |u| the total mass of the stationary measure. Then the function | satisfies (2.9), i.e.,
Ar ~ I(R) as R — oo, where \g is the bottom eigenvalue of the operator —Lg defined in

Section 3.1 associated to the ball Bg.

Remark 4.2 (1) As explained in Section 1.2 in the introduction, large fluctuations
of a process of gradient field type are expected in regions where the slope of the
potential ® is small. This fact should have an impact on the asymptotic behavior
of the bottom eigenvalue A as R — 0o, which determines the asymptotics of the
probability P,(My < R). Thus, a natural candidate for the rotationally symmetric

test-potential ¢ is the spherical minimum of the potential ®, i.e.,
#(R) := min{®(y) : ly| = R} R>0.

However this is not always the correct choice for ¢. In Section 4.2.5 we present an

example where ¢ can not be chosen as the spherical minimum of the potential ®.

(2) If ¢ is the spherical minimum of ® as in Part (1), the condition v[d.](R) 7 oo
as R — oo also implies both other conditions in (4.7). This is due to the fact that
0 < das(R) <1 for every R > 0. Hence also 0 < v[d4](R) < v(R) for every R > 0.

(3) The condition ¢ € C'(R",R) of Theorem 4.1 is not necessarily satisfied if ¢ is the
spherical minimum of ® as in Part (1). A counterexample can be constructed by
means of the potential ®(zy,73) :== 1 + z1(2? + 23 — 1)(2? + 23 + 1)~'. Obviously
® € C1(R?,R) but ¢(R) = min{®(y) : |y| = R} is not differentiable at R = 1.

(4) Since v(R) /00 as R — oo by (4.7), the definition of v in (4.6) is independent of
the lower limit of the integral (here chosen to be 1). This is an easy consequence of

L’Hopital’s rule.

(5) We use the spectral gap assumption (2.7) to simplify the lower bound on Ag given
by Temple’s inequality in Proposition 3.5, see Remark 3.6. If the spectral gap as-
sumption does not hold, one has to show that the Rayleigh quotient pgr(vg) for
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the test-function vy satisfies pgr(vg) < Aggo for large R, where Ago is the second
eigenvalue of the operator —Lg, see (3.4). In particular the asymptotic relation

Ar = 0(AR2) as R — oo must be established.

PROOF. According to Remark 2.2.(1) we can make w.l.o.g. the simplifying assumption
(3.1), i.e., 0 = /2 and Jgn Hi(z) dz = 1. The quadratic forms € and the operators Lg
defined in Section 3.1 are associated here to the balls Bg, R > 0. For a function v € D(Eg),
we write Eg(v) instead of Eg(v,v) and the norm in lem := L?(Bg, ug) is again denoted
by || - llz,z-

Step 1: Construction of the test-functions. By assumption, ¢ € C'(RT,R). We de-
duce from Definition (4.6) that v € C?((1,00),R"). v can be extended to a function
v € C?((0,00),R") with compact support in (0,00). For R > 1 we define test-functions
by

vr(z) :==1-v(lz|)/v(R) |2/ <R.
Note that ¥(R) > 0 for R > 1 and vg, is therefore well defined. By the above construction
we have obviously vg € C3(Bg) and hence vy € D(Lg) for every R > 1, see (3.3).

Step 2: We show that Eg(vg) ~ v[d.s](R) v(R)™ — 0 as R — oc. Using Step 1 and
Definition (4.6), we compute for R > 1

n

v(R)*Er(vr) = v(R)D /B 8,05 |%e Cdx

R
= / " (r)2my e ) dr
0

R
= (/ﬁﬁ—/ rl_"e2¢(’)mr[e_q’]dr>
1

= (k1 + V[das](R)) ,

where xk; = fol "1 (r)?m,le”®]dr < co. Further, k1 + v[d45](R) ~ v[dss)(R) as R — oo
since v[dqs|(R) ' o0 as R — oo by Assumption (4.7). This proves the asymptotic equiva-
lence, and the convergence v[d,s|(R) ¥(R)™ — 0 as R — oo also follows from Assumption
(4.7).

Step 3: The theorem s proved, if the following condition holds:

(4.8) ILvrllzr = 0 (Er(vr) (R — o0).
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Since the spectral gap condition (2.7) holds, Proposition 3.5 is applicable for large R, if

we can prove that
(4.9) pr(vr) = [vl|3%ER(V,0) =0 (R — 00),
where pr(vg) is the Rayleigh quotient defined in (3.7). Thus, we can deduce that Ag ~

pr(vg) as R — oo if we show (using again Remark 3.6) that

Ir(vgr) — pr(vR)?

(4.10) Ay — pr(vr)

= o(pr(vr)) (R — 00).

Let us establish Condition (4.9). Since v(R) ,* oo as R — oo by Assumption (4.7), we
deduce that vg 1 p-a.s. as R — oo (where vg is extended to a function on R" by

setting it to 0 on R™ \ Bg). Since p is a probability measure on R", we have
(4.11) lvellsr — 1 (R — o).

Hence (4.9) follows immediately from Step 2. Further, (4.11) allows to replace the terms
Ir(vr) and pgr(vg) in (4.10) in the limit R — oo by ||Lvg||5 z and Egr(vg), respectively.
Moreover, we can ignore for the asymptotic evaluation the denominator in (4.10), since it
converges to the constant Ay, as R — oo by (4.9). But then (4.10) follows from (4.8) using
again (4.9) and we obtain Az ~ Er(vr) as R — oo. In order to obtain the asymptotic
expression [(R) for Ap we use Step 2 and the fact that v[04](R) v(R)™' ~ d4s(R) as
R — oo (which is a consequence of L’Hépital’s rule, applicable since v(R) oo as
R — oo by Assumption (4.7)). To obtain the general asymptotic expression [(R) for
arbitrary o > 0 and not normalized potential ®, we refer to Remark 2.2.(1).

Step 4: Condition (4.8) holds. We evaluate the term || Lug||3 . Recalling the alternative

form of the operator L defined in (2.6), we calculate for z € Z¢ with 1 < [z| < R
v(R) Lug(z) Zaxz *9,0r) ()
- 6‘1’(“)26&- (@ || ez,
o(J]) — L
{mn +sz[ E \x\n( (D) = 0 °@)] }

—|z|'™ "e¢(|$|)Aa5(x) ]
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Setting ky := ||L7||5, < oo (the function x — #(|z]) is also denoted by 7), we have for

R>1

I/(R)ZHLURIZC”g,R = ,{24_/\ |$‘2(1_")62¢(|$|)_¢($)Aa5(:L')de
Br\B1

R

= Ko+ / rt e Wm, e P AL ] dr
1

— ko + v[Dus](R) -

In particular, Lvglz. € LZR. Using Step 2, we see that Condition (4.8) is satisfied if
V[Dy|(R) = o(v[das](R)) as R — oo. Since v[d.](R) / oo as R — oo by Assump-
tion (4.7), this follows immediately from the crucial condition (4.5) by an application of

L’Hopital’s rule. U

4.2 Examples

We give some examples of diffusion processes of gradient field type for which the sharp
eigenvalue asymptotics can be evaluated by Theorem 4.1. Apart from the rotationally sym-
metric case, we consider the situation of non-symmetric processes where the asymmetric
part of the potential factorizes in radial and spherical components. Further a process is
presented whose stationary measure is a bivariate gamma distribution. The long term
behavior of the normalized maximum is explicitly derived for the Ornstein-Uhlenbeck
process. We also describe a situation where the eigenvalue asymptotics is not determined
by the spherical minimum of the potential, see Remark 4.2.(1).

For some special potentials, the crucial condition (4.5) of Theorem 4.1 can be shown
by means of Laplace’s method stated in the next lemma (for a proof see e.g. Theorem 7.1

of Olver [Olv74])

Lemma 4.3 (Laplace’s method) Let I C R be an open interval containing 0 and p €
CU(I), q € C(I), where p attains its minimum only at 0. Assume further that there exist
constants P,w,n > 0 and Q € R such that p(f) — p(0) ~ PH%, p'(§) ~ wPOZ!, and
q(0) ~ Q9" as 0 — 0. If J(z) = [, e ®Dq(0) df converges absolutely for large x,
then J(z) ~ 2Qw 'I'(n/@)(Pz) "Ze PO a5 2 — oc.
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Remark 4.4 Laplace’s method is also applicable if the only minimum of p occurs at an

endpoint of the interval /. Then the function J has to be multiplied by 1/2.

The following lemma is used for the asymptotic evaluation of integrals over exponential

terms appearing in the function v defined in (4.6).
Lemma 4.5 Let A,v >0 and 6 € R. Then
R
/ e dr ~ (YA) TR AR (R — 00).
1

PROOF. Apply L’Hopital’s rule to the quotient. O

4.2.1 The Rotationally Symmetric Case

Assume that the potential ® in the SDE (1.11) has the property that there exist Ry > 0
and ¢ € C*([Ry, 00), R) such that

(4.12) O(z) = ¢(lz])  lz[> Ro.

Note that a diffusion process of gradient field type with rotationally symmetric potential
can be reduced to a one-dimensional process. As mentioned in Section 1.1, the asymptotic
behavior of the running maxima for one-dimensional diffusions has been studied by many
authors using different techniques. Here we only refer to Newell [New62] who derived
the eigenvalue asymptotics for the one-dimensional problem in a similar way as in our
approach. We describe here how the techniques developed in the preceding sections work
in the situation of rotationally symmetric potentials.

Suppose that @ satisfies (2.2) and (2.3). Then Proposition 3.1 guarantees the existence
of a weak solution (X;);>o of the SDE (1.11). Set

1, 1 " n—1,
V()= R - (SR T e®) R R
To satisfy the spectral gap condition, we assume
(4.13) lim inf V(R) > 0.
R—o0

Note that this condition is satisfied for instance if ¢ has polynomial form ¢(R) = R*

where o > 1. The volume of the unit sphere S ! in R is denoted by 7,.
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Theorem 4.6 Let (X,)i>0 be a diffusion process of gradient field type specified by the
SDE (1.11) with potential ® of the form (4.12). Assume Condition (2.5), the finiteness of
the stationary measure, and Condition (4.13). Then the result of Theorem 4.1 holds with
¢ defined in (4.12) and §45(R) = 7y, for every R > Ry.

Remark 4.7 (a) The lower integration limit in the definition of v in (4.6) is replaced by
Ry (see Remark 4.2.(4)).

(b) In the article of Newell [New62], the spectral gap condition (4.13) was not needed,
since the decay of the second eigenvalue Ags could be controlled, see Remark 4.2.(5).
For this aim, a suitable approximation of the second eigenfunction has been derived.
This approximation however can not be transfered to the multidimensional setting in an

obvious manner.

PROOF. We have to show that Conditions (2.7), (4.7), and (4.5) are satisfied. The
spectral gap condition (2.7) holds by Proposition 3.7 and Assumption (4.13). As stated
already in Section 4.1, §45(R) = v, and D,s(R) = 0 for R > Ry. Hence the crucial con-
dition (4.5) holds immediately. Since ™ le 2¢()/7* — 0 as 7 — oo by (2.5), the growth
condition (4.7) is also satisfied (see Remark 4.2.(2)). O

4.2.2 Non-Symmetric Processes

We now turn to consider the situation where the potential ® in the SDE (1.11) is
not rotationally symmetric. For notational convenience we restrict ourselves to the two-
dimensional case and use polar coordinates writing R?\ {0} > # = Rey, where R = |z| > 0
and ey = (cos#,sinf), 6 € [0y, 6y + 27), with 6, € [0,27) (the same symbol is used for
functions in Cartesian as well as in polar coordinates). The extension to the multidimen-
sional case is straightforward. Assume ® € C?(R?,R). If ® also satisfies (2.2) and (2.3),
Proposition 3.1 guarantees the existence of a weak solution (X;);>o of the SDE (1.11).
We set ¢(R) := min{®(y) : |y| = R} as in Remark 4.2.(1). In order to show the crucial
condition (4.5) by means of Laplace’s method, we assume further that the asymmetric

part of the potential factorizes in radial and spherical component, i.e., that there exist
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R > Ry and functions ¢ € C?((Ry, 00), R") and p € C?(S*, R") such that
(4.14)  ®u(R,0) = ®(R,0) — ¢(R) =p(0)yY(R) R > Ry, 0 € [0y, 6y + 2m).

Note that ®,, > 0 by definition and that the minimum in the definition of ¢ is attained,
since ® is continuous and the minimum is taken over a compact set. Hence ¥» > 0, p > 0

and the zero-set N (p) := {6 : p(f) = 0} is not empty. We assume that N (p) is finite, i.e.,
(415) N(p) :{01,,01\{},

where w.lo.g. 0y < 0; < ... < Oy < 6y + 27w. By Assumption (4.15) we can find open
disjoint intervals I; containing 6; such that [0y, 0 + 27| = Ufil I;, where I; denotes the

closure of I;. Further we assume that for every : =1,..., N

(4.16) p(- + 6;) satisfies the conditions of Lemma 4.3 on {6 : 0 + 60; € I;}

with corresponding constants P;, w; > 0.

We set w, := max{w; :i=1,...,N} and J, := {i : w, = w;}. Further we need that
(4.17) Y(R) — o0 (R — 00).
To enforce the spectral gap condition (2.7) we assume that

liminfp ,o ¢'(R) >0,

(4.18)
{¢"(R),¢"(R), R~'(R), R"*y(R)} are o(¢'(R)?) (R — o0).

In this setting, the crucial condition (4.5) of Theorem 4.1 takes the form of a regularity
condition on v

(4.19) V(R) =0 ((R)) (R—o00).

The growth conditions (4.7) then read

R
(4.20) / = (r) Ym0 g A oo (R — 00).
Ry

Theorem 4.8 Let (X,;);>0 be a diffusion process of gradient field type solving the SDE
(1.11), where ® is of the form (4.14). Assume (2.5) and (4.15)-(4.19). Set

R -1
I(R) := Cwy(R) Y= ( / r162¢(T)/”2dr) R> Ry,
Ry
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where C' = 2(|p|w,) " (0?/2)" V=T (1/@,) Y ey, P7YV™ . Then | satisfies (2.9), i.e.,
Ar ~ l(R) as R — oo, where \g is the bottom eigenvalue of the operator —Lg defined in

Section 3.1 associated to the ball Bg.

Remark 4.9 (a) Assume that ¢, are of polynomial form, i.e., ¢(R) = R®, ¥(R) = R?
for large R. Then Conditions (4.18) and (4.20) are satisfied if « > 1 and g € (0, 2a).
(b) If ¢ is regularly varying with index v > 0 as R — 00, i.e., limg ;o ¥(R) ' (tR) = 17

for every ¢ > 0, then 1) satisfies Condition (4.19), since by Karamata’s theorem
RY(RW(R) ' =147 (R—o0),

see e.g. Theorem A3.6 in Embrechts et al. [EKM97]. Especially (4.19) holds if 1 is of

polynomial form.

PROOF. We have to show that Conditions (2.7), (4.7), and (4.5) of Theorem 4.1 are
satisfied. First we evaluate the term J,s. Invoking (4.16) and Laplace’s method (Lemma
4.3), where by (4.17) the limes x — oo can be replaced by ¥(R) — oo as R — 00, we

calculate
Sus(R) = mple™e/]

N
= Z/ e 2(0+0:)0(R)/o* gp
i=1 Vi

N 9 1 2Pz —1/w;
() (e

1=

(4.21) ~ wi (%2)1/% r (wi) (Z pil/w*) B(R) = (R — o).

1E€Jx

The growth condition (4.7) follows immediately from Assumption (4.20) and Remark
4.2.(2). To show the crucial condition (4.5), we need to evaluate asymptotically the term

Dys(R). Ags reads in polar coordinates
Ays(R,0) = 0r®(R,0) — ¢'(R) = p(0)Y'(R) .
Using Laplace’s method (Lemma 4.3) and (4.17) we calculate

Dos(R) = mple™2®=/7" A2 ]
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N
= WRPY [y 1 0
i=1 Vi

~ Y'(R) XNZ Kgp (R) =m0/
(4.22) ~ K ((w'/z;}wl/m) (R) (R— ),
where K and K; are positive constants. From (4.21) and (4.22) we obtain that
Das(R)bas(R) ™" ~ K'('/9)*(R) (R~ 00),

where K’ > 0 is a further constant. Hence the crucial condition (4.5) holds by the regular-
ity condition (4.19) on the function . It remains to show that the spectral gap condition
(2.7) holds. We will do this with the help of Proposition 3.7. To obtain lower bonds on the
function Vg defined in (3.8), we can estimate |[V®(R,6)| > ¢'(R)? uniformly in 6. Using
the fact that p and p” are bounded on S!, we can find a constant K > 0 such that the

following estimation holds uniformly in 6 for every R > 0

L @B+ (R W(R)\} _

+

IA®(R,0)| < K {|¢”(R)I + [¢"(R)] R R?

By Condition (4.18) every term between the braces is o (¢'(R)?) as R — oo. Since by
Condition (4.18) also liminfg_,., ¢'(R) > 0, we have liminf||_,o Vs(x) > 0 and the spec-
tral gap condition (2.7) holds by Proposition 3.7. Thus the result of Theorem 4.1 holds
and by (4.21) we also obtain the desired form of the asymptotic expression [(R) for the

eigenvalue asymptotics. O

4.2.3 A Diffusion Process with Gamma Distribution

We present here the method to generate a diffusion process of gradient field type by
specifying first the stationary measure. To illustrate this method, we construct a two-
dimensional stationary diffusion process living only in the positive quadrant. The station-
ary measure p of this process is given by the product measure of two gamma distributions.

For this new process, the eigenvalue asymptotics can be evaluated by Theorem 4.1.
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The density i we choose for the stationary measure p shall be given by

2 ) -1 1 _—m. /B
~ L (BMT oy g% temilBi gy 1y >0,
0 otherwise,

where a1, a0 > 1 and 0 < 85 < 1. In order to construct a stationary diffusion process of
gradient field type with o = v/2 having the stationary measure x as above, the potential
® needs to be set to

Z?lei/ﬁi — (a; — 1) Inz; Ty, L9 > 0,

00 otherwise.

(4.24) O(z1, 25) =

If o, 0 > 3/2, then @ satisfies (2.2) and (2.3). By Proposition 3.1 there exists a weak
solution (X;);>o of the SDE (1.11) with ® as above and o = v/2. In polar coordinates ®
reads for R > 0

cos 6 n sin 6
b Ba
for € (0,7/2) and ®(R,0) = +oo for 6 € [n/2,2n]. We choose ¢ as the spherical

®(R,0) =R ( ) — (1 + a2 —2)In R —In ((cos )™ *(sin§)*> )

minimum of the non-logarithmic term of ®, i.e.,
(4.25) #(R) := R/p4 R>0.

Note that ¢ coincides at least asymptotically with the spherical minimum of ®, since the
logarithmic term vanishes against the linear term in the limit R — oo, see also Remark

4.2.(1).

Theorem 4.10 Let (X;)i>o be the two-dimensional stationary diffusion process of gradi-
ent field type specified by the SDE (1.11) with 0 = /2 and ® defined in ({.24), where

0< By < By and g, a9 > 3. Set

(a Ral—l o1 —a R0¢2—1 3
l(R) = ﬁl (oa+1) <F(a1) + 5/3’132 1 F(OJQ)) € /B ,

where 0g,5, = 1 if 1 = P2 and = 0 otherwise. Then | satisfies (2.9), i.e., Ag ~ I(R) as
R — 00, where A\ is the bottom eigenvalue of the operator —Lg defined in Section 3.1

assoctated to the ball Bp.
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Remark 4.11 (a) The conditions a1, @ > 3 ensure the spectral gap property (2.7). This
condition may be relaxed, see also Remarks 2.2.(2) and 4.2.(5).

(b) The stationary measure of this process is the product measure of two indepen-
dent gamma distributions. This measure can be replaced by a bivariate distribution with
gamma distributed marginals implementing spatial depencence, see Section 7.3.3. Such a
distribution can be created by means of copula techniques, we refer to Joe [Joe97]. In this

case, the crucial condition (4.5) is shown to hold by numerical methods.

PROOF. We show that Conditions (2.5), (2.7), (4.7), and (4.5) of Theorem 4.1 are
satisfied. The total mass of the stationary measure is |u| = [[-_; 8% (cs), see (4.23), and

hence Condition (2.5) holds. First we evaluate the term dg.

/2 ) )
bas(R) = / Ra1+a2_2(cos0)"‘1_1(sin0)0‘2_1e_R(Tl 5 =50)
0
w/2
(4.26) = Ra1+a2_2/ (cos 0)*1~*(sin §) > e~ FPO)qg |
0

where p(f) := 87 (cosf — 1) + By 'sin 6, § € [0,7/2]. To evaluate this integral asymptoti-
cally using Laplace’s method (Lemma 4.3), we need to know the zero points A (p) = {6 :
p(#) = 0}. It can be seen that N(p) := {0,7/2} if 81 = B and N (p) = {0} if B > B.
Note that as 6 0

p(e) ~ 0/52 ) (COS e)alfl(sin 0)042*1 ~ o2t ’
p(% - 0) ~ 9/51’ (COS(% — 0))“171 (Sln(g _ 0))04271 N 0041—1’

if 1 = P, is the latter case. We obtain invoking Laplace’s method (Lemma 4.3 and
Remark 4.4)

dos(R) ~ ROTOTE (F(OQ) (g)—az + 0,5, (011) (%) —m)

(4.27) = BT ()R ™2 + 85,5, T(a1)R*™2 (R — 0).

It is easily seen by the definition of ¢ that the growth condition (4.7) holds, see also
Remark 4.2.(2). To show the crucial condition (4.5), the term D,;(R) must be evaluated
asymptotically. A, reads in polar coordinates

cosf sinf oa;+ay—2 1 o + ag — 2
= — _——— = 0 —_—
Bus(R.0) = =+ 7 5 = PO =
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Hence we obtain, analogously to the calculation in (4.27)
D, / R*t~2(cos 0)™ ! (sin )2~ ' x

o« +a 2
pr p 1 2= ) do

w/2
< {5 ];R) + Rotea— 2/ (cos §)**~(sin 0)0‘2_1p(0)26_Rp(9)d0}
0

SJ 2 {5GSR£2R) + Rore? (Ri(aﬁa) + 5,31ﬂ2R(a1+2))}
4.28 = Ky %0s () + R 4 55,5, R* ™4 R — o),
R2 B18

where k1 and ky are positive constants. Comparing (4.28) with (4.27) we see that the
crucial condition (4.5) is satisfied. It remains to show that the spectral gap condition
(2.7) holds. Since the two components of (X;);>o are independent, it suffices to prove the
spectral gap condition for the generator L) of the first component of the process. As
in the proof of Proposition 3.7, —L(") is unitarily equivalent to the Schrodinger operator

Hu := —u" 4+ Vu on R with

1/1 —1\2 —1 _ 1 —1 —1 —1
Vi(z) = A i A T -V ) Z ((;’
o0 z < 0.

Note that lim, . V(z) = (281) 2 > 0 and lim,n o V (z) = oo since a; > 3. Hence H and
also —L™) have spectral gap by Proposition 3.7. Thus Theorem 4.1 is applicable and we

obtain the eigenvalue asymptotics using (4.27) and Lemma 4.5

R -1
Ar ~ |p| " 0es(R) (/ T_ler/ﬂldr>
1

Ra172 Ra272 > _1
o +512 Qs RileR/lBl
(srwl) 58 g (g ) 1 )

—(a1+1) Rx! 5 a1 a2Ra271 —R/B1 R 0
131 (F(a1)+ B1B2 F(Otg) € ( —)OO)

4.2.4 The Ornstein-Uhlenbeck Process

We analyze here explicitly the eigenvalue asymptotics for the Ornstein-Uhlenbeck process

(OU process) in one and two dimensions. It turns out that the eigenvalue asymptotics
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differs significantly in the rotationally symmetric case and in the non-symmetric case. In
particular, the behavior in the extremes of the two-dimensional non-symmetric process is
very similar to the behavior of the one-dimensional process. Further, e discuss the effects
of symmety breaking. In addition, the long term behavior of the normalized maxima in
Euclidean norm is presented (see Corollary 2.6).

The OU process is of gradient field type specified by the SDE (1.11), where the diffusion

coefficient o > 0 is arbitrary and the potential ® in two dimensions is given by
®(z1,22) = (et + Ba3) T, 7o ER 0<a<f,

and in one dimension by ®(z) = (a/2)z? z € R.
e The symmetric case, i.e., the one-dimensional and the two-dimensional case for
a = f. Setting ¢(R) = (a/2)R?, the conditions of Theorem 4.6 are obviously satisfied

(for dimension n = 1,2). For n = 1 we obtain from Theorem 4.6 using Lemma 4.5 (here

N =2,y =VoPra)

R -1
(6% 2/ 2
)\R ~ 0'2“%</1v ear/UdT>
2 2 2 2 -1 3 2 2
L (U_R—lew /o) — 2/ % R P/ (R o).
T 2c o°m

Hence the asymptotic expression I, for the bottom eigenvalue satisfying (2.9) can be

chosen for a > 0

2 2 3
(4.29) lo(R) = C,Re /7" where C, = 24/ aT i
o’

Note that this characterizes the maximum of the absolute value of a one-dimensional OU

process. Similarly, for n = 2 and a = 3 (here v, = 27, |u| = o?nma™!)

O'2 (67 R 2 /52 !
(4.30) AR ~ 2m——— / rteor /o dr
2 o?m \ J;
2 -1 2
~ o ZR2e0R = 2iR26_0‘R2/"2 (R — 00).
20 o?

Hence the asymptotic expression l,, for the bottom eigenvalue satisfying (2.9) can be

chosen

2 2
(4.31) laa(R) = C’oé(,l]#e_o‘l[ﬁ/"2 , where C,, = a

o2’
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e The non-symmetric case, i.e., the two-dimensional case for @ < 3. This process is a
special example of the class of non-symmetric processes introduced in Section 4.2.2. The

potential @ in the present setting, written in polar coordinates, is of the form (4.14) with

b -«
2

R?, p(#) = sin?0 R>0,0¢ [—g, 3—”) )

2

o
We show that the conditions for Theorem 4.8 are satisfied. Condition (2.5) holds with
\u| = o?m(aB)~'/? and (4.15) is also satisfied since N'(p) = {0,7}. (4.16) holds with
w; =2, P, =1 for i = 1,2 and hence w, = 2. (4.17) is obvious and (4.18)-(4.20) also
hold, since ¢ and 1 are polynomials, see Remark 4.9. Thus we get from Theorem 4.8

together with Lemma 4.5
2 ﬁ 1 ﬁ— (0% —1/2 R 272 -
A o~ /22T <—) ( R2> (/ rleor/o dr)
R 2 2 2 )
~ O'QCVﬁ R—l U_ZR—QeaR2/0'2 -
(8 — ) 2

ap

- 9 —aR?/0? )
7027T(ﬁ—a)R6 (R — o0)
Hence the function [, satisfying (2.9) can be chosen
—aR2/02 a/3ﬁ
(432) la/g (R) = CaﬁRe / y where Ca,@ =2 m .

e Effects of symmetry breaking: A comparison of the two-dimensional rotationally
symmetric and the non-symmetric OU process shows that the asymptotic expressions
laa and l,pg for the bottom eigenvalue differ both in the pre-exponential factor and the
constant. Most notably, the pre-exponential factor is reduced from R? to R. On the
other hand, the extreme fluctuations of the two-dimensional non-symmetric OU process
behave like that of the one-dimensional OU process (compare (4.32) with (4.29)), only the
constant is different. If we let the steeper direction of the potential ® (here the zo-direction
with growing parameter 8 > «)) become infinitely steep, i.e., if 3 — oo, we expect that the
two-dimensional process converges in law to the one-dimensional projection. Indeed, we
observe for the constants (4.32) and (4.29) in the eigenvalue asymptotics that C,p — C,
as 3 — oo. To the contrary, if the asymmetric potential tends to the symmetric one, i.e.,

B\ a, there is no convergence loq — lop as B\ .
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A similar effect of symmetry breaking can be observed if we look at the tail of the
Euclidean norm of a bivariate normally distributed random variable. More precisely, given
a bivariate normal random variable X ~ N(0,Y), where ¥ = diag(a, 8) with 0 < a < 3,
the asymptotic behavior of P(|X| > R) as R — oo is different in the symmetric case
(. = B) and in the non-symmetric case (o < ).

e Long term behavior of normalized maxima: In view of Corollary 2.6 we show that
F:=e¢! 1 € {lalap,laa}, is in the domain of attraction of the Gumbel distribution A
(F € DA(A)). Note that every | € {la,log, laa} is of the form I(R) = CRYe=*% /7" where

C=Copy=1 L=,
(4.33) C=Cup,y=1 if 1=l
C=Caa =2 I =laa-

For results of classical extreme value theory used in the sequel we refer to §3.3.3 of
Embrechts et al. [EKM97]. It can be shown that F' is a so called Von Mises function (this
follows e.g. from limg_,(1 — F(R))F"(R)/(F'(R))?> = —1) and hence F € DA(A). The

norming constants in (2.14) can be obtained from the relations
F(dr) =1-1/T, cr= (1= F(dr))/F'(dr),

see e.g. Theorem 3.3.26 of [EKM97]. A careful asymptotic expansion of these relations as

T — oo leads to the following choice of the norming constants

o?2InT ~ )
(4.34) ,/ =4/ + 24/ =2 (InInT +In(C*"6?/a)) .
) er = alnT’ 4 alnT ninT'+In(C a/a))

Hence we obtain from Corollary 2.6 that P,(c;'(Mr — dr) < z) — A(x) for every z € R

as T' — oo with ¢y and dr as above, where in dr the correct values have to be plugged in
for the the constants v and C as in (4.33) depending on | € {l,, los; laa }-

o Spectral gap: For the OU process, the spectral gap A,, defined in (2.7) can be
evaluated explicitly. The generator LS,? for the one-dimensional OU process with state
space R, restricted to functions in C2(R) C D(LY)), has the form Lu = (02/2)u" — o,
u € CZ(R). The spectrum of — L) is given by (see e.g. Section 5.5.1 of Risken [Ris89])

(L) ={an:n=0,1,2,...}.



4.2. EXAMPLES 93

Hence we obtain for the spectral gap

AY = inf2(~LY)Y N (0,00) = a > 0.

59

For the two-dimensional OU process with state space R?, the generator Lg) restricted to

functions in C2(R2) € D(LY) reads LY = (02/2)Au— 32| a; Op,u, u € CZ(R2). Since
LS,? is the tensor product of two one-dimensional operators of the form Lg), the spectrum

of —LZ is given by
E(—L(o?) = {Ozlnl —+ aong : ni,Ng = 0, 1, 2, .. } .
This implies for the spectral gap

(4.35) A®) = inf2(-LY)) N (0, 00) = min{ay, as} > 0.

4.2.5 A Counterexample

In the preceding examples it turned out, that the spherical minimum of the potential ®
was a suitable choice for the rotationally symmetric test-potential ¢, which is used for the
evaluation of the eigenvalue asymptotics, see Remark 4.2.(1). But this is not always the
correct choice. We present here a diffusion process of gradient field type with potential
®, where the eigenvalue asymptotics can be obtained, if we choose for the test-potential
the spherical mazimum of @, i.e., ¢(R) := max{®(y) : |y| = R}, R > 0. We construct the
potential ® in such a way that the gap, where the minimum of ® occurs, becomes too
narrow as & — oo to influence the large fluctuations of the process.

Set ¢ = v/2 in the SDE (1.11) and the potential ® is as follows: let g € C*°((—1, 1), [0, 1])
be a function with g(#) = 1 — 62 in a neighborhood of 0 and the maximum of g is only

attained in 0. Using polar coordinates, we set for R > 0

g(eR20) 6] < e’

p(R,0) = ,
0 e <9 <.

Note that p(R,-) € C*°(S!) for every R > 0. We define the potential ® by

®(R,0) := R> - (R* - R)p(R,0) R>1,0¢][-mn),
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and ® can be extended to C*(R?, R). This means that ® is essentially the potential of a
two-dimensional symmetric OU process but with a gap occurring near the angle ¢ = 0.
Observe that

min ®(R,0) =R max ®(R,0) = R? R>1,

oc[—m,n) oc[—m,m)
and we choose ¢(R) = R%, R > 1, for the rotationally symmetric test-potential.

Obviously, the stationary measure is finite, since f|m e ®dz < [FreTdr < oo.

[>1

Hence Condition (2.5) is satisfied. We evaluate the term ¢,,(R) using Laplace’s method
(Lemma 4.3)

5us(R) = / " r=R(R0) gy

—T

2
67R

_ (271' . 26_R2) + / 2 e(Rz—R)g(eR29)d0
_e-R
1
= 2r—2e )+ ® / B =Rygn) g,
—1
1
= (2r—2%)+ e_R/ e~ (B =B)(1=g(m) g,

-1

(4.36) ~ 2r+e® ~2r  (R— 00).

s
R2—-R
Hence the growth condition (4.7) holds since we obviously have v(R) oo as R — oc by
the choice of ¢. Further, we have to evaluate the term D,s(R). Note that

—(2R—1)g(e®’0) — 2R(R*> — R)e®’¢'(e®'0)0 || < e *°

Ays(R,0) = ,
0 e B <9 <7
Hence we can calculate
_R2
e 5 2
Das(R) — / e(R —R)g(ef G)AGS(R, 0)2d0
_e—R2

1
< Kle_Rz / e(R?—R)g(0) [(QR _ 1)29(77)2 + RQ(RZ _ R)262R2g'(7})26_2R27]2 dn
—1
1
< K>Rbe™" / e” RO [g(n) 4 g/ (n)*n?] dn,
—1
where K;, K, are suitable positive constants. By Laplace’s method (Lemma 4.3), the last

integral is asymptotically equivalent to I'(5/2)(R? — R) 5/ as R — co. Hence Dgy,(R) — 0

as R — oo and invoking (4.36), the crucial condition (4.5) of Theorem 4.1 is satisfied.
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Thus, (4.36) and Theorem 4.1 imply together with Lemma 4.5 that the eigenvalue asymp-
totics is given by

-1
2 R 4
AR ~ il (/ r_lerzdr> ~ T R2e R (R — o0),
lul \Jy |l
where |p] is the total mass of the stationary measure. This eigenvalue asymptotics corre-

sponds to that of the two-dimensional symmetric OU process, see (4.30).
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Chapter 5

The Level Set Case

In Chapter 4 we evaluated for a diffusion process of gradient field type the asymptotics
as R — oo of the bottom eigenvalue A\g of the operator —Lg, R > 0, associated to the
balls Br around the origin with radius R > 0. Hence, the maximum of the corresponding
diffusion process was considered w.r.t the Euclidean norm. Conditions were given, when
sharp eigenvalue asymptotics can be obtained using rotationally symmetric test-functions.
If these conditions fail or if we replace the balls (Br)rso by an arbitrary exhausting
family (Og)g>g, of R*, we can no longer use rotationally symmetric test-functions for the
evaluation of the eigenvalue asymptotics, since the test-functions must satisfy Dirichlet
boundary conditions.

It is not a realistic task to determine for a diffusion process of gradient field type the
eigenvalue asymptotics for any arbitrary exhausting family (Ogr)r>g, of R". Therefore,
we choose an exhausting family of R” which is adapted to the geometry of the problem,
namely the level sets of the potential ® in the SDE (1.11) itself, i.e.,

(5.1) Op:={z € R" : ®(x) < R} R > Ry := inf ®(x).

rER™

Conditions that guarantee that the sets O, R > Ry, are an exhausting family of R” in
the sense of Definition 1.1 are given in Section 5.1.

The choice of the level sets as exhausting family has the following advantage: large
fluctuations of the process (X;);>o of gradient field type solving the SDE (1.11) are ex-

pected in regions where the potential ® is flat. The level sets of ® are more extended in
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this regions and hence, the sets O, R > Ry, stress the directions of large fluctuations of
(Xt)io0-

Note that in this situation, the distance function ¢ appearing in the definition of the
maximum Mr coincides with the potential itself, see (1.7) and (1.8). Hence, we analyze
the maximum of the process (X;);>o in the form My = maxo<i<r ®(X;).

The test-functions that we need for the evaluation of the eigenvalue asymptotics have
to satisfy Dirichlet boundary conditions on the boundary of the sets Of, R > Ry. This
suggests, that we should use test-functions which are constant on the iso-level sets of ®,
i.e., that are of the form f o ®, where f is a real function. We give conditions when the
sharp eigenvalue asymptotics can be obtained by means of test-functions of the shape

described above.

5.1 Main Result and Proof

In order to apply the generator L, the second order differential operator defined in (2.6),

to the test-functions described above, we assume
(5.2) ® € C*(R",R).

In particular, we do not allow @ to take the value 4+-00. This implies that (. Ro 0% =R".

To guarantee that the level sets form an exhausting family of R”, we suppose that
(5.3) ®(z) = o0 (|z| = 00).

Hence Ry in Definition (5.1) is finite. Moreover the sets O%, R > Ry, are open and bounded
(by Condition (5.3)), and have a C?-boundary (by Assumption (5.2)). Hence (O%)gsr, is
an exhausting family of R" in the sense of Definition 1.1.

It is convenient to split up integrals over the level sets O%, R € (Ry, c0), into integrals

w.r.t. the iso-level sets of ®. To this aim assume that there exists R; > Ry such that
(5.4) Ve(z) #0 z€R"\Op, .

Hence for a continuous function f : R* — R and R > R; we can define the following
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weighted integral over the iso-level set 0% := {z : ®(z) = R}

(5.5) me g[f] = /60% |qu()2)| dos r(£)

where dos g is the surface measure on O%. The proof of the following lemma is deferred

to the end of this section.

Lemma 5.1 Assume (5.83) and (5.4). Then for every f € C(R",R) and R > R
R

/ fdz = me [ f]dr.
0%\0%, R

The crucial condition to obtain sharp eigenvalue asymptotics is the relation
(5.6) mq,,R[(A(I))Q] =o0 (mq,,RHVCI)F]) (R — 00).

If ® is of polynomial form in z, then A® (as a second order derivative term) is of lower
order than the first order derivative term |V®| in the limit || — oo. Hence in this
case, Condition (5.6) has a good chance to hold. As in Chapter 4, we need some growth

conditions on ®. Set

(5.7) I(R) == / Vo) @7 dy R R,.
o3

Assume

(5.8) I(R) *oo, I(R)=o (64R/”2) (R — ).

The interpretation of the first condition is that |V®(z)| must not decay too fast to zero
as || — oo. By L’Hopital’s rule and Lemma 5.1, the second condition also reads as a
growth condition on |[V®| in the form me z[|V®|?] = 0(€>%/°”) as R — co. In Lemma 5.4,

we state explicit growth conditions on @ for (5.8) to hold.

Theorem 5.2 Assume that Condition (2.5), the finiteness of the stationary measure, and
the spectral gap condition (2.7) hold. Further suppose that Assumptions (5.3), (5.2), (5.4),
(5.6), and (5.8) hold. Set

2

I(R) := W

where |u| is the total mass of p and I(R) is defined in (5.7). Then the function | satisfies

e *®II(R)  R> Ry,

(2.9), i.e., A\g ~ l(R) as R — oo, where \g is the bottom eigenvalue of the operator —Lp
defined in Section 3.1 associated to the level set Of, R € (Rp, 00).
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Remark 5.3 (1) By L’Hopital’s rule and Lemma 5.1, the function / can be replaced

by
2

R
I(R) := 2—6_4R/"2/ eQT/"2m¢,T[|V<b|2] dr R>R;.
o?|pl Ry

(2) The proof of Theorem 5.2 is very similar to the proof of Theorem 4.1. The main
difference is that we use test-functions of the form vg = fr o ®, R > Ry, where fgr

is a real function, instead of rotationally symmetric test-functions.

(3) Corollary 2.4 allows to compare the eigenvalue asymptotics corresponding to the
level sets (Of)r>g, With the eigenvalue asymptotics w.r.t. a different exhausting

family (O, )y, of R".

PROOF. The quadratic forms £z and the operators Ly defined in Section 3.1 are

associated here to the level sets O%, R > Ry. For a function v € D(Er), we write Ex(v)

instead of Eg(v,v) and the norm in L2 := L?(O%, ug) is again denoted by || - |2,z
According to Remark 2.2.(1) we first assume that ¢ = /2 and that the potential ® is
normalized such that [o, e=®®@ dz = 1.

Let us define the test-function as follows:
vp(z) =1 — @ F z € Op, R € (Ry,00).

By Assumption (5.2), we have vp € C?(O%, R). Further, vg = 0 on the set {z : ®(x) = R}.
Hence vp € CZ(0O%,R) C D(Lg) for every R € (Ry, 00), see (3.3). By construction, vg 1
p-a.s. as R — oo (where vp is extended to a function on R" by setting it to 0 on R*\ O%).

Since y is a probability measure on R”, we have
(5.9) ||vR||§,R —1 (R — 00).

The gradient of vg reads Vog(z) = —e®@~EVd(z) for every z € OF. Plugging this into

the quadratic form £, we obtain for R € (Ry, 00)

(5.10) Er(vg) = e 2 / \V®|%e® dr = e *2I(R).
0%

The second growth condition in (5.8) implies that
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Using the alternative representation of L defined in (2.6), one obtains for R € (Ry, o0)
(5.12) |Lvgl, = e 2F / (AD)2e® da
) 0}3
As in Step 2 of the proof of Theorem 4.1 (using the convergence results (5.9) and
(5.11)), one can show the following: suppose that

(5.13) ILvrllzr = 0 (Er(vr)) (R — o0).

Then the upper and lower bounds in Proposition 3.5 get sharp in the limit R — oo and
we obtain the eigenvalue asymptotics
(5.14)  Ap~ Enlvg) = 2R / VOPe? du = e2RI(R) (R — o0).

0%

The result for arbitrary ¢ > 0 and not normalized potentials ® is obtained according
to Remark 2.2.(1) by multiplying the RHS of (5.14) by ¢?/2 and plugging in the potential
®, := (2/0?)® + In |u|. Hence

o2
(5.15) A% ~ ?eQR/

L
OR

2
VO, |*e® da = |—'l;|e2R/ Vo[2e®dr (R — 00),
o

o3

where A% is the bottom eigenvalue of the operator —Lp corresponding to the level sets
of ®,. To obtain the eigenvalue asymptotics for the bottom eigenvalue Ag corresponding
to (OR)r>ry, We have to replace R by (2/6%)R + In|u| in the RHS of (5.15), since Of =
0o

Retinu|" This yields the asymptotic expression for A\g as stated in the theorem.

It remains to show that Condition (5.13) holds. This means

-1
qR::eR(vR>1||LvR||§,R=(/ \V@\?ew> | (aopetds 0 (R o),
og o

i3
R
where we used the representations (5.10) and (5.12). The growth condition (5.8) implies
that [, s [V®[*e®dz 0o as R — oo and hence L’Hépital’s rule can be applied to the
R

quotient gg. Thus, we use Lemma 5.1 to obtain

R AD)2
: T R vo2) ek 21 _ i © mae,r[(AP)7]
I%I—IE;oqR N 1%1—{20 (e ma,r[|V 2| ]) ¢"ma,[(A®)T] = 1%1—{20 me.r[|VP|?]

But the last limit is 0 by the crucial condition (5.6). Hence Condition (5.13) holds. O
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Proor oF LEMMA 5.1. We fix R > R; and set for § > 0
Frs={r:R< ®(zx) < R+6}.

It suffices to show that
1
[ rdr=messl  6N\0),
Tr,s
Since ® € C!(R", R), we obtain with (5.4) and the implicit function theorem, that 00 =
{z : ®(z) = R} is a n — 1-dimensional C'-surface, which is orthogonal to the gradient

field V®. Let (§)¢e= be a smooth parametrization of d0%. For every £ € 00% we define

the flow [0,5*) 5 s — T € R" as the maximal solution of the system of ODEs
#(s) = [Ve(2(s)|7'VO(2(s))  2(0) =¢.
Note that this is well defined by (5.4) and that the flow s — T,¢ has unit speed. Set
Pe(s) == O(T5E) s €0,5%), £ € 00%.

Obviously ¢ is differentiable at s = 0 with ¢;(0) = [V®(&)| > 0 by (5.4). Hence we can
find for every £ € 0% and small § > 0 a constant Sgs > 0 such that ¢¢(Ses) = R+ 9.
Since ¢¢ is locally invertible near s = 0, S¢; is differentiable w.r.t. § at 6 = 0 with

1 1 1
TG0 (®)  40) Ve
Since ® € C'(R*,R), the mapping T : (s,&) — T,& is a local diffeomorphism. From

(5.16) lim —= = (¢;')'(R)

Assumption (5.3) we deduce that dO% is compact. Hence by shrinking § if necessary,
T is reduced to a global diffeomorphism 7" : T'; ; — I'gs (again denoted by T'), where
s =1{(s,8): €€ 00%, s € [0, Sgs]}. Further the limit in (5.16) is uniform in & € 0%,
since also (s,&) = @¢(s) = ®(T;€) is a local diffeomorphism and since dOF is compact.
Using the transformation rule for integrals having in mind that the flow s — T, has unit

speed we get

1 1 Se,
(5.17) [ orae=s [ ([ e as) douate)
0 Tr,s 0 80§ \Jo
where dog g is the surface measure on d0%. Using (5.16) we compute by means of the
chain rule
1 [Ses
im [ p(6) ds = £(To6) tim 60 = )

A N0 V(e
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Using the uniform continuity of f on the compact set I'g s and the fact that the limit in
(5.16) is uniform in £ € 0%, also the above limit is uniform in £ € 05. Hence in (5.17),

the limit § \, 0 can be interchanged with the integration over 90% and the result follows.
O

5.2 Examples

We give some examples of diffusion processes of gradient field type, for which the sharp
eigenvalue asymptotics can be evaluated by Theorem 5.2.

The following lemma provides a method to check whether the growth conditions (5.8)
hold. Assume that the open balls (B,),s¢ around the origin and the level sets (OF)g> g,

are compatible to each other in the sense of (2.13). For sufficiently large R > 0 set
p«(R) :=sup{p > 0: B, C Op}, p*(R) :==inf{p>0:0% C B,}.

Note that p.(R) / oo as p — oo by Condition (5.3) and that p*(R) < oo for every

R > Ry. Further, we define for a continuous function f : R* — R

felp) :==min f(z),  f*(p) := max f(z).

|lz[=p lz|=p

Lemma 5.4 Assume n > 2.
(a) The first growth condition in (5.8) holds if there exist constants C > 0 and py > 0
such that

(5.18) IVOl.(p) >Cp ™ p>po.
(b) Assume that @, is differentiable and that there exists a constant p > 0 such that
! (p) > 0 for every p > p. The second growth condition in (5.8) holds if ® satisfies

w1 A" (p) VR NP
(5.19) 7 B)) (™)

PRrROOF. We set w.lo.g. ¢ = v/2 and hence the term I(R) defined in (5.7) reads
I(R) = fog (V®|2e®dz.

(p— 00).
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(a) Choose p; > po such that ®(x) > 0 for every |z| > p; (possible by Assumption (5.3)).
Denoting by 7, the volume of the unit sphere in R*, we estimate for R with p.(R) > p;
p«(R) ps(R)
I(R) > / Vo |%e® dr > fyn/ " V|2 (r) dr > C”yn/ rtdr.
By, (r) p1 p1
The last expression tends to infinity as R — oo, since also p,(R) /* 00 as R — o0.
(b) To prove that I(R) = o(e*#) as R — oo, we apply Lemma 5.1 to the term I(R) and

hence it suffices by L’Hopital’s rule to show
(5.20) e Fme g[|[ VO[] — 0 (R — 00).

Since Of has C! boundary by Condition (5.2), we are allowed to apply Stoke’s formula
(having in mind that the outer normal to 9O% is given by |[V®|~'V®)
me.r[|[ VO] = / VO(E) - e doa r(€) = / div(V®(z)) dz = / A®(z) da .
202 02 o2

Estimating further we obtain

/0 Ad(z) dx

4
R

p*(R)
S/ |AD(z)| dx < ’yn/ " HA®*(r) dr .
Bp*(R) 0

Using the fact that p*(®,(p)) = p and that ®,'(p) ' oo as p — oo, we can replace R by
®,(p) in the limit in (5.20). Using L’Hopital’s rule and Assumption (5.19) we obtain

. ma,r[|V|’] . Jo " HARP (r)dr P AP (p)
1 MerIVET] o ) —1 pAZEI Py,
PR e 2 e @)t

Hence Condition (5.20) is proved. O

5.2.1 The Rotationally Symmetric Case

As in Section 4.2.1, we assume that the potential ® in the SDE (1.11) has the property
that there exist py > 0 and ¢ € C?([py, 0), R) such that

(5.21) ®(z) =o(z])  [2] > po-
Assume further that

(5.22) lim inf ¢'(p) > 0.

p—00
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The crucial condition (5.6) in this context has the form of a regularity condition

(5.23) ¢"(p) = o(¢'(p)) (p—0).

Note that ¢(p) ' oo as p — oo at least linearly by (5.22). Moreover, ¢~ exists on [Ry, 00)
for some Ry > 0 large enough, and also ¢ '(R) * oo as R — oc. Further, we obtain for

the level sets

A simple calculation yields

n—1

(525)  [VO(x)|=¢'(lz]), A®(z)=4¢"(lz])+ 7 ¢'(lel) |zl > po-

In the rotationally symmetric case, Theorem 5.2 leads to the following corollary.

Corollary 5.5 Let n > 2. Assume that the potential ® in the SDE (1.11) is of the form
(5.21). Suppose that (5.22) and (5.28) holds.
(a) Set

2n ¢~ H(R)

U(R) := R/ / W/l (1)?dt R> Ry,
o? |l ¢~1(Ro)

Then 1 satisfies (2.9), i.e., Ag ~ I(R) as R — oo, where \g is the bottom eigenvalue of

the operator — Ly associated to the level set (O%)r>ry-

(b) Consider the exhausting family (B,),>0 of R*. Set 1(p) :== Uo(p)), p > po. Then

l(p) ~ X,, as p — oo, where X,, is the bottom eigenvalue corresponding to (B,),>o-

Remark 5.6 Assume the situation of Part (b) of the above theorem. In Theorem 4.6, we

could show under slightly weaker conditions that {1(p) ~ Xp as p — oo where

~ 2 p -1
2{pl \Jpo

The only assumption was that liminf, . Va(z) > 0 with Vg defined in (5.26). In par-
ticular, we did not need to assume the regularity condition (5.23), because, for the proof
of Theorem 4.6, we used test-functions which are more adapted to the exhausting family

(By)p0- If ¢(p) = p*, p > po, & > 1, then the two asymptotic expressions 1(p) and 11 (p)
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coincide. Using Lemma 4.5, we get as p — 00

() = metomior [7griotnt(qgaty gy o In% a2l g
S '’
po

~ 0%y, [ o2 w2\ L~
l ~ n(%Y —n—at+2 2p%/c ~ | )

ProOF. We have to check that the conditions of Theorem 5.2 are satisfied. Since
o(p) /oo as p — oo at least linearly by (5.22), Conditions (5.3) and (5.4) hold implying
also that the stationary measure is finite (Condition (2.5)). We show the spectral gap
condition (2.7) by means of Proposition 3.7. Using the representations of (5.25), the
function Vg defined in (3.8) reads here setting (p = |z|)

526) Vo(o) = L0 - L (s100) + 2o 2op)) =) (L2 - 210 121

Using (5.22) and (5.23), it can be seen that liminf|;|_,o Va(x) > 0, and hence the spectral

gap condition (2.7) holds by Proposition 3.7. To show the crucial condition (5.8) we

compute

(5:27)  mapllVO[] = /|;|=¢—1(R)‘¢I(§)‘d0(§):7n(tn_1¢l(t))t=¢I(R)’

(6" (1€]) + 259" (I€1))?
magl(AD)?] = / , o (€)
*f El=¢-1(R) |¢'(8)]
. n—1 [ ¢"(t)2 2(n—1) n n—1)?% s
(5.28) = o [r (G e @ - o)
Since ¢7'(R) oo as R — oo we have using (5.23)
. ma r[(AD)?] L () \2 |, 2n—1) ¢'(t) n—1\2 _
W% e n[ VO] A (G2 + 22258 + 2 >t—¢1<R> -

To check the growth conditions (5.8), it suffices to prove Conditions (5.18) and (5.19)
of Lemma 5.4. Obviously ¢'(p) > p~™/* for sufficiently large p > 0 by (5.22), and hence
Condition (5.18) holds. Using that ¢(p) / oo as p — oo at least linearly by (5.22) and
Condition (5.23), we obtain

¢"(p) + "+ (p)
¢ (p)

n—1 (b”(p) n—1
d0) o

p —d(p) — -1

‘ e ?) -0 (p— o).
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Hence also Condition (5.19) is satisfied, and the growth conditions (5.8) holds by Lemma
5.4. This finishes the proof of Part (a). Part (b) is obvious, noting (5.24), see also Corol-
lary 2.4. O

5.2.2 Non-Symmetric Processes

We consider the class of non-symmetric potentials appearing in the SDE (1.11) introduced
in Section 4.2.2. To avoid trivialities, we assume n > 2. We use polar coordinates writing
R™*\ {0} > 2 = peg where p = |z| > 0 and (ep)pco is a smooth parametrization of the unit
sphere S"~! in R".

We illustrate the methods developed in the preceding section for the following specific
potential ®. Suppose that there exists py > 1 and a function p € C?(S"™!,[0,00)) with

mingeg p(#) = 0 such that
(5.29) 0(p,0) = p* +p(0)p"  p>po,0€O,

where « > 1 and B € R.

As in Section 4.2.2, the essential feature in the definition of ® is that the asymmetric
part factorizes into radial and spherical component. It is possible to replace in Definition
(5.29) of the potential ® the terms p® and p? by functions ¢(p) and 1(p), see (4.14).
In this case, quite technical compatibility and asymptotic growth Conditions have to be
imposed. We omit these cumbersome calculations in this thesis.

In Section 4.2.2, further requirements were needed for the spherical function p. The
zero set of p was assumed to be finite (see (4.15)) and conditions have been imposed on the
curvature of p around its zero-points (see (4.16)). These conditions allowed the application
of Laplace’s method. Here we do not need any further condition on the function p. This
fact emphasizes that the choice of the level sets is more adapted than the balls (B,),>0
to the geometry of the potential ®.

To evaluate the crucial condition (5.8), we express |V®| and A® in polar coordinates:

(5-30) Ve[ (p,0) = (ap™ " + Bp(0)p" ") + |Vop(0) *p* 2,

(5.31) A®(p,0) = ala+n—2)p* 2+ B(B +n—2)p(0)p" > + Agp(0)p° 2.
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Here Vy and Ay denote the gradient and Laplace-Beltrami operator w.r.t. the angular

coordinates 6, respectively. We obtain the following estimates

(5.32) V®|(p,0) > ap*? p>py, 0 €O.

Since p € C%(S™1) and S™~! is compact, there exists a constant x > 0 such that
(5.33) IAD|(p, 0) < kpmelapi=2 p>po, 0 €O,

Theorem 5.7 Assume that the potential ® in the SDE (1.11) is of the form (5.29). The
assertion of Theorem 5.2 holds in the following situations:
(i) a € [1,2) and B < 2,

(i)« >2 and B <1+ /a(a—1)+1.

Remark 5.8 (a) Let us compare this result with Theorem 4.8 in the Euclidean case.
We can use Corollary 2.4 to obtain from the eigenvalue asymptotics corresponding to the
level sets lower asymptotic bounds on the bottom eigenvalue X,, associated to the balls
(Bp)p>0- Set

(5.34) pri=maxp(0),  é(p)=p"+p0" p>po.

Invoking (2.13), we get R, :=inf{R > Ry : B, C O%} = ¢(p) and obtain that I(p) < ),

as p — oo where for p > p

0 - 2 _i3(p)/0? / VO[262/7" g
02

€
0-2|'u| #(p)

2 _
5 e 19(0)/o? |V<I>|262q’/”2dx
o?| | B,

_ 2 e / Co (/ |Vq>|2(s,0)e‘2(”*‘P(””sﬂ/"zda(m) ds -
0 (S}

e
o?|p

It can be seen by Laplace’s method that the last integral decays polynomially to zero as
p — oco. Hence we obtain that

30) = —= (P +70°)  p— oo,

~ 2
Ini(p) 2 T2 T2

In Theorem 4.8, the fine eigenvalue asymptotics of Xp was evaluated for a potential of

the form (5.29) in the two-dimensional case for & > 1 and 8 € (0,2«) in the sense that
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Ay ~ 1i(p) as p — oo with

i * P el -t C * e}
ll(ﬂ) — Cp—,B/w (/ T,—1€2r /sz’l") ~ O(;_Qpa—ﬂ/w €—2p /o? (p N OO)’
Po

where the constants C,w* > 0 depend on the curvature of p in its zero points. We used
Lemma 4.5 for the last asymptotic evaluation. It can be seen that the exponential decay
of T(p) and E(p) differ by the factor e 27"?°/" as p — co. This effect is due to the fact
that the ball B, is compared to the domain O%’(p) which is in general much bigger.

(b) The upper bounds on 3 in situation (i) and (ii) of Theorem 5.7 are used to ensure
the crucial condition (5.8) by means of crude estimates, see (5.32)-(5.40). These upper

bounds do not seem to be crucial and may be tightened by a more careful analysis for

specific expressions of the function p.

PROOF. Set m := max{c«, 8}. We have to check the conditions of Theorem 5.2. (5.3)
and (5.4) obviously hold by inequality (5.32), since a > 1. The finiteness of the stationary
measure, Condition (2.5), and the spectral gap condition (2.7) have already been shown to
hold in the proof of Theorem 4.8, see also Remark 4.9.(b). To show the growth conditions
(5.8), we prove Conditions (5.18) and (5.19) of Lemma 5.4. Condition (5.18) holds by the
inequality in (5.32), since a > 1. To establish Condition (5.19), we also use the estimations
in (5.32) and (5.33)

pn_l\ACN*(P) e () < K
(®.)'(p) a
It remains to show the crucial condition (5.8). We need to parametrize the iso-level sets

00% = {r : ®(z) = R}. Recall the Definition of ¢(p) in (5.34). Note that p — ®(p, ) is

pn—lpm—Zp—(a—l) e—po‘ -0 (p N OO) )

strictly monotonously increasing for every 6 € ©. Thus
Yr(0) :=®(,0)""(R) R> ¢(p), 0 €O
exists. From the inequality ¢(p) < ®(p,0) < ¢(p), p > po, O € O, we deduce for the

inverse functions

-1

(5.35) 6 (R)<yr(0) <RY*  R>¢(p),0€0O.
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Recalling Definition (5.5) of me g[-] we estimate

(5.36) me [ VE[?] > min [V&|(vx(6), ) - Vol(003) ,
(5.37) mal(00)] < 220080 (r(0).0) ) a0y

mingee |V®|(vr(0),0)
Hence the crucial condition (5.8) holds if we can show that

maxgeo |AP|(v&(0),0)

(5.38) T = e IV (72(0), 0)

—0 (R — 00).
Using (5.32), (5.33), and (5.35), we obtain that for every § € ©

(5.39) IVO|(7r(6),0) > avr(0)* ' > ad (R)* 1,
R(m—=2)/a m> 2,

(5.40) [A®|(vr(0).0) < £YR(O)"* < )
6 (R)™? m<2.

In the case m < 2, corresponding to Situation (i), the term J(R) in (5.38) can be further
analyzed:

-1

(R)

m—2—(a—1)
) 50 (R— o),

Jp< = (5
«
since afl(R) S2ooas R— ocoand m—2— (a—1) < 1—a < 0. Hence the crucial
condition (5.8) holds in this case.

In the case m > 2, corresponding to Situation (ii), the term J(R) is estimated using

(5.39) and (5.40)

I < (w20 (5 m) T R B,

Instead of showing limg,c Jr = 0, it suffices to prove lim, o J5,), since also o(p) S oo

as p — 0o. We estimate

< (pa +p*p,3)(m—2)/ap—(a—1)

pm(me)/a—Hfa (pafm _{_p*pﬂ*m)(m*Q)/a =0 (/) N 0) .

J@(p)

QIxQ =

This convergence follows, since the last term between parentheses is bounded, and since
the upper bound on $ in Situation (ii) ensures that m(m — 2)/a+ 1 — a < 0. Hence the

crucial condition (5.8) holds also in this case. O
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5.2.3 A Potential of Tetragonal Shape

We present here another non-symmetric potential & and analyze the eigenvalue asymp-
totics w.r.t. the level sets. One can evaluate explicitly for this potential the terms mg g[|V®|?]
and mg g[(A®)?] appearing in the crucial condition (5.8) of Theorem 5.2. For the non-
symmetric potential in Section 5.2.2, growth restrictions on the asymmetric part of the
potential (growing with 7#) have to be imposed (see Theorem 5.7), which result from crude
estimates, see Remark 5.8.(b). For the potential presented here, there are no growth re-
strictions on the asymmetric part.

We consider the following two-dimensional example where the potential ® appearing

in the SDE (1.11) satisfies the relation
(541) |$1|(I)(.1'1,$2)_1/’31 + ‘$2|<I>($1,$2)_1/’32 =1 T1,To € R\{O},

where 0 < 8; < S,. Obviously ®(z1,0) = |z1/%* and ®(0, z3) = |z|?* for z,, 2, € R\ {0}.
The iso-level set 0% = {z : ®(z) = R} for large R > 0 is a tetragon with edges
(0, £R'#2) and (+R'/#1,0), see Figure 5.1.

X ; ;
2 -— Rl/BZ

R1/Bl |

!

X

Figure 5.1: Contour plot of the two-dimensional potential ® defined by the relation (5.41)

To overcome the problem that ® ¢ C?(R?,R), i.e., Condition (5.2) is not fulfilled, it
is possible to smooth the edges of ® in such a way that the terms resulting from this
smoothing procedure do not matter in the limit R — co. We will check the remaining
conditions of Theorem 5.2. By the definition of ®, the density e 2*@/7* 2 € R", of the
stationary measure is integrable and hence Condition (2.5) holds. Further ®(z)  co as

|z| — o0, i.e., Condition (5.3) is satisfied. We compute |[V®| and A®. By the symmetry
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of the potential @, it is sufficient to restrict the calculations to the positive quadrant. Set
6:=1/8,—1/,>0,  h(R,z):=1/8, —0R Y%z, R x>0.

The relation (5.41) can be rewritten z; +1,P0 = pl/h , T1,T9 > 0, in the positive quadrant.
Applying the partial derivatives w.r.t. x; and x5 to this equation we obtain, after some

obvious transformations,
(5.42) 0p® = OV YAIR(D, 25) 7L, 0,0 = OV VP2p (B, zy) L.

Hence

BL-1/p1-1/B
(5.43) |V =

VOB L 2/ = — /@B 4 $2/Pe

h((I),.Z'Q h(q),l'Q)
Applying again the partial derivative w.r.t. z; to the first equation in (5.42) and w.r.t.

x9 to the second equation, respectively, and substituting the arising terms 0,®, i = 1, 2,

according to (5.42), we obtain
aifb = @172/&}7,(@, .’E2)73(l§)i — Ki(pil/ﬂzxg) 1= 1, 2 y

where k1 = 1/61—1/8%, K1 = 6 — 02, ko = 1/81(1+1/8,—2/52), and Ky = §+ §°. Hence
(1)2*4/ﬁ2
~ h(®,z9)®

We need to parametrize the iso-level sets of ®. Recall that the iso-level set dO% in the

2
(5.44)  (A®)? {@—25(»@1 — K10 P2 00) + (g — K2q>—1/ﬂ2x2)} .

positive quadrant is the line joining the points (0, R'/?2) and (R'/#1,0). This line can be
parametrized by

(5-45) 7R(332) = (Rl/ﬂ1 - R‘st,xg), Ty € [OaRl/’BZ]-

The following estimates are needed: since 1/3, < h(R, x2) < 1/, for z, € [0, R'/?], we
deduce from (5.43) and (5.44) using z, € [0, RY/?2] to parametrize 0% as in (5.45)

(5.46)  min V2 > g2R2-%/52 max|A®| B3kaRY72P (R — o).
R R

From the left estimation we deduce for sufficiently large R; > 0 that |[V®(x)| > 0,
z € R\ Of , and hence that Condition (5.4) is satisfied. We claim that the spectral gap
property (2.7) holds if 5, > 1. To this aim we estimate the function Vg defined in (3.8)
on the iso-level set 0% using (5.46)

man B%RZ(l—l//J’z) _ ﬁSKQRl—Z/ﬂz R2(1-1/B2) (51 ﬂQKQ) (R — o).
R 2 4 2R
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Since f; > 1 and ®(z) oo as |z| — oo, we obtain that liminf), . Ve(2) > 0 and hence
the spectral gap property (2.7) holds by Proposition 3.7.

In order to show the crucial condition (5.8), we compute me z[|V®[?] and me g[(AD)?].
Fix R > 0 sufficiently large. Setting dg := v/ R?/#1 + R2/B2 we obtain for the infinitesimal
curvature of the parametrization v defined in (5.45) |ye(z2)|dze = (dr/R'/#?)dz,. To
obtain the values of [V®| and (A®)? on the iso-level set 0% in the positive quadrant
we simply have to set ® = R constant in (5.43) and (5.44) using x5 to parametrize 0O%.
Recalling Definition (5.5) of me g[:], we obtain, invoking (5.43) and (5.44)

monlVOP] = [ [V0(0)|doanlc)

R1/B2 1 d
— 4R1—1/ﬂ1—1/ﬂ2 RQ/ﬂl + RQ/’BZ/ R d
0

h(R,xq) RY/#> 2
1/ . dz
= 4 RVYB-2/B dszl/ﬂQ/O

/B — 62
= é]n (@) R1—1/51—1/ﬂ2(R2/ﬁ1 +R2/ﬂ2)
ANE
4
(5.47) ~ A (@) B (R o0).
o \f
Similarly,

monfaaf] = [ L0 donno

A R2-4/B2 RY/B2 (ks — KoR™VP225)? dp
R-YBi=1/B2qdp [, h(R, z5)? R1/B2

1 — Ky2)?
4 RI+1/B1—4/B> Rl/’BZ/ (@—de
o (1/B1—62)°
(5.48) = KR (R— o),

d.’EQ

where K > 0 is a constant. From (5.47) and (5.48) we see that the crucial condition (5.6)
holds for every choice of 0 < 31 < fs.
The term I(R) defined in (5.7) reads in our situation using (5.47) and Lemma 5.1

4 B " 2r/o? 146 -2
I(R) = gln B /Oe r (14 ) dr

2 2
(5.49) ~ 2% In (%) R1F0e2R/e (R — ).
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The last step follows from Lemma 4.5. Hence the growth conditions (5.8) are obviously
satisfied. Setting

4 2
I(R) := 5 In <%> RH9¢2R/o R>0,

we obtain by Theorem 5.2 and (5.49), that Ag ~ [(R) as R — oo, where \g is the bottom

eigenvalue associated to the exhausting family (O%)gs¢ of R2.



Chapter 6

Singular Perturbations Methods

In Chapter 4 and 5, we evaluated for a diffusion process of gradient field type the asymp-
totics as R — oo of the bottom eigenvalues A of the operators —Lg associated to two
different exhausting families of R"”. The main idea was to find suitable test-functions (satis-
fying Dirichlet boundary conditions) such that the upper and lower bounds in Proposition
3.5 get sharp in the limit R — oo. This means in particular, that the test-functions rep-
resent a reasonable approximation for the principal eigenfunction corresponding to the
bottom eigenvalue Ag in the limit R — oo.

This chapter is devoted to the examination of the eigenvalue asymptotics by singular
perturbation techniques. The basic idea is to derive an asymptotic expansion of the prin-
cipal eigenfunction as R — oo. Since the bottom eigenvalue Ar can be expressed in terms
of the principal eigenfunction, the asymptotics of A\ as R — oo is obtained by plugging
the asymptotic expansion of the principal eigenfunction into this expression.

It must be mentioned that the singular perturbation techniques have more or less
heuristic character since the existence of an asymptotic expansion of the principal eigen-
function is assumed a priori. Moreover the convergence of this expansion to the exact
solution in any norm can not be proved in general. The advantage of these techniques
is that they provide a simple and efficient method to obtain the eigenvalue asymptotics
for most cases. In addition, these methods provide a good intuition for the shape of the
principal eigenfunction at least asymptotically, which is hard to evaluate rigorously in

general.

75
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The evaluation of the eigenvalue asymptotics by singular perturbation methods is not
restricted to a special exhausting family of R”. It works for exhausting families (Og)r>r,

satisfying the following scaling property: there exists a constant o > 0 such that the sets
(6.1) R “Ogr:={R “z:x € Og} are independent of R > Ry.

We illustrate these methods in the situation of the open balls (Bg)gso around the origin.

To apply singular perturbation methods, it is necessary to scale the operator —Lg to
the unit ball By, and to derive an asymptotic expansion of the principal eigenfunction ¢f
corresponding to the bottom eigenvalue of the scaled operator. This eigenvalue coincides
with Mg (as shown in Section 6.1). The eigenvalue A\ can be expressed by the principal
eigenfunction ¢ and for the eigenvalue asymptotics we use the leading term in the asymp-
totic expansion of ¢®. It turns out that the rate of decay of the principal eigenfunction
¢® near the boundary of B, depends on the spherical variables. It has to be adjusted to
the slope of the potential ® in each particular direction.

In the first section we explain the scaling procedure and give a short description
of the singular perturbation techniques. The main result is stated and proved in the
second section. In the last section we show that the eigenvalue asymptotics obtained by
singular perturbation techniques for the examples treated in Section 4.2 coincides with

the eigenvalue asymptotics evaluated by the methods of Chapter 4.

6.1 Rescaling and Introduction to Singular Pertur-

bation Methods

The bottom eigenvalue of the operator —Lg is defined as Ag := inf ¥(—Lg), R > 0, where
¥ denotes the spectrum of —Lg in the space L?(Bg, i), see Section 3.1. We derive an
expression of the operator Lg scaled to the unit ball and show that the bottom eigenvalue
of the scaled operator coincides with A\g.

Less formally, Ag is the smallest A € R such that there exists a sufficiently smooth

function u # 0 satisfying

(6.2) Lu=—Au on Bg, u=0 ondBr={z:|z|=R}.
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Instead of letting the radius R of the ball By tend to infinity, another approach is to
rescale the eigenvalue problem (6.2) to the unit ball B;. For a function v : R® — R/ the

scaled function is defined by
(6.3) u®(z) := u(Rz) zeR", R>0.

The scaled operator L is obtained by the relation Lu = LEu® R > 0, for every suffi-
ciently smooth function u (see (2.6)). L® reads
2

o 1 « o? P R /g2
(6.4) L%y = s Av — — Z@miQRGMU = —262‘I> /o Z(?M <e_2q’ /e 8$iv) )
2R R? 2R —

where the rescaled potential ®% is defined in (6.3). An alternative method to derive the
scaled operator L is as follows: let (Xt)e>0 be the diffusion process of gradient field type
solving the SDE (1.11) and define the scaled process (X7%);>0 by X := R7'X,, t > 0.
Then an application of It6’s rule shows that L¥ is the generator of (X[);>.

Applying the scaling procedure to the eigenvalue problem (6.2), A can also be ex-
pressed in terms of the scaled operator L® as the smallest A\ € R such that there exists a

sufficiently smooth function u # 0 satisfying
(6.5) L*u = —Xu on By, u=0 onS" !,

where S™ ! is the unit sphere in R™.

The scaled operator L® with Dirichlet boundary conditions on B; can be constructed
more formally in suitable L?-spaces as in Section 3.1. This enables us to analyze the
spectral properties of L® in a simpler form. Assume that the potential ® does not take
the value +oo, i.e., the set Z defined in (2.1) is empty. By u® we denote the scaled

stationary measure having Lebesgue density e~22%(@)/0?

, ¢ € R". Following the approach
in Section 3.1, the scaled operator L defined in (6.4) applied to functions in C2(B;) has
a self-adjoint extension (also denoted by L) on the space L?(Bi, uft). Note that this
operator corresponds to the part of the scaled process (X/[)i>o on the unit ball By, i.e.,
to the process (X/%);>o killed when it leaves By, see Lemma 3.3 for details.

Let us mention some spectral properties of the scaled operator L. From (6.2) and

(6.5) it is seen that the bottom eigenvalue for the operators —Lg and — L% coincide, i.e.,
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Ag = inf B(—Lg) = inf (—L*%), R > 0. Since B, is bounded, —L# has discrete spectrum
and the eigenspace corresponding to the bottom eigenvalue Ag is known to be simple, i.e.,
it is of the form {ag® : @ € R} where ¢ is a function in the domain of L. If the potential
® is regular enough, i.e., if ® € C5+[%](R”,R), where [g] is the largest integer smaller
than n/2, regularity theory for elliptic differential operator tells us that ¢® € C3(B), see
e.g. Theorem 6 in §5.6 and Theorem 5 in §6.3 of Evans [Eva98|.

Let us express the bottom eigenvalue Az by means of the eigenfunction ¢, plugged
into the eigenvalue problem (6.5). Since the potential ® is supposed to be differentiable,

—20R /g2

multiplication by e and integration over B; yields together with the representation

(6.4) of L® and Stoke’s formula

2 n
R_—20R /52 _ _9 —20R /2 R
(6.6) )\R/qu e dx YiE ;_1 /31 Og; (6 O0r:q )dfﬂ

0_2

— 2_W 1 672‘I>R/U2aqudo_’
§n—

where do is the surface measure of the unit sphere S™ ! and 9, denotes the derivative in
radial direction.

The idea of our approach in this chapter is to use singular perturbation techniques to
derive a formal expansion of the eigenfunction ¢. We give a short introduction to these
methods, for details we refer to the book of Kevorkian and Cole [KC81]. We make the

ansatz that the principal eigenfunction ¢ is given by the asymptotic expansion
o0

(6.7) ¢"~Y R (R—o0),
i=0

meaning that ¢%(z) — Y2  gi(z)R~ = o(R*) as R — oo uniformly in = € B; for every
k =1,2,.... This expansion is plugged into the eigenvalue equation L%¢® = —\zq® and
terms of the same order in R are grouped together and solved recursively. This leads to
the so called outer expansion and is usually quite accurate in the interior of B;. However
the outer expansion is not capable to gather the boundary condition ¢% = 0 on S"~!. In
order to ensure its validity we introduce a boundary layer. This means that we choose
suitable new variables depending on R which are concentrated at the boundary of By, see

(6.17). We denote by QF the function ¢% expressed in the boundary layer variables and
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assume again that Q% admits an expansion

o
(6.8) Q"~Y QR* (R—o0).
i=0
Expressing also the eigenvalue equation LEg® = —\gq® in the new variables in terms

of the function Q, we repeat the above described expansion procedure, i.e., we group
the terms of the same order in R together and solve recursively. This yields a good

approximation near the boundary of B;. To obtain a uniform expansion
o0

(6.9) "~ GRT (R o0),
i=0

which covers the outer expansion as well as the boundary layer expansion, the terms ¢; and
Qi, © = 0,1,..., have to be matched, avoiding multiple counting of intermediate terms.
The leading term of the asymptotics of Ag is obtained by plugging the leading term ¢ of
the uniform expansion into Equation (6.6).

Similar methods are used in Naeh et al. [NKMS90] for the exit problem of Freidlin
and Wentzell, see Section 1.2. In their work, the scaled potential R=2®% in Definition
(6.4) of L% is replaced by a potential independent, of R. The new feature of our approach
is that the boundary layer variable does not only depend on R but also on the spherical
variables. This enables us to adjust the decay of the principal eigenfunction ¢ near the
boundary of B; asymptotically in the limit R — oo to the slope of the potential in the

particular direction.

6.2 Main Result and Proof

Since the domain of the scaled operator L% is the unit ball By, it is appropriate to state
the results in polar coordinates. We write R" \ {0} > = = rey where r = |z| > 0 and
(e)gco is a smooth parameterization of the unit sphere S"~! in R". The defining equation

for the principal eigenfunction ¢? (see (6.4) and (6.5)) reads
o’ (o g, n—1, p 1 R Ry R, 1 R R 2 R
(6.10)? 0.q" + T 0.q" + T—2A9q — | 0,970,.q" + T_2V0<I) -Vyq = R*Arq™.

Here V4 and Ay denotes the gradient and Laplace operator w.r.t. the spherical coordinates

6, respectively. We introduce the following uniform asymptotic relation: for functions
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ag,br : I — R, where I is an arbitrary set, we say ag(t) = o(bg(t)) as R — oo uniformly
in t € Iif limp_,o0 Sup;e; |ar(t)/br(t)] = 0.
Let us formulate the assumptions on the potential ®. Suppose that ® € C?(R",R) for

the potential in the SDE (1.11). Further assume that
(6.11) lim inf min 9, ®(r,6) > 0.

r—oo #€O

Note that this type of assumption was also needed in the examples of Section 4.2 to ensure
the spectral gap condition, see especially Assumption (4.18) in Section 4.2.2. Further,
(6.11) implies that the stationary measure with Lebesgue density e=2*@)/*dz 2 € R", is

finite with total mass ||, see (2.5). For the scaled potential ®f defined in (6.3) we obtain
0,®%(r,0) = RO, ®(Rr,0) R>0,r€]0,1,0€0.

Hence for every § € (0, 1) there exists a constant £ > 0 by (6.11) such that

(6.12) 0,0%(r,0) > R r€(4,1],0€ 0.

To control the derivative of ® w.r.t. the spherical variables § we assume that for every

d€(0,1)
(6.13) Vo@"(r,0) = 0(9,9"(r,0)) as R — oo uniformly in (r,6) € [6,1] x ©.
We write for short

(6.14) [rl8) = B,0R(1,0),  fon(6) = 2OR(1,6),

and assume that

Vofe|" Dofe

) =o(fz), for=o(fr) as R — oo uniformly in 6 € O.
fr Ir

Note that fr(f) — oo as R — oo at least linearly uniformly in # € © by (6.12). The first

(6.15)

part of Condition (6.15) ensures that the growth of the potential ® in radial direction
dominates the behavior in the spherical components. In particular, a spherical oscillation
of ® increasing too fast with the radius is forbidden. The second part of Condition (6.15)
is a regularity condition on the radial growth of the potential ® (compare this with

Condition (4.19) for the example of Section 4.2.2).
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Theorem 6.1 Assume (6.11), (6.13), and (6.15). Set

Rn—2

(6.16) I(R) = _ R

] 8,0%22"7" 4o = 7 /8r<I>R(1,0) 6—2‘1>R(1,0)/02d0(9)’
Kl Jgn-1 Kl Je

where || the total mass of the stationary measure. Then the function | satisfies (2.9),

i.e., A\ ~ I(R) as R — oc.

PROOF. In the sequel we drop the index R of the eigenfunction ¢%.

Step 1: We show that R’ g \, 0 as R — oco. We use the variational principle, see
Proposition 3.5. Set ¢(r) := mingee ®(r,#). As in Step 1 of the proof of Theorem 4.1 we
obtain (see Remark 4.2.(1)) that there exists a constant k& > 0 such that

R -1
M <k ( / tl_”ez¢(t)/”2dt> (R — c0).
1

Condition (6.11) implies that ¢(r) grows at least linearly as r — oo and this implies the
result.

Step 2: Outer expansion. We expand the eigenvalue equation (6.10) in powers of R.
Using Condition (6.13) and the relation (6.12) together with Step 1, it turns out that
the term of highest order in R is the term 0,®%. Hence the leading term ¢y of the outer
expansion (6.7) satisfies 0,8%0,qy = 0. Since 9,®% > 0 on the complement of an arbitrary
small neighborhood of the origin by (6.12), the function go(-, #) is constant for every 6 € ©.
But ¢ is continuous at the origin and hence constant on B;. Since ¢q is specified up to a
multiplicative constant, we scale gq to 1.

Step 3: Boundary layer expansion. We define the boundary layer variable
(6.17) p=p(r,0):=frd)(r—1)(<0) rel01,0€0,

where fr is defined in (6.14). We denote by Q(p,0) = ¢(r,0) the function ¢ in the new
variables p, . The eigenfunction ¢ satisfies the boundary condition ¢(1,0) = 0, 6 € ©.

This induces

(6.18) Q0,0)=0 6eO.

A function h = h(r,0) expressed in the new variable p is denoted by h, = h,(p,0) =
h(1 + p/fr(0),0). To express the derivatives of ¢ in terms of @, we use that ¢(r,0) =
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Q(fr(0)(r —1),0) to obtain

@)y = frOQ,

(@9, = [20.Q,

(Vo = Vo@+ (r— )Vafn,Q = VoQ + p~250,Q.

(Doq), = AgQ+2(r —1)Vofr-VeQ + (r — 1) VofaPOQ + (r— DAofr5,Q
- A0Q+2pv;£R V,0 + ;fR 20+ A;fR 0.0.

Let us express the eigenvalue equation (6.10) in the new variable Q). We replace r by

1+ p/fr(0) and we obtain

(6.19) “—2{[f2]82¢2+(n—1)[ fi o0
) 2 RI%p o+ fr 4
[t (sl 2] = o[ g0 [5]00)

Ir

We expand the terms (9,9%), and (V4®%), asymptotically as R — oo

]Q(V(;(I)R),, : an} — R2\(R) Q.

(0:2%),(p,0) = 0, "1+ p/fr(0),0)
~ 0,0%(1,0) + 02®%(1,0)
_ far
= I (1+ fR)
(Vo®™),(p,0) = Vo®" (1 + p/fr(6),0)
~ Ve®%(1,0) + 0,V,2%(1,0)

p
fr(0)

P
fr(9)
Ve®R(1,0)  Vifr
8,0%(1,0) " fa

By Condition (6.15), the leading term of (9,9%), is fg. Further, using Assumption (6.13)

= Jr

and again Condition (6.15) we see that (V,®%), = o(fr) = o(f2) as R — oo uniformly
in p, . Looking at the remaining terms depending on R in Equation (6.19) (the terms in
square brackets), it is seen by Condition (6.15) and Step 1 that the leading term in R
is the term f% (see (6.12)). Hence the leading term @y of the boundary layer expansion
(6.8) has to satisfy the equation

0'2 9
(6.20) 50— 8,00 =0.
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In order to guarantee that the leading term )y of the boundary layer expansion
matches with the first order outer expansion go = 1, we need to assume that for ev-

ery 6 € © (having Definition (6.17) of the boundary layer variable p in mind)

(6.21) Qo(p,0) =1 (p— —o0).

Equation (6.20) together with the boundary conditions (6.18) and (6.21) is uniquely
solved by
Qo(p.0) =1-€*""  pe(—00,0,0€0.

Note that (g is independent of 6.

Step 4: Uniform expansion and eigenvalue asymptotics. Since the leading term of the
outer expansion gy = 1 and the leading term of the boundary layer expansion (), satisfy
the matching condition (6.21), the leading term ¢ of the uniform expansion (6.9) coincides

with ()o. Writing this in the original variables we obtain
qi(r,0) = 1 — e 2/rO0-r)/o? rel0,1],0€0.

To obtain the leading term of the asymptotics for Ag, we plug ¢f into Equation (6.6). For
the integral on the LHS of Equation (6.6), we can use the outer expansion gy = 1 and

obtain

1
(6.22) / e 22" 4 N/ e 22" g = —/ e~22/7" dg ~ Ly} (R — ).
B B R" /g, Rr

For the integral on the RHS of Equation (6.6) we obtain

(6.23) / e 229 q" do ~ / 6_2¢R/”28rq§ do
Sn—1 Sn—1

2 2
= 2 [ 10 do10)

o
- 2 e 279,68 ds (R — ).
02 Sn—1
From Equation (6.6) we obtain together with (6.22) and (6.23)
A _ 0_2 6—2¢R/a26 R gy / Re—2<I>R/0'2dx -
R — 2R2 gn-1 ’I"q By q
Rn72

] / e 22" 9. o8 do (R — 00).
Sn—1
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6.3 Examples

In this section we show that the asymptotics of the bottom eigenvalue A\g as R — oo evalu-
ated by means of singular perturbation techniques (Theorem 6.1) applied to the examples
in Section 4.2 coincide with the eigenvalue asymptotics obtained using the methods of
Chapter 4. We omit here to show explicitly that the asymptotic growth conditions of
Theorem 6.1 are satisfied, which are needed for the singular perturbation approach. This
inaccurateness is justified, since we have shown for the examples of Section 4.2 that the
assumptions of Theorem 4.1 are satisfied, which is a more profound result than Theorem

6.1 derived via the heuristically based singular perturbation techniques.

6.3.1 The Rotationally Symmetric Case

Assume as in Section 4.2.1 that the potential ® in the SDE (1.11) has the property that
there exist o > 0 and ¢ € C*([ry, ), R) such that
O(r,0) = ¢(r) r>ry,0€0.

Note that in this case Conditions (6.13) and (6.15) on the spherical derivatives of ®
are obvious since Vy® = 0. Further, the asymptotic growth condition (6.11) on the
radial derivative of ® corresponds to Assumption (4.13) in Section 4.2.1 which is used to
guarantee the spectral gap property by Proposition 3.7.

To evaluate the asymptotics of Az by means of Theorem 6.1, we note that
fr(0) =R¢'(R) R>r,0€0.

Plugging this into the asymptotic expression (6.16) for the eigenvalue asymptotics, we

obtain
Rn2 2
P — / R¢'(R)e2*B)/" 4o (6)
ulJe
(6.24) - %R"Iqb’(R)eQ‘z’(R)/”Z (R — ).
i

In Theorem 4.6 we derived the asymptotic expression /; for the eigenvalue asymptotics

satisfying A ~ 1 (R) as R — oo, given by

2 R -1
L(R) = 02‘%( </ TI"eQ"b(T)/"Zdr) R>0.
1 o
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If ¢ is of polynomial form, i.e., ¢(r) = r*, a > 1, the asymptotic expression /; coincides

with the asymptotics in (6.24), since by virtue of Lemma 4.5

oy, [ o? wrp2\
L(R) ~ n( R marlg2R /”)

2/ul \ 20
= %R”lRaleQm/"2 (R — o0).

6.3.2 Non-Symmetric Processes

We consider the two-dimensional example of Section 4.2.2 with a potential ® in the
SDE (1.11) of the following form: there exist ry > 0 and functions ¢ € C?([rq,00),R),
¥ € C*([rg,00), RT), and p € C*(S*, R") such that

O(r,0) = o(r) + p(0)Y(r) r > 19,0 € [0, 00 + 27) .

We assume the situation of Section 4.2.2, i.e., that Conditions (4.15) and (4.16) on the
spherical function p and the growth conditions (4.17) and (4.19) on the asymmetric factor
¥ hold. Note that the asymptotic growth condition (6.11) on the radial derivative of ®
coincides with the first condition of (4.18) ensuring the spectral gap property. Conditions
(6.13) and (6.15) can easily be shown to hold if ¢ and ¢ are of polynomial form.

To evaluate the asymptotics of Az by means of Theorem 6.1, we calculate
fr(0) = 0,%(1,0) = R(¢'(R) + p(0)Y'(R)) R >y, 0 € (00,0 +27) .

Plugging this into the asymptotic expression (6.16) for the eigenvalue, we obtain

M poe SO (SRR + P (RLR) (R ).

where
Go+2m Go+2m
Li(R) == / e OV gy L(R) = / p(0)e~ POV g
90 00
The term I,(R) was evaluated asymptotically in (4.21) by I,(R) ~ Ci(R)"Y/® as
R — oo, where

Cy = (2/w,)(0%/2) /= T (1/m,) S P Y™

1€ Jx
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and w,, J, are defined in (4.16). Using Laplace’s method (Lemma 4.3), the term I5(R)
can be evaluated similarly to the calculations in (4.22) as follows: there exists a constant

k > 0 such that I(R) ~ ky(R)~(0+/7) as R — co. Hence

(¢(R)L(R) + ¢/ (R (R)) ~ w(R) /=" <01¢’(R) + HZ'((]];) ) (R — o).

Since ¢'(R) = o(¢)(R)) as R — oo by Condition (4.19) we obtain

G

‘M‘Rw(R)’”w* ¢(R)e 2B/ (R o).

In Theorem 4.8 we derived the asymptotic expression /; for the eigenvalue asymptotics
satisfying Ag ~ [1(R) as R — oo given by

-1

0*Cr o e ([ <1 20002
L(R) := 2 Y(R) re dr R>0.
To

If ¢ is again of polynomial form, i.e., ¢(r) = r® with « > 1, the asymptotic expression [;

coincides with the asymptotics in (6.25), since by virtue of Lemma 4.5

20 2 o 2 !
ll(R) ~ g 1¢(R)—1/w* (0_R—1—a—1€2R /o )

2|l 2a
= CORu(R) R (R o).

6.3.3 A Diffusion Process with Gamma Distribution

We consider the situation of Section 4.2.3 of a diffusion process of gradient field type
having a bivariate gamma distribution as stationary measure. We choose o = v/2 in the

SDE (1.11) and the potential ® is given in polar coordinates for r > 0 by

r (M + sin @
(I)(’f', 0) — B1 B2

) “In((reos®)*(rsind)®Y) e (0,7/2),

00 otherwise,

where a1,a9 > 1 and 0 < 3 < 3;. Note that in this case the potential ® takes the value
+o00 and hence the set Z defined in (2.1) is not empty. In Section 4.2.3 however it is shown
that there exists a weak solution of the SDE (1.11) with the above defined potential ® in

the sense of Proposition 3.1. For the evaluation of the eigenvalue asymptotics it suffices
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as in Section 4.2.3 to restrict the attention to the positive quadrant, i.e., to the parameter

set {(r,0):r > 0,0 € (0,7/2)}. We calculate in the positive quadrant

2R_a1+a2—2
e

8<I>R—R(Cosg sinH) _artap—2

B R
Note that the asymptotic growth conditions (6.11) and (6.15) on the spherical derivative
of ® hold. However, Condition (6.13) on the radial derivative of ® is not satisfied uniformly
in 6 € (0,7/2), it holds only locally uniformly in 6.

Set p(0) := By (cos® — 1) + By ' sinf, § € (0,7/2). In order to evaluate the eigenvalue

asymptotics by Theorem 6.1, we calculate
fR(H):R(,Bl_1+p(9))—a1+a2—2 R>0,0€(0,7T/2).

Plugging this into (6.16), we obtain

Ra1 +as—1

|

a1+ g — 2

(6.26)  Ag ~ e /P /O " <ﬁ1‘1I1(R) + L(R) + T11(R)>

as R — oo, where
w/2
L(R) = / (cos 0)* X (sin #)2~Le~RrO)dp
0
w[2
I (R) = / p(g) (COS g)alfl(sin H)azflepr(a)de .
0
The term I;(R) is asymptotically evaluated in (4.27)
(6.27) L(R) ~ BT (ag) R + 65,5, T () R™™ (R — 00),

where 0g,5, = 1 if f; = B2 and = 0 otherwise. The term I5(R) can be evaluated similarly
to the calculations in (4.28) using Laplace’s method (Lemma 4.3) as follows: there exist
constants ki, kg > 0 such that Ir(R) ~ sy R™(@2+1) 4 5[3152/{2]%_("‘1“) as R — oo. Hence

I,(R) = o(I1(R)) as R — oo and we obtain from (6.26) and (6.27) noting that |u| =
[T, AT ()

1 Ra1—1 Ra2—1
Ar ~ (

—\ 5—3ar T 98852
B \T(a) B8~ 2T () B

This expression coincides with the asymptotic expression of Theorem 4.10.

) e ’/P (R — o0).
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Chapter 7

Applications to Finance

7.1 Introduction

Multivariate stationary diffusions play an important role as models for the dynamics of
a portfolio of stocks, exchange rates, or bonds with different maturities. An important
feature of these models is the possibility of incorporating reasonable dependence struc-
tures between the different risk factors. From the point of view of risk management it is
important to know about the extreme behavior of these models.

One-dimensional diffusion models have been proved useful for the modelling of financial
data; stationary models such as those of Vasi¢ek [Vas77] or Cox-Ingersoll-Ross [CIR85]
are prominent for modelling interest rates. Their extreme behavior is well-understood, see
e.g. Borkovec and Kliippelberg [BK98]. For the investigation of more than one risk factor,
as for the joint modelling of the term structure of interest rates for different currencies,
the dependence structure is of high importance and triggered the present investigation.

Assume that for a given discrete multivariate data set a continuous time multivariate
diffusion model is chosen and fitted to the data. Note that the fit of parameters is mainly
based on the center of the distribution, i.e., where most data points are available. From
the point of view of risk management, the following question arises: can the fitted model
also explain the large fluctuations in the data? To illustrate this problem, suppose that
a stationary Gaussian diffusion model such as the Vasi¢ek model (see Section 7.3.1) has

been fitted to a data set. It is important to know whether the postulation of a multivariate

89
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normal stationary distribution, having very little probability mass far away from its mean,
is compatible with the extremes in the data. If this is not the case one should use a diffusion

model whose stationary distribution has heavier than normal tails.

In this chapter, we show that multivariate diffusion processes of gradient field type
represent a suitable class of models for financial applications. These processes are known
to be stationary and time-reversible and the stationary distribution is explicitly available.
Moreover for a fairly arbitrary continuous probability density on R", a diffusion model
of gradient field type can be constructed having this particular probability density as
stationary density. In the preceding chapters, methods have been provided to analyze the
large fluctuations of multivariate diffusion models of gradient field type. Moreover the
fitting procedure of these continuous time multivariate diffusion models to discrete data

is fairly straightforward.

We present some multivariate short-rate diffusion models of gradient field type and
analyze explicitly their extreme behavior. For simplicity we restrict ourselves to the two-
dimensional case. The most prominent example is the bivariate Vagi¢ek model (see Section
7.3.1), a shifted Ornstein-Uhlenbeck process. The stationary measure of this model is
a bivariate normal. In order to replace the stationary normal distribution by a more
realistic distribution with heavier tails, we introduce a bivariate diffusion process having
a symmetric bivariate exponential distribution as stationary measure (see Section 7.3.2).
Further, we present a bivariate stationary diffusion model having a bivariate distribution
with gamma distributed margins as stationary measure (see Section 7.3.3). The spatial
dependence in the stationary measure is modeled using copula techniques. In particular
the state space of this new model is the positive cone in R”, which is ideal for interest
rate modelling. Further, the model has the nice feature of a stationary distribution with

exponential tails in contrast to the Vasicek model.

As an application of the characterization of the large fluctuations for diffusion models
of gradient field type, we develop methods for assessing the goodness-of-fit of such models
in the extremes. The idea for the goodness-of-fit tests is to compare the sample maximum
in Euclidean norm of the multivariate data set with its theoretical asymptotics. This

approach has the disadvantage that it is very crude. An advantage is however, that it is
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fast and that there are in principal no restrictions on dimensionality. An important fact
is that our tests respect the spatial dependence structure, since the asymptotics of the
maximum in Euclidean norm of the diffusion is affected by this dependence.

We will present some simulation results for the bivariate Vagicek model and the ex-
ponential diffusion model together with the test results. The results of the goodness-of-fit
tests are established when fitting these models to short term interest rates of different
currencies (30-days Libor rates for Euro, British Pound, and US Dollar). It turns out
that both models fitted to the data explain reasonably the extremes in the data set. The
results for the exponential model are slightly better as expected.

In Section 7.2, the class of diffusion models of gradient field type is presented together
with a characterization of the large fluctuations of these models. The above mentioned
multivariate short-rate diffusion models are introduced in Section 7.3. The parameter es-
timation methods for the fit of diffusion models of gradient field type to discrete data is
discussed in Section 7.4. In Section 7.5, the goodness-of-fit tests are developed and esti-

mation and test results for simulated and real financial data are presented in Section 7.6.

7.2 Gradient Field Models and Their Large Fluctu-
ations

For n € N, a n-dimensional diffusion process (X;);>o can be defined in general form as

the solution of a multivariate It6 SDE (see also (1.6))

(7.1) dX} =b(X)dt + Y o"(X,)dB]  i=1,...,n,
=1
where b, 0% : R* - R, 4,5 = 1,...,n, and (B!)i»0, j = 1,...,n, are independent one-

dimensional standard Brownian motions. In such a general situation it is however difficult

to answer immediately emerging important questions such as:

e is the process stationary?
e what is the shape of the stationary measure?
e how can the model be fitted to discrete data?

e what is the behavior of the large fluctuations of the process?
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Instead of considering the general model (7.1), we suggest to restrict to diffusion processes
of gradient field type. Let us recall the definition: the diffusion coefficient is constant in
the sense that 0" (z) = 0d;;, v € R*, i,j =1,...,n, where o0 > 0 and §;; is the Kronecker
symbol. Further, the drift is given by the gradient of a potential function ®, i.e., there
exists a differentiable function ® such that b*(z) = —0,,®(x), z € R*, i =1,...,n. Hence
(Xt)e>0 solves a SDE of the form (see also (1.11))

(7.2) dX; = —0,®(X;)dt + 0dB}  i=1,...,n.

This class of diffusion processes may also be compared with the reducible diffusion pro-
cesses introduced in Ait-Sahalia [AS02], which can be transformed in a diffusion process
whose diffusion matrix is the identity. The drift however may be arbitrary. Reducible
diffusion processes show many advantages in statistical estimation.

It is known that a diffusion process of gradient field type is stationary and time re-
versible. The stationary measure g on R" has a simple structure; its Lebesgue density is
given by
(7.3) i(z) = e 2®@/° g eR.

Some applications require that the state space of the diffusion process is reduced from
R™ to some open set O C R™. In this case, it must be guaranteed that the process does not
leave the set O. For the class of diffusion processes of gradient field type, this can be done
under quite general conditions. The requirement that the process does not leave the set O
implies that the density g of the stationary measure equals 0 on the set R" \ O. Relation
(7.3) suggests that the potential ® must take the value 400 on R” \ O. Meyer and Zheng
[MZ85] have shown the following existence theorem, see also Proposition 3.1: assume that
the potential ® satisfies Conditions (2.2) and (2.3). This means that & € C(R*, RU{+oc})
and ®p € C'(O,R), where O := {z € R" : ®(z) < oo}. Further suppose that the
integrability condition

(7.4) / VO (z)|? e @)/ dr < o
0

holds, where V denotes the gradient. Then there exists a weak solution (X;)¢> of the SDE

(7.2), which is stationary and reversible w.r.t. the stationary measure u having Lebesgue
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density
e—2%(z)/0” €0,

0 reR\O.

Further, (X})i> exits the set O with P, probability zero, where P, denotes the law of the
process (X;);>o starting with its stationary measure p.

This result shows that the class of diffusion models of gradient field type is a rather
flexible class. We can start with an arbitrary probability density g € C(R", [0, 00)) which
is differentiable on the set O := {z € R" : p(x) > 0}. Extract the potential ® from the
relation (7.3), i.e., ®(x) = —(0?/s) Ini(z), z € R" (setting In 0 := +o0). If P satisfies the
integrability condition (7.4), we obtain a stationary diffusion process where i is the density
of the stationary measure. This approach can be seen in the tradition of the Markov Chain
Monte Carlo method, where a given spatial distribution is put into a dynamic framework
in the sense that an ergodic Markov chain is constructed having the given distribution as
stationary distribution.

A further advantage of the diffusion models of gradient field type is that the fit to
discrete data and parameter estimation can be performed in a relatively simple way.
Especially the diffusion coefficient o can be easily estimated with high precision, see
Section 7.4.

The most interesting point for risk management is to quantify the extreme behavior
of these models. In Chapter 2 and 4, the partial maxima of the process in Euclidean norm

have been analyzed, i.e., the random variable

(7.5) Mr = max | X T>0,
0<t<T
where | - | denotes the Euclidean norm in R". An asymptotic characterization of the tail

behavior for My for fixed T" > 0 could be provided and the long term behavior of M
as T — oo was determined. Let us recall here the two main results. Theorem 2.3 and
4.1 state that under certain conditions on ® there exist a positive real function / and a

constant k > 0 (both depending only on ® and o) such that for every fixed T > 0

(7.6) TUR) < Pu(Mr > R) < (T+k)I(R)  (R— 00).
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Here a(R) < b(R) as R — oo means that limsupg_, . a(R)/b(R) < 1, where a, b are real
functions. Note that k = 1/A,,, where Ay, is the spectral gap defined in (2.7).
Further, the long time behavior of My as T — oo is characterized in the sense of

classical extreme value theory, see Section 1.1. Assume that the function
(7.7) F(R):=e¢'™®  R>0
is in the domain of attraction of an extreme value distribution function H (F' € DA(H))
in the sense that there exist norming constants ¢y > 0 and dr € R, T" > 0 (given in terms
of ® and o), such that
(7.8) Tlim F(crx +dr)" = H(z) zeR,

—00
see also (1.3) and (2.14). We then obtain the following long term limit result for the
renormalized maximum (see Theorem 2.5 and Corollary 2.6)

(7.9) ' (Mr—dp) S H (T — o0),

d e e .
where — denotes convergence in distribution. In our concrete examples it turns out that

F € DA(A), where A is the Gumbel distribution, see (1.2).

7.3 Multivariate Short-Rate Models

We describe in this section the multivariate short-rate models mentioned in the introduc-
tion and evaluate the large fluctuations of these models. We give an explicit expression for
the function [ appearing in the tail asymptotics (7.6) of the maximum My. Further, the
norming constants (cr)rso and (dr)rso in the long time limit (7.9) of the renormalized

maximum are stated explicitly. For simplicity we restrict to the bivariate case.

7.3.1 Vasicek Model

The bivariate Vasi¢ek model is the diffusion process (X} );>o of gradient field type solving
the SDE (7.2) with potential

(7.10) d(x) = % Z o (z; — my)(z; —my) reR?,

=1
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where the matrix A = (a¥); j—1 5 is symmetric and strictly positive definite and (mq, ms) €
R? corresponds to the mean of the process. Note that this potential generates a linear

drift of the form
2
bi(x):—Zaij(xj—mj) reR, i=1,2.

j=1
We suggest a parameterization of the class of possible matrices A (which also leads to a
parameterization of the potentials ®) in terms of its eigenvalues a1, ay and the rotation

part expressed by a matrix R? as follows:

e ) b _ cos¢p —sing
(7.11) Ag Rfdiag(as, az) R R ( sing cos¢ )’

0 := (a1, 09,6) € O :=(0,00)? x (—Z,Z].

272

Here diag(a, ) denotes the diagonal matrix in R?*? with entries oy, ap. The stationary

measure of (X))o is a bivariate normal N(m,X) with covariance matrix

2

(7.12) % = (244/0%) 7" = %R‘¢diag(a1—1, a; )R .

Hence the spatial dependence structure of this process is induced by the rotation matrix
R?.
If my = my = 0, the Vasi¢ek model reduces to an Ornstein-Uhlenbeck process (OU

process). This process is denoted by (XY)i>o and solves the SDE (7.2) with potential
]2
(7.13) O(x) = B Z oz, reR.
2,j=1

In particular, the centered Vagi¢ek model coincides with the OU process in the sense that
(7.14) (XY —m)iso = (XPY)i50  in law.

We analyze the large fluctuation of the centered Vasi¢ek model (X})i>o assuming
that m; = me = 0. Set o* := max{ay, @z} and «, := min{ay, as}. In Section 4.2.4, the

function [ satisfying (7.6) was evaluated by (see (4.31) and (4.32))

2
( L?RQG_Q*RQ/UZ o, = a*’
o
(7.15) I(R) =«
2 LR@’“*RZ/”Q o, < ar.
\ o’m(a* — o) :
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The constant k£ appearing in (7.6) reads in our situation, see (4.35)
(7.16) k=1/Asyy =1/ min{a;, 00} = o'

Further, F € DA(A), where F := e~! is defined as in (7.7) and A is the Gumbel
distribution. The long time limit (7.9) then holds with norming constants (see (4.34))

1 o?
cr =~/ ———
T o\l a,InT"’

(717) 1 0.2
PTIT s\ a7 (InInT + In(2c,)) o, =",
or = o' 2 2
* 1 o 4oia”
- Inln7+In | ———— . *.
4 a,JnT(nn +n<7r(a*—a*))) @@

7.3.2 Exponential Process

We present a diffusion model of gradient field type having a bivariate symmetric double-
exponential distribution as stationary measure. This means that the potential is of the
form &(z) = Z?Zl ajlz;l, € R?, with ; > 0, j = 1,2. Comparing this with the OU
process having a bivariate normal as stationary measure, this model is expected to explain
better larger values in the data as seen in most financial data sets. We present here the
structure of the model and defer tedious calculations to Appendix A.1.

In order to allow for spatial dependence and for the mean to be different from zero,

the potential ® in the SDE (7.2) is parameterized as follows:

(718) <I>9(x) = ZOJZ ZRZ(IL']—WL])

0 := (a1, 2,1, Mg, ¢) € O :=(0,00)% x R x (-1, 7],

z € R?,

where R? is the rotation matrix defined in (7.11) and m = (my, my) € R? corresponds to
the mean of the process. Let (X/[);>o be the diffusion process of gradient field type solving
the SDE (7.2) with potential defined above. Note that the potential ®4 corresponds to a
drift of the form

2 2
b (x) = ZRi_j¢aj sign (Z Rfk(xk - mk)) reR, i=1,2.
j=1 k=1
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As for the OU process, the spatial dependence is modeled by the rotation matrix R?. The

covariance matrix ¥ of the stationary measure of (X/”);>o reads in this situation
0.4
(7.19) = ZR‘"’diag(af?, o5 %)R? .

For the evaluation of the large fluctuations, we assume m; = my = 0, i.e., the process
is centered at the origin. Set o* := max{a;, s} and a, := min{ay, as}. The function [

satisfying (7.6) is given in this situation by (see Appendix A.1 for a derivation)

20'/3 —2a«R/o?
(7.20) UR) =~ (14 Baya,)e > R>0,

where 04,4, = 1 if &1 = a9 and = 0 otherwise. Note that in the two-dimensional case the
function | does not depend on «*; this changes in higher dimensions.

Further, F := ¢! € DA(A) and the long time limit (7.9) then holds with norming
constants (see Appendix A.1)

o? o? 202
dr = 1 *
T 20y, t ( o2

(721) Ccr =

= , 1+ 5a1a2)T> T>0.
20,

7.3.3 Gamma Process

In Section 4.2.3, a bivariate stationary diffusion process of gradient field type was pre-
sented having the product measure of two independent gamma distributions as stationary
measure. This process was constructed assuming ¢ = v/2. We want to generalize the model
implementing a spatial dependence structure. Further, an arbitrary o > 0 shall be allowed.
As for the exponential process, we defer tedious calculations to Appendix A.2.

This diffusion model can be seen as a contribution to the efforts to present a tractable
multivariate extension of the one-dimensional Cox-Ingersoll-Ross model (CIR model) first
established in Cox et al. [CIR85]. A multivariate generalization was suggested by Duffie
and Kan [DK96]. Jacobson [Jac01] showed that this model is not reversible and presented
a different model, which though also not reversible has some nice analytical properties.
Since our diffusion model is of gradient field type, it does not possess the square root
diffusion term, which is characteristic for the CIR model. But it has the advantage of

being reversible w.r.t. an easily accessible measure.
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Let us introduce some notation. For a > 1, 8 > 0, the density of the one-dimensional
I'(a, B)-distribution is given by g, s(z) = (8°T () "'z 'e=*/#, x > 0, and the cumulative
distribution function is denoted by G .

To create a bivariate gamma distribution with dependence, we use the techniques
of copulas. We refer to the book of Joe [Joe97] for details. A copula C' = C(u,v) is the
distribution function of a multivariate (here bivariate) random variable with all univariate
margins being uniformly distributed on the interval [0, 1]. In combination with arbitrarily
given marginals it defines a multivariate distribution function uniquely. The density is
given by c(u,v) := 0,0,C(u,v).

As an example we use the following one-parameter family of copulas, classified as

Family B5 in Joe [Joe97]:
Cpu,v) :=1 — (@ + 7" — @)/ u,v € [0,1], n € [1,00),
where ¥ := 1 — u, ¥ := 1 — v. The density reads
0(uyv) = (@ + " — W) @) (g — 14T+ T — ).

We have chosen this particular family of copulas due to its simple shape, since we also
need to differentiate the density c,. This copula family is constructed as a mixture of
powers via the Laplace transform. It is stochastically increasing and shows an upper tail
dependence. Note that for n =1 we obtain the independent copula C;(u,v) = uwv, and in
the limit 7 — oo the Fréchet upper bound Cu(u, v, ) = min(u, v) is reached. Moreover this
one-parameter symmetric copula family has multi-parameter asymmetric extensions. We

could have taken any parameterized family of copulas leading to a differentiable density.

Let us define the parameter set

(722) O := {(alaabﬁlaﬂ%n) Doy > 3aﬁz > 0577 > 17 1= 152} :

For (aq, ag, B1, B2,1) € © an application of Sklar’s theorem then yields that

Gz, 20) := Cy (Gal,ﬂl (ﬂfl)aGaz,ﬂz(@)) T1, 29 >0
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is the cumulative distribution function of a bivariate random variable with I'(«y, 5;)-
distributed margins, 7 = 1, 2, with density

2

n(@1,@2) = Cy(@1,22) [ [ Gaup (@) 71,22 > 0.
=1

Here we used the abbreviation ¢,(x1,22) = ¢;,(Gay,8,(%1), Gas,p,(%2)). To create a sta-

tionary diffusion process of gradient field type, we define the potential by
2
(7.23)  Dy(z) := (Z xi/Bi — (o — 1) ln:ri) —In¢, (21, x2) z1,22>0,0 € 0.
i=1
Note that the stationary measure u of (X);>0 has Lebesgue density

2
(7.24) (z) == ’5n(x1,x2)2/”2 fo”fle"”/b" z1,22 > 0,

i=1
where a; := 2(o; — 1)/0? + 1, b; := 026;/2,i =1, 2.

Due to the singularity in the potential &4, § € ©, for 1,2, — 0, the existence of a
solution of the SDE (7.2) is not straightforward. The density p is strictly positive and
differentiable on the set {z1,zo > 0} and can be continuously extended to a function on
R" by setting it to 0 on the set R? \ {z1, 2o > 0}. Further, ® defined in (7.23) satisfies
the integrability condition (7.4). Hence by Proposition 3.1, there exists a weak solution
(X)tep, of the SDE (7.2) with potential ®, § € O, see also Section 7.2.

Let us proceed to the evaluation of the asymptotics of the maximum Myr defined in
(7.5) for the process (X )i>o. Set b* := max{bi, bo} and a* being the a; corresponding to
b*; analogously for b, := min{by, bo}. In Theorem 4.10, the function [ satisfying (7.6) is
given for the process (Xtc)te[O,T] in the independent case n =1 by

0.2

o 9o (R) b < b7,

(7.25) L(R) ==

0.2 ( Ra1—1 Ru2—1

o RIS == b,
2 \ b (ay) bazr(a2)> ¢

To treat the general case n > 1 with spatial dependence we define

w/2
(7.26) as(R;m) = R“1+“2_2/ (cos )™~ (sin )27 ¢, (R, 7)Y e M dry |
0
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where p(7) := (cos~y)/by+(siny) /b, —1/b* and ¢, is written in polar coordinates (compare
with (4.26) in the independent case n = 1). Further, we denote by |u| the total mass of the
stationary measure p in (7.24). In applications, these expressions have be to calculated
numerically. The procedure of the evaluation of the function [ satisfying (7.6) is deferred
to Appendix A.2. We obtain

2

(7.27) I(R) = 2

= ——— 05 (R 7 Re B/Y R>0,n>1,
o]l 2os (1)

To evaluate the long time behavior of My for the process (X )i>0, We set F' = e~ asin
(7.7). In Appendix A.2 it is shown that F' € DA(A), where A is the Gumbel distribution.
Moreover the long time limit (7.9) holds in the general case n > 1 with the following

norming constants:

Cr = b* s
(7.28) o?
dr :=b* [lnT—l— Inln7 +In ((5as(b* lnT;n)) +1In (m)] .
1
In the independent case n = 1 we obtain the explicit expression
( o2
b |:lIlT+(CL —1)1nlnT+ln (WT(G,*))} b, < b*,

b* [lnT +1n ((lnrf;j;_l + (IDFJ(ZZ;_I) +1In <%j2) } b, =b".

7.4 Parameter Estimation

The aim of this section is to fit a diffusion model of gradient field type to discrete data

in the following sense: assume that we are given a multivariate data set
(7.30) (%o, ...,xn) with z; € O C R” open, j =1,...,N.

We consider this data set as a discrete realization of a stationary diffusion process (X;):e[o,7]
of gradient field type solving the SDE (7.2) for some fixed time horizon 7" > 0. This means
that there exists a grid

(731) (tj)j:O,...,N with 0 = hh<hi <...<ty= T,
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such that (x,...,zy) is a realization of (X, ..., Xty ). We describe how point estimates
for the diffusion coefficient ¢ and the potential ® appearing in the SDE (7.2) can be
obtained, where ® has a general parameterization (®y)sco. We consider in particular the
models of Section 7.3. For simplicity we assume that the grid (7.31) is equidistant, i.e.,

tj =7s,j=0,...,N, with step-size s := T/N.

7.4.1 Estimation of ¢

A diffusion process (X;)cjo,r) of gradient field type specified by the SDE (7.2) has additive
noise, and the diffusion coefficient o > 0 just multiplies the n—dimensional Brownian
motion. In this situation, o can be estimated independently of the drift coefficients by a
quadratic variation-like formula, see Florens-Zmirou [FZ89].

We denote the Euclidean norm mapping by f(z) := |z|, x € R". The idea is to estimate
o via the covariance process of the process (f(X¢))icpo,r7 = (| X¢|)tepo,r)- In order to show
that (|X¢|)¢cpo,r is a semi-martingale, we apply It6’s formula to (X¢):c[o,77 for the function
f- The difficulty that f is not differentiable can be solved by smoothing f near the origin,
see for example the derivation of the integral representation of the Bessel process in Prop.
3.2.1 of Karatzas and Shreve [KS91]. We obtain for ¢t > 0

t n t Xz )
X =%l [adsrow, W= [ Shas
0 i=1 Y0 s

where (gs)s>0 is some process depending on (X;)tcjo,r;. Note that (|X;|)ico7] is a one-
dimensional object, but not a one-dimensional diffusion, since the process (gs)s>o does
in general not only depend on (|X¢|);c0,77- By Levy’s theorem, (W});>¢ is again a one-
dimensional Brownian motion. From the standard construction of the covariance process
< | Xy >teo,m for the semimartingale (|X¢|)icor) (see e.g. section 2.3 and Thm 8.6 of
Durrett [Dur96]) we get

N T
S (%] - X ) 5/ <IX| > ds=0?T (N — o0),
0

=1

where 5 demotes convergence in probability. Hence we obtain the following standard
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estimator
1 N
~ 2
(732) g = sl (‘th| - ‘Xti—1|) :
T
i=1

This estimator is consistent, see Florens-Zmirou [FZ89].

7.4.2 Estimation of &

Let (Xi)tco,r7 be a diffusion process of gradient field type where the potential has a
general parameterization (®g)gce. The correct parameter f € © needs to be estimated
from the data. The problem of estimating the drift for one-dimensional diffusion processes
has been treated in many articles. We refer to Bibby and Sgrensen [BS95, BS96] using
martingale estimation functions and to Pederson [Ped95a, Ped95b] for simulated likelihood
inference by approximating the Markov transition densities, see also Ait-Sahalia [AS02]
for a multivariate extension. Further, references can be found in this articles. We present
here a maximum likelihood approach for the estimation based on a continuous ansatz.
This procedure is a multivariate generalization of section 6.4 and 13.2. of Kloeden and
Platen [KP92] and works for a general parameterization (®y)sce of the potential.

Note that the mean m of the stationary measure of the process (X;):e[o,77 fitted to a
data set (7.30) can be easily obtained. An unbiased estimator of m is given by the sample

mean (see §11.2 of Brockwell and Davis [BD98))

N

~ 1
(7.33) m=Ni1 Z%’ :

§=0

In the case of diffusion models with linear drift (as for the Vasicek model), we can also
work with the discrete likelihood of a multivariate AR(1)—process, which corresponds to
the discrete skeleton of these diffusion processes. This is not possible for the exponential
process and the gamma process (see Section 7.3.2 and 7.3.3), since the drift component

is no longer linear.

Continuous Ansatz

Let (X¢)cpo,r] be a diffusion process solving the SDE (7.2) where the potential has a

general parameterization (®g)sco. Set V; := 01X, t € [0,T]. By an application of Ito’s
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lemma it is seen that the process (Y3)cjo,r satisfies the SDE
dY} =b,(Y)dt +dB!, i=1,...,n, where b (y) := —0 ' (0, D0) (oY) .

By Py and Pgp we denote the law of the process (Y})te[o,T] and of the Brownian motion
(Bt)i>0 on the space C([0,T],R"), respectively; dPy/dPp is the Radon-Nikodym deriva-
tive. The log-likelihood ratio is defined by Ir(0) := In(dPy/dPp) and from Girsanov’s

theorem we obtain

T 1 T
() = / bo(¥0) - Y — / bo(Y3) Pt
0 0
1 T 1T )
= ) V(bg(Xt)dXt+— ‘V(I)Q(Xt” dt 5
g 0 2 Jo

where V denotes the gradient and - is the scalar product in R™. Since we are dealing with

discrete data, we use the following discrete version:

N-1
S
13:0) == == > (VO(Xy) - (Xiyy = X)) + 5[VO(X,) 1) -

§=0
The estimated parameter f is obtained by maximizing I4 over § € O, plugging in the data
points, i.e., Xy, =z, j=0,..., N. Hence

(7.34) § = arg min {Z (v«pe(xj) (@1 — @) + §|vq>9(xj)|2) } .

0cO
7=0

Discrete Ansatz

For diffusion models with linear drift and diffusion coefficients, the parameter estimation
can be evaluated by means of the likelihood of the discretized process. The only process
of this type solving the SDE (7.2) is the Vasi¢ek model (X )iejo,77 introduced in section
7.3.1 with parameterization (Ag)gco of the drift matix as in (7.11). Recall from (7.14) that
the centered Vagicek model (Y3)ieor] = (X} — m)tepo,r) equals in law the OU process
defined in (7.13), where m is the mean of (X)o7 and can be estimated according to
(7.33). Writing for short Y; := X, j = 0,..., N, for the discretized version, we obtain,

using the solution formula for OU processes,

(7.35) Yiiie = FY;+§ j=0,...,N
ti+1
where Fj := e 1%, & = a/ e~ Atlini—ugp
t

J
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Note that the §;, j = 0,..., N, are independent by definition and

§ = 0'/ e_A"(S_”)dBtj+1, L a/ e gB, j=0,...,N.
0 0

Hence (Y});=0,...~ is a bivariate AR(1)-process. Further, & has a N (0, Xy)-normal distri-

bution with covariance

Do = Eo(&i&))
— 0_2 /8 e—Ag(s—v)(e—Ag(s—v))th
0

= g2R® (/S e—Q(S—U)diag(al,M)dU) R
0

(7.36) = o’R? diag((?al)_l(l —e7215) (20,) 7 (1 — 6—2‘125)) R,
where R? is the rotation matrix defined in (7.11). Similarly we obtain
(7.37) Fy = R? diag(e=**, e"*2%)R™?.

The likelihood for the AR(1)-process (Y;)i—o,...n is given by (see §11.5 of Brockwell and
Davis [BD98])

L(6,0) = ((2m)"det(Z))  exp (—3 S = Fpyy)'sy (v, - Fam) -

7j=1
We obtain the estimated parameter by maximizing the logarithm of L(#,0) over § € ©,
o > 0, plugging in the data points from (7.30) Hence
R N
(7.38) (0,0) = arg min (Z(yj — Fyy;)'S5 " (y; — Foy;) + Nn (det(ze))> :

0€0,0>0 \ 4
Jj=1

where y; :=z; —m, j =0,..., N, and Fy and 3y is defined in (7.37) and (7.36), respec-

tively.

7.5 The Goodness-of-Fit Tests

We present a method using the characterization of the large fluctuations of diffusion

models of gradient field type presented in section 7.2 to answer the following question:
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does a diffusion model of gradient field type, which is fitted to a data set, also explain the
extremes in the data?

More precisely assume that for a diffusion model (X)o7 solving the SDE (7.2) for
a fixed time horizon T > 0 the potential ® and the diffusion coefficient o are estimated
from a data set (zo,...,zy) as in (7.30) and point estimates ® and  have been obtained

(e.g. with the estimators derived in Section 7.4). We test the null-hypothesis

Hy: (X)ieo,r) defined in (7.2) with parameters ?{3, o describes correctly the

extremes of the data set (zg,...,zy).

Assuming a grid of the form (7.31), we use as test-statistic the maximum of the discretiza-

tion of (X)o7 in Euclidean norm

M = max {| Xy |,. .., | Xey|} -
The realization M of M is just the sample maximum in Euclidean norm, i.e.,
(7.39) M := max {|zo|,. .., |z} .

From the point of view of risk management H, should be rejected to be on the safe side
if M is too large. Hence we suggest a one-sided test. For a significance level o > 0, we
reject Hy if M > Ko, Where K, > 0 is given in terms of the estimated parameters ® and
0. Assuming the distribution of M to be continuous, , has to be chosen in such a way

that we have for the error of first kind (i.e. rejecting Hy though it is true)
(7.40) Py(M > kq) = a,

where P, is the probability under H that the fitted model is correct in the extremes.
The idea to calculate the rejection level k, is to compare M with the continuous time
maximum My := maxo<i<7 | Xy| defined in (7.5) of the process (X;):cpo,r7 up to the time

horizon T in Euclidean norm. We use the heuristic fact that
(7.41) Py(M > kq) = P,(Mr > k) ,

provided that the grid is sufficiently fine. Here P, denotes the law of the process (X¢):cjo,r]

starting with its stationary measure p. For a treatment of this discretization problem see
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e.g. Jacod and Protter [JP98]. Denoting by (U} )iejo,r) and (Uiv )te[o,r) the error process of
(Xt)tepo,r] w.r.t. the discrete continuous and discontinuous Euler approximation of order
N respectively, they have shown that sup,cp U} | and supep |Uiv | tends to zero in
probability as N — oo in a quite general semimartingale framework.

We use that characterization of the tail asymptotics of the maximum My for fixed
T > 0in (7.6) and the characterization of the long term behavior of My as T — oo in

(7.9) to suggest some tests and to determine the rejection level &, in (7.40).

TEST A: Assume that k, is large enough such that the asymptotics in (7.6) is rea-
sonably sharp. Further, suppose that 7" is much larger than the constant £ appearing in
the right hand side of the asymptotic inequality of (7.6). Hence k can be neglected and
(7.6) reads in sloppy notation P,(Mr > R) ~ T I(R) as R — oo. Combining this relation
with (7.40) using (7.41), we see that k, should be chosen such that

~

(7.42) a=TI(ka),

where 7 is an estimate of the function ! from (7.6), which is obtained by plugging in the
point estimates ® and .

Alternatively, the test can be expressed in terms of its p-value, which is given for a
realization M of M by ps; = inf{a : M > Ka}, 1.e., the smallest significance level «
such that Hj is rejected based on the realization M. Presuming that a — k, is strictly

increasing, we get for the p-value together with (7.42)

(7.43) py = T1(M).

TEST B: Assume that 7 is large such that the convergence in (7.9) has reached a rea-
sonable level of precision. Denoting by (¢r)ro, (c/Z\T)T>0 the estimated norming constants
in (7.9) obtained by plugging in the point estimates ® and &, we obtain from (7.9) using
(7.41)

P(M>ka) =~ P, (’c}l(MT —dr) > & (ke — JT))

R - H (' (ke — dr)) -
Hence x, should be chosen

(7.44) Ka = Cra + dr,
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where ¢, is the a-quantile of the extreme value distribution H, i.e., 1 — H(q,) = a.

7.6 Application to Simulated and Financial Data

We demonstrate how the goodness-of-fit tests developed in Section 7.5 behave in appli-
cations to simulated and real financial data. In Section 7.3, the large fluctuations have
been explicitly characterized for some multivariate short-rate models, namely the bivariate
Vasicek model (Section 7.3.1), the bivariate double-exponential process (Section 7.3.2),
and the bivariate gamma process (Section 7.3.3). This enables us to perform explicitly
the goodness-of-fit tests for these models and we will do this for the Vasicek model and
the double-exponential process.

The financial data we use are the 30-days Libor rates for Euro, British Pound, and
US Dollar (September 21, 1999 until September 5, 2000), which are commonly used as
a proxy for the short-rate. These data set was kindly provided by Risklab Germany. In
particular, I thank Prof. Zagst and Dr. Hessenberger for this purpose.

7.6.1 Vasicek Model

Maximum Asymptotics and Simulation Results

We consider here the centered bivariate Vasicek model introduced in section 7.3.1, which
coincides with the bivariate OU process, see (7.14). To verify the theoretical tail asymp-
totics (7.6) of the maximum My and the long time limit (7.9) of the renormalized maxi-
mum for this process, we simulate 20,000 sample paths for a large time horizon 7" = 50.
We use for the simulation an order 1.5 strong Taylor scheme, see section 10.4 of Kloeden
and Platen [KP92]. Evaluating for each path the maximum w.r.t. Euclidean norm, an em-
pirical distribution of the random variable Mr (defined in (7.5)) is obtained. In Figure 7.1
we present the histogram and compare the empirical tail behavior with the theoretical
tail asymptotics (7.6). Further, the convergence in distribution in the long time limit
T — oo of the normalized empirical maxima (see (7.9)) to the Gumbel distribution is

demonstrated.
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— - Tail theor. lowe
Tail theor. uppej

Figure 7.1: Simulation of 20,000 sample paths of the OU process (XY );e0,77 introduced in section
7.3.1 with time horizon T' = 50 and parameters ¢ = 1 and 0 = (a1, a2, ¢) for the matrix Ay defined
in (7.11) given by oy = 0.3, a2 = 0.5, ¢ = 0. The step-size for the simulation is s = T/N = 0.005,
where N is the sample size. [Top Left]: Histogram of the random variable Mt = maxo<¢<s0 | X2V|. [Top
Right]: Empirical tail of M together with the theoretical asymptotics from (7.6), where the function [ is
defined in (7.15). Here the constant k appearing in the upper asymptotic bound in (7.6) is given for this
parameter setting by k = 1/ min{a, a2} = 10/3 according to (7.16); It is seen that the upper and lower
asymptotic bound in (7.6) nearly coincide, since T >> k. [Bottom Left]: The same on logarithmic scale.
[Bottom Right]: Cumulative distribution function of normalized empirical maximum c;' (Mz — dr) as in

(7.9) approaching Gumbel distribution for increasing T'.

These simulations show that for this parameter setting the tail asymptotics in (7.6) is
reasonably sharp for values R > 6. The long time limit in (7.9) attains a reasonable level

for T > 30.

Parameter Estimation and Test Performance for Simulated Data

In Table B.1 in Appendix B we show a simulation study for the bivariate OU process

and present the results of the parameter estimation. In particular, the estimator (7.34)
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developed from the continuous ansatz is compared with the discrete likelihood estimator
(7.38). For the optimization procedure in the maximum likelihood estimation, we use
the simplex search method of Lagarias et al. [LRWW99] implemented in the Matlab

package. It can be seen that the estimation of the parameter # for the drift matrix Ay
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Figure 7.2: We simulated a sample path of the OU process introduced in section 7.3.1 with parameters
o =1and § = (a1,as,¢) for the matrix Ay defined in (7.11) given by a; = 0.5, az = 0.1, § = —7/3;
time horizon T' = 50 and step-size s = T'/N = 0.05, where N is the sample size. The stationary measure

indicates for negative correlation and is given by a bivariate normal N (0,Y), where the covariance matrix

V3

2), see (7.12). [Left]: Plotted are the points visited by this sample path

reads in this situation & = (* i
together with the contour plot of the potential ®y defined in (7.13) and (7.11). The parameters ¢ and 6 are
estimated from the sample. [Right]: Plotted are again the points visited by this sample path. The sample
maximum M in Euclidean norm is marked by a circle. The normalized sample maximum E;l(]/\/l\ — c/i\T)
as in (7.9) is indicated by a square on the line joining M and the origin. The radius of the solid circle
is the mean of the Gumbel distribution m* = 0.5772, the radius of the dashed circle corresponds to the

5%-quantile ¢ o5 = 2.9702. If the renormalized sample maximum lies inside the dashed circle, then the

fitted OU process model is not rejected at the significance level of 5%.

defined in (7.11) yields accurate values only for large data sizes (with sample size N ~
10,000), which is a known fact when dealing with estimation of the drift of diffusion
processes from discrete or continuous data. The estimator o defined in (7.32) of the
diffusion coefficient however gives good results also for smaller data sets (with sample size

N = 1,000). Further, the results of the simulation study show that there is a high level
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of consistency between the continuous ansatz estimator (7.34) and the discrete likelihood
estimator (7.38).

We apply the goodness-of-fit tests described in Section 7.5 to simulated sample paths
of the OU process. The parameter estimation for these sample paths is reported in Table
B.2 in Appendix B and in Table B.3 in Appendix B we present the results of the goodness-
of-fit tests. For all but one simulated sample paths the goodness-of-fit tests do not reject
as expected the null-hypothesis that the fitted OU process is the right model.

Figure 7.2 shows the shape of the stationary density of the bivariate OU process with
parameters fitted from a simulated sample path. Further, a graphical demonstration of

Test B is presented.

Parameter Estimation and Test Performance for Financial Data

We present the results of the parameter estimation and the goodness-of-fit tests when
fitting the bivariate Vasicek short-rate model to 30-days Libor rates of the currencies
Euro, British Pound, and US Dollar (September 21, 1999 until September 5, 2000).

The time horizon 7" > 0 can be chosen arbitrarily. For the parameter estimation the
grid size s := T /N and hence T should be small, where N denotes the sample size. For the
Test B however, exploiting the long time limit of the maximum M7, the time horizon 7’
needs to be large. Since the data sets cover the period of one year, we bridge this trade-off
by measuring 7" in monthly units, i.e., T = 12.

The results of the parameter estimation are presented in Table B.7 in Appendix B. In
contrast to the estimation of simulated data, the difference between the continuous ansatz
estimator (7.34) and the discrete likelihood estimator (7.38) is much larger. In Table 7.1
we give the results of Test A and Test B, the goodness-of-fit tests developed in Section
7.5. The estimated values of the parameters are taken from Table B.7 in Appendix B.
The outcome of Test A is that the fit to the bivariate VaSi¢ek model is in principal not
rejected for the 30-days Libor rates data set of Euro, British Pound, and US Dollar. In
Test B the fit to the bivariate Vasi¢ek model is not rejected for all tested financial data
sets. This may be due to the fact that the convergence in (7.9), the long time limit for the

maximum My, does not reach a sufficiently high level for the chosen time horizon 7" = 12.
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Test A Test B

M Pii Koos kool  Cpt (M —dr)

EUR-GBP | 1.3832 | cont | 0.0751 | 2.6291 3.7365 1.1365
disc | 0.1145 | 2.4081 3.3183 1.1349

EUR-USD | 1.4577 | cont | 0.0730 | 2.3155 3.2552 1.4824
disc | 0.0431* | 2.9898 4.4135 1.2162
USD-GBP | 1.0436 | cont | 0.1193 | 1.8744 2.5833 1.0598
disc | 0.0845 | 2.2278 3.1553 0.8890

Table 7.1: Results of the goodness-of-fit tests for the bivariate Vagi¢ek short-rate model applied to 30-
days Libor rates of the currencies Euro [EUR], British Pound [GBP], and US Dollar [USD] (September 21,
1999 until September 5, 2000). We used the parameters estimated in Table B.7 in Appendix B. M is the
sample maximum defined in (7.39) and py; defined in (7.43) is the p-value for Test A. The quantities k.05
and k.01 correspond to the constants (7.44) in Test B. The term ’0;1(1\//.7 - JT) is the renormalized sample
maximum as in (7.9) and should be compared with the mean of the Gumbel distribution m* = 0.5772
and the quantiles g o5 = 2.9702, ¢}to; = 4.6001. The superscript * denotes that the fit to the bivariate
Vagicek model is rejected by Test A at the significance level of 5%, i.e., if p;; < 0.05. Note that no
rejection occurs at the significance level of 1%. Test B does not reject the fit to the bivariate Vagicek

model for any of the tested samples at the significance levels of 5% and 1%.

In Figure 7.3 we show for the USD-GBP data set the shape of the stationary density
and the visualization of the Test B as in Figure 7.2 using the estimated parameters of the

continuous ansatz in Table B.7 in Appendix B.

7.6.2 Exponential Process
Maximum Asymptotics and Simulation Results

As for the OU process, we will compare the theoretical tail asymptotics (7.6) of the
maximum My and the long time limit (7.9) of the renormalized maximum to simulations
for the exponential process introduced in Section 7.3.2. We simulate 5,000 sample paths
for a large time horizon 7" = 50 using the Euler scheme.

In Figure 7.4 we present the histogram for the random variable M7 (defined in (7.5))
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Figure 7.3: Stationary density of the centered bivariate Vagi¢ek model fitted to the USD-GBP data
set (30-days Libor rates of British Pound and US Dollar) and visualization of Test B in analogy to
Figure 7.2; the estimated parameters 9 and & are taken from the continuous ansatz estimators in Table
B.7 in Appendix B. [Left]: Points visited by the centered sample together with the contour plot of the
estimated potential ®¢ defined in (7.13) and (7.11). [Right]: Points visited by the centered sample together
with the sample maximum M (circle) and normalized sample maximum (square). The fit is not rejected
at a significance level of 5%, since the normalized sample maximum is smaller than the 5%-quantile

@b o5 = 2.9702 of the Gumbel distibution (dashed circle).

and compare the empirical tail behavior with the theoretical tail asymptotics (7.6). Fur-
ther, the convergence in distribution in the long time limit of the normalized empirical

maxima according to (7.9) to the Gumbel distribution is demonstrated.

Parameter Estimation and Test Performance for Simulated Data

A simulation study for the exponential process together with results of the parameter
estimation is shown in Table B.4 in Appendix B. We used the maximum likelihood es-
timator (7.34) developed from the continuous ansatz. Recall that the discrete maximum
likelihood estimator (7.38) can not be used for this process, since its drift is not linear.
These estimation results show as for the OU process (see Table B.2 in Appendix B)
that the estimator (7.34) for the parameter 6 of the potential ®y defined in (7.18) yields
accurate values only for large data sizes (with sample size N &~ 10,000). The estimator

0 (defined in (7.32)) of the diffusion coefficient gives again good results also for smaller
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Figure 7.4: Simulation of 5,000 sample paths of the process (X;);c[o,r] With exponential distribution
introduced in Section 7.3.2; time horizon T' = 50 with parameters o = 1 and § = (a1, a2,¢) for the
potential ®y defined in (7.18) given by a1 = 1, as = 2, ¢ = 0. The step-size for the simulation is
s = T/N = 0.1, where N is the sample size. The figures show the following. [Top Left]: Histogram of
M7 = maxo<i<so | X¢|- [Top Right]: Empirical tail of Mz together with theoretical asymptotics from
(7.6) with function [ defined in (7.20). For this process, there is no explicite expression for the constant &k
appearing in the upper asymptotic bound in (7.6). [Bottom Left]: The same on logarithmic scale. [Lower
Right): Cumulative distribution function of normalized empirical maximum c;' (Mg — dr) as in (7.9)

approaching Gumbel distribution for increasing T'.

data set (with sample size N ~ 1,000).

We apply the goodness-of-fit tests to simulated sample paths of the exponential pro-
cess. The parameter estimation for these sample paths is reported in Table B.5 in Ap-
pendix B and in Table B.6 in Appendix B we present the results of the goodness-of-fit

tests.
As for the OU process (see Table B.3 in Appendix B), the goodness-of-fit tests accept

for all but one simulated sample paths as expected the null-hypothesis that the fitted

process with exponential distribution is the right model also in the extremes. A graph-
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Figure 7.5: We simulated a sample path of the bivariate exponential process introduced in Section
7.3.2 with parameters ¢ = 1 and 6 = (a1, az, ¢) for the potential &y defined in (7.18) given by a; = 1,
ap = 2, ¢ = —w/4; time horizon T = 200 and step-size s = T/N = 0.1, where N is the sample size.
The stationary measure indicates for positive correlation; the covariance matrix ¥ reads in this situation
¥ =(1/32) (g g), see (7.19). [Left]: Plotted are the points visited by this sample path together with the
contour plot of the potential ®p with parameter 8 estimated from the sample. [Right]: Plotted are again
the points visited by this sample path. The sample maximum M in Euclidean norm is marked by a circle.
The normalized sample maximum 'c}l(JT/I\ - &\T) as in (7.9) is indicated by a square on the line joining
M and the origin. The radius of the solid circle is the mean of the Gumbel distribution m* = 0.5772,
the radius of the dashed circle corresponds to the 5%-quantile q{)‘_05 = 2.9702. If the renormalized sample

maximum lies inside the dashed circle, then the fitted bivariate process with exponential distribution is

not rejected at the significance level of 5%.

ical demonstration of Test B is presented in Figure 7.5 together with the shape of the

stationary distribution of the fitted process with exponential distribution.

Parameter Estimation and Test Performance for Financial Data

We present the results of the parameter estimation and the goodness-of-fit tests when
fitting the bivariate short-rate model with exponential distribution introduced in Section
7.3.2 to the 30-days Libor rates of the currencies Euro, British Pound, and US Dollar
(September 21, 1999 until September 5, 2000). Again we measure the time horizon in
monthly units and hence T" = 12.
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Test A Test B
M P K0.05 Koo1 &t (M — dr)
EUR-GBP | 1.3832 || 0.0268* | —0.4490* 4.1467 3.6200
EUR-USD | 1.4577 || 0.0816 | 1.8859 3.3885  2.5057
USD-GBP | 1.0436 || 0.1388 | 1.6292 2.5879 1.9747

Table 7.2: Results of the goodness-of-fit tests for the bivariate process with exponential distribution
introduced in Section 7.3.2 applied to 30-days Libor rates of the currencies Euro [EUR], British Pound
[GBP], and US Dollar [USD] (September 21, 1999 until September 5, 2000). The parameter are estimated
in Table B.8 in Appendix B. For the description of the presented values see the annotations of Table B.3.
The superscript * denotes that the fit to the bivariate exponential process is rejected at the significance

level of 5%, i.e., if pg; < 0.05. Note that no rejection occurs at the significance level of 1%.
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Figure 7.6: Stationary density of the centered bivariate process with exponential distribution introduced
in Section 7.3.2 fitted to the USD-GBP data set (30-day Libor rates of British Pound and US Dollar)
[left] and visualization of Test B [right] in analogy to Figure 7.5; the estimated parameters are taken from
Table B.8. [Left]: Points visited by the centered sample together with the contour plot of the estimated
@y defined in (7.18). [Right]: Points visited by the centered sample together with the sample maximum
M (circle) and normalized sample maximum (square). The fit is not rejected since the renormalized

maximum is less than the 5%-quantile ¢ o5 = 2.9702 of the Gumbel distibution (dashed circle).

The results of the parameter estimation are presented in Table B.8 in Appendix B

and Table 7.2 shows the results of the goodness-of-fit tests developed in Section 7.5. In
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Figure 7.6 we show for the USD-GBP data set the shape of the stationary density and
the visualization of Test B in analogy to Figure 7.5.

In Test, B, the value of the constants kg o5 appearing in (7.44) can even become negative.
The reason for this is again that the convergence in (7.9) of the normalized maximum My
as T'— oo does not reach a sufficiently high level for the time horizon 7" = 12.

Let us compare these results of the goodness-of-fit tests with those of Table 7.1 for
the bivariate Vasicek model. We expect that the fit of the exponential process explains
better the extremes in the data than the fit to the bivarate Vasicek model with a normal
distribution as stationary measure. Indeed for the EUR-USD and the USD-GBP data set
the p-value of Test A corresponding to the exponential process is higher than the p-value
for the Vagicek model. However this is not true for the EUR-GBP data set where the
fit to the exponential process is even rejected for the significance level of 5%. This may
be due to the fact that the estimation method (7.34) of the parameters of the potential
®y defined in (7.18) is quite rough and the calculation of the p-value is very sensitive for

slight changes of these parameters.



Appendix A

Calculations for the Maximum

Asymptotics of Financial Models

A.1 Exponential Process

We use Theorem 4.1 to derive the function [ satisfying (7.6) for the diffusion process
(XF )iefo,r) of gradient field type with exponential distribution introduced in Section 7.3.2.
The norming constants in the long time limit (7.9) are also exhibited.

The diffusion process (X )iejo,r) is of gradient field type specified by the SDE (7.2) with
potential g, 0 = (a1, ag, mq, Mg, d) € O, defined in (7.18). Assume that m; = my = 0,
i.e., the process is centered at the origin. Since we are interested in the maximum of
the process in Euclidean norm, we may w.l.o.g. assume that the rotation matrix R? in
Definition (7.18) of the potential ® is the identity (i.e.the rotation parameter ¢ = 0) and
that the potential ®, has the form

O(z) = o1 | + |y 1 ER?,

where o* := max{ay, @z} and «, := min{ay, as}.

Note that ® ¢ C*(R?*,R). To overcome this problem one can smooth the edges in such
a way that the asymptotics of the function [ is not affected by the smoothing terms.

To evaluate the function [ satisfying (7.6), the conditions of Theorem 4.1 must be

20(z)/o

shown to hold. The stationary measure p with density e~ *. z € R2, has total mass

117
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\u| = 0*/(a,a*). In particular, Condition (2.5) holds. We restrict ourselves to show the
crucial condition (4.5); the validation of the growth condition (4.7) and the spectral gap
condition (2.7) is straightforward.

For the rotationally symmetric test-potential ¢ in Theorem 4.1, we choose the spherical
minimum of &, i.e., ¢(R) := a,R, R > 0. Setting p(f) := a,(cosf — 1) + a*sinf, § €
[0,7/2], we obtain for the term ¢, defined in (4.2), writing the potential ® in polar
coordinates

™ w/2
5a5(R) — / 672R(a*(\0059|71)+a*\sin9|)/<72d9 — 4/ 672Rp(0)/02d9.
0

Note that p > 0. For the zero set N (p) := {0 : p(#) = 0} we have N(p) = {0} if o, < a*
and NV (p) = {0,7/2} if a, = o*. Moreover p() ~ a*f as # \, 0. An application of
Laplace’s method (Lemma 4.3) then yields

202

a*

bus(R) ~ —(1 4 0ayas) ™" (R— 00).

To evaluate the term D, defined in (4.4), we note that A, defined in (4.3) reads in polar

coordinates
Ags(r,0) = a, (] cosf] — 1) + | sin 6| r>0,0¢€]0,2m).
Similar to the above calculation we obtain
w/2 )
Dus(R) = 4 / p(0)2e=2R00/ g
0

A further application of Laplace’s method then yields that there exists a constant x > 0
such that D,s(R) ~ kR~ as R — oo. Hence, Dys(R) = 0(d4s(R)) as R — oo and the
crucial condition (4.5) is satisfied.

From Theorem 4.1 we obtain together with Lemma 4.5, that the function [ satisfying

) = 2w ([ e w
o2 1

*

2 -1
~ %(1 —+ 5a1a2) <;‘_R_1620t*R/0'2>
Oy

202
— 0; (14 6ay0,)e 27" (R — 0).

(7.6) has the form

-1
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This expression coincides with [ defined in (7.20).

! is in the domain of attraction of the Gumbel

It remains to shown that F' := e~
distribution A (F' € DA(A)) and to determine the norming constants according to (7.8).
Denoting the tail of F by F := 1 — F, we see that F(R) ~ [(R) = Ke™F as R — o0,
where K = 202(1 + 84,4,)/0% and A = (20,)/0?. Hence F is exponential like and thus
F € DA(A) with norming constants given by ¢ = A™! and dy7 = A ' In(KT), T > 0, see

Table 3.4.4 of Embrechts et al. [EKM97]. These expressions coincide with (7.21).

A.2 Gamma Process

We perform here the calculations to derive the function [, appearing in the tail asymptotics
(7.6) of the maximum for the gamma process (X )iejo,r7 with spatial dependence (7 > 1)
introduced in Section 7.3.3. Further, it is shown that F' := e % is in the domain of
attraction of the Gumbel distribution A (F' € DA(A)), and the norming constants in the
long term limit (7.9) are exhibited.

The diffusion process (X)o7 is of gradient field type specified by the SDE (7.2)
with potential &y, 0 = (a1, g, 51, f2,n) € O, defined in (7.22) and (7.23). We evaluate
the function [, satisfying (7.6) by Theorem 4.1 in the general case n > 1 allowing for
spatial dependence. The stationary measure y with density  defined in (7.24) is finite by
construction. Hence Condition (2.5) holds. Noting that ay,as > 3 by (7.22), the growth
condition (4.7) and the spectral gap condition (2.7) can be shown to hold as in the proof
of Theorem 4.10, where the independent case n = 1 is treated. It remains to show the
crucial condition (4.5).

Let us recall some definitions: set a; := 2(c; — 1)/0? + 1 and b; := 0?83;/2, i = 1,2.
Further, b* := max{by,bo} and a* is the a; corresponding to b*; analogously for b, :=
min{by, by }.

We define the rotationally symmetric test-potential ¢ in Theorem 4.1 by ¢(R) := R/ ",
R > 0 (compare with (4.25) in the independent case 7 = 1). The term d,; defined in (4.2)

is given in the present situation by (7.26), i.e.,

w/2
0as(R;m) = RO 9272 / (cos 7)™~ (siny) e, (R, 7)Y e PMdy  R>0,
0
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where p(7y) := (cosy) /by + (siny) /by — 1/b*. To evaluate the term D, defined in (4.4), we
note that A, defined in (4.3) reads here in polar coordinates for R > 0 and « € (0,7/2)

(R,7).

cosy  sinvy 1)_a1+a2—2_8[5n

L) Awlros = (G- ) et

Hence D, is given by
w2 5

(1.2) Dos(R;n) = / (Rcosy)~H(Rsiny) "¢, (R,7)*" e DA (R, v;m)* dy .
0

In the independent case (n = 1), it was shown in (4.27) and (4.28) in the proof of Theorem
4.10 that as R — oo

Sas(R;1)  ~ b%T(a,)RY 72 + 63,0 T'(a*) R™ 2,

(1.3)
Dos(R;1) 2 ko(R72045(R; 1) + RY™* + 8,5, R4,
where 0p,p, = 1 if by = by and = 0 otherwise and ky is a positive constant. Hence,

Dys(R) = 0(d4s(R)) as R — o0, i.e., the crucial condition (4.5) is satisfied in this case.
The function [y satisfying (7.6) is then obtained by Theorem 4.10, see also (7.25).

In the case with spatial dependence (n > 1) however, the crucial condition (4.5)
can only be shown numerically, see Figure A.1 for a concrete setting. Hence we obtain
from Theorem 4.1 that in the case with spatial dependence (n > 1) the function [, (the
asymptotic expression of the bottom eigenvalue) has the form

o2 R . !
W) = (R ( [ e dr)

0.2

—— 045 (R b* Rl - R>0.
g L) )

(1.4) ~

For the last step, we used Lemma 4.5. This expression coincides with (7.27).

It remains to shown in the general case with spatial dependence (n > 1) that F :=
e ' € DA(A) and to determine the norming constants. We adapt the methods of Ex-
ample 3 in Chapter 1.5 of Resnick [Res87], where this problem is treated for the gamma
distribution. The tail of a distribution function F} is denoted by F; := 1 — F}. Assume

that d,s( -;n) is differentiable for every n > 1 and

(1.5) Ops(Rsm) = 0 (0as(R;m))  (R— 00).
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Figure A.1: In this figure, the crucial condition (4.5) is evaluated by numerical methods for the gamma
process (X )telo, 7] With spatial dependence (n > 1) introduced in Section 7.3.3. (xX¢ )telo, 1] is a diffusion
process of gradient field type specified by the SDE (7.2) with potential ®4, § = (a1, a2, 1,82,m) € O,
defined in (7.22) and (7.23). For the parameter setting 0 = 1 and a1 = 3, a2 =4, 51 =1, B2 = 0.5
we plotted for case with spatial dependence (n = 2) the functions R — §,5(R;n = 2) defined in (7.26)
and R — Dys(R;n = 2), see (1.1) and (1.2) [top left]. These functions have been evaluated using a
quadratic integration scheme. In addition the functions R — §,5(R;1) and R — D,s(R;1) are plotted in
the independent case = 1, compare with (1.3). The same is plotted on a logarithmic scale [top right].
It is seen that the crucial condition (4.5) is satisfied for n = 2 in this setting. For n = 1, the crucial
condition (4.5) holds by (1.3). Further, the functions R — Ordus(R;n = 2) and R — §,5(R;n = 2) are
plotted [bottom]. This proves that also Condition (1.5) is satisfied in this setting.

See Figure A.1 for a validation with numerical methods for a concrete setting. We obtain

for I, defined in (7.27) (see also (1.4))

10 pm = B (1 (LB W0
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Let Fy be the cumulative distribution function with F{(R) = [,(R)/b*. Using (1.6) and
the fact that F'(R) ~ l,(R) as R — oo, we see with the help of L’'Hépital’s rule that F

and F) are tail equivalent, i.e.,
F(R) ~ Fi(R) (~Iy(R))  (R—00).

Using again (1.6), it follows easily that

FRE(R) . GERMLE)

mooe (Iy(R)/br)?

A T FI(R

This implies that F} is a Von Mises function and hence F; € DA(A), see Definition 3.3.18,
Example 3.3.23, and Proposition 3.3.25 of Embrechts et al. [EKM97].

Let us turn to the calculation of the norming constants. The tail equivalence implies
that also F' € DA(A) having the same norming constants as F}, see Proposition 3.3.28 of
Embrechts et al. [EKM97]. Setting f := F;/F!, the norming constants can be obtained

by a careful asymptotic expansion as 7" — oo of the relations

Fl(dT):l/T, CT:f(dT),

see Proposition 1.1 of Resnick [Res87]. Note that also F;(R) ~ l,(R) as R — oo. Using
(1.6), we get

b* .

: . Fi(Rr) l,(R) _
A SR = Jim oy = R

Hence the norming constants (cr)rso can be chosen ¢ := b*, T > 0.

Using again that F';(R) ~ [,(R) as R — oo, the norming constants (dr)ro can alter-
natively be exhibited by a careful asymptotic expansion of the relation I, (dr) = 1/T as
T — oo. Doing this for the general case n > 1 with [,(R) = 02(2|u|b*) *6,s(R; n) Re &/,
R > 0, defined in (7.27) (see also (1.4)), we obtain

2
dr =b" |InT +Inln7 +In (5as(b*lnT;n)> +1n (%)] T>0,

which coincides with (7.28).

For the independent case n = 1, we can use the function /; defined in (7.25), and



A.2. GAMMA PROCESS 123
obtain

( * * 02 *

p[InT +1n ((IDFQS_I + (lnrf;:;_l) +1n ("—2) | b= =bs

\

This expression coincides with (7.29).
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OU Process: Simulation Study and Estimation Results

B =00y | m1 mo o a2 ¢ o

Otrue 0 0 0.5 0.1 0 1

N = 1000, T = 50, s = 0.05

B = mean(B) | 0.0793 0.0576 | cont | 0.0966 0.0507 -0.0342 | -0.0056
disc | 0.0922 0.0543 -0.0362 | 0.0142

std(B) 0.0701 0.2808 | cont | 0.0434 0.0196 0.0479 | 0.0044
disc | 0.0409 0.0196 0.0500 | 0.0037

MSE 0.0995 1.5010 | cont | 0.0451 0.0099 0.0448 | 4.0635¢-04
disc | 0.0403 0.0102 0.0488 | 4.5722e-04

N = 10000, T = 500, s = 0.05
B = mean(B) | 0.0361 0.0242 | cont | -3.7405e-05 0.0106 0.0148 | 0.0005

disc | -0.0031 0.0131 0.0163 | 0.0154
std(B) 0.0195 0.1058 | cont | 0.0114 0.0052 0.0138 | 0.0014

disc | 0.0114 0.0053 0.0145 | 0.0010
MSE 0.0085 0.2135 | cont | 0.0025 0.0006 0.0039 | 3.9615e-05

disc | 0.0025 0.0007 0.0043 | 2.5740e-04

Table B.1: This table reports the quality of the parameter estimation of a simulation study for the
bivariate OU process introduced in section 7.3.1. We used two sets of simulated sample paths with
different sample size N and time horizon T' but with constant step-size s = T/N. Each set consists of
20 sample paths which are simulated with the parameters reported in ¢.,.. The estimation of the mean
(m1,ms) is obtained by the estimator (7.33). The results of the parameter estimation of 8 = (ay, as, @)
for the drift matrix Ay defined in (7.11), which are obtained by the continuous ansatz maximum likelihood
estimator (7.34), are indicated by (cont); the diffusion coefficient o is obtained in this case by the estimator
(7.32). By (disc) we denote the results of the simultaneous estimation of 8 = (a1, asz, ¢) and o using the
discrete likelihood estimator (7.38) for the discretized process. We report the following quantities: by B;
we denote the bias defined as the difference between the estimate and the true value for each simulated
sample path j = 1,...,20. For each parameter we present the mean B = N—! Efil B; of the bias and
the standard deviation std(B) = \/ (NN -1))-! E?il(Bj — B)2. In addition the mean square error
MSE=N"! Z?il B? is reported.
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OU Process: Parameter Estimation for Simulated Sample Paths used for

Goodness-of-Fit Tests

~ ~ ~

m (651 (69)

<)
Q)
>

N = 1000, T = 50, s = 0.05
1| 04007 0.3741 | cont | 0.3766 0.1241 0.0047 | 1.0201 | 8.0580
disc | 0.3731 0.1271 0.0014 | 1.0154 | 7.8678
2 | -0.0319 -0.0121 | cont | 0.6166 0.2218 0.0001 | 1.0110 | 4.5086
disc | 06229 0.2217 0.0033 | 1.0177 | 4.5106
3| 0.4103 -0.1023 | cont | 0.4639 0.3398 -0.0751 | 0.9634 | 2.9429
disc | 0.4405 0.3131 0.0029 | 1.0050 | 3.1939
N = 11000, T = 55, s=0.005
1| 0.3408 -0.0025 | cont | 0.4270 0.2640 -0.0001 | 0.9959 | 3.7879
disc | 0.4342 0.2572 -0.0236 | 1.0017 | 3.8880
2 | -0.0589 0.0062 | cont | 0.5270 0.1251 0.0001 | 0.9990 | 7.9936
disc | 0.5306 0.1247 0.0264 | 0.9997 | 8.0192
3| 0.1423 0.2480 | cont | 0.7344 0.1267 -0.0027 | 0.9958 | 7.8927
disc | 0.7231 0.1288 0.0018 | 1.0067 | 7.7640
N = 20000, T = 200, s=0.01
1| -0.0182 -0.2729 | cont | 0.4890 0.0788 0.0000 | 0.9997 | 12.6904
disc | 0.4983 0.0775 0.0080 | 1.0027 | 12.9032
2| 0.1452 0.1319 | cont | 0.5552 0.1048 0.0034 | 0.9957 | 9.5420
disc | 0.5577 0.1048 0.0060 | 1.0027 | 9.5420
3| -0.0933 0.0352 | cont | 0.6581 0.1073 -0.0799 | 0.9975 | 9.3197
disc | 0.6594 0.1075 -0.0791 | 1.0012 | 9.3023

Table B.2: Estimation results of simulated sample paths for the bivariate QU process introduced in
section 7.3.1 with parameters 0 = 1 and § = (a1, 0, ¢) for the matrix Ay defined in (7.11) given by
ag = 0.5, a2 = 0.1, ¢ = 0, using different time horizons T and step-sizes s = T'/N, where N is the sample
size. The estimator m for the mean is given by (7.33). The estimates for § obtained by the continuous
ansatz estimator (7.34) are indicated by (cont); o is obtained in this case by the estimator (7.32). The
values for 6 and o from the discrete likelihood estimator (7.38) are denoted by (disc). In addition, the
constant k appearing in the upper asymptotic bound in (7.6) is reported, which has for the OU process
the form k£ = 1/min(ay,as) according to (7.16). As stated in Test A, this constant should be small

compared with the time horizon 7.
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OU Process: Test Results for Simulated Data

Test A Test B

—~

M Pii K0.05 Ko.01 e (M —dr)

N = 1000, T = 50, s = 0.05
1| 48287 | cont | 0.4422 | 7.5037 9.1917  0.3873
disc | 04319 | 7.4356 9.1030  0.4217
2 | 4.0809 | cont || 0.4008 | 5.8886  7.1396  0.6147
disc | 0.3998 | 5.8881 7.1393  0.6159
3 | 5.0272 | cont || 0.0054* | 4.8041* 5.8572  3.1955
disc | 0.0095* | 5.0459  6.0492  2.9398
N = 11000, T = 55, s=0.005
1| 4.5142 | cont || 0.1361 | 5.5609  6.6769  1.4414
disc | 0.1457 | 5.6050 6.7357  1.3976
2 | 5.3249 | cont || 0.2397 | 7.3325 8.9586  0.9580
disc || 0.2409 | 7.3409 89696  0.9528
3| 5.2112 | cont || 0.2506 | 7.2432  8.8539  0.9140
disc | 0.2534 | 7.2570 8.8709  0.9040
N = 20000, T = 200, s=0.01
1| 7.2459 | cont || 0.3150 | 9.7514  11.5346 0.6800
disc | 0.3274 | 9.8173 11.6153 0.6393
2 | 6.6784 | cont || 0.2556 | 8.6240  10.1642 0.9111
disc | 0.2677 | 8.6774 10.2290 0.8701
3| 5.8439 | cont || 0.6389 | 8.5434  10.0682 0.0846
disc | 0.6463 | 8.5626  10.0915 0.0718

Table B.3: Results of the goodness-of-fit tests for the simulated sample paths reported in Table B.2 of
the bivariate OU process introduced in section 7.3.1. The value for ¢ is taken from the estimator (7.32).
M is the sample maximum defined in (7.39) and pyz; defined in (7.43) is the p-value for the Test A.
The quantities k.05 and kg.o1 correspond to the constants (7.44) in Test B. The term QI(J/\/I\ - ET) is
the renormalized sample maximum as in (7.9) and should be compared with the mean of the Gumbel
distribution m” = 0.5772 and the quantiles ¢} o5 = 2.9702, g} o; = 4.6001. The superscript * denotes that
the null-hypothesis, that the underlying model is a OU process, is rejected at the significance level of 5%,

ie., if p5; < 0.05. Note that no rejection occurs at the significance level of 1%.
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Exponential Model: Simulation Study and Estimation Results

B=0—0rue | mi mo ai Qs % o

true 0 0 2 1 0 1

N = 1000, T = 50, s = 0.05

B = mean(B) | -0.0383 -0.0097 | -0.0792 -0.1455 -6.2527e-05 | -0.0632
std(B) 0.0264 0.0114 | 0.0392 0.0458  0.0014 0.0059
MSE 0.0140 0.0024 | 0.0340 0.0589  3.3172e-05 | 0.0046

N = 10000, T = 500, s = 0.05

B =mean(B) | 0.0070 0.0077 | -0.0518 -0.0551 -0.0013 -0.0577
std(B) 0.0087  0.0033 | 0.0114 0.0125 0.0004 0.0016
MSE 0.0015 0.0003 | 0.0051  0.0060 4.9428e-06 | 0.0034

Table B.4: This table reports the results of the parameter estimation of a simulation study for the
bivariate exponential process introduced in Section 7.3.2. We used two sets of simulated sample paths
with different sample size N and time horizon T but with constant step-size s = T'/N. Each set consists of
20 sample paths which are simulated with the parameters reported in 8y,.. The estimation of the mean
(m1,ms) is obtained by the estimator (7.33). The parameter § = (a1, az2,®) of the potential &, defined
in (7.18) are estimated by the continuous ansatz maximum likelihood estimator (7.34). The diffusion
coefficient ¢ is obtained by the estimator (7.32). For the description of the reported values we refer to

Table B.1.
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Exponential Model: Parameter Estimation for Simulated Sample Paths used

for Goodness-of-Fit Tests

~ ~ ~

m a1 ag

<)
Q)

= 2000, T = 200, s = 0.1

N
1|-0.0136 -0.0293 | 1.0789 1.8876 0.0017 | 0.9026
2 | 0.1447 -0.0153 | 0.7476 2.0152 -0.0015 | 0.9244
3| -0.0269 -0.0008 | 1.1437 1.8467 -0.0012 | 0.9367
N = 10000, T = 100, s = 0.01

1| 0.0678 -0.0476 | 1.0070 1.6795 0.0000 | 0.9647
2 | -0.1552 0.0073 | 0.6978 2.2101 -0.0010 | 0.9670
3
4
N
1
2
3

0.0925 0.0281 | 0.7650 1.8802 -0.0009 | 0.9936
-0.0222 0.0287 | 0.8775 1.8479 -0.0017 | 0.9822

= 8000, T = 400, s = 0.05
-0.0069 0.0040 | 1.0248 2.0198 -0.0008 | 0.9270
-0.0430 0.0084 | 1.0031 1.9204 -0.0006 | 0.9509
0.0554 0.0219 | 0.9678 1.9615 -0.0019 | 0.9528

Table B.5: Estimation results of simulated sample paths for the bivariate exponential process introduced
in Section 7.3.2 with parameters 0 = 1 and § = (a4, a2, ¢) for the potential &y defined in (7.18) given by
a1 =1, as =2, ¢ =0, using different time horizons T' and step-sizes s. The parameter 6 = (a1, a2, @) is
obtained by the estimator (7.34) developed from the continuous ansatz; ¢ is estimated using (7.32) and

the mean m by (7.33).
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Exponential Model: Test Results for Simulated Data

Test A Test B

—~

M Pif K0.05 Koo1  Cp (M —dr)

= 2000, T = 200, s = 0.1

2.1086 || 0.8830 | 3.5182  4.1336 -0.7634
3.7622 || 0.3037 | 4.8790  5.8105 1.0162
2.3062 || 0.7676 | 3.5903  4.2154 -0.3780

— 10000, T = 100, s = 0.01

3.9849 || 0.0385* | 3.8608* 4.6140 3.238
3.2076 || 0.5803 | 5.1031  6.1953 0.1413
2.7286 || 0.8223 | 4.9979  6.0496 -0.5467
2.9556 || 0.5218 | 4.4208  5.3167 0.3043
— 8000, T = 400, s = 0.05

3.0371 || 0.5028 | 4.1322  4.8156 0.3585
3.3095 || 0.4381 | 4.4000  5.1347 0.5509
3.1839 || 0.6054 | 4.5428  5.3073 0.0727

Table B.6: Results of the goodness-of-fit tests for the simulated sample paths of the bivariate exponential
process reported in Table B.5. M is the sample maximum defined in (7.39) and py; defined in (7.43) is
the p-value for the Test A. The quantities k.05 and kg1 correspond to the constants (7.44) in Test B.
The term ’c}l(]/\l\ — dr) is the renormalized sample maximum as in (7.9) and should be compared with
the mean of the Gumbel distribution m* = 0.5772 and the quantiles ¢io5 = 2.9702, ¢}, = 4.6001. The
superscript * denotes that the null-hypothesis, that the underlying model is the bivariate exponential
process introduced in Section 7.3.2, is rejected at the significance level of 5%, i.e., if p5; < 0.05. Note

that no rejection occurs at the significance level of 1%.
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Vasicek Model: Parameter Estimation for Financial Data

~

m & o P 5

EUR-GBP | 3.7805 | cont | 0.0254 0.1387 0.0071 0.2412
6.1051 | disc | 0.0376 0.0770 0.0314 0.2325
EUR-USD | 3.7805 | cont | 1.5814 0.0342 0.9612 0.2375
6.3691 | disc | 2.7062 0.0149 0.9337 0.2660
USD-GBP | 6.3691 | cont | 0.7117 0.0505 0.9632 0.2177
6.1051 | disc | 0.0295 0.9351 2.5927 0.2765

Table B.7: Results of parameter estimation of the fit of 30-days Libor rates of the currencies Euro
[EUR], British Pound [GBP], and US Dollar [USD] (September 21, 1999 until September 5, 2000) to the
bivariate Vagi¢ek short-rate model introduced in section 7.3.1: The variables and estimators correspond

to those of Table B.2; time horizon T' = 12, sample size N = 241 and step-size s = T/N = 0.05.

Exponential Model: Parameter Estimation for Financial Data

i & & & 5

EUR-GBP | 3.7805 6.1051 | 0.0103 0.1354 -0.3783 | 0.2412
EUR-USD | 3.7805 6.3691 | 0.0306 0.1719 0.5644 | 0.2375
USD-GBP | 6.3691 6.1051 | 0.0403 0.0528 -0.7784 | 0.2177

Table B.8: Results of parameter estimation of the fit of 30-day Libor rates of the currencies Euro
[EUR], British Pound [GBP], and US Dollar [USD] (September 21, 1999 until September 5, 2000) to the
bivariate exponential process introduced in Section 7.3.2: pairs of Sample size N = 244, time horizon

T = 12, step-size s = 0.05. The variables and estimators correspond to those of Table B.5.
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5.1

7.1

7.2

Contour plot of the two-dimensional potential ® defined by the relation (5.41) . ... ..

Simulation of 20,000 sample paths of the OU process (XtOU)te[O,T] introduced in section
7.3.1 with time horizon T' = 50 and parameters ¢ = 1 and 6 = (aq, a2, @) for the matrix
Ap defined in (7.11) given by oy = 0.3, ag = 0.5, ¢ = 0. The step-size for the simulation is
s =T/N = 0.005, where N is the sample size. [Top Left]: Histogram of the random variable
Mr = maxo<i<s0 | XPY|. [Top Right]: Empirical tail of Mr together with the theoretical
asymptotics from (7.6), where the function [ is defined in (7.15). Here the constant k
appearing in the upper asymptotic bound in (7.6) is given for this parameter setting by k =
1/ min{os, a2} = 10/3 according to (7.16); It is seen that the upper and lower asymptotic
bound in (7.6) nearly coincide, since T >> k. [Bottom Left]: The same on logarithmic
scale. [Bottom Right]: Cumulative distribution function of normalized empirical maximum

cp' (Mg — dy) as in (7.9) approaching Gumbel distribution for increasing T. . . . . . ..

We simulated a sample path of the OU process introduced in section 7.3.1 with parameters
o =1and 0 = (a1, as, ) for the matrix Ay defined in (7.11) given by a; = 0.5, az = 0.1,
¢ = —m/3; time horizon T = 50 and step-size s = T'/N = 0.05, where N is the sample size.
The stationary measure indicates for negative correlation and is given by a bivariate normal
N(0,X), where the covariance matrix reads in this situation ¥ = (i \/?—’_‘/g), see (7.12).
[Left]: Plotted are the points visited by this sample path together with the contour plot of
the potential ®4 defined in (7.13) and (7.11). The parameters o and 6 are estimated from
the sample. [Right]: Plotted are again the points visited by this sample path. The sample
maximum M in Euclidean norm is marked by a circle. The normalized sample maximum
’c}l(]/\l\ — c/l\T) as in (7.9) is indicated by a square on the line joining M and the origin. The
radius of the solid circle is the mean of the Gumbel distribution m® = 0.5772, the radius
of the dashed circle corresponds to the 5%-quantile g} = 2.9702. If the renormalized

sample maximum lies inside the dashed circle, then the fitted OU process model is not

rejected at the significance level of 5%. . . . . . . . . . ... oo
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7.3 Stationary density of the centered bivariate Vasic¢ek model fitted to the USD-GBP data
set (30-days Libor rates of British Pound and US Dollar) and visualization of Test B in
analogy to Figure 7.2; the estimated parameters 6 and & are taken from the continuous
ansatz estimators in Table B.7 in Appendix B. [Left]: Points visited by the centered sample
together with the contour plot of the estimated potential ®4 defined in (7.13) and (7.11).
[Right]: Points visited by the centered sample together with the sample maximum M
(circle) and normalized sample maximum (square). The fit is not rejected at a significance

level of 5%, since the normalized sample maximum is smaller than the 5%-quantile q()\.% =

2.9702 of the Gumbel distibution (dashed circle). . . . . ... ... ... ... .. ... .. 112

7.4 Simulation of 5,000 sample paths of the process (X¢)c[o,77 With exponential distribution
introduced in Section 7.3.2; time horizon T' = 50 with parameters o = 1 and 6 = (a1, a2, ¢)
for the potential ®p defined in (7.18) given by ay = 1, as = 2, ¢ = 0. The step-size for
the simulation is s = T/N = 0.1, where N is the sample size. The figures show the
following. [Top Left]: Histogram of My = maxp<¢<so |X¢|. [Top Right]: Empirical tail of
M together with theoretical asymptotics from (7.6) with function ! defined in (7.20). For
this process, there is no explicite expression for the constant k appearing in the upper
asymptotic bound in (7.6). [Bottom Left]: The same on logarithmic scale. [Lower Right]:
Cumulative distribution function of normalized empirical maximum C;I(MT —dr) as in

(7.9) approaching Gumbel distribution for increasing T. . . . .. .. .. ... ... .. .. 113

7.5 We simulated a sample path of the bivariate exponential process introduced in Section
7.3.2 with parameters ¢ = 1 and 6 = (a1, as,¢) for the potential @y defined in (7.18)
given by a1 =1, as = 2, ¢ = —m/4; time horizon T' = 200 and step-size s = T/N = 0.1,
where N is the sample size. The stationary measure indicates for positive correlation; the
covariance matrix ¥ reads in this situation ¥ = (1/32) (g g), see (7.19). [Left]: Plotted are
the points visited by this sample path together with the contour plot of the potential ®4
with parameter 6 estimated from the sample. [Right]: Plotted are again the points visited
by this sample path. The sample maximum M in Euclidean norm is marked by a circle.
The normalized sample maximum ’c}l(]/\/f\ - c/l\T) as in (7.9) is indicated by a square on the
line joining M and the origin. The radius of the solid circle is the mean of the Gumbel
distribution m? = 0.5772, the radius of the dashed circle corresponds to the 5%-quantile
@305 = 2.9702. If the renormalized sample maximum lies inside the dashed circle, then

the fitted bivariate process with exponential distribution is not rejected at the significance

level of 5%. . . . . o e e 114
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7.6

Al

Stationary density of the centered bivariate process with exponential distribution intro-
duced in Section 7.3.2 fitted to the USD-GBP data set (30-day Libor rates of British Pound
and US Dollar) [left] and visualization of Test B [right] in analogy to Figure 7.5; the esti-
mated parameters are taken from Table B.8. [Left]: Points visited by the centered sample
together with the contour plot of the estimated ®y defined in (7.18). [Right]: Points visited
by the centered sample together with the sample maximum M (circle) and normalized
sample maximum (square). The fit is not rejected since the renormalized maximum is less

than the 5%-quantile g o5 = 2.9702 of the Gumbel distibution (dashed circle). . ... ..

In this figure, the crucial condition (4.5) is evaluated by numerical methods for the gamma
process (X )ie[0,7] With spatial dependence ( > 1) introduced in Section 7.3.3. (X)cjo,7)
is a diffusion process of gradient field type specified by the SDE (7.2) with potential ®g,
0 = (a1,02,81,02,m) € O, defined in (7.22) and (7.23). For the parameter setting o = 1
and a1 =3, aa =4, 81 = 1, B2 = 0.5 we plotted for case with spatial dependence (n = 2)
the functions R — do5(R;n = 2) defined in (7.26) and R — Dys(R;n = 2), see (1.1) and
(1.2) [top left]. These functions have been evaluated using a quadratic integration scheme.
In addition the functions R — d,5(R;1) and R — D,s(R; 1) are plotted in the independent
case 11 = 1, compare with (1.3). The same is plotted on a logarithmic scale [top right]. It
is seen that the crucial condition (4.5) is satisfied for n = 2 in this setting. For n = 1, the
crucial condition (4.5) holds by (1.3). Further, the functions R — Ogrd.s(R;n = 2) and
R §,5(R;n = 2) are plotted [bottom]. This proves that also Condition (1.5) is satisfied

in this setting. . . . . . . . . Lo
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This table reports the quality of the parameter estimation of a simulation study for the
bivariate OU process introduced in section 7.3.1. We used two sets of simulated sample
paths with different sample size N and time horizon T but with constant step-size s = T/N.
Each set consists of 20 sample paths which are simulated with the parameters reported
in ye. The estimation of the mean (mjy,ms) is obtained by the estimator (7.33). The
results of the parameter estimation of 8 = (a1,as,¢) for the drift matrix Ay defined
in (7.11), which are obtained by the continuous ansatz maximum likelihood estimator
(7.34), are indicated by (cont); the diffusion coefficient o is obtained in this case by the
estimator (7.32). By (disc) we denote the results of the simultaneous estimation of § =
(a1,09,¢) and o using the discrete likelihood estimator (7.38) for the discretized process.
We report the following quantities: by B; we denote the bias defined as the difference
between the estimate and the true value for each simulated sample path j = 1,...,20.
For each parameter we present the mean B = N~} Z?il B; of the bias and the standard
deviation std(B) = \/ (N(N-1))! Z?il (Bj — B)2. In addition the mean square error
MSE = N~! Z?il Biisrteported. ... ... .. ...

Estimation results of simulated sample paths for the bivariate OU process introduced in
section 7.3.1 with parameters ¢ = 1 and 0 = (a1,as2,9) for the matrix Ay defined in
(7.11) given by a; = 0.5, as = 0.1, ¢ = 0, using different time horizons T' and step-sizes
s =T/N, where N is the sample size. The estimator 7 for the mean is given by (7.33). The
estimates for 6 obtained by the continuous ansatz estimator (7.34) are indicated by (cont);
o is obtained in this case by the estimator (7.32). The values for 6 and o from the discrete
likelihood estimator (7.38) are denoted by (disc). In addition, the constant k appearing in
the upper asymptotic bound in (7.6) is reported, which has for the OU process the form
k =1/ min(ay, as) according to (7.16). As stated in Test A, this constant should be small

compared with the time horizon 7. . . . . . . . ... ..o Lo

Results of the goodness-of-fit tests for the simulated sample paths reported in Table B.2
of the bivariate OU process introduced in section 7.3.1. The value for ¢ is taken from the
estimator (7.32). M is the sample maximum defined in (7.39) and py; defined in (7.43)
is the p-value for the Test A. The quantities kg.o5 and kg.o1 correspond to the constants
(7.44) in Test B. The term 'c;l(]/\l\ - c/i\T) is the renormalized sample maximum as in (7.9)
and should be compared with the mean of the Gumbel distribution m® = 0.5772 and the
quantiles q305 = 2.9702, q{)‘m = 4.6001. The superscript * denotes that the null-hypothesis,
that the underlying model is a OU process, is rejected at the significance level of 5%, i.e.,

if p77 < 0.05. Note that no rejection occurs at the significance level of 1%. . . . ... ..
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B.4
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This table reports the results of the parameter estimation of a simulation study for the
bivariate exponential process introduced in Section 7.3.2. We used two sets of simulated
sample paths with different sample size N and time horizon T but with constant step-size
s = T/N. Each set consists of 20 sample paths which are simulated with the parameters
reported in 6.y The estimation of the mean (my,m2) is obtained by the estimator (7.33).
The parameter § = (ai,as,®) of the potential ®y defined in (7.18) are estimated by
the continuous ansatz maximum likelihood estimator (7.34). The diffusion coefficient o is
obtained by the estimator (7.32). For the description of the reported values we refer to
Table B.1. . . . o e e e
Estimation results of simulated sample paths for the bivariate exponential process intro-
duced in Section 7.3.2 with parameters ¢ = 1 and 6 = (a3, as,¢) for the potential ®y
defined in (7.18) given by a; = 1, ay = 2, ¢ = 0, using different time horizons 7' and
step-sizes s. The parameter § = (a1, a2, ¢) is obtained by the estimator (7.34) developed
from the continuous ansatz; o is estimated using (7.32) and the mean m by (7.33). . . . .
Results of the goodness-of-fit tests for the simulated sample paths of the bivariate expo-
nential process reported in Table B.5. M is the sample maximum defined in (7.39) and
py; defined in (7.43) is the p-value for the Test A. The quantities ko.05 and kg.o1 corre-
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maximum as in (7.9) and should be compared with the mean of the Gumbel distribution
m? = 0.5772 and the quantiles ¢} .5 = 2.9702, ¢},; = 4.6001. The superscript * denotes
that the null-hypothesis, that the underlying model is the bivariate exponential process
introduced in Section 7.3.2, is rejected at the significance level of 5%, i.e., if pg; < 0.05.
Note that no rejection occurs at the significance level of 1%. . . . . . . . ... ... ...
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