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Deutschsprachige Ubersicht iiber die Dissertation

1. Einfithrung in den wissenschaftlichen Kontext

Geometrische Ungleichungen spielen eine herausragende Rolle in der Konvex-
geometrie, wie etwa die Auswahl der Beitréige zu ‘Part I’ im ‘Handbook of Convex
Geometry’ [44] erkennen lisst. Viele dieser Ungleichungen beziehen sich auf die
fundamentalen Mafizahlen wie Volumen oder Oberfliche und deren Verallgemei-
nerungen (z.B. die inneren und &ufleren Quermafle oder die Quermafintegrale).

Die Geschichte der Erforschung solcher Ungleichungen ist eng verkniipft mit
derjenigen der zugehorigen Extremalkorper. Im Laufe der Zeit hat sich dabei
herausgestellt, dass diese Korper grob in zwei Klassen eingeteilt werden konnen:
Die eine Klasse enthilt Korper, die gewisse Regularitéitsbedingungen erfiillen,
wie zum Beispiel die Kugel, regulédre Polytope oder zentralsymmetrische Korper.
In der anderen Klasse befinden sich Korper, deren pure Existenz, zumindest auf
den ersten Blick, dem ‘gesunden Menschenverstand’ widerspricht. Hier sind be-
sonders die Korper konstanter Breite (oftmals auch Korper konstanter Dicke oder
Gleichdicke genannt) zu erwéhnen.

Wir beschiiftigen uns in dieser Arbeit mit den Radien konvexer Korper, ins-
besondere im Hinblick auf giiltige geometrische Ungleichungen beziiglich der Ra-
dien. Wie sich spéter herausstellen wird, sind die beiden oben erwdhnten Klassen
moglicher Extremalkoérper dabei wieder von exponierter Bedeutung.

Die wohl éltesten nicht-trivialen Ungleichungen, die sich auf Radien beziehen,
sind Jung und Steinhagen zuzuschreiben. In seinem 1901 verdffentlichten Artikel
[54] bestimmt Jung eine scharfe obere Schranke fiir das Verhiltnis von Umku-
gelradius und Durchmesser konvexer Korper im d-dimensionalen Euklidischen
Raum. Die zugehorigen Extremalkérper sind (u.a.) reguldre Simplexe (man be-
achte die Zugehorigkeit zur ersten der beiden oben erwihnten Klassen). Steinha-

gens 1921 erschienene Arbeit [72] korrespondiert in gewisser Weise mit derjenigen
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von Jung. Dort wird eine obere Schranke fiir das Verhiltnis von Dicke und In-
kugelradius konvexer Korper des d-dimensionalen Euklidischen Raums bewiesen,
die wiederum durch reguldre Simplexe erreicht wird. Die Dicke eine Korpers C'
ist dabei definiert als der minimale Abstand zweier paralleler Stiitzhyperebenen
an C (siehe Abbildung 1).

ABBILDUNG 1. Ein Tetraeder und ein Paar paralleler Stiitzhyper-

ebenen minimalen Abstands.

In der Folge dieser Resultate wurden die vier grundlegenden Radien (Dicke,
Durchmesser, In- und Umkugelradius) in einer Vielzahl von Arbeiten behandelt.
In den Literaturverzeichnissen findet man u.a. Artikel zu speziellen geometrischen
Ungleichungen fiir planare Mengen [63, 11, 66, 67, 69, 50, 3, 19, 20, 70, 21]
oder Verallgemeinerungen von Jung und Steinhagens Theoremen fiir allgemeine
Minkowski-Riume [9, 57, 26]. Wie bereits erwéihnt, sind die Extremalkérper
bei der Analyse der Ungleichungen von grofler Bedeutung. Allgemeine Versffent-
lichungen {iber Extremalkorper sind z.B. [42, 41, 43], speziell mit Simplexen
beschiftigen sich [2, 76] und mit Korpern konstanter Breite [10, 15, 32, 17,
65, 8]. Diese Literaturangaben streben keine Vollstindigkeit an, sondern sind
mit Bezug zu den nachfolgend behandelten Themen ausgewéihlt.

Es gibt verschiedene Verallgemeinerungen der vier grundlegenden Radien fiir
d-dimensionale Riume (einen Uberblick gibt [49]). Wir wiihlen jedoch diejeni-

ge die den engsten Bezug zu den inneren und dufleren Quermafien aufweist, es
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uns also ermdglicht, einige analoge Betrachtungen zu den bekannten Fragen im
Bereich der Volumina durchzufiihren.

Wir definieren daher den inneren j-Radius r;j(C), 1 < j < d eines d-di-
mensionalen Koérpers C' als den Radius einer groften in C' enthaltenen j-Kugel
(das vorangestellte j wird hier und im folgenden als Kurzform fiir j-dimensional
verwendet). Der innere 2-Radius eines Korpers C' gibt zum Beispiel den Radius

einer grofiten in C' enthaltenen Kreisscheibe an (siehe Abbildung 2).

ABBILDUNG 2. Der innere 2-Radius eines Oktaeders. Der zu-
gehorige Optimalitdtsbeweis kann in Kapitel 2.3 nachgelesen wer-

den.

Fiir j = d erhélt man offensichtlich den iiblichen Inkugelradius und fiir j =1
den halben Durchmesser, da eine eindimensionale Kugel einem Liniensegment
entspricht.

Der &ufiere j-Radius R;(C), 1 < j < d eines Korpers C' misst, wie gut C
durch eine (d — j)-Ebene approximiert werden kann (sieche Abbildung 3).

Ist 7 = d und wird daher C' durch einen Punkt approximiert, so erhilt man
natiirlich den vertrauten Umkugelradius. Ferner ist es nicht schwer zu erkennen,
dass sich fiir j = 1 die halbe Dicke ergibt.

Im Euklidischen Raum koénnen die dufleren Radien auch als Umradien mini-

maler (Orthogonal-) Projektionen verstanden werden, d.h. fiir einen Kérper C
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ABBILDUNG 3. Der duflere 2-Radius eines Tetraeders. Die Achse
des abgebildeten Zylinders stellt dabei die 1-Ebene da, durch die

das Tetraeder approximiert wird.

gibt R;(C) gerade den minimalen Umkugelradius aller Projektionen von C in
j-dimensionale Unterrdume an.

Wie die korrespondierenden inneren und dufleren Quermafle verhalten sich
auch die inneren und dufleren Radien dual zueinander, d.h. bezeichnet man mit
C° den polaren Korper von C', dann gilt r;(C)R;(C°) =1 fiir alle zentralsymme-
trischen Kérper C'. Gerade die Dualitédt der inneren und &ufleren Radien zueinan-
der zeigt, dass sich die beiden Klassen nicht nur als Verallgemeinerung, sondern
auch als Vereinheitlichung der grundlegenden Radien auffassen lassen.

Im Gegensatz zu den Resultaten iiber die vier grundlegenden Radien, sind
Publikationen zu den allgemeinen j-Radien iiberwiegend in den letzten zehn bis
fiinfzehn Jahren erschienen. Das &lteste Ergebnis, das sich diesem Bereich zu-
ordnen lisst, ist wahrscheinlich die Arbeit von Shklarsky, Chentzov und Yaglom
[71, russisch]. Dort wird der maximale Radius einer Kreisscheibe berechnet, die
in einen Wiirfel passt, also ro(B?), wenn man den Wiirfel mit B3 bezeichnet.

Geometrische Ungleichungen beziiglich der Nicht-Standardradien gibt es fast
iberhaupt nicht. Eine Ausnahme bildet die Arbeit von Perel'man [58]. Unglei-

chungen in Bezug auf die oben angesprochenen anderen Klassen verallgemeinerter
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Radien konnen in [5, 49| gefunden werden. Eine ausfiihrliche Zusammenfassung
bekannter Resultate, speziell im Hinblick auf algorithmische Fragestellungen, zu
den beiden hier betrachteten Radienklassen findet man in [39, 40].

Die Radien und die mit ihnen zusammenhéngenden geometrischen Unglei-
chungen sind zwar in erster Linie innerhalb der Konvexgeometrie von grofier Be-
deutung. Es gibt aber auch eine ganze Reihe von Anwendungen, die in andere Ge-
biete der Mathematik oder iiber deren Grenzen hinaus reichen. Z.B. besitzen ei-
nige Fragestellungen in der Optimierung einen direkten Bezug zu den Radien, wie
etwa Fragen aus dem Bereich der Globalen Optimierung oder der Sensitivitéits-
analyse in der Linearen Programmierung. Fiir die Statistik sind besonders die all-
gemeinen dufleren Radien in Bezug auf die Orthogonale Minimax-Regression von
Bedeutung. Weitere Anwendungsgebiete sind Computer-Grafik, Robotersteue-
rung, Chromosomen-Klassifikation oder die Messtechnik (siehe [40, 1] und die
dortigen Literaturangaben). Die zahlreichen Anwendungen sind wohl auch einer
der Griinde dafiir, dass es mittlerweile eine ganze Reihe von Verdffentlichungen
gibt, die sich mit der Berechnung bzw. der Approximation, und den zugehorigen
Komplexitéitsaussagen, der Radien befassen [52, 40, 1, 18, 14, 31].

Gerade aber die engen theoretischen Zusammenhinge zu den Volumina und
den dazugehorigen Quermaflen sind es, die uns hier veranlassen einige grundle-
gende Fragestellungen beziiglich der Radien konvexer Kérper anzugehen.

Im folgenden werden die wichtigsten Ergebnisse dieser Arbeit zusammenge-
fasst. Hierbei halten wir uns nicht nur an die durch die Arbeit vorgegebene Kapi-
telaufteilung, sondern geben die zitierten Resultate auch mit ihrer Originalnum-
merierung wieder. Dadurch treten in der Zusammenfassung natiirlich Liicken in
der Nummerierung auf und auch die Reihenfolge der Ergebniswiedergabe stimmt

nicht durchgéingig mit der der eigentlichen Arbeit iiberein.

2. Radien regulirer Polytope

Nach den beiden einfiihrenden Kapiteln (“Introduction” und “Preliminaries”)
hat das erste inhaltliche Hauptkapitel die Radien der regulidren Polytope (und der
mit diesen eng verwandten Polytopklassen) zum Thema.

Wie bereits angesprochen besitzen regulidre Polytope, und unter diesen in

erster Linie die regulidren Simplexe, fiir eine Vielzahl geometrischer Ungleichung
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die Extremaleigenschaft. Auch in den bereits erwihnten Ungleichungen von Jung
und Steinhagen wird durch die reguléren Simplexe die jeweils gegebene Schranke
scharf erreicht.

Sichtet man die vorhandene Literatur so stellt man fest, dass alle inneren
Radien der Simplexe bekannt sind [4]. An Ergebnisse zu den dufleren Radien
mangelt es dagegen. Hier kénnen nur die Fille j = d und j = 1 aus den Arbeiten
von Jung und Steinhagen gewonnen werden und die Losung fiir j = d — 1 gibt
Weissbach [74, 75]. Zu allen anderen dufleren Simplexradien fehlten bisher die
Resultate.

Die Bestimmung moglichst vieler offener Simplexradien ist daher ein erstes
Ziel dieser Arbeit, dass im ersten Abschnitt von Kapitel 3 behandelt wird. Das
erste Resultat gibt eine allgemeingiiltige untere Schranke an (7 bezeichnet das

regulére Simplex).

SATZ 3.4. Fiir alled > 2 und j € {1,...,d} ist

R(T >,/L.
i(T7) = d+1

Eine weiteres interessantes und spéter hilfreiches Resultat wird in Korollar
3.5 erzielt. Dieses korrespondiert sehr stark mit Resultaten von Filliman iiber die

Quermafle reguldrer Simplexe [33, 34].

FOLGERUNG 3.5. Fiir alle d > 2 und j € {1,...,d} ist

| J [d—]

Auflerdem liegen die zugehorigen optimalen Projektionen in zueinander orthogo-

nalen Teilradumen.

Der entscheidende Schritt in Richtung der Bestimmung moglichst vieler dufle-
rer Simplexradien gelingt durch Anwendung des Satzes von John [53], die zur

Definition der (quasi-) isotropischen Polytope fiihrt (siehe Definition 3.7).

LEMMA 3.9. Es gilt genau dann R;(T%) = 217> Wenn es ein quasi isotropi-

sches j-dimensionales Polytop C' mit d + 1 nicht notwendig verschiedenen Ecken
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gibt. Auflerdem ist in diesem Fall die zu R;(T?) gehérende optimale Projektion
dhnlich zu C.

Dabei bezeichnen wir zwei Polytope als dhnlich, falls sie durch Translation,
Rotation und Dilatation auseinander hervorgehen. Dieser Zusammenhang zwi-
schen den Simplexradien und der Existenz der quasi isotropischen Polytope ist
der Kern dieses Abschnitts. Im weiteren Verlauf werden nun Techniken entwickelt
um die Existenz solcher Polytope in mdoglichst allgemeiner Dimension zu verifi-

zieren. Wir gelangen schliefilich zu folgendem Hauptsatz des Abschnitts:

SATZ 3.14. Es ist R;(T?) = /-1, falls

(i) d ungerade oder
(ii) j gerade und d # 2j.

Die Bedingungen in Satz 3.14 sind hinreichend aber nicht notwendig. In ei-
nem nachfolgenden Lemma gelingt es sogar in einigen der Félle mit d = 25 und
geradem j quasi isotropische Polytope zu konstruieren. Die in diesem Abschnitt
erzielten Ergebnisse fasst Tabelle 1 zusammen.

Der zweite Abschnitt des Kapitels widmet sich den allgemeinen Simplexen.
Hier gelingt es fiir den Fall, dass d+1 und d—j+1 einen gemeinsamen Teiler besit-
zen, den dufleren j-Radius eines Simplexes durch minimale duflere Radien niedrig
dimensionalerer Seiten des Simplexes nach oben abzuschétzen. Interessanter als

dieses Ergebnis selbst ist aber die daraus abgeleitete geometrische Ungleichung:

SATZ 3.17. Es sei S? ein allgemeines d-dimensionales Simplex. Erfiillt j €
{1,...,d} eine der beiden Bedingungen

(i) d —j +1 teilt d + 1 oder

(i) j =1,
R;(S9) 2j
n(s SVarr

dann gilt
und Gleichheit wird durch das regulire d-Simplex erreicht.
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jd|f1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L\ + -+ -+ - + - 4+ - 4+ - + - + -
2 + + + 4+ + 4+ 4+ 4+ + + + + + + +
3 SO O R O I O I C RN
4 + + + + 4+ + + + + + + + +
5 RO R C B C RO RN
6 + + + + + + 7?2 + + 4+ +
7 R O R O RO RSO
8 + + + + + + + 4+ 7
9 T NO BRSO RERN®
10 + + + + + 4+ o+

TABELLE 1. Die Tabelle zeigt die Existenz der j-dimensionalen
quasi isotropischen Polytope mit d + 1 Ecken an (und folglich die
Fille in denen die untere Schranke fiir die Simplexradien scharf
erreicht wird). Ein ‘+’ symbolisiert dabei die Existenz, ein ‘-’ die
bewiesene Nicht-Existenz. Die ‘()" Eintrige stehen fiir noch offene
Fille, fiir die es aber ‘gute’ Griinde gibt anzunehmen, dass kei-
ne quasi-isotropischen Polytope der entsprechenden Dimensionen

existieren. Die ‘7" markieren dagegen die 'wirklich’ offenen Fille.

Nach den allgemeinen Simplexen folgt ein Abschnitt iiber d-dimensionale Qua-
der und (allgemeine) Kreuzpolytope. Wihrend die inneren Radien der Quader in
[30] vollsténdig bestimmt wurden, fehlt das entsprechende Resultat zu den dufle-
ren Radien. Dies wird in Satz 3.20 nachgeholt. Dabei zeigt sich, dass, wie nicht
anders zu erwarten, der duflere j-Radius gerade durch Projektion auf eine mi-
nimale j-Seite des Quaders erreicht wird. Die Radien der Kreuzpolytope erhélt
man durch Polarisation.

Interessant in diesem Zusammenhang ist aber auch, dass sich die speziellen
Radien des Wiirfels und des regulidren Kreuzpolytopes in fast allen Dimension
auch schon aus den Ergebnissen iiber die &ufleren Radien der reguliren Simplexe
herleiten lassen. Dies ist moglich, da beide nicht nur selbst isotropisch sind, son-

dern sich auch auf isotropische Polytope in fast allen niedrigeren Dimensionen
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projizieren lassen. Dieser Zusammenhang zwischen den drei Klassen regulérer
Polytope in allgemeiner Dimension fiihrt die Ergebnisse des Kapitels zusammen

und rundet es somit ab.

3. Total nicht-sphirische Korper konstanter Breite

Das vierte Kapitel dieser Arbeit ist aus einer gemeinsamen Arbeit mit David
Larman hervorgegangen [13].

Schon die Existenz von Korpern konstanter Breite ungleich der d-Kugel ist
zunéchst recht unerwartet. Thr Vorhandensein in der Ebene war allerdings schon
Euler bekannt [29] und die beriihmteste konvexe Menge konstanter Breite ist
wohl das Reuleaux-Dreieck, benannt nach Reuleaux, der es in seiner Arbeit von
1875 beschrieben hat [60]. Reuleaux-Dreiecke und etwas allgemeiner Reuleaux-
n-Ecke, wobei n ungerade sein muss, werden in vielen Artikeln untersucht und

finden dariiber hinaus auch im alltéiglichen Leben ihre Nutzung, z.B. als Miinzen
(siehe Abbildung 4).

ABBILDUNG 4. Da sich die Ausmafle einer Scheibe konstan-
ter Breite leicht in jeglicher Art von Miinzautomaten bestimmen
lassen, konnen sie als Alternative zu den iiblicherweise runden
Geldstiicken verwendet werden, wie hier das Reuleaux-Siebeneck
als britische 20 und 50 Pence Miinzen.

Wir gehen allerdings in diesem Kapitel noch einen Schritt weiter und zeigen
die Existenz einer Klasse spezieller Koérper konstanter Breite, deren sidmtliche
Projektionen auf die Ebene keine Kreisscheibe ergeben. Koérper mit dieser Eigen-

schaft bezeichnen wir als total nicht-sphérische Koérper konstanter Breite. Das
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Ziel dieses Kapitels ist daher der Beweis des folgenden Satzes:

SATZ 4.8. Fiir alle d > 2 existiert ein d-dimensionaler total nicht-sphérischer
Korper.

Fiir d = 2 sind natiirlich alle konvexen Mengen konstanter Breite, aufler der
Kreisscheibe selber, bereits total nicht-sphérisch. Schon fiir d = 3 ist die Existenz
solcher Korper aber nicht mehr offensichtlich. Die bekanntesten 3-dimensionalen
Korper konstanter Breite diirften wohl die beiden Meifiner-Korper sein (siehe
Abbildung 5), gefolgt von Rotationskoérpern, die aus einer planaren Menge kon-

stanter Breite mit Symmetrieachse entstehen.

ABBILDUNG 5. Ein Foto eines Meifiner-Koérpers. Man kann gut
die beiden Kantentypen erkennen; ndmlich jene, die direkt aus dem
Schnitt zweier Sphéren entstehen und jene die nachtréiglich etwas
abgerundet werden, damit der Korper zwischen den gegeniiberlie-

genden Kanten nicht einen zu groflen Durchmesser besitzt.

Die Rotationskorper konnen offensichtlich entlang ihrer Rotationsachse auf
eine Kreisscheibe projiziert werden. Aber auch die Meifiner-Korper gehoren nicht
zu den total nicht-sphérischen Koérpern. Projiziert man sie orthogonal zu einem
Paar sich gegeniiberliegender Kanten, erhilt man wieder eine Kreisscheibe.

Eggleston [27] und Weissbach [74] beschreiben in ihren Arbeiten Korper der

Dimension d > 3, deren (d — 1)-dimensionale Projektionen alle nicht-sphérisch
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sind. Fiir d = 3 geniigt diese zu betrachtende Tatsache als Existenzbeweis total
nicht-sphérischer Korper. Fiir d > 4 bleibt das Problem zunéchst jedoch offen.
Um nun obigen Satz zu beweisen, fiithren wir zunéchst den Begriff der Dunkel-
wolken ein, ein Konzept das auf einer Arbeit von Erdés und Rogers [28] basiert
und von Danzer in [24] ausfiihrlich behandelt wird. Wir verwenden hier nur das
fiir unsere Zwecke notwendige, transferieren dazu zusétzlich aber die Idee der
Dunkelwolken auch auf die Kugeloberfliche. Der zweite Abschnitt dient dann
der Herleitung des obigen Satzes, ein Ergebnis, das uns schlieflich ermé&glicht ein
Diagramm anzugeben, in dem alle generellen kleiner-gréfer Beziehungen zwischen

den Radien eingezeichnet sind (siehe Abbildung 6).

®

ABBILDUNG 6. Die Pfeile zwischen den Radien zeigen eine kleiner-
gleich Beziehung an, also z.B. rg < r5. Gibt es keinen gerichteten
Pfad zwischen einem Paar von Radien, so gibt es Korper, fiir die

in die eine oder die andere Richtung ‘<’ gilt.

4. Total isoradiale Koérper

Die besondere Bedeutung der Korper konstanter Breite in Hinblick auf geo-
metrische Ungleichungen wurde bereits herausgestellt und mit dem vorherigen
Kapitel nochmals unterlegt. Nun mdochten wir im Kapitel iiber total isoradiale
Korper, das auf gemeinsamen Forschungsergebnissen mit Abhi Dattasharma und
Peter Gritzmann beruht [12], eine vielleicht noch iiberraschendere Teilklasse der
Korper konstanter Breite vorstellen.

Aufgrund seiner groflen Bedeutung wird in der Literatur natiirlich versucht
das Konzept der konstanten Breite auf andere Mafizahlen zu iibertragen. Eine
solche Erweiterung definiert sich iiber die Quermafle. Dabei sagt man ein Kérper

habe ein konstantes in inneres bzw. dufleres j-Quermafl (1 < j < d — 1), falls
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das jeweilige Quermaf} nicht von der Richtung der moglichen Schnitte bzw. der
Projektionen abhingt. Die Kérper mit konstantem 1-Quermaf sind gerade wieder
die Korper konstanter Breite, und anstelle von konstantem (d —1)-Quermaf wird
auch der Begriff der konstanten Helligkeit verwendet. Wéhrend nun die Existenz
von Korpern mit konstantem duflerem j-Quermafl abgesehen von der Kugel fiir
jede Wahl von j durch Firey [35] gesichert wurde, ist eine der wichtigen offenen
Fragen der Konvexgeometrie, diejenige nach der Existenz von Korpern konstanter
Breite und konstanter Helligkeit. Es wird vermutet, dass die Kugel der einzige
Korper mit dieser Eigenschaft ist.

Die enge Verbindung zwischen den Quermaflen und den Radien haben wir
bereits im ersten Abschnitt dieses Kapitels angesprochen. Diesen Zusammenhang
nutzen wir nun um einen Begriff entsprechend dem der konstanten Quermafle fiir
die Radien zu definieren. Wir bezeichnen daher einen Koérper als inner- bzw.
aufler-j-isoradial, falls der jeweilige j-Radius nicht von der Richtung der j-Ebene
mit der geschnitten bzw. auf die projiziert wird abhéngt (siehe Definition 5.1).

Auch in diesem Fall sind die 1-isoradialen Korper gerade wieder die Korper
konstanter Breite, der Begriff der Isoradialitiit stellt also eine Verallgemeinerung
in Bezug auf die j-Radien dar. Bezeichnen wir nun aber die Klasse der Korper,
die fiir alle 7 inner- und aufler-j-isoradial sind als total isoradial, so haben wir
gleichzeitig auch eine neue sehr spezielle Teilklasse der Koérper konstanter Breite
beschrieben.

Fiir d = 3 bildet die Frage nach total isoradialen nicht-sphérischen Kérpern
gerade das Pendant fiir Radien zu der oben angesprochenen Frage nach Koérpern
konstanter Breite und konstanter Helligkeit, die nicht die Kugel sind. Im Ge-
gensatz zur nicht gelGsten zweiten Frage gelingt es uns die erste Frage in dieser

Arbeit zu beantworten.

SATZ 5.5. Es gibt neben der Kugel weitere total isoradiale 3-dimensionale
Korper.

Die Existenz eines solchen Ko6rpers ist nicht nur recht iiberraschend sondern

auch schlecht zu visualisieren. Ein Grund hierfiir ist die enorme Ahnlichkeit zur
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Kugel selber. Darstellen ldsst sich aber einer der im Beweis des Satzes 5.5 er-
zeugten aufler-2-isoradialen Korper, dessen Vervollstindigung innerhalb seiner
Umkugel (existiert nach Scott, siehe [68] und vergleiche auch Proposition 2.5)
den gewiinschten total isoradialen Korper ergibt (siehe Abbildung 7).

ABBILDUNG 7. Zwei Ansichten eines aufler-2-isoradialen Korpers,

dessen umkugelerhaltende Vervollstdndigung total isoradial ist, sich

aber von der Kugel unterscheidet.

5. Blaschke-Santalé Diagramme

In seiner beriihmten Arbeit “Eine Frage iiber konvexe Korper” [7] schlug
Blaschke 1916 die Abbildung 3-dimensionaler Koérper in ein ebenes Diagramm
vor. Die Koordinaten dieses Diagramms werden dabei durch

_4AnF(C)  487*V(0)
~ ey T MEy
definiert, wobei F'(C') die Oberfliche, V(C') das Volumen und M (C') das Integral

der mittleren Kriimmung des abzubildenden Korpers C' bezeichnen. Hadwiger

[47] betitelt diese Werte zusammen mit der Gesamtkrimmung 47 als “die fun-
damentalen Mafizahlen” und widmet sich in einem kompletten Abschnitt seines
Buches dem Blaschke Diagramm. Viele Wissenschaftler haben seither versucht

eine vollstdndige Beschreibung des Diagramms zu erstellen, bis heute konnten
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jedoch fiir die letzte Begrenzung nur approximative Ergebnisse bewiesen werden
61, 22].

Vollsténdige Systeme beschreibender Ungleichungen sind auch das Ziel der
Diagramme fiir planare Mengen [63], die Santal 1961 vorgeschlagen hat. In ihnen
werden je drei der Groflen Fliache, Umkugelradius, Inkugelradius, Durchmesser,
Umfang und Dicke beriicksichtigt (siehe Abschnitt 6.2 fiir Details). Fiir 6 der
20 moglichen Tripel gibt Santalé in seiner Originalarbeit bereits eine Losung
an, darunter auch eine von vier méglichen Auswahlen die nur Radien umfasst.
Vollsténdige Systeme fiir die drei verbleibenden reinen Radiendiagramme werden
in [19, 20] bestimmt.

Diese so genannten Blaschke-Santalé-Diagramme bilden die beste bekannte
Moéglichkeit zu bestimmen, welche geometrischen Ungleichungen wirklich essen-
tiell sind und welche durch andere Ungleichungen dominiert werden. Allerdings
bedingt die Auswahl von je drei der vier Radien auch entscheidende Nachteile.
Zum einen kénnen Ungleichungen zwischen allen vier Standardradien (Durchmes-
ser, Dicke, In- und Umkugelradius) mit ihrer Hilfe nicht entdeckt werden. Zum
anderen ergeben sich fiir die getrennt behandelten Blaschke-Santal6-Diagramme
Ungleichungen, die immer wieder die gleichen Extremmengen beschreiben. Hier
lasst sich vermuten, dass diese einer gemeinsamen Grundeigenschaft entstammen
und nur durch die getrennte Betrachtung der einzelnen Diagramme zu jeweils
anderen Ungleichungen fiihren.

Insbesondere das zuletzt erwihnte Phinomen wollen wir in diesem Kapitel an-
gehen. Zuerst wird allerdings in einem technischen Abschnitt das Verhalten der
Radien beziiglich der Minkowski-Summation zweier Kérper untersucht. Im zwei-
ten Abschnitt geben wir dann eine Zusammenfassung der Resultate zu den vier
Blaschke-Santalé-Diagrammen beziiglich der Standardradien an. Danach folgt der
Hauptteil des Kapitels. Hier verbessern wir das Konzept der Blaschke-Santalo-
Diagramme. Anstelle getrennter 2-dimensionaler Diagramme betrachten wir hier
erstmals ein alle vier Radien umfassendes 3-dimensionales Diagramm, dessen
Projektionen entlang der Koordinatenachsen gerade wieder die herkémmlichen
Blaschke-Santalé-Diagramme ergeben. Dieses neue Diagramm ermoglicht einen
viel tieferen Einblick in die Zusammenhénge und dadurch nicht nur die Reduktion

des Systems der wirklich essentiellen Ungleichungen, sondern auch das Aufdecken
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neuer schirferer Ungleichungen, die alle vier Radien involvieren. Ferner ergeben
sich bei der Beschreibung der eindimensionalen Begrenzungen des Diagramms
eine Reihe von neuartigen Ungleichungen in Bezug auf die extremalen Teilmen-
gen unter den allgemeinen konvexen Mengen der Ebene. Etwas iiberraschend ist
auch die Aufdeckung sechs weiterer essentieller Mengen, die Extrempunkte des
Diagramms beschreiben. Die Koordinatenprojektionen lieflen bisher nur vier er-
kennen.

Aber schauen wir uns die Ergebnisse im Einzelnen an. Da das Verhéltnis
zwischen den vier Standardradien fiir &hnliche Korper iibereinstimmt, betrachten
wir nur die Teilklasse C? der konvexen Mengen in der Ebene mit Umkugelradius
1. Die Funktion

foCt = (0,17, f(K) = (z,y,2) = (ra(K), Ri(K), r1(K))

beschreibt nun das verallgemeinerte Blaschke-Santalé-Diagramm.
Von den besagten 10 Extrempunkten kénnen 9 als extrem bewiesen werden
(sieche Abbildung 8 fiir Skizzen der zugehérigen Mengen), nur fiir das gebogene

Trapez gibt es noch eine minimale Unsicherheit:

SATZ 6.17. Die Mengen L,B,T?, RT, Iz, SRz, SR, in(v3-1), RSBz, und H;-

implizieren Extrempunkte von f(C?).

Dabei bestimmt sich 7% als Lésung einer Polynomgleichung vierten Grades:

1 16
TF==\(+E+ -+ ———1
2 \/ VCTe
mit ¢ = 1(864 — 961/69)5 und & = 2(2)5(9 + v/69)5.

Von den zehn vermuteten 2-dimensionalen Seitenflichen koénnen fiir acht die
induzierende Ungleichungen bestimmt werden, von denen wiederum sechs als
giiltig fiir f(C?) nachgewiesen werden kénnen. Letztere sind

(i) z <y,

(i) z <1,
(iii) z + 1 > 2y,
(iv) z +1 < 2z,
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~__ 7

ABBILDUNG 8. Die Extrempunkte des 3-dimensionalen Blaschke-
Santal6-Diagramms (von links nach rechts). Erste Reihe: das Lini-
ensegment L, der Kreis B, das gleichseitige Dreieck T?2. Zweite Rei-
he: das Reuleaux-Dreieck RT und die angeschnittenen Reuleaux-
Dreiecke SR, qn(
Segelboot RSB= und das rechtwinklige Dreieck Iz. Vierte Reihe:
Die Miitze H,~ und das gebogene Trapez BT,

arcsin( % )

V3-1) und SR%. Dritte Reihe: Das rechtwinklige
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Um die Begrenzungen der 2-dimensionalen Seitenflichen, die durch die obi-
gen Ungleichungen induziert werden beschreiben zu koénnen, werden auflerdem
eine Reihe von bereits bekannten geometrischen Ungleichungen als signifikant

herausgestellt und neue bewiesen. Die neuen Ungleichungen haben wir als Sétze
festgehalten:

SATZ 6.9. Fiir alle K € C? mit r(K) = 1 und ro(K) < /12 gilt

ra(K)

- ()Q,fallsrg( ) <V2 -1
(% +/3) ra(K), falls ro(K) > V2 - 1.

SATZ 6.10. Fiir alle K € C} mit 1(K) + 1= 2Ry (K) und ry(K) < /3 gilt:

Tl(K) STQ(K) I_TQ(K)Z.

SATZ 6.11. Fiir alle K € C? mit ro(K) + 1 = 2r(K) und rp(K) < 7* gilt:

M

((402(K) + 1 = (ra(E) + 1) = 4Ry (K)?)’

(1 @R(E) — ra(K)))*)

S 1-— TQ(K)Q.

M

S

SATZ 6.12. Fiir alle K € Cf mit r(K) = % und ry(K) > 38ﬁ gilt:

Ri(K) > ? sin (arccos <\/3 - 2\/§r2(K)> + 5) .

6
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SATZ 6.13 Fiir alle K € C? mit
Ri(K)? — 4r (K)*(1 —r (K)?) =0

und r,(K) > 28 gilt:

Ri(K) < gsin <2 arccos <§7~2(K)>> ro(K).

Im abschlieBenden Abschnitt dieses Kapitel befassen wir uns noch mit weite-
ren Erweiterungsmoglichkeiten der Blaschke-Santalé-Diagramme, in welchen zum
Beispiel, wie in Blaschkes Original, 3-dimensionale K6rper betrachtet werden und

eventuell zusatzlich die weiteren Radien hinzukommen.
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CHAPTER 1

Introduction

1. The context

In their book about geometric inequalities [16], Burago and Zalgaller begin the
foreword as follows: ”Geometric inequalities have a wide range of applications —
within geometry itself as well as beyond its limits.” The importance of geometric
inequalities is stressed by the huge variety of results covering several topics. Such
topics typically include the minima and maxima of the fundamental measures
of convex sets (e.g., the volume or the surface area); and their generalisations
(e.g., the inner and outer j-measures, the quermassintegrals, mixed-volumes) in
Euclidean or general Minkowski spaces. Standard references are [10, 64, 44, 45].

This thesis focuses on the radii of convex sets, especially on geometric in-
equalities among them. It is about a century since Jung [54] and Steinhagen [72]
published their famous articles about the upper bounds on the circumradius-
diameter ratio, and the width-inradius ratio in Euclidean space, respectively (see
Proposition 2.3 for details). Since then, the four quantities (inradius, width,
circumradius, and diameter) have been studied quite thoroughly, and theorems
involving them are known as standard results. There are generalisations of the re-
sults of Steinhagen and Jung for general Minkowski spaces [9, 57, 26] and about
geometric inequalities in 2-space [63, 11, 66, 67, 69, 50, 3, 19, 20, 70, 21]. Of
particular significance for the analysis of geometric inequalities are the extremal
convex sets which attain equality; simplices and bodies of constant breadth (also
known as bodies of constant width) are good examples for they often do. General
publications about extremal convex sets are [42, 41, 43], results with special fo-
cus on simplices can be found in [2, 76] and an (of course not complete) list of
papers on bodies of constant breadth is [10, 15, 32, 17, 65, 8].

There are several ways to generalise the concept of radii in d-space (see [48]

for a survey), but only one in the sense of the inner- and outer j-measures as



2 1. INTRODUCTION

generalisations of the volume. The outer j-radius R;(C), 1 < j < d, where C' is
a body in d-space, measures how well C' can be approximated by a (d — j)-flat.
In fact, computing the outer d-radius means approximating C' by a point, thus
R;(C) is the usual circumradius of C. Also, it is easy to see that R;(C') is half of
the width of C. Correspondingly one can define the inner j-radius r;(C) of C as
the radius of the largest j-dimensional ball that fits into C'. We will drop the C
from r;(C) and R;(C') when C' is clear from the context. Observe that r, is just
the usual inradius and r; is half of the diameter. The inner and outer radii are
dual to each other in the sense that for a symmetric (with respect to the origin)
body C' and its polar C°, r;(C')R;(C°) = 1. In this light the two radii-classes do
not only generalise, but they also unify the original four quantities.

The radii different from the four standard ones (in- and circumradius, width,
and diameter) are mostly studied recently. To the best of our knowledge, the
oldest is the work of Shklarsky, Chentzov, and Yaglom [71, in Russian]. In this
paper from 1970 the authors compute the radius of a biggest disc fitting into a
unit-cube in 3-space. Geometric inequalities about the non-standard radii are
almost unknown, an exception being the work of Perel’'man [58]. For inequalities
about other types of generalised radii see [5, 49]. A very comprehensive study of
the two radii classes, with a focus on the algorithmic aspect, is due to Gritzmann
and Klee [39, 40].

Radii of convex bodies find applications in many areas, e.g., orthogonal mini-
max-regression, computer graphics, robotics, pattern recognition, nonlinear global
optimisation, sensitivity analysis of linear programming, chromosome classifica-
tion, and computational metrology (material sciences), see [40, 1] and the litera-
ture given there. For this reason, there exists a substantial number of publications
on the computation and approximation of radii, and the complexity of these tasks
(52, 40, 1, 18, 14, 31].

However, besides the applications, investigating these radii classes is also very
interesting from the theoretical point of view, since these radii have a close rela-
tion to the outer and inner j-measures of convex bodies. In fact, if one takes the
volume of the involved inball instead of the radius, computing the inner (outer)
j-radii means approximating the inner (outer) j-measure of the body itself. As

we will see, there are some similarities, but also important differences.
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In this thesis, we will look into some of the open problems about radii; in
particular, we investigate unsolved questions about the radii of special bodies
(e.g., regular polytopes and constant breadth bodies), and we also establish new
results on the bounds of the ratios between the radii. As they provide a deeper
insight in the whole matter some new questions are raised and mostly answered.
This is part of the Chapters 3 to 6, each with a different focus, but all closely
related. In the following we give a short overview about the different topics in

these chapters.

2. Radii of regular polytopes

“Most geometric inequalities have the property that the occurence of the
equality sign characterizes geometrically significant objects, like balls, ellipsoids,
or simplexes [43].” Because of this fact we start with a chapter about the radii
of regular polytopes, with a special focus on regular simplices.

As their name suggests, the combinatorial structure of regular simplices is
very simple. Hence, it might seem that geometric quantities of simplices, like
their outer j-measures are easy to compute and therefore fully understood. This
is not the case. The work of Filliman [33, 34] shows that the outer j-measures
of simplices are quite hard to compute and unknown in almost all dimensions.
Similarly, it follows from [48] and [6] that there are lots of dimensions where the
inner and outer radii (whichever way one defines them) of regular simplices are
unknown.

While Ball [4] showed that the inner j-radius of a regular simplex, as defined
in Section 1, is just the inradius of any of its j-faces, any such nice results were
previously unknown for its outer j-radii, except for j € {1,d —1,d} [54, 72, 74,
75].

The first section of Chapter 3 is its most important part. Here we give a
general lower bound on the outer j-radii of regular simplices and show that this
bound is attained in all odd dimensions d, and for nearly all even j in even
dimensions. The proof of the latter makes strong use of John’s theorem [53] and
an isotropic position of the projections of the simplices in the sense of [37, 38|.

In Section 2 of Chapter 3 we obtain an upper bound on the outer j-radii

of general d-simplices in certain dimensions. This bound enables us to deduce
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a geometric inequality about general simplices, which is given as the following
theorem: If d — 7+ 1 divides d+ 1, then the ratio between the outer j-radius and
the diameter of simplices is mazximised by the reqular simplez.

In [30] a formula for the inner j-radii of general d-boxes is given, which,
because of symmetry, can easily be transformed into a formula for the outer j-
radii of general cross-polytopes. We complete this result in section 3 by stating
a theorem about the outer j-radii of boxes (and therefore about the inradii of
cross-polytopes) and show that in the special case of hypercubes and regular
cross-polytopes, both results can be derived as corollaries of the theorem about
the outer j-radii of regular simplices, which we developed in the first section.
Although this corollary does not state new results anymore, it unifies the whole

theory.

3. Totally non-spherical bodies

The results in the chapter about totally non-spherical bodies were obtained
in collaboration with David Larman [13]. The main purpose of this chapter is
to show the existence of constant breadth bodies of any dimension that cannot
be projected orthogonally onto B?, the unit disc. We call such bodies totally
non-spherical. This result is very important, because the proof that such totally
non-spherical bodies exist, permits us to complete the diagram about the possible
relations between the different inner and outer radii (see Figure 2.3 in Chapter
2).

To obtain this result we use the concept of dark clouds, which is based on the
work of Erdés and Rogers [28] about coverings of space with convex bodies and
on unpublished work of Danzer [24].

We give a short introduction into the matter of dark clouds in the first sec-
tion of Chapter 4, and extend the concept onto spheres. The second section
of this chapter settles the existence of totally non-spherical bodies in arbitrary

dimensions, using spherical dark clouds in the main proof.

4. Totally isoradial bodies

In the study of geometric inequalities a class of bodies as important as the

simplices are the bodies of constant breadth [17], especially because of their
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completeness property and the fact that they always have concentric in- and
circumspheres (see Chapter 2). For that reason one is interested in ‘good’ ex-
tensions of the concept of constant breadth. The concept of constant inner or
outer j-measures, 1 < j < d—1 is well known. Here the constant breadth bodies
are exactly the bodies of constant inner or outer 1-measure and the existence of
non-spherical bodies of constant outer j-measure for any j € {1,...,d — 1} is
proven by [35]. The bodies of constant outer (d — 1)-measure are also known as
bodies of constant brightness and it is one of the challenging open tasks in the
field to answer the question whether a body of constant breadth and constant
brightness must always be spherical. In [10] it is shown that this is true under
suitable smoothness assumptions on the boundary of the body.

In Chapter 5, based on joint work with Abhi Dattasharma and Peter Gritz-
mann [12], we present a quite similar generalisation of the constant breadth prop-
erty in terms of the radii, which we call inner and outer j-isoradiality. Again,
the notions of inner or outer 1l-isoradiality coincide with the notion of constant
breadth, but here, we can show that at least in 3-space, there exists a non-
spherical totally isoradial body. This is an example for a convex body different
from the ball, which is inner and outer j-isoradial for all possible j.

Our proof of the existence of totally-isoradial bodies in 3-space besides the
ball, also shows that there exist non-spherical bodies which have equal outer 2-
and outer 3-radius (circumradius). This is an interesting achievement on its own,

especially with regard to the following chapter.

5. Blaschke-Santal6é diagrams

It is a well known fact that every full dimensional polytope can be described
by systems of valid (linear) inequalities and any such collection of inequalities is
minimal if and only if every inequality induces exactly one facet of the polytope.

In the following we want to describe the boundary-structure of a non-convex
set within the unit cube B3. Certainly, we cannot do this just by linear inequal-
ities. However, we will see that major parts of the boundary are indeed induced
by a few linear inequalities or at least by polynomial inequalities.

To know minimal systems of such inequalities is of significant value to decide

whether another inequality is valid and if so, by which inequalities in the system
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the new one is dominated. The latter was certainly the reason why Blaschke
[7] proposed to map the three fundamental geometric quantities, volume, surface
area, and mean curvature, of 3-dimensional convex bodies onto a 2-dimensional
diagram, the so called Blaschke-diagram. In his paper Blaschke asked for a
complete system of inequalities describing the boundaries of his diagram. Two
of the boundaries are described by well known geometric inequalities, but the
description of the remaining part of the boundary is still an outstanding open
problem [61, 22].

In 1961 Santalé [63] considered similar maps for 2-dimensional convex sets,
the so called Blaschke-Santal6-diagrams. Here one chooses triples of the quanti-
ties area, perimeter, diameter, width, in- and circumradius; defines a map onto
2-space by using one of the three quantities to normalise the sets; and tries to find
complete systems of inequalities describing the boundary structure of the diagram
one obtains. Since four of the quantities (diameter, width, in- and circumradius)
are the standard radii one gets four pure radii diagrams, each involving three out
of four of the radii. A complete system of inequalities for the diagram consisting
of the inradius, the diameter, and the circumradius was given already in Santalds
original paper, the remaining three in [19, 20].

In Chapter 6 we start with a technical section about Minkowski-sums of con-
vex sets and how they behave in their radii functions. The four well solved
Blaschke-Santal6 diagrams are given in the second section.

In the third section we step into the actual task of this chapter, which is
the description of major parts of the 3-dimensional diagram one obtains from
considering all four radii at once, and using the circumradius to normalise the
2-sets. In this manner, the three 2-dimensional Blaschke-Santalé diagrams, which
involve the circumradius, are just the projections along the coordinate axes of
the 3-dimensional diagram.

The new diagram retains a lot more structure than its projections; thereby
making it possible to extract much more information. This enables us to state
several new geometric inequalities. Furthermore, we will see that there are six
previously unknown (essential) extreme points of the diagram. This is somewhat

surprising as none of the six is extreme in any of the three coordinate projections.
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We finish this chapter and the whole thesis with a short overview on other
possible extensions of the Blaschke-Santalé diagrams. Here it is shown that major
parts of the corresponding diagrams for 3-dimensional bodies (and even for convex
sets in arbitrary dimensions) can be described by standard inequalities. On the
other hand, if we consider diagrams involving radii other than the four standard
ones, very little is known. However, the results of the preceding chapters enable

us to determine some previously unknown boundaries even for these diagrams.






CHAPTER 2

Preliminaries

In this chapter we give a short summary of the common notations and defini-
tions and add some propositions about well known results on radii. A standard
reference for further reading is the handbook of convex geometry [44, 45]. A

more extensive summary about radii can be found in [39].

1. General convexity

Let B = (R?, | -|) denote the d-dimensional Euclidean space, d > 2, B and
S the unit ball and the unit sphere in E?, respectively, and (-, -) the usual scalar
product (z,y) = 27y. Furthermore, we use {ei,...,eq} for the standard basis of
E?, and call the subsets of E? planar.

A line segment [p, q] is defined as the set

{xE]Ed:x:)\p—i-(l—)\)q,)\e[(),l]},

and a subset K of E is called star shaped with respect to a point p € K if for all
q € K the whole line segment [p, ] is in K. If K is star shaped with respect to
every p € K it is convez. For any subset M of E? the convex hull of M is defined
as the smallest superset C' of M such that C' is convex. We denote the convex
hull of M by conv(M). Analogously the affine hull aff (M) of M is the smallest
affine subspace containing M. We call a set C C E? a body if it is bounded,
closed, and convex. Every body which contains an inner point is called proper.
A body C'is strictly convez if the boundary of C' contains no segments.

A face of a body C' is a convex subset F' of C' such that each segment in C'
whose relative interior meets F' is entirely contained in F'. If a face F' is neither
empty nor the body C itself it is called proper. Every point x € C' such that x
cannot be written as Ay + (1 — \)z, with y,z € C and X € (0, 1) is called extreme.
A hyperplane H with H N C' # () and containing only boundary points of C' is
called a supporting hyperplane of C'.
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An important subclass of convex bodies is polytopes. Planar polytopes are also

called polygons. One way to define a polytope P C E? is by its V-presentation:
P=conv{vy,...,v,}, ; €E' i=1,...,n

Note that, if the representation is irreducible, the v; are precisely the wvertices
(the extreme points of a polytope) of P. The (d — 1)-dimensional faces of P are
called facets. It is well known that every polytope P can be written either in a

V-presentation or as the intersection of finitely many closed halfspaces
P={2cB :a/c<b,i=1,....,m}, ; €E' and b; €R, i =1,....m

the H-presentation of P. Note that, if the H-presentation is irreducible, the sets
{x € B : al'z = b;} are precisely the affine hulls of the facets of P. A vertex
figure of a vertex v consists of all faces adjacent to v.

Regular polytopes are defined inductively: A planar polygon is called regular
if all its edges and angles are congruent. A d-polytope is called regular if all its
facets are regular and congruent and all its vertex figures are congruent. It is
well known that there exist infinitely many regular polygons (the regular m-gons,
where m denotes the number of edges), five regular polytopes in 3-space (the five
platonics), and six in four space [46]. However, there exist exactly three regular
polytopes in d-space if d > 5, which are the reqular d-simplex T?, the d-cube
B4, and the regular d-cross-polytope X? (which are sometimes also denoted as
d-octahedron).

By L;4 and A, 4 we denote the set of all j-dimensional linear subspaces and
all j-dimensional affine subspaces of E?, respectively. For any F' € L£; 4 let F'* €
Lq-ja be the space orthogonal to F'. Furthermore, we use the expression great
2-circle to denote any set SN F' with F' € Ly 4.

Let span{si,...,s;} denote the linear span
J
{:17 eR:x = Z)\ksk,)\k € R}
k=1

of 51,...,5; €S. For any set A C E?, A|F denotes the (orthogonal) projection
of Aonto F' € Lj4. If s1,...,s; is an orthonormal basis of F' we also use Ay, .
instead of A|F and A%% instead of A|F~.
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For any z € E¥ and y € E® let
TiYyr .- T1Yd,
TRY =
T Yr -+ TdiYds
denote the matrix with elements w;y;, ¢« = 1,...,d; and j = 1,...,d>. Note that
for any set of orthonormal vectors {si,...,s;}, 1 <j <d the projection

P:E* — span{si,...,s;}

can be represented by the matrix

J

ZS; X s;.

=1

For any two sets A, B C E? the Minkowski sum A + B is defined as
A+B={a+bcE :ac Abc B}
and for any A > 0 we write
M ={Xa:a € A}

A lattice L (of full rank d) in E¢ is the set of all integer linear combinations of
d linearly independent vectors by, ...,by € E¢. The set {b;,...,bs} is called the
basis of . For by = e, k =1,...,d we call L. the unit lattice. Let C' be a body
and L a lattice. C + L is called a packing of E?, if every two distinct translates
of C' have disjoint interior; and C' + L is called a covering of E¢, if E C C + L.

2. The two radii classes

For any j € {1,...,d} the inner j-radius r;(C) of a convex set C' is defined
by
ri(C)=max{p>0:(¢+pB)NF CC,ge Fe A}
and the outer j-radius R;(C') by
R;(C)=min{p>0:E+pBDC,E€ Ay_jq}.
For s € S the s-length of C' is defined as

I5(C) =max{\ > 0:c¢,c € C, such that ¢' = ¢+ As}
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FIGURE 2.1. The inner 2-radius of an octahedron and the outer

2-radius of a tetrahedron. See Chapter 2.3 for proofs.
and the s-breadth bs(C') is defined as

bs(C) = I?e%X(c, s) — ICIéICI’1<C, s).

Now the diameter of C is defined as diam(C) = maxesls(C) and the width
as width(C') = mingeg bs(C), i.e. the diameter measures the maximum distance
between two points within C, whereas the width is the minimum distance of two
parallel hyperplanes which support C'.

Proofs of the following Proposition can be found in [39] and [48].

PrRoOPOSITION 2.1. For any d-dimensional body C' the following hold
(i) Ri(C) < -+ < Ry(C),
(ii) r4(C) < --- <1 (C),
(iii) R (C) = L width(C) = L min,eg1,(C)

2
< r(C) = 3 diam(C) = 3 maxes by (C), and
(i) 5(C)

< Rd+17j(c); ] € {17 SR d}
The result of Proposition 2.1 is also displayed in Figure 2.3. In Chapter 4 we

L
2

will see that ths diagram is complete in the sense that for any two radii which
are not connected by a directed path there exist bodies C,C5 such that the

relationship between the two radii is ‘less than’ for €y and ‘greater than’ for Cs.
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FIGURE 2.2. The width defining hyperplanes of a tetrahedron. See
Chapter 2.3 for proofs.

®

FIGURE 2.3. The arcs imply a less than or equal relationship
(from their origin to their sink) between the two corresponding

radii, which holds for all d-dimensional bodies.

For every body C C E¢ let
C°={yck:(c,y) <1forallcecC}

denote the polar of C'. Note that we call a body C' symmetric if it is symmetric
with respect to the origin. A proof of the following proposition can be found in
[39]:

ProprosITION 2.2. If C' is a proper d-dimensional symmetric body then

ri(C)R;(C°) =1 and R;(C)r;j(C°) =1
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foralll <j<d.

A superscript k for the radii (e.g., R;l_l, that is £ = d — 1) denotes the radius
relative to a k-dimensional affine space, which is explicitly given or known from
the context (e.g., R?’I(Cs), s € S is the outer j-radius of the projection C* of
C along s, relative to the (d — 1)-space orthogonal to s). To denote a k-ball (a
k-dimensional ball) we will use the notation B".

If a body C arises from C5 by rotation, translation and dilatation, we say
C1 is stimilar to Cy. Note that the radii of a body do not change if the body is
translated or rotated; neither are the relationships of the radii affected by scaling
the body. For this reason, we will often use the word ‘ball’ to signify any similar
copy of B, and the same we do for simplices, cross-polytopes and cubes (or other
well described classes of similar bodies).

If we are free to choose the actual position, we take 7% = conv{ey,..., €411}
(embedded in E¢*!) and X? = conv{zei,...,*ey}, where e; denotes the k-th
unit vector (of the appropriate space). By B,, ... 4, we denote a d-dimensional box
of the form {z € E?: —a; < x; < a;,i € {1,...,d}} such that B = By ;. Fi-
nally, it is well known that a general cross-polytope X,, . o, = conv{=£ay,...,+a4}
is just the polar of B1 1.

The following pro;)lositaidon states the famous geometric inequalities about the
circumradius-diameter-ratio and the width-inradius-ratio due to Jung [54] and
Steinhagen [72], respectively. Additionally a result of Alexander [2] about the

width-circumradius-ratio of simplices is given.

PROPOSITION 2.3. Let C' be a d-dimensional body. Then
(i) 756 <\ 25
Vd, ifd odd

..y R1(C)
(i1) iy < " , and

NGEoL if d even

L ifd odd
(iii) B9 < \/; 4 , and if C is a simplez.

d+1 -
YNZESL if d even

In all cases equality is attained if C' is a regular simplex, but the ‘only if’

direction holds only in case of (iii), as we will see in the remark after Proposition
2.5.
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IfEeAgja, j€{l,...,d}, wecall E+ pB a j-cylinder. In this notation a
usual 3-dimensional cylinder of infinite length is a 2-cylinder. In Euclidean space
we can understand the outer-radii in terms of projections onto j-spaces instead

of smallest circumscribing j-cylinders as shown in the following lemma:

FIGURE 2.4. The tetrahedron and its minimal enclosing cylinder
from a slightly skewed view and from the view along the cylinder
axes, the latter showing that one can understand the outer radii

also in terms of projections.

LEMMA 2.4. Suppose C' is a body, j € {1,...,d} and k € {j,...,d}. Then
R;(C) = min{RY(C|F) : F € L4}

PrOOF. We start with the ‘>’-direction. Let p* = R;(C'). From the definition
of the outer radii it follows that there exists an ' € A,4_; 4 such that E4+p*B D C,
which implies that if we project both sets (E + p*B and C') onto any linear
subspace F' € Ly 4 then

E|F + p'B* = (E + p'B)|F > C|F.
Hence RY(C|F) < p* for all F' € L4 and therefore

pr > min{Rf(C|F) cF e Lyq}.
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Now we turn to the ‘<’-direction. Let F'* € Ly 4 and p* > 0 such that
min{RY(C|F) : F € L4} = R} (C|F*) = p*.
Hence there exists £ € Aj_;q4, £ C F* such that E + p*B* > C|F*. But because
(E+ (F")") +p'B) |F* = E+ p'B
we obtain that E + (F*)* + p*B D C and because E + (F*)* € A,_; 4 that

R;(C) < p".

Note that this lemma does NOT imply that
Rj(C) = Ry(C|Fy), Fy € Lya, j <k <d,

where C|F, is a minimal projection of C' for Ry (C).
It is easy to see that r1(C) = max{r¥(C|F) : F € L4} also holds, but this

cannot be extended to j > 1 (see the statement after Proposition 3.1).

3. Constant breadth

From Proposition 2.1 (iii) one can easily see that a body C possesses the
property Ry (C') = r1(C) iff the values of its s-length and s-breadth do not depend
on s € S. In this case C'is called a body of constant breadth.

A body C' is called complete if r1(D) > ri(C) for all D D C, and for an
arbitrary body C, a body Cr D C'is called a completion of C, if Cr is complete
and r1(Cr) = r1(C). Analogously, a body C'is called reduced if R, (D) < R;(C)
for all D C C, and a body C, C C is called a reduction of C, if C, is reduced
and Ry(C,) = Ry(C).

The following proposition gives some known facts about bodies of constant
breadth and completions which we will use in the following chapters. Proofs for
the different parts can be found in [10, 68, 25].

PROPOSITION 2.5. Let C' be a body in EX.

(a) The following statements are equivalent:

(1) C is of constant breadth,
(i1) for all s € S the projection C* is a body of constant breadth,
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(111) C is complete.

(b) If C is a planar body, then C is of constant breadth iff C' is strictly convex
and reduced.

(¢) There exists a completion of C" within C’s circumsphere.

(d) If C is a body of constant breadth, then the incentre coincides with the cir-
cumcentre and r4(C) + Ry(C) = 2r,(C).

Note that every body of constant breadth is reduced but, e.g., the equilateral
triangle T2 is reduced but not of constant breadth. In higher dimensions it is
not even known whether Proposition 2.5 (b) holds, and also, in non-Euclidean
spaces, the completeness- and the constant-breadth-property are not equivalent.

We make strong use of Proposition 2.5 (¢) in Chapter 5, but there is an im-
mediate relation with Jung’s inequality (see Proposition 2.3 (i)). Let T denote a
completion of T¢ within the circumsphere of T (which exists because of Propo-
sition 2.5 (c)). Now it is easy to see that all C' with T¢ C C' C T¢, fulfill Jung’s
inequality with equality.

We cannot state such a rigorous result for Steinhagen’s inequality (see Propo-
sition 2.3 (ii)) as there is no such general result like Proposition 2.5 (c¢) about a
reduction keeping the same inball. Even more, T? is a reduced planar set and
the unique set fulfilling Steinhagen’s-inequality with equality. Nevertheless, if
the dimension is at least 3, the width defining hyperplanes are touching 7% not
in a single vertex. Hence it is possible to cut of a bit around the vertices of T
without changing the width or the inradius of 7% and therefore the new set will
still fulfill the inequality with equality.

Finally, we give a result that will be important for development of Chapter

6. The constant breadth bodies are of course the only bodies fulfilling
2R (C) = 14(C) + Rq(C) = 211 (C),

but even in Euclidean spaces there exist bodies which are not of constant breadth
and fulfill one of the two equations. However, these bodies must at least have

concentric in- and circumsphere as the following Lemma shows:

LEMMA 2.6. Every body C in B which fulfills 2R, (C) = r4(C) + Rq(C) or

2r1(C) = r4(C) + Ra(C) has concentric in- and circumspheres.
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PROOF. Suppose non of the possible incentres of C' coincides with the circum-
centre of C'. Then we can define a line [; through the circumcentre and one of
its closest incentres; and a hyperplane F orthogonal to [; containing the circum-
centre. Now there must be a point p € C' on its circumsphere which is separated
from the incentre by F;. Now we draw a line [, through p and the incentre.
Surely, I cuts through the insphere at two points, one at a distance from p which
is greater than r4(C) + Ry(C). But this means that r1(C) > r4(C) + Ry(C).

Now consider the hyperplane F; parallel to Fy through the incentre. Since we
have chosen a closest in- and circumcentre pair, there must lie a point ¢ € F» on
the insphere on the same side of F; as the circumcentre, such that the tangent
hyperplane E; to the insphere at ¢ also supports C'. Hence C' lies completely
between F; and its parallel hyperplane supporting the circumsphere of C' on
the other side of the centres. But as the distance of E; and FE, is less than
rq(C) + R4(C) we see that Ry (C) < rqa(C) + Rq(C). 0O



CHAPTER 3
Radii of regular polytopes

In [46] Griinbaum starts the section about regular polytopes as follows: “Reg-
ular polytopes, and different kinds of semiregular polytopes, have been a topic of
investigation since antiquity, and during the centuries led to many interesting and
important notions and results.” Hence, computing the radii of regular polytopes
has certainly a value of its own. Nevertheless, as known now for more than a
century, they often attain the extreme values in geometric inequalities involving
different radii. This is especially true for the regular simplices.

While the inner radii of regular simplices are well studied, see Proposition
3.1, very less was previously discovered about their outer radii. In Section 1 of
this chapter we will give a lower bound on these radii (Theorem 3.4), and show
that this bound is tight whenever d is odd or j is even and d # 2j (Theorem
3.14). Together with [72, 74, 75], this result implies that the exact value of all
radii up to dimension 5 is now known, and thus the lowest dimensional case that
still remains unsolved is R3(T*®) (the only unknown case for 6 dimensional regular
simplices). The lowest unsolved outer j-radius with even j is Rg(T'?).

An important step towards this result is the investigation of quasi isotropic
polytopes (Kawashima called them m-polytopes [55], but we prefer to call them
isotropic as they are in an isotropic position in the sense of [37]). Specifically,
we will show that the existence of a quasi isotropic j-dimensional polytope with
d + 1 vertices is equivalent to the existence of a projection of the regular simplex
such that the lower bound on the radii is attained.

In Section 2 we give some results about outer radii of general simplices and
show for certain dimensions d and j that the ratio between the R;- and r;-radii
of simplices is maximised by the regular simplex.

The final section of Chapter 3 is devoted to the radii of boxes and cross-
polytopes. While the inner radii of boxes were computed in [30], we could not
find a result about their outer radii in the literature. This gap is closed in this

19
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thesis, as well as the results about boxes are transferred to results about cross-
polytopes via polarisation. Finally, we show that the radii of cubes and regular
cross-polytopes can be obtained almost completely from our results about the

outer-radii of regular simplices. This unifies the whole chapter.

1. Regular simplices

The following result about the inradii of simplices is taken from [4]:
PRrROPOSITION 3.1. For every simplex S
r;(S) = maX{rg(Sj) : §7 is a j-dimensional face of S}

holds and T has the mazimal inner j-radius for all d-simplices of mazimal edge-
length /2, which is
1

ri(T%) = m

In 3-space ro(T?) = %, but if we project T° orthogonal to a pair of orthogonal
sides we get a square with diagonal length /2, and therefore the inradius of this
projection is 3. Hence ro(T%) < max{ri(T%|F) : F € L54} (recall the remark
after Lemma 2.4).

Now we state some previously known results about outer radii of regular

simplices, which either follow from Proposition 2.3 or are taken from [74, 75]:

PROPOSITION 3.2. (i) Rqy(T%) = /7%
\/ T if d odd
(i) By(T%) = § V2

%, if d even.
=S if d odd
(iii) Ry 1(T4) = V
(=12 .
M@ if d even.

Proposition 3.2 is not as complete a result as as Proposition 3.1. At the end of
this section we will be able to give a result on the outer radii of regular simplices
which is much more general than the above Proposition. To do so, we make use

of the following definition:
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DEFINITION 3.3. We call any set of orthonormal vectors {si,...,s;}, j €
{1,...,d} in E4*L

(1) a valid subspace basis (vsb for short) if ZZ; s =0 foralll € {1,...,7},
and

(ii) a good subspace basis (gsb for short) if it is a vsb and 31_, s, = d%rl for
dlkefl,... d+1}.

Note that any set of orthonormal vectors {si,...,s;} is called a vsb if it spans

a j-dimensional subspace of

d+1
Ed+! = {xEEd+1 :Zxk:()},

k=1

the d-dimensional linear subspace of E¢*! parallel to the hyperplane in which we
have embedded T°.

The projection of T¢ onto E*! can be written as T4+ — 771771, where 144!
denotes the identity matrix in E@+Dx(@+D and 1941 the matrix in E(¢+Dx(d+1)

consisting only of 1’s. Hence it holds that

d

1
— Id+1 _ 1d+1
lz:; LS d+1-

for every vsb of d elements. This enables us to obtain the important fact that
each vsb is a gsb if j = d, which we use in Corollary 3.5.

Now we start improving the results on the outer radii of regular simplices
by giving a general lower bound, which we will prove to be tight in many cases
further on. This theorem will also show the reason why we call a vsb good if it
fulfills the condition (ii) in Definition 3.3.

THEOREM 3.4.

(T4 > L
BT = d+1
foralld > 2 andj € {1,...,d} and equality holds iff there exists a gsb {s1,...,s;}

in BT,
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PrOOF. Let P denote the projection onto some subspace spanned by a vsb
{s1,...,s;}. It follows that

J J
|Pex]® = (Pey, ex) = <Z Slk81,6k> = 23121«

=1 I=1
Now assume there exists some z € E*" such that |z — Peyl* < i3 for all
k=1,...,d+ 1. Summing over the k’s, we get

d+1

i> | — Pexf?

d+1

= > (lal* = 2, Pey) + [Pei)
k=1

- d+1 j d+1 j
= ([d+ Dl =2 (2.3 Y sus )+ 3 Y s

k=1 1=1 k=1 1=1

: dt1 d+1
and since > " s =0 and Y0 s =1

= (d+ Dl +
>
which is a contradiction. This proves the first part of the theorem. To prove

the other part look at the expression above; it is easy to see that equality in

le — Peg|> < g5 for all k can only be obtained if 2 = 0 and S sk = 2. O

As every vsb of d vectors is already a gsb we obtain the following corollary

from Theorem 3.4 and the basis extension property (used on Ed*):

COROLLARY 3.5. For any dimension d and any j € {1,...,d — 1} it holds

that
R;(T%) = ‘/ - & Ry (1) = ,/d J.
a5 d+1

Moreover the corresponding optzmal projections take place in orthogonal sub-

Spaces.

Corollary 3.5 shows that Proposition 3.2 (ii) and (iii) correspond to each other

in the sense that the lower bound of Theorem 3.4 is attained in both cases for
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odd dimensions and that the bound is not attained in even dimensions (however,
in the even cases the minimal projections are not orthogonal to each other).

The following Proposition is a polar version of John’s theorem [53]:

PROPOSITION 3.6. The unit ball B is the ellipsoid of minimal volume con-
taining some body C C E? iff C C B and for some m > d there are unit vectors
UL, ...y Uy 0N the boundary of C, and positive numbers ci,. .., ¢, summing to d
such that

(i) S ciui =0 and

(i1) S ciu; @ uy = I

Of course, if C' is a regular polytope we can choose the values of every ¢; as %,
where m is the number of vertices of C'. However, it is not obvious which other

polytopes fulfill this property. Nevertheless, according to [37] these polytopes are
d

in an isotropic position, corresponding to the measure p* on S that gives mass =
m

to all vertices u;. This is the source for the following definition:

DEFINITION 3.7. Let C' = conv{uy,...,u,} C B be a polytope, where all u;’s
are situated on S. We call C' quasi isotropic, if all the ¢;’s in Proposition 3.6 can

be taken as %, and isotropic, if additionally w;, # u,, for all iy # is.

The following Lemma shows that the quasi isotropic condition is not as strict

as it looks like:

LEMMA 3.8. Suppose the polytope C = conv{uy,...,uy,} fulfills all the con-

ditions of Proposition 3.6 with ¢; € Q, i =1,...,m. Then C is quasi isotropic.

PROOF. Suppose p is the least common denominator of the ¢;’s. Hence we
can write ¢; = % with ¢; € N for all .. Now choose every u; ¢;-times and it is easy

to see that this set fulfills the quasi isotropic condition. O

For practical purposes Lemma 3.8 is of minor value as the denominator p can
be very big. But the quasi isotropic polytopes are very important as the next

Lemma demonstrates:
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LEMMA 3.9. There ezists a gsb si,...,s; of B iff there exists a quasi
isotropic polytope C = conv{uy,...,uq1} C B, j < d. Moreover, if we project

T4 onto span{sy, ..., s;} the projection will be similar to the corresponding C'.

PRrOOF. If C' = conv{uy,...,uqs1} is a quasi isotropic polytope then

(1) Jue =1,

(i) 0w, =0, and

i) SO0 up @ up = I,

(iii) Zk_l k k
Now let s; = #ll{uu, ey Ugr1g}, [ =1,...,7. This defines a gsb. For showing
this it is necessary that the s; form an orthonormal set, but this is the case
because of (iii). 2071 s has to be 0, but this follows from (ii), and finally we
need Y7_, s% = -L- for all k, but this is true because of (i). The other direction

a1
can be shown using a similar reasoning.

Now, if we project the vertices of T onto span{sy,. ..,5j} we get Pe, =
2{21 S1kS] = 2{21 d%rluklsl. Hence the values #'lukl are just the coordinates
of the vertices of the projection in terms of the basis si,...,s;. OJ

Lemma 3.9 can be used in two ways:

(i) We know that R;(T?) = #1 whenever we find a quasi isotropic j-di-
mensional polytope with d + 1 vertices and vice versa (therefore, due to
Proposition 3.2 (iii) there cannot be quasi isotropic polytopes with d + 2
vertices if d is odd), and

(ii) we know that the radius Ry (C) of any j-dimensional quasi isotropic polytope
C' with d + 1 vertices is \/]E for any £ < j, if the gsb {s1,...,s;} can be
split into two gsb’s {s1,..., sk} and {ski1,...,5;}.

In this section we will concentrate our attention to Part (i) above but come
back to (ii) in Section 3.

It is easy to see that all regular m-gons are isotropic in 2 if their circumradius
is 1. Now consider a prism or an anti-prism, with a regular m-gon as the basis
and the distance between the bottom and the top m-gon chosen such that the
smallest enclosing ellipsoid is a ball. Finally, we scale the whole (anti-) prism to
obtain circumradius 1. This polytopes are again isotropic and together with the
planar isotropic m-gons they lead us to the following corollary (the cases j = d—2

and j = d — 3 follow from Corollary 3.5):
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COROLLARY 3.10. (i) Ro(T?) = \/ 73, Ra—z(T%) = /%3 for all d > 2,

and
(ii) Rs(T") = \/ 725, Ra—s(T%) = /325 for all odd d > 3.

In the following we do not always mention the d — j cases as long as we
make no special use of them. The following lemma will turn out to be the last
big piece to prove the final theorem of this section. Here we utilise the relation
between the simplex radii and the quasi isotropic polytopes to get some additive

and multiplicative rules on the involved dimensions:

LEMMA 3.11. (i) Suppose d = dy + dy + 1,

-Td1:‘/ J -Td2:‘/ J .
R;(T*™) d1+1andR]( ) ]
Ry(T? = /-2 —.
i(T7) d+1

(it) Suppose d+1 = (dy + 1)(ds + 1),

Then

jl d j2
(T = d R;,(T") = :
R]l( ) d1+1 an R]Z( ) d2+1
Then .
J
(TH = | —2—
(1) d+1
for all

J € {k1, ko, krko, kv (ko + 1), (k1 + 1)ka, (k1 + 1) (ko + 1)},
where kz - {]27dz _]27dz}; Z = ]_,2

PROOF. Part (i) is quite simple in terms of the polytopes: If C; and C, are
two quasi isotropic polytopes with dy + 1 and ds + 1 vertices, respectively, then
their convex hull has d + 1 (not necessary different) vertices and is again quasi
isotropic. For Part (ii) there is a bit more to do. Suppose {si,..., sk, } and
{t1,... ty,} are gsb’s in B+ and E2+1 respectively, and consider the following
three sets in E4*!:
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and
1

dy +1

(@1, R 7tllJa .. .,tl(d2+1), R 7tl(d2+1))T, [ = 1,.. .,kQ,

. vy

di+1 di+1

and
Sl1®tl2; llzl,...,kl, 12:1,...,k2

where we take the ®-matrix as a vector, column by column. Now, it is not diffcult
to see that all vectors in the three sets form a vsb of size k; + ks + k1 ko and that
each of the three sets forms a gsb. The principle of the according proofs is always
the same: if we factor the constant terms in the arising double-sums out, we

obtain the desired properties as they are true for the s;,’s and ¢;,’s. 0]

Note that the first two groups could also be obtained from Part (i) applying
it k;-times. Also one should recognise that the polytope corresponding to the
kiky gsb is similar to conv{u;, ® v;,, i1 = 1,...,dy + 1, ia = 1,...,dy + 1} if
conv{uy,...,uq 1} and conv{vy,...,v4,11} are the polytopes corresponding to
the initial gsb’s. Finally, the polytopes one gets using Part (ii) stay much more

‘regular’ compared to the polytopes obtained from Part (i).

EXAMPLE 3.12. Suppose dy =1 and dy = 2 in Lemma 3.11 (ii), so d =5. If

we forget about the normalising factors, gsb’s for di and dy could be

COHC)C)

respectively. Using the construction in Lemma 3.11 we get the following three
gsb’s for d = 5:
(i) the dy-gsb by putting the (711) vector dy + 1 = 3 times below each other

( 1 )
-1
1
. z
-1
1
-1
\ /
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(1i) the dy-gsb by taking every entry in the original dy-gsb di + 1 times below

each other

—_ = =

and
(1i1) the dyds-gsb by multiplying each vector of the di-gsb coordinate wise with
any vector of the dy-gsb

( 1 1 )
-1 -1
-1 1
. ; ;-
-1
-2
2
\ /
As Ry (TY) = \/g and Ry(T?) = |/ 737 we can say, immediately from Lemma

3.11(ii) that:

COROLLARY 3.13.

R;(T?) = \/g

for all j € {1,...,5} if d is odd.

But with a bit of work we can get a lot more out of Lemma 3.11(i):

R;(T") = \/g

THEOREM 3.14.

if
(1) d is odd, or
(i1) j is even and d # 2j.
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Proor. We do an inductive proof over j and d. It is known already that
(i) and (ii) are true for j = 1,2,3. So let j > 4 and suppose d < 2j. Then
d — j < j and therefore the statement follows inductively by applying Corollary
3.5, because if d is odd we do not depend on j and if d is even then d — j is even
if 7 is, and 2(d — j) = d would mean 2j = d.

Suppose d > 2j. If d—j = 2j we can apply Lemma 3.11 (i) with R;(77"?) and
R;(T%773); otherwise we can apply Lemma 3.11 (i) with R;(77) and R;(T¢77").
R;(T7) and R;(T7*?) belong to the (d < 2j)-case and we can use the other two
by induction if d — 7 — 1 or d — j — 3 are good for one of the two cases. But if
j is odd we can assume that d is odd and then these two numbers are also odd
and we fulfill case (i). On the other hand, if j is even at least one of them is not
equal to 2j and we obtain case (ii) for at least one of the two pairs.

We are left with the case d = 27, which can only occur in case of even d and

therefore this is neither case (i) nor (ii). O

It is easy to see (from the techniques used to prove the above theorem) that,
if one could find just a single case where R;(T%) attains the general lower bound
with d + 1 and j both odd, then this would be true for almost all d and j.

The ‘only if’-direction in Theorem 3.14 would not be true as one can find

gsb’s for the special case that d + 1 = 25, with even j for many d:

LEMMA 3.15. In case of d = 2j and j even

R;(T") = \/%

holds if d+ 1 = (dy + 1)(ds + 1) with dy a divisor of j and if dll is odd then
L _1 £ 4
d1 2"

PROOF. Because d; divides j we can make use of Lemma 3.11 (ii) with j; = d;
and j, = dil or jp = dil — 1 whichever is even. Now we only have to ensure that
2j # dy. But from 24 = dy it follows that d+1 = (dy+1)(£+1) = d+ 2 +d,+1

. d?
and therefore j = —=+

2
that d+1 = (d1+1)(3—{—1) = d—i—z—f —d; — 1 and therefore dll =4 +1, the case

which is excluded by the assumption. O

which is a contradiction. And from 20%1 —1 = ds it follows
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jdf1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L\ + -+ -+ - + - 4+ - 4+ - + - + -
2 + + + 4+ + 4+ 4+ 4+ + + + + + + +
3 SO O R O I O I C RN
4 + + + + 4+ + + + + + + + +
5 RO R C B C RO RN
6 + + + + + + 7?2 + + 4+ +
7 R O R O RO RSO
8 + + + + + + + 4+ 7
9 T NO BRSO RERN®
10 + + + + + + +

TABLE 3.1. The table shows the existence of j-dimensional quasi
isotropic polytopes with d + 1 vertices. The first column states the
7 value, the first row the value of d. A ‘+’ indicates the existence, a
‘-’ the non-existence. The ‘(-)” entries show that the nonexistence
is not proven but very unlikely, the ‘7’-s show the open cases for
even j. Be careful, in terms of the outer j-radii both ‘+’ and ‘-,
indicate that the radii of the regular simplices are known, and each

‘(-)" or ‘7 entry stands for an unsolved case.

Lemma 3.15 includes the case that 3 divides d + 1 (because j is even) and the
case that d + 1 = (d; + 1)? with d; is not divisible by 4 (because j = 4 +1).

On the other hand Lemma 3.15 cannot help in the case d = 2j, j even if
d + 1 is a prime, neither does it always help if d 4+ 1 is not prime. For example,
if d+1=>5-17 we obtain j = 42. Here we would need j; € {2,4}, but if j; =2
it follows that jo > ds, which is a contradiction. Hence j; = 4, but this is not

possible because neither 4 nor 5 divides 42.

2. General simplices

In this section we will present two results about the outer radii of general
simplices. We start with a lemma that allows us to give an upper bound in terms

of the outer radii of lower dimensional simplices:
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LEMMA 3.16. For every dimension d and every j, such that d+1 and d—j+1
have a common divisor k € N, every simplex S¢ = conv{zy,...,z4.1} fits in a

j-cylinder of diameter

. dl
min max . n ; e i
{i1yeenigpr y={1,0yd+1} (l:o,..f.i,k—lRy (CO V{le+l(d/+1)7 ;l'z(d/+1)+l(d/+1)}>> )
o d+1 g
where d" = % Land j' = +.

Proor. Wlog we can assume that

{il,,,,,id+{?i?1,...,d+l} (l(g?.&.tjc(1 R?’, (conv{xi1+l(d,+l), e ,$i(d,+1)+,(d,+1)})>
= R;l,/(conv{xl, e X)) > > R;-i,' (conv{Zi(b—1)(@+1)s - - - Tdt1})-
Now for every vertex of S¢ the distance to £ = aff{Fy,...,Ey 1} € Aq_jaq is at
most Rjd-,' (conv{zy,...,Te1}) and it follows S¢ C E+R]d-,' (conv{z1,...,z441})B,
where F; € Ay_j o are the affine spaces in the definition of the R;i,'—radii of
CONV{Z11y(@41), - - - » T(@+1)+U@+1) 1> L =0, .., (K = 1). O
Using Lemma 3.16 we can prove the following geometric inequality for the

class of simplices:

THEOREM 3.17. Suppose S¢ is a d-simplex. Then for every j, such that
(i) d —j+1 divides d+1 or
(i) j =1
it holds that

with equality if S = T4,

PrOOF. (i) First, note that if we use the notations of Lemma 3.16 j' = d’

and therefore we get
R;(S%) < max {Rd,(Sd’d') : SO 5 d'face of sd} .
Ry ($%)

r1(Sd-d")
is attained by the regular simplex.

o 2§ .
41 = 71 and this value

1s at most

But from Proposition 2.3 (i)

(ii) Follows directly from Proposition 2.3 (i) and (iii).
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3. Boxes and cross-polytopes

Compared to the general simplices, much more is known about the radii of

boxes and general cross-polytopes. We start with a result about the inner-radii

of boxes, which is taken from [30]. The part about outer radii of cross-polytopes

just follows from polarisation, see Proposition 2.2. Afterwards, we will complete

the radii of boxes and cross-polytopes by stating the corresponding result about

outer radii of boxes. Finally, we unify the whole theory by showing that the radii

of hypercubes and regular cross-polytopes could be derived as a corollary of the

outer radii of regular simplices.

PRrROPOSITION 3.18. Let 0 < ay < --- < aq. Then

(i)

2 2
a4 +ad
Tj(Bal,...,ad) - \/ ] — k d ka

where k is the smallest of the integers 0,...,7 — 1 that satisfies

2 2
a1_|_.-._|_a 1
ag_ g < ,

and

(ii)

(j — k) [Ty a?
Zg:k Hl;ﬁz’ “12

where k is the smallest of the integers 0,...,7 — 1 that satisfies

R] (Xal,...,ad) =

. d

> (j—k—1) Hz‘:k+1 a?

- d .
D ik Hl;éi a;

The corresponding result about the outer radii of boxes seems to be very

intuitive. It says that one should just project the box through one of its smallest

faces. One gets the inner radii of cross-polytopes from polarisation. Before we

state the final theorem, we give a technical lemma which will be useful in the

proof of the theorem.
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LEMMA 3.19. Let s, e B, I =1,...,5, 7 <d, d > 2 be a set of orthonormal
vectors and ay,...,aq € Ry. Then there exists a choice of plus and minus signs
in S (0 Fagsi)? such that this is at least Y ¢_ a2 32, 5.

PROOF. Essentially we have to show that there is an a = (ay, ..., aq) with
ay € {—ay, ar} such that

J
Fa = E OzkIOékQCkth Z 0, Where Ckl,kz = E Slklsle.
=1

1<ki <k2<d
This is done by an inductive proof.
First consider the case d = 2. Then I', = ayas(; 2. So we choose o; = a;,
i=1,2if ;5> 0 and if (;» < 0 we choose oy = a; and ay = —as.
Now let d = 3. Hence I'y = oy 2 + onas(i s + asasCes. Now suppose

(a1 ,00,—a5) < 0 and I'(_g, a,,—ag) < 0. It follows that
0> F(a17a2,—a3) + P(—al,az,—ag) = _2a2@3<2,3

and therefore that (53 > 0. Analogously one can show that (35 and (33 are
positive; but then we can choose a = (aq, as, as).

By knowing that the statement is correct for d = 2, 3 we can take an inductive
step of 2, that means we assume the statement is proven up to some d and now
conclude that it is also true for d + 2.

Now suppose the statement would be wrong for d + 2, meaning I, < 0 for all

possible choices of a € E4*2. Hence

0 > Faly---7adaad+l7ad+2 + Pala-"aada_ad+17ad+2 + Pala--'7adaad+la_ad+2 + Pala-“7ada_ad+17_ad+2

=4 § aklakzckl,kz'

1<k <ka2<d

However, this is not possible as by the induction hypothesis

Z aklakzckl,kz >0

1<k1<k2<d

for at least one possible choice of . O

THEOREM 3.20. Let 0 < a; < ---<ay. Then

(i) Ri(Bay,..a0) = \/a% +oee a?, and
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.. Hd:d74+1ai
i) ri(X = — .
() 15X c00) =

PROOF. It suffices to show Part (i), Part (ii) follows then from Proposition
2.2, and as the result is obvious if d = 1 we can assume that d > 2. Any vertex
v of By, .4, can be written in the form v = Zzzl +ae, and all possible choices
of the plus and minuses in that formular leads to a vertex of B,, . ,,. Hence, for
every projection P = 2{21 5, ® 5; with pairwise orthogonal unit-vectors s; € E?,
it holds that |[Pv|? = 320, (v, 5)% = S0 (32_, +agsy)? and because of Lemma
_ such that this is at least Y0, a2 327, 5.
Now extend the set {si, ..., s;} to an orthonormal basis of E?. As Z;i:l s1Q@s; =1
it follows that S0, s% = S s> = 1, for all k = 1,...,d, and therefore
that t, := Y3/, s2% € [0,1]. Now, because S¢_ tp, = S 3% &2 has to
equal 7 the minimum value of EZ:1 trai will be achieved for t; = --- =t; =1
and tj = -+ = tg = 0. Hence R;j(By,, . a,) > \/0i +---+a3. But as the
projection of By, . ,, through its j-face Ba,....a; achieves this value we got the
desired result. O

3.19 there exists a vertex of B,, .,

Of course, one can easily get the radii of cubes and regular cross-polytopes
from the results about the radii of general boxes and cross-polytopes, but we will

state them in an extra corollary as this was the main aim of this chapter:

COROLLARY 3.21. The following hold:
(i) ry(B) = /%, and
(i) Ry(x%) = /3.
(iii) R;(B%) =+/j, and
(iv) r;(X4) = \f

J

PRrROOF. Part (i) and (ii) follow from Proposition 3.18 by choosing & = 0
there, Part (iii) and (iv) from Theorem 3.20.

One should recognise that we can prove Corollary 3.21 almost without using
Proposition 3.18 and 3.20. Except in the case where 25 = d — 1 and Lemma 3.15
does not hold we can use this lemma and Theorem 3.14 to show (ii) and Theorem

3.14 suffices to show (iii). Parts (i) and (iv) would follow again by duality.
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How do we do this in detail? Part (iii) follows from the fact that the cube
and all its faces (which are again cubes) are quasi isotropic, that by projecting
through a face of a cube all vertices stay on the circumsphere, and that the
distance from the centre of the cube to the centre of any of its j-faces is v/d — j.

To prove Part (ii) we remember the second statement after Lemma 3.9. First,

we project 7241 onto \/ng by using the gsb

1/ s 1/ sq.1 144
2\—=s1)" " V2 \=s4-1/) \ 1421 )

where si,...,54_1 is any gsb for 79!, Now because for every even j, which is
not excluded by both the theorem and the lemma, there exists a subset of size j

of s1,...,84-1, wlog s1,...,s;. But hence the sets

1 S1 1 Sj

2 \—s1) V2 =g
1 S1 1 Sj ]-dfl
2\ =5, ) V2 \=s; )\ =14,

are gsb’s in E?? and therefore there exists a projection of X7 onto any j' subspace

and

5!

such that it attains the lower bound \/%, except the case where 25’ or 25" — 1

does not pass the conditions of Theorem 3.14 or Lemma, 3.15.

4. Conclusions and open problems

Surely, the most challenging open question at the end of this chapter is to
compute the remaining radii of the regular simplices. As mentioned after Theo-
rem 3.14 there is little hope that in the even d and odd j case the lower bound
is attained. Hence here the task is to find a technique to improve the proofs
of Steinhagen and Weissbach for even d and j € {1,d — 1}. But both proofs
make very strong use of the property that one has to project on or along a one
dimensional space.

In the remaining cases where d = 27 it is absolutely not clear if the lower
bound could be achieved or not. As the case where d + 1 is prime is the most
problematic, this should be the case to investigate. Here it seems that there are
some relations to coding theory as the question is to find a projection matrix of

prime dimension d + 1 such that 4 divides d.
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A different approach would be to investigate which kinds of polytopes do all
belong to the class of quasi isotropics. Especially the ‘(-)’ entries of Table 3.1
in the 5 = 3 row would mean that there cannot be 3-dimensional quasi isotropic
polytopes with an odd number of vertices.

A minor question, but still quite interesting, is to investigate the combinatorial
properties of the quasi isotropic polytopes one obtains from the ®-matrices in
Lemma 3.11 (ii), especially when the starting polytopes are regular or fulfill
some minor regularity conditions.

As shown in Theorem 3.17, the ratio of R; to r of general simplices is maxi-
mised by the regular simplex for certain d and j. It seems to be very likely that
this statement holds at least for many more pairs (d, j) and possibly in general.
But if this conjecture is not true it would also be very interesting to investigate
how a non-regular simplex looks like which maximises such a ratio.

The inner and outer j-radii, 7 = 1, 2, of the dodecahedron and the icosahedron
cannot be computed in terms of minimal projections of a regular simplex. Despite
both being regular and therefore isotropic polytopes (if there circumradius is 1),
there does not exist a projection onto j-space, j = 1, 2 such that all their vertices
are projected onto the j-sphere.

Be careful: One could think, that because the icosahedron contains a pen-
tagonal anti-prism of the same circumradius, and that both can be projected
onto the same decagon, this is the optimal projection, because it is optimal for
the included anti-prism. But we cannot obtain this result from the anti-prism,
because it is not quasi isotropic. In fact the pentagonal anti-prism which is
quasi isotropic has a slightly bigger height. The anti-prism contained within the
icosahedron does not possess the unit ball as its smallest enclosing ellipsoid.

Still, it is possible that the optimal 2-space projection of an icosahedron is
along one of its diametrical axes. But its outer j-radii, 7 = 1, 2 are of course bigger

than \/g as the outer j-radii j = 1, 2 of a dodecahedron with circumradius 1 are

of course bigger than %

As already used in the preceding sections, the outer (d — 1)-radii of (anti-)
prisms with quasi isotropic basis are the circumradii of the basis, if the (anti-)
prisms are again quasi isotropic, means if their height is such that the smallest

surrounding ellipsoid is a ball. But even if the height is bigger, the projection
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onto the basis will not raise and therefore we know that the circumradius of the
basis is the (d — 1)-radius of the (anti-) prism even in the case of bigger hight

than in the isotropic case.



CHAPTER 4

Totally non-spherical bodies

In this chapter we show the existence of bodies of constant breadth with the
very special additional property, that each of its 2-dimensional projections in 2-
space is different from a disc, although the projections are all of constant breadth
(see Proposition 2.5). We designate such bodies as totally non-spherical.

If d = 2, it is obvious that this is the whole class of constant breadth sets,
except the disc itself. The best known 3-dimensional bodies of constant breadth
are the Meifiner bodies (see [8] for a description of the construction) or bodies of
revolution of planar sets of constant breadth, if they have a symmetry axis. It
is obvious that all the bodies of revolution, if projected along their rotation axis,
will generate a disc. But even for the two Meifiner bodies, if they are projected
orthogonal to an opposite pair of (curved) edges, we obtain a 2-ball, because the

projection is again of constant breadth and symmetric.

FIGURE 4.1. A picture of a Meifiner body, showing the two types
of edges: the ones, which are obtained directly from the intersection
of two spheres, and the others, which are rounded of such that the

diameter of the whole body equals its width.

37
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Eggleston [27] and Weissbach [74] described bodies of constant breadth in
any dimension which do not have any spherical (d — 1)-projection (see Figures
4.2 and 4.3). In fact, if d is at least 4, we know from Chapter 3 that

d
Rar(T7)
r(T9)

and therefore that .
_(T;
Rd 1(dr) > 1
TI(TF)
as for any completion T of T
Ry 1(TE) > Ry (T and r (T) = r (T?).

Hence any completion of an at least 4-dimensional regular simplex does not have
a spherical (d — 1)-projection, and that is what Weissbach showed.
Using Theorem 3.4 in Chapter 3 it is straight forward to improve Weissbach’s

result, since from R;(T?) > ,/# and r{(T9) = \/g it follows

R;(T) o [ 2
m (D =\ d+1

and this is greater 1, if 7 > %. But this means that any completion of 7% does

a+1
5 -

not have a spherical j-projection for all j >

FIGURE 4.2. A snapshot of a usual tetrahedron and Weissbach’s
3-dimensional polytope for which all its completions do not have a

spherical projection.
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FIGURE 4.3. A snapshot of Weissbach’s 3-dimensional polytope

showing that no cylinder of radius 1 contains it.

So, if d = 3, Eggleston’s and Weissbach’s bodies are totally non-spherical and
the same is true for the 3-dimensional totally isoradial body which is provided in
Chapter 5. But so far nothing was known about totally non-sphericals in higher
dimensions. Our proof of the existence of such bodies in any dimension shows
that the diagram in Figure 2.3 of Chapter 3 is complete. Hence we are able to
state for the first time all possible smaller-greater relations between the different
radii.

We will give a construction of non-spherical bodies of any dimension in Section
2; but before, we need to introduce dark clouds, a concept based on [28] and [24].
We establish the dark clouds in Section 1, and extend them also to spherical dark

clouds, that are dark clouds situated on the sphere.

1. Dark clouds

The idea of dark clouds is to give a packing of balls (clouds) such that no line
(light beam) that is non-parallel to the region where the balls are located, misses
all the balls (meaning that the clouds block all the light). It follows a formal

definition:

DEFINITION 4.1. Suppose L is a lattice in E?, and rB is a ball of radius r > 0,
such that 1B + L forms a packing of B¢, Let « >0, a; €E¢, i =0,...,n—1. A
dark cloud in E¢*! is a packing U?;Ol(ai, ai) + rB + L such that no line, which
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meets the hyperplane 4.1 = 0 in a single point, can miss all these translations.
The value an is called the width of the dark cloud.

X /
3 /

FIGURE 4.4. A sketch of a portion of a dark cloud for d = 1 and
n = 5, and a blocked line through it.

Before studying dark clouds, it is necessary to make sure that dark clouds

exist:

LEMMA 4.2. Dark clouds exist for any d € N and any radius r < %
PROOF. As every line intersecting z4.1 = 0 in a single point can be deter-
mined by a pair of points (z,0), (y,1) € E**!, we want to investigate sets of the

form
K(\a,i) = {(z,y) €E*: (i(y — x) + x,4) € (a,i) + ArB+ L},

where A € {3,1}, a € E*, i € 0,...,n — 1 for some n € N, and L is the unit
lattice. Hence K (), a, i) is the subset of E?? of all points (z,y) such that the line
through (z,0) and (y,1) meets the packing (a,i) + ArB + L. Because L is the
unit lattice we are able to restrict our attention to z,y € I¢. So the density of
our sets in B¢ or E?? are simply their volumes in E¢ or E??, respectively.

Note that the probability that (z,y) € E?? lies in K (), a,4) for any a is \9p,
where p is the volume of rB. So, if ag,...,a,_; are chosen at random in E¢, the
probability that (z,vy) & Ui, K(\, a;,1) is (1 — A%p)". Consequently, there must
exist ag, ...,a, 1 € E? such that the density of E*¢ \ I, K (A, a;,1) is at most
(1= Xdp)m.
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Now for (zg,%0) € E?? consider the subset

1 1
T = : —rB+1L —rB+1Lp.
(20, Yo) {(x,y) z €20+ B+ Ly €yt 1B+ }

If T(x0, yo)NK (5, a;, i) # 0 then there exist 2, y, with |z —zo| < &, ly—yol < %,
and (iy — (i — 1)z,%) € (a;,7) + 3rB+ L, ie. Ja; — iy + (i — 1)2| < 37, mod L.
So if (',y") € T(xo,%0), then |o' — 2| < Z, | — 9| < Z, and therefore

15n° 15n°
ity — o) — (i — 1)(x — a')] < sxr. Hence |a; — (iy/ — (i — 1)a')] < r, ie.
T(xo,y0) C K(1,a;,1). Now, because the density of T'(x¢, yp) = %, by choosing
A = 5 and n large enough, we get (1 —57p)" < 2%22. Hence, for all (zg, o) € E??

there exist a;, 1 =0, ..., (n—1), such that T'(zo, yo) K (3, a;, i) # 0 for at least one
i. But this means that T'(xg, yo) C K(1,a;,7). In particular (zo,y) € K(1,a;,1),
so Ji, K(1,a;,1) covers E** and that means that the sets |}, (a;, i) + 7B + L
form a dark cloud. O

But for our purposes we do not only require the existence of dark clouds, we
need the balls in the packing to be not too close to each other, such that we can

slightly extend them later.

LEMMA 4.3. Let o € (0,1), and B, > 0. Then there exists a dark cloud in
the region 0 < x4.1 < «, such that each ball in the cloud has radius r < [ and

any pair of balls is at least e > yr apart.

PrROOF. By Lemma 4.2 there exists a dark cloud with n layers at 1 apart
consisting of balls of radius r <  in these layers. Now reduce everything by a
factor &. The layers are then in the region 0 < 4,1 < a and their distance apart
is %. The balls are now of radius %7 and in their layers they are %(2 — 2r) apart,
while the balls in different layers are (1 —2r) apart. Hence the balls have radius
%r <r < [ and their distance apart is at least (1 —2r). So picking r such that
12>~ we get the desired result. O

r

Assume we cut the sphere with two parallel hyperplanes, both having the
centre on the same side, such that we obtain two parallel caps on the sphere,
one a subset of the other. Now we project the sphere through its centre (so non-

orthogonal) onto a hyperplane parallel to the hyperplanes above but outside the
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sphere. The projection of the two caps forms an (d — 1) dimensional annulus on

the hyperplane, see also Figure 4.5.

-
I
I
I
|
|
r
|
|

v

-

\

~
~
~

~
~

FIGURE 4.5. Projecting the region between two parallel caps onto

an annulus.

Hence the following Lemma prepares the projection of dark clouds onto the

sphere:

LEMMA 4.4. Suppose A is the annulus 1 < |z < 14¢€, € >0 . Then there

exists a collection of dark clouds C such that any line meeting B cuts at least
through one of the balls of C within A.

PROOF. Suppose P is a polytope such that B C P and all vertices of (1+«)P
are contained in (1 + €)B for some «, with 0 < « < €. Now we place dark clouds
of width a along all the facets of P. Hence every line meeting B meets also
P and because the vertices of (1 + a)P are lying in the annulus each of these
lines cuts through one of the dark clouds touching a ball in the cloud within the

annulus. O
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Now we a are able to introduce the spherical dark clouds:

DEFINITION 4.5. Any packing of caps on the d-dimensional sphere S within
the region a — € < x441 < @, 0 < a < 1 is called a spherical dark cloud of width
€, if any great 2-circle on S which meets the cap 411 > o, intersects at least one

cap 1n the packing.

To show that spherical dark clouds exist we only have to project the annulus
in Lemma 4.4 back onto the sphere and transform the projections of balls back

into caps on the sphere.

LEMMA 4.6. Every cap of S of the form xqy1 > o, 0 < a < 1 can be blocked
by a spherical dark cloud of any width 0 < € < a.

Proor. If we project the region « —e < x4, < « from 0 onto the hyperplane
ZTgp1 = 2 it forms an annulus.

Now we apply Lemma 4.4 to obtain a collection of dark clouds which blocks
every line meeting the ball surrounded by the annulus. But, because every great
2-circle on S which meets the cap z4,1 > « is projected onto such a line on
Tgr1 = 2, we obtain by back projection a blocking of great 2-circles on the
sphere. So far the projected collection of dark clouds does not necessarily consist
of disjoint caps, but because of Lemma 4.3 we can choose the distance of the balls
within one cloud to be arbitrary large. So, by replacing the disjoint parts of the
projection onto the sphere by equally sized disjoint caps we obtain our spherical
dark cloud. 0]

2. Existence of totally non-spherical bodies

In the following Lemma we will make use of the existence of spherical dark
clouds to describe a set of antipodal caps on the sphere which cannot be missed

by any 2-circle on the sphere.

LEMMA 4.7. For any dimension d > 3 there exists a finite set of closed caps
+C4,...,£C,, on S with disjoint relative interior such that every great 2-circle
on S (and therefore any great j-circle with 2 < j < d — 1) meets the relative

interior of at least one pair +C;.
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PROOF. Every point  on S has |z = 1. Hence every great 2-circle meets the
hyperplane z; = % for some i. Now we block all these hyperplanes as described
in Lemma 4.6 in the region % —e<ux < % and handle overlapping caps as
we handled them already in the proof of that lemma. But since no great 2-circle
can be parallel or approximately parallel to all of these hyperplanes they all hit
at least one antipodal pair of the clouds and therefore at least one antipodal pair

of caps within the clouds. O

Although the above proof holds for all d > 3 we will give a special one for
d € {3,4} as we can avoid using the dark cloud construction in this dimensions

and state the collection of caps in an explicit way:

PROOF OF LEMMA 4.7 FOR d € {3,4}. This time we start with the caps
+C;, i =1,...,d as follows:

1
OZ'Z: ZL‘ESZZ‘Z‘Z— .
{ V2 }
If d = 3 every great circle must intersect through these caps as, because of

Corollary 3.21, the biggest disc which fits into a cube of edge length /2 has

@, which is strictly less than 1.

Hence we can assume that d > 4 and concentrate on great circles which do

radius

not entirely lay in a hyperplane of the form z; = 0 (otherwise we can reduce the
problem to the d = 3 case).

The intersection sets of +C; N +C; are only the points with i-th and j-th
coordinate :I:% and the rest zero.

Let us now seek a great circle ¥ not cutting through the relative interior of
the 8 caps. Suppose X meets the hyperplane x; = 0 at the points +(xz1, 2, 23, 0).
So, we have |z;| < %, 1t =1,2,3. Now let +y be the points on ¥ perpendicular to
+z, |y| < %, i=1,...,4. Now, every point z € ¥ is given by z = x cos f+y sin #

with 6 € [0,27), and we require |z; cosf + y;sinf| < %, i=1,...,4 for all 6.

But as |z; cos @ + y;sin 6] < /22 + y? for all # it must hold \/z? + y? < % and

therefore z7 + y? < %, ¢t =1,...,4. By adding these inequalities over all ¢ and
using x,y € S we obtain that z? +y? = 1, i = 1,...,4. As z, = 0 it follows
lya| = % and therefore that ¥ touches +C) in +y. By symmetry, ¥ touches

each of £C;, 7 =1,...,4. But this means that for all z = 1,2, 3 there must also
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exist some f; such that x; cosf; + y;sinf; = % Without loss of generality we

can assume that z;,y; > 0 for a fixed 7. Hence

1
|z; cos 0; + y; sin 6;] < max {|z; cos b;|, |y; sin 0;|} < max{z;,y;} < 7
if f € (%,ﬂ') U (37”, 27r). On the other hand if 6 € [0, %] U [ﬂ, 37”] then |z; cos 0; +
yisin ;| = |z;cosf;| + |y;sinf;| which is the 1-norm of the point in E? with
1

coordinates x; cos f; and y; sin#;. But as the 2-norm of this point is 7 the only

possibilities for #; are 0 € {%” ke Z} and x;,y; € {0, %} such that z;+y; = %

This means that for all i = 1,2, 3, the coordinates x;,y; have to be 0 or i%
with one being 0 and the other one being :I:%. But since z,y € S, there can only
be one i € {1,2,3} such that y; = i%. Hence there are only six different choices
for ¥. Nevertheless, since cos § = sin § = %, all possible ¥ run through four of
the points (+£1,+1 41 +1) which are far away from the caps z; > % So by
adding caps +C; =, i = 5, ..., 12 of the form ijl +x; > 2 —¢, for a sufficiently

small € we get the desired set of closed caps. O

Now we are ready to prove the main result of this chapter. To do so, we take
all pairs of antipodal caps and transform them slightly such that the body we
obtain remains to be a body of constant breadth of the same diameter as the
sphere, but does not have a single circular projection (a similar method was used
by Danzer in [23]).

THEOREM 4.8. For all d > 2 there exists a d-dimensional totally non-spherical
body.

ProoOF. All planar convex sets of constant breadth are totally non-spherical.
Hence we can assume that d > 3. As mentioned the basic idea is to replace the
pairs of caps C; and —Cj, i = 1,...,m in Lemma 4.7 by asymmetric sets D;" and
D;” which preserve the constant breadth property for the resulting body. How to
do this?

Consider any pair +Cj, their line of symmetry /; passing through 0 (the centre
of B), and a 2-plane L containing ;. Let the bounding points of —C; N L are e~
and e’ (see Figure 4.6).

We construct the point p on /; lying above 0 relative to —Cj, at distance 2
from both e=* and e'®. Hence p = (\/ 2 —sin® o — cos a) e, but it is the same
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Dpi

D(L) B(L)

eilmta) pi(m—a)

A(L)

FIGURE 4.6. A sketch of the replacement of antipodal caps.

for any choice of L through [;. p lies outside L N B but below the intersection of
the tangents to L NB at (™% and /") respectively. Now consider the three

circular arcs of radius 2

(i) A(L) with centre in p and end points e~ and €' within —C; N L,
(ii) B(L) with centre in e~* and end points ¢/™*) and p, and

(iii) D(L) with centre in ¢ and end points '™+ and p.

We define D;" as the union over all 2-planes L of the regions bounded by B(L),
D(L), and the arc on S between ¢ (™) and € ™® and D; as the union over

all 2-planes L of the regions bounded by A(L) and the arc on S between e'® and

—iQ

e,

The resulting body K is again of constant breadth and because of Lemma 4.7
every great 2-circle on S intersects at least one of the regions +C;, i =1,...,m.
Hence the orthogonal projection of K onto any 2-plane cannot be a disc. O

Theorem 4.8 allows us to state as a corollary that:
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COROLLARY 4.9. For all d > 3 there exists a convexr body C such that

ra(C) < -+ < 1(C) < 1, (C) = Ry (C) < Ry(C) < -+ < Ra(C).

PRrooOF. Follows from Theorem 4.8 and that the circumradius of a non-sphe-

rical 2-dimensional body of constant breadth is bigger than its half diameter. [

Because of Corollary 4.9 the diagram in Figure 2.3 of Chapter 3 is complete in
the sense that for any two radii which are not connected by a directed path there
are bodies where the ‘<’-relationship holds in one (totally non-spherical bodies)

or the other (ellipsoids with all axis of different length) direction.

3. Conclusions and open problems

In this chapter we successfully proved the existence of non-spherical bodies of
constant breadth in any dimensions.

The second proof of Lemma 4.7 in the cases d € {3,4} showed that the dark
cloud construction is avoidable. This would be always possible if one knows a
symmetric d-polytope P such that P does not contain a disc of radius 1; such
that the intersection of P and B only contains points p which are not on any
(d — 3)-face of P, and if p is on a (d — 2)-face then p € S. To describe such

polytopes in general dimension would therefore simplify the matter.






CHAPTER 5

Totally isoradial bodies

In [51], Hilbert and Cohn-Vossen considered the following problem: Which
properties uniquely characterise the ball in three dimensions? They listed eleven
properties, some which are unique for the ball, some not. One of the eleven is
the constant breadth property. Already Euler knew that this property does not
characterise the disc in 2-space [29]. In fact, it does not characterise the ball in
any dimension [56], the Reuleaux triangle and the Meifiner bodies [60, 59, 78, 8]
are the best known counterexamples in dimension 2 and 3, respectively. However,
a body that is not the ball but that has the same s-breadth for every direction
s € S, sounds a bit odd and is surely surprising for anyone who discovers it the

first time.

FIGURE 5.1. Since the size of 2-dimensional bodies of constant
breadth can be easily measured in any kind of money taking ma-
chines, they are a possible alternative to the usual spherical coins

as the English 20 and 50 pence show.

A good survey on constant breadth bodies and their properties can be found
in [17].

A well known extension of the concept of constant breadth is that of constant
outer and inner j-measures, j = 1,...,d—1[10, 17]; see [56] for a definition. It is
easy to see that the three classes, bodies of constant breadth, bodies of constant

49
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inner 1-measure, and bodies of constant outer 1-measure, coincide. Firey [35]
showed that besides the ball, which is contained in all of these classes, non-
spherical bodies of constant outer j-measure exist for all j € {1,...,d — 1}.
However, it is an outstanding open problem if there exists a non-spherical body
of constant breadth and constant brightness (constant outer (d — 1)-measure),
and under the assumption of certain smoothness conditions about the boundary,
it is shown in [10] that the two properties characterise the ball.

In this light it seems to be quite natural to investigate classes of bodies where
the inner or outer j-radii, 1 < 57 < d — 1, are invariant with respect to the
direction of the defining flats. This leads us to the much more general class of
isoradial bodies. Again the classes of bodies where the inner and outer 1-radius
are invariant coincide with the constant breadth bodies, and the ball satisfies
isoradiality for all r; and R;. We call such bodies, that are isoradial for all r;
and R;, totally isoradial. Since any totally isoradial body is a very special body
of constant breadth and as the analogue class for inner and outer j-measures
only contains the ball, the existence of such a body besides the ball sounds very
unlikely. Nevertheless, it will be shown in Section 2 that at least in E? there exists
a non-spherical totally isoradial body. However, previously we need to state some

definitions and basic properties about the isoradials in the first section.

1. Definition and basic properties

As the constant breadth bodies are, like the regular simplices, often attaining
extreme relationships between the four basic radii (see Chapter 6), it seems to be
important to investigate isoradial bodies as their natural extensions to general

dimensions:

DEFINITION 5.1. Suppose C is a body in B and j € {1,...,d—1}. Then we
call C

(i) outer j-isoradial (Rj-isoradial for short), if for every E € Lq_; 4 there exists
p € E?, such that (p+ E) + R;(C)B D C,

(ii) inner j-isoradial (r;-isoradial for short), if for every F' € L, 4 there exists
q € E%, such that (¢ +r;(C)B) N (¢+ F) C C,
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(iii) R-isoradial with R C {r;,R;:j € {l,...,d—1}}, if C is r;- and R;-
isoradial for all v; and R; € R,
() (R,S)-isoradial with R,S C {r;, R;,j € {1,...,d —1}}, if C' is R-isoradial
and not rj- or Rj-isoradial for all r; and R; € S,
(v) totally isoradial, if C' is {r;, Rj,j € {1,...,d — 1}}-isoradial, and
(vi) isoradial, if C' is R-isoradial with R # ().

A body C'is Rj-isoradial, if R¥(C|F) does not depend on F € Ly 4 for any
k € {j,...,d}. Every body of constant breadth is {ry, R }-isoradial, because the
two isoradiality classes coincide by Proposition 2.5 (a) with the constant breadth
property. Therefore in E? the bodies of constant breadth are the only (totally)
isoradial bodies. However, in general dimension there are 2d — 4 more possible
types of isoradial bodies.

It is obvious that the ball is totally isoradial. This raises the question, whether
there exist non-spherical totally isoradial bodies and whether there exist (R, S)-
isoradial bodies for every partition R, S of {r;,R;,j € {1,...,d —1}}.

LEMMA 5.2. Let j € {1,...,d — 1}. Every body C' with
Ry(C) = -+ = Ry(C)
is {R;, ..., Rq_1}-isoradial, and every body C with
rq(C) =---=1;(C)
is {rj,...,Ta—1}-isoradial.
PROOF. From Lemma 2.4 we know that
R;j(C) = min{R;(C|F) : F € L;q}
and it is easy to see that in general
Rq(C) > max{R;(C|F): F € L4}

Isoradiality now follows from R;(C) = Ry(C).

The same argument holds for the inner radii. 0J

For example, a right-angled cone fulfills Ry (C') = R3(C') and therefore it is an
Ry-isoradial body (in fact it is ({Ra}, {r1, re, R1})-isoradial).
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The converse of Lemma 5.2 is not true, since all 2-dimensional bodies of
constant breadth C, that are different from B, neither fulfill R,(C') = Ry(C) nor
1 (C) =Ty (C)

COROLLARY 5.3. If for any body C' the relation
ra(C) =+ =r(C) <ri(C) = Bi(C) < Ry(C) =+ = Ry(C)
holds then this body is totally isoradial.

Proor. Follows directly from Lemma 5.2 0

2. A totally isoradial body in 3-space

The knowledge from Proposition 2.5 about constant breadth bodies turns out
to be helpful to prove the existence of non-spherical totally isoradial bodies. This
proposition allows us to state the following lemma, which will reduce our task of
finding non-spherical totally isoradial body in 3-space, to the task of finding a

certain Ry-isoradial body:

LEMMA 5.4. If C' is a body such that r1(C) < Ry4_1(C) = R4(C) then there

exists a completion Cr of C' such that
’I“d(CF) = Td_l(or) < Rl(CF) = Tl(CF) < Rd_l(or) = Rd(CF)

PRrROOF. It follows from Proposition 2.5 (c) that there exists a body of con-
stant breadth Cr D C', such that

Rq—1(Cr) < Rq(Cr) = Ry(C) = Ry—1(C) < R4—1(Cr).

Thus the relationship holds with equality and every term is bigger than ri(C) =
r1(Cr). Hence Cr fulfills

Ri(Cr) = 11(Cr) < Rg—1(Cr) = Rq(Cr).
Now it follows from Proposition 2.5(d) that
rq(Cr) + Ry(Cr) = 2r1(Cr),
and because C? is for all s € S also a body of the same constant breadth

ri-1(Cp) + Rg-1(CF) = 211 (CF)
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holds. Hence, from
Ry 1(CE) = Ra1(Cr) = Ra(Cr)

for all s € S, we get r4_1(Cf) = rq(Cr) for all s € S, and therefore ry_1 (CrNF) <
rq(Cr) for all F' € A, ;4. This implies that

Td(cp) = rd,l(C’p) < Rl(CF)
0]

At this stage we are in the position to state the main result of this chapter:
THEOREM 5.5. There are non-spherical 3-dimensional totally isoradial bodies.

Proor. Because of Lemma 5.4 and Corollary 5.3 we only have to show that
there exists a body C' such that

7"1(0) < RQ(C) = Rg(C) .

The idea of our construction is to choose a certain set of regions on the unit
sphere, such that for any point x of the sphere within the set, the antipodal point
on the sphere is not included in this set; thus ensuring that the body formed
by the convex hull of the chosen regions has a diameter strictly less than 2. At
the same time the choice of the regions will finally be in a way that the body
possesses at least three points on every great circle over S, which contain the
centre 0 of B in their convex hull. This guarantees that Ro(C' N E) = 1 for every
plane E € L, 3 and therefore that Ry(C) = 1.

The main problem of the construction is the question, how to choose the
regions on the sphere, such that both properties above are fulfilled at the same
time. Here we use the following idea: First we select a set of planes through
the origin, which are in a somewhat general position. These planes will describe
the boundaries of the selected regions such that they maintain the first criterion.
Then we improve on it by choosing subsets of every area, making sure that the
second criterion is also met.

We define the arrangement of planes as follows: Consider an odd number
of planes through the origin Ei,..., Eopy1 € Lo3, n > 3, but fixed, and their
intersection with the unit ball, £, "B = Dy, k = 1...,2n 4+ 1 such that they

satisfy the following properties:
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(i) No three Ej intersect in one line.

(ii) There exists no plane E' € L, 3 different from the Ej, which passes through
the intersection Ey; = Ey, N Ej, k # [ of three different pairs of the planes
Eiyoo\ Eoper.

Every plane Ej, k = 1,...,2n+ 1 divides E? in two halfspaces, which we call
E; and E, . The planes define a structure of cells, arcs and vertices on S, such
that for every vertex the antipodal point on the sphere is also a vertex. We label
all of these pairs of antipodal vertices by (v;,w;), j € J={1,...,n(2n+1)}.

Let dist(F,v) = min.cp |e — v| be the usual Euclidean distance measure be-

tween any affine space F' and a point v and let
J*={(j1,J2,43) € J> :Vk € {1,...,2n+1}, 31 € {1,2,3}, such that v;, & Ej}

be the set of all triples of vertices, where not all vertices lie on one of the linear
spaces which define the arrangement. Let

S(]l)]27]3)7E = lel}},aé),(?)} dlSt(E7 ,U]l)
be the maximum distance of one vertex of such a triple to any linear space E and

let

§ = min Min S, jy.js).F
. 1,J2,73
(r,janja)Ed* BELns (J1:32:73);

be the minimum over all triples in J* and possible E of the s - Because

J1,J2,3)
of property (ii) and the compactness of Ly 3 it follows that s > 0. That means
every great circle on S has a distance of at least s to at least one vertex of every
triple in J*.

We colour the cells as follows: For every cell take any point x in the interior of
the cell. If z belongs to E; for an even number of planes E, the cell is coloured
black, otherwise white. Because of the odd number of planes in the arrangement,
every pair of antipodal cells gets different colours and only the boundaries of the
cells are coloured both, black and white. The black coloured cells are the pieces
we are interested in. We call each one of them as a; and the collection of a;’s by
A. Moreover, we call the white sector antipodal to a; as b;, for all 7.

Now modify A as follows (see Figure 5.2). For every i let A; be a closed area
in the interior of a;. The bounding edges of the A; are formed by affine planes

parallel to the planes which create the boundaries of a;, such that A; and a; are
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similar in the way that they have a one-to-one correspondence of bounding edges
and vertices. For every vertex v; (resp. w;) of a;, there are two sides of a; incident
on v; (resp. w;), say e;; and ejo. Choose the two points on e;; and ejo which are
at distance s, from v; (resp. s,, from w;), where s,, and s, are at most s and

Su; #* Sw;- Let us call these two points p;; and pjs.

FiGURE 5.2. The regions a; and A;.

Join pj; and pj2. Because A; is similar to a;, for every vertex v; (resp. w;) of
a; there exists a vertex vj (resp. wj) of A;, with two sides incident on v} (resp.
w’), say €} |leji and €),|[ejo. Join pji to any point in the interior of €}, say p;
and pjs to any point in the interior of €l,, say pj,. Let the area defined by the
ordered points pji1, pj2, Pjo, Vi, Py (Dj1, Pj2s Do, W), Pj1) be Aji (see Figure 5.3). We
will refer to each of these Aj; as tooth.

Repeat this for every vertex of a; and for every i. This gives a collection of
regions A; and Aj;;,. We take the convex hull of this collection, name the resulting
body C', and reduce the black colouring to only C'N'S.

Now we only have to argue that

(i) C does not contain antipodal points of S and
(ii) C has three points py, pa, p3 on every great circle over S, such that the convex

hull of the three points contains the centre 0 of B,

as mentioned at the beginning of the construction.
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FIGURE 5.3. The distance between p;; and v; is s,, . Aji is a tooth
like structure. Three more such structures are formed for the other

three vertices. Finally, the convex hull of the A;;’s and A;’s forms
the desired body C' .

In order to prove (i) suppose z is a point in CNS. If x is a point in the interior
of one of the regions a; it follows from the colouring that the antipodal point is
not in C'. Now let = be a point on the boundary of a;. The only such points
are the points p;; and pj, for all j. By construction, for every antipodal vertex
pair vj, w; the distances of the boundary points to the corresponding vertices s,
and s, are different. Thus the points on the antipodal cell boundary are not
antipodal to p;; and pjo. Therefore C' does not have any pair of antipodal points.

In order to prove (ii) let E' € Lo3. There are three possible cases (let k, k' €
{1,....2n+ 1}, k #K'):

(1) E # Ej, for all k and E does not contain some Ej N Eyr.
(2) E # Ej for all k, but E contains some Ej N Ey.
(3) E is one of E.

Note that no E can pass through three or more a;’s only through the non-
coloured parts. Otherwise E has to cut through the spaces between a vertex
of a; and the tooth close to the vertex. If such vertices are not on the same
Er,k € {1,...,2n 4 1}, then by definition of s the claim holds. So assume that

all such vertices are on a fixed E;. Now, £ NS and E;, NS intersect each other
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transversally at a unique pair of antipodal points, and only one of these inter-
sections can permit a cut through the non-coloured parts of the a;’s, which is a

contradiction.

tooth

r

tooth

FIGURE 5.4. FE intersects Ej only in two antipodal points and thus
cannot intersect two of the regions a;, and a;, both bounded by Fj

only through the non-coloured area.

We divide (1) in three subcases: E is such that it intersects only the non-
coloured part of some a;
(1a) O times,
(1b) 1 time, and
(1c) 2 times.

If (1a) happens, ENB contains (2n + 1) black sectors on the boundary. Since
(2n + 1) > 7, the construction ensures that £ NS always includes three points,
such that their convex hull contains the centre of £ N B.

If (1b) or (1c) come true, one or two black sector are lost, respectively. How-
ever there are at least three points left, such that their convex hull contains the
centre of ENB (see Figure 5.5).

Note the following: If E # Ej, k € {1,...,2n+1} then by the choice of planes
in the initial arrangement, neither can F pass through three or more intersections

of the E}’s; see property (ii) of the construction, nor can E pass or be close to
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X

FIGURE 5.5. Case (1a), the coloured parts are the intersection of F
with the coloured parts of B . If case (1b) happens, one of the black
sectors, say X, will turn white. For case (1c¢), two black sectors,
say X and Y, turn white. This is the worst case with two black
sectors lost, still remaining 5 sectors which cannot be situated on

the same half sphere.

three or more of them, because of the definition of s. Suppose E passes through
two intersections. These two intersections define two pairs of antipodal vertices.
Without loss of generality, let us call these two pairs (vy,w;) and (vg, we). If
both of these pairs lie on some fixed Ej, say Ef, then the only plane passing
through both of these pairs is Fx, which is a contradiction because F # F. for all
ke {l,...,2n+ 1}. Therefore, (vq,ws,ve, ws) generates triples, say for example
(v1, w1, v2), not all of which are on the same E}, thus being members of .J*. Now,
by definition of s, F' cannot pass through these members of J* and be closer than
s to another intersection. Moreover, F cannot cut through one antipodal vertex
pair and maintain a maximum distance of less than s to two more such pairs on
the same E} because of an argument similar to that used for case (1c).

Hence in case of (2), there might exist again three subcases:

(2a) E passes through one intersection and not through the non-coloured part of
the interior of any of the a;,
(2b) F passes through one intersection and additionally through the non-coloured

part of the interior of one a;, and
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(2c) FE passes through two intersections and not through the non-coloured part

of the interior of any of the a;.

We will show case (2c), since this is the most difficult case. The same argument
will easily be applicable to the other two cases.

If (2¢) happens, this implies that £ NB changes twice from one a; to another
a; through the common vertex v; of a; and a;, thus going through a thin white
sector between the corresponding teeth. On the antipodal side ENB passes from
one b; to another b} through a vertex. Let us consider the vertex v; common to
the regions a; and a;. Even though, because £ passes from a; to a; through v,
it must intersect the tooth close to v; in a;, since the sides of a; incident on v;
and one side of the tooth form a closed curve on S. Similarly the result holds for

the tooth close to v; in a; (see Figure 5.6).

ENB

tooth close to v; in a;

Z

tooth close to v, in a;

FIGURE 5.6. EN B cuts through a vertex, thus two black sectors

come closer but keeping a thin white sector Z between them.

Therefore, in £ N B two successive white sectors merge to form one big white
sector (thus one black sector which was placed between these two is lost) and two
successive black sectors approach each other but do not merge, because a thin
white sector Z remains, see Figure 5.7. Since this happens twice (F N B changes

twice through a vertex) two black sectors are lost (and thus the two antipodal
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white sectors are thinned). In this case £ N'B has (2n — 1) black sectors on its
boundary and these sectors cannot all be on the same half space of E N B. This
is true, because one would need at least 4n — 3 planes F). to separate them from
each other, and since n > 3 it follows 4n — 3 > 2n + 1, which is a contradiction
as there exist only 2n + 1 of the E}’s. Hence the convex hull of the black sectors

contains the centre of £ N B in the interior.

v

FIGURE 5.7. Case (2): Two white sectors merge to form one big
white sector V' and two black sectors approach each other but keep
a thin white in between. In case of (2¢) it can also happen that for
example V' and W merge, with the result that two black sectors

are lost.

In case of (3) £ N'B contains at least 3n points (when for every j one of s,,
and s, equals 0) and at most 4n points (when for every j both s,; and s,, > 0).
All these points are realised where the teeth touch E. The convex hull of these

points contain the centre 0. 0]

If we reduce the regions A; to single points the construction of C' in Theo-
rem 5.5 still gives a valid C. It is also possible to choose s(v;) to be 0, thus
getting p;1 = pjo = v;. Figure 5.8 shows two snapshots of a 2-isoradial body as

constructed in Theorem 5.5.
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FIGURE 5.8. Two snapshots of a 2-isoradial body with ry < Ry = Rj3.

3. Conclusions and open problems

In this chapter we have introduced the class of isoradial bodies as a generalisa-
tion of constant breadth and as a radii counterpart of what constant j-measures
are for volumes. As the main result we were able to establish the existence of a
totally non-spherical body in 3-space, thus solving a question for radii for which
the analogue question for j-measures remains open.

Surely, the most obvious open problem at the end of this chapter is to answer
the question if there are totally isoradial bodies besides the ball even in higher
dimensions. If one uses again Corollary 5.3 then the task is to find a totally
non-spherical body with Ry = -+ = Ry.

But already in 3-space one could ask if there is a totally isoradial body with
Ry < Rj3, therefore avoiding the use of Corollary 5.3. Nevertheless, it is even
possible that Rs-isoradiality in 3-space is equivalent to Ry = R3. Showing this or
maybe even a similar statement in general dimension is also a challenging task.

One could do a step forward on this way if it would be possible to generalise

Proposition 2.5 (c) as follows:
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OPEN PROBLEM 5.6. Is it possible to find a completion Cr for every convex
body C with r(C) < R;(C) for some j € {2,...,d} such that

R](OF|F) = R](O|F) for all F € 'Cj,d

or at least
. ‘ o ' o
Al R;(Cr|F) A R;(CIF)
If the answer to the first Part of Open Problem 5.6 is ‘yes’ one would get the
following corollary, which is marked with a star to indicate that it depends on an

unsolved question:

COROLLARY™* 5.7. If C' is Rj-isoradial, j € {2,...,d—1} and r(C) = R;(C)
then it must hold v (C) = R;(C') = Rq(C).

Proor. If Open Problem 5.6 is right, there exists a completion Cr of C such
that Cr is R;-isoradial and R;(Cr) = R;(Cr). However, because of Proposition
2.5 (a) it follows Ry (Cr|F) = R;(Cr|F) for all F € L; 4, and therefore Cr|F = B/.

Hence
R;(C) = R;(Cr) = Ra(Cr) = Ra(C),
and therefore R;(C) = R4(C). O

After asking for completions within minimal circumscribing j-cylinders and
introducing isoradiality as a generalisation of the constant breadth property, there
is another quite natural question: Is there a good generalisation of completions
(or reductions) to general j-radii?

If one defines a body C' to be j-complete if r;(D) > r;(C') for all D D C then
B is not j-complete, if j # 1, because r;(D) = 1 if D = conv{B U {p}} for all
p € E* and j # 1. Nevertheless, B is ro-isoradial, such that this generalisation
seems to be not very useful. A 2-complete set in this sense would be an infinite
cylinder span{s} + B, s € S, and unbounded sets are surely something we want
to avoid.

Since the ball should be j-complete if we would like to have a chance that
there exists a relation between generalised completeness and isoradiality, a better

definition should be the following:
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DEFINITION 5.8. A body C is called j-complete if max{R;(D|F) : F €
Ljq} > max{R;(C|F): F € L;q} for all D D C, and if C is a body, then a body
D D C is called the j-completion of C, if D is j-complete and max{R;(DI|F) :
FeLl;q} =max{R;(C|F): F € L4}

It is easy to see that B is j-complete. But as one could easily add a couple
of points from the sphere to the totally isoradial body in Chapter 5 it is not
true that an Rs-isoradial or re-isoradial is also 2-complete. To show if the other

direction holds or not, is another interesting question to proceed on.






CHAPTER 6

Blaschke-Santalé diagrams

In 1916 Blaschke [7] considered a mapping f of 3-dimensional (convex) bodies
C onto the plane, defining the two coordinates of f(C') as

_ATF(0)  487°V(C)
BRI/ E S V(G

where F'(C') denotes the surface area, M(C') the mean curvature, and V(C) the
volume of C. The set of points obtained for all possible bodies C' in E? is called
the Blaschke diagram, and it is still an open problem to give a complete system
of inequalities describing its boundary structure [61, 22].

Similarly, for planar sets, Santalé [63] proposed in 1961 a mapping of triples
out of the six quantities, namely area, circumradius, diameter, inradius, perime-
ter, and width, onto a 2-dimensional diagram (see Section 2 for details). He also
provided complete characterisations by inequalities for 6 of the 20 possible map-
pings, including one pure radii (without area and perimeter) case. Solutions to
the three remaining pure radii diagrams are given in [20, 19].

The complete systems of valid inequalities describing the Blaschke-Santald
diagrams are minimal in the sense that removal of any of the inequalities leads to
an incomplete description of the diagram. Hence they are the best known way to
see which geometric inequalities about radii are really essential and not dominated
by others. The disadvantage of these diagrams is that they only involve at most
three radii at the same time. Hence one cannot develop inequalities which take
all four radii into account.

In the first section of this chapter we state some technical results about the
behaviour of radii of Minkowski sums. A survey of the four Blaschke-Santald
diagrams which only consider radii is presented in Section 2. This is followed by
the main section of this chapter, in which we extend the concept of Blaschke-
Santalé diagrams. Here we analyse the single 3-dimensional diagram one obtains

65
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from considering all four planar radii at the same time. This new diagram has the
property that its projections along the coordinate axes are three of the well-known
planar diagrams.

Development of this new 3-dimensional diagram is an important step, since
it offers a much deeper insight in the whole matter and about the possible radii
relations. It enables us to derive essential new valid inequalities, which involve all
four radii at once; and six additional planar sets (besides the four, known from
the 2-dimensional diagrams), which reveal extreme points of the 3-dimensional
diagram are also discovered. At this point we should mention that we use the
notions face and extreme point for these non-convex diagrams in the same way
as they have been defined for convex sets in Section 1 of Chapter 2. The only
difference is that we allow a face to be non-convex.

In the last section of this chapter we provide an outlook on further possible
extensions of the Blaschke-Santalé diagrams, for example, diagrams we obtain by
going back to 2-dimensional mappings, but now considering bodies in 3-space,
and maybe using also other radii than the standard ones. These extensions
will also tie up the concept of Blaschke-Santalé diagrams and our results in the
preceding chapters. In particular, the totally isoradial bodies of Chapter 5 will

be important in this context.

1. Radii of Minkowski sums

Let C? denote the class of all d-dimensional bodies C' (note that we do not
require the bodies in C? to be proper). It is well known that the volume of the
Minkowski sum K + AL for two bodies K,L € C? and A € R is a polynomial
function in A (from the theory of mixed volumes, see [62] for an overview). Of
course, this is also true for (1 — \)K + A\L.

In this section we study the following questions:

e what can be said about the functions 74k (A) = 7;((1 — A)K + AL)
and R k(A = R;(1—-A)K+AL), j € {1,...,d} for arbitrary bodies
K, L and

e what do we get if we fix L = B (in the case of volumes the coefficients
of the function Vol(K + AL) are called the quermassintegrals of K).
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LEMMA 6.1. Suppose K,L € C* and \ € [0,1]. Then
a) rj(1=XN)K + ML) = (1 = Nr;(K) + Arj(L) if
(i) j =1 and K, L achieve their diameter along parallel directions, or
(ii)) L =B.
b) Ri((1=ANK + ML) = (1 - NR;(K)+ AR,(L) if
(i) j =1 and K, L achieve their width along parallel directions, or
(ii)) L =B.

PrOOF. The validity of (a) and (b) under hypothesis (i) is in both cases an
easy consequence of the linearity of (-, s) and the fact that R, and r; are the
minima and maxima of the s-breadth of a body, respectively.

Hence it remains to show that (a) and (b) hold if L = B.

a) We start with the ‘>’-direction. From the definition of the inner j-radii it
follows that there exists F' € A, 4 and ¢ € F such that (¢ + r;(K)B) N F C
K. Wlog we can assume that ¢ = 0 and therefore that F' € L;4. Hence
r;(K) BN F C K and, since F is a linear subspace and therefore invariant
under scaling, we get that (1 — A\)r;(K)BNF C (1 — A)K. Now we use the

monotonicity of the Minkowski sum with respect to set inclusion and obtain
1I=XNK+ABD(1—-Nrj(K)BNF+ABD((1-MArj(K)+A)BNF.

Hence

ri((1=AN)K+AB) > (1 —\)r;(K)+ A
Now consider the ‘<’-direction. Wlog we assume A # 1 and for reading con-
venience we set

p=r;((1—=ANK+ \B).

It follows again from the definition of the inner j-radii that there exists F' €
Ajqand g € F such that (¢+ pB) N F' C (1 — A\)K + AB, and we can assume
wlog that ¢ = 0 and therefore F' € £; 4. Hence pBNF C (1 — A\)K + AB. But
from this we get (p — A)BN F C (1 — A\)K and therefore

p— A
——BNFCK.
1—A

So we see
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which proves the claim.
b) The proof for the outer radii follows the same scheme. We begin with the
‘<’-direction. From the definition of the radii we know that there exists an
E € L4_j4such that E + R;(K)B D K. This leads immediately to
(1-A(E+Rj(K)B)=E+(1-ANR;(K)B2 (1-))K,
from which we obtain
E+((1-=XNR;(K)+A)BD (1 -A\)K + AB.
Hence
Ri((1=X)K+AB) < (1 -MNR;(K)+ A\
To show the ‘>’-direction, we assume wlog that A # 1, set p = R;((1 — \) K +
AB) and get from the definition of the radii that £ + pB O (1 — \)K + AB.
This leads to E + (p — A)B O (1 — A)K and therefore we obtain
p— A
EFE+——BDK.
+ T
Hence
Ri(K)< 2= A
R Ll
which completes the proof.
O
From Lemma 6.1 we obtain the following Corollary:
COROLLARY 6.2. If L is of constant breadth or if L = —K then
and

Ri((1 = MK + AL) = (1 — \R;(K) + AR;(L).

In both cases condition (i) of Lemma 6.1 holds.

However, in general the radii functions are not linear and not even polynomial.

For example, for all polytopes K, L € C? the function f(\) := r}(K + AL) is

piecewise quadratic (and contains linear and constant parts). Suppose K =

conv{ky,..., k,} and L = conv{ly,...,l,}. Then it is obvious that the vertices
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w(A); of K+ AL can be written as w(\); = k;, + Al;, and that the diameter of

K + ML is achieved between two such vertices. Hence
1
n(K +AL) = o Jw(A)i — w(A)]
and
4T%(K + )‘L) = ”kll - kj1||2 + 2<ki1 - kjl’ li2 - lj2>)‘ + ”ll2 - lj2||2)‘2 .

The above does also show that f is polynomial only if it is truly quadratic,
which means that for all possible A the diameter of K + AL lies between the same
pair of vertices. On the other hand, transitions between the different quadratic
pieces of f can only appear if A is chosen such that the diameter of the polytope
K + ML is realised between two different pairs of vertices.

The following example shows that such transitions between quadratic pieces
in f can happen, even if K and L are symmetric polytopes. Moreover, since
ri1 = Ry for symmetric polytopes we see that the radius function of Ry is not

polynomial, either.

EXAMPLE 6.3. Let K = COHV{(BI), (g),( ), ( 02)} and L = COHV{(BI),( )},

see Figure 6.1. It follows thatK+)\L:conv{(72),(/\),(/\),( M, (7 ),( M.

21 \9
Hence
A2 4+4,  ifA<

ri(K + \L) = .
(A+2)2 ifA>

NjWw Nw

It is easy to see that this example can be extended to an example with ar-
bitrary many transitions between the pairs of vertices which achieve diametral

distance. See Figure 6.2 for an example with two transitions.

2. The four Blaschke-Santalé diagrams

In this section we present the results of Santalé [63], Herndndez Cifre and
Segura Gomis [19, 20|, who were able to describe the complete boundary struc-
ture for the four possible Blaschke-Santal6 diagrams which only involves radii. It

follows from Proposition 2.1 that in E?

ra(C) < Bi(C) <n(C) < By (C)
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K+%L

[V
&

FiGure 6.1. K and K + %L from Example 6.3. As long as A < %
the diameter is achieved between antipodal vertices on the upper
and lower line of K+AL. However, if A > % the diameter is attained

between the two vertices on the horizontal line in the mid of K +\L.

holds for all bodies C'. Hence the greatest radius in every radii triple can always
be used to normalise the planar sets to unity (for this radius) and therefore the

diagrams are subsets of the unit square.

2.1. The (ry, Ry, 7)-diagram. The first diagram is the only one which does
not involve Ry. Hence 7y is the greatest radius in this triple and therefore we
normalise the planar sets to have diameter 2. For this reason, let C?,_; denote

the class of all 2-dimensional bodies K with r{(K) = 1, and consider the map
fr:Cl_y —[0,1]%

where
Si(EK) = (z,y) = (r2(K), Ry (K)).

f1 is properly defined, as any K € C,?lzl is mapped onto the unit square (see
Proposition 2.1), and f; (631:1) is a closed set because of Blaschke’s convergence
theorem [7].

Before we describe the boundaries of the Blaschke-Santal6 diagram, it is nec-
essary to introduce some notations:

As usual, B denotes the disc and T? an equilateral triangle. We use the symbol

RT for a Reuleaux triangle and L for a line segment.
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FIGURE 6.2. A sketch of an example with two transitions be-
tween the pairs of diametral vertices of K + AL. As the left side of
the figure shows, the diameter is taken between the upper and the
lower vertex if A is 0. The right part shows that for certain A the
vertices in the northwest and in the southeast corner are diamet-
rical, indicated by the dashed line. Furthermore it is easy to see
that if A is chosen big enough, the distance between the horizontal

vertices will exceed the distances between any other possible pairs.

I, denotes an isosceles triangle where v € (0,7) is the angle between its
two equilateral sides (see Figure 6.3). Hence T? = Iz, and Iz is a right-angled
isosceles triangle. Allowing v to be also 0 or 7, we obtain Iy = I, = L.

A Yamanouti set Y, is defined as the convex hull of T2 together with the
intersection of three circles of radius w € [2R;(T?),2r(T?)] whose centres are
the vertices of T? (see Figure 6.4). It is easy to see that Yap 12y = T2 and
Y5, (r2y = RT. The Yamanouti sets were first described in 1932 by Yamanouti
[79].

All sets above are scaled to be of diameter 2, such that they are in C2

ri=1-
Proposition 6.4 below gives the geometric inequalities which describe the bound-
aries of fi(C? _,) and the planar sets which are mapped onto that boundaries. A

sketch of the diagram can be found in Figure 6.5.

PROPOSITION 6.4. The following inequalities are valid for f1(C? _,) and the
sets associated with each inequality fulfill it with equality:
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FIGURE 6.3. An isosceles triangle and its radii in the case of
v < %. The colours indicate the radii: blue for the circumradius
Ry, red for the inradius ry, and green for the width 2R;. We did

not use a special colour for the diameter 2r;.

(i) y <1, {K €C?_, : K is of constant breadth},
(ii) v <y, {K € C2 _, : K is centrally symmetric},

ri=1

fiii) y < &+ /5, (K € CLy K = Y0 € 2Ry(T?), 20 (T)]},

ri=1

(iv) 4(x — y)*(2x —y) < 2'y, {K € 631:1 K =1,,v< %}

2
ri=1

A proof of Proposition 6.4, and an argument showing that f;(C; _;) is simply
connected, can be found in [19].

It is easy to see that the ball B, the Reuleaux triangle RT, the equilateral
triangle T2, and the line segment L are the four extreme points of the diagram,
each fulfilling two of the inequalities in Proposition 6.4 with equality. Observe
that each of the four inequalities in Proposition 6.4 describes one of the four

boundary pieces connecting the four extreme points in Figure 6.5.

2.2. The (ry, Ry, Ry)-diagram. As mentioned at the beginning of this sec-

tion the previous diagram was the only one not involving the circumradius. For
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FIGURE 6.4. A Yamanouti set Y, with w < 2r(T?).

y

1 RT B
T2
0.8
0.6
0.4
0.2
L X
0.2 0.4 0.6 0.8 1

FIGURE 6.5. The (rq, Ry, r1)-diagram.

this reason we call the class of 2-dimensional bodies K with Ry(K) =1 as C? in
short (instead of C%Q:l, as it would correspond to the notation in the previous
subsection). We also assume (wlog) that all sets in C? have their circumcentre at

the origin 0.
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Now consider the map
fo: €7 —[0,1]%,
where
f(K) = (2, y) = (r2(K), By (K)).
Again we know from the total order of the planar radii that f; is well defined
and from Blaschke’s convergence theorem that f»(C?) is compact.

To describe the boundary of f5(C?) we need the sets defined in Subsection
2.1, this time scaled to have circumradius 1. Additionally, we make use of the
piecewise circular equilateral 3-gons CEy\ = (1 — A\)T? + AB, for A € [0,1] (see
Figure 6.6).

FIGURE 6.6. The piecewise equilateral 3-gon C’E%.

The results below are taken from [20]. See Figure 6.7 for a sketch of the

corresponding diagram.

PROPOSITION 6.5. The following inequalities are valid for fo(C?) and the sets
associated with each inequality fulfill it with equality:
(i) v <y, {K € C}: K is centrally symmetric},
(11) y < ‘”T“, {KeC?:K=CE\\el0,1]},
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y
1

T2

FIGURE 6.7. The (ry, Ry, Ry)-diagram.
fiii) 220 — y)(y —2) < 2%, {K € C2 1 K = 1,7 < ).

The extreme points of fo(C?) are B, T2, and L; this time RT does not belong
to them. It should be mentioned that we introduced the piecewise equilateral

3-gons only to state the original results. Essentially they are not needed because

z+1
2

breadth bodies. The first are mapped on the lower part of the (y = ’”T“)—boundary

the boundary y = is also achieved by the Yamanouti sets and all constant

between T? and RT, the second on the upper part between RT and B (see Figure
6.7).

2.3. The (ry, 7, Ry)-diagram. For the third diagram, it is not necessary to
change the ground set C?. Define

fz:C:—10,1]%,
where
[(K) = (z,2) = (r2(K), r1(K)).

Obviously, f3 is again well defined and the image of C? a closed subset of the unit
square (see Figure 6.8).

The results in the following proposition are taken from [63]:
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't \ B
T2 T
0.8
0.6
0.4
0.2
X
0.2 0.4 0.6 0.8 i

FIGURE 6.8. The (rq,ry, Ry)-diagram.

PROPOSITION 6.6. The following inequalities are valid for f3(C?) and the sets
associated with each inequality fulfill it with equality:
(i) 2 <1, {K € C} : K is centrally symmetric},
(it) z > 2, {K € C} : K is of constant breadth},
(iii) 2 > 2 {K €C}: K =Y,,w € 2R (T?),2r(T?)]},
() (22> —z)*(1 - 2%) >2* {KeC}: K=1,,v< %}

Here the extreme points are again B, 72, RT, and L, as one can see in Figure
6.8. Note that f3 is not convex, contrary to the impression evoked by Santald’s

original sketch.

2.4. The (Ry,r, Ry)-diagram. The last 2-dimensional map we consider is
fi:C:—10,1]%,
where
fi(K) = (y,2) = (Ba(K), r1(K)).

Like the three preceding maps, f; is well defined and its image is a closed subset
of the unit cube (see Figure 6.9).

The results about the boundaries are again taken from [20]:
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1L B
T? RT
0.8
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1Y

FIGURE 6.9. The (Ry,r, Ry)-diagram.

PROPOSITION 6.7. The following inequalities are valid for f4(C?) and the sets
associated with each inequality fulfill it with equality:

(i) 2 <1, {K € C} : K is centrally symmetric},

(ii) y < z, {K € C? : K is of constant breadth},
(iii) 2> {K € C?: K =Y, w € 2R (T?),2r(T?)]},
(w) 42'(1-2*) <y*, {KeC;: K=1,v< %}

Once more, the extreme points are B, 72, RT, and L.

3. A single 3-dimensional diagram

The previously described Blaschke-Santalé diagrams are of great value in the
analysis of geometric inequalities about the four standard radii. However, as they
always omit one of the radii, inequalities involving all four of them cannot be
attained. This disadvantage inspired us to define a single 3-dimensional diagram,
handling all four radii at once.

Thus, the aim of this section is to describe the 3-dimensional diagram obtained

from the map

f:C = [0,1P, f(K) = (2,y,2) = (ra(K), Ri(K), 1 (K)).
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We know from the arguments in Section 2 that f is well defined and that the
image of C? is compact. As a consequence of Lemma 6.1 we also know that
it is star shaped corresponding to the extreme point f(B) = (1,1,1) (therefore
without a hole) but it is not convex as its projections along the coordinate axes
(the 2-dimensional diagrams in Subsections 2.2 - 2.4) are not convex.

Certainly, well known geometric inequalities like z < 2z are not needed to
describe the boundary of the diagram, because they only describe subsets of
these sets which fulfill the inequalities x < y or y < z with equality. So our main
purpose is to find inequalities describing 2-dimensional parts of the boundary of
the diagram. As f(C?) is not convex, these boundaries do not have to be faces,
and it may even happen that a polynomial inequality induces a 2-dimensional
part of the boundary, but the inequality is not valid for f(C?).

Based on the star shapedness with respect to the upper vertex of the bounding
unit cube, f(C?) behaves on this side, as we will see, almost like a polytope. Due
to this fact we start with a collection of planar sets which describe the essential
extreme points of the known part of the diagram and compute their convex hull.
Then we analyse the combinatorial structure of the computed polytope and prove,

facet by facet, what in fact belongs to the real surface structure of f(C?).

3.1. The essential extreme points. It is not difficult to see that all ex-
treme points B, 72, L, and RT of the 2-dimensional diagrams from Section 2 are
extreme points of f(C?). Additionally we claim that the six planar sets described
below are mapped onto extreme points of the 3-dimensional diagram. Note that
we will often call the sets themselves extreme, rather than their images. That

they really induce extreme points will be proved in the subsequent subsections.

The first set, which we claim to induce a new extreme point, is the right-angled

isosceles triangle Iz.

For the second, denote the vertices of I= by A, B, and C', and, as always, let 0
be the circumcentre. Furthermore, choose two points D and E on the circumcircle
of Iz, such that the line DE is parallel to AB and separated by AB from C (see
Figure 6.10). The set bounded by the lines AC, BC, DE and the circular arcs
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FIGURE 6.10. The sailing boat RSBx.

AD and BE on the circumcircle is called a right-angled sailing boat or RSB,
for short, where o € [0, 7] denotes the angle between the lines A0 and DO. It is
easy to see that RSBy = Iz, but one should also note that RSBz has concentric
in- and circumcircles. RSBg is the second additional set in our list of claimed

extreme points.

Now, have a look back at the Reuleaux triangle RT. Name its vertices A, B,
and C' and its in- and circumcentre is 0 (see Figure 6.11). We draw a line from
A (B) to any point A" (B') on the circular arc of radius 2r; around C' between
A and B, and remove all points below the lines AA" and BB’ from RT. The

resulting sets are called sliced Reuleauz triangles, SR, for short, where v € [, %

673
is the angle between the lines A0 and AA'. Clearly, SRz = RT and SRz is
a Reuleaux triangle with one flattened side. Finally, as the inradius of RT is
V3 — 1 (see Lemma 6.8 below), the diameter, in- and circumradius of SR, are
constant for all v > arcsin(v/3 — 1). We add SRz and SR, g, /3 1) to our list

of candidates for extreme points.
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FIGURE 6.11.  The sliced Reuleaux triangles SRz and SR, g, (/3-1)-
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All four radii of SR, g, (/3-1) do not change if one draws additional tangents
from A and C to the inball between A and C' and cuts off everything from
SR, csin(v3—1) that is separated from the inball by these tangents. We call the
resulting set H 5_; and define more generally the sets H,, the hood sets, T €
[V3 —1,1] as follows (see Figure 6.12): We extend the inradius of H s; ; since
ro(H,) = 7 and move at the same time the points C' and B along the circumcircle
towards —A such that the diameter is constantly ro(H,) + Ro(H;). Obviously
H, = B, but most important is the set H,., where 7* is chosen such that the
tangents from B and C' to the inball are parallel to A0. The set H, is the next

to add to our list.

The final group of planar sets, which we like to describe in this subsection,
is called bent trapezoids, BT, for short, where v € [0,% . The construction of
a bent trapezoid BT, is as follows: First draw an isosceles triangle ACB = I,
such that AC' and BC are the equilateral sides (see Figure 6.13). Than take a
point D on the line through B parallel to AC, such that C AD is again similar to
I,. Finally, we add the circular arcs from A to B, and from C to D at distance
r1(I,) from C and A, respectively. Note that BTz = SRz, that BTy = L, and
R\(BT,) = Ry(I,) for all v € [0, Z]. Finally, as long as v is chosen such that the
line BD does not intersect the interior of the inball of SR%, the inball-diameter
ratio is constant for BT, (both radii are growing as the circumradius stays equal
to 1). The extreme case, when BD is a tangent to the inball, is achieved if
sin(y) = 2 as we will see in the proof of Lemma 6.8 below. We add BT,

arcsin

(3 0

our collection of predicted extreme points.

Even if only one of the additional planar sets Iz, RSBz, SRz, SR, n(v3-1)
BT,

aresin(2)> and Ho« in our list of suspects is indeed an extreme point of f(C?),

it already shows the significance of the 3-dimensional diagram. However, we will
soon see that at least five of them are extreme (only for BT, this property remains

open). But to continue, first of all we need to compute the images of our sets:

LemMA 6.8. (i) f(L) =(0,0,1),
(ir) f(B) = (1,1,1),
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/2rl =Ry 472 1 T2 =

FIGURE 6.12. The hoods H 5, and H,-.
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FIGURE 6.13. The bent trapezoid BT, . (3)-

— <\/§ -1, @sin (% + arcsin (\/3 — 1)) , @)7
1)) cos (3ancsin (2))),

L arcsin (%)) , %cos (% arcsin (Z

. 1 16
T —5 C+§+\/—C—f+7ﬁ

W=

with ¢ = 1 (864 — 96/69)° and € = 2 (2)7 (9 +v/69)*.

ProOOF. There is nothing to show for the line and the ball, and the f-values

for T? are general knowledge. Hence we are left with (iv) to (x).
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Of course, RT has the same diameter and circumradius as T2, and, since
it is of constant breadth, its y and 2z values are equal. Finally, we get its
inradius from Proposition 2.5 (d).
It is easy to see that the values of SRz differ from the T2-values only in
the z-coordinate. Now, as the incircle of SR= and the circle of radius
2r; around A have a common tangent at D (see Figure 6.11) we can
compute the inradius from the equality (2r; —r3)? = r?+r2, which leads
to ry = %rl.
It was mentioned when we introduced the sliced Reuleaux triangles that
the values of SR, n(/3-1) and RT differ only in their y-coordinate. But
- s Ri(SR,)

sin (14 5) = " (SE,)
(see Figure 6.11), we obtain the desired y-value.

Since BTz = SRz we obtain from (vii)

TQ(BT ) 3

r(BT:) 4

w|x |wly

and this ratio stays constant for all BT, as long as vy is chosen such that
the inball of BT, still touches the circular arcs AB and C'D. Further-
more, if we choose v such that BD also touches the inball, obviously
R,(BT,) = ro(BT,) holds. Since

_ Ry (BT’Y)

sin(7y) = (BT,

holds for all bent trapezoids, we obtain that sin(y) = 2 when the inball
touches the circular arcs AB, C'D, and the line BD. Hence we only have

to compute (BT, (%)), but this can be derived from the fact that

arcsin

2

() - )

for all bent trapezoids, and therefore r (BT, (%)) = cos(3 arcsin(2)).

arcsin 1

Now we have to check the Iz values. The y- and z-coordinates are

obviously correct and we derive the inradius from the fact that ry(Iz) =

tan(Z) = v2 — 1.
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(ix) The next to verify are the RSB=x coordinates. By construction, z = 1

and it is easy to see that the incircle radius is \/g Finally, since the
distances of each of the lines AC', BC', and DFE to their opposite vertices
(E, D, and C, respectively) is Ry+r9, we can easily compute the y-value.
(x) Finally, we have to prove the H.. values. It is easy to see that z = y

and, because every point on the circular arc around A through B and C

z+1
2

to compute the inradius 7* of H,-. But this can be derived from the two
equations: 73+ ¢? = R2 and r3 + (Ry + ¢)? = 41} = (ry + Ry)?, where ¢

is at distance 2z from A, that z = (see Figure 6.12). So we only need

denotes the distance between the centre of H,- and the line from B to
C. Since Ry = 1, the two equations can be simplified to ro = /1 — ©?
and ! + 4¢3 +8¢p? = 4. The latter is a polynomial equation of degree 4
which can be solved exactly. That the only positive solution for ¢ leads
to ro = 7* was checked with two different software packages (Maple [73]
and Mathematica [77]).

O

Note that all sets from Lemma 6.8 have a symmetry axis perpendicular or
parallel to one of their diameters, and that they all have concentric in- and
circumspheres or orthogonal diameter and width directions (or both).

Another remark we like to make at this point is that one can show
1
7ﬂl(BT'arcsin(%)) = Z(l + ﬁ)

by using the Pythagorean theorem instead of the trigonometric functions.

Since polytopes are the easiest sets to describe by valid inequalities, we start
with an analysis of the convex hull of our candidate set of extreme points. The
incidences of vertices and facets in this polytope are used as a starting point in
the description of the actual boundary structure of the diagram.

If we take numerical approximations of the values in Lemma 6.8 we can use
them as input data for Qhull, a software package that is able to compute an H-
representation of a polytope from a V-representation [36]. See Appendix A for
the in- and output to Qhull and Figure 6.14 for a graph showing the vertex-facet

relations Qhull computed.
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FIGURE 6.14. The vertex-facet incidences Qhull computed for
the convex hull of the extreme point list in Lemma 6.8. p0 to p9
are the names Qhull used for the sets in our extreme point list,
f2 to f17 denote the eleven facets Qhull distinguishes (the missing

values correspond to planes which Qhull found out not to be facets).

The dashed lines in Figure 6.14 indicate that Iz and BT,

arcsin

within the convex hull of the other points and that the two facets f14 and f17, and

the two facets f7 and f12, respectively, have almost identical normal vectors. In

(3) are lying

fact B, RT', H~, and SR, ,3_1) are all mapped onto the hyperplane induced
by £ +1 = 2z, and B, RT, T?, and RSBg onto the hyperplane induced by
x+1 = 2y. We see that Qhull distinguishes between f14 and f17 or between
f7 and f12 just because of imprecisions in the numerical approximations of the

coordinates. The reason why we keep [z and BT,

arcsin(3) in our list of predicted

extreme points is based on the non-convexity of f(C?). We will see that they are

important in the following subsections.
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The remaining part of this section is organised as follows: we take a look on
each facet of the Qhull output to gather information about the real image of CZ.
In most cases the facets which were computed by Qhull lead to the development
of one or two linear or at least polynomial inequalities inducing 2-dimensional

parts of the diagram.

3.2. The facet f2 and the (z < y)-inequality. Qhull computed {2 as the
facet containing the images of L, B, and H,-. In fact {2 is induced by the valid
inequality = < y (see Proposition 2.1) and BT, sy is also mapped onto it.

arcsin(

Figure 6.15 shows the known parts of this face of f(C?).

BTY-\Y,/
0.8
0.6
0.4
0.2¢

0.2 0.4 0.6 0.8 1Y

FIGURE 6.15. The face of f(C?) induced by the inequality » < y,

projected onto the (y, z)-plane. Here v* = arcsin(%).

We know from Propositions 2.1 and 2.5 that 2z < 1 and z > ITH Hence the

two lines through L, B and B, H,- are part of the boundary in the (z = y)-plane,

and the Minkowski sums of B and L, or B and H.,-, respectively, are mapped
onto the two boundaries.

We already established the validity of the inequality

(1) y?—4(1— 222" >0
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for f(C?) in Proposition 6.7. The proof can be found in [20]. There it was also
stated that equality is attained if and only if the planar sets are isosceles triangles;
both (if and only if) are not true. Only isosceles triangles I, with v < % fulfill (1)
with equality, and (more important) as the inequality does not involve the inradii
of the sets, any set K € C7, with I, ¢ K C BT,, v < 7 fulfills (1) with equality
(remember that I, and BT, have same circumradius, width, and diameter). But,
as BT, is mapped onto the (z = y)-plane for v < arcsin(%), the curve induced
by the inequality y? — 4(1 — 22)z* > 0 forms the third part of the boundary from
L t0 BT, cqn(3) in the (z = y)-plane.

The precise boundary between BT,

arcsin(3) and H,- remains unknown. Because

of the validity of the inducing inequalities, no set in C? can be mapped below the

dashed lines in Figure 6.15. However, one cannot even go beyond BT, .

3y On
the BT.,-bow as this requires a superset of an isosceles triangle with the(;;me
width, diameter, and circumradius; but raising 2, above % means we cannot keep
ro = Ry.

Also it is not possible to go beyond H,- on the boundary from B. Suppose
there exists a set K € C? with ro(K) = Ri(K) and 75(K) + Ry(K) = 2r(K)
that has a smaller inradius than H... We know from Lemma 2.6 that such a
set K must have concentric in- and circumsphere. Now we should have another
look at Figure 6.12. Suppose K and H,- have the point A as a common point on
the circumcircle. Because K has smaller inradius than H,- it also has a smaller
diameter and hence the other points of K on the circumcircle must lie above the
circular arc through B and C. Call them B’ and C’. But we also need a pair of
antipodal points D and —D on the incircle of K such that the tangents through
D and —D also support K. This means there cannot be a point in K separated
by such a tangent from 0. But wherever one places D, the tangents through them
separate one of the points A, B’ or C’ from the origin.

Hence the dashed lines in Figure 6.15 cannot represent the boundaries of
f(C?), but the proper part of the boundary is uncertain. The problem seems to

be that there is no such ‘smooth transition’ from H,- to BT,

arcsin(3), @8 between

other pairs of vertices that we consider soon.
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Nevertheless, the fact that nothing can be beyond H,- on the line from B
proves that its image is an extreme point of f(C?) (as it is an end point of a
polytopal edge).

To verify that BT,

arcsin(2) 15 an extreme point one has to show that the bound-

ary between BT, ..
L to BTarcsin(%)'

Finally, because of the star shapedness with respect to B there exist sets in C?

(3) and H_- runs above the linear extension of the bow from

which are mapped to any point between the boundaries of the (x = y)-diagram.

3.3. The facet 5 and the (z < 1)-inequality. 5 is the facet Qhull com-
puted to contain the images of L, B, and RSB=z. We can easily see that this facet
is induced by the inequality z < 1 and contains /z. Clearly, the inequality is valid
for f(C?) (we already used its validity in the previous subsection to describe the
segment between L and B in the (z = y)-diagram). See Figure 6.16 for a sketch
of the image of C? which is part of the (z = 1)-face.

y

1 B
RSB
0.8
0.6
T
Z,
0.4
0.2
L X
0.2 0.4 0.6 0.8 1

FIGURE 6.16. The face of f(C?) induced by the inequality z < 1,
projected onto the (z,y)-plane.

We can use once more the Minkowski sums of B and L, or B and RSBz to
see that there are sets which are mapped on the segments incident with B. That
these segments represent the real boundary of f(C?) follows immediately from
Subsection 3.2 in case of [f(B), f(L)]. The segment between B and RSB is
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induced by the valid inequality y < ’”T“ (see Proposition 2.5). Hence we know

immediately that this segment is also part of the boundary of the (z = 1)-face.

All right-angled sailing boats RSB, have diameter 2 and if « < 7, also

constant (ry, Ry)-ratio, because the radii are the same as those of a right-angled
isosceles triangle with circumradius greater than 1. Hence they are mapped onto

the line segment between [z and RSBz, which is described by y = (% + %) x.

The bow between L and Iz is a plot of the equality y = . If v > 7 and

a = "5 the width of an isosceles triangle I, is tan(a) and the inradius is tan(%)
(see Figure 6.17).

2R

FIGURE 6.17. An isosceles triangle I, with v > 7.

Hence y = 3 tan(2arctan(z)) = %5, for all isosceles triangles I, with v > Z

and therefore they are mapped onto the indicated bow. That the I,-bow and the
RS B,-line describe the upper boundary of the (z = 1)-face, we want to state as

a theorem:

THEOREM 6.9. For any K € C7 with r(K) =1 and ro(K) < /3

R ARy i ra(K) < V2 -1
(K) < q '
(5+ 5) ra(K), if ra(K) > V2 - 1.
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PROOF. We have already seen that the isosceles triangles I, with v € [Z, 7]
fulfill the upper part, and the right-angled sailing boats RSB, with « € [0, ] the
lower part of the inequality with equality. Hence it suffices to show the following:
For all K, € C} with r(K,) =1 and ry(K,) = w, w < /1, it holds that

Ri(K,) < R(L),ifwu<v2-1

or
Ry (K,) < R{(RSB,), if w> V2 —1,

where 7 or « are chosen such that r5(I,) = w or ro(RSB,) = w, as the case may
be.

We split the proof into two parts. In the first part we will construct a set
K, v € CF, (K], ) = 1 of maximal width for any fixed position M of the
incentre. In the second part we will show that the width of K/, ,, is maximised if
M is situated on the perpendicular bisector of the diametrical chord. From this
we finally obtain that argmax R, (K/, ,,) is I, or RSB,, respectively.

Let K, n € C# with r1(Ky ) = 1, let A and B be the antipodal points in
K, NS and suppose (wlog) that the centre M of the incircle M + ro(K, pr)B
lies in the positive quadrant (see Figures 6.18 and 6.19).  Obviously, K,y 2
conv(AB, M + ry(K)B) (therefore K, 5/ contains at least the red bordered area
in Figures 6.18 and 6.19). Let C, D, E, and F be those points on the incircle,
C, D in the upper halfspace and F, F' in the lower, for which the lines AC, BD,
AFE, and BF are tangents to the incircle. It is well known that there exist at
least three supporting lines [y,[s,l3 of K, » which are tangents to the inball
if Ri(Kyn) > ro(Kuar). But since K,y contains conv{AB, M + wB}, the
touching points of the [;, © = 1,2,3 must be situated between C' and D in the
upper halfspace or between E and F' in the lower, with at least one on each
circular arc.

Case (a): Assume that only one of the supporting lines, say [y, touches the
inball somewhere between E and F. In this case, 2Ry (K, ) is less than or equal
to the maximal distance of any point in K, 5s to [;. However, this distance itself
is maximised if [ = AC and I3 = BD. Hence Ry (K ) < bs(Kyar) < bs(K, ),

where b; denotes the s-breadth in direction of s orthogonally to [, and K/, ,, is
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FIGURE 6.18. The first possible configuration of sets with diam-
eter 2 and given incircle. The red bordered area shows the minimal
set with r; = 1 and given incircle; the green one the maximal, if
additionally [/, is fixed as the lower tangent. Here [, and I3 intersect

each other within the circumcircle.

the intersection of the triangle formed by the lines [;,l, and I3 with B (indicated
by the green line in Figure 6.18 and 6.19).

Case (b): Now, assume there is only one tangent supporting K, »; between
C and D. With the same arguments as above we obtain an upper bound on the
width of K, ys by taking E' and F' as the two other tangent points. But since M
lies in the upper halfspace, it is easy to see that the distance between E and F' is
smaller than that between C' and D. Hence we cannot achieve an upper bound
as large as in the case where only one tangent touches the inball between E and
F.

Since in the extreme cases (I, and RSB,) the width will be attained in
direction s orthogonally to [y, it suffices to concentrate on the sets K/, ;, rather

than on all possible K, »s. In the remaining part of the proof we want to elaborate



3. A SINGLE 3-DIMENSIONAL DIAGRAM 93

a
[E

FIGURE 6.19. The second configuration of sets with diameter 2
and given incircle. Here [y and /3 intersect each other outside the

circumcircle.

where M should be situated such that the distance of any point in K, ,, from [;
is maximised and that the width of K/, ,, is indeed attained in this direction (at
least in the extreme cases). Note that, if we move M we also have to move the
tangent /.

Let G be the intersection point of Iy and I3 and G’ the intersection point of [y
and S. Obviously, if G belongs to B, then G'is the point of K, ,, furthest away
from [; and if not, G’ is the furthest (with G = G" if G € §).

Assume G € (E* \ B) US. Hence G’ is the point furthest away from [;. Now
it is easy to see that if G' # G we can increase this distance by moving the
inball along [y downwards until G = G’ and keeping [, as a tangent to the inball,
parallel to its prior position. Hence we can assume that G = G’ in this case.

Now, suppose G € B. Let H be the point between E and F' on the intersection
of the incircle and the line GM. Since the circle around G' with the distance

between GG and H as its radius intersects [; twice, if it does not touch the inball
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at the point H, we see that the distance between GG and [; is always maximal if
[y passes through H.

Let therefore [; touch the inball at H. We can increase the distance between
G and H by moving M such that the angle between [, and I3 at G decreases,
reaching its minimum if G either lies on the sphere or [; goes through A or B
(which is the case if H=FE or H = F).

In the first case, the distance between GG and H does not depend on the
position of G on the circumsphere, so we can choose it to be on the perpendic-
ular to AB and therefore we obtain R;(K(,,,) < Ri(RSB,) with a such that
ro( RSB,) = w.

In the latter case we are able to move the inball such that G lies on the
perpendicular to AB by keeping the angle at G constant and therefore also the
distance between GG and H. But now it is easy to see that we can increase this
distance once more, by moving M upwards, until [; = AB. Hence we obtain
Ry (K, ;) < Ri(I,) where + is the angle at G

O

From Theorem 6.9 we obtain the extremity of RSBz and Iz since both are,
like H,-, end points of polytopal edges of f(C?).
Again it follows from the star shapedness of f(C?) with respect to B that the

(2 = 1)-face covers the whole region between the boundaries.

3.4. The facet f7/f12 and the (r + 1 > 2y)-inequality. As mentioned
in the description of Figure 6.14 showing the vertex-facet-dependencies in the
Qhull results, the facets {7 and f12 are essentially induced by the same inequality
x + 1 > 2y, which we know from Proposition 2.5 to be valid for f(C}). Figure
6.20 displays the true boundaries of the face.

It was already shown in Subsections 3.2 and 3.3 that the two segments incident
with B are part of the boundary structure of f(C?); and it was stated as a remark
after Proposition 2.3 that Jung’s inequality is fulfilled with equality for a set
K iff T? C K C RT, as RT is the unique completion of T2 in E2. Since the
Yamanouti sets are all mapped onto this line, the segment [T?, RT] is part of the
real boundary, too. So we are left with the bow between T? and RSB=. In this

case we need to describe a new collection of sets which are mapped onto that
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FIGURE 6.20. The face of f(C?) induced by the inequality z+1 >
2y, projected onto the (z, z)-plane.

bow. We call them concentric sailing boats, or C'SB, for short, with v € [§, 7],

and they are constructed as follows (see Figure 6.21):

FIGURE 6.21. A concentric sailing boat C'SB,, with v € (%, 7).
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We start with an isosceles triangle I, and its circumcircle. Then we draw a
circle with centre 0, such that the two equilateral sides of I, are tangents to this
circle. The construction is completed with an additional tangent [ to the circle
parallel to the third side of I,. Call the points where [ intersects the circumcircle
as D and F, and the set obtained from extending I, along the circumcircle, such
that the segment between D and FE is the lower boundary of the set, as C'SB,.

It is obvious that C'SBz = T? and CSBz = RSB=x, and it is not difficult
to see that ro(CSB,) = sin(3)R2(CSB,) and that ro(CSB,) + Ry(CSB,) =
2R, (CSB,). For the diameter, 1 (C'SB,) = sin(3)( holds, where ( is the length of
one of the equilateral sides of the isosceles triangle we used to construct the sailing

boat. Since ¢ = 2cos(3)Ry(CSB,) we can conclude that, if the circumradius is

1 then
f(CSB,) = (sin (%) ,%, 2 sin (%) cos (%)) )

Hence the concentric sailing boats are mapped onto the (z + 1 = 2y)-face and
here in particular on the bow induced by the equation z = zv/1 — 22.

We still need to show that the concentric sailing boats describe the upper-left
boundary of the (z + 1 = 2y)-face.

THEOREM 6.10. For any K € C? with ro(K)+1=2R,(K) and ry(K) < \/g,
it holds that

Tl(K) STQ(K) I_TQ(K)Z.

PROOF. It was shown in Lemma 2.6 that every set K € C? which is mapped
onto the(x + 1 = 2y)-face must have concentric in- and circumsphere. Now
suppose K has the same incircle as C'SB, and C as a common point on the
circumsphere. Hence there can neither be a point in K below the line DFE nor,
because of convexity, above the lines AC' or BC within the lower half of the
circumcircle, since otherwise K would have a greater incircle than C'SB,. Hence
K cannot contain a line-segment which is longer than the distance of A and B.
But this means r(K) < r(CSB,). O

The convexity of the (x4 1 = 2y)-face shows that in fact all concentric sailing

boats are extreme points of f(C?).
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That there exist planar sets which are mapped onto every point between
the drawn boundaries of the (z + 1 = 2y)-face follows once again from the star
shapedness of f(C}).

3.5. The facet f14/f17 and the (z + 1 < 2z)-inequality. Similarly to
the pair f7/f12, the pair f14/f17 is also identified by Qhull as two distinct facets
because of the approximate input values. We already stated earlier that the
sets B, RT, SRmsin(\/gfl), and H,- are mapped onto the plane induced by the
inequality x + 1 < z, which is valid for the image of C? as shown in Proposition

2.5. A plot of the known boundaries of this face is given in Figure 6.22.

0.9

0.8

0.7 0.75 0.8 0.8 0.9 0.9 1

FIGURE 6.22. The face of f(C?) induced by the inequality z+1 <
2z, projected onto the (x,y)-plane. Here v* = arcsin(v/3 — 1).

The line segments [B, H,.| and [B, RT] were already treated in Subsection 3.2
and 3.4, respectively, and we know from Proposition 2.3 that every set in C? has
a z-coordinate of at least @ As all the sets SR, with v > arcsin(v/3 — 1) differ
from RT only in their width, they are of course mapped onto the line segment
[SR,esin(v3_1), BT]. On the other hand there is no subset of RT in C} that has
the same diameter and inradius as RT" and smaller width than SR, ./3-1), and
therefore there cannot be a set in C7 that is mapped beyond f(SRyesin(v3-1)) o0
that boundary of the (z 4+ 1 = 2z)-face.
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Hence the only remaining part of the boundary is the one between H,., and
SRy esin(v3—1)» Which we will see to be achieved by the general hoods H, 7 €
[V/3 — 1,7%] (see Figure 6.23 and the definition in Subsection 3.1).

FIGURE 6.23. A general hood set and its radii.

As in the preceding subsections we first compute an equation involving the two
radii ro and R; which holds for the images of all hood sets. Therefore have a look
at Figure 6.23. Let [, be the H, supporting line through B, [ the perpendicular
onto [; through the centre, and I3 the line parallel to I through C'. We denote by
2¢ the distance between the two lower points B and C', by n the distance from B
to I3, by ( the distance between [ and [3, and finally by ¢ the distance between
the line BC' and the centre. Now it is easy to see that the following equations
hold (where we drop the H, for better readability):

(i) 2ry = re + Ra,

(i) n* = 462 — 4R%,
(iii) €2 = R3 — (2R, — )%,
(iv) &= R} — ¢*,
(v) (p+ Ry)? = 4r? — &%, and
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(Vi) (n+¢)* = Rj — 3.

If we use the result in (iv) for £ and insert it into (v) we get
(¢ + Ro(H,))* = dry(H:)* — A(Ry(H:)* — %),

which can be simplified to

_ 2ri— R

==

Now we insert both results for £ and ¢ into (ii) and obtain

7= (R% - R - (L — R§>2> ,
R,

which can be reduced to

n® = 16r] — 16% — 4R
>
But from (i) we know that 4r] = (ry + Ry)? and therefore that
(7"2 + R2)4

0’ = 4(ry + Ry)* — — 4R

R3
Using the above formula for n, (iii) for ¢, and that Ry = 1 we finally get the
following equation for the relation between the inradius and the width of the

hood sets:

M

2
) :1—7"%.

THEOREM 6.11. For any K € C? with ro(K) + 1 = 2r(K) and ro(K) < 7%,

((4(1"2 +1)2— (rp+1)* —4R?)? + (1 — (2R, — 1)?)’

((4(1"2(K) +1)2 = (ry(K) + 1)* — 4Ry (K)?

)
(1= @R(E) — ra(K)))?)
<1 —ry(K)2

PROOF. By Lemma 2.6, any K € C? with ro(K) + 1 = 2r(K) must have
concentric in- and circumcircles. Now assume that ro(K) = ro(H,) and that
both possess A as a common point on the circumcircle. Hence there can exist
no point in K below the circular arc of radius 79(K) + Ry(K) with centre A.
However, H, has the same radii like the convex hull of its own incircle and the
points A, B,C. Hence K could only have less or equal width if there would be no

point on the left of C' or on the right of B on its circumcircle, and to have strictly
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lower width, even one of B and C' could not belong to K. But as we have seen,
no point can be situated below B and C' on the circumcircle. Thus, K would
not have three points on the circumcircle whose convex hull contains the centre,
which is a contradiction. Hence R;(K) > Ry(H,), and it is easy to see that the
left side of the hood sets equation decreases for constant ry and growing R;, but

that the right side remains constant. This proves the theorem. O

Since SR, gn(y3-1) 1S the lower end point of the left boundary segment we
obtain its extremity in f(C?).
Finally, from the fact that B is mapped onto this face, it follows immediately

that there exist K € C? which are mapped on every point within these boundaries.

3.6. The facet f13 and the (z > @)-inequality. f13 is the only facet
Qhull identified as a non-simplicial facet. The reason is that we have chosen the
same approximation for all four extreme points in our list with z-coordinate as
?, which is the least possible value because of Jung’s theorem (see Proposition
2.3 (i)). We also mentioned in the preceding subsections that all sets in C} which
are mapped onto this face must be sandwiched between 72 and RT. Figure 6.24

shows the face boundary.

0.9
RT
SR,
0.8
‘|'2 SR%
0.7
0.6
0.5
X
0.5 0.6 0.7 0.8 0.9

S

FIGURE 6.24. The face of f(C?) induced by the inequality z > 2.
Again, v* = arcsin(v/3 — 1)
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We already know from Subsections 3.4 and 3.5 that the two line segments
incident with RT are part of the real boundary of f(C?), and as every set mapped
onto this facet is a superset of T2, no set in C? can be mapped below the line
through 72 and SRz. But now it is easy to see that it is not possible to extend
the inball radius beyond that of SRz without raising the diameter or at least the
width. Hence SRz is the other end point of the lower boundary and therefore
an extreme point of f(C?). The part of the boundary which is left is the one
between SRz and SR, g, /3-1)- For that purpose we consider the general sliced

Reuleaux triangles (see Figure 6.25).

FIGURE 6.25. A general sliced Reuleaux triangle SR, with v €

[Z,arcsin(v/3 — 1)].

We use the notations as in the description of the sliced Reuleaux triangles in
Subsection 3.1. Additionally, let A” be the foot point of the perpendicular line
from C onto AA’, and A" the point where the incircle touches AA’. Moreover
we denote the distance between A and A” by £ and the distance between A” and
A" by n.
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It is easy to see that

(2) £ = 2cos (7+%) ol
and
(3) n = sin(a) Ry = sin (7 - %) Ry

where a denotes the angle between the lines CA” and C'0. Now, the inradius can

be brought in by the equation
(E+n) +15 = (2r —r2)*.
If we use formulas (2) and (3) for £ and 7, and that Ry = 1 and therefore

@, we obtain

E+n = V3 cos (7+%) + sin (7— %)
- (§008(7) - ?m(v)) ; (? sin(e) - écosw))

r =

2
= cos(7).

This allows us to state v as a function of the z-coordinate:
v = arccos(§ + 1) = arccos < 3 - 2\/§x>

and finally compute the y-coordinate from R; = rsin(y + F) to obtain

y = ? sin (arCCOS <m> + %) '

Hence all sliced Reuleaux triangles SR, in CZ, with v € [, arcsin(v/3 — 1)] are

mapped onto a bow defined by the above equation.

and ro(K) > 3% it holds

THEOREM 6.12. For any K € C? with r(K) = 8

that

“[S

Ri(K) > ? sin (arccos <\/3 - 2\/§r2(K)> + %) .

Proor. The sliced Reuleaux triangles define the remaining part of the bound-
ary of the (z = @)—face, because one cannot extend 72 beyond the circular arcs

of radius v/3 around the lower vertices, and therefore the sliced Reuleaux triangles
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are the thinnest sets which contain an inball of a given radius in [%, V3 — 1].
Il

From the fact that SRz is the end point of the lower boundary of the

(z = ?)—face we have proved our candidate list of extreme points (only the

extremity of BT,

arcsin(2) Temains open).

Now we draw a vertical line anywhere between the boundaries of the (z = @) -
face for any fixed ry-value between % and /3 — 1. We know from the preceding
subsections that there exists a Yamanouti set Y,, at the upper end of that line
(where it hits the segment between T2 and RT); and the set on the lower end is
either the convex hull of T? and an incircle of the appropriate size, which touches
the lower line of T2, or it is a sliced Reuleaux triangle. But now it is not difficult
to see that, if one moves the incircle from the position it has in the Yamanouti
set towards the position it has in the set on the lower end of the vertical line and
takes K again as the convex hull of this incircle and T2, we can reach every point
on the line segment by this construction. Hence there exist sets in C which are

mapped onto p for every point p between the boundaries of the (z = @)—faee.

3.7. The facet f8 and the (3> — 4(1 — 2%)z* > 0)-inequality. We already
used the validity of the inequality

y? —4(1— 242" >0

in Subsection 3.2 to show that the bow between L and BT,

arcsin(2) is a boundary of

the (z = y)-face. But because T2 and SR= fulfill this inequality with equality as
well, we see that the facet f8, which Qhull computed as the convex hull of L, T?,
and SRz is essentially a 2-dimensional non-linear boundary, induced by the above
inequality. It was also mentioned in Subsection 3.2 that a set K € C? is mapped
onto this boundary iff it is a superset of an isosceles triangle I, with v < %, and
K differs from I, only in its inradius. See Figure 6.26 for a projection of the
whole part of the surface of f(C?) induced by the inequality y? — 4(1 — 2%)2* > 0
onto the (z,y)-plane.

It is immediately clear that the left boundary of the figure is described by
the isosceles triangles I,, v < % themselves, which are mapped onto the bow

2(2x — y)(y — x) = 2* (see [20]). The upper bound is induced by the extensions
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0.8
T? SR
L3
BT,
0.6
0.4
0.2
L X
0.2 0.4 0.6 0.8

FIGURE 6.26. The surface of f(C?), which is induced by the
inequality y? — 4(1 — 2%)z* > 0; projected onto the (z,y)-plane.
3

: . .
Here, we again use v* = arcsin(3).

of T?, which keep the same width and diameter as 72, since T? is the isosceles
triangle with the biggest width.

The boundary on the lower right side of Figure 6.26 is described by the bent
trapezoids BT, v < arcsin(%), because of the validity of < y. But as the bent
2) we need to show that they still
(%) and SR%.

To do so, we first compute the points where they are mapped in the (z,y)-
plane. Since R;(BT,) = sin(y)r(BT,) and r(BT,) = cos(y)Ry(BT,) for all

bent trapezoids; and because ro(BT,) = 3ri(BT,) if 7 > arcsin(3), we get that

trapezoids leave the line z = y if 7 > arcsin(
describe the boundary between BT,

arcsin

the images of the bent trapezoids BT, with v > arcsin(%), all fulfill the equation

y = 3 sin(2arccos(32))z.
THEOREM 6.13. For any K € C? for which
Ry(K)? — 4r (K)*(1 —r (K)*) =0

and that has inradius ro(K) > %ﬁ, it holds that

Ri(K) < gsin (2 arccos (gm(K))) ra(K).
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ProOF. Even if we take the bent trapezoids with v > arcsin(%), they are
mapped onto the boundary as we cannot extend any isosceles triangle I, v < %

beyond BT, without increasing its width or diameter. 0

Obviously, one can extend every isosceles triangle I, v < % to reach any
given inradius between the lower and the upper bounds of the diagram without
raising the width or the diameter of the sets. Hence there exists a K € C? that
is mapped onto (x,y) for all pairs (x,y) within the computed boundaries of this

2-dimensional non-linear part of the boundary.

3.8. The facet f6, the A- and the sailing boat inequality. In this
subsection we will show that it is very likely that the three extreme points of f6
do not describe a single 2-dimensional boundary; instead, together with /= they
describe two non-linear 2-dimensional parts of the surface of f(C?). The first of
them consists of the three extreme points L, T?, and I=, with all the isosceles

triangles mapped onto the boundaries between them (see Figure 6.27).

V4
L Ix

001 0.2 0.3 04 05
FIGURE 6.27. The non-linear plane, consisting of all triangles in

C?, projected onto the (z, z)-plane.

These boundaries are described by the three equations

(i) (222 2)2(1 - 2) = 2, for v < 5,
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(i) (2* +a? —22)* = 4(2® — 22%), for y € [§, 3], and
(iii) z =1, for v > 7.
The first equation is taken from [63], the third is well known from the pre-

ceding subsections. It remains to show the validity of the second equation which

holds for the isosceles triangles I, with v € [%, 7] (see Figure 6.28).

2R

FIGURE 6.28. An isosceles triangle I, with v € [, 7].

From r? = R3 — (2R; — Ry)? we obtain that 2? = 4y — 4y?, and together with

cot(3) = % this leads to cot?*(%) = 77, Hence

cot?(2)

YT T eot?(3)

5.— the above
y—x

But as cot?(a) = m — 1 for any possible «, and since sin(3) =
can be simplified to
2

.o (7 x
=1 2(_>:1_7,
Y sin 5 2y — )

which is equivalent to the polynomial equation (2y —x)?(1—y) = 2?. Tt is easy to
verify that the three possible solutions for y in terms of x are 0, %(1 —V1 = 2z+x),
and (1 ++/1— 2z + ). However, since 3(1 + /1 -2z +z) > 2 we obtain
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y = 3(1—+/1 =2z +x) as the only possible solution for the width of the isosceles

triangles. Finally we obtain that
P=dy—4y’=1-(V1-22+12)*=22—2"+22v1 -2

and therefore the desired equation in (ii).

All triangles A € f(C?) are mapped between the boundaries (i)-(iii) in the
(x, z)-plane. To see this, suppose A is a general triangle with vertices A, B and
C, and AB its longest side.

If C is not situated on the circumcircle of the triangle, we immediately have
r1(A) = Ry(A) = 1. Hence we can assume that C' lies on the circumcircle. Now,
we can move C' along the circumcircle without affecting the diameter, as long as
|AC| < |AB| and |BC| < |AB|. Obviously, A has maximal inradius if C' lies on
the perpendicular bisector of AB, therefore A = I, v € [§, 7]; and the minimal
inradius is attained if AC or BC is of diametrical length, therefore A = I, v < %.

In fact, all triangles are mapped onto a 2-dimensional region of f(C?), which

is induced by the following inequality:
((2y — 2)2(y2* — 2%y — 22%) — 22 (y —2) + 4a”y’(y — 2))°
> 162" y*(y — 2)*(1 — 2%)
Moreover, the inequality above (which we call the A-inequality) is valid for all

the extreme points in our list. But before we discuss the latter fact, we should

first prove that all triangles fulfill equality in the A-inequality.
LEMMA 6.14. For every triangle A it holds that
((2R1(A) = 72(A))*(r(A)*Ri(A) = ra(A)*Ri(A) — ri(A)?ra(A))
— (A (A (Ri(A) = r2(A)) + 4 (A)2R; (A)2(Ry (A) — 12(A)))
= 1672(A)" Ri(A)*(Ri(A) — ra(A))*(R2(A)* — 11 (A)?)
PROOF. We start by identifying the involved values (see Figure 6.29). For
reading convenience, we drop the A from the radii, therefore writing r; instead
of r1(A), and analogously for all other radii.

Of course, the diameter 2r; of any triangle is the length of its longest side a
and its width 2R, is the distance of the third vertex from a. Let n be the distance
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FIGURE 6.29. A general triangle.

of 0 from a and by ¢ we indicate the distance between 0 and the perpendicular
to a through the third vertex. Moreover we call the other two sides b and ¢. Now
we can state the following equations:

(i) n* + 1t = RS,

(ii) ¢*+ (2R —n)* = R3,
(iil) (r1 +¢)* + 4R} =17,
(iv) (1 —¢)* + 4Rt = ¢,

(v) 3(2r1 +b+c)ry = 211 Ry.
(i) to (iv) are just applications of the Pythagorean theorem for the involved right-
angled triangles and we get (v) as both sides of the equation are formulas for the

area of the triangle. It is easy to see that we can use (i) and (ii) to compute

n= ng% + Ry and by reinserting 7 into (i) we get
2
¢ 2 2
4 R = R2.
(1 (St em) +ri=m

From (iii) and (iv) we obtain b? —¢* = 4r,( and (v) can be transformed to b+c =

% — 2ry. If we divide these two equations, this leads to b — ¢ = % = %
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and by adding the equations for b + ¢ and b — ¢ we get

_2r Ry - 72€
= -1

b —
T 2R1 — Ty

Inserting this result for b into (iii), we obtain

2’/“1R1 T 2
T9 Tt 2R1 — TQC

(r+¢)* + 4R} = (
which can be simplified, as the linear (-terms vanish, to

e (1 B 2 ) _ 4r? R? 4R - 4T%R1.

The last equation can be used to express ( by

(2R1 — TZ)Q(T%Rl — T%Rl — 7"%7"2)
T%(Rl — 7"2) '

(5) ¢*=

Finally, one gets the claimed equality by inserting (5) into (4). O

By filling in the coordinates of the planar sets in our extreme point list, it
turns out that the A-inequality is valid for all of them. This and the fact that
every set K in C? has an inscribed triangle (maybe degenerated to L) of same

circumradius, leads us to the following conjecture:
CONJECTURE 6.15. The A-inequality is valid for C3.

Now we turn to the second part of the diagram surface which we conjecture
to be included in f6: It has the extreme points TZ,Ig, and RSBz. The two
boundaries between T2 and RSB%, and between Iz and RSBg are achieved by
the concentric sailing boats CSB,, v € [§, 5] and the right-angled sailing boats
RSB,, a € [0, 7], respectively. This motivates us to define a general sailing boat
(see Figure 6.30).

To construct such a sailing boat SB, we start with an isosceles triangle I,
v € [5, 5] with vertices A, B,C, where C' is the vertex incident with the two
equilateral sides. Afterwards, we extend it along its circumcircle from A to D
and from B to E such that DF is parallel to AB and the width of the set is
achieved between the line DE and the vertex C.

Of course, the smallest sailing boats (due to set inclusion) are the isosceles

triangles themselves and if one chooses D and E at maximal distance one gets a
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FIGURE 6.30. A general sailing boat.

concentric sailing boat. Hence all sailing boats are mapped between the bound-

aries indicated by TQ,I%, and RSB%(see Figure 6.31 for a projection onto the
(z,y)-plane).

LEMMA 6.16. For all sailing boats SB it holds that

r2(SB)ri(SB) + 4R, (SB)ri(SB)(R,(SB) — r3(SB))
= 4ry(SB)Ry(SB)\/Ri(SB)(Ri(SB) — r2(SB))

PROOF. Let ¢ be the distance between the incentre and the circumcentre of
SB and 7 the distance between the parallel lines AB and DFE. Then it is easy
to see that the following equations hold:

(1) C =T9 + R2 — 2R1,
(ii) sin(3) = SR
(iii) tan(3) = 5z', and

)
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RSB

0.4 0.5 0.6 0.7 0.8 0.9"

FIGURE 6.31. {f(SB) : SB a sailing boat}, projected onto the
(x,y)-plane.

Since tan(arcsin(x)) = i3, We can use (i) and (iii) to compute

r
= 2R, —
n i tan(arcsin(mf_w))
2
7"1 7"2
= 2R; — (2R, — — /1l - —
e )\/ (Rf 7.
= 2 <R1 — E Rl(Rl — 7"2)) .
T2

Now we use the above formula for n and (i) for ¢ and insert them both into

equation (iv). This leads to
. 2
1
i+ <T_\/ Ri(Ri — 1) — R2> = R
2

which is equivalent to

AR r? 4r R
r 4 ;I(Rl—m): 172

RI(RI - 7“2)
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and by multiplying with % we obtain the statement of the lemma. 0]

As all extreme sailing boats (isosceles triangles, concentric and right-angled
sailing boats) describe parts of the boundary of f(C?), it is likely that the equation
in Lemma 6.16 defines a complete 2-dimensional boundary of f(C?). However,
the equation in Lemma 6.16 does not indicate a valid inequality for f(C?), since
the 2-dimensional surface induced by the equation does intersect f(C?) beyond

the boundaries of the sailing boats.

3.9. The facets f9 and f16. f9 probably consists of BT,

arcsin(

%), SR%, and

H.- (BTmsin(%) instead of L as computed by Qhull). This conjecture is moti-
vated by the fact that there is a non-linear boundary of f(C7) between BT, .q( 3)

and SR= (see Subsection 3.7), and that there is an assumed boundary between
BT, csin(z) and Hy- (see Subsection 3.2).

For f16, it is quite possible that a 2-dimensional part of the boundary exists
which contains exactly the three extreme points SRz, SR, g n3-1), and Hr,
as we know that the sliced Reuleaux triangles and the general hood sets define
parts of the boundary of f(C}).

For both f9 and f16 the problem is mainly to find out about the unknown
parts of the boundaries of f(C?) between H,. and BT, csin(2) and between H-.

and SR%. A possible solution to this could also be an undiscovered eleventh

essential extreme point.

Summarising the results about the extreme points in the previous subsections

we state the following theorem:

THEOREM 6.17. The sets L,B,T?, RT,I~,SR=,SR, .. = ., RSB=, and
5 6 arcsin(v/3—1) 1

H,- correspond to extreme points of f(C?).

Additionally, we can now give a corrected version of the vertex-facet depen-
dency computed by Qhull (see Figure 6.32, and compare it to Figure 6.14). Since
not all boundaries are linear, and since therefore f(C?) is not a polytope, we des-

ignate it as the dependency of extreme points and 2-dimensional surface regions.
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SR resin(vE-1) B

FIGURE 6.32. The dependencies between extreme points and
2-dimensional surface regions of the 3-dimensional diagram. The
green facets and extreme points have been proved in the preceding
subsections, the red parts are open. The yellow colour indicates
that those facets/extreme points could not be completely verified

yet.

4. Possible extensions

The greater part of the new 3-dimensional diagram f(C?) has been completely
described. Nevertheless, the remaining open questions are major challenges for
the future.

Besides that, there is a multitude of open questions which arise by extending
the concept of Blaschke-Santalé diagrams to convex sets in higher dimensions.

Of course, the first extension that comes into mind is to draw these diagrams
for bodies in 3-space. The easiest case to start with are the four possible 2-

dimensional diagrams, which we obtain from using only three out of the four
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standard radii (the exact analogue in 3-space of the Blaschke-Santalé diagrams
in 2-space). It is easy to see that major parts of the boundary of these diagrams
can be described again by the standard inequalities from Propositions 2.1, 2.3,
and 2.5.

For example, consider the triple (73, Ry, R3) and draw the diagram
g:C —[0,1],
where C} denotes the class of all 3-dimensional bodies K with Ry(K) =1 and
9(K) = (z,y) = (r3(K), Ri(K)).

By Proposition 2.1 we know that y > z and from Proposition 2.5 we obtain
y < Zt (see Figure 6.33).

y

1 B
0.8
B
0.6 T3
0.4
0.2
X
0.2 0.4 0.6 0.8 1

FIGURE 6.33. The known boundaries of the (r3, Ry, R3)-diagram
for 3-dimensional bodies. The dashed line is an upper bound; the

real boundary of the diagram lies below this line.

In the 2-dimensional case Steinhagen’s inequality (see Proposition 2.3 (ii))
only induces a single point on the boundary of the diagram, the image of T2
However, if one considers 3-dimensional bodies, the regular simplex is not reduced
(see the remarks after Proposition 2.5) and therefore the inequality y < V3z
induces a whole line segment of the boundary of g(C}). The intersection of the
inequalities y < IT“ and y < v/3z is formed by ¢(TB), which is obtained from
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intersecting 7% with a ball of radius 2R, (T?) — ro(T?) and scaling it to attain
circumradius 1.

Hence the only unknown part in this diagram is the part between 0 (the image
of all lower dimensional sets) and (%, \/§> (indicated by a dashed line in Figure
6.33). Since in the analogue Blaschke-Santal6é diagram the boundary between 0
and T2 is reached by the mappings of isosceles triangles, it is very likely that
some kind of simplices which generalise the isosceles triangles (e.g, an isosceles
pyramid over T? or a simplex which consists of four isosceles triangles) form the
remaining part of the boundary.

It is easy to see that the three other 2-dimensional diagrams, involving only
standard radii, would also be completely known if it would be possible to close
the gap in the boundary between T2 and the lower dimensional sets. Note that
in the two diagrams involving r; and Ry we get the image of T? as an additional

extreme point on the z-axis (see Figure 6.34).

LI B
TZ
Y M
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1Y

FIGURE 6.34. The known boundaries of the (Ry,r, R3)-diagram
for 3-dimensional bodies. The dashed line is a lower bound; the real
boundary of the diagram lies above this line. The point M indicates
the image of the Meifiner bodies, the point 72 the image of the lower
2-dimensional regular simplex, which is the lowest possible point

on the z-axis.



116 6. BLASCHKE-SANTALO DIAGRAMS

Moreover, as the major part of the boundaries of these diagrams for convex
sets of any fixed dimension are described by the inequalities of Propositions 2.1,
2.3, and 2.5, it should be possible to answer the question for complete systems of
inequalities in any dimension, as well. This will be subject of further work.

However, there are two more possible generalisations of such diagrams for
3-dimensional bodies: One is the analogue diagram of f(C?) for C}, obtained by
taking all four standard radii into account. Of course this task is even harder
than its 2-dimensional counterpart, but it is not very difficult to see that at least
the standard inequalities again induce faces of the boundary.

For example, the intersection B, of four balls of equal radii placed at the
vertices of a regular simplex is not of constant breadth, but B4 has the same
inradius, width, and circumradius as any of the two Meifiner bodies M. Hence
both, B, and M, fulfill the valid inequality 2R; < ro + Ry with equality and,
since this holds for all bodies of constant breadth, the inequality induces a 2-
dimensional boundary face of the 3-dimensional diagram.

The last possible extension we like to introduce are diagrams which take non-
standard radii into account. This task is quite difficult as a general order of the
radii like that of the standard ones does not exist, as shown in the diagram in

Figure 2.3 of Chapter 2. In 3-space we only know that for every body C
r3(C) < {Ri(C),m2(C)} < {Ry(C),m(C)} < Rs(C),

where within the curly brackets everything (‘<’, ‘=’, and ‘>’) is possible.

Nevertheless, we can describe some parts of such diagrams with our knowledge
from the preceding chapters. Figure 6.35 shows the 2-dimensional diagram one
gets from the radii (Ra, 71, R3).

Since both Ry, and r; are less than or equal to R3, we can scale the bodies
such that their circumradius is 1 and consider the map into the (z,y)-plane,
where x indicates the outer 2-radius R, and y the half diameter r;. Important
parts of the boundary have not been discovered so far (the horizontal and vertical
dotted lines in Figure 6.35 indicate only weak lower bounds for the boundaries).
However, it follows from the results of Chapter 4 and 5 that there exist points
below the z = y line (induced by the totally non-spherical bodies, indicated by
TN in Figure 6.35) and, more significantly, there exist points on the boundary
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FIGURE 6.35. The (Ry,r, R3)-diagram for 3-dimensional bodies.

x =1 with y # 1 (induced by the special totally isoradial bodies we constructed
in Chapter 5, indicated by T'T in Figure 6.35).

Since geometric inequalities involving the non-standard radii are almost un-
known, approaching these diagrams is a challenging task for future work. A
possible first step could be to concentrate on subsets of C¢, like simplices or

bodies of constant breadth and their generalisations.






APPENDIX A

Qhull results for the 3-dimensional Blaschke-Santalé

The Qhull input can be read as follows: The first line states the dimension,
the second the number of vertices. Thereafter each line represents the coordinates

of a point in the V-presentation of the polytope given by Lemma 6.8.

3

10

0

1

0.5
0.732051
0.649519
0.732050
0.683578
0.414214
0.707107
0.793580

TABLE A.1. The approximative coordinates of the extreme points

diagram

0

1

0.75
0.866025
0.75
0.844028
0.683578
0.5
0.853553
0.793580

in our list, used as Qhull input.

One should notice for the output of Qhull that the input points are named
as p0 to p9, but only the irredundant remain listed. f2 to f17 denote the eleven
computed facets (the six missing numbers were internally used by Qhull for hyper-
planes spanned by three vertices, which later turned out as non-facetinducing).
For each vertex a list ('neighbours’) is given, which presents the facets containing

this vertex. The information in the output for each facet describes the type of

119

1
1
0.866025
0.866025
0.866025
0.866025
0.911438
1
1
0.896790



p9 (v3):

neighbours:

pl (vl):

neighbours:

p0 (v0):

neighbours:

p8 (v5):

neighbours:

p2 (v2):

neighbours:

p6 (v6):

neighbours:

p3 (v7):

neighbours:

p7 (v8):

neighbours:
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0.79 0.79 0.9
f2 9 f14 f16 f17
1 1 1

f2 5 7 f12 f14
0 0 1

2 £5 {6 8 f9
0.71 085 1

£5 16 f7

0.5 0.75 0.87
f6 {7 8 f12 f13
0.65 0.75 0.87
8 19 13 16
0.73 0.87 0.87
f12 13 f14 17
0.73 0.84 0.87
16 17 £13

TABLE A.2. The Qhull output, Part 1: The vertices and the

containing facets.

the facet (’flags’), a normal vector ('normal’), a list of the vertices contained, the

neighbouring facets, and if the facet is not simplicial, a list of its edges ('ridges’).
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- 12
- flags: bottom simplicial
- normal: 0.7071 -0.7071 -0
- vertices: p9 (v3) pl (v1) p0 (v0)
- neighbouring facets: {5 f9 f14
- 15
- flags: top simplicial
- normal: -0 0 1
- vertices: p8 (v5) pl (vl) p0 (v0)
- neighbouring facets: {2 {6 {7
- 16
- flags: bottom simplicial
- normal: -0.6317 0.5233 0.572
- vertices: p8 (v5) p2 (v2) p0 (v0)
- neighbouring facets: {8 f5 {7

- flags: top simplicial
- normal: -0.4472 0.8944 5.698e-06
- vertices: p8 (v5) p2 (v2) pl (vl)
- neighbouring facets: f12 {5 {6

- 18
- flags: top simplicial
- normal: -0 -0.1758 -0.9844
- vertices: p6 (v6) p2 (v2) p0 (v0)
- neighbouring facets: {6 f9 f13

- 19
- flags: bottom simplicial
- normal: 0.3093 -0.4203 -0.8531
- vertices: p6 (v6) p9 (v3) p0 (v0)
- neighbouring facets: {2 {8 {16

- f12
- flags: bottom simplicial
- normal: -0.4472 0.8944 -7.192e-06
- vertices: p3 (v7) p2 (v2) pl (vl)
- neighbouring facets: {7 f14 f13

TABLE A.3. The Qhull output, Part 2: The first seven facets.
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- f14
- flags: top simplicial
- normal: 0.4472 -3.338e-06 -0.8944
- vertices: p3 (v7) p9 (v3) pl (v1)
- neighbouring facets: {2 f12 {17
- f16
- flags: top simplicial tested
- normal: 0.2712 -0.238 -0.9326
- vertices: p7 (v8) p6 (v6) p9 (v3)
- neighbouring facets: f9 f17 {13
- f17
- flags: bottom simplicial tested
- normal: 0.4472 -2.033e-05 -0.8944
- vertices: p7 (v8) p3 (v7) p9 (v3)
- neighbouring facets: f14 f16 f13
- f13
- flags: bottom tested coplanar
- merges: 1
- normal: -0 -0 -1
- vertices: p7 (v8) p3 (v7) p6 (v6) p2 (v2)
- neighbouring facets: {8 f12 f16 f17
- ridges:
- 14 tested
vertices: p3 (v7) p2 (v2)
between f13 and 12
- 13 tested
vertices: p6 (v6) p2 (v2)
between {8 and 13
-1l tested
vertices: p7 (v8) p6 (v6)
between f16 and f13
- 12 tested
vertices: p7 (v8) p3 (v7)
between f13 and f17

TABLE A.4. The Qhull output, Part 3: The remaining facets.
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