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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der dynamischen Kombination mehrerer
mobiler und stationärer Sensoren zur Ortsbestimmung in intelligenten Umgebun-
gen.

Durch eine Analyse verwandter Arbeiten in den Bereichen der Augmented Rea-
lity (AR) und des Ubiquitous Computing (Ubicomp) werden stark unterschiedliche
Anforderungen dieser Forschungsgebiete an das Aufgabengebiet der Arbeit defi-
niert: typische Anwendungen der AR benutzen wenige hochgenaue Sensoren, die
Ortsdaten mit niedriger Latenzzeit und hoher Wiederholrate liefern. Anwendun-
gen aus dem Gebiet des Ubicomp benutzen hingegen meist eine große Anzahl von
Sensoren, die recht ungenaue Daten mit höchst unterschiedlichen Wiederholraten
liefern, die zudem nur einen Ausschnitt des Ortszustandes der beobachteten Ob-
jekte darstellen. Eine einheitliche Behandlung von Sensoren zur Ortsbestimmung
in den Gebieten von AR und Ubicomp ist eine zwingende Voraussetzung für AR-
Benutzerschnittstellen in Ubicomp-Umgebungen, allerdings wurde dies in bisheri-
gen Arbeiten vernachlässigt. Zudem behandelten existierende Mehrsensorsysteme
in den Bereichen der AR und des Ubicomp kaum das Problem der dynamischen Inte-
gration von mobilen Benutzern und ihrer mitgeführten Sensoren und Anwendungen
zur Laufzeit. Die vorliegende Arbeit legt Lösungsansätze für diesen im folgenden
Ubiquitous Tracking (Ubitrack) genannten Problembereich dar.

Der vorgestellte graphbasierte Formalismus erlaubt die einheitliche Behandlung
aller relevanter Sensornetze zur Ortsbestimmung. Er wird in den folgenden Teilen
der Arbeit sowohl als grundlegendes theoretisches Modell als auch zur exakten und
vereinfachten Beschreibung von Sensornetzen benutzt. Um den Formalismus zur
Lösung von Anwendungsproblemen nutzen zu können, wird ein Implementierungs-
konzept beschrieben, das auf verteilten Algorithmen zur Sensordatenerfassung und
-aggregation beruht. Die Realisierbarkeit sowohl des Formalismus als auch des Im-
plementierungskonzepts wird durch Simulation der zugrundeliegenden Algorithmen
gezeigt.

Der Entwurf und die Implementierung einer Softwarearchitektur zur dynami-
schen Integration neu auftauchender mobiler Anwendungen und Sensornetze in
existierende stationäre Aufbauten wird beschrieben. Die Architektur basiert auf
früheren Arbeiten am Augmented Reality Framework Dwarf. Dabei wird ein be-
sonderer Schwerpunkt auf Lösungsansätze zur Übertragung von Konfigurations-
daten in Peer-to-Peer Netzen gelegt, so dass a priori weder die mobilen noch die
stationären Systeme voneinander Informationen haben müssen.

Zum Abschluss wird die verteilte Anwendung Ubiquitous SHEEP vorgestellt.
Sie zeigt die wesentlichen Lösungsansätze der vorliegenden Arbeit im praktischen
Zusammenspiel.





Abstract

This thesis aims to find new ways of dynamically combining multiple mobile and
stationary sensors for location tracking in intelligent environments.

Based on an overview of existing location sensors and sensor fusion systems both
in the area of Augmented Reality (AR) and Ubiquitous Computing (ubicomp), very
different requirements for these two fields of research are derived: AR applications
typically employ positional data of a few very accurate high-frequency, low-latency
sensors with six degrees of freedom, whereas ubicomp systems use a large number
of sensors that usually are much less accurate, deliver data with highly variable
update rates and give only partial information on a tracked object’s position and
orientation. In consequence, there has not been much work on a unified treatment
of location sensors for AR and ubicomp, which is a prerequisite for interacting with
ubicomp environments via AR-based interfaces. In addition, existing multi-sensor
AR and ubicomp systems do not focus on the dynamic integration of new mobile
sensors, users and applications at runtime. However, in intelligent environments
mobile users carrying their own equipment have to be connected with stationary
systems and among each other at runtime to exploit all available data and enable
new kinds of applications. This thesis is a first step in this direction and gives
partial solutions to this problem domain, which is referred to as Ubiquitous Tracking
(Ubitrack) throughout the thesis.

A graph-based formalism is presented that allows the unified treatment of all
kinds of sensor networks for location tracking. The formalism is used both as
an underlying theoretical model and a way of describing sensor networks in the
remainder of the thesis. The design of an implementation concept consisting of
distributed algorithms extracting and aggregating location sensor data to apply the
formalism to real-world problems is described. In contrast to existing approaches, it
allows the dynamic integration of mobile setups at runtime. To prove the viability of
both the formalism and the implementation concept, a simulation of the underlying
algorithms is presented.

Based on previous work on the Dwarf Augmented Reality framework, the design
and implementation of a software architecture that allows the dynamic integration
of new mobile sensor networks and applications into existing stationary setups is
discussed. A major issue is how to transmit configuration data in a peer-to-peer
fashion, such that neither mobile nor stationary setups must have a priori knowledge
about each other on system startup.

As a proof of concept, a game-playing application, Ubiquitous SHEEP, is de-
scribed, demonstrating all key features described in this thesis in practice.
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CHAPTER 1

Introduction

Overview

This thesis aims at finding new ways of dynamically combining multiple sensors for
location tracking in intelligent environments.

This chapter introduces and defines the two main areas of research this thesis re-
lates to. The first area, Augmented Reality (AR), is a new paradigm for interfacing
with computing systems. The influence of the properties of typical AR systems on
the requirements for sensors that estimate the positions and orientations of users
or objects in the users’ environment is described.

Especially in terms of location tracking, research in AR has been inspired by ideas
of Virtual Reality (VR), where the user is taken to a complete artificial world. The
second area, Ubiquitous Computing (ubicomp), forms a sharp contrast to that
approach. Instead of taking the user to virtual worlds, it aims at bringing virtual
information to the user, as Weiser [131] puts it:

The “virtuality” of computer-readable data—all the different ways in
which they can be altered, processed and analyzed—is brought into the
physical world.

I argue that user interface paradigms of Augmented Reality are—among others—a
perfect match for interfacing with ubicomp environments. Only by combining vir-
tuality and reality in three dimensions it is possible to reach the ubicomp goal of
overcoming the information overload omnipresent in today’s desktop based com-
puter systems. To motivate this claim, some scenarios illustrating the potential
benefits of AR interfaces in ubicomp environments are given.
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Chapter 1 Introduction

At the current state of research, the sensing technology of ubicomp applica-
tions is largely different from AR’s technology: research in ubicomp focusses on
flexibility–ad-hoc connections of computers providing sensor information and get-
ting contextual information out of omnipresent sensors are main areas of attention.
In contrast, AR researchers focus on sensors delivering high positional and orienta-
tional accuracy. The work described in this thesis is a first step at reaching these
presumably contradictory goals simultaneously.

1.1 Augmented Reality

Being inspired by the vision of taking the information within a computing system
to the user’s perception of the real world, the idea of Augmented Reality (AR)
has been invented by Ivan E. Sutherland [116] shortly after his pioneering work
on Virtual Reality (VR) [115]. Whereas VR systems aim at creating seemingly
realistic, but completely artificial worlds, AR systems go one step further and try to
mix artificial and realistic impressions such that the user is supported in performing
real-world tasks rather than in manipulating merely virtual data. This section gives
a definition of AR, and briefly presents the current state of the art in the research
community. As this thesis is all about tracking, special focus is put on a presentation
of today’s AR sensing technology and its main characteristics.

1.1.1 Definition

Azuma summarized the AR development in two survey papers [7, 8]. Out of the
vast literature on existing AR systems, he distilled a definition that nowadays is
commonly accepted among AR researchers.

An Augmented Reality system

1. combines real and virtual objects in a real environment;

2. runs interactively, and in real time; and

3. registers (aligns) real and virtual objects with each other in three dimensions.

There are several interesting observations to make about this definition. Many
people’s idea of AR systems is restricted to visual augmentations, either using Head-
Mounted Displays (HMDs) or other visual techniques such as projectors displaying
data on a table. In principle, these are valid AR systems, but it is equally fine to
employ other senses of the users, e.g. by using sound or force feedback devices.
A virtual object does not have to be seen by a user to make it present, it might
suffice that the user hears where it is. As long as the virtual object is aligned in
an interactive fashion according to some three-dimensional spatial relationship to
a real counterpart, the overall system is an AR system.

2



1.1 Augmented Reality

The real time requirement makes AR difficult. Combining real and virtual objects
that are registered in three dimensions is a rather standard technique in today’s
movie industry, both for visual and audio effects. It is often almost impossible to
distinguish the real from the virtual parts. However, creating such scenes is an
offline process that takes many days to render on high-performance machines. If
the whole AR processing pipeline—detecting the pose of real objects in 3D space,
aligning virtual objects with them and bringing the virtual objects to the user’s
perception of the real world by e.g. displaying them—has to work in “interactive
real time”, i.e. there are just a few milliseconds to perform all these computationally
expensive tasks. Of course, increasing computer power facilitates this problem, but
AR is still in a state where care has to be taken to implement every step in the
processing pipeline as efficiently as possible.

Finally, the registration requirement takes us to the topic of this thesis. In AR
applications, we have to track a multitude of real objects such that the virtual
information can be aligned correctly. Conceptually, tracking is not limited to the
3D position and/or orientation of a rigid object in space, but should also handle
deformable objects. We will see, however, that the current technology usually
restricts us to estimate the position and orientation of a few rigid objects in 3D
space.

1.1.2 State of the Art

Analyzing the proceedings of last years’ International Symposium on Mixed and
Augmented Reality (ISMAR) conference series [52, 53, 54, 55, 56], several major
research directions can be observed:

• Researchers are still on the quest for the killer application, i.e. the application
area that allows AR to become commercially successful (compare Navab [85]).

• A huge problem for developing real-world AR systems is finding suitable dis-
plays, as especially current head-mounted displays (HMDs), but also current
projector-based techniques suffer from severe drawbacks. HMDs can either
operate in video see-through mode, where a video image of a camera mounted
in front of the display is augmented with virtual objects and shown in the
user’s goggles, or in optical see-through mode, where the real image of the
world is optically merged with augmentations. Video see-through HMDs suf-
fer from a low resolution of all available and processable cameras compared
to the human eye, whilst optical see-through HMDs lack sufficient contrast
to operate in varying lighting conditions. In addition, it is not possible to
“take away” things from the user’s view with optical see-through HMDs, a
technique referred to as diminished reality. The same holds true for projec-
tors, their advantage that the user does not have to wear special equipment

3



Chapter 1 Introduction

for visual augmentations is traded in for severe problems in multi-user setup,
where it becomes extremely hard to ensure private information spaces with
public displays.

• AR defines a completely new interaction paradigm with information systems.
As AR is inherently three dimensional, immerses into the user’s perception of
his surroundings and AR systems also integrate real objects, knowledge from
classic two dimensional user interfaces (UIs) can not be applied without major
drawbacks. As such, much work is put in finding new UI metaphors suitable
for AR systems. A promising approach is to use multi modal and tangible
interfaces that take advantage of the fact that the user is in a real environment
instead of the completely artificial world of conventional systems. However,
it is still unclear which interaction techniques are suitable and commonly
understandable for AR system users.

• Several groups, among them the Augmented Reality Group at Technische
Universität München, which I am a member of, have put an emphasis on the
system aspects of AR. Only if principles of software engineering are taken
into account when developing AR applications will it be possible to reuse
parts of AR systems and to build larger systems that can be integrated into
existing business processes. The work described in this thesis tries to give a
solution for the problem of reusing and combining tracking data in arbitrary
AR systems.

• With the combination of real and virtual information, AR seems to be an
ideal interfacing technology for mobile applications. However, there have
been surprisingly few of them, which is mainly for missing tracking facilities—
most outdoor applications are restricted to GPS—and insufficient computing
power of mobile devices, which is currently becoming less of a problem. Still,
most existing AR systems are restricted in their working area to a few square
meters.

• The largest fraction of AR researchers is currently working on tracking tech-
nology. During the first years of AR, the major focus was on developing new
technologies for tracking, and only some people started to eliminate the draw-
backs of individual tracking technologies by fusing multiple tracking sources.
This distribution holds true until today. Currently, many people work on
vision-based tracking devices, with the major goal of using natural features
such as sharp corners in structured environments as navigation hints. Vision-
based natural feature tracking has the major advantage that no infrastructure
is needed, a simple video camera worn by the user suffices. Nevertheless, we
will see in the next section that only a combination of multiple tracking de-
vices, the major topic of this thesis, enables robust and accurate tracking.
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1.1.3 Sensing Technology

The sensing technology used in Augmented Reality systems is heavily influenced
by both the real time interactivity and the correct registration requirement.

Key Requirements. Depending on the specific application, either low latency or
lag, i.e. the time delay between an object’s state in the real world and when
information about this state is available to the computing system, or high accuracy
is at the center of attention. The connection between latency and accuracy has
been evaluated by Holloway [51]. At standard working distance in HMD-based AR
setups, a latency of 1 ms will result in an error of 1 mm in the worst case.

Number and Quality of Sensors. As sensing technology fulfilling these require-
ments is very complex and usually expensive, common AR setups track a very
limited number of objects, usually less than ten, simultaneously. The accuracy of
state of the art trackers can be as high as millimeter positional and fractions of a
degree orientational standard deviation.

Measurement State Space. To categorize sensors, we need the concept of mea-
surement state space. It signifies the state of some real world entity that a specific
sensor can estimate.

The number of degrees of freedom (DOF) is the most relevant descriptive criteria
of the measurement state space. For example, position in three dimensional space
has three degrees of freedom.

Spatial state can not only be measured in absolute coordinates with regard to a
given coordinate system, relative coordinates with regard to the object’s absolute
state at a given point in time are common as well.

Finally, not only the direct spatial state such as position and orientation can be
estimated by sensors, but as well first or higher order derivatives, e.g. speed or
acceleration.

In typical AR systems, the following measurement state spaces occur. Section 2.5
gives specific information on available commercial and research trackers, this list
is just for specifying the requirements AR applications have with regard to spatial
state sensors.

6 DOF Absolute Pose. Sensors with this measurement state space are the standard
equipment of AR applications. They estimate both the position and the ori-
entation of an object in three dimensions, resulting in six degrees of freedom.
The combination of position and orientation is referred to as pose in the
remainder of this thesis. Examples include most vision systems such as AR-
Toolkit and ART dTrack and typical VR equipment such as magnetic trackers
from Ascension Technology.
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3 DOF Absolute Position. This class of sensors is of minor importance in indoor
applications, as most trackers used for AR estimate the orientation as well.
However, with the Global Positioning System (GPS) and its extensions be-
longing to this class, it is the major workhorse for current mobile outdoor AR
applications.

3 DOF Relative Position. Another class of minor importance. Relative position can
be estimated by twofold integration of an object’s acceleration. Accelerom-
eters are very cheap sensors and can therefore be deployed in vast amounts
compared to the more expensive sensors just described. However, due to inte-
gration, small errors in accelerometer readings sum to large errors in position.
Consequently, this class of sensors can only be used in combination with other
sensing modalities.

3 DOF Relative Orientation. Another important and often used class of sensors. Be-
ing based on the gyroscope principle, these have the advantages of being rel-
atively cheap, small, have a high update rate and work in a self-contained
fashion, i.e. no additional infrastructure such as fiducial marks are needed.
As gyroscopes measure the angular velocity, their output has only to be in-
tegrated once to give an estimate of relative orientation. In consequence, the
error characteristics are much better than with accelerometers, but still sim-
ilar error accumulation drawbacks occur. Most often, 6 DOF absolute pose
sensors with a rather low update rate are enhanced in their orientational
output by high update rate 3 DOF relative orientation sensors.

3 DOF Absolute Orientation. With several commercial products available, this sen-
sor class typically combines 3 DOF relative orientation sensors with magne-
tometers to define a reference coordinate frame based on the earth’s magnetic
field. Magnetometers are susceptible to field distortions caused by ferromag-
netic substances or electronic equipment, however, these distortions can be
corrected by the relative sensing facilities to some extent. Commercially avail-
able examples include the InertiaCube from Intersense and the MT9 from
XSens, that both integrate three gyroscopes, three accelerometers and three
magnetometers in a small form factor.

Note that virtually all AR applications compute 6 DOF absolute pose out of
the available sensors in order to correctly augment the user’s environment. In
summary, the following characteristics describe the requirements for current AR
sensing systems:

• support for large number of yet unknown applications;

• high accuracy;
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• low latency;

• small number of tracked objects; and

• 6 DOF absolute pose state space.

1.2 Ubiquitous Computing

Inspired by computers getting ever smaller, Mark Weiser envisioned and coined the
term of Ubiquitous Computing (ubicomp) [130]. As with AR, ubicomp is somehow
related, but at sharp contrast with Virtual Reality. For VR, the major goal is to
put the user in a completely artificial world. For ubicomp, the goal is to enhance
the user’s experience of the real world by bringing “invisible” computers into it.

1.2.1 Definition

Ubiquitous Computing can be defined best by looking at it as a logical successor
in the sequence of computing paradigms. In the beginning, there were very few
mainframe computers and many users per computer. This era was ended by the
personal computers, where every user had his own machine. With ubicomp, a
magnitude of computers is available for every user.

All these computers should become virtually invisible in their users’ lives. This
would be a major paradigm shift, as today’s computers force the user to adapt to a
virtual world consisting of windows, icons etc., instead of supporting the user almost
unconsciously. Weiser takes writing as an example of such an invisible information
technology. He states [130]

The constant background presence of these products of “literacy tech-
nology” does not require active attention, but the information to be
transmitted is ready for use at a glance.

If a computing system should support the user unconsciously, it has to gather
knowledge about the situation the user currently is in, which is referred to as the
concept of context awareness [105]. Context awareness is crucial to make ubicomp
systems work [29]. Within this thesis, I follow the definitions of Dey [34]. He defines
context and context awareness as follows:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and application themselves.
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A system is context-aware if it uses context to provide relevant informa-
tion and/or services to the user, where relevancy depends on the user’s
task.

Ubicomp applications can only blend into the background if they are as much
context aware as possible. Only then they can take away the user’s burden to
explicitly tell the system what to do. Instead, the applications try to find out
what the user currently wants, leading to implicit instead of the common explicit
human computer interaction [107]. Note that location of users and real and artificial
objects is one of the most important parts of contextual information.

It should be noted that the term Pervasive Computing is often used as a synonym
for ubicomp. This thesis follows Mattern’s distinction [79], stating that the term
Pervasive Computing was coined by industry and the technology behind aims at
short term applications and business models of omnipresent computers, whereas
the term ubicomp is used in a more academic and idealistic meaning, signifying a
mere technical vision of user-centered computers.

1.2.2 State of the Art

Research in ubicomp is much broader than in the rather specific area of AR. As
such, only some subareas of ubicomp that are of specific importance to the work
described in this thesis will be highlighted.

• As with AR, researchers are exploring a multitude of possible application
areas for ubicomp systems. It is not yet clear which applications or even
application areas will be successful in the future.

• Many people work on inventing, implementing and evaluating user interface
metaphors for ubicomp environments. Specific problems lie in how to deal
with contextual information and the inherent three dimensionality of ubicomp
applications.

• Ubicomp applications are often assembled spontaneously, as it is not known
a priori which computing devices will be available at the moment the user
issues a command. As such, much work is put into defining ad-hoc connection
protocols and wireless communication techniques.

• Mobile ubicomp devices, which constitute the vast majority of ubicomp de-
vices, are small and should blend into the background. Naturally, power
management becomes an issue, as a ubicomp system needing power cables or
constant replacement of batteries is not as “calm” as it should be.

8



1.2 Ubiquitous Computing

• Sensor data in ubicomp applications is seldom used as is, most often it gets
interpreted and semantically enriched. Finding ways to organize and estimate
such high-level context data is a major focus.

It should be noted that the concept of wearable computing has gathered much
attention over the last years. Its goal is to weave computers into the ordinary
clothing of the user. Within the scope of this thesis, wearable computing and its
sensing technology can be regarded as an ultra-mobile variant of ubicomp.

1.2.3 Sensing Technology

According to the survey of Beigl et al. [16], the sensors in ubicomp systems differ
widely and are used for estimating many categories of context beyond location [108].
Nevertheless, one third of the sensors used in present ubicomp applications are for
detecting movement or proximity, both being strongly correlated to location.

Key Requirements. As discussed above, the most important properties of typical
mobile ubicomp sensors are a low power consumption, a small size and a low price.
Otherwise, it would not be possible to let them disappear in the user’s environment.
The situation differs for stationary sensors like active floors or the Bat system [2]
that may have a high deployment cost and large extension. In this respect, they
are similar to typical AR sensors.

Number and Quality of Sensors. In contrast to AR setups, typical ubicomp
applications employ a very large number of sensors. Being relatively cheap, this
becomes feasible. Usually, accuracy is not a high priority issue, as the sensor data
as such is usually not used directly, most times it gets refined and aggregated before
being used as high-level contextual data. In addition, the ubicomp key principle of
highly distributed computing favors this approach—many distributed mobile and
stationary sensors delivering rather inaccurate information can be aggregated to
valuable and reliable contextual information sources.

Measurement State Space. Again, the measurement state space of ubicomp
sensors differs widely from the sensors used in AR applications. In general, the
energy consumption, size and cost criteria lead to mobile sensors that are self-
contained, i.e. do not need special external infrastructure to work properly [109].
Besides that several classes of typical ubicomp sensors can be distinguished.

Accelerometers. These are the workhorses of many ubicomp applications—they are
cheap, deliver high update rates (up to 1kHz) and analogue output, and can be
integrated in virtually every device due to their small size. Of course, their
spatial state space is rather limited, usually to a single degree of freedom
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second derivative of position, although it is easy to combine two or three
accelerometers to get two or three degrees of freedom.

Movement sensors. With ball or mercury switches being the most popular sensors
of that class, the state space of accelerometers gets restricted to a binary
decision—whether the sensor’s acceleration is beyond a certain threshold or
below. For many ubicomp applications, these sensors are used to switch
intelligent objects to an active state as soon as they are moved.

Proximity-based sensors. With radio frequency ID (RFID) tags being the most pro-
minent representative, this class of location sensors is often used to get seman-
tical information such as “Karl-Rüdiger has entered the room.” Their state
space can be characterized as binary 3 DOF absolute position, at the moment
a RFID reader detects a tag, the tag’s 3D position (then being the same as
the reader’s) is known with relatively high accuracy. If the RFID reader does
not detect a tag, we can only make assumptions about its position, based on
a movement model and the time since the last detection.

3 DOF absolute position. This state space is used by outdoor ubicomp applications
that employ GPS as sensing technology. In addition, several stationary indoor
tracking technologies such as the smart floor [90] or the Bat system [2] output
3 DOF absolute position.

In summary, the state space of location sensors in ubicomp systems is not homo-
geneous at all. Depending on the specific application, many diverse sensors are
employed in diverse fashions. Still, some characteristics of ubicomp sensors should
be supported by a system aggregating them:

• support for a large number of diverse applications;

• potentially very high number of sensors and sensed objects;

• high flexibility and dynamics in sensor network configuration;

• largely varying measurement state space; and

• semantically enriched location information.

1.3 Combing Augmented Reality and Ubiquitous
Computing: Motivating Scenarios

The main vision behind the work described in this thesis is that many applica-
tions from the realm of ubicomp could be enhanced with user interfaces inspired
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by techniques used in AR. To motivate that claim, this section gives several vi-
sionary scenarios illustrating what such systems could look like. The key ideas of
the scenarios have been developed jointly with Joseph Newman from Technische
Universität Graz.

For every scenario, it is assumed that tracking information is available to the
envisioned applications at every point in time in space. Whenever an application
needs information about the spatial state of some user or real-world object, it gets
it in a sufficient quality.

1.3.1 Scenario: Emergency Situation in Smart Building

Imagine a smart building being equipped with a multitude of ubicomp sensors of
varying accuracy. The building permanently monitors the location of the people
living and working in it. In normal operation, the building uses this information
for tracking down people if visitors are looking for them or to notify them when
they come by a colleagues’ office that he or she wants to talk to them [2]. In
the case of fire, the tracking data of the building will be combined automatically
with equipment brought to the building by emergency personnel. This aggregated
information can then be used to save lives in multiple ways:

• Based on the current distribution of people, the building calculates optimal
escape routes such that all people can leave the building as quickly as possible.
Ambient displays and/or equipment worn by individuals such as HMDs gets
used to communicate the current ideal fire exits. In addition, characteristics of
users such as disabilities can be taken into account—a person in a wheelchair
is guided via another route than a non disabled person.

• The sensor data can be used by firefighters to track down injured or captured
people, both on a “world in miniature” view of the building for the com-
manders and in personal navigation aids for front line firefighters. Obviously,
this increases also the firefighters’ own safety, as colleagues in trouble can be
detected easily.

• With AR user interfaces, firefighters can be given navigation hints in a very
unobtrusive fashion. As noted by Jiang et al. for an existing research pro-
totype [57], for users of such mission critical applications, “interacting with
a device is often not their primary focus”. With ideal AR systems, naviga-
tion aids and other information is just attached to some real objects such as
walls or doors, making it often unnecessary to interact. In addition, AR can
be used to help navigation in areas of low visibility due to power failures or
smoke.
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• Messages from firefighters such as “the room I’m in just collapsed” can be
annotated with location information automatically. This significantly reduces
the communication load.

1.3.2 Scenario: Museum Tour

A museum is a special form of a building: it is very open to the public, a large
number of visitors get attracted by it and are happy to take a tour through it. It
is also possible to hand out special equipment to visitors on entry. In addition to
the emergency facilities described in the last section, a museum can make use of a
solid tracking infrastructure in multiple ways:

• Visitors can be guided through the museum dynamically, depending on many
parameters. A visitor’s interest profile can be evaluated, it can be taken into
account what he has seen already or how many other visitors are currently
lining up in front of new attractions.

• Especially in large museums, it is often difficult to stay together in larger
groups or families. Using the available location information makes rejoining
friends or family members easy.

• If varying levels of tracking accuracy are available, the dynamic integration of
new museum presentation techniques such as the Virtual Showcase [20] gets
facilitated. For such applications, the low accuracy of typical ubicomp sensors
is not sufficient, high accuracy AR sensors must be integrated dynamically.

1.3.3 Scenario: Factory Floor

The vision of having good enough tracking information everywhere is of particular
interest in industrial applications–applying sensor technology in well-structured en-
vironments such as factory floors is easier than in rather unstructured environments
such as museums or private buildings. Still, the prohibitive cost of high accuracy
sensors for AR makes it impossible to equip a whole factory floor with suitable
tracking. With a highly dynamic combination of inaccurate stationary sensors and
accurate mobile sensors worn by users, several new applications are becoming fea-
sible. In addition, a unified access to all tracking data decreases the development
time and cost of new applications significantly. The following ideas illustrate the
potential of “tracking everywhere” on factory floors:

• Similar to the smart building scenario detailed above, workers could be guided
through the building by enhanced crowd control mechanisms; in case of emer-
gency, specific information such as the current location of toxic substances
would be provided to firefighters.
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• Several already existing AR based applications (e.g. [37]) could be operated
by a worker without the need to change his equipment. This reduces the
amount of time spent for some time-consuming calibration tasks such as HMD
calibration.

• Planning of new factory layouts could be enhanced, by moving a prototype
product through the not yet existent production line. AR would be used
to visualize the production line, showing potentially narrow zones and other
obstacles. This is only possible by a flexible combination of the user’s high
accuracy mobile sensors with the coarse stationary sensors.

1.4 Problem Statement: Ubiquitous Tracking

The vision behind the work described in this thesis is a unified access to location
sensor data of a broad range of sensors typically used in ubicomp and AR systems.
In this section, the problem attacked and the key requirements for solutions to be
developed are formally stated.

1.4.1 Problem Statement.

The problem of Ubiquitous Tracking (Ubitrack) consists of providing an abstraction
from sensors estimating the spatial state of arbitrary objects in the real world. The
abstraction should be accessible by multiple applications simultaneously and handle
all details of the physical and logical distribution of sensors, dynamic changes and
sensor fusion transparently to the applications. Among the supported applications
should be typical Augmented Reality and Ubiquitous Computing systems. The ab-
straction should support environments with many heterogeneous sensors that change
dynamically as mobile users wearing sensors roam around.

1.4.2 Requirements.

The last sections have discussed in some detail which sensing requirements typical
applications from both AR and ubicomp have. This section describes a summary of
them on a very abstract level, following Brügge’s categorization of requirements [26].

Functional Requirements describe the interaction between the Ubitrack system
and its environment independently of its implementation:

Provision of 6 DOF spatial data. The Ubitrack sensor abstraction has to provide
data about the spatial relationships between objects in six degrees of free-
dom, otherwise typical AR applications would not be possible. In addition,
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the system must support other measurement state spaces as well, especially
the state spaces relevant for ubicomp applications as discussed in section 1.2.3.

Aggregate multiple sensors. It must be possible to aggregate the spatial data deliv-
ered by multiple sensors transparently to the application.

Provision of accuracy information. The Ubitrack system must deliver information
not only about the spatial relationships between objects, but as well data
describing the quality of the measurement processes that led to the estimates
of spatial relationships. This accuracy information must also be available for
aggregated sensor data.

Handle multiple applications. Several distinct applications must be handled simul-
taneously. It must be possible for the applications to influence the strategy
of sensor fusion.

Ad-hoc connection of new sensors. New sensors brought into the system by e.g. mo-
bile users must be connected in an ad-hoc manner. It must be possible that
applications already running use these new sensors.

Ad-hoc connection of new sensor networks. It must also be possible to merge multi-
ple already connected sensor networks (e.g. multiple sensors worn by a mobile
user coming into a stationary environment with its own sensor network).

Dynamic Reconfiguration. The system must adjust to changing environmental con-
ditions such as a varying set of sensors or applications dynamically. It must
reconfigure itself automatically without the need of manual intervention of a
system administrator or user.

Non-Functional Requirements describe the user-visible aspects of a system that
are not directly related to its functional behavior:

No central component. The system should not rely upon a central component. This
facilitates the ad-hoc connectivity of new sensors or sensor networks and
enhances the robustness of a sensor network in case of emergency.

Real-time characteristics. The system must not introduce a latency that destroys
the real-time characteristics of AR applications. Beyond the computation
time for sensor fusion, no runtime overhead compared to prearranged fixed
tracking systems should occur.

Scalability to large number of sensors. The system should scale well to be able to in-
corporate the potentially thousands of ubicomp sensors deployed in intelligent
environments.
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Best-effort approach. The system does not have to provide the best possible solu-
tion to a specific spatial relation need of an application. To enhance the
computational efficiency, a best effort approach suffices.

1.5 Thesis Contribution

The contribution of this thesis is an abstraction from networks of sensors for location
estimation. Both a formal model and a set of implementation concepts suitable for
both AR and ubicomp applications are presented.

The formal model has been jointly developed with Joseph Newman from Tech-
nische Universität Graz and focusses on scalability and generality to a degree that
allows the unified modeling and description of all location sensor networks described
in current AR and ubicomp literature. The implementation concepts put a strong
emphasis on highly distributed solutions to several problems arising when trying
to apply the formal model to real world sensor networks.

In consequence, the thesis statement is as follows:

Networks of multiple sensors for location tracking in both Augmented
Reality and Ubiquitous Computing applications can be abstracted such
that multiple applications can access diverse aggregations of sensor data
simultaneously in an efficient manner. This abstraction can be done
using the following components:

1. A graph-based formal model to describe all kinds of sensor net-
works in a consistent fashion.

2. A distributed implementation concept that allows to algorithmi-
cally convert a sensor network description based on the formal
model to a network of software components running on a com-
puter network.

3. A software architecture that allows the ad-hoc connection of mobile
sensor networks with stationary or other mobile networks.

An integrated middleware containing these components facilitates the
reusability, modifiability and extensibility of multi-sensor AR and ubi-
comp applications.

Besides a detailed discussion of the formal model and the implementation con-
cepts, the viability of the formalism by applying it to several representative multi-
sensor setups is shown. The core parts of the distributed implementation concept
have been shown to fulfill the real time requirements by simulation, and the soft-
ware architecture for merging sensor networks has been shown to work in practice
by means of a proof of concept application.
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The work of this thesis has been developed in the context of the Dwarf Aug-
mented Reality framework [12, 13] and extends it in the problem domain of tracking.
Parts of this work have been published previously in [14, 78, 88, 87, 124, 126, 127,
128, 125].

1.6 Thesis Outline

The thesis starts with an overview of the related work in several areas (chapter 2).
First, applications from AR, ubicomp, distributed and context aware computing
are discussed, giving an idea of the scope of my work. Second, existing sensor and
sensor fusion technologies are presented and finally existing systems that provide
an abstraction from individual sensor data are evaluated.

Chapter 3 is about the formal model for Ubiquitous Tracking. The concepts
of spatial relationship graphs, measurement attributes and evaluation functions are
motivated and discussed. Several examples of increasing complexity show how the
formalism can be applied to real-world multi sensor tracking problems.

Chapter 4 goes on with a distributed implementation concept that allows to map
the Ubitrack formalism onto a network of computers organized following the peer
to peer paradigm. The distribution strategy of knowledge about the sensor network
among the participating computers, how sensor data can be aggregated in a generic
fashion and results of a simulation of the core algorithms are given.

Chapter 5 describes how the distributed implementation concept plays together
with the concepts of the Dwarf framework. The extensions developed for that
purpose are detailed and results on the runtime behavior of a proof of concept
implementation are given.

Chapter 6 treats the problem of connecting new sensors or sensor networks to
existing networks. A Dwarf-based software architecture that allows to specify
configuration protocols for using generic tracking hardware in new environments is
described. The architecture employs contextual information to reduce the compu-
tational complexity. Finally, several representative scenarios show how the archi-
tecture gets used for connecting multiple Ubitrack setups dynamically.

Chapter 7 presents Ubiquitous SHEEP, a demo application showing all parts
discussed in the previous chapters working together.

Finally, chapter 8 gives a summary, draws conclusions and gives an extended list
of the next steps that have to be taken to bring the Ubitrack concepts presented
in this thesis into real applications.
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CHAPTER 2

Related Work

Overview

The purpose of this chapter is twofold: first, it tries to give an overview of the areas
of research influencing this thesis. These include Augmented Reality in general,
ubicomp, context aware and distributed computing. It is discussed why this work
can be of use for all kinds of AR and most ubicomp applications. In addition, some
ideas how it can help context aware computing are presented.

The second part of this chapter gives an in-depth overview of sensor technology
used in present AR systems for pose estimation. Advantages and drawbacks of
the main tracking technologies used today are analyzed: mechanic tracking, acous-
tic tracking, magnetic tracking, vision-based methods using artificial and natural
features, inertial sensors, gyroscopes, cell-based trackers, magnetometers and the
Global Positioning System (GPS).

Related work on combinations of single trackers is described. This includes a
presentation of the mathematical concept of a Kalman filter and its application to
the problem of tracking for AR, and a discussion of existing error models used to
describe the accuracy of an individual tracker or a combination of multiple trackers.
In addition, approaches of static combinations of multiple trackers described in lit-
erature are presented and the commonalities and differences between these systems
are described.
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2.1 Augmented Reality Applications

The dominant application areas of AR discussed in literature have been extended
over time. This section tries to give a brief overview of relevant work that shows
where the work described in this thesis might contribute.

In a 1997 survey paper, Azuma [8] discusses medical, manufacturing and repair,
annotation and visualization, robot path planning, entertainment and military air-
craft applications for AR systems. For all these areas, Azuma states that the
sensing technology has to be extended in input variety (to conceptually everything
not detectable by human senses), input bandwidth (i.e. information not only about
a few tracked objects, but massive information about the whole environment the
user is in), accuracy and working range. He also proposes that this goal could be
achieved by hybrid approaches fusing multiple sensors. In a later survey, Azuma
et al. [7] present several approaches in this direction, most of them will be dis-
cussed in section 2.8. In the same paper they give three major new application
directions that hold true until today: mobile, collaborative and commercial AR.
Commercial AR is treated as a separate category, as the survey understands aug-
mentations in sports events broadcast over TV networks as commercial AR. Mobile
AR applications need long-range multiple target tracking data, whilst collaborative
applications profit from the possibility to integrate new mobile users ad hoc. Both
functionalities can best be provided by a middleware as presented in this thesis.

The first mobile AR system was proposed by Rekimoto [101, 102], and consisted
of a portable tracked TV screen attached to a workstation computer via cables.
In 1997, Feiner et al. presented the Touring machine [39], the first outdoor mobile
AR system. This system was later extended by Julier et al. [58] for a battlefield
scenario. However, the focus was on user interface issues, for tracking the same
GPS/gyroscope-based setup as with the Touring machine was used.

Azuma et al. [9] made the point that mobile outdoor AR systems need hybrid
tracking to work successfully. Piekarski’s Tinmith system [94] follows this posi-
tion and integrates vision-based ARToolkit for hand and indoor tracking into the
common GPS/gyroscope outdoor tracking setup. Still, the focus is on creating
hand-tailored demo applications that do not deal with an unforeseeable infrastruc-
ture.

Mobile indoor systems can not rely on GPS as long-range tracker. Newman
et al. [86] used the Bat system [2] to demonstrate AR applications in a sentient
environment, Klinker [64] proposed to use mobile AR for industrial maintenance
applications. However, tracking was not a focus of this project, but the distributed
concepts described in this thesis would enable the envisioned maintenance applica-
tions.

Collaborative AR applications have first been proposed within the Studierstube
project by Schmalstieg et al. [106, 117], with a major focus on efficient distributed
visualization of shared data. Whilst initially Studierstube applications were re-
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stricted to single rooms, recently Reitmayr extended the Studierstube project to
mobile outdoor applications [100]. Within the Shared Space project [18, 19], Billing-
hurst et al. evaluated user interface related aspects of collaborative AR. All these
collaborative applications suffer from the unsatisfying accuracy and range of cur-
rent tracking devices and could benefit from the tracker abstraction described in
this thesis.

In summary, recent AR research tries to explore the application areas of mobile
and collaborative applications. Both need to handle sensor data in rather unpre-
pared environments. This thesis presents concepts that facilitate the development
of new mobile or collaborative AR applications by providing an abstraction between
low-level sensor data and applications.

2.2 Ubiquitous Computing

Weiser’s vision of computers blending into the background and becoming part of the
user’s environment [130] is radically different from common desktop-based comput-
ing infrastructure. As such, research in ubicomp has been driven by applications.

In a 2000 survey paper, Abowd and Mynatt [1] review the accomplishments in
the areas of natural interfaces, context-aware applications and capture and access
of live experiences. They explore ubicomp from an HCI perspective. Natural in-
terfaces are different from the traditional keyboard/mouse interface to computers
in that sensors try to capture “natural” interactions of a user with the comput-
ing infrastructure, such as speech, pen-based writing, video and similar data. A
major problem with such interfaces is that new kinds of error can occur, e.g. mis-
interpreting handwriting or speech commands. New error recovery techniques have
been developed, but are still far from perfect. Research in context-aware ubicomp
applications started with the Active Badge system [129], that employed a network
of sensors receiving signals from user-worn badges to get information about a user’s
location. This knowledge was used to route telephone calls. Since then, multiple
applications employed context to make the interaction of users with a computing
system more natural, but still many questions remain open. The next section dis-
cusses context-aware computing in greater detail. Capture and access applications
try to support users in remembering details of their lives, such as personal conver-
sations or visual impressions, by storing data from sensors such as a video camera
and indexing and organizing this information in an intelligent fashion. The focus
of research has been mostly on technology that allows the handling of such large
data sets, and only very few researchers have put thoughts on an automated struc-
turing. For example, Clarkson [31] employed similarity measures on preprocessed
wearable sensor data to link events within video and audio streams automatically.
Abowd and Mynatt state several ubicomp research directions: Designing a con-
tinuously present computer interface, presenting informations at different levels of
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the periphery of human attention, connecting events in the physical and virtual
worlds and modifying traditional HCI methods to support designing for informal,
peripheral and opportunistic behavior. These research directions hold still true, as
can be seen by scanning through last years’ Ubicomp conference series1 and the list
of ubicomp applications compiled by Rehman [97].

Hightower and Borriello [47] give a survey of location systems used for ubiquitous
computing. For this purpose, a taxonomy of location systems is defined. Sensing
techniques get distinguished in triangulation, scene analysis and proximity, and
the main location system properties are physical position and symbolic location,
absolute versus relative position, localized computation of location to satisfy privacy
concerns, accuracy, range of operation, and cost. The analyzed systems offer a wide
spectrum of properties, but most (e.g. RFID tags, smart floor [90], active bat [45]
and RADAR [10]) have a rather low accuracy and update rate compared to typical
AR requirements. The authors of this survey paper state that sensor fusion, ad-hoc
location sensing and determining the accuracy of such systems are major research
challenges.

The work described in this thesis serves the technical foundations of ubicomp
in the direction of these challenges. Its primary goal of providing “tracking ev-
erywhere” may support the development of new ubicomp applications that need
access to reliable, redundant and highly efficient location information. Applica-
tions may use this information to derive high-level context or annotate captured
data by location events.

2.3 Context Aware Computing

Context awareness [105] is a key issue in ubiquitous computing research. The “calm
computing” paradigm can only work if a computing system has as much knowledge
about the context in which a user interacts with an application as possible. The
ultimate goal is to employ contextual information that enables the computing sys-
tem to do what the user wants without explicitly asking for every relevant detail
of a task description, leading to implicit human computer interaction [107].

2.3.1 Definition of Terms

Dey and Abowd [35] provide an overview of definitions of the terms context and
context-awareness and define these terms as described in section 1.2.1. A pre-
requisite for any context-aware application is a structuring scheme for contextual
information. As proposed by Abowd [1], this can be done along the “five W’s”,
namely Who, What, Where, When and Why. In brief, a user with an identity is
performing an activity at a given location and a specific point in time out of some

1http://ubicomp.org/
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reason. Many problems occur if these five dimensions of context should be used
in practice, ranging from pure data storage and access (recent work by Harvel et
al. [46] indicates that techniques from data warehousing and data mining are suited
for these problems) to defining an ontology for each dimension.

The context dimension understood best is location, it has been researched to
a degree that Schmidt et al. noticed that context should be more than pure lo-
cation [108]. In recent years, research has put an increasing focus on recognizing
activity context information [62, 66, 73]. Still, locational information can help in
determining other categories of context as well, for example, a repeated movement
of a user’s head from left to right and vice versa might indicate that he is currently
watching a tennis match, thus deriving the activity out of location.

2.3.2 Architectures Supporting Context-Awareness

In general, every context-aware application can be structured in several layers: Sen-
sors measure estimates of some properties of the user’s environment. This sensor
data then gets interpreted and aggregated or fused in order to derive contextual
information. This information is finally used by the application to trigger actions.

Stick-e Notes. Brown et al. are among the first to describe a reusable system
for developing context-aware systems, the stick-e notes platform [25]. The system
employs a simple SGML-based context triggering mechanism for displaying relevant
information.

It distinguishes several software components: SeTrigger is responsible for trig-
gering notes. SeShow components perform the actual displaying, and SeSensor
components provide context measurements to the trigger mechanism.

TEA. Schmidt et al .[109] propose within the Technology for Enabling Awareness
(TEA) project a layered approach to context estimation. Raw sensor data is pre-
processed to provide so-called cues, such as light=70%. All cues are put in a tuple
space and aggregated by a context estimation layer to provide high-level context
data such as in a meeting. Again, context is stored in a tuple space, from which
applications have access to it.

NEXUS. The Nexus Center of Excellence at the University of Stuttgart2 is an on-
going project aiming at the definition and realization of world models for context-
aware applications with a strong focus on location. The current world model archi-
tecture is organized in three layers [89]: the bottom layer contains servers providing
data sources, the middle layer contains federation components that aggregate the

2http://www.nexus.uni-stuttgart.de/
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raw data and the top layer consists primarily of location-aware services. The bot-
tom and middle layers can be accessed using the Augmented World Query Language
(AWQL). AWQL is an XML language that allows to specify spatial queries with
certain filtering aspects.

Nexus builds on large centralized databases that are accessed by mobile client.
In contrast, the concepts described in this thesis allow a fully decentralized orga-
nization of the world model. Yet, this thesis’ location sensor abstraction could be
used as additional input to an existing Nexus-based system, thus combining the
advantages of centralized with decentralized systems.

EasyLiving. The EasyLiving project [28] aims at an architecture supporting in-
telligent environments that allow the dynamic aggregation of multiple I/O devices
to give a single coherent user experience.

EasyLiving puts a major focus on a geometry model of the world [27]. Ap-
plications are split in several distributed components, that store abstract service
descriptions of their capabilities on a central lookup repository. An XML-based
message passing middleware called InConcert is proposed to handle the communi-
cation between the distributed components.

Context Toolkit. Dey [34] describes the Context Toolkit3, a software framework
that gives architectural support for general context-aware applications. He proposes
the following architectural building blocks:

Context Widgets are software components allowing applications to access contex-
tual information. For example, a location sensor might be encapsulated by a
context widget.

Context Interpreters interpret low-level contextual data and derive higher order con-
text information. For example, coordinates delivered by a widget can be used
to derive the room a user is currently in. Interpreters can be layered, in order
to derive context in a hierarchical fashion.

Context Aggregators collect related context about an entity that an application is
interested in. For example, an alarm might be triggered if person Evil Joe is
entering the Secret Room doing Nasty Things. The aggregator’s job will then
be to send an event whenever a context interpreter detects that Evil Joe is
in the Secret Room and another interpreter concludes that he is doing Nasty
Things.

Context Services handle often used actions useful for many applications, such as
turning on a light.

3http://www.cc.gatech.edu/fce/contexttoolkit/
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The Context Toolkit is a promising concept for specifying and structuring context-
aware applications. Its layered approach has been inspiring the distributed location
tracking concepts described in this thesis. However, it varies significantly both in
scope and intended use. The location sensing middleware described in this thesis
focusses on handling and fusing location data, without interpreting it. The output
consists of mere coordinates. As such, it could be encapsulated by a Context
Widget, delivering data to Context Interpreters and Aggregators. Additionally, the
Context Toolkit’s current implementation focusses on handling the low-frequency
event streams issued by Interpreters, Aggregators and Widgets encapsulating low
data rate sensors such as an iButton4, whilst the concepts and software described in
this thesis are designed to handle the high data rates issued by typical AR location
sensors.

2.3.3 Summary

The work presented in this thesis builds upon the well established approach of lay-
ering context-aware applications. It can be used as the base layer of the frameworks
discussed above.

The contribution of this thesis serves as a useful basis for developing new context-
aware applications, by providing a highly distributed platform for determining the
locational aspect of a user’s context. The determined locational information can be
used not only to build location-aware applications but also to aggregate higher-level
context such as recognizing the user’s current activity [62].

2.4 Distributed Computing

The problem treated in this thesis is of inherently distributed nature. Sensors dis-
tributed physically and logically deliver data to a dynamic network of computers
hosting multiple potentially distributed applications. In consequence, some con-
cepts explained in this section from the area of distributed computing form the
basis of my work. A good introduction to fundamental concepts and implementa-
tional challenges in distributed systems is given by Coulouris et al. [32].

Client-Server versus Peer-to-Peer. The most fundamental property of a dis-
tributed system is its organization. Schollmeier [110] gave the following definitions:
In general, every participating process can provide or consume resources. In a
Client-Server network, every participant has a clear role—it either provides re-
sources (e.g. a HTTP daemon running on some server computer) or consumes
them (e.g. a web browser running on some client computer). If all participants

4http://www.ibutton.com/
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consume and provide resources simultaneously, the network architecture is called
Peer-to-Peer (P2P).

If removing a single arbitrary entity from a P2P network does not harm the
network services, a network is called Pure Peer-to-Peer. In contrast, a Hybrid
Peer-to-Peer network may contain centralized components.

The implementation of the concepts described in this thesis build upon and
extend the Dwarf AR framework [12, 13]. Dwarf employs a hybrid P2P ar-
chitecture using distributed service managers running on every network node.
MacWilliams [77] describes the software engineering challenges arising from this
approach.

Synchronization. If algorithms need to be executed in distributed systems, a key
distinction between synchronous and asynchronous networks has to be made. In
synchronous networks, all nodes have a global common clock, i.e. events occurring
in the network can be ordered [69]. This is not the case for asynchronous net-
works. Algorithms only requiring asynchronous networks often have a much worse
worst case running time than algorithms for synchronous networks. However, the
overhead to making global clocks work can be significant such that asynchronous
algorithms can be advantageous in practice.

2.5 Overview of Existing AR Tracking Technologies

This section briefly presents current AR tracking devices, the advantages and draw-
backs of individual technologies, to show the potential of a dynamic combination
of multiple devices. It is based on Rolland’s survey [104], not discussing relatively
unused tracking techniques. Bishop’s tutorial on tracking [21] was used as an ad-
ditional reference.

To ensure a common treatment of all technologies, we have to define three terms,
sensor, locatable and tracker.

A sensor is an active piece of hardware that detects the spatial relationship
between a reference coordinate system and one or several objects. Using some
software, the data delivered by the sensor is made available to a computer system
making use of the spatial relationship.

A locatable is an object that can be located by a sensor. The sensor yields the
spatial relationship of the locatable relative to some reference coordinate system.

A tracker is a sensor used for three dimensional position and/or orientation
sensing in AR or ubicomp applications.
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2.5.1 Mechanical Trackers

Mechanical trackers make a rigid link between the tracker and the locatable. They
use mechanical devices to estimate the spatial relationship. They can reasonably be
used only in very special circumstances. Mechanical trackers are simple to build,
provide high accuracy and update rates, but restrict the locatable’s movement
massively. They have been used by Sutherland’s HMD project [116], for force-
feedback devices like the PHANTOM5 from SenseAble Technologies Inc., and for
3D digitizers essentially consisting of a robot arm with a stylus on it, such as
Immersion’s MicroScribe digitizer6.

2.5.2 Time of Flight

Trackers of this class measure the time of flight of a pulsed signal between multiple
places on the locatable and the sensor. Assuming that the signal speed is constant,
the position and orientation of the locatable can be reconstructed from the distances
obtained from the time of flight measurements.

Ultrasonic Trackers. Ultrasonic sound is used as the signal for which time of
flight is measured. Locatables get small and lightweight, as only a microphone or
an ultrasonic loudspeaker are needed, and if infrared signals are used to trigger the
emission of the ultrasonic signal, systems can even be built wirelessly. However,
distortions due to ambient noise, multipath reflections and variations in the speed
of sound and a limited update rate stemming from the low speed of sound are
major drawbacks of these trackers. Often used ultrasonic devices are the IS-900
and IS-600 from Intersense Inc7.

Global Positioning System (GPS). GPS uses 24 time-synchronized satellites to
emit radio signals. A receiver with a clock with an unknown bias can calculate its
position once it has obtained four of these signals, with an accuracy of 10 meters.
The major advantage of GPS is its global outdoor availability, but it suffers from
several drawbacks. A direct line of sight to at least four satellites has to be provided,
making it impossible to work indoors. Accuracy is low, although it can be increased
to few centimeters using real time kinematic (RTK) differential GPS, employing
additional ground stations and measuring carrier phase on two frequencies. GPS is
widely used, most often for military or traffic navigation applications.

5http://www.sensable.com/products/phantom_ghost/phantom.asp
6http://www.immersion.com/digitizer/
7http://www.intersense.com/products/
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2.5.3 Inertial Sensing

Inertial sensors make use of the inertia of masses. This can be done either to
conserve the axis of rotation for measuring rotation, or to measure the linear ac-
celeration of an object.

Mechanical Gyroscopes. Gyroscopes use a spinning wheel and makes use of the
conservation for angular momentum. The spatial relationship of the spinning wheel
relative to the reference frame can then be measured directly. An alternative ap-
proach uses the effect of precession and measures the torque on the axis of rotation.
Both approaches can only measure the rotation in a single dimension. To get a full
three-dimensional measurement state space, three gyroscopes have to be combined.
Gyroscopes can be built in a very small form factor, they provide a high update
rate and do not need external infrastructure. However, making only relative mea-
surements they tend to drift and therefore need constant corrections by absolute
sensors.

Accelerometers. Accelerometers measure the linear acceleration of a locatable
in one direction, i.e. their measurement state space is a one-dimensional second
derivative of absolute position. Three devices can be combined to get a three-
dimensional state space. Accelerometers are relatively cheap and can therefore
be deployed in large quantities. Due to the necessity of double integration for
absolute position estimation, the resulting position estimates tend to drift very
much. However, accelerometers usually provide a very high update rate and proved
useful for many ubicomp applications.

A special case are pedometers. These devices, usually mercury or ball switches,
have a binary output that gets triggered once the acceleration surpasses a certain
threshold. Using pedometers for the purpose of Ubitrack is currently not under
investigation.

2.5.4 Magnetic Field Sensing

Magnetic trackers use the physical effect that a magnetic field induces a current
in a coil and vice versa. The strength of this current is a function of the distance
to the field’s generator, which is another coil. If three perpendicular coils of a
receiver mounted on a locatable measure the field strength, the 6 DOF position and
orientation of the locatable can be reconstructed. Two major classes of magnetic
trackers exist. AC devices use alternating current in the generator coil, producing
a changing magnetic field. Polhemus8 is the major manufacturer of AC magnetic
trackers used in AR and ubicomp applications. They suffer from the magnetic field

8http://www.polhemus.com/
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being distorted in the vicinity of metallic objects. In contrast, DC devices use
pulsed direct current to induce the magnetic field. Vicinity of metallic objects does
not any more distort the magnetic field directly, however, ferromagnetic objects
and other electromagnetic field emitters such as computer monitors distort the
field. Ascension9 is the major manufacturer of DC magnetic trackers.

In principle, the distortions induced by non-moving metallic or ferromagnetic
objects can be removed by precomputed lookup tables, but still magnetic tracking
suffers from relatively large error, especially if the tracking range is more than a
meter. On the other hand, magnetic tracker locatables can be built extremely
small, do not need a line-of-sight connection to the tracker and provide a very high
update rate.

2.5.5 Magnetometer/Compass

Magnetometers estimate a locatable’s orientation relative to the earth’s magnetic
field in a single direction. Using three magnetometers yields full three dimensional
absolute orientation state space relative to the earth’s magnetic field. Of course, a
magnetometer is very susceptible to changes in the ambient magnetic field. Another
source of error is that the earth field is inhomogeneous and changing over time.
However, magnetometers have the advantage that they work on a global scale and
are self-contained, i.e. they do not need any external infrastructure.

Magnetometers are often combined with GPS devices in complementary sensor
fusion, providing full pose information. Another common combination is with gyro-
scopes, whose drift is compensated and accelerometers to get absolute orientation
relative to the ground. Examples of such combined devices are the MT9 from
Xsens10 or the IS-300 and InertiaCube from Intersense11.

2.5.6 Vision-Based Trackers

Up to now, almost all devices (except inertial sensors) discussed have measured
quantities that humans can not detect. The main location sensor used by humans
is the eye. Vision-based systems employ cameras and computer vision algorithms
to estimate the spatial relationships of a single or multiple objects relative to one
or more cameras.

In general, vision-based trackers offer relatively high accuracy for the price of high
computational cost. However, according to Moore’s Law we can expect available
processing power and thus the efficiency of vision-based trackers to grow exponen-
tially.

9http://www.ascension-tech.com/
10http://www.xsens.com/
11http://www.intersense.com/
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There are three dimensions along which vision trackers can be classified: inside-
out vs. outside-in, artificial vs. natural features and active vs. passive markers.

Inside-out vs. Outside-in. A vision-based tracker uses one or multiple cameras. If
the cameras are mounted in a fixed spatial relationship to the reference coordinate
system and detect features being attached to the locatable, the system is called
outside-in tracker. It has the advantage that the locatable does not have to be
equipped with a camera and that the positional accuracy of the estimate is high.
However, the rotational accuracy degrades (see figure 3.1 for an explanation). A
commercial example is the ARTrack/dTrack system from A.R.T.12.

If the camera is mounted in a fixed spatial relationship to the locatable (e.g. on
a helmet worn by the user whose head should be tracked) and detects features that
are in a fixed spatial relationship to the reference coordinate frame (e.g. markers
attached to a room’s wall), the system is called an inside-out tracker. Advantages
are a high orientational accuracy (see figure 3.1 for an explanation) and a higher
accuracy in the camera’s and thus, in the case of a user-mounted camera, the user’s
vicinity, which is typically the main working area. On the downside the positional
accuracy degrades. Another advantage is that, in principle, the operation range is
unlimited, as long as enough features can be distinguished. State et al. [113] and
Koller et al. [65] were among the first to apply computer vision to the problem
of AR tracking, later Cho and Neumann [30] proposed a scalable multi-ring color
fiducial method. The ARToolkit13 is perhaps the most often used AR tracking
software today and specifically targeted for inside-out tracking. A more complex
inside-out device is UNC’s HiBall tracker [134, 135].

Artificial vs. Natural Features. Vision-based trackers work by detecting and
identifying certain features in a camera image using computer vision algorithms.
This task can be simplified if the features have a well-known shape. For this
purpose, artifical markers such as black squares with a certain pattern inside can
be used. Several artificial marker vision trackers exist, and relatively high update
rates up to 100 Hz can be obtained along with high accuracy. However, a line of
sight between at least a single camera and a single marker has to be maintained all
the time. In the case of inside-out trackers, the environment has to be equipped
with markers, which may only be acceptable in some industrial environments. In
addition, this contradicts Weiser’s vision of “calm”, invisible computing, as the
tracking infrastructure becomes clearly visible to all users.

In contrast, natural feature trackers employ structures such as corners, edges
or planar shapes to estimate the camera’s pose. This is a very active area of re-
search [43, 63, 111, 112], and still in its infancy. Markerless trackers suffer primarily

12http://www.ar-tracking.de/
13http://www.hitl.washington.edu/research/shared_space/download/
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from the initialization problem, which consists of finding an initial guess of the cam-
era’s pose when the system gets started. Compared to keeping track of the camera’s
subsequent movements, this is a very hard problem in general, as a potentially in-
finite number of initial pose guesses has to be verified or rejected, based on the
natural features’ properties.

The work described in this thesis helps to overcome this problem by providing
a unified access to all spatial relationships available in the system. Some of these
relationships can help natural feature trackers to make a sufficiently accurate initial
guess about the camera’s pose.

Active vs. Passive Markers. In the case of artificial feature trackers, we can
distinguish two subclasses, depending on the markers: active markers emit (possibly
modulated) light, be it visible or infrared (IR), and therefore make the recognition
task even simpler. In addition, if IR markers are used, a vision-based tracker
can even work in darkness. In contrast to active IR markers, passive markers are
subject to varying lighting conditions, e.g. a system with passive markers might
work indoors, but has problems outdoors in full sunlight.

2.6 Fundamentals of Sensor Fusion

The core topic of this thesis is the aggregation of spatial relationships delivered by
multiple sensors. This process is called sensor fusion and a well researched topic
in many fields of engineering and computer science.

Sensor fusion for location tracking can be divided into three classes [24]: com-
plementary, competitive and cooperative sensor fusion.

Complementary Sensor Fusion. Sensor fusion is called complementary if it em-
ploys sensors which do not depend on each other. The combination of their readings
gives a more complete estimate of the system state. For example, two sensors track-
ing the location of an object in two non overlapping areas work in complementary
fashion, Also, a GPS device (3 DOF position) and a magnetometer (3 DOF orien-
tation) attached to the same locatable complement each other and yield a 6 DOF
pose state space.

Competitive Sensor Fusion. Things get more complicated if two or more sensors
give an estimate of the same spatial relationship. This is called competitive sensor
fusion. Its purpose is twofold: first, redundancy introduced by multiple measure-
ments can be important for safety concerns. Second, sensors with varying error
distributions can be fused to minimize the measurement error.
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In both cases, conflicts between readings have to be resolved, which is a complex
problem. The Kalman filter described in the next section is probably the most
often used solution to this problem.

Cooperative Sensor Fusion. The most complex type of sensor fusion is based on a
tight coupling of multiple sensors and called cooperative sensor fusion. A prominent
example of this class is coupling multiple cameras for 3D reconstruction based on
computer vision algorithms. This problem cannot be approached in general, as very
much detail about the physical properties of the sensors involved must be known.

However, a common case of cooperative sensor fusion is the aggregation of spatial
relationships using the fact that they are transitive: if we know the spatial relation-
ship of object B relative to object A and the relationship of object C relative to
object B, we can infer the relationship of object C relative to object A. This thesis
presents a general solution for the cooperative fusion of sensors based on spatial
transitivity.

2.7 Fusing Multiple Trackers: Mathematical Tools

This section discusses the mathematical background of common sensor fusion meth-
ods that are used to incorporate external knowledge about the spatial relationships
measured and to fuse data from both complementary and competitive sensors.
Special attention is put on the Kalman filter, which is the filter type used most
often. In addition, various error models that are used to describe the accuracy of
measurements are presented.

2.7.1 The Kalman Filter

The purpose of this section is to give a very brief idea of the general concepts of a
Kalman filter and how it might be used for location sensing. It is not intended as
reference for the Kalman filter, see the tutorial from Bishop and Welch [133] or the
book from Gelb [42] for that purpose. The explanation is based on [133].

State-Space Models. In location sensing, the sensors give observable measure-
ments that are related to the true state of the system. Thus, we get an approxima-
tion or estimate of the real spatial relationships we are interested in. The spatial
relationship can be treated as a dynamic process over time:

xk = Axk−1 + Buk + wk−1 (2.1)

The current state xk depends on a linear combination of the previous state xk−1,
a linear combination of an optional control input uk and process noise wk−1.
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However, the measurements might handle the internal state as a “black box”,
the only assumption we make is that the measurements zk are a linear combination
of the state xk corrupted by some measurement noise vk:

zk = Hxk + vk (2.2)

We assume both the process and measurement noise wk and vk to be random
variables independent of each other. They are assumed to have zero mean and
white error distribution, i.e. the underlying random process is completely uncor-
related with itself at any time except the present. They have normal probability
distributions

p(w) ∼ N(0,Q) (2.3)

p(v) ∼ N(0,R) (2.4)

with process noise covariance Q and measurement noise covariance R.
All variables (A, B, H, Q and R) might change at every time step, but we

assume them to be constant.
We further define two kinds of estimates: the a priori estimate x̂−

k is based on
all information up to time step k−1, the a posteriori estimate x̂k is the estimate of
the real state given knowledge about the measurement zk at time step k in addition
to all knowledge used for x̂−

k . We then define the a priori and a posteriori error
estimates as

e−k ≡ xk − x̂−
k

ek ≡ xk − x̂k

and the corresponding error covariances as

P−
k = E[e−k e−T

k ] (2.5)

Pk = E[eke
T
k ] (2.6)

(2.7)

Discrete Kalman Filter. For the discrete Kalman filter, the measurements oc-
cur and the state is estimated at discrete points in time. The algorithm works
recursively in two steps, first a time update, then a measurement update. It can be
shown that the discrete Kalman filter is optimal in the sense that it minimizes the
estimated error covariance Pk.

The time update can be regarded as a prediction of the system state and the a
priori error estimate and is expressed by the equations

x̂−
k = Ax̂k−1 + Buk (2.8)

P−
k = APk−1A

T + Q. (2.9)
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The measurement update tries to compute a new a posteriori estimate as a linear
combination of the a priori estimate x̂−

k and a weighted difference between the
measurement zk and a measurement prediction Hx̂−

k . For this purpose, the so-
called Kalman gain Kk needs to be computed, then the a posteriori state estimate
and error covariance can be computed:

Kk = P−
k HT

(
HP−

k HT + R
)−1

(2.10)

x̂k = x̂−
k + Kk

(
zk −Hx̂−

k

)
(2.11)

Pk = (I−KkH)P−
k (2.12)

After each time/measurement update pair, the process is repeated with the old a
posteriori estimates as inputs for the new a priori estimates. This makes the Kalman
filter a recursive algorithm and makes practical implementations feasible. The
computational cost is the same at each step. There is no necessity to accumulate
all measurements obtained up to now, as with other filtering techniques.

Extended Kalman Filter. The discrete Kalman filter assumes that the process
is controlled by a linear difference equation and a linear measurement-process re-
lationship. In most real-world applications, this does not hold true; there are
non-linear relations.

The discrete Kalman filter can be modified to the Extended Kalman Filter (EKF)
to cope with such situations. Note that the EKF is just an ad-hoc approach to such
problems, no optimality can be guaranteed. However, it works reasonably well in
many applications. The basic idea of the EKF is to linearize the estimation around
the current estimate using partial derivatives of the process and measurement func-
tions. These functions can be expressed as

xk = f (xk−1, uk, wk−1) (2.13)

zk = h (xk, vk) (2.14)

with w and v being the process and measurement noise. As those are often un-
known, we assume them to be zero.

The process of linearization involves computing Jacobian matrices of partial
derivatives of f with respect to x and w

A[i,j] =
∂f[i]

∂x[j]

(x̂k, uk, 0) (2.15)

W[i,j] =
∂f[i]

∂w[j]

(x̂k, uk, 0) (2.16)

(2.17)
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and partial derivatives of h with respect to x and v:

H[i,j] =
∂h[i]

∂x[j]

(x̂k, 0) (2.18)

V[i,j] =
∂h[i]

∂v[j]

(x̂k, 0) (2.19)

(2.20)

The general steps for the EKF are similar to the discrete version, only the filter
equations change. The time update equations are:

x̂−
k = f (x̂k−1, uk, 0) (2.21)

P−
k = AkPk−1A

T
k + WkQk−1W

T
k (2.22)

The measurement update equations are:

Kk = P−
k HT

k

(
HkP

−
k HT

k + VkRkV
T
k

)−1
(2.23)

x̂k = x̂−
k + Kk

(
zk − h(x̂−

k , 0)
)

(2.24)

Pk = (I−KkHk)P
−
k (2.25)

Using a Kalman Filter in Practice. The Kalman filter has several parameters
that are used for modifying its behavior:

The State Vector holds all information of the observed system we are either inter-
ested in or need for expressing the system dynamics. For example, if we
want to observe a system that is moving along a single axis x, we might also
be interested in its velocity v and acceleration a for describing the system
dynamics, resulting in a state vector xk = (x, v, a)T .

The Process Model is governed by the linear equation system expressed in the ma-
trix A. For example, to model the movement just described, A becomes

A(∆t) =

 1 ∆t 1
2
∆t2

0 1 ∆t
0 0 1

 ,

leading to an update equation x̂−
k = A(∆t)x̂k−1. In the case of an EKF, the

process model gets expressed by an arbitrary function f .

The Measurement Model expresses how the state to be estimated results in the mea-
surements done by the sensor and is governed by the linear system expressed
by the matrix H. For example, if the sensor gives us the object’s position
directly, H becomes H = (1, 0, 0)T . In the case of an EKF, the measurement
model becomes an arbitrary function h.
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The Process Covariance Q is updated at every state, but has to be seeded somehow.
For a constant, we could assume Q to be 0.

The Measurement Covariance R expresses how much influence a measurement has
on the next prediction/correction cycle. If we can expect the sensor to be
of low quality, the covariance will be rather high, leading to a filter that is
smoothing the input data. For high quality sensors with low measurement
noise, the filter smooths the data less, but can react quicker to changes in the
input data.

Careful fine tuning has to be done to make a Kalman filter work in practice, in
general it is not possible to set it up in an automated way. As such, the sensor
fusion system described in this thesis provides means to incorporate hand-tuned
Kalman filters, but does not provide any general-purpose filtering.

Prediction. To make a Kalman filter work, a dynamic motion model has to be
specified. This motion model is used to both update the state estimate and the
error covariance in the filter’s prediction step.

As proposed by Azuma [6], we can also use this model to predict the state of the
tracked object at some point in time p.

Competitive Sensor Fusion. Fusing multiple sensors in a competitive fashion is
conceptually simple employing a Kalman filter. The internal system state space
stays identical, as does the dynamic process model. However, the measurement
vector gets extended and the measurement model needs to be adapted. For exam-
ple, if we have a sensor s1 measuring an object’s position along a single axis and a
sensor s2 measuring its acceleration along this axis, we have a measurement vector
z = (x(s1), a(s2))

T and a measurement model matrix

H =

(
1 0 0
0 0 1

)
.

Note, however, that this approach has the underlying assumption that both mea-
surements have been taken at exactly the same point in time, which is rarely true
in practice.

Asynchronous Complementary Sensor Fusion: Single Constraint at a Time
(SCAAT). Welch [132] treated the timing problem just mentioned extensively and
described the Single-constraint-at-a-time (SCAAT) approach to sensor fusion. The
key idea is to store multiple measurement models and measurement covariances, one
for each sensor to be aggregated. Whenever data from a particular sensor becomes
available, the corresponding matrices are “swapped in” and a prediction/correction
cycle of the filter is performed.
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2.7.2 Other Filtering Techniques

The Kalman filter is the filtering framework used most often for tracking purposes.
However, other techniques exist and are useful in specific areas.

The Complementary Filter. The complementary filter [11] can be seen as a very
restricted Kalman filter. It is used primarily for Inertial Navigation System (INS)
and GPS location sensing.

The sensor measurements z(t) are modeled as the sum of the signal s(t), i.e. the
system state to be estimated, and some noise n(t):

z(t) = s(t) + n(t) (2.26)

To illustrate the operation of a complementary filter, consider the case where two
independent measurements of the same signal are available:

z1(t) = s(t) + n1(t)

z2(t) = s(t) + n2(t)

H(s)

1 - H(s)

s(t) + n1(t)

s(t) + n2(t)

y(t) ≈ s(t)

Figure 2.1: A complementary filter for two measurements (taken from [11]).

The resulting structure of the complementary filter is shown in figure 2.1. Note
that the original signal passes without any modification, regardless of how H(s) is
defined.

The Particle Filter. The particle filter is a Bayesian technique well suited for
non-linear and non-Gaussian tracking problems [5, 103]. Similar to the extended
Kalman filters, particle filters provide suboptimal solutions to complex tracking
problems with non-linear system dynamics and measurement noise models.
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The key idea is to represent the underlying stochastic process’s probability den-
sity function (pdf) as a set of samples of the state variable of interest. Multiple
copies called particles of this variable are kept, and each is associated with a weight.
The weight signifies the quality of the specific particle. The pdf estimation is the
weighted sum of all particles. As the Kalman filter, the algorithm has two phases
and is recursive. At each step, each particle’s state is modified according to the
system model (prediction step), then, each particle’s weight is recomputed (update
step). To simulate noise in the measurement process, each prediction step adds
random noise particles. Each update step removes particle of negligible weight to
limit the computation cost.

Discussion. Depending on a specific application area, a careful choice of filtering
algorithms helps in reducing measurement noise. However, this choice can not be
automated due to the multitude of parameters influencing every specific tracking
problem. As such, the concepts described in this thesis have to provide means for
integrating existing or newly developed filtering schemes for particular problems,
but can not provide automatic means of setting up such schemes.

2.7.3 Error Models for Describing Tracking Accuracy

This section gives a brief overview of how tracking error can be classified, and how
it can be represented mathematically.

Classification of Tracking Error. Tracking accuracy is affected by three classes
of error [51].

Static error occurs even when the user’s viewpoint and any objects in the en-
vironment are not moving at all. Examples of static error are field distortions of
magnetic trackers or inaccuracies caused by an uncalibrated head mounted display.
Static error can be eliminated by careful calibration [123] of systems, i.e. by com-
paring the measured values with a “ground truth” obtained via some alternative,
potentially interactive [122], procedures. The work described in this thesis can
serve as a basis for obtaining necessary alternative measurements.

Non-repeatable error (or jitter) cannot be calibrated out of the system, it is
mainly caused by noise.

Dynamic error shows up as soon as anything in the system starts moving. Ac-
cording to [21], it can be divided in four classes. First-oder dynamic error is caused
by the object moving between two subsequent measurements. If the simultaneity
assumption (i.e. multiple tracker readings are assumed to be taken at the same
point in time) is hurt, more dynamic error is induced. The sensor sample rate
needs to be twice as high as the expected frequency of motion, which is in case of
head and arm motion ranging from 2 to 20 Hz. If the update rate of the tracking
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setup is lower, additional error gets induced. Finally, the synchronization delay
is caused by asynchronicity between taking measurements and estimating a pose
out of it. Especially in larger distributed multi-tracker setups as described in this
thesis, care has to be taken to minimize the influence of this kind of delay.

Gaussian Representation of Error. To make a Kalman filter work, a Gaussian
error model of the measurements has to be provided. For this reason and for
sake of simplicity, the vast majority of error models discussed in current literature
are based on a Gaussian distribution of some parameters describing the estimated
spatial relationships. It is assumed that the reader is familiar with basic statistics
of multi-dimensional random variables.

Hoff [49, 50] proposes to model error as a Gaussian distribution of a six-dimensi-
onal state vector. It contains three translational components x, y, z and three Euler
angles α, β, γ. As such, a 6× 6 covariance matrix C expresses the error. Hoff also
derives equations for propagating such an error description to changed coordinate
systems and/or aggregation of spatial relationships and uses the covariance matri-
ces to visualize error by ellipsoids. This is an excellent method for representing
positional error. The drawbacks of this approach stem from using Euler angles to
represent orientation. The three values used to represent orientation are treated as
almost independent in the error model, but depend heavily on each other [21].

Gaussian Distribution of Unit Quaternions. Unit quaternions [67] have many
advantages compared to other representations of error, as they do not have singu-
larities in their representation. For the remainder of this thesis, rotations are rep-
resented as unit quaternions. Within the efforts related to this thesis, Pustka [96]
proposes to represent rotational error by “small” quaternions, i.e. rotations that
can be approximated by some almost unit quaternion

er ≈ (er,x, er,y, er,z, 1).

The complete model for representing tracking error in position and orientation
consists of a normal distribution with zero mean and covariance represented by a
6× 6 matrix C:

(et,x, et,y, et,z, er,x, er,y, er,z)
T ∼ N(0,C) (2.27)

For the formulas needed for error propagation and applying this error model to an
extended Kalman filter, see Pustka’s thesis [96].

Other Error Representations. A Gaussian distribution is only an idealized as-
sumption of error behavior that is useful in many mathematical tools such as the
Kalman filter. “Real” error behaves differently, and some more complicated tech-
niques for modeling it have been proposed [40].
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It seems reasonable to represent location as a probability distribution. Besides
the Gaussian representation just discussed, a representation as a mixture of Gaus-
sian for multi-hypotheses tracking, grid-based approaches with a partitioning of
space and particle filters have been proposed [5, 68].

Most of these approaches share a much higher computational complexity than
the Kalman filter.

2.8 Fusing Multiple Trackers: Existing Systems

The idea of combining multiple sensors for location tracking is not new as such.
There have been multiple efforts to provide software abstractions for a unified access
to multiple sensors, and several hand-tuned indoor and outdoor systems employing
sensor fusion techniques for location tracking. In addition, the robotics research
community has worked in similar directions.

2.8.1 Software Abstraction Layers

In recent years, the need for a reuse of tracker drivers lead to some software frame-
works that abstract the actual tracker interfaces and allow a unified access to mul-
tiple sensors.

OpenTracker. Reitmayr developed the OpenTracker [99] tracking and input de-
vice abstraction framework for the Studierstube [106] AR system. OpenTracker
provides a data flow architecture that is configurable via XML. Using an object-
oriented approach, the various transformation steps employed in a typical tracking
setup can be modeled easily as a graph of tracking objects, conceptually similar to
a scene graph used in computer graphics. The graph consists of source nodes that
provide tracking data by e.g. a hardware driver, filter nodes doing some processing
of the data and sink nodes sending the data to an application. A multi-threaded
execution model allows the simultaneous use of several transformation chains. In
addition, special source and sink nodes allow to use IP multicasts for distributed
tracking.

OpenTracker is a very flexible library that adds almost no runtime overhead to
a handcrafted solution to many tracking problems in AR. It could serve well as a
runtime infrastructure for the multi-sensor approach described in this thesis. How-
ever, it currently has a static, although easily modifiable, file-based configuration
and is restricted to a 6 DOF pose state space of spatial relationships.

Virtual Reality Peripheral Network (VRPN). As its name suggests, VRPN [118]
has been developed primarily for Virtual Reality applications. It consists of a set of
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classes within a library to be used by applications and a set of servers that interface
with supported tracking hardware.

VRPN handles most commercially available VR/AR tracking devices. Recently
support for integrating it with OpenTracker has been added. VRPN is not only
aimed at tracking devices, but handles all kinds of input devices commonly used in
VR applications, such as buttons, dials and force feedback devices.

The additional latency introduced by VRPN is almost negligible and dominated
by the network latency necessary for the underlying communication between hosts.

VRPN is an excellent solution for static setups with a single or a small number of
tracking devices that need to be accessed in a consistent way. No means of changing
the tracking infrastructure at run time are given.

Tinmith Tinmith [94, 95] is a software architecture for outdoor Augmented Re-
ality environments. It provides a platform that facilitates the development of new
applications for virtual environments, based on principles from object oriented lan-
guages and employing a data flow model. Tinmith consists of modules running
as separate UNIX processes and communicating via IP connections. As such, an
application can be distributed among various hosts [92].

Tinmith provides support for all aspects of AR applications, and consequently
contains a tracking abstraction layer. Various coordinate systems (latitude/longi-
tude, UTM etc.) are supported, and a distinction between absolute and relative
trackers can be made using position and orientation offset classes. To handle the
potentially large coordinates arising using UTM coordinates, a transparent local
coordinate system is introduced in the OpenGL-based presentation subsystem.

Tinmith is focused on high performance and provides library functions to appli-
cation programmers. As such, it does not contain support for dynamic changes in
the network and/or sensor infrastructure.

Location Stack. The Location Stack [48] was the first effort towards a unified ab-
straction of multiple location sensor setups. It was developed within the EasyLiv-
ing [28] project, which was the first project similar in scope to the combination of
ubicomp and AR treated in this thesis.

The Location Stack concept proposes to model location sensing in a hierarchy
similar to the ISO/OSI network stack. The Location Stack’s layers are:

Sensors: Contains sensor hardware and software drivers for it.

Measurements: Contains software that transforms raw sensor readings to canonical
location representation, including accuracy description.

Fusion: Contains software to dynamically aggregate measurements by ways of com-
plementary, competitive or cooperative sensor fusion.
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Arrangements: Contains software to reason about the relationships between two or
more objects. These relationships are not only spatial, but can also describe
properties such as containment or proximity.

Contextual: Contains software to merge location data with other contextual infor-
mation such as temperature or user identity to derive high-level context.

Activities: Contains software such as machine learning algorithms to derive activi-
ties, i.e. semantic states in a ubicomp application.

Intentions: Contains software to reason about the user’s cognitive desires.

The Universal Location Framework (ULF) [44] is an implementation of the Lo-
cation Stack concept. It uses proximity sensors, a 802.11b wireless LAN based
coarse positioning tracker and GPS as sensors. These get aggregated in a fusion
component employing Bayesian filtering techniques [40, 68].

The Location Stack is the project most similar to the multi-sensor approach
described in this thesis. It also uses a layered architecture to enhance reusability,
and the Easy Living scenario is very similar to the intended Ubitrack application
domain of intelligent environments.

However, the Location Stack currently does not address the real time and accu-
racy requirements of AR applications, typical sensors have an accuracy of 15 cm
and a low update rate.

Architectures Supporting Context-Awareness. Recalling the discussion of con-
text-awareness architectures such as the Context Toolkit in section 2.3.2, one might
be mislead into thinking that these architectures can be used for the Ubitrack
problem tackled in this thesis.

The described architectures also use sensors for estimating the location of users
and objects. However, the very nature of the sensors used differs from the sensors
handled throughout this thesis. For example, a typical location sensor of the Con-
text Toolkit detects the identities of people being in a room. The update frequency
of the resulting data stream is extremely low compared to a typical 6 DOF abso-
lute pose sensor used for AR. In consequence, within the design of the discussed
context-awareness architectures no special focus has been put on the scalability and
efficiency issues that arise with high-frequency sensors.

Still, the work described in this thesis can be integrated easily in the discussed
architectures, if the whole sensor abstraction of this thesis is treated as a single
“input sensor” within the architectures that can then be used to derive contextual
knowledge.
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2.8.2 Indoor Systems

Indoor systems have been the major focus of AR research, as most viable ap-
plications happen indoors and the environment, e.g. lighting conditions, can be
controlled much better than under open sky.

Foxlin applies Kalman filters for sensor fusion, and achieves full 6 DOF pose
tracking by a combination of inertial and ultrasound sensors [41] using complemen-
tary sensor fusion. The system is commercially available as IS 600 from Intersense
Inc.

Hoff [49] was among the first to combine multiple optical trackers for compet-
itive sensor fusion. He proposed to combine an outside-in optical tracking sys-
tem (Northern Digital Optotrak) with a helmet mounted inside-out camera-based
tracker. Both systems track the same targets, but have varying error distributions.
Error is modeled as a 6 × 6 covariance matrix of three positional and three orien-
tational parameters, the latter represented as Euler angles. Hoff showed that the
combination of both systems significantly reduces the overall error, and illustrated
this observation with uncertainty ellipsoids.

Within the Studierstube project, Kalkusch and Reitmayr developed the SignPost
application [59], a indoor navigation system. Within this application, OpenTracker
is used to fuse tracking data from ARToolkit and an inertial tracker. ARToolkit
is used to compensate for the drift of the inertial tracker and the inertial tracker
stabilizes ARToolkit’s rotational readings. As such, SignPost employs cooperative
sensor fusion.

As mentioned above, natural feature trackers are currently a very active area of
research in the AR community. Current algorithms are quite good at tracking ob-
jects from frame to frame. However, if the mobile camera of an inside-out approach
gets rotated too fast, motion blur occurs and the tracker needs to be reinitialized.
Klein and Drummond [63] overcome this problem by fusing data from high-rate
gyroscopes and a natural feature based optical tracker. They use motion predic-
tion based on data from the gyroscopes to enhance the quality of initial guesses
the optical tracker makes. Still, the initialization of the natural feature tracker, i.e.
getting an initial guess of the camera’s pose remains a problem. Najafi et al. [84]
propose to use coarse estimates of the camera’s 3D position in combination with
environment maps for automated initialization. The work described in this thesis
could serve as a suitable software infrastructure providing such coarse estimates
whenever they are necessary.

Within ubicomp research, sensor fusion for location tracking has not been in-
vestigated systematically, only the EasyLiving project [28] discusses some issues
occurring when multiple sensors are used simultaneously. EasyLiving employs the
Location Stack described above to model the sensor network, and uses stereo vi-
sion and color blob tracking as sensing modalities. However, no real sensor fusion
is done, different systems track different objects, and aggregation of their results is
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done on a semantical level [27].

None of the systems described has been designed for a dynamically changing
sensor infrastructure, which is the major design goal of the work described in this
thesis.

2.8.3 Outdoor Systems

The Touring Machine developed by Feiner et al. [39] was the first system to combine
aspects of Augmented Reality and mobile computing. The application consists of
a mobile computer worn by a user roaming around a campus. A head-mounted
display is used to overlay textual labels on campus buildings, and both a handheld
computer and a gaze-oriented interface are used to control a navigation application.
Tracking is done by fusing data from a magnetometer/inclinometer combination for
orientation and a differential GPS (DGPS) receiver for position in a complementary
fashion. This simple but robust and wide range tracking setup has become the de
facto standard for most outdoor AR systems.

You, Neumann and Azuma combined gyroscope and compass tracking with vision
algorithms in a cooperative fashion [137, 138, 136] to enable a more robust outdoor
tracking application.

Piekarski’s Tinmith system [92] uses a DGPS receiver in combination with a
3-axis digital compass to measure the user’s position. This system served as the
basis for the ARQuake outdoor AR gaming system [93, 119]. In later Tinmith
versions [95], an ARToolkit based tracker was used to track the user’s hand relative
to his head, in order to provide an intuitive user interface.

Reitmayr and Schmalstieg use a very similar approach to explore collaborative
AR in outdoor navigation and information browsing applications [100]. Again, the
focus is not on sensor fusion, but rather on user interface and system architecture
issues of mobile outdoor AR applications.

Our own Dwarf pathfinder application [12] employed a combination of a 1-DOF
compass and a GPS device to track a user’s position outdoors, and also did not focus
on real sensor fusion. Instead, the possibilities of a distributed component-oriented
approach to AR were explored.

In summary, sensor fusion has not been a major focus of research in outdoor and
mobile AR or ubicomp systems, as most applications’ requirements can be satisfied
by a combination of some orientation sensor with a GPS receiver. In consequence,
the work described in this thesis does not focus explicitly on outdoor applications.
However, the mobility of its users is at the center of attention. Particularly the
ad-hoc combination of mobile users’ tracking devices has been a major area of
work.
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2.8.4 Robotics Systems

In robotics research, location tracking is an active area of research. Yet, the connec-
tions to research in AR and ubicomp are very limited for various reasons. Tracking
robots is much simpler than tracking people, as a robot can be controlled fully from
outside. The range of operation of a robot is often foreseeable, however, there have
been some research projects that aimed at calibrating robots in an autonomous
fashion in unknown environments.

Kelly [61] proposes to use appearance mosaics in flat visually textured surfaces
for mobile robot guidance. Meng and Zhuang [80] present a method to calibrate a
robot-arm mounted camera’s intrinsic and extrinsic parameters up to a single scale
factor out of multiple calibration targets at unknown locations. Both methods,
as well as similar research efforts in robotics, are not applicable to the problems
discussed in this thesis without major modifications, as their processing speed is
much too slow for real time operation.

A key issue in robotics research is how to build maps of unknown environments
and use them for navigation concurrently. This problem is commonly reffered to
as Simultaneous Location and Mapping (SLAM) and can be naturally applied to
decentralized distributed robots. For example, Feder et al. [38] use sonar for SLAM,
with the goal of navigating autonomous underwater vehicles.

In recent years, multisensor systems for robot localization have become a topic
of major research. Mutambara and Durrant-Whyte present a transputer-based
fully decentralized solution to data fusion and control problems in modular wheel
mobile robots [82]. Brooks et al. [23, 22] built a system of distributed sensors
for robot and people tracking. As with Mutambara, the focus of their work is on
tracking algorithms and not on a decentralized architecture and abstraction layer as
treated in this thesis. Yet, the tracking ideas described in robotics will be valuable
additional input modalities for this thesis’ concepts.

43





CHAPTER 3

A Formal Model for Ubiquitous Tracking

Overview

This chapter presents a theoretical formalism that allows us to model arbitrary
sensor networks. It forms the base of the sensor fusion middleware discussed in the
remainder of this thesis. The formalism has been specified in collaboration with
Joseph Newman from Technische Universität Graz, Austria. We call this model
and the efforts built on top of it Ubiquitous Tracking (Ubitrack) [87, 88, 128].

The goal of the Ubitrack model is to provide, at any point in time, an optimal
estimate of the spatial relationships between arbitrary objects. How optimality is
defined, depends on the specific application interested in a particular relationship.

The formalism employs a graph-based model of spatial relations in the real world
to express available information from sensors of all kinds in a consistent way. To
introduce the formalism, properties of real-world relationships, which we are finally
interested in, are discussed.

Unfortunately, measurements derived from sensor data are just an estimate of the
real world’s state. The properties of this estimate are described using a well-defined
set of attributes, and several possible choices are presented. The most simple way
of combining multiple sensors is to make use of the transitivity of spatial relations.
Such combinations can be treated in the same way as raw measurements, but care
has to be taken that the attributes describing such combinations must be computed
using well-defined rules, which will be discussed for the presented attribute sets.

Application dependent evaluation functions work on the attributes of measure-
ments. They are used in a general concept of how knowledge can be inferred from
measurements. The result is a model of the real world that gives every application
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the best possible estimate of available spatial relationships.

To illustrate how the formalism is applied to real applications, several examples of
increasing complexity are given, that indeed show how seemingly highly distinctive
applications can be handled with the same tracking abstraction.

3.1 Design Goals

Reconsidering the requirements listed in section 1.4.2 for an overall Ubitrack solu-
tion, we start with a discussion of the goals that led the design of the formalism
presented in this chapter.

Implementability. The Ubitrack formalism is not standing in and of its own.
Besides offering the possibility to describe multi-sensor setups in a uniform fashion,
it should also serve as the basis of a real-world implementation. Therefore, every
design decision had to be checked for practical implementability.

Extensibility of Application Domains. The main requirement for the formalism
is that it allows applications to get optimal estimates of two objects’ spatial rela-
tionship. For typical AR applications, optimality is defined by a combination of
low latency and high pose accuracy. However, new applications might be developed
that favor low monetary cost over high pose accuracy or define optimality in a yet
unknown sense. It must be possible to extend the formalism at a later point in
time to incorporate such unforeseen applications.

Extensibility of Measurement State Space. Although the work described in this
thesis mainly deals with 6 DOF sensors suitable for AR, the formalism must be
capable of handling sensors with different measurement state spaces, varying both
in the degrees of freedom and in the number of derivatives of spatial relationships.
This ensures that all effort put into the formalism can be reused when extending
an actual implementation to large-scale ubicomp environments with a vast number
of diverse sensors.

Reusability of Existing Systems. As discussed in section 2.8, many systems doing
sensor fusion already exist. They usually are hand crafted for specific applications.
It is advisable to reuse the massive amount of specific knowledge that went into
their implementations. As such, the formalism must be capable of integrating
such solutions to particular tracking problems without breaking its generality. In
addition, it must be possible to integrate new tracking devices without major efforts.
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Focus on Time. Location tracking is a time critical issue. Filter systems such as
those described in section 2.7.1 allow to estimate two objects’ spatial relationship
in some point in the future. Large databases may also store past relationships.
The formalism should be able to handle all these time-related issues in a uniform
fashion, without hurting the real time capabilities necessary for AR applications.

3.2 Spatial Relationship Graphs

The Ubitrack formalism consists of several components that build upon each other.
In this section, all will be discussed in detail, based on several examples.

3.2.1 Fundamentals

In their work for the EasyLiving Geometric Model (EZLGM), Brumitt et al. [27, 28]
propose to use entities as base items, representing the existence of an object in
the real world. In addition, measurements are used to describe the pose of an
entity relative to another. Entities can have a polygon-shaped extent describing
their physical expanse, and measurements have an uncertainty associated with
them. The measurements in the EZLGM then describe an undirected graph with
vertices corresponding to entities’ coordinate frames and edges corresponding to
measurements.

The Ubitrack formal model builds upon these ideas. A directed Spatial Relation-
ship Graph (SR graph) is the basic building block of the model. Real or virtual
objects are represented as nodes in this graph, whereas spatial relationships between
objects are represented as edges.

The formalism does not enforce a particular spatial state space. Throughout this
thesis, we will primarily use the 6 DOF pose state space, which is typical for AR
systems. Other possibilities can be modeled as additional edges in the SR graph in
the same manner.

In contrast to the EZLGM, the edges of the Ubitrack graph are directed. This
is necessary to handle accuracy descriptions of location sensors correctly. As an
example, consider a vision-based tracker estimating the 3D position of several ball-
shaped locatables. If the arrangement of them is fixed and known, the tracker can
compute the orientation of the entire structure. The error of the orientation is
then dependent on the error in estimating the balls’ positions as well as the size
of the baseline used for computations. Consequently, the orientational error can
be expected to be higher than the positional error. The situation changes if the
camera’s pose should be expressed in the object’s coordinate system, corresponding
to inverting the edge in the SR graph. As can be seen in figure 3.1, now the
positional error is high, and the orientational error is low.

47



Chapter 3 A Formal Model for Ubiquitous Tracking

Figure 3.1: Why the SR graph needs to be directed: If the object’s real state (black)
is measured with some error (red), the positional accuracy remains high,
while the orientational accuracy degrades. If we look at the situation
from the object’s perspective and want to estimate the camera’s pose in
the object’s coordinate system, the positional accuracy degrades, while
the orientational accuracy is high.

The graph-based model allows a simple integration of all kinds of sensors, static
measurements done by hand or in complex calibration procedures [123] by adding
new edges.

3.2.2 Real Relationships

For the sake of clarity, let us first discuss how real relationships, i.e. the “world as
God sees it”, would be represented in the SR graph model. In this perfect world,
every spatial relation between every pair of two objects would be known at any
point in time with absolute certainty and without any error. This corresponds to
a complete graph, which is of course also transitive, symmetric and reflexive. An
example of such a graph is shown in figure 3.2.

To treat the handling of spatial relationship state space in a formal way, we define
a binary relation Ω operating on the node set N = {A, B, . . .}. Thus, whenever we
know anything about the spatial relationship between two objects X and Y (which
is always true in the real world SR graph), the relation (X,Y ) is true. We then
map every element (X, Y ) of Ω onto a function wXY by an attribution scheme W:

W : (Ω = N ×N)→ w (3.1)

Every function w describes the spatial relationship between the objects X and
Y in an arbitrary state space S over time. Thus, w is defined as

w : Dt → S (3.2)

with Dt being the source time domain, i.e. the set of points in time where we have
knowledge about the spatial relationship between X and Y . Again, in the perfect
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A

CB

wAA(t)

wBB(t) wCC(t)

wAC(t)wAB(t)

wBA(t) wCA(t)

wBC(t)

wCB(t)

Figure 3.2: A real world SR graph consisting of three objects.

real world graph, Dt is not limited. Examples for the state space S have been
discussed in sections 1.1.3 and 1.2.3. In all existing implementations of the formal
model, a 6 DOF pose state space has been chosen, with position represented by a
three-dimensional real vector and orientation as a unit quaternion [67]:

S6 DOF = {(px, py, pz)
T , (ox, oy, oz, ow)T} (3.3)

For a clear notation, we define a directed graph G(Ω) representing the relation
Ω. Thus, whenever we know about the spatial relationship of object Y ∈ N relative
to object X ∈ N , the nodes representing these objects are connected by an edge
that is annotated with the function wXY .

3.2.3 Measured Relationships

In real tracking setups, it is not possible to obtain a complete spatial relationship
graph between all objects. We can only make measurements of the spatial state of
some sensors relative to locatables they sense.

The sensors can be of very diverse kinds. The most simple method would be to
take a measuring tape and manually determine the spatial relationship of one ob-
ject relative to another. We can also use a more sophisticated calibration procedure
(see [123] for some examples) to get an estimate of the spatial relationship between
two objects. Of course, common hardware sensors can obtain repeated measure-
ments and deliver them automatically. Finally, we can write sophisticated software
that aggregates the data of several sensors in order to estimate two object’s spatial
relationships, potentially even predicting the state into the future.
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All these possibilities have one thing in common: they are far from perfect,
introducing some error into the measurement. In section 2.7.3, we discussed several
possibilities to model error in estimating spatial state. The Ubitrack formalism
must be general enough to allow various error models, not enforcing a particular
method on the user. In addition, error is not the only property of a measurement
an application using the formalism might be interested in. In consequence, the
binary relation Ω and the attribution scheme W of the real world SR graph must
be extended to allow the storage of these properties.

The binary measurement relation Φ operates on the node set N , and an attri-
bution scheme P maps every element (X, Y ) of the relation onto a function pXY :

P : (Φ = N ×N)→ p (3.4)

In contrast to the real world functions wXY , pXY not only yields the spatial state
S, but also a set of attributes A:

p : Dt → S ×A (3.5)

These attributes store the properties of the individual measurement.
Again, a directed graph G(Φ) represents the relation Φ. Figure 3.3 shows an

example with the node set N = {A, B, C}. Although the graph may have the same

A

CB

pAB(t) pAC(t)

pBC(t)

Figure 3.3: Measurement Graph G(Φ): An edge between two nodes only exists if
a measurement of the spatial relationship of the objects they represent
has been made.

node set as a real world graph G(Ω), its edge set is usually much smaller. An edge
eXY exists only if at least a single measurement of the spatial relationship between
two objects represented by nodes X and Y has been made. In consequence, the
graph G(Φ) is in general not transitive, neither is it symmetric.

Timing Issues. A major design goal of the Ubitrack formalism is to handle time
in a flexible way, such that both past, present and future estimates of spatial state
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can be modeled. For this purpose, we will have a closer look at the definition of
the measurement function pXY . This function maps the source time domain Dt

onto the spatial state and a set of attributes describing the measurement quality.
With this definition, we can indeed model all measurements done by a sensor in its
whole lifetime with a single function–for every measurement, we add an entry to
the discrete finite set Dt.

As an example, assume the “sensor” to be the combination of a measuring tape
and an undergraduate student. As part of his AR class, the student has to mea-
sure the position and orientation of a poster P in the laboratory in a ceiling-
mounted tracker T ’s coordinate system. He uses the measuring tape and some
knowledge from a geometry class, and finally comes up with some value, say
(x, y, z) = (0.12, 0.98, 1.97). The only property describing the measurement we
can obtain is from some old paper that tells us that students typically make errors
of 0.1m in every direction when given such a task.

If we assume that the measurements were all done on August 31st, 2003, 11:11
am, we now can add an edge TP to the graph G(Φ) and a function pTP that is
defined as follows:

pTP : Dt → S ×A
t 7→ pTP (t)

pTP (31/08/2003, 11:11 am) =


 0.12

0.98
1.97

 ,

 0.1
0.1
0.1


Unfortunately, the decoration of the lab gets rearranged after some time, therefore
another undergrad has to do the measuring again, this time on December 4th, 2003,
12:10 am. The source time domain Dt gets now extended and pTP ’s value is

pTP (4/12/2003, 12:10 am) =


 1.42

2.03
0.85

 ,

 0.1
0.1
0.1


For this example, the measurement state space S has been chosen as three degrees
of freedom position in meters, and the attribute space A consists of a simple er-
ror model assuming a Gaussian distribution of error with three independent parts
describing the variance in x, y and z direction.

If we take electronic sensors such as typical AR trackers, the situation is almost
the same–the time domain is discrete and finite. Of course, it has much more
elements. For example, a tracker with an update rate of 60Hz yields sixty new
elements per second.
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3.2.4 Inferred Relationships: Using Spatial Transitivity

The primary goal of the Ubitrack formalism is to provide, at any point in time, an
optimal estimate of the spatial relationship between any two objects. The measure-
ment graph G(Φ) does not fulfill this requirement. Spatial relationships between
objects are available only at some very specific points in time and only for a very
limited subset of object pairs. As such, we have to infer knowledge from the scarce
data we are given.

The simplest approach is to use the fact that spatial relationships are transitive.
If we have measured the spatial relationship of object B relative to object A and
the relationship of object C relative to B, we can aggregate this data and infer the
relationship of object C relative to A. However, this can only be done if we have
obtained the measurements at exactly the same point in time, a requirement that
is almost impossible to fulfill in practice.

In consequence, another step has to be taken before using transitivity: knowledge
about spatial relationships has to be inferred for points in time without an existing
measurement. Several possibilities exist:

Take last measurement. The standard approach for this problem is to take the last
measurement and assume that the real state of the object will not differ too
much from this measurement. Obviously, high update rates of trackers make
this approach feasible, in fact, it is the most often used solution in existing
AR systems.

Simple linear inter-/extrapolation. For some tracking devices, the update rate may
not be sufficiently high to allow the “last measurement” approach. However,
the underlying movement process may be rather simple, such that a linear
inter- or extrapolation becomes feasible. One example application is tracking
airplanes via GPS–the usual GPS update rate of 1HZ can be increased without
problems.

Complex inter-/extrapolation. Reconsidering the discussion about the Extended Kal-
man Filter in section 2.7.1, a complex movement model describing an object’s
state space can be employed to make a more accurate inference.

All those possibilities introduce additional errors. Analogously to errors and other
properties describing measurements, we can define an attribute space A for describ-
ing inferences, and extend our graph-based model for inferred relationships.

The binary inference relation Ψ operates on the node set N , and an attribution
scheme Q maps every element (X,Y ) of the relation onto a function qXY :

Q : (Ψ = N ×N)→ q (3.6)
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As with the measurement function pXY , the inference function qXY yields a spa-
tial state S and a set of attributes A:

q : Dt → S ×A (3.7)

BA

qAB(t) = pAB(t)m

qAB(t)last

qAB(t)lin

qAB(t)kal

Figure 3.4: Inference Graph G(Ψ): An individual edge is added for every inference
of the spatial relationship between objects represented by two nodes.

A directed graph G(Ψ) represents the relation Ψ. Figure 3.4 shows an example
graph with two nodes. For every measurement or inference function describing the
spatial relationship between two objects represented by the nodes X and Y , an edge
eXY gets added to the graph. In consequence, there may be multiple edges between
two nodes, each associated with a different measurement or inference function. In
the example, qm

AB = pAB is the original measurement function, qlast
AB describes the

inference “take last measurement”, qlin
AB the linear interpolator and qkal

AB the Kalman
filter approach.

Example: Tracked object calibration. For a more complex example, consider
how to model a calibration component. In this standard situation for every AR
setup, we have a world coordinate system W and a tracker coordinate system T .
For the sake of simplicity, we assume both to be identical. All spatial relationships
are in a 6 DOF pose state space, i.e. they can be expressed by a 3D position vector
and a quaternion for the orientation. The tracker detects the spatial state L of a
locatable that is rigidly attached to some object. The object’s coordinate system O
is not identical to L. In consequence, some calibration algorithm, such as matching
known points in coordinate systems O and L, has to be applied. Let us further
assume that the system’s user has already performed the calibration procedure and
has the transformation from L to O. The corresponding spatial relationship graph
is shown in figure 3.5, containing two measurement functions qm

TL(t) = pTL(t) and
qm
LO(t) = pLO(t). Note that qm

TL(t) is only defined at all those points in time when
the tracker delivers a measurement and qm

LO(t) is only defined at a single point in
time tc when the calibration has been done.
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T L Oq TL(t) = pTL(t)
m q LO(t) = pLO(t)

m

Figure 3.5: SR graph of simple AR tracking setup.

A software component that permanently takes the last available value of qm
TL(t)

and multiplies it with the static value qm
LO(t) can be modeled as follows:

1. Create an inference function qe
TL(t) that is defined on a continuous time do-

main and yields the last available value of qm
TL(t). This leads to a new edge

between nodes T and L in the graph.

2. Create an inference function qe
LO(t) that is defined on a continuous time do-

main and yields the static calibration parameter qm
LO(tc) for all input values

t.

3. Define an inference function qi
TO(t) that takes the values of qe

TL(t) and qe
LO(t)

as input values and yields the transitive spatial relationship between T and
O by multiplying the spatial relationships between T and L and L and O.

Figure 3.6 shows the resulting SR graph, with newly inferred edges drawn dashed
and in green color.

T L O
q LO(t) = pLO(t)
m

q LO(t)
e

q TL(t) = pTL(t)
m

q (t)e

TL

q (t)i

TO

Figure 3.6: Inferred SR Graph of simple AR setup.

Propagation of spatial relationships for 6 DOF pose state space. If we just
consider the spatial state space S6 DOF = {(px, py, pz)

T , (ox, oy, oz, ow)T}, we can
derive a generic inference function qi

AC(t) that yields the spatial relationship of
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object C relative to object A, given functions qAB(t) and qBC(t). The position
pAC(t) is computed as

pAC(t) = pAB(t) + oAB(t) · pBC(t) · o∗AB(t) (3.8)

and the orientation oAC(t) (given as quaternion) as

oAC(t) = oAB(t) · oBC(t) (3.9)

with “·” being the quaternion multiplication.

3.2.5 Evaluation Function

Spatial relationships can thus be aggregated along a path in the spatial relationship
graph G(Ψ). One question remains: if there are multiple paths between object X
and Y , which one should be chosen to satisfy an application’s needs?

Definition. To cope with this problem, the Ubitrack formalism introduces an
application-supplied evaluation function e. Its purpose is to provide a quality esti-
mate of an inference made along a specific path. It maps the attributes of a path
onto a real number:

e : A∗ → R (3.10)

A∗
i 7→ e(A∗

i ) (3.11)

By convention, a smaller value of e(A∗
i ) signifies a better fulfillment of the appli-

cation’s needs. The general definition of the evaluation function provides a plug-in
mechanism for designing arbitrary optimization criteria; it is the responsibility of
the designer of the evaluation function to select a preferred evaluation criteria. To
favor, for example, low-latency inferences over those with low absolute spatial er-
rors, the overall function could be the weighted sum of two normalized functions
expressing latency and spatial error. The latency function’s weight would then be
higher than the error function’s.

Rationale. The plug-in mechanism for the evaluation function, along with an at-
tribute set that is open to new extensions, ensures that the Ubitrack formalism is
applicable to yet unknown application domains. New application areas can make
use of an already existing Ubitrack model of a sensor network by providing evalu-
ation functions that work on existing attribute sets or by extending the attribute
set.

In addition, the evaluation function concept allows to serve multiple application
with differing needs simultaneously. The Ubitrack formalism is used to model all
knowledge about available measurements and inferences in an abstract way. Using
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the evaluation function, each application accessing the information stored in the
model can specify individually how to weigh the properties of spatial relationship
estimates.

Evaluation Function Examples. To make the concept of evaluation functions
more clear, let us discuss several real-world examples. For all these, we assume an
attribute set A consisting of the following values:

• A latency value l given in milliseconds;

• an update rate u given in Hz;

• a confidence value between 0 and 1; and

• a 6 × 6 covariance matrix according to the error model described in sec-
tion 2.7.3.

Assume a 3D gaming application. The most important aspect for games is low
latency and a high update rate to ensure the user’s immersion into the virtual
world; accuracy is not as important. In consequence, we might choose an evaluation
function that ignores the error and the confidence value, but tries to make a tradeoff
between latency and update rate:

egame = l + λu−1

with λ being a weighing value that has to be adjusted properly.
The situation is different for a medical AR application, where accuracy is most

important. It is more acceptable that the doctor is forced to move slowly or uses
stationary pre-arranged viewing setups than having an error in e.g. computer to-
mography data projected onto a patient’s body for minimally invasive surgery. Let
us further assume that the application projects small dots onto the body, indicating
the places where the doctor has to make a cut. The orientational accuracy of these
dots is not very important, but the positional accuracy is. In consequence, we de-
sign an evaluation function that almost exclusively considers the overall positional
accuracy.

A more complex evaluation function is necessary to make use of the error model
discussed in section 2.7.3. Error is represented as a 6 × 6 covariance matrix C.
The trace of a matrix is the sum of its eigenvalues, and the eigenvalues are the
square lengths of the axes of the confidence ellipsoid for σ = 1. Thus, a smaller
trace corresponds to a smaller overall Gaussian error. It is advisable to apply a
weighting matrix A to the covariance C, such that specific errors can be weighted
more or less. As an example, for visual augmentations the depth information is not
as important as the directions perpendicular to the viewing direction.
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In consequence, the evaluation function for the error model used throughout this
thesis is

eUbitrack =
√

trace (ACAT) (3.12)

3.2.6 Attributes Describing Measurements and Inferences

In the examples above, we have only mentioned how to propagate the spatial state
when making use of the transitivity of spatial relationships, whereas the propagation
rules for attributes have been ignored.

In this section, possible attribute sets will be presented. The choice was motivated
by the analysis of existing tracking devices in section 2.5 and is not exhaustive.
Other attribute sets might be added to the formalism as needed, as long as some
propagation rules can be provided.

For all these attribute sets, propagation rules are given that can be used to define
generic inference functions. These rules can infer not only the spatial relationship
between two objects X and Y , but also the attribute set.

The rules assume that we are looking for a particular attribute a(P ) of a path P
consisting of the nodes

N1, N2, . . . , Nn+1

and consequently the edges

e1 = eN1N2 , e2 = eN2N3 , . . . , en = eNnNn+1 .

They all take the attributes a(e1), a(e2), . . . , a(en) as input.

Latency. This attribute is one of the most important ones for typical AR applica-
tions. It is usually given in seconds, and gives the time delay between an object’s
state in the real world and the time when information about this state is available
to the computing system. In consequence, if we have latency l for a spatial relation-
ship qXY , knowledge about the value of qXY (t0) is only available at times t ≥ t0 + l.
Latency is sometimes referred to as “lag”. Note that using prediction components
in a tracking setup can reduce the numeric value of the latency attribute, it may
even become negative, for the price of decreasing spatial accuracy.

The propagation rule is based on the observation that in a chain of inferences the
element with the largest latency dominates all others. Thus, we take the maximum
of all latencies along the path:

l(P ) =
n

max
i=1

l(ei) (3.13)
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Update rate. The measurement frequency or update rate of a sensor indicates
how often new measurements become available.

The value of the update rate can differ widely, ranging from several Kilohertz
for fast accelerometers or gyroscopes down to almost zero for static measurements
done only once in a setup’s lifetime, such as the internal calibration parameters of
a tracker.

It is very hard to find an accurate propagation rule for the update rate, since
the usually unsynchronized update rates of the functions to be aggregated lead to
a complex behavior of the overall update rate.

Whenever some spatial relationship along the aggregated path has been updated,
the aggregated relationship can be regarded as updated as well, leading to an
average update rate that is the maximum of all involved rates, i.e.:

u(P ) =
n

max
i=1

u(ei) (3.14)

On the other hand, one could argue that it is better to think of the inverse of the
update rate, i.e. the time between subsequent updates. We can only be sure that
the aggregated spatial relationship is updated whenever the least common multiple
(LCM) of all update times has passed:

u(P ) =
1

LCM(u(e1)−1, u(e2)−1, . . . , u(en)−1)
(3.15)

Which propagation rule should be chosen depends on the individual application
domain of the formalism and can not be generalized.

Confidence. Many tracking devices employ pattern matching. For example, vi-
sion based tracking devices usually work by matching a camera image to some
patterns, ultrasonic trackers work by matching an observed sound signal to some
predefined pattern. This matching process can be erroneous, leading to misclassi-
fications. In consequence, a sensor might yield a value that does not correspond
to the true state of an object. To reflect this fact, a confidence value can be used
as an attribute. It is a real number in the interval [0; 1], indicating the probability
that the given spatial relationship is valid.

For a generic propagation rule, we have to assume that the individual measure-
ments are stochastically independent:

c(P ) =
n∏

i=1

c(ei) (3.16)

Of course, this assumption often does not hold. Especially vision-based trackers
often suffer e.g. from bad lighting conditions simultaneously. However, if the
manufacturer of such a device can tell how the confidence values depend upon each
other stochastically, we can reflect this knowledge in a modified propagation rule.
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Monetary Cost. The price you pay for a measurement will become more and more
important if tracking applications pervade the everyday life. Although today’s AR
and ubicomp setups usually do not care about this attribute, as the fixed cost for
the sensor infrastructure is very much higher than the cost per measurement. Even
today estimates of spatial relationships can be bought as a special service of some
cell phone providers. Based on signal strength of a phone at several base stations, a
phone’s owner can obtain its rough position via a web page or SMS (Short Message
Service), and usually has to pay less than 1 EUR per request.

The propagation rule consists of adding up the cost for all measurements involved:

mc(P ) =
n∑

i=1

mc(ei) (3.17)

Measurement Error. Measurement error is by far the most interesting and com-
plex attribute. It indicates by some metric how accurately the estimate of a spatial
relationship between two objects reflects the true state. In section 2.7.3 some possi-
bilities have been discussed, here some issues arising when choosing a measurement
error model as attribute in the formal Ubitrack model are discussed.

First, an error model is usually only adequate for a specific set of dimensions of
a measurement state space, i.e. if attributes corresponding to measurement error
need to be propagated along a transitivity path, all edges in the SR graph belonging
to this path have to express the same dimensions of the same sensor state space.

Second, care has to be taken that the computational cost of an error model is
kept below reasonable limits, especially if propagation of error has to be estimated.
For some applications it may be necessary to have constant estimates of the overall
error [75], thus the propagation has to be computed with every update of a spatial
relationship.

Third, it may be reasonable to use different error models for different sensors,
as the characteristics of the underlying error distributions may differ significantly.
Whilst a Gaussian distribution is a suitable model for many dynamic trackers that
are typically used in AR applications, the most suitable error distribution to de-
scribe static measurements, such as a table’s 6 DOF pose in a room, differs com-
pletely: for a very long time, the estimate is only disturbed by very small Gaussian
noise resulting from slight movements of the overall setup, but as soon as someone
hits on the table, a large error occurs. The problem resulting for the Ubitrack
formalism is how to aggregate such diverse error models such that a correct prop-
agation of attributes can be assured.
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3.2.7 A generic algorithm for finding optimal inferences.

Spatial transitivity in combination with an evaluation function gives us a generic
algorithm for finding an optimal inference of the spatial relationship between two
objects X and Y :

Algorithm 1: Generic algorithm for finding optimal inferences

Data: Source node X, target node Y , time T , evaluation function e
Result: Optimal transitive estimate of spatial relationship between X and Y .
begin

Find all paths from X to Y in graph G(Ψ), with the additional constraint
that an edge corresponding to an inference function q(t) is only considered
if q is defined at t = T . ;
Evaluate the function e over all the detected paths. ;
Use the path corresponding to the lowest value of e to calculate the
inferred spatial relationship qi

XY between X and Y . In addition, compute
the attribute set of this inference. ;
Add an edge eXY to G(Ψ), with qi

XY being the associated inference
function. ;

end

Note that we have to be careful when adding an edge to the graph that has
an associated function that depends on other functions’ attributes: If these at-
tributes change at a later point in time, the new inference function has to reflect
these changes. This has to be reflected both in a formal definition and a runtime
implementation of the inference function.

Example. A small example with three nodes illustrates how the algorithm works.
Suppose we are given three objects, A, B and C. Measurements are provided by
some trackers, leading to functions pAB, pAC and pBC . We assume the state space
to be 3 DOF position, and the attribute set to consist solely of the measurement
latency, measured in milliseconds. We further assume that the timing issues have
been resolved using the “take last measurement” strategy, leading to functions qe

AB,
qe
AC and qe

BC .
An application is now interested in the spatial relationship of object C relative

to object A, with the additional requirement of having minimal latency in the
overall estimate. In consequence, the evaluation function consists of the latency.
Remember that a lower value of the evaluation function indicates better suitability
for the application.

First, the algorithm finds all paths from A to C:

P1 : A
qe
AB−→ B

qe
BC−→ C, P2 : A

qe
AC−→ C
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We assume the application has made a request for a time when no direct measure-
ment is available, in consequence all paths involving functions qm = p are excluded.

Second, it evaluates e over these paths:

e(P1) = max(2, 5) = 5

e(P2) = max(10) = 10

Third, it computes the inferred spatial relationship along the optimal path P1,
in our case a 3 DOF position, by adding the position values coming from qe

AB and
qe
BC , and the inferred attribute set according to the propagation rules, leading to a

inferred latency of 5ms.

Fourth, a new edge eAC with a corresponding inference function qi
AC gets added

to the graph G(Ψ). Figure 3.7 shows the updated graph.

A

CB

2ms 10ms

5ms

2ms 10ms

qAB(t) = pAB(t)m

qAC(t) = pAC(t)mqAB(t)e

qAC(t)e

qBC(t)e

qAC(t)i

5ms

qBC(t) = pBC(t)m

5ms

P1P1

Figure 3.7: Example of generic inference algorithm.

3.2.8 Pathwise and Edgewise Evaluation Functions

Up to now, we defined the evaluation function to map a whole path in the SR graph
onto a real positive number. This general class of evaluation functions is called
pathwise evaluation function in the Ubitrack formalism. The generic algorithm
just discussed has to find all paths between two nodes to select an optimal solution.
Unfortunately, the number of paths between two arbitrary nodes is exponential in
the number of nodes of a graph, in consequence, the algorithm is of little use in
practice.
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In contrast, edgewise evaluation functions operate on single edges. If a whole
path needs to be evaluated, we take the sum of the evaluation function values
along the edges in the path, i.e.:

e′ : A → R (3.18)

Ai 7→ e′(Ai) (3.19)

e(p) =
n∑

i=1

e′(Ni−1Ni) (3.20)

with p being the path consisting of the nodes N1N2 . . . Nn−1. If the evaluation
function is structured like that, we can assign every edge a weight based on its
evaluation function’s value. Then, a standard shortest path algorithm to compute
an optimal path from N1 to Nn−1 can be applied.

Shortest path algorithms are a well researched topic. In general, two classes exist,
label-setting and label-correcting algorithms [4].

Single-Source Shortest Path Problems. The complexity of determining the
shortest path between two nodes is the same as determining the shortest path
from a single source node to all other nodes. Consequently, this problem is also
known as Single Source Shortest Path (SSSP).

Label-setting shortest path algorithms: Label-setting algorithms work in an iterative
fashion over the node set and designate a permanent label to a single node
at each iteration.

For this purpose, they keep two sets of nodes: a set consisting of nodes with
permanent labels and a set with temporary labels. A permanent label is only
assigned once to each node and gives the shortest distance from this node to
the source node. Temporary labels may be assigned multiple times and give
an upper bound on the shortest distance to the source node. Initially, the
source node gets assigned the temporary label 0 and all other nodes get the
temporary label +∞. At every iteration, a node with minimum temporary
label is assigned this label permanently. Its neighboring temporary nodes’
labels are updated according to the weights of the edges between them and
the new permanent node. Thus, at the ith step, the algorithm has found all
shortest paths consisting of a maximum of i nodes. It terminates if all nodes
are assigned permanent labels.

The variants of label-setting algorithms differ in how the set of temporary
nodes is represented as a data structure. Dijkstra’s algorithm [36] is the most
prominent representant of the label-setting class. Other algorithms build
upon Dijkstra’s ideas and differ in their data structures. For dense networks,
Dijkstra’s original implementation achieves the best running time, O(n2) with
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Algorithm 2: Label-setting single source shortest path

begin
P ← ∅ set of permanent nodes ;
T ← N set of temporary nodes ;
d(i)←∞ for each node i ∈ N ;
while |P | < |N | do

select a node i ∈ T for which d(i) = min{d(j) : j ∈ T} ;
P ← P ∪ {i} ;
T ← T − {i} ;
foreach (i, j) ∈ A(i) do

if d(j) > d(i) then d(j)← d(i) + cij and pred(j)← i ;

end

n being the number of nodes. In sparse networks (as typically the SR graph
will be), a rather complex Fibonacci heap implementation achieves a better
running time of O(m + n log n). For a detailed discussion, see [4].

Label-setting algorithms are only applicable to shortest path problems on ei-
ther noncyclic directed graphs with arbitrary edge weights or arbitrary graphs
with nonnegative edge weights, as the shortest path problem gets undefined
with negative cycles in the graph. Label-setting algorithms do not detect
this problem and will not terminate then. The SR graph of the Ubitrack
formalism is directed, but cycles might well occur and negative edge weights
are allowed, too. However, reconsidering the discussion on attributes in sec-
tion 3.2.6, an evaluation function can almost always be designed in a way that
makes it strictly nonnegative. A notable exception are evaluation functions
based on a latency attribute set, as predictive components have a negative
latency attribute.

Label-correcting shortest path algorithms: Label-correcting algorithms are iterative
as well. All are variants of the generic algorithm. It maintains a set of
distance labels d at every stage. A label d(i) is either ∞ if no path from the
source node to i has yet been found or it is the length of some directed path
from the source node to i. In addition, a predecessor index pred(i) is kept that
tells us the predecessor of node i on the current path from the source node to
i. At every step, the algorithm selects a node whose weight can be reduced
and updates its label accordingly. At termination, no such node exists.

Label-correcting algorithms can also detect negative cycles in directed graphs
and can therefore be applied directly to every SR graph and evaluation func-
tion.

The generic label-correcting algorithm was proposed by Ford and later modi-
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Algorithm 3: Label-correcting single source shortest path

begin
d(s)← 0 and pred(s)← 0 ;
foreach j ∈ N − {s} do d(j)←∞ ;
while some arc (i, j) satisfies d(j) > d(i) + cij do

d(j)← d(i) + cij ;
pred(j)← i ;

end

fied by Bellman. He proposed to use a FIFO list for selecting edges leading to
nodes whose labels should be corrected. At every step, all shortest paths up
to an increasing length have been discovered. The Bellman-Ford algorithm
has the currently best strongly polynomial running time for label-correcting
algorithms, O(nm).

All Pairs Shortest Path Algorithms. Sometimes it might be reasonable to pre-
compute the shortest paths between all pairs of nodes in a graph. Two major
algorithms exist for the All Pairs Shortest Path (APSP) problem.

First, a label-setting algorithm can be applied repeatedly to all nodes, leading
to a running time of O(n3) for Dijkstra’s algorithm and O(nm + n2 log n) for the
Fibonacci heap implementation. Still, no negative cycles are allowed in the graph.

Floyd and Warshall developed a label-correcting algorithm based on dynamic
programming that achieves a running time of O(n3) and can detect negative cycles
in the graph.

3.2.9 Complex Inferences

The shortest path based inference algorithm just described has the advantage of
being generic, such that we can make use of it in every location sensor network
without the need to have extra knowledge about the physical properties of the
objects we track.

However, as has been shown in section 2.8, a lot of research has been put into
using world knowledge to make sensor fusion work better. The Ubitrack formalism
was designed such that these existing efforts can be integrated seamlessly, thereby
combining the strengths of previous approaches with the benefits of the general
Ubitrack approach.

Two classes of complex inferences exist: either external world knowledge is used
to increase the quality of a single sensor’s readings or multiple sensors measuring
the same spatial relationship are aggregated.
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Using External World Knowledge. The most prominent approach of this class
is using a Kalman filter and a suitable movement model to filter noise out of sensor
measurements. Configuring the Kalman filter is a tedious task and has to incorpo-
rate situation-specific knowledge. However, once someone has set up such a filter,
it can be added easily to the Ubitrack formalism. Assume that the spatial relation-
ship between a sensor S and a locatable L is measured and yields a measurement
function qm

SL. The Kalman filter takes this function and some parameter vector par
to recursively estimate the spatial state with less noise. In consequence, we can
describe the filter as a function

qk
SL(t) = f(qm

SL(t), par).

If we now add an edge eSL to the inference SR graph that corresponds to qk
SL(t), we

can make full use of the Kalman filter. Figure 3.8 illustrates the resulting graph.

LS
qSL(t)  m

qSL(t)k

Figure 3.8: Modeling a Kalman filter in the Ubitrack formalism.

Fusing Multiple Sensors. A standard way of sensor fusion consists of taking
two sensors with complementary characteristics and let them estimate the spatial
relationship of the same locatable relative to a common coordinate frame. If the
characteristics of both sensors are known, overall errors can be minimized and
the resulting estimate of the locatable’s spatial relationship relative to a common
coordinate frame is of much higher quality.

The example depicted in figure 3.9 shows how to model such a setup. Two
sensors, S1 and S2 estimate the spatial relationship of a single locatable L, leading to
functions qm

S1L(t) and qm
S2L(t). The static relationship between both sensors relative

to a world coordinate system is expressed by the functions qm
WS1

(t) and qm
WS2

(t).

The sensor fusion can now be expressed as an inference function qf
WL(t) that takes

qm
S1L(t), qm

S2L(t), qm
WS1

(t) and qm
WS2

(t) as arguments. This function is represented by
a new edge from node W to node L in the SR graph.
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L

S qS1L(t) = pS1L(t)
m

S

W

1

2

qS2 L(t) = pS2L(t)
m

qWL(t)
f

qWS2
(t)m

qWS1
(t)m

Figure 3.9: Modeling complementary sensor fusion in the Ubitrack formalism.

3.3 Examples

The Ubitrack formalism not only serves as the theoretical basis for the tracking
abstraction middleware discussed in the next chapters, but can also be used as a
convenient notation facility to describe existing tracking setups in a unified fashion.
This section describes several of these, both to show the flexibility of the Ubitrack
formalism and to give the reader an intuition of how to apply the formalism to real
world problems.

3.3.1 Extending Tracker Ranges

All trackers have a limited range of operation, for example, vision-based trackers
need the line of sight. In this example, this problem is remedied by employing an
existing tracker to measure the spatial state of a mobile video camera that in turn
tracks a locatable beyond the range of operation of the first tracker. In our setup,
an ART tracker detects the pose of a video camera that feeds an ARToolkit based
tracker. The inferred knowledge of both trackers can then be used to extend the
ART system’s range. The setup depicted in figure 3.10 shows a simple example
application. A projector is used to display a virtual sheep onto the marker, which
can not be detected by the ART system.

To facilitate the overall computation, we assume that the projector coordinate
system is defined by its projection surface. In addition, we calibrate the ART
coordinate system such that it is identical to the projector’s. This can be expressed
in the SR graph by two edges between the nodes A and P representing the ART
system and the projector, both being associated with the identity transformation
qident. The ART system measures the spatial relationship of the locatable L, yielding
a function qe

AL. The ARToolkit yields the function qe
CM . Finally, we have measured

the offset from the ART locatable L to the camera’s center of projection C, yielding
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Figure 3.10: Extended tracker range setup: An ART system tracks a camera that
detects a fiducial marker outside the ART system’s range. This infor-
mation gets used to project a virtual sheep onto the marker.

a constant function qe
LC .

The sheep projecting application requires the spatial relationship of the marker
M relative to the projector P , thus we have to infer knowledge along the path

P
qident

−→ A
qe
AL−→ L

qe
LC−→ C

qe
CM−→M

leading to a new edge ePM in the graph with a corresponding inference function
qapp
PM . The resulting graph is depicted in figure 3.11.

A P

L

C M

qAL(t)
e

qLC(t)
e

qCM(t)
e

qPM(t)
app

qident
qident

Figure 3.11: Extended tracker range graph: The data along a directed path from
P to M is aggregated to create a new inference.
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3.3.2 Shared Optical Tracking

Dynamically Shared Optical Tracking [70] is a tracking application based on Open-
Tracker [99] that handles occlusions within ARToolkit based vision based trackers
by using two cameras with partially overlapping viewing frustum. The application
assumes two mobile users, both equipped with a head-mounted camera and their
own AR system. If both cameras detect a common marker, and one of these de-
tects another marker as well, it can transfer this marker’s pose to the second user’s
system via a wireless network.

E

B G

K

WLAN: G  E, G  K
WLAN: B  E

Figure 3.12: Shared optical tracking setup: Two cameras try to detect the pose of
two markers. Missing information is exchanged over a wireless net-
work.

Figure 3.12 shows an example setup with two users, B and G, both carrying
a camera on their heads. These cameras track two markers, E and K, that sub-
sequently get augmented with some virtual objects in the video image. In the
scenario shown in the figure, camera B can not detect marker K’s pose, therefore
G’s AR system transmits its knowledge to B’s system that can then compute K’s
pose relative to camera B.

Figure 3.13 shows the corresponding SR graph of the Ubitrack formalism. For the
sake of simplicity, the original measurement functions qm are not shown. Instead
only the extended time domain functions qe. B’s application needs the spatial
relationship of marker K relative to camera B. As such, a path from node B to
node K has to be found. For this purpose, we first have to invert the function qe

GE,
leading to a new edge eEG with a corresponding function qinv

EG. This edge will now
be part of the path

B
qe
BE−→ E

qinv
EG−→ G

qe
GK−→ K

that is detected by the generic inference algorithm to infer the spatial relationship
of K relative to B as requested by the application. This inference is expressed by
a new edge eBK and a corresponding function qapp

BK .
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E GB
qBE (t)
e

qGK (t)
eqBK (t)

app

qGE (t)
e

K

qEG (t)
inv

Figure 3.13: Shared optical tracking SR graph: Edge eGE needs to be inverted, then
a path from B to K is found and used to infer knowledge.

3.3.3 SHEEP

The Shared Environment Entertainment Pasture (SHEEP) [78] is a multiplayer
shepherding game with tangible and virtual sheep in a pastoral landscape. The
landscape is projected onto a table from above (figure 3.14).

Projector
Tracking Cameras

Laptop

Marker tree 

Magic wand

Microphone

Virtual sheep
Tangible sheep

Figure 3.14: The SHEEP game setup.

The application focusses on interaction techniques for AR. On the table, a herd
of virtual sheep roams around the pasture. Their behavior can be influenced by
a tangible, “real” sheep on the table. Users can insert, delete, scoop and drop
sheep with a tangible user interface. Spectators can see a three-dimensional view
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of the landscape on the screen of a laptop that can be freely moved about. The
sheep appear in their correct three-dimensional position. In addition, a special view
through the windscreen of a tracked car is available [15]. The car’s current speed is
indicated by its speedometer, in addition, an arrow in the car’s navigation system
constantly points at the next sheep around. Figure 3.15 shows the game in action.

Figure 3.15: Pictures of the SHEEP game. On the top left, a player moves the
tangible sheep, and the herd of virtual sheep follows it. On the top
right, a spectator uses a laptop to view the scenery in three dimensions.
The bottom image shows the view through a tracked car’s windscreen.

In the original version of sheep, the tracking setup was simplistic and inflexible.
It consisted of an ART optical tracking system that tracked several “marker tree”
locatables mounted. The ART system was calibrated in a way that made the
projection table the center of the coordinate system. As soon as the table was moved
accidentally, the ART system had to be recalibrated. The relationship between the
ART locatables and the real objects they were attached to was determined by a
so-called ObjectCalibration software that used a pointing device for an interactive
calibration procedure. The relationship of the pointing device’s tip and its locatable
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was determined once in an offline procedure and hardcoded into the software. All
these inherent assumptions in the code made it extremely difficult to modify the
tracking setup to e.g. a new tracking hardware.

Using the Ubitrack formalism provides an efficient way to express all spatial
relationships in the demo in a way that makes it easy to extend or modify it
later on. Figure 3.16 shows the SR graph of the SHEEP setup. There are several
interesting points in this real world model:

• The speedometer indicates the current speed of the car. This can be modeled
by an additional edge eTC with an associated function that yields a one-
dimensional velocity state space qv

TC . This function takes the 6 DOF pose
expressed by qe

TC , takes the three positional values, makes a derivative of
these and finally takes the norm of the 3D derivative vector. The pose of the
speedometer’s hand’s angle relative to the dashboard is derived directly from
qv
TC ’s value.

• The ObjectCalibration software works in two steps: first, the pointing device
gets calibrated, i.e. the transformation from the magic wand to its tip is de-
termined [123]. The software subsequently uses this information to calibrate
the other objects, the car, the tangible sheep and the laptop. In addition, the
relationship between the projection table and the ART system can be cali-
brated, leading to a new edge eTA. The ObjectCalibration software not only
provides the calibration data represented by static edges in the SR graph, but
also aggregates the transformations from the table to the ART system, the
ART system’s readings and the transformations from the ART locatables to
the real objects. This is modeled by additional edges from the table to the
objects.

• Applying the Ubitrack formalism to the SHEEP setup allows to make im-
plicit coordinate system assumptions explicit. For example, in the original
version the projection table was implicitly assumed to be at the center of the
world coordinate system. It was not documented at which parts of the code
this assumption was made, thus minor changes such as making the projection
table movable were not possible without excellent knowledge of all parts of
the application’s code. The green edges in figure 3.16 show that using the
Ubitrack formalism allows to model a moving projection table in a clear and
understandable way. Even without knowledge of the application’s code, it
is clear that the software must be changed only at two places: first, an in-
ference must be made that aggregates the spatial relationship between the
ART system and the table locatable and the statically measured relationship
between this locatable and the table itself and then inverts this relationship
in order to compute the function qinv

TA associated with the edge eTA. Second,
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Figure 3.16: The spatial relationship graph of the SHEEP demo. If not noted other-
wise, all spatial relationships have a state space of 6 DOF pose. Dashed
lines indicate static data, solid lines indicate spatial relationships that
change permanently. Blue lines indicate relationships estimated by the
ObjectCalibration software. Red dotted lines indicate estimates done
by the ART software. The green lines to and from the table locatable
TL show the simple modifications necessary for a tracked projection
table.
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the ObjectCalibration software has to be modified such that it takes the spa-
tial relationship between the table and the ART system not as a static value,
but rather as the constantly updated input from the software just described.
Besides that, not a single piece of the demo must be modified.

3.4 Limitations

The major design goals of the formal Ubitrack model were implementability, an
extensibility of application domains and state space, resusability of existing fusion
components and a careful treatment of time. They were all reached to a certain
extent, however, the formal model just introduced clearly has some limitations.

The measurement state spaces that can be expressed within the model must
always be of geometric nature. Many ubicomp applications, especially in the com-
mercially promising domain of location based services, use methods such as spatial
indexing to derive information such as “User J is in room 501”. Common ubicomp
location sensing methods such as RFID tags only yield such information. In addi-
tion, containment relationships such as “Room 501 is on floor 4 in building IN” are
of great value to many applications. It is not clear how these spatial relationships
can be expressed within the Ubitrack formal model.

From the point of view of implementability, the very general evaluation function
is a great challenge. How should applications provide such a function? By means
of an abstract language that then gets compiled by the runtime environment? By
handing over binary code? Or by choosing one of a fixed number of potentially
parameterized predefined functions? All solutions are not completely satisfying.
Additionally, the general pathwise definition of the evaluation function is of little
use in practice, due to the number of paths between two nodes being exponential
in the number of nodes of a graph.

The extensibility of the formal model to new application domains is ensured by
the attribute describing the quality of measurements and the evaluation function.
If we assume that some setup already exists and should now be reused by a new ap-
plication, we will usually be tied to the “old” attribute set. Unless some standards
will emerge over time, the flexible choice of attribute sets will be a major prob-
lem when existing sensor setups should be reused or combined with other existing
setups.
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CHAPTER 4

A Distributed Implementation Concept

Overview

This chapter discusses a conceptual implementation that allows to apply the Ubi-
track formalism to real world problems.

Reconsidering the requirement of dynamic integration of mobile setups at run-
time, I argue that only a peer to peer based implementation fulfills our needs. For
such a solution, two problems have to be solved. First, the strategy of how to
distribute the available spatial information has to specified. Second, a distributed
algorithm for searching optimal paths in the SR graph has to be designed. Viable
solutions to both problems are given.

In real-world applications it can be assumed that both the spatial relationship
graph’s topology and the attributes of individual edges in the graph change much
less frequently than the spatial relations between objects. If this holds true, a two
phase approach is possible: first, an optimal path between two nodes has to be
discovered. From then on, a component making use of the transitivity of spatial
relations continuously aggregates the sensor data in real time along the path just
found. Although highly flexible in configuration, the aggregation component does
not add any runtime overhead compared to existing static solutions.

The chapter is concluded by a discussion of the problems arising out of the two
phase approach. The assumptions made may lead to suboptimal solutions of the
Ubitrack problem at runtime, however, the expressive power of the formalism is
not reduced by the proposed concept. Solutions to how path search results can be
cached and reused, and when already found shortest paths have to be reevaluated,
will be presented.
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4.1 Distributed Peer-to-Peer Architecture

Following the vision of ubiquitous computing, an implementation should allow the
integration of a vast amount of sensors, both mobile and stationary. Given the sce-
nario of an intelligent environment equipped with sensing and display technology
and enabling its users to naturally interact with the infrastructure, a centralized
approach is reasonable. A central server could hold the complete representation of
the SR graph, fulfilling all search requests and eventually setting up an inference
component with the correct configuration. In addition, this approach would facil-
itate recomputation, as the information triggering it would be stored at the same
place at which the optimal path search would be executed.

The situation gets different if users have their own equipment such as cameras on
their cell phones or wearable sensors. The resulting capability of ad-hoc connections
of new sensors and sensor networks is a key requirement for the Ubitrack problem.

I propose a fully distributed hybrid peer-to-peer approach. Although it is much
more difficult to design and implement, I think the following advantages make a
clear point for going in this direction:

Allowing ad-hoc connections between mobile setups: If we treat every network node
uniformly, we get ad-hoc connectivity between mobile setups for free. Thus,
the computing infrastructure gets truly ubiquitous, even allowing two users
meeting on the green field to use the sensors of their counterparts without
any additional infrastructure.

No single point of failure: In a centralized approach with a server in the stationary
environment, a failure of the infrastructure renders all mobile and stationary
sensing technology useless. This may lead to severe implications in case of an
emergency, when sensors might be used to compute optimal escape routes.
In the proposed distributed approach, parts of the overall sensor network can
still be used, especially self-powered mobile setups.

Mobile setup is self-contained: If a user has a mobile setup with more than a single
sensor, he can get sensor fusion results without making use of a central in-
frastructure. This is of particular importance in emergency situations, where
some location information from local sensors is still better than none. In
addition, a user might use sensing technology as well outdoors, without any
supporting infrastructure.

Enabling privacy: With a peer-to-peer implementation the user has full control over
the data his sensors gather, he can use it without transmitting data to anyone
else. This enables privacy and security mechanisms.

A motivating factor for choosing a peer-to-peer distribution architecture was the
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experience gained from developing the Dwarf system, that follows a similar dis-
tribution philosophy.

4.2 Distribution Architecture

In a distributed sensor network for location tracking, each sensor is attached to one
of multiple host computers. Special software components running on these hosts
take the sensor data and interpret it such that some spatial relationship between
two objects can be derived. Speaking in terms of the Ubitrack graph, these software
components correspond to edges in the spatial relationship graph. Figure 4.1 shows
an example involving four hosts.

A

B

C

D

E

F G

Host 3

Host 4

Host 2

Host 1

A

B

C

D

E

F G

Figure 4.1: A spatial relationship graph describing a distributed sensor network.
Every edge corresponds to some software component delivering inter-
preted data from some sensor. Every software component is executed
on some host in the network.

As such, there is no direct representation of a SR graph node in a distributed
sensor network. Knowledge about edges can only be derived by observing which
software components are running. To minimize replication of data, I propose a
hybrid peer-to-peer approach with a centralized component running on every host
computer, called the Ubitrack Middleware Agent (UMA). The UMA gathers knowl-
edge about all components providing spatial relationships that are running on the
same host. Using the locally available information on edges in the SR graph, a
UMA can construct a subgraph of the SR graph that consists only of edges that
are associated with local software components and nodes that are adjacent to these
edges.
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Figure 4.2: Distributed storage of SR graph. Several nodes are replicated, thus
zero-weight edges have to be added to allow an optimal path search.
Note that edges are not replicated.

If this subgraph construction is done on all hosts in the network, several SR
graph nodes get duplicated, as can be seen in figure 4.2. To allow a path search
nevertheless, we conceptually have to add zero-weight edges between all nodes
representing the same node in the SR graph describing the overall setup. As we will
see in the next section, the path search can then be implemented by asynchronous
message passing along these zero-weight edges connecting the network nodes.

Prerequisites. To make the proposed distribution architecture work, two require-
ments must be fulfilled.

Globally unique node IDs: For a UMA to construct a local SR subgraph, all node
names must be locally unique. Otherwise, it would not be possible to decide
whether two edges have a common adjacent node. To make the inter-UMA
communication work, it must be possible for a UMA to identify other UMAs
having information about some locally available node. This can only be guar-
anteed if nodes in the SR graph have globally unique IDs. For fixed setups,
this requirement is easy to fulfill. In highly dynamic environments with po-
tentially unknown users, some bootstrapping mechanisms have to be provided
that are beyond the scope of this thesis.

Locating arbitrary nodes: It must be possible to find out which host has information
about a SR graph node with a given ID. This essentially leads to the general
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service discovery problem that is attacked by several solutions, such as Uni-
versal Plug And Play (UPNP)1, Zeroconf2 or the Service Location Protocol3.
For the work described in this thesis, it is assumed that service discovery is
available.

Both requirements are easy to fulfill in any experimental setup. However, if the
distributed architecture is to be deployed in a large environment with many mobile
users, some additional effort has to go into adopting naming schemes and service
location techniques.

4.3 Distributed Path Search

According to the distribution architecture, we have a partition of the SR graph
consisting of several subgraphs that are distributed among networked hosts. Every
host only has connections to other hosts that have common nodes. Some application
running in this network issues a query for an optimal spatial relationship between
two nodes X and Y according to an evaluation function e. According to the generic
transitivity-based algorithm 1, the implementation has to detect an optimal path
between the given nodes.

4.3.1 Prerequisites

As discussed in section 3.2.8, first finding all paths between two nodes and then
selecting the optimum is not feasible in practice, as the number of paths is expo-
nential in the number of a graph’s nodes. In contrast, shortest path algorithms
have a polynomial running time and are a well-researched topic. The prerequisite
we impose upon the formal model is that only edgewise evaluation functions are
allowed.

The formal Ubitrack model does not specify any actual choice of measurement
state spaces and attributes describing measurement and inference properties. To
make any path search possible, we must restrict the possible state spaces and
attributes to those where algorithms for three tasks can be given:

Transitivity of spatial relationships: Given the spatial relationship between object A
and B and the relationship between B and C, compute the relationship be-
tween A and C. For the standard 6 DOF pose state space used in common
AR applications this is fairly simple, if we use a 4 × 4 homogeneous matrix
representation of spatial state, this can be done by a single matrix multipli-
cation.

1http://www.upnp.org/
2http://www.zeroconf.org/
3http://www.ietf.org/rfc/rfc2608.txt
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Transitivity of attribute sets: Given the attribute sets of edges AB and BC, com-
pute the attribute set of the edge AC representing the spatial relationship
derived in the previous step. This can be a much more complex task, some
examples for propagation rules are discussed in section 3.2.6. In the case of
attributes describing the error of measurements or inferences this leads to
solving equations for error propagation, based on a suitable error model. It
may be possible that the application requesting the relationship AC is not
interested at all in a subset of the attributes. Then the members of this subset
need not be computed explicitly, it suffices if they are somehow taken into
account by the evaluation function.

Symmetry: Given a directed edge AB, compute the inverse edge BA. Again, for
the spatial relationship with a 6 DOF pose state space this is fairly simple,
in case of a homogeneous matrix representation it leads to matrix inversion.
For the attribute set, we can make essentially the same observations as with
the transitivity of the attribute set – inverting edges is a complex task. If
we want to reflect the numerical errors introduced by matrix inversion in the
attribute subset describing the error of the inference, things get even more
complex.

The transitivity requirements are essential to make any inference, the symmetry
requirement is necessary to allow a shortest path algorithm to explore all paths in
any connected component. It can be used to construct a directed graph that only
has pairs of edges in opposing directions.

4.3.2 Distributed Algorithm

In section 3.2.8 the two major classes of shortest path algorithms were sketched.
For the label-setting algorithms (such as Dijkstra’s), a single node has to be chosen
at every round. After the round, this node has its final label. Obviously, some syn-
chronization is needed in a distributed implementation of a label-setting algorithm.
In contrast, the label-correcting class of algorithms (such as the Bellman-Ford al-
gorithm) is easier to implement in a distributed setting. Following a proposal by
Beyer [17], we chose an asynchronous variant of the Bellman-Ford shortest path
algorithm introduced by Lynch [74].

Asynchronous Bellman-Ford Algorithm. The algorithm assumes that every node
of the graph corresponds to a node in the network. Network nodes communicate by
exchanging messages asynchronously. The limited capacities of real-world computer
systems are modeled by two kinds of FIFO queues. Every communication channel
with restricted capacity has an associated FIFO queue. A communication channel
needs at maximum some time d to deliver a single message, if it has to deliver k
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messages, it consequently needs time k·d. Analogously, a network node with limited
processing power has an associated FIFO queue to sequentially process incoming
messages. Again, if a message needs at maximum time l to be processed locally,
the processing of k messages needs time k · l. The FIFO queues come in handy
for modeling message pileups due to limited processing power or communication
channel bandwidth: if a message arrives and we already have a pileup of k − 1
messages, it takes a worst-case time kd to process the new message. The number
of nodes is n and the number of edges is m.

For communication, every network node i has several input channels taking a
current estimate w of the shortest path from the source node to a neighboring node
j:

rcv(w)j,i, w ∈ R, j ∈ neighbors with edges to i

In addition, every network node also has several output channels sending the current
label w (i.e. the currently best estimate of the node’s distance to the source node)
to a neighboring node k:

send(w)i,k, w ∈ R, k ∈ neighbors with edges from i

Every node keeps its current distance d to the source node i0. At the start of
the execution all nodes have distance d = +∞, except the source node which has
distance d = 0. Every node also keeps a pointer to a parent node p, i.e. the node
preceding itself on the currently shortest path from the source node to it, initialized
with null. Finally, every node i has to keep several FIFO queues qj of tentative
shortest distances, for every communication channel with neighboring nodes j that
have edges to i. At initialization, only the queues of i0 are initialized with a single
value, 0.

At runtime, every network node in parallel receives and sends messages. The
main loop is depicted in algorithm 4.

Modifications to the Algorithm. The basic algorithm just described must be
enhanced by several modifications to make it useful in practice.

Ensure termination: A process in the network never knows when it can stop wait-
ing for new messages. Technically speaking, the current algorithm is not yet
correct, because it never can produce the output (essentially making a final
decision on the values of p and d). However, this can be ensured by converge-
cast acknowledgments. Whenever a node receives a message, it has to signal
the sender of this message when all actions resulting from this message have
terminated. If the message does not lead to a distance update, the acknowl-
edgment can be sent immediately. Otherwise, things are more complicated:
after the update, messages will be sent to all neighboring nodes. Only after
these messages have been acknowledged themselves can the originating node
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Algorithm 4: Distributed asynchronous label-correcting shortest path algo-
rithm
parallel

begin
while Some shortest distance queue qj is not empty do

w ← first element of qj ;
send(w)i,j ;

end
;
begin

while Some message recv(w)j,i is received from node j do
if w + weight(ej,i) < d then

d← w + weight(ej,i) ;
p← j ;
foreach k ∈ neighbors− j do

add d to qk, i.e. trigger notifications of neighboring nodes ;

end
end

be signaled. Some bookkeeping operations are necessary. Yet, the complexity
of the algorithm is only increased by a constant factor. The algorithm termi-
nates when the source node i0 obtained acknowledgments for all messages it
initially sent out. It can then send termination messages to all other nodes
via network flooding.

Graph partitioning: The basic asynchronous algorithm is suitable for pure peer-to-
peer based networks. Our distribution architecture is not pure, but hybrid
peer-to-peer, with a centralized UMA running on every network node and
controlling a subgraph of the SR graph. This fact can be used for speeding
up the overall computation. At its first participation, every network node
solves the all-pairs-shortest-path problem for the subgraph it keeps with the
given evaluation function. Both the evaluation function’s values applied on
all edges and the shortest paths and distances between any two nodes get
stored. Whenever a message from some other UMA is received for a specific
SR graph node, all locally available nodes can be updated very efficiently
using these precomputed values. Care has to be taken at the UMA carrying
the start node. After solving the APSP problem, all nodes with links to other
UMAs have to be initialized with the shortest local distance to the start node.
Their message queues have to be initialized with this value as well in order
to start the algorithm.
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Propagation of shortest path between two nodes: Although the algorithm computes
the distance between the source node and all other nodes, in a sensor fusion
query issued by an application only the shortest path between the source
and a single target node is of interest. The search starts at a UMA having
information about the start node, and it would be favorable if the same UMA
finally could obtain the resulting shortest path. This can be done in a simple
fashion: When the target node gets the termination signal, it sends a message
to its parent node p. Subsequently, each grandparent node sends a message
containing the path from itself to the target node until the source node is
reached. Note that an edge in the SR graph corresponds to some software
component, as such, the IDs of these components need to be transmitted.
The source node UMA can then set up an inference component with the
given information.

4.3.3 Complexity Analysis

The complexity analysis for the chosen algorithm can be divided in two parts: time
and communication complexity. First Lynch’s analysis [74] of the basic algorithm
will be summarized and then the influence of our modifications will be detailed.

Basic Algorithm: Exponential Worst Case Running Time. Unfortunately, the
asynchronous algorithm has both a worst case time and message complexity that is
exponential in the number of nodes. This is due to the fact that we can not assume
an upper bound on the time a single message takes, instead, pileups of messages
may occur. For every FIFO queue q in the algorithm, we can only guarantee that
the time to deliver the oldest message is at maximum d, thus, message delivery of
a new message takes up to time kd if the queue already contains k − 1 messages.

i i i i i i0 1 2 k-1 k k+1

0

0 0 0 0

0 02k-1 2k-1 21 20

Figure 4.3: Graph leading to pileups in message queues of asynchronous Bellman
Ford algorithm.

Lower bound: For every even node number n ≥ 4, a graph G can be constructed
according to figure 4.3 (in the picture, k = n−2

2
) that makes the asynchronous

Bellman Ford algorithm send at least Ω(cn) messages and takes at least time
Ω(cnd) to stabilize in the worst case, for some constant c > 1.
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In this graph, all edge weights are 0, only the right-facing sloped edges have
weights that are decreasing powers of 2. We now assume that the communi-
cation channels associated with the “flat” zero-weighted edges are very slow,
and the “sloped” edges have very fast communication channels. After initi-
ating the algorithm, the node ik gets the first message along the upper paths,
updating its distance label to 2k − 1. Next, it gets a message from node ik−1

along the zero-weight flat edge, leading to a new reduced distance label 2k−2.
Now node ik−1 gets a message from its neighbor ik−2 along the lower path,
leading to a distance label reduced from 2k − 2 to 2k − 4. Node ik−1 sends
this reduced label to node ik on both paths. The message via the upper path
arrives first, reducing ik’s distance label to 2k− 3, afterwards the message via
the lower path arrives, again reducing ik’s distance label by 1, resulting in the
new value 2k − 4.

If we further assume that all channels operate very quickly compared to the
channel from node ik to the target node ik+1, then messages pile up, leading
to a queue of 2k messages in this channel, which is Ω(2

n
n ). Thus, a lower

bound on the message complexity is Ω(cn).

If all these messages take the maximum time d to be delivered, the overall
running time is Ω(cnd), which is a lower bound on time complexity.

Upper bound: The number of messages sent to a node along an edge is smaller or
equal to the number of distinct simple paths between the source node and the
given node. Thus, an upper bound on the message complexity is O(nnm).
Consequently, an upper bound on the time complexity is O(nn+1(l + d)).

Note that it is possible to optimize the FIFO queue behavior by restricting its
length to 1, i.e. we use the fact that messages put into the queue have a strictly
decreasing distance label associated with them. However, the worst-case running
time is still exponential, as the time for “sending a message” is now reduced to the
time for putting a message into the queue, which is still greater than zero.

Influence of Modifications. Termination of the algorithm is guaranteed by ac-
knowledgment messages for all messages received by other nodes. This modification
adds a constant factor 2 to the algorithm’s message complexity cm, and cmd to the
time complexity. Sending the final termination signal from the source node via
network flooding takes m messages taking maximum time md.

Transmitting the shortest path information back to the source node takes a max-
imum of m messages, and maximum time md.

Finally, partitioning the graph and solving the APSP problem takes worst-case
time O(n3) in case the Floyd-Warshall algorithm (see section 3.2.8) is used. No
messages are exchanged for this purpose. However, in practice we can assume every
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network node to have a limited maximum edge number, leading to constant effort
for the preprocessing step.

Complexity of Service Discovery and Connection Phase. The algorithm dis-
cussed depends on the availability of suitable service discovery techniques. The
following steps of the proposed modified algorithm require service discovery:

Locating the source node: Whenever an application emits a query, it must send this
query to the source node of the path search. Thus, the application (or the
middleware) must locate this node.

UMA interconnection: Due to the hybrid peer-to-peer distribution architecture, all
network nodes with UMAs running on them must have connections to other
UMAs with adjacent edges. In the worst case, O(m) such connections have
to be set up.

Setting up inference components: The path search returns a list of edges of an op-
timal path. If this list contains just an abstract representation of edges, the
inference component must locate all corresponding components. However, a
more efficient implementation returning pointers to these components in the
edge list makes this location step superfluous.

Complexity of Evaluation Function Propagation. The evaluation function of
the formal Ubitrack model is not restricted, as such, arbitrary functions can be
associated with any query. These functions have to be transmitted to each network
node, and each node has to apply the function to each edge. Thus, an additional
complexity term of O(m) is necessary for the evaluation function, if it is assumed
to be of constant size.

4.3.4 Discussion

The exponential worst case running time of the proposed algorithm is a major
problem when trying to deploy the proposed algorithm in large-scale ubicomp en-
vironments. We chose it nevertheless, due to its simplicity, the simple mapping
of a natural distribution architecture on the algorithm and ease of implementa-
tion. In average case, the algorithm performs much better, in fact is has served as
ARPANET’s routing algorithm between 1968 and 1980 ([74], page 506). We can
thus expect it to scale to a certain extent.

Restricting Queries to Subgraphs. Still, improvement is possible. An obvious
source of guaranteeing reasonable running times is to restrict search queries to
subgraphs of the overall SR graph. The motivation is as follows: an application is
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usually interested in a spatial relationship with an error that is small compared to
the extent of the spatial relationship. Thus, for queries relating two continents, an
acceptable absolute error of the result might be some kilometers, for queries relating
two objects within a single room, the absolute error should be in the centimeter
range. In consequence, it is possible to prune the SR graph to “relevant” trackers,
in our example, the long-distance query does not have to take centimeter-accuracy
location sensors into account, whilst the local query may only use sensors mounted
in the room the two objects are in. In addition, the overall number of SR graph
edges to be combined by any query result is limited. Errors within the underlying
measurements accumulate quickly such that we can expect the overall error to grow
beyond a reasonable extent for long paths in the SR graph.

Setting up clear definitions, implementation concepts and prototypes for such a
locale based partitioning of the SR graph is major future work.

Synchronizing the Algorithm. As Lynch points out, synchronizing the proposed
algorithm speeds up its worst case massively. If we have a global synchronization,
rounds of the algorithm can be assured. A maximum of O(n) rounds is necessary, as
after round i, all shortest paths up to length i are guaranteed to have been found.
At every round, a message can be sent along every edge, leading to a message
complexity of O(nm) and a time complexity of O(n(d + l)).

However, the effort to synchronize the algorithm is not neglectable. In small
networks (as they only might occur if we restrict queries to subgraphs), the overhead
for synchronization might be higher than the saved average case running time.

Using a Label-Setting Algorithm. Träffs [121] gives distributed asynchronous
implementations of label-setting shortest path algorithms, based on Dijkstra’s al-
gorithm with a heap implementation. He reports polynomial worst case running
time, however, the analysis is based on the unrealistic assumption that commu-
nication takes unit time. If we impose this assumption on our label-correcting
algorithm, its complexity gets reduced to O(n).

4.4 Dynamic Spatial Relationships

The Ubitrack formal model has the power to express all spatial relationships of a
certain setup within a well-defined time interval of arbitrary length. Although a
very long interval might be favorable for some applications, most often it will only
lead to an overly complex spatial relationship graph that contains much unused
information.

For example, consider a setup within a hallway that is used by many people. A
vision-based tracking system observes people walking through it. As such, every
new user observed is represented by a new node in the SR graph and an edge
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between the user and the tracker node, associated with some spatial relationship
function. This function is only defined within the time interval the user walked
through the hallway. Following the Ubitrack formalism strictly, after several days
of use, the SR graph will consist of a large number of user nodes, which might lead
to storage and access problems.

In our example, it seems advisable to delete a user’s node some time after the
user left the hallway. Formally, this corresponds to allowing only a subset of all
potential nodes and edges in the SR graph. We define this as follows:

• A time-restricted SR graph on the interval [t1; t2] contains only edges with
associated spatial relationship functions that are defined within a subset of
[t1; t2].

• It contains only nodes with at least a single adjacent edge.

Most often, the time interval will have the form of a sliding window, i.e. it will
be of fixed length and store some past (for history information needed by some
filtering schemes) and some future (for prediction) information. As such, the time
interval will be centered around the current time t: Islide = [t− t−; t + t+]

Using the concept of time-restricted SR graphs introduces new challenges for any
implementation: it must handle a graph with ever changing topology. In addition,
the interval length must be chosen carefully to prevent a repeated insertion and
deletion of nodes and associated edges of location sensors with a low update rate.

4.5 A Two-Step Approach to Inferring Knowledge

Some of the requirements derived in section 1.4.2 are opposing each other. On
the one hand, an implementation must not add significant overhead to the overall
latency in a distributed tracking setup, and on the other hand, it must allow a
highly dynamic reconfiguration at run time of a potentially very large number of
sensors.

All algorithms described in this chapter have been designed to implement the
generic transitivity based algorithm developed in section 3.2.7. In short, the SR
graph is taken as is. To compute an inference of the spatial relationship between
two objects represented by nodes X and Y , a single optimal path between these
nodes is selected according to criteria defined by an evaluation function e. Spatial
data is inferred along this path. The generic algorithm does not make use of
knowledge from any other path or subpath between nodes X and Y , as additional
world knowledge would be necessary for this step.
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4.5.1 Naive Implementation

A naive approach would be based on some representation of the current SR graph.
Whenever an application needs a spatial relationship between two nodes, it issues
a query to the naive Ubitrack implementation. The implementation then finds all
paths between the two given nodes (or does a shortest path search), applies the
evaluation function to each path, selects the path with the smallest evaluation value,
propagates the attributes and spatial relationships along this path and returns the
propagated values to the application. If this operation is executed atomically, the
application gets an optimal estimate.

In practice, such an implementation will only work for a very limited number of
nodes or applications at a very low update rate and with a very high latency, due
to the computational overhead for the path search and attribute propagation. In
fact, it would be unusable.

4.5.2 Dividing Connection Setup and Communication

In existing static tracking setups, only the spatial relationships and some attributes
(e.g. tracking accuracy) get computed out of several measurements each time new
data becomes available. This obviously can be done sufficiently fast to fulfill the
requirements of typical AR applications.

In consequence, a two-phase process in order to reach a sufficient real-time per-
formance is proposed.

Phase 1: Connection Setup. Upon receiving an application’s request for a spatial
relationship between two objects X and Y being optimal according to an
evaluation function e, the implementation finds an optimal path according
to e between the nodes representing X and Y . It then configures an infer-
ence component that takes the values of the measurement and/or inference
functions qinput associated with the edges in the optimal path as input. The
inference component yields the aggregated spatial relationships and attributes
along the optimal path, i.e. it corresponds to the function qinference associated
with a new inferred edge eXY .

Phase 2: Runtime Communication. Whenever an application requests an update to
the spatial relationship, the inference component gathers the data from all
components representing the functions qinput. It then aggregates the spatial
relationships and the attribute set. The result of this aggregation is delivered
to the application.

Using this approach, the overhead resulting from using a dynamic formal model just
occurs at selected instances in time. After the setup phase, the implementation is
as fast as a handcrafted equivalent. In addition, it fits well into the formal model
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by providing an inference component that can be associated with a new edge in the
SR graph.

4.5.3 Implicit Assumptions

The two-phase implementation concept is based on some restricting assumptions.
The spatial relationships are assumed to change much faster than both the at-
tributes describing their properties and the topology of the SR graph.

Stable SR Graph Topology. The optimal path search is only performed once,
and consequently happens on a snapshot of the SR graph. If edges get added or
deleted at a later point in time, there might be a new optimal path between some
nodes, making a recomputation necessary. This might happen if some sensors get
switched on or off, if mobile equipment is brought into the tracking environment or
taken from it and if some sensors fail. If a recomputation has to be done almost as
often as a computation of aggregated spatial relationships, the overhead resulting
from setting up an inference component leads to an overall efficiency that is worse
than that of the naive approach.

In practice, the assumption of a stable SR graph topology holds true most of the
time. Current sensor setups consist of a relatively small number of sensors, and
mobile users with their own sensor setups have to be integrated rather seldom. In
addition, the search space for optimal paths can usually be restricted to a relatively
small spatial entity (e.g. a single office). It makes no sense to take into account an
inference that involves several long-distance trackers if the desired spatial relation-
ship can also be computed out of some locally available knowledge. Restricting the
search space to a small spatial entity eventually leads to a small SR graph. The
smaller the graph, the lower the possibility that the topology changes.

Stable Attributes. As with the graph topology, the attributes also influence the
results of an optimal path search. If attributes taken into account by the evaluation
function change, a recomputation of the path is necessary to ensure its optimality.
Indeed, many attributes such as pose error covariances for vision-based trackers
change with every single measurement. Strictly speaking, a recomputation of the
optimal path is required whenever a new measurement occurs, degrading the effi-
ciency to an unacceptable level. In consequence, the two-phase approach can not
guarantee optimal results at all times.

Again, in practice this is less of a problem. In common setups, some location
sensors of highly varying accuracy are available, e.g. a wide-area tracker such as the
Bat system [2] and a narrow range device such as a magnetic tracker. Although the
attributes describing the accuracy of both devices might change with every mea-
surement, they still differ by an order of magnitude, supporting our opportunistic

89



Chapter 4 A Distributed Implementation Concept

choice of the optimal path based on a snapshot of the attributes.
If two sensors with attributes in the same order of magnitude of error are installed

stationarily in the same place, it seems advisable to handcraft a filtering component
that uses additional knowledge of the sensor characteristics in order to obtain re-
sults superior to each individual sensor. This filtering component would then have
attributes that are almost always superior to each individual sensor’s attributes,
leading to an automatic choice of it with the optimal path search algorithm.

Recomputation Implemented. There exist several possibilities how the recompu-
tation of optimal paths can be triggered. The most simple approach is to recompute
paths at fixed time intervals. This may lead to wasted computational resources, but
is very easy to implement. A more sophisticated solution would trigger a recompu-
tation whenever the topology of the SR graph changes, making some notification
mechanism necessary. For every inference component, the optimal path needs to be
stored, and whenever a change in topology occurs, this stored path needs to be com-
pared with the result of a recomputation. If both differ, the inference component
needs to be reconfigured.

For the reasons described above, a recomputation upon every change of attribute
is not feasible. However, it would be possible to define both a subset of relevant
attributes (such as a binary “lost track” flag) and some thresholds of changes that
might trigger recomputations.

4.6 Results of Path Search Implementation

The exponential worst-case running time of the proposed algorithm for detecting
optimal inference paths makes a practical implementation necessary to prove the
feasibility of the approach. In this section, the results of an implementation of
the search algorithm that was applied to several random distributed graphs are
discussed.

4.6.1 Related Results.

Träffs compares his label-setting algorithms on a 15 processor transputer system
linked in a 4×4 quadratic mesh [121]. He uses a general purpose routing system that
makes communication expensive compared to computation, a situation similar to
our scenario of mobile and stationary ubicomp computing devices linked via wireless
networks. Two graph types are evaluated: random unstructured graphs with a
predefined node degree and “grid graphs” organized in layers with a maximum
number of nodes each, with the source node being a member of the first layer.

To summarize his findings, notable speedups up to 4 can be achieved for random
unstructured graph, regardless of their size and average node degree. In the case of
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grid graphs, no speedup can be found, instead the overall running time is increased
by 50%. However, problems that could not be solved on a single computer for in-
sufficient memory reasons can now be computed using the parallel implementation.

4.6.2 A Simulation Environment for the Distributed Path
Search Algorithm

The major goal of the implementation described in this section is to separate the
effects of service discovery and connection setup from the actual running time of the
path search algorithm. For this reason, a simulation environment for asynchronous
distributed algorithms is described. It is used to apply the proposed path search
algorithm to random graphs and evaluate its performance

Key Concepts. The key idea of the simulation environment is to provide a se-
quential, single-threaded execution for an asynchronous message-passing algorithm.
A ring buffer modeling global time steps is used for this purpose. With every entry
of this buffer, a set of an arbitrary number of messages is associated.

Network hosts are modeled as objects that have a local time. If a network host
receives a message from the simulation environment, it compares the global time
stamp with its local time. If the local time is smaller or equal, the host accepts
the message and processes it. After processing the message, the host sets its local
time to the sum of the received global time and adds the local message processing
time to it, modeling a consumption of processor time. If the local time is larger
than an incoming message’s global time, the host rejects the message and tells the
simulation environment its current local time, i.e. the next time it will be idle and
can accept messages.

The key loop of the simulation environment is described in algorithm 5.
As the simulation environment has full control over all messages, at the end of

execution the global time needed for processing and the number of sent messages
is obtained.

To model restricted communication facilities and message passing time of arbi-
trary length, communication channels are used to filter a host’s incoming message
stream. Similar to the network hosts, these channels have a local time and a per-
message processing time that is advanced every time a message is forwarded to the
corresponding host. If a message’s global time stamp is smaller than a channel’s
local time, the message is not accepted and must be rescheduled by the simulation
environment. Communication channels are selected by the simulation environment
based on the sender/receiver pair of a message.

Graph Generation and Host Initialization. On startup, the simulation generates
a random input graph and associates each of its edges with random weight and a
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Algorithm 5: Main loop of simulation environment for asynchronous message
passing algorithms.

while receivedHaltMessage == false do
while ringBuffer(globalT ime%BUFFERSIZE) contains a message do

msg ←
ringBuffer(globalT ime%BUFFERSIZE).removeNextMessage ;
if msg is halt message then receivedHaltMessage← true
msg.timeStamp← globalT ime;
host← msg.receiver;
hostT ime← host.receive(msg);
if hostT ime > globalT ime then

/* Reschedule Message */
ringBuffer(hostT ime%BUFFERSIZE).add(msg);

globalT ime← globalT ime + 1 ;

random host. Then all hosts are initialized such that they have a representation of
their local subgraphs according to the distribution strategy described in section 4.2.
The hosts also know adjacent hosts for every local graph vertex, i.e. which other
hosts have duplicates of it. Finally, every host precomputes a all-pairs-shortest-path
matrix for its local subgraph to speed up future computations.

The simulation environment then selects two random source and target vertices of
the global graph and uses Dijkstra’s algorithm to compute a shortest path between
them. This path is used as ground truth later to verify the distributed solution.

Setup Phase. The simulation chooses a host keeping a copy of the search start
vertex and sends a start message to this host. Upon receiving this message, the host
sets the start vertex’ distance label to zero, notifies all other hosts having copies
of the start vertex about the new distance label and updates its internal vertices’
distance labels.

Runtime. At runtime, the simulation environment executes the main loop de-
scribed in algorithm 5. This leads to sending messages to hosts that then execute
the path search algorithm described above, including the necessary bookkeeping of
acknowledgment messages to ensure termination.

As soon as the start message gets acknowledged, the simulation environment
main loop returns.

Termination. Now a get result message is sent to the start network host, and the
simulation main loop is started again. The start host broadcasts this message via
flooding to all other network hosts.
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As soon as a network host controlling a copy of the target node receives the
termination message, it starts assembling the shortest path from source to target
in reverse order. The algorithm works as follows:

Procedure AssembleEndOfPath(Vertex target)

Data: target: Target vertex
Result: intermediateSource: Some vertex along shortest path that is also

represented at another host; Path: Path
begin

intermediateSource← null ;
dmin ←∞ ;
forall graph vertices i that are also existent at other host do

if APSP (i, target) < dmin then
intermediateSource← i ;
dmin ← APSP (i, target) ;

Path← Dijkstra(intermediateSource, target) ;
end

A message containing Path is sent to the host that is stored as predecessor with
vertex intermediateSource.

Intermediate network hosts, i.e. nodes that neither control the source nor the
target vertex, operate as follows when they receive a partial shortest path message
from another network node at vertex it:

Procedure AssembleIntermediatePath(Vertex target, Path receivedPath)

Data: target: first known part of received shortest path
Result: intermediateSource: Some vertex along shortest path before target

that is also represented at another host; Path: the shortest path from
intermediateSource to the original target node

begin
intermediateSource← predecessor(target) ;
Path← Dijkstra(intermediateSource, target) + receivedPath ;

end

Again, a message containing Path is sent to the host that is stored as predecessor
with vertex intermediateSource.

If the network host controlling the source vertex s receives a message with the
shortest path between some local vertex it and the target node t, it solves the SSSP
problem for s and appends the path from s to it to the received path to get a
shortest path between s and t. The simulation environment subsequently leaves
the main loop and the shortest path result can be output along with the number
of time steps and messages that were necessary for its computation.
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Implementation Details. The simulation environment was implemented in Java.
The data structures of the graph library JGraphT4 were used to store the global
and local graphs.

Random numbers were generated using Java’s Math.random() method. Random
graphs were generated according to the G(n, p) model. A random graph G(n, p) has
n vertices, and every edge between two arbitrary vertices i and j has the probability
p to exist. To model the edge inversion resulting from the symmetry requirement
stated in section 4.3.1, only pairs of edges (i, j) and (j, i) were allowed, albeit with
differing weight.

4.6.3 Practical Results.

The simulation was run on random graphs, and results were averaged over several
shortest path queries. The number of network hosts, number of graph vertices and
the probability of edges were varied. Every network host was modeled to have a
single input communication channel, thus emulating the single network interfaces of
typical mobile computers. The distributed path search algorithm’s local processing
time can almost be neglected compared to the message passing time in real-world
setups. Thus, the local processing time was set to 1 and the message processing
time was set to 100 via the communication channel’s parameters. The result graphs
shown below give the overall processing time in multiples of the time it takes to
process a single message.

Figure 4.4 shows the dependency on the number of hosts for a fixed-size graph
with 50 vertices and on average 5 adjacent edge pairs per vertex. A speedup of 2
can be observed if the number of hosts increases from 5 to 25.

Figure 4.5 shows how the number of graph vertices influences the number of
messages and the computation time. In the simulation, both grow almost linearly
with the number of graph vertices.

Figure 4.6 show how the graph density influences the time and message com-
plexity. Up to a edge probability of 0.5, the complexity grows massively, but the
growth curve flattens significantly for denser graphs.

Discussion. The simulation results show that the proposed distributed algorithm
is viable for small-scale setups. The time complexity profits from an increasing
number of network hosts to a certain degree, and the approach even scales to dense
graphs which are very uncommon in typical Ubitrack setups.

Yet, the high number of messages every network host has to process require a
highly efficient implementation. In the case of figure 4.6, the shortest path com-
putation consumes as much time as transmitting 4000 messages. If we assume
MacWilliams’ measurements of the Dwarf CORBA-based AR middleware [77]

4http://jgrapht.sourceforge.net/
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Figure 4.4: Simulation result with number of network hosts as a parameter. The
underlying graph had 50 vertices and on average 5 pairs of edges adja-
cent to every vertex.
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Figure 4.6: Simulation result with edge probability as a parameter. The random
graph has 50 vertices and is distributed on 10 hosts.

which takes 7ms to transmit a message wirelessly, the path computation would
take 28s, which is beyond usability.

4.7 Inferring Knowledge along Optimal Paths

After the search for an optimal path is finished, the proposed implementation con-
cept sets up a runtime inference component that continually aggregates spatial data
along the optimal path.

This section discusses several issues that have to be considered for every actual
implementation of this runtime infrastructure.

Transforming the SR Graph into a Data Flow Graph. Conceptually, the process
of setting up an inference component is the transformation of a subgraph of the
spatial relationship graph into a data flow graph for aggregation of spatial data.
Consider the simple AR setup depicted in figure 3.6. It consists of three objects,
T , L and O and two measurement functions qm

TL(t) and qm
LO(t). Function qm

TL(t)
corresponds to a static relationship, function qm

LO(t) models the output of a location
sensor. Three inference functions are constructed, namely qe

TL(t) and qe
LO(t) for

extending the time domain of the measurement function, and qi
TO(t), aggregating

the spatial relationships of the qe functions.
Figure 4.7 shows the resulting data flow graph. At runtime, data from both the

component holding the static calibration qm
TL(t) and the component encapsulating
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Figure 4.7: Data flow graph resulting from simple AR setup depicted in figure 3.6.

the location sensor modeled by qm
LO(t) is delivered to components that perform

the time domain extension. Data from these components flows to the component
computing the aggregation qi

TO(t), that delivers the result to the application.

The modular inference concept resulting from this approach allows further opti-
mizations: if multiple applications need spatial data that gets inferred along par-
tially overlapping paths, parts of inference components may get reused. However,
the general optimization problem arising from these questions is beyond the scope
of this thesis.

Mapping Data Flows on Actual Implementations. Every data flow architecture
(e.g. OpenTracker [99]) could be used for the execution of the data flow graph.
However, the recomputation issues discussed in section 4.5.3 pose additional re-
quirements. It must be possible to reconfigure an inference component at runtime,
triggered by new inference possibilities. There must also be some feedback mech-
anism for the inference component to trigger a recomputation of an optimal path,
in case some necessary input component fails.

The next chapter discusses a possible implementation based on the Dwarf AR
framework.

4.8 Discussion

This chapter presented a highly distributed asynchronous algorithm to implement
the generic algorithm for finding optimal inferences. It works in a peer-to-peer
fashion, allowing the ad-hoc connection of mobile setups. The worst-case runtime of
the algorithm is exponential in the number of network hosts. Yet, a simulation gave
promising results for small-scale networks. The runtime efficiency of the proposed
concept can be enhanced massively using a two-step approach: first, a shortest path
between two SR graph vertices is computed, second, a run time data flow between
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distributed components is set up. The implicit assumptions of stable SR graph
topology and attributes were discussed.

There are several observations to be made about the proposed concepts:

Changes in SR graph attributes: Strictly speaking, most attributes of edges in the
SR graph are changing with every measurement. Especially for AR applica-
tions, measurement error is the most relevant attribute [76]. Yet, the error is
always dependent on a particular measurement and thus changes with every
new measurement. Nevertheless, for the reasons discussed in section 4.5.3,
we can assume the attributes to be stable in most real-world tracking setups.

Scalability: The price for the proposed algorithm’s flexibility regarding ad-hoc net-
works is its worst-case exponential running time. Thus, the size of the graph
to be searched has to be restricted to allow the proposed concept to scale.
This can be realized by pruning the graph according to contextual knowledge.
For example, if the optimal spatial relationship between two objects in the
same room is to be evaluated, it usually suffices to scan only the parts of the
SR graph in this room.

Dependency on service location: The proposed concept depends on an efficient ser-
vice location protocol, which is beyond the scope of this thesis. However,
the service location problem is not yet solved in a satisfying and massively
scalable way. Again, in real-world setups this is less of a problem, as the
small size of such setups allows using a variety of existing service location
techniques.

Suboptimal results: Due to the dynamic nature of the underlying SR graph to be
searched, the distributed search algorithm is not guaranteed to give optimal
results. For example, it might return a shortest path containing an edge that
corresponds to a tracking device that was switched off during the path search.
In practice this problem can be remedied by recomputing shortest paths at
fixed time intervals.

98



CHAPTER 5

An Implementation based on DWARF

Overview

The preceding chapters specified a formalism that allows to model arbitrary net-
works of location sensors and an abstract distributed implementation concept that
only marginally restricts the expressive power of the formalism. This chapter de-
scribes a working implementation based on the Dwarf AR framework that serves
as a proof of concept of both the formalism and the implementation concept.

After an explanation of the key concepts of Dwarf which are necessary for
implementing the distributed Ubitrack concept described in the last chapter, this
chapter discusses how the elements of the formalism can be applied to theDwarf
concepts. In principle, the Ubitrack spatial relationship graph gets mapped on a
corresponding Dwarf service connection graph. Most important, edges in the SR
graph are mapped to nodes in the Dwarf service graph, as they are represented as
software components delivering the spatial relation between two objects. Properties
of these objects are also modeled as Dwarf services.

The actual implementation consists of a Ubitrack specific extension of the Dwarf
service manager [77], the Dwarf Ubitrack Middleware Agent (UMA) that em-
ploys the algorithms described in section 4.3.2 to infer application requested spatial
knowledge from the available sensor data. Similar to the Dwarf service manager,
there is one UMA per network node, thus allowing an implementation of the dis-
tribution strategy described in section 4.2.
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5.1 DWARF Concepts

The Distributed Wearable Augmented Reality Framework (Dwarf) is a research
platform under constant development at Technische Universität München since
2001. This section briefly lists the requirements influencing crucial design decisions,
explains the key concepts of the Dwarf approach to building AR systems and
details some recently added features that support dynamic environments like the
scenarios of ubiquitous tracking.

5.1.1 Dwarf Requirements

The key idea of Dwarf is to use a set of interoperating distributed components
to model AR applications. This can be motivated by looking at the requirements
arising from various views on creating AR systems [12, 98].

Project Manager’s View. A project manager responsible for an AR system has to
keep cost and time constraints. If a system can be split into components, these can
be seen as black boxes that only are accessed via well-defined interfaces. Component
development and testing can then be distributed in space and time, leading to a
lowered interdependency of various teams responsible for different subsystems.

An additional advantage arises if some generic general-purpose components are
provided. Then, a new AR system can be authored by simple reconfiguration of
preexisting components. Another advantage is the possibility of “rapid prototyp-
ing” [78] for quick testing of new ideas.

To summarize, the requirements for a component architecture from the project
manager’s view are mainly a simple configurability of components and well-defined
interfaces for communication between components.

User’s View. The user’s view on an AR system in intelligent environments fo-
cusses on ease of use. With a component-based approach, an AR system’s func-
tionality can be split into several functional units like communicating with a cell
phone, rendering of virtual objects using a head mounted display or tracking a
user’s pose with a location sensor.

In current AR systems, installing a new tracking device is a task that can only
be performed by experts. With the component-based approach, the necessary soft-
ware (including interactive calibration routines) could be bundled with tracking
hardware, thus facilitating the setup to a mere plugging of the new device into the
existing component network.

In summary, an AR system’s user benefits if components are used to abstract
hard- and software to functional units.
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Application Developer’s View. An application developer is used to structure
complex systems into several layers, thus encapsulating basic functionality and
making it accessible to high level parts of the system.

Reicher [98] proposes to describe the architecture of AR applications in four
layers, namely the architectural style, the domain-specific architecture, the product-
line architecture and the application architecture.

Thus, the Dwarf framework has to be modular enough to allow a layering
of components as necessary for an application developer to reuse major parts of
previous efforts.

Component Developer’s View. A developer of a new component wants to make
use of as many existing components as possible. Thus, it should be possible to
specify in an abstract fashion the data a component needs to work properly and
the data it is able to deliver to other components.

In addition, a component developer puts the requirement that a middleware
allows the automated connection of components, including network transparency
and a choice of communication protocols that are of use in AR applications, such
as event-based communication or shared memory blocks for exchanging high-band-
width data such as video streams locally.

5.1.2 Dwarf Key Features

Dwarf can be split in several pieces, namely the middleware implemented with
the Dwarf service manager providing transparent access to individual compo-
nents, called Dwarf services and a set of design concepts on how to create AR
applications in a well-defined fashion.

The Dwarf service manager sets up a hybrid peer-to-peer [110] network. An
instance of the service manager is running on every network node, and Dwarf
services connect to it via CORBA1. The service manager controls its local services
and maintains descriptions of them. Each service manager cooperates with the
others in the network to set up connections between services.

A Dwarf service is the basic building block of a running system. It either
encapsulates a hardware device like a location sensor, performs some reusable func-
tionality like controlling a taskflow or handles some application-specific task. Each
service is running within a separate operating system process or thread. Its func-
tionality is described in terms of abilities, the functionality it requires from other
services is described in terms of needs. Needs and abilities are matched using con-
nectors.

An ability is the abstract description of a service’s functionality, e.g. spatial
data for trackers. A service can have multiple abilities, e.g. the tracker may track

1http://www.corba.org
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multiple objects simultaneously. Abilities are typed, a tracker delivers PoseData

for location information.
A need describes the functionality a service requires from its counterparts to be

able to work. Again, a service may have multiple needs. A vision-based tracker
needs a stream of video data and descriptions of markers to be able to find these
markers in the video image. Needs are typed, too, and a need can only be satisfied
by an ability of the same type.

A connector is a description of the communication protocol, e.g. shared mem-
ory for video data, CORBA object references or CORBA notification events for
event-based communication of location data. It is the responsibility of the service
managers to set up connectors for matching services. After the connectors have
been set up, the services can communicate directly without any involvement of the
service managers. This two-step connection setup fulfills the usually contradictory
flexibility and efficiency requirements for systems combining ideas from ubicomp
and AR.

Attributes enhance the description of an ability. The tracker may therefore specify
which object it tracks, using e.g. Target=JoesHead. Needs can be refined using
predicates, e.g. (&(User=Joe)(Room=Lab)). When matching needs with abilities,
the service managers ensure that the ability’s attributes satisfy the need’s predicate.
Attributes may be specified for the entire service, in this case all abilities of that
service have these attributes.

<service name="OpticalTracker">

<need name="video" type="VideoStream">

<connector protocol="SharedMemory"/>

</need>

<need name="marker" type="MarkerData"

predicate="(&(Room=ARLab)(User=Joe))">

<connector protocol="ObjectReference"/>

</need>

<ability name="poseData" type="PoseData">

<attribute name="Room" value="ARLab">

<attribute name="User" value="Joe">

<connector protocol="NotificationPush"/>

</ability>

</service>

Figure 5.1: Sample XML description of an optical tracker service having two needs
of type VideoStream and MarkerData and an ability of type Pose-
Data. Only MarkerData abilities of other services with specific at-
tributes (Room=ARLab and User=Joe) are requested, and the PoseData
ability of this service is attributed accordingly.
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Optical-
Tracker

:PoseData :MarkerData

:VideoStream

ObjrefImport

SharedMemory

NotificationPush <<service>>

Figure 5.2: Sample UML description of an optical tracker service. Needs are de-
picted as semicircles, abilities as circles.

Each Dwarf service installed on a network node may either describe itself at
startup to the service manager or use an XML file format to give the service manager
the possibility to start and stop the service on demand. Our example of an optical
tracker is shown in figure 5.1. A UML-based notation is shown in figure 5.2.

5.1.3 Supporting Dynamic Environments

A major design goal of Dwarf is to support dynamic environments as they oc-
cur within common ubicomp scenarios. The Dwarf key features just described
are well suited for static setups, and we have implemented several demonstration
applications [12, 78] that were configured statically. To support dynamic environ-
ments, the topology of the service connection graph needs to be changed at runtime.
Several concepts within Dwarf support this requirement.

Starting and Stopping Services. The Dwarf service managers have knowledge
about each service’s current communication partners. To support power manage-
ment scenarios on wearable computing platforms, a service manager can notify a
service if it is accessed for the first time or if it is not used any more. This behavior
can be triggered by setting the flag startOnDemand in the XML service description.

In addition, service managers constantly ping services under their control and
other service managers to detect whether they are still available. This mechanism
allows the detection of changes in the topology of the service connection graph.

Sessions. Every need description can be enhanced by describing the desired mul-
tiplicity, using the tags minInstances and maxInstances. Specifying a minimum
number of instances (default value is 0) causes the service to be started only after
this minimum number of matching abilities becomes available. For example, a ser-
vice transforming a sensor’s base coordinate system makes only sense if the sensor
is actually available, thus minInstances would be set to 1. The maximum number
of instances can be specified to restrict the number of connections either for logical
reasons (for example, a viewer component needs exactly one service specifying the
virtual camera’s viewpoint) or to limit the load on a system. Abilities can not be
restricted in their multiplicity using the service description.

103



Chapter 5 An Implementation based on DWARF

Dwarf employs a session concept to handle multiple connections to a need or
ability. If a service object implements the CORBA SvcSession interface, consisting
of the methods newSession(...) and endSession(...), these methods get called
before another service gets connected. Based on the descriptions of the connecting
service given as arguments, the service object can decide which local object should
handle the new session and return this (potentially specifically instantiated) object
to the service manager.

Using sessions, a service can dynamically keep track of where it sends to or
receives from data.

Changing Service Descriptions at Runtime. Every service can query its service
manager for the service description. It is also possible to change this description
at runtime, by modifying attributes of the service and existing needs and abilities
or by adding or removing needs and abilities.

For example, a video grabbing service wrapping some frame grabbing hardware
and putting digital images in a shared memory buffer might set the attributes
describing the properties of the digital image (e.g. the color model) according
to some parameters it obtains from the frame grabber hardware. Additionally, it
might detect automatically whenever someone plugs in a new camera and then set
up a new VideoData ability.

Changing a service’s description can lead to the necessity for breaking existing or
setting up new connections. This is handled automatically by the service managers.

Template Services. The concept of template services allows to define generic
components that can be configured at runtime.

Two classes of services can be distinguished. Singleton services exist only once
for a given service description, all needs, abilities and attributes are fixed. For
example, the video grabbing service described above is a singleton service.

In contrast, template services exist in multiple instances. For example, a filter
service that smooths pose data might exist simultaneously for multiple pose data
streams. It is also possible that a service’s ability is defined as a template. For
example, a generic fiducial marker tracking service that takes a video image out
of a shared memory segment and detects a certain number of fiducial in it, can
then provide one template ability for pose data relating the camera’s and the fidu-
cial’s pose for each fiducial. In the XML service description, the flag isTemplate

indicates that a service or an ability can be instantiated multiple times.

The service manager is responsible for creating new service or ability instances
whenever it detects possible communication partners for a service’s needs. It is
possible to bind the service’s or ability’s attributes to attributes of the partner ser-
vice’s ability that is satisfying the service’s need. For example, the optical tracker
service described in the last section has a need for MarkerData with the contex-
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tual predicates Room and User. The service uses the information obtained via the
MarkerData need to provide a PoseData ability that again has the attributes Room
and User, set to the same values as in the corresponding need. In the example,
Room was bound to ARLab and User was bound to Joe.

<service name="OpticalTracker">

<need name="video" type="VideoStream">

<connector protocol="SharedMemory"/>

</need>

<need name="marker" type="MarkerData"

predicate="(&(Room=*)(User=*))">

<connector protocol="ObjectReference"/>

</need>

<ability name="poseData" type="PoseData" isTemplate="true">

<attribute name="Room" value="$(markerData.Room)">

<attribute name="User" value="$(markerData.User)">

<connector protocol="NotificationPush"/>

</ability>

</service>

Figure 5.3: Sample XML description of an optical tracker service with a template
ability of type PoseData. If the need for MarkerData gets satisfied
by another service with attributes Room and User, the optical tracker
offers the PoseData ability with the same attributes.

To describe the optical tracker in a generic fashion, the ability PoseData must
be templated. Figure 5.3 shows the XML notation used for template services.

The new services and/or abilities resulting from template instantiations remain
as descriptions inside the service manager and are only started by launching a new
process or thread within an existing process if another service has a need for them.
After startup, the new service or ability connects to its communication partners
with the specified communication protocols and works independent from the service
managers.

Chains of Services. The template service mechanism can also be used to set up
chains of services. For example, an application might have a need for 6 DOF pose
data of a user’s head. The available services consist of a frame grabber service
providing video streams, a simple generic marker tracker processing video streams
and extracting 6 DOF pose information, a marker configuration service storing
information how to track the user’s head optically, an inertial tracking service
providing high-update 3 DOF orientation information, and a generic filter service
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combining 6 DOF pose with 3 DOF orientational information, yielding 6 DOF pose
information with higher update rate and accuracy in the rotational part.

As can be seen in figure 5.4, after the connection of all services, the generic
services are fully configured.

It should be noted that the general problem of finding suitable chains of services
for a given setup is not solvable in polynomial time, as such, it seems only reasonable
to use this concept for specific tasks.

5.2 Mapping the Ubitrack Formalism on DWARF

The Dwarf platform has been used to create a proof-of-concept implementation
of the distributed concept described in chapter 4. For this purpose, crucial parts of
both the Ubitrack formalism and the distributed implementation concept have to
be mapped on Dwarf concepts. This section describes this mapping.

5.2.1 General Concepts

The Ubitrack formalism proposes to use a graph for modeling knowledge about spa-
tial relationships in an intelligent environment. A Dwarf runtime system consists
of a graph of interconnected services that are distributed as well. Consequently,
some mapping from the Ubitrack SR graph onto the Dwarf service graph has to
be defined. To make the implementation feasible in real-world applications, it must
support the concept of time-restricted SR graphs defined in section 4.4.

Layered Architecture. The Ubitrack implementation in Dwarf can be regarded
as an abstraction layer from all low-level location services.

Figure 5.5 shows the concept of the layered Ubitrack architecture. Services en-
capsulating location sensors are accessed from the Ubitrack layer using a sensor
API. The Ubitrack layer refines the sensor data streams and delivers the inferred
data to arbitrary applications. Note that an application might also be another
Dwarf service that needs spatial relationships to work properly, e.g. a natural
feature tracker that needs to initialize itself. Applications access the Ubitrack layer
via a query API.

SR Graph Edges. Spatial relationships are expressed as functions associated with
edges in the SR graph. The implementation of such a function in software results
in some component. As a consequence, SR graph edges get mapped on Dwarf
services, i.e. nodes in the Dwarf service connection graph. Several classes of
spatial relationship services can be distinguished:

Location sensor: A service of the class location sensor encapsulates some hardware
device and induces its measurements interpreted as spatial relationships. In
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Figure 5.4: A chain of services. At the top, the unconnected services are shown,
with both the marker tracker and the filter service being underdefined.
At the bottom, the same services are shown after connection, now
the marker tracker and the filter services are fully specified. If there
was another marker data ability, new instances of the marker tracker
and the filter service could be instantiated. Note that the attribute
Quality=Low/High is just for illustration. In real applications, some
parameters according to a specific error model would be used.

107



Chapter 5 An Implementation based on DWARF

Sensors

Ubitrack

Application

ART
Tracker

Intersense
Tracker

Static
Calibration

Kalman
Filter

Inference

XSens
Tracker

Ubitrack
Middleware

Generic
Inference

1

Generic
Inference

2

Ubicomp/AR
Application

Natural Feature
Tracker 

Initialisation

Context
Estimation

User Interface
Controller

Generic
Inference

3

Generic
Inference

4

Low-Level
Location Data

High-Level
Location Data

Query 
API

Sensor 
API

Figure 5.5: Layered Ubitrack architecture. The Ubitrack layer is an abstraction
from the low-level location sensors and provides a powerful API to ar-
bitrary applications.

Dwarf, several location sensor services exist, such as services providing data
from Intersense trackers or an ARToolkit-based optical tracker.

Static calibration: In real-world AR setups, several spatial relationships, e.g. be-
tween a locatable and an object it is attached to, must be determined in
some off-line calibration procedure [123]. These relationships are estimated
once and then do not change over time. Dwarf static calibration services
model such calibration results, usually being fed from files or a database [120].

Special inference: In complex sensor fusion systems, algorithms such as a Kalman
filter process the data of several location sensors. These algorithms get en-
capsulated into special inference services.

Generic inference: Some inferences on spatial relationships can be generalized to a
certain extent. For example, a function to change the reference coordinate
system of an object’s 6 DOF pose is simple to implement and parameterize.
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Generic inference services provide such functions. In contrast to the other
low-level service classes, generic inferences are part of the Ubitrack layer.

The connections between Dwarf services, i.e. the edges in the service connection
graph, depend on the needs of the individual services. In general, both location
sensor and static calibration services only have outgoing edges, i.e. deliver data to
other services. Inference services have both in- and outgoing edges, as they process
data received from other services and send the results to services of a higher layer.
Formally, whenever a function associated with an edge e1 in the SR graph and
implemented as service s1 serves as parameter of another function associated with
e2 and implemented as s2, the corresponding Dwarf service connection graph has
an edge from the node representing service s1 to the node of service s2.

SR Graph Nodes. The nodes of the Ubitrack SR graph represent objects in the
virtual or real world. For the purpose of spatial relationships, they only have to
carry a unique ID, that can also be extracted from the set of the graph’s edges.
Consequently, there is no necessity to model SR graph nodes within the Dwarf
service concept. However, an object’s properties might be of interest to some AR or
ubicomp application. For example, a “where’s my friend” people finder application
might use pictures associated with SR graph nodes that represent people. For
this purpose, it is possible to model SR graph nodes as Dwarf object description
services.

Distribution Architecture. Dwarf has the same hybrid peer-to-peer architecture
as the Ubitrack distributed implementation concept. Consequently, full access to
a Dwarf service representing some SR graph edge is available only to the local
middleware. The Dwarf service manager’s service location facilities are used for
setting up the necessary connections between the network nodes and locating start
and target nodes of graph search requests. The messages of the distributed path
search algorithm are exchanged using event channels.

Dynamic Behavior. The dynamic topology of a time-restricted SR graph gets
mapped on the Dwarf service connection graph using the features described in
section 5.1.3. Whenever a new location sensor, static calibration or inference service
becomes available, the information about it is available at the local network node
and, using the Dwarf service discovery techniques, at the next distributed path
search. If a service becomes unavailable, e.g. after unplugging a tracking device or
if a user leaves an intelligent building, the service manager network is notified of
this event and adapts accordingly.
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5.2.2 APIs of the Ubitrack Layer

To make the layered approach work, two APIs need to be defined. The sensor
API is for unified access to all kinds of location sensors, and the query API is for
abstract access to spatial relationships from applications.

Dwarf offers two main facilities for API definitions. First, using the concepts of
needs and abilities along with attributes and predicates, services can either specify
requests by dynamically creating a need for some spatial relationship specified by
a set of predicates or offer some facility by creating an ability that is described by
a set of attributes. Second, communication mechanisms such as event channels or
remote procedure calls can be used for a more direct communication.

Sensor API. It is the task of the sensor API to specify a common data format for
expressing all spatial relationships as modeled in the Ubitrack SR graph. Obviously,
this data format is tightly coupled with the state space of the spatial relationships.
In the current Dwarf implementation, only a 6 DOF state space has been consid-
ered.

The API consists of two parts: first, so-called PoseData structures sent via event
channels or remote method calls carry the parts of a SR graph function that changes
rapidly. The elements of this data structure are shown in table 5.1. Second, Dwarf
service attributes of the ability representing a sensor store the parts of the function
which have a low update rate. The ability’s type is PoseData, therefore expressing
the sensor’s state space. Some service attributes must be given, others are optional.
The required attributes are UTSource and UTTarget, optional attributes might be
selected out of the examples discussed in section 3.2.6.

Query API. The query API’s task is to provide unified abstract access of ap-
plications of any kind to all available spatial relationships. In the Dwarf imple-
mentation, an application has to have a need according to the type definition of
a certain state space. In the current implementation, only the 6 DOF absolute
position and orientation PoseData type is provided. The need must be enriched by
predicate specifying the kind of spatial relationship an application is interested in.
The predicate must be composed using the following attributes:

UTSource: A string containing the ID of the source coordinate system. This is the
source node ID of the corresponding edge in the SR graph.

UTTarget: A string containing the target object’s ID.

Other attributes may be used, the following have a specified meaning:

UTUpdateRate: Specifies the desired update rate of the spatial relationship in Hz.
Defaults to the underlying sensor’s update rate.
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Element Description

source A string containing the ID of the source coordinate system.
This is the source node ID of the corresponding edge in the
SR graph.

target A string containing the target object’s ID.
position An array of three double values containing the 3D position of

the object in a Cartesian coordinate system.
orientation An array of four double values containing the orientation of

the object represented as unit quaternion.
covariance A 6 × 6 matrix of double values representing the Gaussian

error in the position and orientation, according to the error
model of section 2.7.3.

timestamp A data structure containing the absolute timestamp of the
measurement, consisting of the standard UNIX time format of
seconds since January 1st, 1970, 00:00 and milliseconds. Note
that time synchronization between networked computers has
to be ensured to render the time stamp information useful in
distributed setups.

timeerror A double value representing the standard deviation of the time
stamp.

confidence A double value in the interval [0; 1] containing the probability
that this measurement exists. Used if a tracker is unsure
about the identity of a tracked object.

Table 5.1: Elements of the PoseData structure.

UTTimeOffset: Based on the time the query is released to the Ubitrack layer, this
value gives the offset to the desired time at which the spatial relation should
be evaluated. Positive values indicate future points in time (thus requiring
prediction components), negative values past points in time. If UTUpdateRate
is not zero, the given offset is constantly applied to the initial time plus
multiples of the update interval. A pair of seconds and milliseconds. Defaults
to zero.

UTEvaluationFunction: This value gives a specification of the evaluation function to
be applied. In the long run, this predicate will consist of a highly complex
XML-based description of evaluation functions. In the current implemen-
tation, this predicate is not evaluated, as only a single evaluation function
exists. It is explained in section 3.2.5.

Finally, an application can express the desired type of communication by speci-
fying a set of connectors :
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Asynchronous push: This communication type is the most common. Events are
sent asynchronously from the Ubitrack layer whenever new data is avail-
able, according to the desired update rate. The application must specify
a PushConsumer connector for this type of communication.

Synchronous pull: This type is based on remote method calls. An application calls a
method in the Ubitrack layer, and that method returns with the desired spa-
tial relationship as soon as it has been computed. An application must specify
a ObjrefImporter connector for this communication type. The given re-
mote object reference of the Ubitrack layer implements the method PoseData

getPoseData(in time : Timestamp).

Asynchronous pull: This is the most complex communication type. An application
uses a remote method call to send a request, this call starts computation of
the desired data and returns immediately. If the computation is finished, an
event with the desired data is sent to the application. To make this type of
communication work, an application must implement both a ObjrefImporter
and a PushConsumer connector. The resulting remote object of the Ubitrack
layer implements the method void wantPoseData(in time : Timestamp).

Note that the actual data containing the spatial relationships is sent using the
same PoseData structure as described for the sensor API. This allows to reuse
inferences done by the Ubitrack layer as input to more complex inferences.

Other Measurement State Spaces. Currently, only a 6 DOF absolute pose state
space is supported. If sensors or inference components with other state spaces are
to be integrated, the general mechanisms of separating data in two classes according
to their change frequency and expressing slowly changing data in attributes and
frequently changing data within structures should be kept. Still, suitable sensor
error models will have to be found.

Helper Classes. To facilitate the implementation of new components encapsulat-
ing sensors or inference algorithms, several C++ helper classes have been imple-
mented. Here some high-level descriptions are given, for details see the Dwarf
CVS repository2.

EasyPoseData: This class extends the CORBA PoseData structure. It provides
simple get/set methods for all data fields of PoseData and initializes these
with reasonable values. In addition, the methods inverse and product are
offered to facilitate the task of inferring spatial relationship along transitive
relationships.

2http://cvsbruegge.in.tum.de/dwarf/
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PoseSender: This class implements the asynchronous push interface. Using its
method sendPoseData, a programmer can send spatial relationships very
easily.

PoseService: This class offers a full Dwarf service for sending and receiving pose
data. By deriving from this class, programmers can implement sensor and
inference components without Dwarf or Ubitrack-induced implementation
overhead.

5.3 Ubitrack Middleware Agent (UMA)

The Dwarf Ubitrack Middleware Agent (UMA) [17] is the middleware component
providing Ubitrack functionality to Dwarf applications. In the current implemen-
tation, it offers an ability for 6 DOF spatial relationships of type PoseData. An
application accesses it via the Dwarf need-based query API described above. This
section describes the design of this component.

Extending the Dwarf Service Manager. The Dwarf UMA extends the service
manager. For every service manager running in a distributed Dwarf system, a
UMA is started as well. The set of UMAs connect to form the same hybrid peer-
to-peer network as the service managers, analogous to the distributed Ubitrack
implementation concept described in the last chapter.

According to this concept, a UMA has to gather all information about local
(i.e. running on the same network host) services providing spatial relationships
between real or virtual objects. Out of this information, it constructs the local SR
subgraph and connects to other UMAs that have information about common SR
graph vertices.

At startup, every UMA connects to the local service manager and uses remote
method calls to query for all descriptions of abilities that offer spatial relationships.
This is done by requesting all locally available abilities of well-defined types. In
the current implementation, only 6 DOF position and orientation data of type
PoseData can be requested.

To ensure the dynamic nature of the time-restricted SR graph model, the UMA
must be notified of changes in local services’ descriptions. This is handled by
the ServiceChanged ability of the service manager, which sends events upon any
change in the local set of services.

Creating a Local SR Graph. The UMA uses only service descriptions to create
the local SR graph. These descriptions contain Dwarf attributes that are used
to store SR graph attributes. As mentioned in section 5.2.2, only the attributes
UTSource and UTTarget are required, all other attributes of a service are stored
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along with the corresponding SR graph edge and can be used by particular evalua-
tion functions. In consequence, it is the responsibility of a Dwarf sensor service’s
programmer to provide meaningful attributes which are suitable for a particular
application domain.

The UMA parses all UTSource and UTTarget attributes and creates a SR graph
node list out of them. The nodes then get connected by attributed edges. On every
change of a sensor service, the local SR graph gets updated accordingly.

Connecting to Other UMAs. The distributed path search algorithm discussed
in the last chapter relies on asynchronous message passing between the UMA im-
plementations. For the Dwarf UMAs, CORBA notification events are used.

There are two types of messages to be exchanged, namely search requests that
update SR graph node distance labels, and search replies that acknowledge the
request messages. As every UMA can both send and receive requests and replies,
there need to be four unidirectional event channels for every connection between
two UMAs: two abilities, one for sending search requests (SearchRequestSender)
and another for sending search replies (SearchReplySender); and two needs, one
for receiving search requests (SearchRequestReceiver) and another for receiving
search replies (SearchReplyReceiver).

The abilities get enriched with multivalued attributes, containing a list of the
IDs of all locally available SR graph nodes. Correspondingly, the needs’ predicates
narrow the matching abilities to those having information about locally available
SR graph nodes. The session concept is used to distinguish between multiple remote
UMAs.

Locating Application Queries. As mentioned above, an application sends a query
to the Ubitrack layer, i.e. the local UMA, by creating a need for PoseData, with the
need’s attributes forming the query’s parameters. The local UMA gets aware of this
need using the same mechanisms as it uses to update its information about local sen-
sors. At startup, all needs of type PoseData are scanned using the ServiceManager
remote method call interface, at runtime, the ServiceChanged event channel is used
to notify the UMA of new requests.

To distinguish needs of applications and of the Ubitrack layer itself for PoseData,
needs have to be enriched using the predicate (subsystem=application).

As every UMA has information about all local applications’ needs, regardless of
the start/target nodes in the SR graph they request, it has to forward the SR graph
search requests to a UMA storing a representation of the source node. This is done
using the message channels described above.

Starting and Observing Inference Components. The final task of the UMA after
having found an optimal path between two nodes is to set up an inference component
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that dynamically aggregates the spatial data available along the computed SR graph
path. In the current implementation, this is handled by a UMA ServiceFactory.

It uses the connection to the local service manager to specify a new service
description that has an ability matching the application need that triggered the
search request. In addition, for every edge in the computed optimal path, a need
for the corresponding service is added. The inference components described in the
next section can parse such a service description and are started automatically
using the existing dynamic service manager features.

5.4 Inference Components

As explained in section 4.7, the task of the inference component is to handle the
runtime data flow of spatial relationship events. This section describes how this
task is mapped on a set of Dwarf services.

Data Flow Components. Summarizing issues mentioned in this and the last
chapter and applying the usual granularity of Dwarf services, the task of infer-
ring knowledge about spatial relationships has been split up in several reusable
components [96]:

Inference: This is the workhorse component making the actual inferences along
transitive paths in the SR graphs. The implementation essentially consists
of code parsing the needs of the service description, and multiplying the run-
time 6 DOF pose data. Note that according to the timing discussion of
section 3.2.3, all measurements that are aggregated have to be obtained si-
multaneously. Thus, the connection to other services delivering spatial data
is established via the synchronous pull interface. Accordingly, the inference
service provides data using the same interface.

Kalman filter: This component implements a generic Extended Kalman Filter (sec-
tion 2.7.1) with a polynomial movement model. It usually receives data via
the asynchronous push protocol, i.e. by an event mechanism. It provides data
to the inference service using the synchronous pull interface.

Measurement inverter: This service is started whenever an inverted edge is part
of the SR graph path to be aggregated. Remember that we imposed the
symmetry requirement on all edges in the spatial relationship graph, and
that we construct a symmetric SR graph for the optimal path search. If
now a path uses an inverted edge, there is no Dwarf service corresponding
to this edge. Thus it has to be created by instantiating an instance of the
measurement inverter.
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Measurement sampler: The inference service only offers the synchronous pull inter-
face. If an application prefers to get notified using an event mechanism, an
instance of the measurement sampler has to be inserted at the end of the data
flow graph.

Example Data Flow. To make the role of the Dwarf Ubitrack data flow compo-
nents clear, let us reconsider the example “extended tracker range” introduced in
section 3.3.1: an ART system A tracks a video camera C that delivers its images to
ARToolkit, which in turn tracks a fiducial marker M that is in front of the camera.
The offset between the locatable L on the camera and the camera’s center point is
estimated offline, and the application is interested in the spatial relationship of the
marker relative to the ART system’s coordinate system, which is the same as that
of a projection table P that is eventually used to augment the fiducial marker.

A P
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C M

qAL(t)
e

qLC(t)
e

qCM(t)
e

qPM(t)
app

qident
qident

Figure 5.6: SR graph of extended tracker range setup.

Figure 5.6 shows the SR graph of the setup depicted in figure 3.10. Three spatial
relationships have to be aggregated dynamically, the dynamic relationships qAL and
qCM and the static relationship qLC .

Figure 5.7 shows the resulting Dwarf service graph consisting of three Kalman
filter services, an inference service and a measurement sampler service. Note that
the static relationship qm

LC does in principle not need a filtering component, however,
it was added anyway to provide a convenient synchronous pull interface to the
inference component.

Extensions. The current implementations’ approach gives correct results. Yet,
there are some limitations that should be addressed in future revisions. There is no
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Figure 5.7: Dwarf data flow components of extended tracker range example. The
diagram shows the SR graph functions corresponding to the individual
services and the logical layering of the services. Arrows indicate the
data flow.

systematic approach to reusing computations. If, in our example, another applica-
tion was interested in the relationship between the ART system and the camera,
another inference component would have to be started, although the one already
running has the desired relationship as intermediate values. The measurement in-
verter service also introduces some problems. If, for example, a path consists solely
of inverted edges, it would be much better to first compute the aggregated spatial
relationship in forward direction along the inverted path (i.e. taking directly the
available measurements) and only then invert the result. The current implemen-
tation uses as many inversion services as there are edges in the path. Finally, the
resource allocation for distributed inferences could be optimized. Parts of an in-
ference could be precomputed at some workstation with spare resources, and only
the remainder should be done on a low-power wearable computer. Currently, all
computations are done on the network host where the application resides, which is
a feasible heuristics, as it will minimize network latency in most setups.

5.5 Results

A first prototypical approach towards mapping the Ubitrack concepts on Dwarf
has been implemented and evaluated [17, 87, 96, 114]. This section discusses the
goals that were reached as well as the limitations that were observed with respect
to the current Dwarf-based Ubitrack implementation.
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5.5.1 Current Implementation

We have implemented a demonstration setup that shows the “extended tracker
range” setup discussed in section 3.3.1.

Based on several helper libraries, most existing Dwarf services handling spatial
data were modified such that they implement the Ubitrack sensor API. In addition,
viewing components were changed such that they fulfill the query API.

A prototype of the Dwarf UMA was implemented, that serves as a proof of
concept, although it has to deal with some peculiarities of the current Dwarf
middleware implementation. The example scenario has a very small number of SR
graph nodes and edges. However, this number is representative for current AR
tracking setups. As no additional tracking hardware was available, the function-
ality and performance of the distributed UMA had to be evaluated on synthetic
data. For this purpose, a small helper program was implemented that generates
random graphs of type G(n, p), i.e. graphs with n vertices and a probability of
p for each edge to exist. This graph was then partitioned into several subgraphs
that were deployed on distributed UMAs. The UMA network then had to solve
several optimal path search requests, the overall time for this task was measured.
SR Graphs up to 100 nodes were tested on up to three UMAs, the achieved running
times were at a maximum of a second.

The inference component used in the demo application was as simple as possible.
A single service had a need for all three tracking devices involved (ART system,
static calibration and ARToolkit) and an ability for the aggregated data. This data
was processed by the Dwarf Viewer that is based on Open Inventor3. Figure 5.8
shows the resulting component diagram, including the logical layers. Note that the
Dwarf service manager has been omitted in the diagram.

In summary, the mapping of the Ubitrack distributed implementation concept
was proved to be feasible.

5.5.2 Limitations

The current Dwarf-based implementation is far from perfect, although the general
concepts serve as a solid basis for further improvements. During the implementa-
tion, several issues were discovered:

Dependency on service location: A prerequisite for the distributed Ubitrack imple-
mentation concept is that it must be possible to locate information about
SR graph nodes in the distributed setup. This service location is done via
the usual Dwarf ability/need mechanisms. Currently, these are based on
OpenSLP4, an implementation of the Service Location Protocol (SLP). SLP

3http://oss.sgi.com/projects/inventor/
4http://www.openslp.org/
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Figure 5.8: UML diagram of the Dwarf-based implementation of the extended
tracker range scenario.

is based on a polling protocol. Services have to register with a so-called
Service Agent (SA) or a Directory Agent (DA), the first being reached by
multicast messages, the latter by unicast messages. After they have been reg-
istered, clients may query a SA or DA for specific services with a given set of
attributes. If a matching service can be found, an URL is returned that can
be used by the client to set up a communication. With this protocol, it is not
possible to be notified as soon as a matching service gets available, instead,
constant requests have to be issued. With the large number of service requests
necessary for the Ubitrack implementation, it takes quite a long time (poten-
tially up to several seconds) until a service location request can be answered.
This time adds up to the time necessary for optimal path computation and
setup of inference components.

Restriction to local subnet: In the current Dwarf setup, only SLP Service Agents
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are used. In consequence, service location functionality is only provided on
the local subnet. However, an extension to handle SLP Directory Agents
should be easy to implement.

Restricted maximum number of SR subgraph nodes: Due to a bug in the OpenSLP
implementation used for Dwarf, the maximum number of SR subgraph
nodes kept within a single UMA is restricted. Contrary to the SLP stan-
dard, OpenSLP limits the size of a packet announcing or requesting a service
to roughly 15000 bytes. Thus, the multivalued attributes necessary for the
inter-UMA needs and abilities are restricted in size. These attributes contain
a list of all local SR graph nodes, consequently, its number is restricted.

Communication overhead with service manager: The Dwarf UMA is tightly coupled
with the Dwarf service manager. The communication overhead between
the two processes is significant, it would be better to integrate the UMA’s
functionality into the service manager.

No optimization of inferences: In the current data flow concept, no global optimiza-
tions according to user-defined criteria (e.g. low latency, low energy consump-
tion) is possible; instead, a set of data flow components is set up for every
inference that needs to be made, without making use of already existing com-
ponents. In future revisions of the Dwarf Ubitrack implementation, work
on distributed multimedia [72] should be applied to the data flow concepts.
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CHAPTER 6

Handling Mobile Setups

Overview

This chapter describes a software architecture that allows the seamless integration
of multiple Ubitrack setups. Most often, mobile users bring their mobile setups into
stationary intelligent environments. Yet, since the Ubitrack architecture is based
on the peer-to-peer paradigm, it is also possible to use it to connect two mobile
setups.

Both the Ubitrack formalism and the distributed implementations discussed in
the preceeding chapters have a global view on a running system and assume every
object to be known a priori. This assumptions do not hold true in ubicomp scenarios
that consist of applications designed to be assembled at run time. This chapter
proposes an architecture supporting the necessary setup prior to run time location
estimation.

The architecture is driven by the key requirement that tracking gear has no
a priori knowledge of the environment it is operating in. As such, protocols for
exchanging configuration data have to be defined for every tracking technology.
The chapter starts with an example for the Augmented Reality Toolkit [60], a good
representative for the class of fiducial-based feature trackers.

It is explained how the features of the Dwarf framework described in section 5.1
are used to make the dynamic configuration work. The key idea is to use Dwarf
ability attributes and need predicates for a context-aware selection of configuration
data. Yet, the configuration architecture can not solve the open research problem
of context categorization. This thesis follows Dey’s work [35] and discusses the
implications of this choice of context model.
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For the system to work, all sensors and locatables must have a unique ID and their
properties must be known to at least some part of the system. For today’s demo
setups, this can safely be assumed. However, in more general ubicomp scenarios,
we have to cope with new configuration data being generated on the fly, such as
descriptions of natural features just detected by a vision-based tracker. Several
representative scenarios that show the different cases that can occur are discussed.
It will be shown how the configuration architecture needs to be extended to support
these scenarios.

6.1 Problem Statement

A key requirement to solve the problem of Ubiquitous Tracking is to handle dynamic
changes in the environment. The last chapter discussed how features of the Dwarf
framework help in handling a changing set of sensors, based on the concept of a
time-restricted Ubitrack SR graph.

The situation gets more complex if not only sensors, but rather mobile setups
worn by users entering an intelligent building have to be integrated dynamically.
For example, a user might carry a cell phone that is equipped with a camera.
This camera can be used for fiducial tracking [81]. If the user enters an intelligent
building, the tracking software on the cell phone usually does not know anything
about the properties of the building, i.e. how tracked fiducials should be interpreted.
The software can only detect spatial relationships between the camera and fiducials.
Software running in the intelligent building can use this data to track the user and
probably guide him through the building, assisted by additional stationary trackers.

On the other hand, software running on the user’s mobile setup might use services
offered by the intelligent building to enhance the user’s experience. For example,
navigation instructions generated by the building might be displayed in a head-
mounted display attached to a computer worn by the user.

The connection of multiple tracking setups is not only useful in scenarios involving
intelligent buildings, it can also enhance the user experience if two mobile setups get
connected. The Dynamically Shared Optical Tracking by Ledermann et al. [70] is a
good example how two mobile cameras can collaborate in the green field. However,
if we imagine two users meeting spontaneously, there must be some possibilities to
exchange the necessary configuration data, such as abstract descriptions of fiducials
an optical tracker has to detect.

In consequence, the problem treated in this chapter is to provide a software ar-
chitecture that allows the reciprocal configuration of location sensing setups joining
each other. The architecture should work in a hybrid peer-to-peer fashion to allow
a uniform treatment of both the stationary/mobile and mobile/mobile scenarios
and to support reusing the Dwarf-based Ubitrack implementation discussed in
the last chapter.
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6.1.1 Configuration of Tracking Hardware

Before defining a software architecture for configuring tracking setups, the necessary
configuration data that may be transmitted has to be analyzed.

Analyzing the survey of tracking hardware in section 2.5, the necessity for con-
figuration data can be divided in three classes:

No configuration data: Several tracking systems have an absolute reference frame
that has a well-defined interpretation. For example, magnetometers and GPS
systems operate on an absolute reference frame. In consequence, no additional
configuration data is needed.

A second category of trackers not needing dynamic configuration data consists
of devices that are wired and have a fixed setup. For example, commercial
mechanic, magnetic field sensing and ultrasonic trackers all need physical
linkage between the tracker and the locatable. As such, it is impossible that
mobile setups are tracked without attaching special locatables to them.

Base coordinate system and calibration data: Location sensors performing measure-
ments relative to some reference coordinate system might need the spatial
relationship of this reference system relative to some other system that is
well-defined. For example, a user-worn camera tracking fiducials estimates
spatial relationships between itself and the fiducials. If both the user’s and
the fiducials’ location are unknown, the data is of little use. Thus, a base
coordinate system is needed to correctly interpret a sensor’s readings.

Location sensors estimating relative measurements tend to drift over time.
Even if a spatial relationship to some well-defined reference is obtained, it
must be recalibrated from time to time.

Feature data: This class of tracking devices is the most flexible and currently con-
sists mainly of vision-based trackers. Its general property is that a large
number of different and previously unknown features can be observed by the
sensor, and that the sensor computes an estimate of the spatial relationship
between itself and a subset of these features.

Fiducial-based tracking systems such as ARToolkit or the ART dTrack system
need abstract descriptions of artificial markers to work correctly. In the case
of ARToolkit, such a description consists of a 32×32 pixel pattern that is to be
found inside a black square, for the ARTrack system, the description consists
of the geometric relationship of a unique arrangement of retroreflective balls.

A more complicated situation occurs in the case of natural feature based
trackers, most of the proposed algorithms (e.g. [63, 84]) require a 3D model
of the environment. The configuration data necessary for a mobile tracker
brought into a previously unknown environment then consists of such a model.
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Additionally, natural feature trackers often have to be initialized with a rough
estimate of the camera’s initial position. This would also be part of the
configuration data.

The first case is simple, and the second case can be solved by mechanisms identical
to those described in the last chapter. If we can assume that objects are represented
by SR graph nodes with globally unique IDs, the Dwarf UMAs on mobile setups
will spontaneously connect with UMAs running in a stationary environment as soon
as network coverage and therefore service discovery facilities are available.

The last case is of particular interest for natural feature based trackers, as it
allows to use this unobtrusive technology in a much larger area than currently
possible. The configuration architecture discussed in this chapter offers a feasible
solution.

6.1.2 Configuration Protocols: An Example

A real-world example helps in understanding the structure and necessary amount
of feature configuration data. This section discusses which configuration data is
needed by ARToolkit and how ARToolkit has been integrated in Dwarf to allow
flexible configuration.

ARToolkit is a vision tracking library. It employs artificial features and is most
often used as an outside-in tracker. It contains video acquisition code, code for
finding black square fiducial markers in the video images, pattern matching code to
identify the fiducials, a pose reconstruction algorithm to detect the 6 DOF spatial
relationship of the fiducial relative to the camera and code to render OpenGL scenes
relative to the fiducial.

ARToolkit needs two types of configuration at startup. First, a camera config-
uration file containing the intrinsic camera parameters. Calibration routines to
estimate these are included with the library. Second, a pattern description file for
each fiducial that is about to be detected. A pattern training library function is
included with the library as well. The pattern description consists of a ASCII
string with a list of numbers. These numbers represent byte values of a 16 × 16
sample of the pattern to be identified, with one sample for each RGB color channel.
To identify the orientation of the pattern, four such RGB-blocks are stored in the
configuration file, representing the pattern turned 0, 90, 180 and 270 degrees.

To modularize ARToolkit, several Dwarf services were designed and imple-
mented:

VideoGrabber: This service takes images from a digital video camera and puts them
into a shared memory segment. It offers an ability of type CameraData with
a connector of the Shmem protocol. Currently, two versions of this service
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exist, one for IEEE 1394 based cameras and another service for all cameras
supported by video for Linux (V4L)1.

ARTkMarkerDetection: This service takes video images from a shared memory seg-
ment and detects fiducial markers in the images. It then sends out the 2D im-
age position of every fiducial it identified, including the fiducial’s name and a
confidence value indicating the probability that the fiducial matches the given
pattern. The service has two needs, CameraData with a Shmem connector and
ARTkMarkerData with an ObjrefExporter connector, and an ability of type
artkFrameMarkers with a PushSupplier connector. The ARTkMarkerData

need is used to offer a configuration interface.

ARTkPoseReconstruct: This service takes the 2D image position of fiducials and
reconstructs their 6 DOF pose relative to the camera. Consequently, it has
a need of type artkFrameMarkers. At startup, it parses its list of abilities
for those of type PoseData. For every ability found, it evaluates its attribute
MarkerName and configures itself in a way that the pose of a fiducial of iden-
tical name gets reconstructed out of its 2D image position. The PoseData

resulting from this process can be used by existing Dwarf services (e.g.
viewing components) as any other tracker output.

ARTkMarkerConfigurator: This service offers a GUI for configuring the ARTkMark-
erDetection service. Thus, it has an ability of type ARTkMarkerData with
a ObjrefImporter connector. Figure 6.1 shows a screenshot of the service.
The top menu items are used to add or remove markers from the list, and
the loaded/activated check boxes in the list are used to send corresponding
commands potentially including a binary representation of the pattern to be
loaded to a connected ARTkMarkerDetection service.

In a typical mobile user scenario, the mobile setup consists of an instance of the
VideoGrabber service and an instance of the ARTkMarkerDetection service. Both
have to run on the same machine as they communicate via shared memory. In
the stationary environment, an instance of the ARTkPoseReconstruct service re-
ceives the artkFrameMarkers events from the mobile marker detection service and
provides the resulting 6 DOF spatial information to other services, both in the
environment and on the mobile setup. The advantage of the pose reconstruction
running in the stationary environment is that it can be configured beforehand to
the specific setting. As a result, it could also take into account environmental con-
ditions like knowledge about walls using dead reckoning algorithms. The necessary
configuration data consists of two parts:

Pattern descriptions: The stationary environment must transmit descriptions of fi-
ducial patterns to the marker detection service on the mobile setup.

1http://www.exploits.org/v4l/
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Figure 6.1: Screenshot of the ARTkMarkerConfigurator Dwarf service.

Camera parameters: The mobile video grabber service must transmit the intrinsic
parameters of its video camera to the pose reconstruction service in the en-
vironment.

The remainder of this chapter discusses flexible and reusable solutions for providing
this data.

6.2 Distributed Spatial Configuration Architecture

The proposed architecture is based on the Dwarf framework and uses the dynamic
features discussed in section 5.1.3. First, the key requirements for the architecture
are derived, then a Dwarf-based solution is discussed.

6.2.1 Requirements

The mobile ARToolkit tracker scenario has illustrated the typical usage pattern of
the desired configuration architecture. The following requirements can be derived
from it:

Spatial organization of configuration data: Configuration data organized according
to its spatial properties must be supported. For example, the descriptions
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of all features in a building must be split into spatial entities such as individ-
ual rooms. This requirement ensures manageability of configuration data and
allows to limit the number of features a sensor must distinguish concurrently.
Note that it is also possible to create a spatial hierarchy, e.g. the first floor
contains rooms 101 through 110. The feature sets for entities in higher hier-
archical levels may be different from the union of the lower levels’ entries. For
example, the first floor’s feature set may consist of simple to detect features
that can be used to determine which room the camera is in, once this is done,
the fiducial tracker can be reconfigured such that it knows the features of this
particular room. Note that the commonly used scene graph representation of
objects does not solve this problem: a scene graph only facilitates the struc-
turing of information, but it is still possible to organize it in a way that has
nothing to do with the spatial organization. Spatial organization of configu-
ration data is the key difference of the discussed distributed architecture to
existing systems such as the Nexus platform [89], which require a central data
storage component.

Transparent access to configuration data: A component that needs configuration da-
ta should not have to care about where it gets this data from. This require-
ment ensures that setups can connect to others without any a priori knowledge
about the connecting partner. For example, a user can take his mobile setup
into buildings he has never been before.

Spatial indexing: It must be possible to integrate spatial indexing, i.e. naming of
spatial regions. Up to now, the spatial relationships described in this thesis
have been of pure geometric nature – coordinates given in some reference
frame. To allow a semantically rich description of spatial regions, it is ex-
tremely helpful to name certain regions, for example, “Room 01.07.057” or
“Campus Garching”. How such knowledge is derived out of sensor data is
beyond the scope of this work, a simple method would consist of RFID tag
readers at a door identifying users entering or leaving a room, more complex
methods have been discussed in literature [3, 45, 83].

6.2.2 Prerequisites

The proposed architecture is based on some assumptions on the environment in
which it should be deployed:

Network coverage: An almost permanent network coverage, preferably wireless, is
assumed. Mobile setups connect automatically or manually to the network
upon a user’s request, e.g. via a cell phone.
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Availability of spatially indexed data: The architecture operates on string-based com-
parisons of spatial entities. In consequence, the derivation of these entities’
names out of raw sensor data must be available in the environment.

Configuration data set up to match spatial entities: The authoring process for con-
figuration data must take into account the spatial entities derived by the
indexing process. Each piece of configuration data must be associated with a
single or some spatial entities.

Standard protocols for configuration data: For every device class that should be con-
figured, a standardized protocol must be defined. In the example above, the
protocol for the ARToolkit based fiducial tracker consists of remote method
calls to load or activate pattern data.

Rapid service location: The architecture is based on service location protocols. After
a change of the spatial entity is detected, new Dwarf services have to be
located and connected to apply the configuration change. In consequence,
the service location has to be happen fast enough to make the configuration
architecture work.

6.2.3 Architecture

The key ideas of the proposed architecture rely on the concepts of attributes of
abilities and predicates of needs within Dwarf. Remember that attributes are
name/value pairs of strings, and predicates are boolean expressions limiting the
choice of available abilities to those with attributes fulfilling the expression.

Every service is associated with a spatial entity. For example, a ARTkMarkerDe-
tection service running on a mobile user-worn setup is always associated with the
spatial entity the user is currently in. The spatial entity of a service gets expressed
by an attribute with name Room, e.g. Room=Hallway.

To get notified of changes in its spatial entity, every service has a special need of
type ContextSwitch (location is just a special case of context). Spatial indexing
services offer corresponding abilities of type ContextSwitch. Whenever they detect
a change in the spatial entity, they send an event indicating the new entity’s name
to the event channel. For example, an indexing service observing a user in the room
ARLab may detect that the user just leaves the lab to the room Hallway. It then
sends an event with this observation to the interested services.

Services that need configuration data use the knowledge about their spatial en-
tities to add predicates to their needs for configuration data. For example, the
ARTkMarkerDetection service’s need for ARTkMarkerData might initially be en-
riched by the predicate (Room=ARLab). Upon receiving an event telling the ser-
vice that its new spatial entity is the hallway, the need’s predicate is changed to
(Room=Hallway).
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Figure 6.2: Example setup. The spatial indexer notices that the user carrying the
mobile setup leaves the AR lab and goes to the hallway. It sends a
corresponding event to all interested services on the mobile setup.

As configuration data is organized spatially, the task of its distribution can be
split into several abilities. Each of these abilities is enriched by a potentially mul-
tivalued attribute of name Room expressing the spatial entity the configuration
data is for. In our example, the configuration service has two abilities of type
ARTkMarkerData, one with the attribute Room=ARLab, the other with the attribute
Room=Hallway.

The Dwarf service manager detects whenever a service’s need changes its pred-
icate such that it does not match a currently set up connection. It then disconnects
the two services and tries to find a new matching partner. If it is found, a new
connection is set up. This search process happens transparently to the participat-
ing services and depends on underlying service location mechanisms. The services
can get notified of (dis)connections if they implement the SvcSession interface via
the methods newSession(..) and endSession(...). In our example, we assume
initially the ARTkMarkerDetection service being connected with the MarkerCon-
figuration service of the AR lab. When the user leaves the lab, the ARTkMarkerData
need’s predicate gets changed to (Room=Hallway), and the service manager con-
sequently disconnects the service from the lab’s MarkerConfiguration service and
connects it to the hallway’s configuration service.

It is the participating service’s responsibility to perform suitable actions upon
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(dis)connection. In our example, the detection service would notice its discon-
nection from the lab’s configuration service by a call to endSession(...). It
should then unload all pattern descriptions it received from this service. On con-
nection to the hallway’s configuration service, the latter would also get notified via
newSession(...), and should trigger an upload of all hallway pattern data using
adequate method calls.
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Figure 6.3: Example setup after configuration change. The marker detection service
changed its ability attributes and need predicates such that it gets a
new configuration from the hallway’s corresponding service and sends
its data to another application.

6.2.4 Possible Extensions

The basic principle of location-dependent connection of configuration components
to services running on mobile setups can be extended easily in several directions.

Location-aware choice of spatial indexer: The spatial indexer itself can be treated in
a similar way as the configuration component by adding a Room attribute
and extending the ContextSwitch need by a corresponding predicate. This
mechanism can be used to provide several spatial indexers simultaneously,
either to increase the scalability or to facilitate the management of these
components.
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Applications on mobile setup: In the example above, the application resided in the
stationary environment. However, there may also be applications running on
the mobile setup itself. If, for example, we assume the mobile setup to be
equipped by a head-mounted display and a matching viewer component, it
can be used to visually augment the user’s view of the environment. The con-
figuration of the viewing component would then come both from the station-
ary environment (e.g. scene descriptions of virtual objects) and the mobile
setup itself (e.g. calibration parameters for optical see-through operation).
In addition, the mobile setup can make use of sensor data available in the
environment.

Configure stationary environment by mobile setup: The roles of the mobile and sta-
tionary parts of the system can be exchanged. For example, a mobile setup
might contain some data on natural (e.g. hair color) or artifical (e.g. an AR-
Toolkit marker on a backpack, or hair color) features a stationary tracking
system might use to identify the user carrying the setup.

Reciprocal configuration of mobile setups: As the proposed architecture works in a
hybrid peer-to-peer fashion with a peer on every network node, it can also be
used for two mobile setups being connected on the green field. For example,
the concepts of Dynamically Shared Optical Tracking [70] can be used to
increase the tracking range and/or accuracy if another mobile setup is around.

6.2.5 Results

In addition to the demo application described in chapter 7, the mobile configuration
architecture has been implemented and evaluated within the ARCHIE (Augmented
Reality Collaborative Home Improvement Environment)2 project. ARToolkit was
used as a tracking technology, it was split into the components VideoGrabber,
ARTkMarkerDetection, ARTkMarkerConfigurator and ARTkPoseReconstruct as
described above. The application consisted of a simple Speaker service telling the
user some information about the room he was currently in. All involved services
were distributed on two mobile computers connected wirelessly with each other and
the environment.

Using ARToolkit for Spatial Indexing. Within the ARCHIE scenario, ARToolkit
itself is used for spatial indexing [126, 127]. The general idea is to attach well-
known transitional markers to the boundaries of spatial entities, e.g. doors. The
ARTkMarkerDetection is connected to the spatial indexer and sends the current
set of observed markers. As soon as a set of transitional markers is detected in a

2http://wwwbruegge.in.tum.de/DWARF/ProjectArchie
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way that allows to conclude a change of spatial entity, e.g. that the user left the
current room, a ContextSwitch event is sent to interested components.

Room 3
Hallway

Room 1
AR Lab

Room 2
Kitchen

Room 4
Outside

Marker 1 Marker 1

Marker 3 Marker 2
Marker 4

Marker 6

Figure 6.4: Physical setup of ARCHIE scenario. Note that the ARToolkit markers
used for spatial indexing can be reused, the outgoing marker both in
the ARLab and the kitchen are identical.

Figure 6.4 shows the physical setup of the ARCHIE scenario, consisting of four
spatial entities. In this case, the spatial indexer consisted of a simple state ma-
chine that was triggered by MarkerPosition events from the ARTkMarkerDetection
service. The state transition diagram is shown in figure 6.5.

Discussion. The configuration architecture was successfully applied to the given
scenario. All components reconnected at runtime, and the “start on demand”
feature of the Dwarf middleware was used to automatically start and stop config-
uration services depending on other service’s needs.

Using the ARToolkit as basis for spatial indexing was not without problems. In
general, the toolkit’s detection accuracy is too low to use it to trigger locational
state changes for the mobile setup. If the spatial indexer misconfigures the mobile
setup, recovery gets a major problem. In consequence, for real-world setups other,
more reliable, spatial indexing techniques should be used, for the Ubiquitous SHEEP
demo application described in the next chapter, we decided on using iButtons to
explicitly trigger locational state changes.

Nevertheless, the ARCHIE scenario demonstrated the high flexibility of the pro-
posed configuration architecture, allowing mobile and stationary components to use
each others’ capabilities in an ad-hoc fashion.
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Figure 6.5: State transition diagram of ARCHIE spatial indexer.

The dependency on the service location facilities of the underlying Dwarf mid-
dleware is a major issue in the current implementation. The slow location speed of
the currently used SLP implementation (see section 5.5.2 for details) slows down
the reconfiguration of the mobile setup significantly. However, the service location
of Dwarf can be made sufficiently fast by simply exchanging the protocol [77].

6.3 Integrating Contextual Information in Dwarf

The spatial configuration data just described can be extended to allow for the
integration of contextual information in Dwarf systems. This section describes
the underlying theory, how the architecture has to be extended and discusses the
limitations of this approach.

6.3.1 Categorization of Context and Context-Awareness

Dey and Abowd [35] give an excellent categorization of context and context aware-
ness. This section summarizes their findings and shows how the necessary informa-
tion can be derived in a typical Dwarf-based ubicomp scenario.

Contextual information can be divided into activity, identity, location and time.
For a typical ubicomp scenario, the activity of a user can often be associated with a
particular application he is currently executing, the user’s identity could be stored
on the mobile setup and the last chapters discussed how to derive the user’s or some
objects’ current location. In addition to these simple rules of thumb, more compli-
cated machine learning techniques and software architectures such as the context
toolkit [34] can be used to derive the current context state within an application.

Context-aware applications can either present information and services to a user,
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execute a service automatically or tag context to information for later retrieval. As
an example, in typical ubicomp scenarios with mobile users coming to stationary
environments, information presentation might consist of navigation hints that guide
the user to a meeting room, automatic service execution might be an automatic
recording of the meeting once the user reaches the room, and tagging might consist
of associating parts of the recorded meeting with the current activities of the meet-
ing’s participants. The remainder of this section discusses how all these facilities
can be implemented with an extended configuration architecture.

6.3.2 Integrating Context in Dwarf

Dey’s context categorization maps nicely to the Dwarf concept of enriching abil-
ities with attributes and of fulfilling needs conditionally using predicates. Four at-
tributes get associated with each context-aware Dwarf service: Activity, User,
Room, and Time. If another service wants to access information depending on the
current context, it has to add predicates to its needs that specify the relevant con-
text criteria. For example, application BikeRace might be running on Joe’s mobile
setup. The application is interested in all relevant virtual content, consequently,
both predicates (Activity=BikeRace) and (User=Joe) must be fulfilled for its
VirtualContent need. With this set of predicates, the application gets all avail-
able content, regardless of Joe’s current spatial location. If it is desirable to filter
the content based on the location, a predicate like (Room=AlpinePasture) must
be added.

The listed types of context-aware applications can also be supported by Dwarf
mechanisms. The BikeRace application is an example of information presentation,
similar presentation tasks work analogously.

Automatic service execution can be implemented using the start on demand
feature that automatically starts a service as soon as some of its abilities are re-
quested and all necessary needs are fulfilled, and stops it if either the abilities are
not needed anymore or some necessary need stops being fulfilled. For example,
a MeetingRecorder application might have a need of type UserDescription with
the predicate (Room=MeetingRoom). We assume every user to have his own mobile
setup with some service running on it which has an ability of type UserDescription
and gives the user’s name, contact information and a picture. If the minimum num-
ber of ability instances for this need is set to five, the MeetingRecorder application
is automatically started as soon as at least five people with a suitable mobile setup
are in the meeting room. As soon as the number of people drops below five, the
application is stopped automatically.

Finally, tagging information with contextual information can be implemented by
a service having a service with a need for ContextSwitch. This service then gets
notified of changes in the contextual state, allowing it to tag data.
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6.3.3 Limitations

Although the context architecture just described seems conceptually easy, it is not
without problems:

Clear definition of context terms: To make the approach work, a stringent defini-
tion of contextual terms is necessary. Only if different applications have a
clear understanding of the semantics of certain attributes is it possible to let
them interact. Unique names have to be assigned, for example, the attribute
User=Joe might indicate completely different Joes.

Manual generation of context classification: It is not completely clear how automatic
unsupervised context estimation (e.g. [66]) can be integrated. Using the ap-
proach of separating context estimation to a distinct component allows to
encapsulate context generation, however, the simple name/value scheme of
the contextual attributes restricts the flexibility of the output of context es-
timators.

No implicit contextual hierarchy: The proposed contextual attribution scheme is flat.
It is not possible to express hierarchic relationships like “Room ARLab is on
the 2nd floor of building B” or “User Joe is part of the bike race team”.
Such knowledge must be modeled externally, there are no standard ways to
incorporate hierarchies.

It seems promising to put more work into the spatial configuration architecture,
as all of the problems just described occur for the locational part of contextual
information as well. However, they might be easier to solve than for other context
categories. 3D spatial information is inherently hierarchical, humans are used to
think of it in containment relationships. There exists also a wealth of related work
on spatial indexing (e.g. [3, 45, 83]) that can be used to gain insights on how
naming of spatial entities can be generalized.

6.4 Identifying Objects

Up to now, it was assumed that all objects within a Ubitrack environment have a
unique name and can therefore be identified by all components of the system. In
practical setups, this assumption is unrealistic: mobile users come into stationary
environments to which they have never been to and still want to connect to the
services offered by that environment. How should the mobile and the stationary
setup obtain knowledge about each other? Some bootstrapping mechanisms have
to be applied in order to allow the identification of previous unknown objects in
a Ubitrack system. This section discusses some ideas on how such mechanisms
should be structured in order to allow the setup of sensor networks that contain
unidentified objects.
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6.4.1 Problem Definition
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Figure 6.6: Two SR graphs of a mobile setup and a stationary environment. The
graphs should be connected by adding an edge between the nodes Franz’
Head and Head of User 4711.

The Ubitrack formalism, the distributed implementation concept and the imple-
mentation based on Dwarf all assume that every object within a SR graph has
a unique ID. This is necessary to allow the connection of two SR graphs. As an
example, user Franz carries a mobile setup with several location sensors. These
sensors are networked and form a Ubitrack SR graph. Some node in this graph
is called Franz’ Head, and we assume that the mobile sensors can estimate the
position of Franz’ hand relative to his head, i.e. we are given some inference edge
in the SR graph from the node Franz’ Head to the node Franz’ Hand. If Franz
now enters a building, some video camera mounted on the ceiling (and integrated
into the building’s Ubitrack system) might detect his head’s position relative to
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the building. The software analyzing the video stream gives every detected head
a sequence number, in consequence, it may assign the ID Head of User 4711 to
Franz’ head. An application running in the building is interested in detecting hand
gestures and associating them with some actions. In consequence, we are given
the two SR graphs depicted in figure 6.6, with the application’s needed spatial
relationship indicated by the dashed line.

In the example, the sensor network bootstrapping problem consists of finding out
that the objects Franz’ Head of the mobile SR graph and Head of User 4711 are
either identical or have a static spatial relationship. In general, the problem is to
find a spatial relationship between two nodes located in different SR graphs to be
merged. After this finding, an edge associated with an identity or static relationship
can be added between the two nodes, thus merging the two SR graphs.

6.4.2 Transmitting Object Descriptions

In most cases, the spatial configuration architecture described in section 6.2 can
be used to prevent the object identification problem. If a sensor can be configured
with data from a remote system, the remote system can also transmit the object’s
ID. In consequence, a spatial relationship between the new object and the mobile
sensor can be derived, thus merging two SR graphs.

If a stationary locatable is to be identified by a mobile sensor, e.g. a camera, the
setup of figure 6.7 results.
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Figure 6.7: A stationary locatable is to be identified by a mobile camera. Thus, the
stationary environment has to transmit information about the locatable
to the mobile setup. (Taken from [114].)

Figure 6.8 depicts a similar situation, with the roles of the mobile and stationary
setups exchanged. The locatable description might consist of a pattern description
as that of ARToolkit described in section 6.1.2, but it could also be some abstract
description such as a histogram of hair color distribution for the ceiling-mounted
camera of the example above.
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Figure 6.8: A mobile locatable is to be identified by a stationary camera. Thus, the
mobile setup has to transmit information about the locatable to the
stationary environment. (Taken from [114].)

Bootstrapping Configurations. Imagine a vision sensor of a mobile setup should
be connected with the stationary environment of a building using the spatial con-
figuration architecture. The building might hold thousands of feature descriptions.
If all are sent to the vision sensor at once, it is very likely that it will misclassify
many observations. In consequence, a largely reduced set of feature descriptions
should be used.

The feature set can be reduced by introducing a hierarchy of spatial entities, as
depicted in figure 6.9. The hierarchy can be presented as a tree. With every node, a
set of feature descriptions corresponding to the level of detail of the current spatial
entity is associated. For example, if a mobile user starts up his vision sensor, it
is initially in the spatial entity Nowhere. Only local features necessary e.g. for
estimating the spatial relationship of the user’s hand relative to his head are loaded
into the sensor.

As soon as the user comes to the spatial entity FMI Building, a set of features
sufficient for coarse navigation (e.g. descriptions of features distinguishing different
floors) is loaded. This process goes on until the leaf nodes of the spatial entity tree,
where all features available for high-accuracy local sensing are loaded.

6.4.3 Anonymous Objects

The situation gets much more complicated if object descriptions can not be trans-
mitted. This might be the case for natural feature trackers that detect trackable
features on the fly without prior knowledge. The resulting object nodes in the SR
graph are anonymous, as they do not have any semantics associated although they
might have a name like Object4711.

Strasser [114] reports promising experiments on using frequency analysis of an-
gular and positional velocity of objects to detect whether two objects in different
reference coordinate frames have a static spatial relationship. If one of these objects
is anonymous, it can consequently be integrated into an existing SR graph.

138



6.4 Identifying Objects

A

B

C
G

F

E

D

C

FMI Building

1st Floor

Lab
Office

Kitchen
Hallway

2nd Floor

Nowhere

Figure 6.9: Hierarchical reduction of configuration data. At every hierarchical step,
new sets of object descriptions are used.

This work is ongoing and beyond the scope of this thesis. For the time being it
is assumed that some part of the distributed sensor system has knowledge about
every object whose spatial relationship to some other object can be measured.
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CHAPTER 7

Ubiquitous SHEEP: A Demo Application

Overview

This chapter discusses Ubiquitous SHEEP, an application that demonstrates all
concepts of the previous chapters in an integrated prototypical system.

A user with a mobile setup is roaming some rooms in our computer science
building, making use of location sensors mounted stationarily in individual rooms
and mobile location sensors he is carrying with him. All those tracking devices are
configured dynamically and in a context-aware fashion by the running applications.
Their output is delivered to the Ubitrack layer and combined automatically such
that full use of all available information can be made.

A detailed system design is presented, including in-depth descriptions of the sub-
systems involved in the demo: tracking, presentation, interaction, virtual sheep
simulation and context. The tracking subsystem employs the Ubitrack formalism
described in chapter 3 and several parts of the Dwarf-based Ubitrack implemen-
tation of chapter 5. All mobile parts of the demo setup are configured according to
the distributed spatial configuration architecture described in chapter 6.

The chapter concludes with a discussion of the resulting system, its performance
and lessons learned from implementing the demonstration setup.

7.1 Scenario

The scenario of the Ubiquitous SHEEP demo is based on the original version of
the Shared Environment Entertainment Pasture (SHEEP) [78] described in sec-
tion 3.3.3.
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Game-Playing Scenario. A user is equipped with a mobile setup consisting of
a laptop with a video camera attached in a way that allows video see through
operation. The video stream is also used for location sensing, as are an inertial
sensor and an iButton reader. The user carries a trackable paddle to interact with
the system.

On system startup, the user has to give the mobile setup some hint about his
current coarse location. He does this by briefly touching an iButton attached to
some door in his vicinity. The mobile setup then configures according to the current
room the user is in.

In the ARLab, a projection table displays a pasture with a herd of virtual sheep
running around. A tangible real plastic sheep is tracked and can be used to control
the herd’s behavior. With a pointing device and a set of speech commands, the
user can create or remove sheep on the pasture. The user gets a video see through
AR presentation of the pasture and the real and virtual sheep on his laptop. He
can pick up a sheep from the table using his paddle; the sheep is then removed
from the herd and sitting on the paddle.

With the sheep on the paddle, the user can leave the ARLab and go to an Office
via the Hallway. In the hallway, he can color the sheep by moving the sheep on the
paddle into some bucket filled with virtual red dye.

In the office, another herd of virtual sheep is running around on a monitor. The
user can drop the red sheep on his paddle to the monitor. The red sheep will then
automatically join the monitor’s herd.

Sheep from the monitor herd can also be carried to the projection table herd.
Furthermore, sheep can be picked up from a herd, recolored and placed back to the
same herd again.

Application Areas of Scenario. Although the Ubiquitous SHEEP scenario is of
mere academic nature, it can be modified slightly such that real-world applications
can be realized. For example, a mechanic could carry a similar mobile setup when
he should maintain some machinery. The configuration architecture could then be
used to transmit maintenance information. The last exchange time of some parts
or part numbers could be transmitted directly from the object under maintenance.

In addition, the same concepts that are used to carry around and color virtual
sheep can be used to control some machinery parts that are exchanged by the
mechanic and taken away for overhaul.

7.2 Sensing Technology

To make Ubiquitous SHEEP work, multiple diverse sensors are employed. This
section describes which objects are tracked by what sensors and how the sensors
are configured.
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ART dTrack: The AR Lab is equipped with an ART dTrack1 high-precision 6 DOF
absolute pose system. It tracks the tangible sheep, the user’s laptop and a
pointing device used both for calibrating the system and inserting or removing
sheep from the herd. The Dwarf ARTTracker service encapsulating this sen-
sors is configured statically to track the tangible sheep and the magic wand.
The mobile laptop is also preconfigured, however, the configuration architec-
ture described in the last chapter can be employed to transmit the marker
information from the laptop to the stationary equipment at the moment the
user enters the AR Lab.

ARToolkit: The video stream of the laptop-mounted camera is analyzed by the
Dwarf-adapted ARToolkit software2 described in section 6.1.2. The detec-
tion service’s need ARTkMarkerData is configured in a context-aware fashion,
depending on the user’s current spatial entity:

• On startup, only the description of the ARToolkit marker attached to
the user’s paddle is loaded and the paddle’s pose is always registered
relative to the video camera on the laptop.

• In the AR Lab, no additional markers are necessary.

• In the hallway, the description of the marker of the virtual dye bucket
are loaded.

• In the office, the description of a marker attached to the monitor with
the herd on it are loaded.

XSens MT9: An XSens MT93 3 DOF absolute orientation tracker is attached to the
laptop next to the video camera. This inertial tracker’s readings are fused
with the data delivered by the ARToolkit tracker to enhance the quality of
pose estimations of objects that are fixed relative to the world reference frame,
i.e. the virtual dye bucket and the monitor.

iButton Reader: An iButton Reader from Dallas Semiconductor4 is used to tell the
system whenever the user changes his spatial entity. For this purpose, every
relevant door is equipped with two iButtons, one on each side, that the user
has to touch briefly with a handheld probe. The reader gets the iButton’s
ID and can then deduce the new spatial entity of the user. It is clear that
this is a somewhat inconvenient albeit simple process when interacting with a
ubicomp environment. However, the focus of this thesis and consequently the
Ubiquitous SHEEP demo is not on methods for spatial indexing but rather

1http://www.ar-tracking.de/
2http://www.hitl.washington.edu/artoolkit/
3http://www.xsens.com/mt9.htm
4http://www.ibutton.com/

143

http://www.ar-tracking.de/
http://www.hitl.washington.edu/artoolkit/
http://www.xsens.com/mt9.htm
http://www.ibutton.com/


Chapter 7 Ubiquitous SHEEP: A Demo Application

on providing a software architecture for spatially indexed environments. As
such, the output of a spatial indexer can be emulated in a very natural fashion
with the iButtons.

7.3 Ubiquitous SHEEP System Architecture

Ubiquitous SHEEP is an extension of the original SHEEP demonstration. In con-
sequence, several Dwarf services can be reused, however, they have to be modified
such that they cope with the new ubicomp environment.

The original SHEEP demo focused on interaction possibilities within AR envi-
ronments, Ubiquitous SHEEP focusses on the tracking abstraction and distributed
configuration issues of this thesis. In consequence, the system architecture of the
original SHEEP demo had to be modified heavily. Ubiquitous SHEEP can be di-
vided into subsystems with the following responsibilities:

Tracking: This is a Ubitrack abstraction from the sensors used. Its purpose is to
deliver all necessary spatial relationships to the other subsystems.

Presentation: This subsystem is responsible for displaying all necessary information
to the user of the system. In summary, pastures with virtual sheep both in
the AR Lab and the Office locations, a virtual sheep sitting on the user’s
paddle and a bucket full of virtual dye have to be displayed.

Interaction: This subsystem is responsible for detecting interaction requests of the
user. It consists of a collision detection service that triggers events based on
physical proximity of real and/or virtual objects and a reused Petri-net based
User Interface Controller allowing the user to combine pointing gestures with
speech commands for inserting or removing sheep from a pasture.

Virtual sheep simulation: This subsystem forms the core of the application, provid-
ing virtual sheep that form a herd and communicate their appearance to the
presentation subsystem.

Context subsystem: It is responsible for estimating and providing the relevant con-
textual information. Based on this information, the services on the user’s
mobile setup and virtual sheep being carried around change their needs for
configuration data and consequently adapt their behavior in a context-aware
fashion.

The remainder of this section details the specific subsystems.
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7.3.1 Tracking Subsystem

Section 3.3.3 describes the major drawbacks of the original demo’s tracking sub-
system and most of the modifications to make it usable within Ubiquitous SHEEP.
This section details the SR graphs of the three different spatial entities the Ubiq-
uitous SHEEP demo operates in.

AR Lab. The user’s paddle is tracked by an ARToolkit based software analyzing
the video stream. Both the video camera and an ART dTrack locatable are attached
rigidly to the laptop. In consequence, the tracking data from the ART system can
be used to get the laptop’s position relative to the projection table and can be
combined with the ARToolkit data to estimate the pose of the paddle relative to
the projection table and to virtual sheep. The 3 DOF orientation measurements
of the XSens MT9 device are used to enhance the orientational part of the spatial
relationship between the projection table and the laptop.

To detect when the user wants to pick up a sheep, the system has to check for
collisions of the paddle with any virtual sheep. If the user wants to drop a sheep
from his paddle onto the table, a collision between the table and the paddle has to
be detected. Figure 7.1 shows the resulting SR graph.

Office. The situation is slightly different for the monitor-based version of SHEEP
running in the Office location. Now the ARToolkit based tracker determines both
the pose of the laptop relative to the monitor and the paddle’s pose. Neither
a tangible sheep nor a magic wand exist, although they might be added easily.
Again, the 3 DOF orientation measurements of the XSens MT9 device are used to
enhance the orientational part of the spatial relationship between the world-fixed
monitor and the laptop.

Figure 7.2 shows the resulting SR graph. It includes the necessary inferences for
estimating the virtual camera viewpoint of the scene graph running rendered on
the laptop and for detecting collisions between the paddle and sheep or the pasture.

Hallway. In the hallway, the ARToolkit based tracker estimates the pose of the
dye bucket and the paddle with a sheep on it. The 3 DOF orientation measurements
of the XSens MT9 device are used to enhance the orientational part of the spatial
relationship between the bucket that we assume to be world-fixed and the laptop.
Collisions between the bucket and the paddle have to be detected, in addition, the
viewer component on the laptop has to show the virtual sheep on the paddle and
the dye in the bucket, thus inferences from the laptop to these objects have to be
made, too. Figure 7.3 shows the resulting SR graph.

Global Coordinate System. In Ubiquitous SHEEP, no global coordinate system
exists. Instead, the three SR graphs just described are separate and in no explicit
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Figure 7.1: SR graph of the AR Lab setup of Ubiquitous SHEEP. The graph is sim-
ilar to the original SHEEP graph depicted in figure 3.16. Note that a
video camera tracking a paddle has been added, with the goal of detect-
ing collisions between the paddle and any virtual sheep or the projection
table. Real time measurements are indicated by dotted edges, necessary
inferences are indicated by green edges. Static calibration relationships
are indicated by dashed edges.
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Figure 7.2: SR graph of monitor-based SHEEP application. A video camera
mounted on a laptop tracks both the monitor with the pasture on it
and the user’s paddle. Inferences have to be made for estimating the
viewpoint of the virtual camera of the laptop’s scene representation
and for detecting collisions between the user’s paddle and the monitor
pasture (green edges).
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Figure 7.3: SR graph of hallway setup. The laptop needs the relative pose of the
paddle and the dye bucket, in addition, collisions between these two
objects have to be detected.

correlation. The scenario of Ubiquitous SHEEP does not require any correlations
between them. Yet, it can be defined by the SR graph depicted in figure 7.4. This
graph consists of the subgraphs depicted above, they are all put in reference to
some root coordinate frame of the respective rooms. These room coordinate frames
O, H and AR must in turn be put in reference to the global frame G.

Implementation Notes. Due to the current experimental nature of the Dwarf
Ubitrack Middleware Agent, a dynamic setup of inferences was not used. Instead,
hardcoded inference components were provided.

In all locations, the mobile setup infers the spatial relationship between the laptop
and the paddle:

L→ P = L→ V → PL→ P

Additionally, the XSens MT9 measurements are combined with the results of a
hand-eye calibration [33] to give a 3 DOF absolute orientation estimate of the
relationship between L and some world-fixed object, depending on the user’s current
coarse location. This inference is combined with a 6 DOF absolute pose estimate
of the same relationship.

In the AR Lab location, the existing ObjectCalibration service computes the
inferences from the table to the objects tracked by the ART system, with the
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Figure 7.4: Global SR graph. Although it is not needed for Ubiquitous SHEEP,
this figure shows the missing data for setting up a global coordinate
system. It can be used for extending the application in new directions.

viewpoint relationship

T → L = T → A→ LL→ L

being the most important. An inference component reusing the two inferences
above and aggregating the path

T → P = T → L→ P

is necessary to detect collisions between the paddle and the table and/or virtual
sheep. This path is also inferred within the viewing component’s scene graph for
displaying a virtual sheep sitting on the paddle in the laptop augmented scenery.

In the Office location, several inferences based on ARToolkit’s measurements
have to be provided. The viewpoint relationship is

M → L = inverse(L→ V →ML→M).

The inference L→ P is reused for displaying a sheep on the paddle. Additionally,
the path

MP = M → L→ P
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is necessary for detecting collisions between virtual sheep, the monitor pasture and
the paddle.

In the Hallway location, in addition to the inference L → P , an inference com-
ponent for the relationship of the bucket to the laptop

L→ B = L→ V → BL→ B

is created by combining measurements of the ARToolkit and the XSens tracker
(dashed green edge in figure 7.3).

The integration of the XSens 3 DOF absolute orientation tracker for stabilizing
the laptop’s tracking results requires an inference chain for each location. In the
AR Lab, the inference consists of the path

T → L = T →MW → LX → L

with MW being the magnetic world coordinate frame the XSens device makes its
measurements of the laptop locatable LX in. To transform these measurements
in the projection table’s coordinate frame, a hand-eye calibration [33] needs to be
performed and modeled as a static edge in the SR graph. In the Office location,
we assume the monitor to be fixed relative to the world coordinate system and
consequently have the following inference chain:

M → L = M →MW → LX → L

Finally, in the Hallway location the bucket’s pose is assumed to be in a static
relationship to the world, leading to the inference

L→ B = inverse(B →MW → LX → L)

All orientational measurements of the XSens device are only used if the primary
device (ART dTrack or ARToolkit) fails, which can be modeled by an additional
inference edge that is drawn green in the figures.

Figures 7.5 and 7.6 show how the runtime data flow is organized with Dwarf
components. The mobile setup is constantly responsible for estimating the pose
of the paddle. The environment takes care of location-specific configuration of
the ARToolkit and adequate pose reconstruction. In addition, inferences based on
transitive measurements and precalibrated static relationships are made.

7.3.2 Presentation Subsystem

The presentation subsystem consists of the Dwarf Open Inventor based viewing
component (Dwarf Viewer) that operates in video see through mode on the mobile
laptop, using the attached camera’s video stream as background for the virtual
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Figure 7.5: Dwarf components involved in runtime spatial data flow. This UML
diagram shows a representative part of the system state in location
Office.

objects. Both in the Office and ARLab locations, the Dwarf Viewer is configured
in a way that displays only the virtual pasture with its sheep on top.

The Dwarf Viewer offers an API to exchange or modify the current scene graph.
In addition, data from the tracking subsystem can be used to dynamically update
values in the scene graph’s transformation nodes. There are multiple places of the
default scene graph where user-defined subgraphs can be attached:

SCENEROOT: All scene graphs under the SCENEROOT hook are in fixed relation-
ship to the scene graph main coordinate system. This hook can be used for
world-fixed objects that should be drawn from a viewpoint defined by some
tracking system, in our case the ART dTrack or ARToolkit systems.

CAMROOT: The pose of the CAMROOT hook is constantly kept the same as that
of the virtual camera. This hook can be used to display objects that are
fixed relative to the camera, in our case, the models describing the paddle
and virtual sheep sitting on it are put at this hook.
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Figure 7.6: Dwarf components involved in runtime spatial data flow. This UML
diagram shows a representative part of the system state in location
Hallway.

FOREGROUNDROOT: This hook offers a convenient facility to display 2D mes-
sages. Its contents are drawn using an orthogonal camera, in Ubiquitous
SHEEP it is used to inform the user of tasks and the system state.

The Viewer API is used by a ViewerController service that configures the Viewer
service according to the current environmental context.

The three contextual entities in the demo application relevant for the presentation
subsystem are the same as those for the tracking subsystem. The corresponding
scene graphs are shown in figures 7.7, 7.8 and 7.9.

Figures 7.10 and 7.11 show the presentation subsystem setup in the locations
ARLab and Hallway, the system configuration on startup and in location Office

can be derived analogously.

The Dwarf Viewer connects to all ViewerController services matching its cur-
rent contextual state. The controller services transmit 3D models of content to be
displayed on the Viewer. Subsequently, the Viewer generates adequate needs for
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Figure 7.7: AR Lab location scene graphs shown in Dwarf Viewer. The green
arrows indicate which inferred data from the corresponding SR graph
(figure 7.1) updates the spatial transform nodes in the scene graphs.
The pastoral landscape is stationary. The virtual camera’s location is
set by the inference TL based on the ART dTrack system’s measure-
ments. The pose of the virtual sheep is set by the simulation relative
to the world coordinate system, and the tangible sheep is set by an
inference based on the ART system’s measurement as well. Finally,
the paddle’s pose is set by a scene-graph implicit inference based on
measurements from both ART and ARToolkit.

PoseData that are fulfilled by the tracking subsystem detailed above.

7.3.3 Interaction Subsystem

The interaction subsystem is responsible for detecting a user’s request to manipulate
the virtual scenery. The user has two input facilities, he can utter speech commands
(as in the original SHEEP demo) and touch virtual objects with real ones. The
user’s only interaction device is the paddle, which he uses to pick up, color or drop
sheep.

Consequently, a collision detection component was developed that constantly
monitors the relative positions of the paddle to the projection table, the dye bucket
or the monitor, depending on the user’s current room context. In addition, a magic
wand can be used on the projection table to kill a sheep by touching it and giving
the speech command “die”, or to insert a sheep by touching the projection table and
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Figure 7.8: Office location scene graph shown in Dwarf Viewer. Again, the pas-
toral landscape is stationary. The pose of the virtual sheep is set by
the simulation, and both the camera’s and the paddle’s pose are set by
inferences based on ARToolkit measurements.

LL = I LL = IRoot

Dye
Bucket

Paddle

Virtual
Camera LB LP

Camroot

Figure 7.9: Hallway location scene graphs shown in Dwarf Viewer. The camera
is modeled as stationary, thus its pose relative to the root of the scene
graph is identity. Both the bucket’s and the paddle’s poses are set based
on ARToolkit measurements.
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Figure 7.10: Dwarf components involved in runtime reconfiguration of the mobile
setup’s Viewer. This UML diagram shows the system state in location
ARLab.

uttering the command “insert”. A separate, reused collision detection component
is used for detecting whether the magic wand collides with the table or a virtual
sheep.

To enable the multi modal combination of speech commands and collision ges-
tures, the Petri-net based Dwarf User Interface Controller [78] was reused.

The interactions with the paddle work in an implicit fashion: on receiving colli-
sion detection events, a Herd Context Estimation component switches the contex-
tual herd state of the respective virtual sheep. As detailed in the spatial configu-
ration architecture description of the last chapter, this leads to the disconnection
from the current configuration component and reconnection with a new configura-
tion components. These dis- and reconnections implicitly modify the virtual sheep’s
behavior.

7.3.4 Virtual Sheep Simulation Subsystem

The virtual sheep simulation was reimplemented, based on ideas of the original vir-
tual sheep simulation of the SHEEP demo. The virtual sheep’s task is to listen to
the current herd’s other sheep’s poses, calculate its own movement and broadcast
the resulting new pose. To make the simulation more realistic, a sheep has knowl-
edge of its current pasture’s extensions. In addition, it has knowledge about its
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Figure 7.11: Dwarf components involved in runtime reconfiguration of the mobile
setup’s Viewer. This UML diagram shows the system state in location
Hallway.

appearance and broadcasts this appearance to all interested viewing components.
Finally, the virtual sheep is aware of its own color and changes the color if it is
told to do so by a Sheep Coloring service listening for collision events between the
paddle and the dye bucket in the hallway. Color data changes, pasture extensions
and events indicating that a sheep should die are received via a remote interface of
type SheepControl.

Figure 7.12 shows the relevant connections if the sheep is actually on a pasture,
and figure 7.13 shows the setup if the sheep is on the user’s paddle.

7.3.5 Context Subsystem

The context subsystem is responsible for estimating the current relevant context
and modifying the system’s behavior accordingly. It employs the distributed spatial
configuration architecture described in section 6.2 including the context extensions
discussed in section 6.3.

The relevant context information consists of two parts. Spatially indexed infor-
mation about the user’s current location, i.e. the room the user is currently in,
and the herd a virtual sheep is a member of. The implications of the user’s room
are changes to the location, interaction and tracking subsystems and have been
discussed above. The consequences of a changing herd state of a virtual sheep have
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Figure 7.12: Dwarf components involved in runtime virtual sheep reconfiguration
if the sheep is in herd state ARLab or Monitor.
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also been described above.

Estimating the User’s Room. Estimating spatially indexed context out of unob-
trusive sensor data (e.g. [66]) is beyond the scope of this thesis. Consequently, we
simulate the necessary contextual information via iButtons5. The mobile user gets
a reading device and has to touch iButtons attached on both sides of all relevant
doors. When the reader touches an iButton, its unique serial number is transmit-
ted and a lookup table in the stationary environment is used to modify the context
accordingly. For example, if the user touches the iButton attached to the outer side
of the AR Lab’s door, the context attribute Room is changed to ARLab.

Estimating a Sheep’s Herd State. A change in the herd of a sheep is triggered
by the interaction subsystem. The context attribute Herd can have three values:
ProjectionTable, Monitor and Paddle. On startup, a virtual sheep is associated
with either the herd on the monitor or the herd on the projection table. The
following state changes can occur:

Projection table → paddle: This happens whenever a user picks up a sheep from
the table. The transition is triggered by a collision between the paddle and a
virtual sheep in herd state ProjectionTable.

Paddle → projection table: This state change occurs for all sheep in state Paddle if
the paddle collides with the projection table.

Monitor → paddle: This happens whenever a user picks up a sheep from the moni-
tor. The transition is triggered by a collision between the paddle and a virtual
sheep in herd state Monitor.

Paddle → monitor: This state change occurs for all sheep in herd state Paddle if
the paddle collides with the monitor.

Implementation Notes. To facilitate the implementation of context-aware ser-
vices within Dwarf a base class from which services should be derived was devel-
oped. It encapsulates the service’s communication with the Dwarf service man-
ager. On startup of the service, it parses all ability and need descriptions. If a need
of type ContextSwitch is found, it provides an object handling this need. The ob-
ject essentially consists of an interface to set, get and delete contextual attributes,
represented as string name/value pairs. If such a change occurs, the attributes of
the service are changed accordingly. In addition, the predicates of all needs that
have the attribute ContextAffected set are changed such that they only match
abilities that have matching context attributes.

5http://www.ibutton.com/
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The base class mechanism allows to add context-aware behavior to all dwarf
services that are configurable via ability/need connections.

7.4 Results

Ubiquitous SHEEP was implemented exactly as described above, only the XSens
MT9 integration is still pending. This section describes the results obtained.

Deployment. Ubiquitous SHEEP was deployed on three stationary computers,
one for each room, and the mobile setup. On startup, the mobile setup only has
information about the paddle’s marker and consequently only can track this item.
It displays a message telling the user to input the current location context by
touching the next iButton (figure 7.14.

Figure 7.14: Startup scene on mobile setup. The user is told to enter the current
location context via touching the next iButton.

If the user enters the AR Lab, the context of the mobile viewer is adjusted
such that the projection table pasture is displayed in video-see-through-mode (fig-
ure 7.15).

In the office, the sheep are displayed on a very simple pasture on a Dwarf Viewer
running on a standard monitor, and the mobile setup displays a video-see-through
scene of the same pasture (figure 7.16), with the viewpoint information obtained
by a dynamic configuration of the ARToolkit marker detection service.

160



7.4 Results

Figure 7.15: AR Lab pasture in mobile setup. The user’s paddle is represented by
a red semi-transparent box.

Performance. The configuration architecture proved to work successfully. As
mentioned in section 6.2.5, the dependency on 3rd party service location compo-
nents slows down the reconfiguration significantly. A reconfiguration on context
change may take up to several seconds.

Yet, once all configuration and tracking components are connected, the resulting
speed of the overall system is sufficient for the application’s needs. According to
MacWilliams’ measurements [77], sending a single event takes less than 2 ms on
the same machine, approximately 2 ms over wired Ethernet connections and 7 ms
over wireless connections. Furthermore, we can assume a local shared memory
connection to take less than 1 ms. As depicted in figures 7.5 and 7.6, the data flow
consists of a video image transmitted via shared memory to a marker detection
component (1 ms), the results of which are sent wirelessly to a pose reconstruction
component (7 ms) that sends its pose data to an inference component running on
the same machine (2 ms), which in turn sends its data wirelessly to the mobile
Viewer (7 ms). The resulting overall additional latency of approximately 15 ms is
acceptable for interactive real time AR on the laptop.

The system load of the participating computers was in a reasonable range, even
the mobile setup (consisting of a Pentium 4 with 1.6 GHz and a GeForce 4MX
graphics board) used only 50% of available CPU time.

161



Chapter 7 Ubiquitous SHEEP: A Demo Application

Figure 7.16: Office pasture as seen on the monitor and the mobile setup.
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7.5 Discussion

The implementation of the Ubiquitous SHEEP demonstration application was a
major effort, as most existing Dwarf components have not been developed with
the design goal of full runtime reconfigurability. Several lessons have been learned
during the development process.

The Ubitrack formalism as a modeling tool: The Ubitrack formalism proved to be an
excellent tool for modeling complex multi-sensor tracking setups. Changing
configurations could be done in a very short time. Additionally, all neces-
sary calibration spatial relationships can be derived immediately from the SR
graphs, leading to a clear and consistent model of run time spatial data flow.

Configuration interfaces: Implementing components that are fully configurable via
external context-dependent configuration components was a challenging task.
The inherent multi-threaded execution of Dwarf-based distributed systems
required a careful handling of internal data structures. In addition, the design
of configuration APIs requires a solid model of parameters influencing the
transient and persistent system state.

Debugging: A massively distributed system such as Ubiquitous SHEEP which con-
sists of more than 40 services running in parallel on multiple computers re-
quires a careful choice of testing and debugging methodology. During the
development, extensive unit tests were performed on individual components,
especially the behavior of the controller components configuring the generic
Sheep and Viewer services were tested thoroughly. However, much effort was
necessary to debug the overall setup, as it is very hard to foresee all possible
execution sequences in a multi-threaded system.

Calibration: The usability of the overall system depends heavily on the careful cal-
ibration of all spatial relationships involved. This was not the major focus
of the Ubiquitous SHEEP demo, however, the tracking architecture based
on the Ubitrack formalism allows to add sophisticated interactive calibration
components without any change to the existing system. In fact, only the
static calibration components now containing hand-tuned coarse calibration
parameters must be exchanged for some interactive services.

Multi-threading issues: Ubiquitous SHEEP proves that the distributed Dwarf ap-
proach to building AR systems is feasible. However, severe problems arise
as soon as the sum of all components running on a computer consume 100%
of the available CPU time. If this happens, it is the underlying operating
system’s task to schedule the scarce processing resources to the individual
components of the system. Common operating systems (Linux Kernel 2.4 in
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our case) are not optimized for AR systems, thus the crucial tracking data flow
components may get assigned too little CPU time. If this happens, significant
latencies occur, that can sum up to several seconds, essentially rendering the
whole system useless.

Yet, efficient implementation and optimization of the components involved in
Ubiquitous SHEEP prevented these problems.
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CHAPTER 8

Conclusion

This chapter gives a summary of the work described in this thesis, draws some
conclusions based on the achieved results and gives an outlook to future research
opportunities.

8.1 Summary

The core contribution of the work described is threefold. In chapter 3, a formal
model that allows the unified description of arbitrary sensor networks for appli-
cations in Augmented Reality and Ubiquitous Computing domains is presented.
Chapters 4 and 5 describe an abstract distributed implementation concept and a
real prototypical implementation based on the Dwarf system. Finally, chapter 6
discusses the problem of how to integrate mobile setups in stationary tracking en-
vironments and presents a software architecture that enables an ad-hoc integration
without the necessity to store knowledge about the environment on the mobile
setup.

The formal model is used successfully throughout this thesis as a tool for model-
ing spatial relationships within tracking setups. The core algorithm of the abstract
distributed implementation concept has been simulated with promising results. All
architectural concepts that have been developed have been proved by working im-
plementations. The Ubiquitous SHEEP demo described in chapter 7 shows that
the concepts described in this thesis can interoperate within a single functional AR
system.
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8.2 Discussion

Reconsidering the problem statement and the key requirements presented in sec-
tion 1.4, this thesis gives solutions to the major problems of Ubiquitous Tracking.
This section discusses their limitations in scope of the general Ubitrack problem.

General Approach. The key Ubitrack problem consists of an automated abstrac-
tion of sensors for location tracking. The approach presented in this thesis consists
of algorithms and architectures using a graph-based formal model.

Only a formal basis allows the algorithmic treatment of multi-sensor setups. Pre-
vious approaches either employed highly specialized knowledge to fuse well-known
sensors [41, 49] without applicability to general sensors, restricted the application
area to a specific set of sensors [59, 94, 99], thus facilitating the underlying formal-
ism massively, or focused on abstract modeling of multi-sensor location tracking
setups without a detailed formal model [34, 48].

Care has been taken to design the formalism in a way that allows an efficient
implementation without restricting the formalism’s expressiveness. The restrictions
introduced by the proposed implementation concepts are discussed in the respective
chapters, they can be summarized by the assumption that the quality of the partic-
ipating sensors’ estimates and the topology of their distribution have to change less
frequently than the estimated spatial relationships by some orders of magnitude.

Formal Model. The Ubitrack formal model is hard to assess. One could think
of several alternatives, and it is impossible to strictly prove the optimality of the
given Ubitrack model. However, no other formalism with the same broad scope has
been proposed to date, as such, the Ubitrack formalism can be evaluated according
to two criteria: expressiveness and simplicity. The formalism must be expressive
enough to allow modeling all problems of the Ubitrack domain and simple enough
to make use of it without having to give specifications that need more time to set
up than hand-crafted sensor fusion solutions.

To ensure maximum expressiveness, a directed graph is used to model spatial
relationships. This allows the modeling of all kinds of objects and their relationships
among each other. With the concept of attributing arbitrary functions of time to
the graph’s edges it is possible to describe all kinds of spatial relationships within
the formalism. However, how to combine diverse spatial relationships has not been
a focus of this thesis and needs further efforts.

A multitude of examples how the formalism can be used to treat real-world track-
ing problems was given throughout this thesis (see sections 3.3, 4.7, 6.4 and 7.3.1).
Especially the conversion of the existing SHEEP demo with its many implicit as-
sumptions on the underlying spatial relationships to the Ubiquitous SHEEP demo
with an explicit representation of the spatial relationships shows that the proposed

166



8.3 Future Work

graph-based approach leads to intuitive and flexible models of spatial relationships.
Again, only further work can proove that the proposed formalism is suitable for the
full Ubitrack problem domain. This thesis shows that at least common distributed
AR applications can profit from the formal approach.

Distributed Implementation Concept. The concept described in chapter 4 allows
to use the Ubitrack formalism in real systems. Along with the prototype Dwarf-
based implementation of chapter 5 it demonstrates the feasibility of using a formal
model of spatial relationships for automated setup of multi-sensor location tracking
setups.

The implementation concept and the Dwarf-based implementation restrict the
generality of the Ubitrack formalism. However, the resulting limitations in the
degree of changes in sensor quality and topology do not harm most real-world AR
and ubicomp setups.

Distributed Configuration Architecture. Chapter 6 discussed the problems aris-
ing when mobile setups should be dynamically integrated in stationary environ-
ments without a priori knowledge of its properties.

For this purpose, a distributed configuration architecture focused on setting up
location tracking components was developed and later extended to general contex-
tual components. This architecture allows to deploy contextual information in a
spatially distributed way and thus segregates the syntactic information estimated
by potentially mobile sensors from the semantic information generated by context
estimators.

In contrast to previous context-aware architectures discussed in section 2.3, this
thesis focusses on the low-level location aspect of contextual information. By dis-
tributing location and other contextual information spatially, the proposed archi-
tecture not only reduces the information overload of the user by enabling implicit
interaction, but also keeps the information to be processed by the underlying com-
putational infrastructure within reasonable amounts—only if the relevant parts of
the current spatial relationship graph designed according to the Ubitrack formal
model are relatively small is it possible to compute optimal spatial relationships in
an efficient yet fully decentralized manner.

8.3 Future Work

Ubitrack opens a new problem domain that gives multiple opportunities for further
research. Up to now, highly dynamic multi sensor tracking setups have not been
investigated thoroughly. This thesis is a first step in exploring the problem domain,
however, much more should be done to enable scenarios making use of omnipresent
tracking information.
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Extend the Formal Model. The Ubitrack formalism was designed to cope with
a variety of measurement state spaces. Yet, this thesis mainly deals with a 6 DOF
absolute pose state space, as is common with typical AR sensors. Most ubicomp
sensors are widely different. Ways for accurate yet efficient modeling of diverse
sensor networks have to be found, including semi-automated procedures for trans-
forming varying measurement state spaces into each other.

As with the measurement state space, the Ubitrack formalism’s evaluation func-
tion is defined in a general way but has been restricted throughout this thesis.
Notably setups with a variety of measurement state spaces need evaluation func-
tions that can cope with this situation. It is an open problem how to define an
evaluation function that can both be applied to a broad range of applications and
be parameterized in a way that allows an efficient implementation.

Another area of major future work consists of finding ways to incorporate ad-
vanced sensor fusion schemes. Up to now, the formal model and the implementa-
tions built on top of it allow to generically use the inherent transitivity of spatial
relationships. Although defining generic filtering schemes based on more complex
theoretical models such as the Kalman filter is an overly complex task, it should be
possible to define certain assumptions that allow an automated setups of restricted
filtering algorithms.

Distributed Implementation Concept. The distributed implementation concept
described in this thesis allows a realization of the Ubitrack formalism especially for
AR setups of moderate size. However, its scalability is clearly limited such that
modifications are necessary to enable the implementation to cope with the massive
amount of sensors to be expected within ubicomp environments.

Finding shortest paths in a SR graph takes exponential time in the number of
nodes. If nodes are grouped into supernodes (similar to superpeers in Gnutella [91])
according to a natural location hierarchy, the search time in large networks could
be reduced drastically, without sacrificing too much accuracy.

Finding nodes in the SR graph is out of scope of this thesis, as it is similar to the
general service discovery problem in P2P systems. However, the inherent hierarchy
in spatial information (country, town, street, building, floor, room, etc.) could be
used to facilitate service and SR graph node discovery. Thus, the service location
process would be linked to a supernode hierarchy.

Currently, optimal paths in the SR graph are only found according to some short-
est path algorithm. This is a viable solution if only generic inferences based on the
transitivity property of spatial relationships are to be made. If more complex filter-
ing and sensor fusion schemes are to be employed automatically, multi-commodity
max flow/min cost algorithms [4] may be a viable solution to the optimal path
search problem in the SR graph. However, modeling Ubitrack problems as multi-
commodity flow problems requires much work, both on the Ubitrack formalism and
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on implementation concepts.

In the current concept, no optimality of shortest path search results is guar-
anteed. To provide a best effort approach, recomputations of shortest paths are
triggered at constant time intervals, and if the shortest path computed for some
inference chain changes, the corresponding inference components are reconfigured.
It would be worthwhile to find some formal way to model recomputation triggers.
For example, whenever a new sensor becomes available in the working area of an
application, recomputation of all inferences of this application should be triggered.
This would both enhance the quality of spatial relationship inferences and reduce
the computational effort, as recomputations would only be made when necessary.

Ubitrack Implementation. The Dwarf-based implementation served as a proof
of concept for the applicability of both the Ubitrack formalism and the distributed
implementation concept. It should be extended in several directions to allow the
envisioned scalability, performance and flexibility.

In the current implementation, the process of creating inference components is
not optimized. Whenever an application puts a query, a new component gets
instantiated that might be reused by later inference components. As such, the
efficiency and degree of reuse of all inferences made by a Ubitrack implementation
depends on the sequence of application queries. It would be better to make some
optimizations to reduce the overall computational time, network bandwidth or other
criteria by carefully balancing the computational efforts on the involved network
hosts. In general, this is a very challenging problem, but it should be possible to
find some special cases where existing work (e.g. [72]) could be modified to allow
optimized inferences.

On the code level, several enhancements can be realized with minor conceptual
effort. Currently, every Dwarf service manager is accompanied by a Ubitrack
Middleware Agent (UMA), and both middleware components exchange a lot of in-
formation. Thus, it would be preferable to couple them tightly. Integrating the
UMA into the Dwarf service manager could speed up the setup process of new in-
ferences significantly. At runtime, all Dwarf components for tracking use CORBA
notification events to exchange data. This introduces a significant overhead and
latency. In contrast, existing highly efficient systems such as OpenTracker use a
single process and a data flow architecture with UDP-based network communica-
tion, but do not offer the component based flexibility of the Dwarf approach. It
should be possible to use the Dwarf service concept for modeling an abstract rep-
resentation of the tracking setup and nevertheless implement the runtime setup as
a data flow graph within a single process space.

Integration of Mobile Setups. The distributed spatial configuration architec-
ture used to provide ad-hoc integration of mobile setups depends heavily on how
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contextual information is structured. This is an open research problem, and new
developments such as the context cube [46] should be investigated. Currently, all
contextual information must be generated manually. This strategy is not promising
for large-scale applications, the amount of information gets too big. The viability
of combining automated context classification schemes with the proposed configu-
ration architecture has to be investigated.

Building upon ideas from Lester [71], we made first experiments employing a fre-
quency analysis of motion patterns in order to identify anonymous locatables [114].
Anonymous locatables with specific motion patterns could be particularly useful
for the automated processing of natural feature tracker output.

Applications. The scenarios discussed in the introduction give a rough first idea
how the concepts developed within this thesis could help real-world applications.
Yet, both AR and ubicomp research is in an early stage and it is not clear which
application areas will be the most promising. Thus, finding application domains
where the Ubitrack concepts come in handy is a major part of future work.

With the large number of sensed data concerning the location of people, security
and privacy issues will require major attention when bringing Ubitrack applications
to the real world. The concept of distributed storage of data is a solid basis for
letting every user decide which information gets released to the public, but much
conceptional work still has to be done in this area.

Summary. This thesis has explored the new problem domain of Ubiquitous Track-
ing. Merging AR and ubicomp seems a promising approach to make full use of
intelligent environments that will inevitably pervade people’s lives within the next
years.

To render the presented concepts useful, additional efforts are necessary, ranging
from improvements to the formalism to code-level optimizations.
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6DOF. Six degrees of freedom. The state of a rigid object in three dimensional
space containing both position and orientation. See Pose.

Ad-hoc Network. An ad-hoc network is a self-configuring network of mobile com-
puters. The resulting network topology is arbitrary and may change rapidly
and unforeseeable, as the users carrying the mobile computers are free to
move randomly. The Ubitrack problem treated in this thesis tries to provide
a middleware for ad-hoc sensor networks. See Ubiquitous Tracking.

Augmented Reality(AR). Augmented Reality(AR) systems mix artificial and realistic
impressions such that the user is supported in performing real-world tasks.
According to Azuma [8], an AR system combines real and virtual objects in
a real environment, runs interactively and in real time and registers (aligns)
real and virtual objects with each other in three dimensions.

Calibration. Calibration is the determination of the correct value of some state vari-
able based on readings of some sensors. Within this thesis and the problem
domain of location estimation, the term calibration refers to the computation
of parameters that change seldom at runtime and need a special calibration
procedure for computation. See Tracking.

Context. Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves (definition from Dey [34]).

Context Aware Computing. A system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on
the user’s task (definition from Dey [34]).
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CORBA. The Common Object Request Broker Architecture (CORBA) is a stan-
dard created and controlled by the Object Management Group (OMG)1. It
defines APIs and communication protocols that allow distributed applica-
tions running on a variety of operating systems and written in a variety of
object-oriented languages to communicate transparently. CORBA is the basic
middleware underlying the DWARF framework and therefore the distribution
architectures described throughout this thesis. See DWARF.

Distributed Computing. A distributed system is one in which components located
at networked computers communicate and coordinate their actions only by
passing messages (definition from Coulouris et al. [32]). The Ubitrack problem
researched in this thesis is inherently distributed. See Ubiquitous Tracking,
CORBA, DWARF.

DWARF. The Distributed Wearable Augmented Reality Framework (DWARF) is
a research platform for distributed AR applications. It employs a set of
distributed components to model AR applications. The Dwarf middleware
is based on CORBA and serves as the basis of the distributed architectures
described in this thesis. See CORBA.

Global Positioning System (GPS). The Global Positioning System (GPS) is a satel-
lite navigation system used for determining the location of an object to which
a cell phone-sized receiver is attached. It works almost anywhere on Earth as
long as a clear view to the sky is available and provides an accuracy of about
10m. Within this thesis, GPS receivers are treated as sensors with a 3 DOF
position measurement state space.

Kalman Filter. The Kalman filter is a set of mathematical equations that work in a
predictor-corrector scheme. It provides an estimator of an observed system’s
state that is optimal in the sense that the accumulated error covariance is
minimized. Optimality can only be guaranteed if some very restricting as-
sumptions hold (such as the underlying process being linear), yet, it works
well in many real-world problems, especially in tracking moving objects.

Lag. See latency.

Latency. The time delay between an object’s state in the real world and when
information about this state is available to the computing system. Also known
as lag.

Locatable. A locatable is an object that can be located by a sensor. The sensor yields
the spatial relationship of the locatable relative to some reference coordinate
system. See Sensor and Tracker.

1http://www.omg.org/
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Measurement State Space. A sensor can only give estimates of parts of the full state
of an observed real world entity. The measurement state space of a sensor
characterizes the state subspace a given sensor can provide estimates of. See
Object State Space.

Middleware. Middleware consists of software agents acting as an intermediary be-
tween different application components. In the scope of this thesis, two layers
of middleware can be distinguished: first, the Dwarf AR framework provides
middleware that enables the communication between the various parts of the
sensor abstraction and mobile configuration architectures described in this
thesis, second, these architectures themselves act as middleware for location-
and context-aware applications built on top of them.

Object State Space. An Object State Space is the full state space an object can have,
e.g. its location, current temperature, color etc. Sensors can only provide
estimates of a subspace of the full object state space. See Measurement State
Space.

Peer-to-Peer Computing (P2P). A Peer-to-Peer (P2P) network of computers does
not rely on any central server for communication, but instead lets all client
devices communicate directly among each other. A pure P2P network does
not distinguish between clients and servers, and only has the notion of equal
network nodes. A hybrid P2P network has some centralized components that
communicate in a P2P fashion among each other.

Pose. The term pose signifies the combination of position and orientation in three
dimensional space, i.e. a six degrees of freedom state of a rigid object in three
dimensions.

Sensor. A sensor is an active piece of hardware that detects the spatial relationship
between a reference coordinate system and one or several objects. Using some
software, the data delivered by the sensor is made available to a computer
system making use of the spatial relationship. See Locatable and Tracker.

Tracker. A tracker is a sensor used for three dimensional position and/or orienta-
tion sensing in AR or ubicomp applications. See Locatable and Sensor.

Tracking. For the problem domain of location estimation, tracking is the process of
determining and continuously updating an estimate of the locational state of
some tracked object. The results of a tracking algorithm can be enhanced by
careful calibration of fixed system parameters. See Calibration.

Ubiquitous Computing (ubicomp). Ubiquitous Computing (ubicomp) aims at enhanc-
ing the user’s experience of the real world by bringing “invisible” computers
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into it. In contrast to today’s computer systems that force their users to
adapt to them, the vision of ubicomp is to let the computing infrastructure
adapt to the user such that information is provided almost unconsciously.

Ubiquitous Tracking (Ubitrack). The problem of Ubiquitous Tracking consists of pro-
viding an abstraction from sensors estimating the spatial state of arbitrary
objects in the real world. It is the key problem treated in this thesis.

Ubitrack Middleware Agent (UMA). The Dwarf Ubitrack Middleware Agent is the
middleware component providing Ubitrack functionality to Dwarf applica-
tions. See DWARF, Ubiquitous Tracking.

Virtual Reality (VR). Virtual Reality (VR) systems aim at creating seemingly real-
istic, but completely artificial worlds that are primarily used to visualize and
manipulate virtual data, e.g. in a design process. Many techniques from VR
are reused in AR. See Augmented Reality.
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