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Abstract 

The migration of software entities between information systems has been studied mainly in the 
context of process migration between nodes of distributed operating systems and to lesser 
extent as object migration between programming environments. Most existing approaches 
assume homogeneous systems as a prerequisite to migration, despite the fact that 
heterogeneous hardware, operating systems and programming languages are the norm in most 
practical environments today.  

This work is concerned with migration in the context of heterogeneity and focuses on the 
migration of atomic objects between heterogeneous language environments. A characterization 
of object migration provides for the first time a coherent context for the comparison of different 
existing migration systems and discusses the possible levels of and alternative approaches to 
heterogeneous migration. 

This analysis leads to the development of a novel migration mechanism capable of transferring 
the state and behavior of atomic language objects between heterogeneous environments using 
only limited knowledge about the destination environments. The mechanism migrates a set of 
related objects as well as their semantics. 

The design of this mechanism called Heterogeneous Language Migration (HLM) takes a 
pragmatic approach guided by a set of objectives and is restricted to a defined set of language 
concepts. Details of its architecture, abstractions, algorithms, representation formats and 
programming interfaces are described and discussed. The feasibility of this approach is shown 
in a prototypical implementation and demonstrated in a working example. 

In contrast to other related approaches, as for example the Java application environment, the 
HLM migration mechanism is able to handle not only different hardware and operating system 
platforms but also heterogeneous language environments as well as differences of libraries and 
applications. 

The HLM migration mechanism is intended to work without changes to the definitions of objects 
during migration and without changes to the programming environments involved prior to 
migration. As a consequence applications need to be designed for migration. Tools that aid in 
the development of applications for this migration mechanism are proposed. 

The range of enhancements that can be used to augment the HLM migration mechanism is 
discussed as well as possible extensions that diverge from the objectives of the pragmatic 
approach. The necessary support for additional language concepts and the applicability of the 
HLM migration mechanism to existing language environments are discussed as well. 

Some examples of possible applications of heterogeneous object migration illustrate the 
potential advantages of the HLM migration mechanism in practical situations and innovative 
usage areas. A summary of the achieved results and a perspective of promising future research 
directions conclude this work. 
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Kurzfassung 

Die Migration von Softwareeinheiten zwischen Informationssystemen wurde bislang 
hauptsächlich im Kontext von Prozessmigration zwischen Knotenrechnern verteilter 
Betriebssysteme und in geringerem Umfang als Objektmigration zwischen Anwendungs-
umgebungen untersucht. Die meisten bestehenden Ansätze bedingen homogene Systeme als 
eine Voraussetzung für die Migration, ungeachtet der Tatsache, dass heterogene Hardware, 
Betriebssysteme und Programmiersprachen in den meisten praktischen Umgebungen heute 
vorherrschen. 

Die vorliegende Arbeit beschäftigt sich mit Migration im Kontext von Heterogenität und 
konzentriert sich auf die Migration von atomaren Objekten zwischen heterogenen Sprach-
umgebungen. Eine Charakterisierung der Objektmigration bereitet erstmalig einen kohärenten 
Kontext für den Vergleich der verschiedenen existierenden Migrationssysteme und diskutiert die 
möglichen Ebenen sowie die alternativen Ansätze für eine heterogene Migration. 

Diese Analyse führt zur Entwicklung eines neuen Migrationsmechanismus der in der Lage ist, 
den Zustand und das Verhalten von atomaren Sprachobjekten zwischen heterogenen 
Umgebungen zu übertragen mit nur beschränktem Wissen über die Zielumgebungen. Der 
Mechanismus migriert eine Menge zusammengehöriger Objekte sowie deren Semantik. 

Das Design dieses Mechanismus der Heterogeneous Language Migration (HLM) genannt wird 
folgt einem pragmatischen Ansatz der von einigen Vorgaben geleitet und auf eine definierte 
Menge von Sprachkonzepten beschränkt ist. Details der Architektur, der Abstraktionen, der 
Algorithmen, der Repräsentationsformate und der Programmierschnittstellen werden 
beschrieben und diskutiert. Die Funktionsfähigkeit dieses Ansatzes wird anhand einer 
prototypischen Implementierung gezeigt und an einem praktischen Beispiel demonstriert. 

Im Gegensatz zu verwandten Ansätzen wie zum Beispiel der Java Anwendungsumgebung ist 
der HLM Migrationsmechanismus nicht nur in der Lage mit unterschiedlicher Hardware und 
Betriebssystemen umzugehen, sondern auch mit heterogenen Sprach- und 
Ausführungsumgebungen sowie mit Unterschieden Bibliotheken und Applikationen. 

Der HLM Migrationsmechanismus wurde konzipiert, um ohne Änderungen der Definition der 
Objekte während der Migration beziehungsweise der involvierten Programmierumgebungen vor 
der Migration zu arbeiten. Als Konsequenz müssen Anwendungen auf die Migration 
zugeschnitten werden. Werkzeuge, die eine Entwicklung von Anwendungen des 
Migrationsmechanismus unterstützen, werden vorgeschlagen. 

Das Spektrum von Ansätzen den Migrationsmechanismus zu verbessern wird diskutiert ebenso 
wie mögliche Erweiterungen die von den Vorgaben des pragmatischen Ansatzes abweichen. 
Die notwendige Unterstützung für zusätzliche Sprachkonzepte und die Anwendbarkeit des HLM 
Migrationsmechanismus in bestehenden Sprachumgebungen werden ebenfalls diskutiert. 

Einige Beispiele möglicher Anwendungen der heterogenen Objektmigration illustrieren die 
potentiellen Vorteile des HLM Migrationsmechanismus in praktischen Situationen und 
innovativen Einsatzgebieten. Eine Zusammenfassung der Ergebnisse und ein Ausblick auf viel-
versprechende zukünftige Forschungsansätze runden das Werk ab. 
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1 Introduction 

Among the major developments that characterize the current state of the information technology 
two trends stand out as long lasting and wide spread: the growing distribution of hard- and 
software systems and the increasing usage of object technologies. Distributed systems range 
from large commercial systems to small portable and personal devices that communicate 
through a multitude of interconnections from local networks to the global Internet based on 
telecommunication backbones as well as to pervasive wireless services. 

Object technologies provide abstractions that ease the design, implementation and 
maintenance of software systems in the small and in the large. Despite the development of 
several quite different “schools” of object technology, some common concepts can be identified. 
Concepts like encapsulation and message passing do not only simplify the construction of 
software systems but also match the nature of distributed systems and are increasingly used to 
implement distributed systems. 

Distribution 

The advances of computer networks have led to the development of sophisticated mechanisms 
of sharing across distributed systems. From file and database access techniques to generalized 
message passing mechanisms a number of alternatives are available to the designer of 
distributed systems. The implementation technologies used, reach from simple network 
protocols to advanced remote method invocation mechanisms. 

In recent years, the near exponential growth of the Internet has widened the use of distributed 
systems. The commercial interest in a global information infrastructure as well as in wireless 
communication networks has opened up new ways of thinking about the construction of 
distributed systems. 

Distribution is no longer viewed as an exception of otherwise local computations but rather 
perceived as a normal mode of operation for an application if not as an opportunity for 
innovation. Increasingly systems are designed for distributed use and new technologies are 
developed for their support as for example autonomous software agents. 

Objects 

The object technologies on the other hand have advanced considerably since their inception in 
the late sixties and seventies. Today the principles of object technology are applied not only as 
part of various programming languages but also as the foundation of design methodologies for 
the construction of large software systems.  

As a consequence the reach of object technology has expanded to the whole range of 
information technology - from operating systems through database management systems to 
specialized application software. Some principles of object technology as for example 
encapsulation or message passing represent the state of the art of today’s software systems. 
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Object technology itself has developed into several fractions from orthodox object-oriented 
systems through hybrid extensions of existing programming environments to innovative forms 
like environments with prototypes or active objects. Component based software environments 
extend object technology through the grouping of language objects to components that can be 
easily combined to implement higher-level services. 

Objects and Distribution 

Designers of distributed software systems increasingly take advantage of the principles of 
object technologies. The encapsulation of the state and behavior of objects as well as the 
passing of messages between objects are very similar to the computer node and network 
communication “nature” of distributed systems. Object technologies are therefore increasingly 
used to master the growing complexity of distributed systems. 

Problems of distribution are generally addressed through the implementation of some form of 
transparency, effectively rendering the management of distribution invisible for the application 
developer and user. While application programs that are independent of distribution can be 
designed more easily, certain aspects of distribution cannot be overcome through 
transparencies. The various software components of distributed systems stay where they are 
and especially low bandwidth connections remain perceivable. 

Despite the time lags that set remote operations apart from local ones, full transparency of 
distribution may not be desirable in all cases. Some applications will need to know where 
objects reside. E.g., awareness of distribution is essential for mobile systems that can be 
subject to intentional or accidental disconnections from stationary networks. 

The use of object technologies for the construction of distributed systems is in most cases 
confined to the use of remote message passing mechanisms, usually implemented through the 
technique of proxy objects. Although used in an object based context remote method invocation 
(RMI) resembles mainly the concept of remote procedure calls (RPC) borrowed from distributed 
programming in procedural systems.  

While RMI extends the local message passing mechanism through the transfer of messages 
between distributed systems, its implementation through proxy objects hides differences 
between local and remote message passing since a local proxy acts on behalf of the remote 
object it represents. With RMI the distribution of objects is just hidden and can only be 
influenced through configuration prior to the execution of the various components of the 
distributed systems. 

Remote method invocation establishes communication between distributed software-systems 
and proxy objects aid to make distribution transparent to the programmer and user of these 
systems. However, both techniques fail to join objects and distribution into one seamless notion. 
The separation of systems imposed by distribution is not overcome as remote objects can be 
referenced and their methods can be invoked but all objects remain at their locations. 

Migration 

A different approach to design distributed systems is taken by a technology called migration. 
This technology addresses the most fundamental problem of distribution, the locality of software 
entities by transferring data, of functionality and of computations between distributed systems. 
Transparency techniques blur the distinction between local and remote objects but only move 
the flow of control to the new point of execution and return results locally. 

The migration technology separates data, functionality and computations from specific locations 
and moves it to distributed resources as necessary. The best-known migration technology - 
process migration - for example is often used to balance the load between systems through the 
transfer of whole processes from systems with high load to those with less load [Nut1994a]. 

While process migration mechanisms achieve their respective objectives, the applicability of this 
technique as a general software design principle is limited as it works only for comparatively 
coarse-grained processes. It is difficult to implement as existing operating system software has 
to be modified extensively and processes can only be effectively transferred between nodes of 
the same operating system and hardware. 
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Object Migration 

Given the fundamental concept of encapsulation, inherent to object technology, the transfer of 
independent objects between distributed systems appears to be a more natural way to combine 
distribution and objects. This alternative technology called object mobility or object migration1 
implements migration at a finer grained levels of abstraction. Remote resources are not made 
available to local objects; instead, objects are moved to the location of resources. 

Object migration does not substitute remote method invocation as a communication technique. 
It rather adds a complete new way to construct and extend distributed software systems through 
the use of object technologies. Object migration offers a way to control the fine-grained 
distribution of data, functionality and computations throughout networked computer systems. 

Migration technology is used by a whole spectrum of software systems for very different kinds of 
objects. Several languages and their runtime environments have been extended or built 
specifically to support migration of atomic language objects as for example Emerald [Jul1993] or 
Trellis/DOWL [Ach1993b].  

Some large software systems use migration as a means for reconfiguration of compound 
objects that are often also multithreaded like Eden [Bla1985a] or SOS [SG+1989]. In a broad 
sense, the term object migration may also be used for the migration of processes at the 
operating system level as processes encapsulate state and behavior and can be perceived as 
objects as in DEMOS/MP [Mil1987]. 

The spectrum of migration technologies can be interpreted as a continuum of design choices. 
Many fundamental techniques are applied across various forms of migration despite differences 
in the granularity of objects and the scope of the particular migration mechanisms. On the other 
hand, some problems of migration are common across all forms of object migration, the most 
fundamental one being the heterogeneity of the systems involved. 

Heterogeneous Migration 

Most approaches to migration assume that all participating hard- and software systems are 
equivalent or in other words homogeneous. Heterogeneity of systems is frequently defined only 
in terms of hardware differences, but various forms of heterogeneity can be identified at 
different levels of abstraction, especially within distributed systems. From differences of 
language environments to fundamental operating system and hardware platforms, distributed 
systems are almost by definition heterogeneous. 

Heterogeneity has until recently not been a main focus of research in object migration. Most 
solutions offered so far effectively establish homogeneity within a heterogeneous system prior 
to migration through either virtual machine implementations or embedded interpretive 
environments as a prerequisite. The few approaches that differ address only a single form of 
heterogeneity [Shu1990, StJ1995] in most cases heterogeneous hardware through a 
conversion of object representations. 

Apart from distinctions of hardware and operating systems as well as programming languages 
differences of libraries and applications do also have to be considered in the context of 
heterogeneous migration. Especially differences at the application level become more and more 
important in an increasingly interconnected world. 

Object technology has enabled the transition of software construction from monolithic 
approaches to the combination of prefabricated parts. This transition has opened up a whole 
new dimension of heterogeneity among software systems at the library level that needs to be 
addressed by modern migration mechanisms. 

At the same time end user scripting capabilities are used to extend existing applications with 
new functionality previously not envisioned by the original designers. Such programmable 
applications need to be treated in the same way as programming environments in order to make 
migration of user defined objects happen. 

                                                 
1  The term "object migration" is also used for the reclassifications of objects within class-hierarchies, especially in object-oriented 

databases [MMW1994, Su1991, ToP1995]. 
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Previous and current research efforts focus on specific details of the problem of heterogeneous 
migration. These efforts fail, due to their differing approaches, to conquer the overall problem in 
a consistent and extensible manner. Heterogeneous migration among existing language 
environments has not been addressed by any of the approaches investigated. 

Related Technologies 

Two software systems that are related to heterogeneous migration have drawn a lot of attention 
in recent years: the “Internet” programming language Java and the interoperability standard 
Common Object Request Broker Architecture (CORBA). Both systems do not implement 
heterogeneous object migration themselves but are used as foundations for various approaches 
to object migration. 

Java 

The programming language Java [GJS1996] offers a virtual machine environment for the 
execution of object-oriented programs that can be transferred over the Internet. The use of a 
virtual machine for the platform-independent implementation of object-based systems has been 
pioneered by Smalltalk [GoR1983] and is applied in this case to the heterogeneous Internet. 

The virtual machine approach addresses the problem of heterogeneity through the creation of 
an embedded homogeneous environment within each participating heterogeneous system. It is 
therefore limited in its ability to make use of platform specific functionality as the various levels 
of heterogeneity are only addressed at the time of implementation of the virtual machine for a 
particular platform. 

The Java programming environment itself is not an object migration mechanism as only object 
definitions are transferred over the Internet not the state or the computations of objects. Java 
implements a mechanism for the dynamic loading and binding of virtual machine code at 
runtime, which can be used to implement object migration as in Jada [CiR1997] or Mole 
[SBH1996]. 

Recently provisions for the transfer of externalized state of objects have been added to the Java 
specification in the form of an object serialization technique [Sun1999]. A full-featured object 
migration facility is nevertheless missing from Java, which is also not designed to allow the 
transfer of computations objects at runtime, but has to be modified significantly to do so as in 
Sumatra [ARS1996]. 

CORBA 

The Object Management Group (OMG), a standards committee of commercial software vendors 
has released several specifications relevant to migration in so far as conformant software 
products are used by a number of migration systems. Although not a migration technique in its 
own right these cross-platform nature of these standards is helpful to address problems of 
heterogeneous migration. 

The Common Object Request Broker Architecture (CORBA) [Sie1996] defined by the 
standardization organization Object Management Group (OMG) offers remote method 
invocation across programming language, operating system and network boundaries. While 
CORBA generalizes the concept of remote method invocation across heterogeneous language 
environments it offers only distributed message passing not object migration.  

In a more recent effort, the call-by-reference scheme of the CORBA remote method invocation 
mechanism is extended to call-by-value semantics. The specification assumes that compatible 
implementations exist for the transferred objects as the call-by-value semantics establishes 
them as copies within the destination environments. 

Despite various approaches to heterogeneous object migration and the existence of several 
technologies that can be used to address different levels of heterogeneity, there is still no all-
encompassing mechanism for the migration of objects among heterogeneous environments. 
Beyond that, there is not even a consistent level of understanding among researches about the 
issues and problems raised by heterogeneous object migration especially at the language level. 
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1.1 Research Goals 

The main goal of this work is the design of a migration mechanism able to migrate objects 
including their semantics among heterogeneous environments at runtime, independent of 
differences of hardware, operating systems, languages, libraries and applications. The 
mechanism is intended as an application extension rather than, as a change to the definition of 
existing programming languages or to the implementation of programming environments. This 
work will therefore focus mainly on migration at the language level. 

A secondary goal of this work is the determination of the issues and problems of heterogeneous 
object migration as well as of the scope of heterogeneous object migration among existing 
language environments and of the migration techniques necessary to extend the scope. A third 
goal of this work is the identification of possible applications of heterogeneous object migration 
at the language level. 

1.2 Motivation 

The most obvious reasons for research in heterogeneous migration are roughly the same as 
with migration in general as for example load balancing and resource allocation issues as well 
as questions of availability and fault tolerance [Smi1988, Ple1996]. Additional reasons are the 
support for mobile systems as well as for specialized hardware. 

The main motivation for heterogeneous migration at the language level is the transfer of 
functionality between systems that will lead to new areas of applicability as for example 
distributed software deployment and maintenance as well as remote diagnostics. The following 
incomplete list illustrates the various motivations as is ordered roughly from most specific for 
heterogeneous migration at the language level to least specific. 

Availability of Functionality 

A less obvious reason for migration in general but of special interest to heterogeneous migration 
at the language level is the migration of functionality between software environments. A 
migration can - to a certain extent - enlarge the destination environment with additional 
functionality, for example through the transfer of software libraries that are required by the 
migrated entity. 

Functionality that is transferred through migration can be considered as a reason for migration 
in its own right. The functionality that is offered by the objects to be migrated can provide 
enough value from the standpoint of the destination that a heterogeneous migration attempt will 
even be successful if some of the fidelity of the migrated objects is lost in the process. 

Migration can as well be initiated deliberately to add functionality to the destination environment 
[BeP1998]. Heterogeneous migration can thus be used to offer functionality across system 
boundaries. However, the applicability of the migrated functionality may be limited as only the 
migrated entities will be able to use it unless the destination environment or one of its 
applications is prepared to make use of newly migrated functionality. 

Heterogeneous migration at the language level is therefore most beneficial in the context of 
continuously evolving software systems where the work of “porting” individual functionality is 
less rewarding than its creation or is even outpaced by the overall rate of innovation. 
Collaborative environments where the shared work is constantly evolving may serve as the 
most illustrative example in this regard. 

Maintenance 

The maintenance of large distributed systems usually requires frequent software updates. The 
functionality of objects that are available at remote nodes can be updated through substitution 
with migrated objects of additional functionality. Even in the case of objects in operation, 
migration can still be beneficial as the added functionality can be used by objects that are 
created later in the process. 

Object with additional functionality that have been migrated to a remote site for maintenance 
purposes will thus gradually replace existing objects if newly created objects use the most 
recently added functionality. A complete replacement of existing objects with new functionality 
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will require some form of substitution operation or reinitialization of the object system under 
maintenance. 

If migration is applied as a maintenance measure, the participating systems employ at least 
heterogeneous application software, as maintenance would otherwise not be necessary. 
Heterogeneous migration especially at the language level may simplify maintenance in some 
cases as common functionality may only have to be developed and tested once while being 
able to be deployed onto many systems. The determination of errors on one system may also 
lower the effort to debug multiple existing implementations for certain kinds of failures. 

Remote Diagnostics 

As distributed systems become increasingly complex the debugging of distribution related 
problems can become tantamount if a total serialization of events can not be achieved. Static 
debugging techniques that allow the analysis of the state of systems at specific points of 
execution are no longer sufficient in all cases. Failures of distributed systems that are hard to 
identify tend to be transient and communication related. 

The diagnosis of complex dependencies between sequences of events can be accomplished 
with the help of analysis programs that react to certain conditions. In order to perform their task 
appropriate diagnostic objects need to be placed and executed at specific remote locations 
[RA+1998]. Heterogeneous migration can be used to distribute such diagnostic objects to 
remote sites and migrate them between different nodes as necessary. Heterogeneous migration 
at the language level will simplify remote diagnostics as diagnostics objects do only have to be 
implemented and tested in one environment. 

Mobile Systems 

In the context of mobile systems, migration can be used to transfer objects between stationary 
machines and mobile systems, which become uncoupled from the connecting network 
[BaM1995]. Objects that for example analyze data can be moved deliberately from mobile to 
stationary systems before the mobile devices become disconnected. The migrated objects 
continue operation and yield results independently of their mobile source. As soon as a 
connection is reestablished, the results can be collected and presented by the mobile device. 

In the case of mobile systems connected through wireless networks, migration also lowers 
communication costs. Repeated retransmission due to the varying quality of service is avoided 
by migrating objects onto stationary machines that access network services intensively. As 
mobile systems and stationary systems tend to differ in hardware, operating system and 
language environments heterogeneous migration can be particularly useful. 

Specialized Hardware 

Specialized hardware as for example floating-point processors or vector-processing units can 
be a motivation to migrate objects to a different environment [Ple1996]. In some cases, 
migration may simply be beneficial because complex mathematical tasks that can only be 
solved with computation intensive software algorithms can be sped up significantly though the 
utilization of hardware support on a different machine. 

As using the additional hardware support of another machine is implies heterogeneity a 
corresponding migration will only be possible using heterogeneous migration techniques that 
are able to take advantage of the additional different hardware facilities. However, this area of 
applicability of heterogeneous migration will be confined to very special cases. 

Fault Tolerance 

Related to the general resource allocation problem is the question of availability and fault 
tolerance [RB+1998]. Communication links tend to be more unreliable than the computational 
nodes, especially in wide-area or even wireless networks. Migration according to availability 
deliberations can be particularly useful for high-reliability systems. Distributed systems that are 
supposed to be in continuous operation can be kept running through migration even if some of 
their nodes are likely to become unreachable or have to be shut down due to maintenance. 
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Migration can also be used as an adaptability mechanism for fault-tolerant systems if for 
example software entities are moved according to failure-probabilities. Heterogeneous migration 
widens the set of systems that can be considered for availability. Support for heterogeneity can 
also be beneficial for fault tolerance as weak points of one system may be compensated 
through migration to other platforms. 

Security 

Migration technologies can also be used to achieve a higher level of security. Local execution of 
code can provide better security control because sensitive data does not need to be transferred 
over insecure telecommunication links. In addition, access- and control-provisions are not 
compromised by varying protocol-functionality or access rights. 

Heterogeneous migration allows movement of sensitive operations to specific machines that for 
example enforce special audit-functionality. The overall cost of secure systems can be lowered, 
as not all machines need to enforce the same high level of security. On the other hand the 
techniques necessary to support heterogeneous migration especially at the language level raise 
additional security concerns because the functionality that is transferred between systems 
needs to be trustworthy and the object to be migrated needs to trust its new host [Che1998, 
Vit1996]. 

Load Balancing and Resource Allocation 

Last not least, load balancing is generally assumed to be the main purpose for the migration of 
processes. Whether idle machines are used for computation intensive tasks as in Locus 
[PoW1985] and Sprite [DoO1990] or whether the overall utilization of resource offered by a 
network of machines is optimized [Ste1998m], migration of processes allows systems to adapt 
to changes of computational load at runtime. In general, migration can be used in many kinds of 
resource allocation problems beyond load balancing. 

In the case of intensive storage access patterns or higher than usual network bandwidth 
requirements migration can be used to choose the most suitable combination of machines at 
runtime or to minimize latency of access as well as communication costs. Once again, 
heterogeneous migration widens the set of nodes involved. On the other hand, the additional 
overhead for heterogeneous migration may influence resource allocation decisions and 
migration policies. 

1.3 Related Work 

Only few existing migration systems address issues of heterogeneity [ChC1991, Nut1994b, 
Smi1988]. Of those that do almost all consider only heterogeneous hardware not software 
environments. For example, no process migration system could be found that attempts to 
implement process migration between different operating systems. 

Large software systems that use migration also tend to define their own homogeneous 
execution context in terms of libraries that implement transparencies. Support for heterogeneity 
is limited to the generation of code for each platform. Language based migration environments, 
although apparently better suited to address heterogeneity, emphasize compiler techniques and 
only few systems address aspects of cross language migration. 

The following overview provides an incomprehensive lists of typical as well as unusual 
examples of migration systems and illustrates the spectrum of heterogeneous migration 
mechanism that exists today: The examples have been chosen for their relevance to 
heterogeneous migration at the language level and appear in alphabetical order of the 
corresponding authors. 

Bennett [Ben1990] discusses the management of class hierarchies across 
migrations in an implementation of distributed Smalltalk. Constraints towards the 
design of classes of migrateable objects are described and some alternatives are 
discussed.  

Cardelli [Car1995a] defines Obliq, a language with objects and procedures that uses 
closures to migrate only computations of objects among heterogeneous 
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environments using an intermediate representation format. Closures are also used 
by other systems like Dreme [Fuc1995] for heterogeneous thread migration. 

Kono et al. [KKM1996] let computations migrate to an appropriate host in a network 
of heterogeneous systems in TrapDo. Passive objects that are referenced by 
computations are migrated to the particular node of execution through conversion of 
their data and references. 

Lucco et al. [LSW1995] describe Omniware a commercial product that implements 
migration of complete application written in different languages. The approach 
requires the compilation of source into virtual machine instructions that are 
dynamically translated into native machine code at load-time. 

Pleier [Ple1996] has developed a compiler technique that allows the transfer of 
process state between heterogeneous hardware platforms based on specialized 
executables for a pair of machine architectures. At defined migration points during 
the execution of the program code migration can be initiated. The necessary 
conversion of data and execution information is performed during migration. 

Shub [Shu1990] extends the migration mechanism of the V-System [Che1988] with 
support for heterogeneous hardware. Based on a common memory layout used for 
the generation of code for each supported platform the contents of the address-
space of the migrated process is converted in accordance with the destination. 

Steensgaard and Jul [StJ1995] have extended the well-known Emerald system 
towards migration among heterogeneous hardware. Their approach focuses on 
compiler support for the generation of reentrant code for each supported platform 
and on migration-time conversion of object state and computations. Most aspects of 
migration within Emerald are upheld in the context of heterogeneity. 

Theimer and Hayes [ThH1991] propose a source code level technique for 
heterogeneous migration of processes. For restricted procedural programs, startup-
procedures are generated at migration time that recreate the state of the 
computation on the destination host. The technique is used in similar form by a 
number of systems like Dome [AB+1995]. 

Another kind of software environments that are related to heterogeneous migration are mobile 
agent systems. The so-called mobile agents are software entities that can move autonomously 
within a network of appropriate execution environments. Depending on their particular approach 
mobile agent systems both make use of existing migration techniques or implement migration 
techniques themselves.  

Mobile agents that are implemented using object technologies are constructed from several 
atomic objects that interact to implement the behavior of an agent. Only few approaches 
implement agents directly as atomic objects in which case agent mobility becomes equivalent 
with object migration [Gla1998]. 

Many of the overwhelming number of mobile agents systems [CPV1997, GhV1997, Kna1996, 
Lan1998] that have been proposed and implemented in recent years rely on the Java 
programming language mentioned above to address problems of heterogeneity. Only few agent 
systems address problems of heterogeneity directly using different techniques. 

Acharya et al. [ARS1996] describe Sumatra, an extension of the Java programming 
language environment that adds transfer of state and computations to achieve 
object migration capabilities. The approach uses a modified version of the virtual 
machine implementation of Java to address the problem of object migration and of 
heterogeneous hardware and operating systems at the same time. 

Hurst et al. [HRS1997] use state machines to capture and transfer computations of 
smart messages in the Tourist Network (TNET) agent system. Using a semantic 
model based on state machines that is different from the usual programming source 
code TNET is able to abstract from differences of heterogeneous systems. 
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Kato et al. [KM+2000] have implemented the agent system Planet that uses a 
canonical representation to migrate objects using memory mapping via a persistent 
store between heterogeneous execution environments. The native representation of 
agents within a particular environment is converted to and from the canonical format 
used for the transfer. 

Peine and Stoplmann [PeS1997] describe Agents for Remote Action (ARA) an 
agent system that employs interpretation based language implementations to 
achieve mobility of agents across heterogeneous systems. Using the interpretive 
approach Ara is able to transfer the state and computations of agents between 
appropriate heterogeneous execution environments. 

The recently accepted Mobile Agent System Interoperability Facility (MASIF) Standard of the 
Object Management Group [ChC1997, MB+1998] defines common facilities for agent 
environments to transfer of agents and to interact which each other. However, MASIF assumes 
that a homogeneous language is used among agents systems, preferably Java, and does not 
support the transfer of computations. 

Among all the migration systems and related environments that have been investigated 
throughout the course of this work, various aspects of heterogeneous migration have been 
covered. All approaches either extend and change existing environments heavily or invent 
completely new languages or software systems to implement heterogeneous migration. 
Interestingly enough, no mechanism could be found that addresses all levels of heterogeneity or 
migration among existing heterogeneous language environments. 

1.4 Outline 

The remainder of this work is composed of four chapters. The second chapter tries to provide 
an overview of object migration by systematically characterizing existing migration systems. 
This effort compares the various existing approaches in a coherent context and offers insights 
into the relation of the used techniques. Based on this characterization the problems of 
heterogeneous migration and the possible approaches towards their solution are discussed. 

The third chapter describes a pragmatic approach towards heterogeneous migration at the 
language level that offers migration of object semantics among existing languages without 
changes to the objects or environments involved. The objectives of this approach are stated and 
the required preconditions are defined. All aspects of the mechanism, including a reference 
architecture, the necessary abstractions and the actual migration algorithm are presented. The 
feasibility of the mechanism is shown in a prototypical implementation. The design of 
applications for the mechanism and tools for their development are described. The use of the 
mechanism in a real world scenario is demonstrated in a detailed example. 

In the fourth chapter, the migration mechanism is analyzed in the context of the systematic 
characterization developed in the second chapter for a discussion of its limitations. Simple 
enhancements to the mechanism are described as well as complex extensions that overcome 
limitations implied by the objectives. The applicability of heterogeneous object migration in the 
context of existing languages is discussed as well. 

The fifth chapter provides examples of possible applications of heterogeneous object migration 
at the language level. The potential benefits for each particular case are explained and some 
necessary implementation details are discussed. A summary of the research results and a 
perspective of promising future research directions conclude this work. 

1.5 Terminology 

A new terminology is used throughout this work in order to avoid confusion that is caused by 
words that have different meaning in the context of the various programming languages 
involved. Language specific terms are used only in contexts that discuss aspects of particular 
languages or sets of languages. The new terminology is intended to be language-neutral. 
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The term object is used for all software entities that encapsulate state and behavior regardless 
of their creation and their relation to other software entities. The term interface2 is used as a 
neutral term for the definitions of objects, i.e. of their state and behavior. These interfaces may 
be represented as source files or as objects themselves, e.g. as classes or prototypes, by a 
particular language environment. 

The term component3 refers to any part of the state of objects independent from the 
nomenclature of a particular language where a component may be named a variable, a 
member, a slot, etcetera. The term signature is applied to any part of the behavior of objects 
that is available to other objects, regardless whether it is named a method, an accessor 
function, a generic function or something else by a particular language. 

1.6 Notations 

Throughout this work the italic font-attribute is used to indicate terms that are described for the 
first time but will be used for the rest of the text. The fixed width font Courier is used for all 
source code excerpts that appear separately as well as for fragments like single keywords or 
names of interfaces that are appear in the normal text. 

Embedded figures and tables are used to illustrate various aspects of object migration in detail. 
A common graphical notation is employed uniformly among figures in order to enable 
comparisons of different situations. If not specified otherwise all figures show the situation after 
migration has occurred.  

Ellipses are used to represent objects that are named and numbered. Dashed bold ellipses 
denote the object to be migrated prior to migration and bold ellipses symbolize the migrated 
objects after migration. A double lined arrow is used to indicate the migration itself. 
Relationships among objects are shown as dashed arrows lines indicating relationships prior to 
migration and uninterrupted arrows after migration. Figure 1.a shows an example. 

Environment A Environment B

Object a1

Object b1

Object m1

Object c1

Object d1

Object m1

 
Figure 1.a: An example of a graphical notation used to illustrate object migration. 

All objects are shown here as ellipses. Object m1 has been migrated 
from Environment A to Environment B. The relationship between 
Object a1 and Object m has been cut. In contrast the relations 
between Object c1 and Object m1 as well as m1 and b1 have been 
substituted with remote references to and from the migrated object 
m1 in Environment B. The relationship between Object d1 and Object 
m has been newly established. 

The distinction between objects and interfaces is visualized through the use of ellipses for 
objects and boxes for interfaces. Capital letters are used to name interfaces and small caps are 
used for object names. Unless mentioned otherwise subtype or inheritance relationships are 
                                                 
2  The term “interface” should not be confused with the keyword interface of the Java programming language [GJS1996]. 
3  The use of the term component for the state of objects should not be confused with the term software component that is often 

used to describe coarse grained software entities that are based on sets of atomic objects [BA+1995]. 



1  Introduction 21 

  21 

depicted from bottom to top. The “created by” relationship is displayed from right to left. Due to 
their implicit nature, dotted arrows are used for both relationships. If necessary, explicit 
relationships between objects will be shown as normal arrows. Figure 1.b shows an example of 
object definitions and related objects. 

Interface A

Interface B

Object a1

Object c1

created  by

subtype of

Interface C

 
Figure 1.b: An example of the graphical notation used to illustrate the relations 

between objects shown here as ellipses and interfaces shown here 
as boxes. Interface C is a subtype of Interface B, which is in turn a 
subtype of Interface A. Object a1, was created from Interface A and 
references Object c1 which was created from interface C. 

Tables provide comparisons of general concepts as well as overviews of the relationships 
between concepts and characteristics. Wherever possible, tables share the same structure. 
General concepts are listed at the top and the particular characteristics currently discussed are 
shown in the leftmost column of the table. 

Simple crosses "x" indicate the presence of a particular relationship. Parentheses around 
crosses "(x)" are used when exceptions apply. Empty parentheses "()" denote that a particular 
characteristic cannot be applied in general because only one or a few examples of the 
respective concept with that characteristic exist. Table 1.a provides an example. 

 compiled interpreted 

Binary x  

Virtual  (x) 

Intermediate  (x) 

Source  () 

Table 1.a: An example of a table showing the relationships between various 
concepts and characteristics. All compiled languages4 use a binary 
representation, as for example, C++ [Str1991]. Interpreted languages, 
either use virtual machine code as Java [GJS1996] or Smalltalk 
[GoR1983] or intermediate representations as Obliq [Car1994] 
indicated here by parentheses around an "x". Only few languages 
interpret source code directly as indicated by empty parentheses. 

Source code excerpts, figures and tables are numbered separately for each chapter using lower 
case letters in alphabetical order. References to other parts of the text include the number of the 
page as well as the chapter unless the page is contained in the same chapter as the reference 
itself. 

                                                 
4  The exception of virtual byte coded compiled to binary machine language that is offered for example by some Java 

implementation is not covered here in order to avoid confusion. 
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2 From Process Migration to Heterogeneous Object Migration 

The term migration denotes the transfer of software entities between information systems at 
runtime. The kind of systems that support migration, the entities that can be migrated and the 
characteristics maintained through migration differ among migration systems but all approaches 
share some common aspects.  

Unlike other distribution techniques as for example configuration management, migration is 
initiated and performed at runtime. The source and the destination environment as well as the 
software entity to migrate do not have to be predefined but can be determined dynamically. The 
migrated entity is transferred to the destination environment completely5 and is able to function 
at the destination in the same way as within the source environment. 

Existing approaches to migration can be roughly subdivided into migration of whole processes 
of operating systems, migration of complex compound objects of software systems and 
migration of fine-grained objects of object-based programming languages. The kind of software 
system that implements migration is in most cases correlated to the granularity of the software 
entities that can be migrated.  

The software entity that can be migrated determines not only the amount of information that is 
transferred between systems. It also defines the requirements of the particular migration 
mechanism, the migration techniques that can be applied and the kind of decisions that have to 
be made during the initiation and control of the migration operation. 

The actual algorithms that are used to perform migrations are implemented as operating system 
services, as special layers of software systems or as parts of the runtime environments of 
programming languages respectively. The terms process migration, system migration and 
language migration will be used to refer to the corresponding levels of granularity of migration. 

Heterogeneous environments are only poorly supported by existing migration systems, but 
various opportunities of extension towards heterogeneity can be determined. Unless mentioned 
otherwise the following overview of characteristics of migration systems will be confined to 
homogenous cases where identical source and destination environments are assumed. 
Heterogeneity will be dealt with in detail at the end of this chapter (see page 57). 

Since many aspects of migration systems are interrelated, no single outline hierarchy can bring 
all aspects into a linear order. As a consequence, some repetitions are inevitable and 
progressive disclosure is used to bring all issues into a logical order. Terms and concepts not 
previously mentioned are described briefly at their first appearance in the text and forward 
references are used to hint at more detailed discussions of the respective topics. 

                                                 
5  Unlike replication, objects are not copied but moved through migration. 
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2.1 Unit of Migration 

The most general and obvious characterization of migration systems derives from the question 
"What software entity is migrated?". The term unit of migration defines the smallest software 
entity that can be transferred between systems. Many migration systems are able to migrate 
several units of migration simultaneously [Sch1990] but only the smallest migrateable entities of 
each case is referred to here. A unit of migration can be a process of the operating system, a 
"coarse-grained" object of a software system or a "fine-grained" object of an object-based 
programming language. 

• language objects - language migration 

First class objects of programming languages define one end of the migration spectrum as 
they are atomic and cannot be subdivided into smaller parts6. Fine-grained objects of 
object-oriented programming languages are called language objects and the term language 
migration will be used to denote their transfer between environments. 

• system objects - system migration 

Object-oriented software systems often define more complex "objects" as independent 
entities, which usually consist of occasionally large amounts of fine-grained objects. As they 
are not subdivided for migration but transferred as a whole these compound objects will be 
called system objects, and their migration will be referred to as system migration. 

• process objects - process migration 

Processes are characterized by the address space they encompass and by the process 
context that the corresponding operating system maintains. Since the term process 
migration is already well established and many techniques of process migration are similar 
to system and language migration, processes will be called process objects in order to 
provide a consistent terminology. 

Process migration is subsumed under object migration as one extreme end of a spectrum with 
the migration of atomic language objects as the other extreme and system migration as a 
middle ground. The use of the term object for processes is not new as it has been used for 
various operating systems entities since the pioneering work of Hydra [WC+1974]. Figure 2.a 
illustrates the differences between the three major units of migration. 

The subsumption of all "units of migration" under the term "objects" is guided by the fact that the 
migrated software entity at least logically encapsulates all the information necessary for the 
entity to be able to work as intended within the destination environment. With the exception of 
language objects, the term "object" does only provide a loose characterization of the software 
entities that can be migrated. 

Language objects are usually created on the basis of formal object definitions, that define the 
structure of the state and the semantics of the behavior of objects. These object definitions are 
called interfaces. Some systems like Smalltalk [GoR1983] or Self [Sun1992] represent these 
object definitions as objects in their own right while other systems like C++ [Str1991] manage 
them as source files. System and process objects also contain state and show behavior but 
their semantics in terms of executable operations are usually defined only via source files. 

Mobile agent systems employ similar technologies than object migration but are less clearly 
distinguished as mobile agents are implemented on all three levels of granularity, depending on 
the particular approach. For example, TACOMA [Joh1998] implements agents of the size of 
processes, while Mobile Object Workbench [BH+1998] employs system objects composed from 
finer grained objects and Voyager [Gla1998] uses atomic language objects. 

Each aspect of migration described in the following subchapters will also be discussed with 
regard to the three basic units of migration. Clearly marked sections are used to separate the 

                                                 
6  The distinction between objects and values often found in hybrid object-oriented programming languages is not considered 

here, as values are in all known cases not migrateable by themselves but only as part of the externalized state of objects. 
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particular details from more general discussions. Existing migration systems including mobile 
agent systems will be cited as illustrative examples wherever appropriate. 

Environment A

. . .

Environment B

. . .

process migration

system migration

language migration

 
Figure 2.a: The "unit of migration" that is transferred between environments may 

either be a whole process object (shown here as a rectangle), a 
complex system object (shown here as a rounded rectangle) that is 
composed from finer objects, or a single atomic language object 
(shown here as an ellipses). All three kinds of migration and the 
implicit inclusion among objects are shown here collectively only for 
illustrative purposes. 

For each "unit of migration" four kinds of information characterize an object and need to be 
transferred during migration: identity, state, functionality and computations. These four kinds of 
information are described here briefly and will be discussed in more detail in the following 
subchapters. 

• identity 

The identity of an object characterizes its uniqueness with regard to a context, for example 
among all other objects of a language environment. The identity of an object is usually 
maintained throughout its lifetime. In the context of distribution, the identity of an object can 
be extended to distinguish it among all other objects of a distributed system. The transfer of 
the identity of an object implies that there is only one object of this kind at any given time 
within the context of the distributed system including during and after migration. 

• state 

The state of an object encompasses all data that is stored within the object as well as all 
references to other local and remote objects. References to other objects imply 
dependencies between objects. The transfer of the state of an object maintains all the data 
that is necessary for the object to operate as intended by the developer. This may or may 
not include references to other objects and may lead to the transfer of related objects as 
well. The transfer of state is therefore related to the notion of identity. 

• functionality 

The functionality of an object, also called its behavior or semantics, consists of all 
operations, usually called methods, the object is able to perform. The transfer of the 
functionality of an object involves an appropriate representation of all operations that are 
necessary for the object to operate within the destination environment. 

• computations 

The computations of an object subsume all operations that are currently being carried out 
by the object at the time of migration. Operations the object takes part in, for example as a 
parameter, may imply additional dependencies between objects. The transfer of 
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computations of an object involves all the information that is necessary to continue the 
current activity of the object at the destination. 

Not all of these four kinds of information are transferred by all migration systems. The question 
"what is encapsulated by an object as its integral part and what is assumed to be part of the 
environment" determines the amount of information that is transferred at migration time. The 
amount of information transferred differs with the unit of migration as well as with the level at 
which migration is performed. 

A process object usually encompasses all four kinds of information while less information may 
be transferred for system and language objects. Identity and state is transferred by most 
migration systems, but functionality is only transferred if necessary and only few systems 
support the transfer of computations. Table 2.a provides an overview of the various kinds of 
information transferred with regard to the unit of migration. 

 Process 
migration 

System 
migration 

Language 
migration 

Identity x x (x) 

State x x (x) 

Functionality x (x) (x) 

Computations () () () 

Table 2.a: The amount of information transferred differs for each kind of 
migration system. Empty parentheses indicate only few systems that 
transfer the particular kind of information and parentheses around "x" 
indicate only few exceptions from a general support of transfer of 
information which is indicated by a single “x”. 

As table 2.a indicates, not all language migration systems transfer the identity of objects but 
alternatively establish copies of migrated objects [Sil1996]. Some language migration systems 
do not migrate state as Obliq [Car1994]. Many language and system migration mechanisms 
also rely on pre-distributed code and do not transfer functionality of objects during migration as 
for example DOME [AB+1995].  

Only few language and system migration mechanisms migrate computations, some migrate so 
called threads independently of objects as TrapDo [KKM1996]. Even computations of the 
operating system kernel that are not encapsulated by address-spaces are in some cases 
transferred during process migration as in Accent [Zay1987a]. 

Examples of the transfer of each kind of information can be found for migration at all levels. Yet, 
only few systems at each level cover the whole range of information that can be transferred 
during migration. The following subchapters discuss each kind of information transferred in 
more detail. 

2.1.1 Identity 

The identity of an object is the one characteristic that distinguishes a particular object from all 
other objects with regard to a certain context. Objects are unlike values within conventional, e.g. 
procedural programming systems not distinguished by an equivalence relation of their content. 
Instead, they are characterized only by their identity which can be called their local identity in 
the context of a single environment. 

In the context of distribution the identity of objects is related to the problem of finding, 
addressing and accessing objects on remote systems. This is usually achieved through remote 
references which contain some kind of location information. Symbolic names can be used 
additionally to establish remote references through a lookup of the location information via 
name servers (see also page 42). The identity of objects in the context of distribution can be 
called their distributed identity. 

When several related objects are considered as a set of dependent objects, their identity can 
also be defined relative to each other, especially if distributed identity is not supported. The 
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topology of references between objects of a set of objects can be called their relative identity in 
the context of the particular set. 

The notion of identity of an object may change in the context of migration. If supported by both 
source and destination environments the distributed identity of objects is transferred in most 
cases and  relative identity is maintained implicitly . If distributed identity is not supported, 
relative identity needs to be maintained explicitly in the context of the sets of objects that is 
migrated and in some cases also for subsequent migrations [Sil1996]. The local identity of the 
objects being migrated will be lost in any case. Figure 2.b illustrates the various forms of identity 
in the context of object migration. 

Environment A Environment B

Object a1 Object c1

Object b1

Object y1 Object z1

Object x1
Object b1

Object y1 Object z1

Object x1
Object b1

Object y1 Object z1

Object x1
Object b1

Object y1 Object z1

Object x1

 
Figure 2.b: The difference between distributed and relative identity of objects can 

be exemplified by the migration of system objects (shown here as 
rounded rectangles) that consist of language objects (shown as 
ellipses). In the above example, system object a1 references system 
object b1 prior to migration through its local identity in the context of 
environment A. System object b1 consists of object x1, y1 and z1 
which are related via their relative identity in the context of system 
object b1. System object c1 references system object b1 in a 
distributed context. After migration the relative identity of objects x1, 
y1 and z1 is maintained within the destination environment B, while 
system object a1 now references object b1 in the context of 
distribution and system object c1 now uses the new local identity of 
system object b1 within environment B. 

Distributed identity can be maintained during migration if local references can be extended to 
include location information as in Emerald [Jul1993]. Such references can be called implicit 
remote references. If what can be called explicit remote references are distinguished from local 
references, distributed identity has to be substituted for local identity during migration.  

If distributed identity cannot be established during migration, local references can only be cut 
and the participating objects have to be aware of that fact. Symbolic names are used by some 
systems as an alternative to remote references, but in most cases, especially in object-based 
systems proxy objects are used as in SOS [SG+1989]. 

Proxies are local objects that represent remote objects through encapsulation of the location 
information. They forward local messages to the remote object and return the remote results 
locally. Proxies substitute their local identity for the distributed identity of a remote object, 
effectively hiding the complexity of maintaining the distributed identity from the local 
environment and all local objects (see also page 42 for a detailed discussion). 

Maintaining location information is a major problem for migration systems as Zayas states: 

"Part of the [migration] problem lies in providing an efficient method for naming 
resources that is completely independent of their location." [Zay1987a] 
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If an object is migrated its location changes and the location information of remote reference 
that refer to it will become outdated. The location information can be corrected using 
mechanisms like forward pointers or name servers as well as more costly operations like 
immediate update at the time of migration or broadcasts of queries at the time of access. These 
update mechanisms also differ in the way they cope with network failures and partitions (see 
also page 44 for a detailed discussion). 

The identity of objects is tightly related to the state and computations of objects described in 
subsequent subchapters. The management of identity in the context of migration defines how 
remote objects can be accessed, how objects can communicate and how the flow of control 
between objects can be handled in the context of distribution and migration. 

Process Migration 

Operating systems distinguish processes usually through process identifiers that are defined 
locally. Distributed operating systems and especially those that support process migration, use 
globally unique process identifiers that represent distributed identity as for example DEMOS/MP 
[PoM1983], Locus [PoW1985], Sprite [DoO1990] and System V [Che1988]. 

Only few systems support the migration of process groups [Che1988], but the maintenance of 
relative identity does not appear as an issue in the presence of distributed identity. This is also 
true for systems that extend process groups across machines as for example Rhodos 
[PG+1996]. In general, a migrated process can be running under a different local process 
identifier on the destination machine if it can be addressed through an inter process 
communication mechanisms independently of its migration. 

During migration, some systems create a process with a different distributed identity at the 
destination host as for example Accent [Zay1987a]. The purpose is to use normal memory 
transfer operations that require two distinguishable entities. When the migration commits, the 
new process at the destination is given the distributed identity of the source process which is 
subsequently destroyed. 

System Migration 

The distributed identity of system objects is defined within the design of the respective software 
system usually in terms of a message passing or persistence mechanisms [SiA1996]. As 
system objects often communicate via messages within a distributed environment, they can 
usually be addressed via symbolic names or proxy objects as in SOS [SG+1989].  

Large software systems often employ a so called two level object model that consists of coarse 
grained system objects with distributed identity as well as of fine grained atomic objects with 
local identity as for example in COOL [AJ+1992], Eden [Bla1985a] or SOS [SG+1989]. The 
distributed identity of system objects is maintained during system migration as well as only the 
relative identity of the finer grained objects. 

Language Migration 

The local identity of objects within programming language environments is in most cases 
defined via memory addresses. These are used for local reference to objects as well as by the 
message passing mechanisms. Since local memory addresses are not suitable for the 
distinction of objects in distributed environments the notion of identity needs to be augmented. 

Globally unique addresses of objects are used directly only within environments that have been 
designed with distribution in mind as for example Emerald [Jul1993]. If globally unique 
addresses are used the local, relative and distributed identity of objects are identical which 
simplifies many aspects of migration as for example the management of references between 
objects as well as the transfer of computations. 

The most common way to handle the distribution of objects at the language level is the use of 
local proxy objects that are referenced and addressed by message passing just like any other 
local object as in DC++ [ScM1993b] or Brouhaha [DNX1992]. Proxy objects encapsulate remote 
references to distributed objects, forward messages to these objects and manage the remote 
access to parameters as well as the return of results.  
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Proxy objects maintain the local and relative identity of migrated objects while their distributed 
identity is hidden. A dependency between the distributed environments involved and the 
additional complexity for the management of proxy objects during migration are consequences 
of the use of this technique (see also chapter 4 page 159 for a detailed discussion). 

2.1.2 State 

The state of objects encompasses all information that is encapsulated and used by an object 
during its lifetime. An objects state needs to be represented appropriately for its transfer during 
migration, e.g. values of atomic objects have to be encoded in order to be transferred over the 
network. Several representation formats can be used for the transfer of state (see page 50). 

References to other objects are usually part of the state of objects and extend the encapsulated 
state through dependencies on other objects. Further dependencies are implied by references 
of other objects to the object to be migrated. These dependencies have to be handled 
appropriately by the migration mechanisms, e.g. through the use of a so-called externalization 
of a whole set of objects as the representation for the transfer between environments. 

If the references used within an environment are aware of distribution like in Emerald [Jul1993] 
they can be used for local and remote objects alike. Such references are not affected by the 
migration of objects except for the update of these references with new location information. If 
only local references are available, proxy objects can be established for the migrated objects in 
order to maintain the dependencies in the context of distribution (see also page 42). 

Otherwise, the dependencies between the objects have to be considered prior to migration and 
need to be handled properly by the migration mechanism. Objects that are dependent on each 
other can either be migrated together as a set or references have to be cut deliberately prior to 
migration and the objects involved need to be ware of this destructive operation. The 
determination which objects have to be migrated together can either be done at development 
time or it can be performed dynamically at migration time. 

Process Migration 

During process migration the address-space that defines a process to be migrated is transferred 
to the destination machine in almost all cases in binary form (with the exception of [ThH1991], 
Dome [AB+1995] and related systems). No distinction is made between memory segments of 
the address space, i.e. code, data, heap, and stack areas. As address-spaces tend to be quite 
large, sophisticated migration techniques have been developed in order to minimize the 
required to transfer the state [RoC1996] (see also page 52). 

The process context of the operating system is also transferred to the destination as part of the 
state of a process object. Depending on the operating system, the process context may consist 
of details like register contents and address-mappings. Some process migration systems 
support even the transfer of the state of input/output operations and/or inter process 
communications as Sprite [DoO1987] or Rhodos [PG+1996]. Other redirect I/O operations 
instead as System V [TLC1985]. 

If a distributed file system is available, local file operations at the source can be relayed as 
remote file operations from the destination. Direct access to local hardware, for example access 
to frame buffers or coprocessors, can never be migrated and processes that make use of such 
facilities are therefore considered immobile. Some mechanisms provide shadow processes on 
the source system to provide continued access to local hardware like Sprite [DoO1990]. 

References between processes do not create an issue for the transfer of state of processes if 
globally unique process identifiers are used. Dependencies between process objects do only 
seldom influence process migration as inter process communication mechanisms usually work 
in the context of distribution. As an exception, process groups are maintained across different 
nodes in Rhodos [PG+1996]. 

System Migration 

The state of system objects is often transferred between environments in the form of their binary 
in-memory representation. Alternatively, an externalized representation format is used to 
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recreate the particular system object in the context of the destination environment. While the 
latter case is similar to the transfer of state for language objects (described in the next section), 
the memory transfer for system objects differs from the migration of processes. 

Because system objects do in most cases not encompass whole address spaces (one notable 
exception being Eden [Alm1985]) it is unlikely that a system object may be able to occupy the 
exact same memory addresses within the destination address space it is transferred to. Hence, 
some form of memory mapping has to be performed during system migration either explicitly by 
the developer or implicitly by the software system as in TrapDo [KKM1996]. 

Explicit memory mapping involves the relocation of memory contents to new addresses and the 
update of pointers to memory addresses within the state of the transferred system object. This 
is a rather tedious and time-consuming process that also requires complete knowledge about 
the location of pointers within the memory contents to be mapped. 

As a consequence some software systems that support system migration employ implicit 
memory mapping abstractions as system objects are often bound to memory segments that can 
be mapped and addressed independently as in COOL [AJ+1992]. The relocation to the new 
address range is then performed implicitly through the application of a segment offset at the 
time of memory access. Figure 2.c illustrates the relocation of memory segments during system 
migration. 

Environment A Environment B

Object a1

Object a1

 
Figure 2.c: Address translation has to be performed during the migration of 

system objects that are shown here as rounded rectangles while 
address spaces are shown as rectangles. In the above example, the 
memory segment that represents object a1 is relocated within the 
destination environment to a new address. 

A notable exception from memory mapping is provided by Amber [CA+1989b] that maintains a 
global virtual memory, that implements identical mapping of virtual memory addresses across all 
nodes. Objects to be migrated can be located at the exact same memory location on all nodes 
and references between objects remain consistent, leading to “object faults” if the referred 
objects have not been mapped locally. 

System objects depend much more directly on other system objects than for example 
processes [Lux1995a]. Hence dependencies between objects have to be considered during 
migration of system objects and may lead to prerequisite, parallel or subsequent migrations of 
other system objects [Sch1990]. Clusters of large grained objects are for example the usual unit 
of migration in Cool-2 [JJC1995]. 

Agents systems also frequently use groups of objects to represent agents. As a consequence 
clusters of objects are transferred as a whole as in Mobile Object Workbench [BH+1998], Mole 
[SBH1996] and Sumatra [ARS1996]. A notable exception is Ara [PeS1997] which does not 
migrate the state that is considered external to an agent. 
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Language Migration 

The state of a language object consists of references to other objects and in the case of hybrid 
languages also of values of primitive types. During migration references to other objects can 
either be maintained in the context of distribution, recreated at the destination through the 
additional migration of the related objects or deliberately cut. 

The state of an object being migrated is transferred during language migration in a linearized 
form, in some cases including referenced objects recursively, and used to recreate the object 
within the destination environment. If supported by both environments remote references of the 
migrated object can be maintained by the migration mechanism.  

If no other measures are taken local references will simply be cut by migration which can lead to 
disastrous consequences if it happens unintentionally and is not handled properly. Figure 2.d 
illustrates the different ways in which relationships between language objects can be treated 
during migration. 

Environment A Environment B

Object a1

Object d1

Object c1

Object b1

Object a1

Object b1

 
Figure 2.d: Relationships (shown here as arrows) between objects (shown as 

ellipses) can be handled differently during migration. In the above 
example the reference between object a1 and b1 is recreated at the 
destination as both objects are transferred, the reference from object 
a1 to c1 is maintained in the context of distribution and the reference 
from object a1 to d1 is cut. 

The direct memory transfer is only rarely used [StJ1995] even in environments that support 
globally unique addresses because complex mappings of memory representations are involved. 
These mappings have to be performed explicitly as individual objects are usually too fine 
grained in order to apply relatively coarse-grained memory abstractions like memory segments. 
Complete knowledge about memory pointers within the memory representations of objects is 
also required in order to perform the necessary mappings consistently. 

In some cases proxy objects are substituted for migrated objects in order to maintain references 
between objects. The set of objects that are actually migrated has to be defined at compile time 
for some environments as Emerald [Jul1993] while other enable dynamic decisions at runtime 
as Amber [CA+1989b]. 

2.1.3 Functionality 

The functionality of an object encompasses all operations the object is able to carry out as 
specified by the object definition represented in-memory or in the corresponding source code 
file. The in-memory representations of operations involve actual machine code, virtual byte code 
or in some cases intermediate representations as in Obliq [Car1994]. 

The functionality of objects to be migrated is usually either dependent on other object definitions 
or on common functionality provided by language environments, software systems or operating 
systems respectively. The availability of this common functionality is in most cases a necessary 
requirement for migration. 
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The availability of the individual functionality of the objects to be migrated within the destination 
environment is also a prerequisite to migration but only seldom considered. Most systems 
assume that compiled code for each supported platform is already distributed among the 
participating environments prior to the actual migration. 

System that do not assume the deployment of code prior to migration either transfer the 
necessary functionality in a separate phase of the migration process or as part of the object 
being migrated. In most cases, functionality of other objects already available at the destination 
is not taken into account during the migration process. 

Another issue that has drawn a lot of attention especially in the context of agent systems is the 
security of the objects being transferred which is in most cases bound to the corresponding 
functionality [Vit1996]. Both the object being migrated as well as the destination environment 
may be subject to security threats through the transfer of functionality. The destination 
environment may be attacked by a migrated object while the object itself may as well be 
attacked by a malicious host. 

A number of solutions have been provided most of which employ encryption capabilities 
[CG+1995] to either authenticate environments and objects in order to establish a trust 
relationship and to authorize mutual access between objects and environments on an individual 
basis. As this issue is only marginally related to migration and a lot of material on this issue can 
be found in the literature (Ajanta [TrK2000], Ara [PeS1997], Telescript [TaV1996]) this aspect 
will not be covered in greater detail here. 

Process Migration 

The functionality of a process is defined by the executable program that is used to create the 
process. It is encapsulated as machine code within the code segment of the corresponding 
address space. Process migration therefore transfers functionality as an inherent part of the 
address-space and does not need to treat functionality differently from state. The functionality 
transferred in binary form is dependent on the hardware architecture and on the operating 
system services. 

Due to these dependencies only few attempts have been made to transfer processes between 
different hardware platforms and no approach to the migration of processes between different 
operating systems could be found. Theimer and Hayes [ThH1991] for example describe a 
process migration facility that overcomes differences of hardware platforms through 
recompilation and Arabe et al. [AB+1995] as well as Pleier [Ple1996] use precompiled platform 
dependent code for the same purpose. 

System Migration 

The functionality of a system object is usually dependent on the semantics of the underlying 
software system. System migration generally assumes that the common functionality of the 
software system is already available at the destination usually in the form of libraries for each 
supported platform.  

The functionality of the system object to be migrated or its application is also often assumed to 
be available at the destination. This can be done either explicitly in the form of executables that 
are deployed with the installation of the corresponding application prior to migration, or implicitly 
through a central code repository or via a distributed file system that is accessed as necessary. 

If the functionality of system objects is not already available at the destination, system migration 
mechanisms transfer the required functionality separately prior to the actual migration. This 
occurs in the form of libraries or executables that are dynamically bound within the destination 
environments. Only few approaches to system migration transfer functionality of system objects 
at the same time as identity and state like for example Birlix [Lux1995a]. 

Language Migration 

The functionality of fine-grained objects is usually specified by object definitions. Depending on 
the programming language and its particular implementation, first class objects describing the 
functionality may be used as in Smalltalk [GoR1983] where a hierarchy of so-called class 
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objects is maintained in memory. Alternatively, the actual machine code may be directly 
referenced by the object itself as in C++ [Str1991] where object definitions are only represented 
as source files. 

Again most language migration systems require functionality to be deployed prior to migration 
like DC++ [ScM1993b] and essential migrate only state [Sch1992d]. If the availability of the 
necessary functionality at the destination cannot be assumed prior to migration the functionality 
has to be transferred during migration as in EmeraldOS [StJ1995]. 

The transfer of functionality during migration has to be performed at runtime. And it requires 
some form of dynamic loading and binding by the destination environment because new virtual 
machine code or native machine instructions have to be made available. If a source code 
representation of object definitions is transferred an additional compilation phase will be 
necessary. In extreme cases, intermediate representations of functionality are converted to 
machine code during migration as in Omniware [LsW1995]. 

If dependencies between object definitions exist a set of multiple object definitions will have to 
be transferred. Figure 2.e illustrates the migration of an object definition as a side-effect of the 
migration of a language object. 

Environment A Environment B

Object Definition A

Object Definition B

Object Definition C

Object c1

Object Definition A

Object Definition B

Object Definition C

Object c1

 
Figure 2.e: The definition of an object (shown here as a box) may be migrated 

along with the object (shown as an ellipses). In the above example, 
the definition C of object c1 is transferred to the destination 
environment B as a consequence of the migration of object c1. 

The management of the distribution of functionality is only seldom considered with the notable 
exception of Bennett [Ben1990] who discusses several alternatives for an implementation of 
Distributed Smalltalk. HERON [FJ+1993] and JavaParty [PhZ1997] use the notion of distributed 
inheritance to manage the fact that objects and classes may be located on different nodes. 

2.1.4 Computations 

The computations of an object in the context of object migration are the active operations of an 
object that are under execution at the time of migration. These are represented as a stack of 
activation records. An activation record consists of the parameters of the operations, i.e. values 
and references that are passed as arguments at the invocation of the corresponding method. 

The combination of a stack of activation records and an execution counter forms a thread, a 
term commonly used as an abstraction for a single flow of control within a program 
environment. The migration of computations separately from objects is also called thread 
migration. A system is called to be multi-threaded if several threads exist in parallel that are 
executed concurrently otherwise it is called to be single-threaded. 

Computations can be called internal to or encapsulated by an object if only functionality that is 
part of the object itself is invoked. Otherwise, computations can be called external to an object. 
A process encapsulates all computations of the program it is created from with the exception of 
calls to operating system services that are external to the process. 
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External computations are the norm for system and language objects regardless whether their 
environment is single-threaded or multi-threaded. The only exceptions are active objects, i.e. 
system or language objects that encapsulate threads and interoperate with other objects only 
through explicit messages.  

Regardless whether active objects are implemented single-threaded or multi-threaded, the 
threads encapsulated by active objects will only contain activation records of operations defined 
for the corresponding active object. I.e. threads encapsulated by active objects do not mix 
activation records of operations of different objects. 

As a consequence, the migration of computations of active objects is simplified as all activation 
records of the encapsulated threads have to be transferred and only references to other objects 
have to be updated. The migration of computations of passive involves the determination of the 
activation records that have to be migrated (see also chapter 4 page 179). 

Whether migration is initiated preemptively at any point in time or non-preemptively , i.e. only at 
specific points in the flow of execution also influences the amount of work that has to be done to 
transfer computations. In both cases, thread migration involves capturing and recreation of the 
computational state, i.e. the stack of activation records. 

In the case of non-preemptive migration, the initiation of migration is performed by a normal 
method invocation and the state of computation is comprised of all previous activation records 
on the stack. If migration can be initiated preemptively for example through a software interrupt 
that can be serviced between any two machine instructions the state of computation will be 
much harder to capture. 

In the case of a preemptive migration some processor registers may contain temporary values 
and the current activation record may not be up to date. Even worse sophisticated optimization 
techniques like code relocation and register allocation can further complicate the determination 
of the actual state of execution as well as its recreation within the destination environment 
[Ple1996]. Many systems therefore define so-called migration points within the code at which 
migration can be performed [SmH1996]. Preemptive migration request are delayed by these 
systems until the next migration point is reached through normal execution [Ach1993a]. 

Due to its complexity many migration systems do not transfer computations at all but require 
that objects are inactive to be migrated. The inactive status means that all methods that have 
been previously invoked for the object have already returned prior to the migration request. The 
migration of inactive objects is also called weak migration while the term strong migration 
includes the transfer of computations. 

If threads are migrated independently of objects, several variants of thread migration exist. In 
the simplest case, a thread simply distributed when a remote method invocation is performed. A 
remote message invocation will transfer the flow of control to a remote system where the 
necessary functionality is already available. Additional activation records will be created within 
the remote environment until a result is returned together with the flow of control to the calling 
environment. The local computations will block until the remote invocation returns. 

In this context asynchronous message passing can be viewed as thread migration or as a 
thread copy operation if a new thread is created within the destination environment for each 
incoming message. Alternatively, message queues can act as a distributed rendezvous 
mechanism for threads that reside on different machines and communicate only via messages. 

A variant of the remote procedure call or remote invocation technique is remote execution, a 
technology that transfers computations in the form of closures, i.e. as a set of operations and a 
set of parameter that in combination are ready to execute. Remote execution resembles a 
remote procedure call that includes the code to be executed and the parameters as well, which 
can be simple values or in some cases references to distributed objects. 

A related technology called code on demand transfers functionality between systems but neither 
computations nor threads. As the functionality transferred can subsequently be used for 
computations within the destination environments the technique can be helpful to implement 
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migration mechanisms. The best-known example of this technique is the Java programming 
environment [GJS1996]. 

Remote execution was pioneered by Stamos and Gifford in REV [StG1990b] and Falcone in 
HDS/NCL [Fal1987] both of which employ a lisp-like syntax for closures. Cardelli [Car1994] has 
based the object-based language Obliq on the transfer of closure which may also include 
references to remote objects and Fuchs has done so for the Scheme dialect Dreme [Fuc1995]. 

Some agent systems have been implemented using closures as well [Tsc1996b] and the 
POPCORN system [NL+1998] extends the notion to Java based computelets that are sent to 
remote machines for remote execution. An overview of the techniques related to the transfer of 
computations is provided by table 2.b. 

 remote 
invocation 

remote 
execution 

code  
on 

demand 

thread 
migration 

weak 
migration 

strong 
migration 

Identity     (x) x 

State     x x 

Functionality  x x  (x) x 

Computations x x  x  x 

Table 2.b: Various techniques are related to the transfer of computations. 
Remote invocation and remote execution create new activation 
records within different environments. Thread migration complements 
weak migration through the transfer of computations of objects. The 
technique known as code on demand does not transfer computations 
but rather functionality that only subsequently can be used for 
computations within the destination environments. 

Related to the concept of closures and strong migration are the invocation semantics that have 
been introduced in the context of Emerald [JH+1988] which migrate objects at the point of 
invocation through call-by-move or call-by-visit constructs either temporarily or permanently and 
create new activation records within the destination environment. 

In the context of migration invocation semantics can be perceived as an continuum from call-by-
value that uses copies of simple values to call-by-reference that employs references to objects 
including remote references, to call-by-visit where an object specified within an invocation is 
moved to location of execution, to call-by-move where an object remains at the new location of 
invocation even after the invoked operation returns [Jul1993].  

Process Migration 

The computations of processes are encapsulated by the address space abstraction except for 
active system calls. Asynchronous message passing or shared memory mechanisms that are 
used for communication between processes in most operating systems do also represent 
external computations of processes. 

The address-space abstraction in combination with the process context of the operating system 
will be migrated during process migration. Whether the internals of the process are 
implemented in a single-threaded or multi-threaded way does not matter for a process migration 
mechanism as all internal computations are simply transferred as part of the address space. 

The information about active system calls is held on a so-called system stack of activation 
records maintained by the operating system kernel. The transfer of the system stack involves 
the same difficulties as the transfer of non-encapsulated threads for system and language 
objects. Therefore, almost all process migration systems allow migration request to be handled 
only between system calls. 

Only very few operating systems support the migration of processes while active system calls 
are being executed. As an extreme case, Accent [Zay1987a] also transfers the system stack as 
part of the process context to the destination and maps all dependencies of the process 



36 2  From Process Migration to Heterogeneous Object Migration 

36 

accordingly within the operating system at the destination. Consequently, processes may be 
migrated in the middle of a system call and computations of the kernel can be continued at the 
destination. 

System Migration 

Large software systems are often multi-threaded and the system objects they use can 
themselves be single- or multi-threaded active objects. In addition to synchronous 
communication mechanisms, asynchronous message passing is used in some cases to transfer 
information between otherwise independent system objects. Similar to process migration 
system objects are usually only migrated if no active system calls exists for any of the internal 
threads of a system object.  

Within multi-threaded environments as well as in the context of asynchronous message passing 
synchronization mechanism like monitors [Hoa1974] have to be applied before a migration can 
be performed. As an exclusive access to the object to be migrated is required by the thread that 
performs its migration all threads referencing the object have to be outside of critical sections. 

If threads are transferred as part of system objects the references of activation records have to 
be able to cope with the implicit location changes. This can be done through implicitly memory 
mapping as in Cool2 [AJ+1992], through explicitly updates of references as in Commandos 
[CH+1993] or alternatively through proxy objects as in PEACE [Nol1994]. 

Software systems that do not use remote references internally do usually not support the 
transfer of computations. The first implementation of the Chorus Object-Oriented Layer (COOL) 
for example stops all threads of an system objects prior to migration and restarts them after 
migration has concluded at the destination [LeW1991]. 

Language Migration 

Fine-grained language objects do in most cases not encapsulate computations themselves but 
take part in computations within their respective environments. Local and remote method 
invocation is the normal form of execution among language objects that are referenced as 
parameters or receivers of messages within activation records. 

Only in the unusual case of asynchronous message passing between active objects like for 
example in Actors [AgJ1999] a language object encapsulates computations in the form of a 
single or multiple threads. The activation record of these encapsulated threads do nevertheless 
contain references to other objects that have been passed as parameters. 

The transfer of computations during language migration requires the transfer of activation 
records of operations of the object to be migrated that have been invoked prior to the migration. 
Otherwise, the migrated object will have to be transferred back to the source as soon as the 
flow of control returns to these activation records. 

References to the objects to be migrated of activation records that remain within the source 
environment need to be updated with the new location information. References to objects of the 
source environment within the activation records that need to be transferred have to be updated 
accordingly as well, like for example in Emerald [Jul1993].  

As a result of the transfer of the activation records the flow of control will float between the 
source and destination environments when the previously invoked operations return as if these 
operation had been invoked via remote method invocation in the first place (see also chapter 4 
page 179). Figure 2.f illustrates the transfer of activation records and the necessary update of 
references. 

In multithreaded language environments migration operations have to be synchronized. This 
ensures that only a single migration is attempted for an object and that no other threads can 
access the object during migration. In the case of active objects the threads encapsulated by 
the object to be migrated will have to be transferred as a whole and the references of their 
activation records will have to be updated as well. 
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Environment A Environment B

Object a1 Object a1

Object b1

 
Figure 2.f: If computations of an object (shown here as ellipses) are migrated the 

activation records of invocations of the object (shown gray rectangles) 
are transferred to the destination environment. In the above example 
object a1 and its corresponding activation records are transferred. 
The references from activation records to objects are updated 
accordingly (the references between activation records are not shown 
to avoid confusion). 

Due to the complexity of implementation only few language environments transfer computations 
as for example Trellis/DOWL [Ach1993a] while the majority of systems transfer only inactive 
objects. Surprisingly enough this statement does also hold for agent systems as most Java 
based systems transfer only inactive objects like for example ObjectSpace Voyager [Gla1998] 
and only newly implemented environments also transfer computations like Flage [TK+1995], 
Sumatra [ARS1996] or Telescript [Doe1996]. 

2.2 Migration Policy and Initiation 

Migration systems, especially process migration systems, distinguish in most cases between a 
migration policy and a migration mechanism [ArF1989]. The migration policy determines when a 
migration has to be performed, which object should be migrated and whereto. The migration 
mechanism performs the actual migration of the corresponding unit of migration. Migration 
policies are also be implemented by some cases of system and language migration. 

Migration policies are defined in accordance to the motivation why the migration of an object is 
desirable in the first place. The most common reason across all kind of migration systems is the 
maximization of resource utilization. Such an optimization can occur for example in the form of 
load balancing through process migration between machines. The collocation of objects 
achieves locality of access and reduces communication overhead. Another reason may be the 
migration of objects away from machines with imminent availability restrictions because of 
maintenance schedules for example. 

Migration policies have to decide when to migrate what objects and to what destination. The 
actual migration mechanism has to decide what information has to be transferred and how this 
can be achieved. The progress of the migration is also checked by the migration mechanism as 
well as its completion since at least two separate environments have to be coordinated. The 
outcome of the migration, i.e. whether an atomic migration has completed successfully or not, 
can then influence subsequent decisions of a migration policy. 

In contrast to the initiation through migration policies, migration can also be initiated explicitly by 
an application or by the object to be migrated itself. The reasons for the explicit initiation 
correspond to the rules that are used by migration policies [Sch1990] although they are 
probably more application specific. For example applications may be able to reconfigured 
themselves through object migration if their pattern of usage changes. 
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Regardless whether migration is initiated by a policy or explicitly a so-called migration request 
has to answer the following questions on behalf of the migration mechanism that will have to 
perform the migration: 

• When ? 

A migration policy will initiate a migration request if the conditions implemented by the 
policy hold. However, a migration request may not necessarily be executed immediately by 
the migration mechanism. Depending on the implementation and due to various reasons a 
migration request may be rejected altogether or in some cases postponed until for example 
the execution of system calls has ended or the migration of dependent objects has 
concluded. The time of migration can therefore be interpreted only relatively in the sense of 
"as soon as possible". 

• What ? 

The question "what to migrate" is determined in terms of the unit of migration. For example 
a load balancing policy has to choose a process to migrate in order to reduce the load on a 
particular machine. Even if the object to be migrated is specified explicitly an actual 
migration request may include additional information. The migration mechanism has to 
determine the set of objects that is actually migrated in response to a migration request as 
well as the amount of information that has to be transferred for each object. 

• Where to ? 

The destination of a migration also has to be specified by a migration request. In the case 
of load balancing an analysis of load statistics is required to find a machine with a matching 
load pattern [Roe1998]. The destination can be specified explicitly within the migration 
request or implicitly as in the extreme case of the V-System that can use queries to 
determine destination nodes [TLC1985]. However, the destination environment has to be 
accessible by appropriate communication means at the time of migration. 

Because a migration consumes a significant amount of system resources, migration policies 
also have to consider whether a migration is worth the effort. As a general rule, the time of 
continuous use of the migrated objects within the destination environment has to be longer then 
the time necessary to perform the migration. This rule is only a very rough measure as both 
time-factors can only be estimated at best. 

The optimization of load distribution among a network of machines in general requires complete 
knowledge about the utilization of all machines involved. Ideally, the load any running process 
may generate in the future can also be estimated. Load balancing policies try to achieve as 
good approximations as possible using various techniques. The following quote [Nol1994 page 
18]7 illustrates how important migration decisions are: 

“In the absence of hints about the usage of objects, the similarity of object mobility to 
demand paging of system with virtual memory [...] becomes obvious and the 
problems with regard to trashing are also comparable. Other approaches therefore 
try to formulate application-specific conditions that if applicable trigger a collocation 
of objects at a certain location [...]. This again bears similarities to the forward 
looking determination of a working set [...] in a virtual memory system .”8 

Almost all process migration systems implement migration policies. The placement of processes 
through process migration is usually the real goal of the respective research effort. On the other 
hand, only few implementations of system migration use migration policies because migration 
decisions are made application specific. The same holds for most language migration systems. 

                                                 
7  A similar quote can be found in [LeW1991]. 
8  Translation of the following german text: "Hat man keine weiteren Hinweise auf die Benutzung eines Objektes, so ist die 

Analogie der Objektbeweglichkeit zum Demand Paging in Systemen mit virtuellen Speicher [...] allerdings offenkundig und die 
Probleme in Bezug auf Flattereffekte (Trashing) sind ebenfalls vergleichbar. Deshalb versuchen andere Ansätze, 
applikationsspezifische Bedingungen zu formulieren, bei deren Eintritt eine Zusammenführung von Objekten an einen 
bestimmten Ort stattfinden soll [...]. Letzteres hat wiederum eine Analogie zur vorausschauenden Bestimmung eines Working 
Sets [...] in einem System mit virtuellem Speicher.” 
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Process Migration 

The main application of process migration systems is the global allocation of resources within 
distributed systems, especially the balancing of load between machines. The migration policy is 
usually enforced by the operating system itself or a specialized software entity thereof. Rhodos 
[SG+1996] for example uses a MigrationManager process to supervise process migration.  

Process migration is only seldom initiated by a process itself (an exception is [Schu1990]) or by 
one user process for another. Process migration is usually initiated by a component of the 
operating system preemptively. Yet, a migration request may not be executed immediately as 
the process may be busy with system calls or input/output operations that have to be finished 
before migration can take place in most systems. 

A migration request is therefore handled in the same way as other operating system events that 
need to be synchronized with the ongoing operation of the process. Once all operations with 
higher priority have been finished, the migration request is executed. Although not mentioned in 
the literature the usual mechanisms for deadlock prevention can be applied to migration 
requests as well. 

Examples of user initiated process migrations are provided by the operating systems Sprite 
[DoO1990] and System V [TLC1985] that migrate processes to idle machines. Processes are 
migrated to different idle machines if the user of a particular workstations returns and begins to 
use the machine again. 

System Migration 

The migration of system objects is more guided by the logic of applications then by formal 
criteria. If available at all a migration policy for the migration of system objects is usually 
implemented as part of a supporting software layer within the overall software system. The 
migration policy is a function of the software system and as a consequence, system migration is 
sometimes even called application specific migration. 

The collocation of data and computations is probably the main concern of the migration of 
system objects. For example, system objects that perform complicated operations on large 
amounts of data stored in databases or file systems benefit from migration to the machine that 
stores the data rather than from accessing the data remotely over distributed file systems. As 
system objects often cooperate intensively to fulfill a certain task, system migration is more 
frequently used for forward-looking reconfigurations of distributed systems rather than for 
measurement-based optimizations of load distribution [Sch1990]. 

Besides self-initiated and preemptive migration, that may occur at any time, system migration is 
sometimes implemented as cooperative migration that may only occur under certain conditions. 
Apart from the usual avoidance of system calls, the dependencies between system objects may 
create additional restrictions for the applicability of migration requests. In extreme cases, 
migration requests are queued by system objects and executed on a first-come-first-served 
basis, depending on the restrictions implied by the application logic.  

Language Migration 

Fine-grained migration is far less guided by migration policies then by explicit programmatic 
initiation.  The call-by-move and call-by-visit constructs have been developed in the context of 
Emerald [JL+1988] to initiate object migration in the context of invocations. Nevertheless, in 
order to maintain locality of computations, collocations of objects also serve as the main reason 
for object migration at the language level among existing approaches. 

A call-by-move permanently migrates the objects specified by the parameters of the call to the 
location of the execution of the invoked operation. In contrast, a call-by-visit will migrate the 
parameter objects back to their previous locations upon return of the result of the invocation. 
Apart from these invocation dependent migration constructs simple migrate or go statements 
are used to initiate object migration programmatically as for example in Telescript [TaV1996]. 

Agent system that operate at the language level in general implement different policy 
mechanisms as mobile agents are usually autonomous and decide for themselves where to 
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migrate next. Agents in Sumatra [ARS1996] can for example react to resource changes and 
effectively implement their own migration policy. 

A completely different approach to the initiation of migration is implemented in the agent system 
Concordia [WP+1997]. An itinerary, i.e. a list of destinations to visit and actions to be performed 
is specified for each agent. An agent moves between the specified nodes and tries to perform 
the actions on the list for each corresponding node. 

2.3 Migration Mechanism 

The term migration mechanism denotes the actual implementation of the migration process that 
transfers objects between different environments. Depending on the level at which migration 
occurs and the unit of migration involved, the actual mechanisms are implemented quite 
differently. However all migration mechanism share some fundamental prerequisites that must 
be fulfilled before migration can be initiated and performed. 

Beyond these basic prerequisites, several common forms of support by underlying software 
layers are used to implement the migration mechanisms. The term support is defined here as a 
feature of an underlying software layer without which a migration mechanism could still be 
implemented, albeit at higher effort. In contrast, migration would be impossible if the basic 
prerequisites are not fulfilled. 

All migration mechanisms use some sort of abstraction for the actual transport of the unit of 
migration to its destination. Each migration mechanism employs an algorithm that implements 
the actual migration process depending on the available support from the underlying software 
layers. These building blocks of existing migration mechanisms are described in detail in the 
following subchapters. 

2.3.1 Prerequisites 

The prerequisites shared by all migration mechanisms are quite obvious. The source and 
destination environments must be able to communicate with each other. The destination 
environment must provide a receiving software entity that is able to participate in the migration 
process. This entity must be capable of recreating the transferred object in the context of the 
destination environment in such a way that it can be useful. 

• Communication 

Some form of communication between the source and the destination environment is 
necessary in order to perform migration at all. While an inherent part of distributed systems 
and usually available in the form of network transports, this communication may also be 
performed on the basis of higher level protocols like distributed file access, inter process 
communication or remote method invocation mechanisms. 

Communication requires the destination environment to be addressable at least on the 
basis of raw network addresses, for example Internet addresses and port numbers of the 
popular TCP/IP protocol. Alternative addressing mechanisms which employ higher levels of 
abstractions as for example symbolic names can be used additionally. 

• Receiver 

Often regarded as self-evident but nevertheless a crucial prerequisite to migration, a 
receiving software entity must exist within the destination environment that is able to 
perform all necessary steps of the migration process. The receiving entity has to be 
considered part of the migration mechanism. It has to take part in the migration 
communication, has to be able to interpret all representation formats used for the transfer of 
objects and has to be able to perform the appropriate actions during the migration process. 

Although only a receiving part of the migration functionality is required for a destination 
environment, most migration systems implement full sending and receiving migration 
capabilities within both the source and destination environments. Only few systems that use 
migration of processes for load balancing in an asymmetric way implement only receiving 
capabilities within destination environments as for example Locus [Thi1990]. 



2.3  Migration Mechanism 41 

  41 

• Dynamic Loading, Binding and Object Creation 

During the migration process the objects to be migrated will have to be recreated at the 
destination environment at runtime. If transferred as part of the migration process the 
corresponding object definitions have to be made available within the destination 
environment at runtime as well. A technique known as dynamic loading that enables new 
functionality to be added to an environment at runtime and is necessary in this regard.  

Dynamic binding allows the use of the transferred functionality by the migrated and newly 
recreated objects and is therefore required for any migration mechanism. The term dynamic 
binding is also used to describe the process of method invocation in the context of message 
passing in the sense that the decision which code is to be executed is postponed until 
runtime.  

Apart from these basic prerequisites all other features of existing migration systems can be 
regarded as support of the particular software environment that can also be implemented by the 
migration mechanisms themselves. For example, full location transparency or automatic 
rerouting of messages eases the task of implementing object migration (see page 42).  

Without the prerequisite available within the participating envrionments migration will not be 
possible. Without supportive features migration will still be possible albeit a lot more work will be 
required on behalf of an application developer in order to use a particular migration mechanism 
in the absence of such features. 

Process Migration 

Within process migration systems, communication between the participating nodes is performed 
via inter process communication or via raw network protocols. In some cases services of the 
operating systems, i.e. demand paging mechanisms are redirected between the source and 
destination machines as in Accent [Zay1987a].  

In all known cases the process migration mechanism is part of the operating system and 
therefore readily available at the destination as a receiving entity. The management of migration 
is often performed by a dedicated component of the operating system as for example by the 
MigrationManager in Rhodos [PaG1996]. 

The rebinding of migrated processes is done through reestablishing the process context within 
the operating system at the destination node. This operation also makes the process itself 
available to an inter process communication mechanisms at its new location. Depending on the 
particular migration mechanism and the support by the operating system access to open files is 
also reestablished. 

System Migration 

Software systems establish communication via high level remote message passing 
mechanisms and to a lesser extent via raw network protocols. In most cases the addressing of 
system objects is already provided by the software systems themselves. In some cases even 
support for the management of location changes of system objects is available. 

The migration mechanism is in most cases part of a supporting software layer assumed to be 
available at the destination especially within environments that use distributed shared memory 
techniques. Some software systems define a special software entity as the receiver for object 
migrations. 

Dynamic binding is provided as part of the software system or by the language environments 
supported by the software system. Some environments that implement system migration are 
based on virtual machine abstractions and enable dynamic loading of new functionality while 
systems that work with traditional file based compilation usually require executables to be 
deployed prior to migration. 

Language Migration 

Systems supporting language migration also communicate either via remote method invocation 
mechanism or via raw network protocols. If not already covered by remote method invocation 
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mechanism that offer symbolic names, addresses of destination environments are implemented 
as native network addresses, especially for raw network protocols. 

The migration mechanisms are either part of the language environments or built on top of these 
for example as supporting libraries. Special objects are sometimes defined as receiving and or 
sending entities for migration requests. In some cases, the migration mechanism is 
implemented at the application level as a library and becomes an integral part of an application. 

Dynamic binding is in many cases already provided by the language environments or has been 
added to the language used as for example in Choices [CI+1993] that extends C++ with 
dynamic loading and binding that is used in the FreezeFree migration mechanism [Rou1995]. 
As not many language environments support dynamic loading, deployment of executables prior 
to migration required for language migration in many cases. 

2.3.2 Support 

Several common features of underlying operating systems, software services or language 
environments can be used as support for the implementation of migration mechanisms. Various 
kinds of so-called "transparencies" as well as several other forms of support can be identified. 
This discussion focuses on customary features and does not include some extreme cases like 
transactional communication mechanism [Lis1988a]. 

Transparencies 

In the context of distribution the term transparency denotes the characteristic of a software 
system to be able to hide differences between local and remote operations. Transparency 
provides the illusion, that all operations are performed locally and hides the details of the 
management of remote operations from the developer and the user.  

A definition of transparency in the context of migration has been paraphrased by Horn and 
Cahill [HoC1991 page 359]: 

"By transparent access we mean that access to an object via an object reference 
when that object is remote from the reference is syntactically equivalent to when it is 
local, and does not require code to be rewritten, recompiled or even relinked if the 
proximity changes." 

Compete transparency of distribution is not desirable in the context of migration as the 
awareness of distribution is an inherent requirement of any migration mechanism. The 
availability of transparencies can nevertheless simplify several aspects of the implementation of 
migration significantly. 

Several forms of transparencies [Bor1992] exist and some of them can be useful for the 
implementation of object migration. The most common forms of transparencies are location, 
access, invocation, concurrency, failure and replication. Additionally transparency of migration 
can also be defined. 

• Transparency of Location 

Transparency of location is related to the addressing and naming of software entities within 
a distributed system as an object cannot determine whether another object it references is 
local or remote. A software environment that provides location transparency manages the 
necessary mapping between local references and remote locations of objects automatically. 
Although complex to be implemented transparency of location alone is not very useful 
without other forms of transparencies. 

• Transparency of Access 

Transparency of access builds upon transparency of location as its provides location 
independent access to the state of objects. In addition to the location independent 
reference, access operations can be initiated and are performed in the same way 
regardless whether the object accessed resides locally or on a remote system. Information 
stored in a remote object is thus available in the same way as locally stored information. 
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• Transparency of Invocation 

Transparency of invocation enables that invocations for remote objects appear to be the 
same as for local objects. As invocations pass parameters and yield results, location 
independent references to the respective objects are used wherever the transfer of atomic 
values is not sufficient. Transparency of invocation is therefore dependent on transparency 
of location. 

In the presence of transparencies the only noticeable difference for the developer or user of 
distributed applications is the additional time it takes to perform a remote operation in 
comparison to a local one. The other forms of transparencies, namely concurrency, failure and 
replication are of less interest in the context of migration. 

With transparency of concurrency the result of a remote operation is the same whether the 
operation is carried out in parallel or not. Transparency of failure yields fault tolerance as the 
result of a remote operation is the same whether an error occurred during the communication 
for the invocation or not. 

With transparency of replication an access to an object in a distributed system is performed 
regardless whether several physical copies of so called replicas of one logical object exist or not 
[SDP1991]. Replication can be seen as orthogonal to migration in the sense that replication 
implies a copy-operation while migration implies a move-operation. Replication requires that all 
replicas of an object are kept consistent and implies a significant network utilization through a 
synchronization protocol and. If replication and migration are combined replicas can be 
established through migration and can themselves be migrated. 

Interestingly enough, migration can also be made transparent. The term transparency of 
migration denotes, that operations on objects can be invoked in the same way regardless 
whether the referenced objects have been migrated or not. In some cases, migration can even 
be made transparent to the objects that are migrated. 

Transparency of migration can for example be implemented using proxy objects. An object that 
is migrated can be replaced by a proxy in the context of the source environment. The proxy 
object provides the illusion that the original object was not migrated at all. Figure 2.e illustrates 
the use of proxy objects for transparency of migration.  

Environment A Environment B

Object a1

Object m1

Object b1

Proxy pm1

Object m1

 
Figure 2.g: Transparency of migration can be achieved in the context of the 

source environment using a proxy object in place of the object being 
migrated (show here as ellipses). In the above example, proxy pm1 is 
substituted for object m1 that is migrated to environment B. After 
migration the reference from object a1 to object m1 is referring to 
proxy pm1, messages sent to proxy pm1 will be forwarded to object 
m1 in environment B and results will be returned vice versa. 

Transparencies can be implemented differently depending on the characteristics of the 
particular operating system, software system or language environment and the communication 
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mechanism used. Either explicitly or implicitly remote references as well as proxy objects are 
employed and used by existing migration mechanism (see also chapter 4 page 158). 

In all cases, the information about the distributed location of an object has to be updated if the 
object is migrated. The techniques that can be used to perform the required update are 
described in the following sections and can be called immediate update, forward pointers, home 
node, name server and broadcast. 

• Immediate Update 

An immediate update can be performed when a migration request is processed through a 
direct update of all remote references of an object with the new location information. 
Although feasible only in environments where all remote references that point to an object 
are know an immediate update may still be prohibitively expensive to perform. If a remote 
reference is unreachable due to a network partition an immediate update operation will fail 
at least partially. 

• Forward Pointers 

A forward pointer refers from the source of a migration to the destination and can be 
followed by an object that tries to access the migrated object at its old location. 
Sophisticated mechanisms have been developed to update remote references in the 
context of chains of forward pointers. Although an update can be postponed in some cases 
until possible network partitions have been overcome, forward pointers are still susceptible 
to failures if the chain of forward pointer is broken due to malfunctioning nodes. 

• Home Node  

A home node can be used for an object as a central point of access. With each migration 
the new location information of an object is stored at its home node and other objects can 
update their remote references via the home node. The home node is in most cases the 
location where the object has been created, but reassignment of home nodes is also 
supported by some systems. Unfortunately, the home node is a single point of failure in the 
case of a malfunction. 

• Name Server 

A name server can be used to store location information for each registered object and can 
resolve queries for objects when remote references become outdated. The use of a name 
server requires the assignment of unique names or identifiers to objects in order to 
distinguish them from each other. Name servers can also be clustered into a federated 
group of mutually updated servers in order to avoid a single point of failure. 

• Broadcast 

A broadcast sends a query for an object to all known hosts of a system, one of which will 
answer with the correct location information. As a broadcast usually requires an expensive 
network operation it is most often used only as a last resort. If no host answers a request in 
a certain time frame the particular object has to be regarded as unavailable. In the case of 
network failures the necessary retries will increase the already costly overhead of broadcast 
operations. 

Object migration mechanisms can take advantage of some forms of transparency. Especially 
beneficial to object migration are transparency of location, access and invocation, as objects are 
moved between environments but related objects can remain at their locations. However, full 
transparency is not desirable in the context of migration as the location of each object has to be 
determined if necessary.  

Transparency of failure can be helpful in order to prevent inconsistencies if network failures 
occur while object migrations are in progress. Transparency of concurrency and replication are 
less beneficial as migration mechanism must be able to access objects exclusively and 
unambiguously. Table 2.c provides an overview of the usage of transparencies among 
migration systems.  
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Transparency Process  
Migration 

System  
Migration 

Language 
Migration 

Location x x () 

Access   () 

Invocation x x (x) 

Failure () () () 

Table 2.c: The different forms of transparencies are available to migration 
mechanisms to a varying extent. Location transparency is available to 
most migration systems with only sparse support by language 
environments. Transparency of access at the object level is usually 
not available for process and system object and only supported by 
few language environments. Transparency of invocation is generally 
available in the form of inter process communication and remote 
method invocation mechanisms respectively. Transparency of failure 
is only seldom implemented directly but optionally available in the 
context of transaction services. 

The use of transparencies by migration mechanisms is limited and usually guided by the 
availability of the respective services in the particular operating systems, software systems or 
language environments. Only few migration systems implement transparencies as part of the 
migration mechanisms themselves. 

Cross-platform transparency mechanisms as for example CORBA [Sie1996] that provides 
transparency of invocation can be used for system and language migration on the basis of 
supporting libraries in combination with simple development tools like preprocessors. The 
CORBA lifecycle service [PeG1999] in particular supports location changes and uses a name-
server approach to update location information. 

Process Migration 

Process migration systems usually make use of transparencies provided by the underlying 
operating system as in System V [TLC1995]. Transparency of location is available among 
distributed operating systems in terms of globally unique process identifiers as well as 
transparency of invocation in the form of location independent inter process communication 
mechanism [PG+1996]. 

Location and access transparency is implemented in Charlotte [ArF1989] through named inter 
process communication links rather then host-addresses. Some process migration mechanisms 
as Accent [Zay1987a] provide limited transparency of failure as they are able to cope with the 
malfunction of a destination host during migration. 

Sprite [DoO1990] achieves location, access and migration transparency through redirection via 
a home node. A Sprite process may migrate any number of times but can still be addressed via 
its home node i.e. the node its was originally started on. The migration is also transparent to the 
migrated process which is not able to determine that it is not running on its original host. 

Different kinds of update techniques are used by process migration systems. Immediate update 
of location information is performed by Charlotte [ArF1989] where both ends of communication 
links are known. However the designer of Charlotte regret this decision as Artsy and Finkel 
[ArF1989 page 53] have stated: 

“In retrospect we would have used a different [transparency] implementation for 
Charlotte [...]. We would have used hints for link addresses, which are inaccurate 
but can be readily checked and inexpensively maintained, rather than using 
absolutes, whose complete accuracy is achieved at a high maintenance cost”  

Immediate update is also used by Locus [Thi1991] where a pipe with multiple readers and 
writers is coordinated via a single storage site that is informed of migrations of participants. 
Forward pointers are used for example by DEMOS/MP [PoM1983] and broadcasts are used in 
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System V [TLC1985] to publish the new location of a migrated process. The FreezeFree 
migration mechanism implemented on top of Choices [RoC1996] also sends notifications of 
location changes. 

System Migration 

Software systems that provide migration for large grained system objects usually employ their 
own location transparency mechanism based on global name spaces. These are mapped to 
actual network addresses through specialized name servers. Transparency of access and 
invocation are also often provided as a native implementation but transparency of failure is not 
commonly implemented. Transparency of migration is for example implemented in Electra 
[Maf1993a] via smart proxies that hide migrations of system objects. 

The main location update technique used among system migration environments are forward 
pointers as implemented in Commandos [HoC1991] in conjunction with name servers for finding 
previously unknown objects. The concept of a home node is also used by agents systems as in 
the Mobile Object Layer [CB+1998].  

Language Migration 

Language environments are usually not designed with distribution in mind and instead highly 
optimized for local operations. As a consequence, transparencies are only seldom "built into" 
these environments, with the notable exception of Emerald [Raj1991]. However, in several 
cases transparencies have been successfully added on top of existing languages as in Beta 
[BrM1993] or Smalltalk [GaY1993].  

Location update techniques used by language migration systems include forwarding pointers as 
used by Emerald [JL+1988] and Trellis/DOWL [Ach1993b] as well as in the agent system like 
Sumatra [ARS1996]. The home node concept is used in Mozart [RB+1998] and in DC++ 
[ScM193b] where the home node of an object may be changed if the object is moved between 
DCE domains. 

Emerald [JL+1988] implements broadcasts of queries as a last resort if forward pointers are 
unavailable due to node crashes. Emerald also introduced unavailability handlers that work like 
exception handling mechanisms in the case that the location information can still not be found 
even after a broadcast operation. 

Other forms of support 

In addition to the transparencies described above several other features of underlying operating 
systems, software systems or language environments are used by migration systems. Apart 
from the extreme case of hardware support within shared memory multiprocessors all other 
services are software based. However, not all available means of support like distributed shared 
memory, distributed file systems, inter process communication, remote procedure call facilities, 
and persistency mechanisms are used by all migration systems. 

• shared memory multiprocessors 

Shared memory multiprocessors (SMM) implement common address-spaces for high 
performance parallel computing through specific hardware architectures for tightly coupled 
processing units. These architectures allow address-spaces to be swapped between individual 
processors of a multiprocessor system. 

It appears questionable whether such an extreme utilization of specialized hardware should be 
considered as process migration. Support for shared memory multiprocessors can rather 
regarded as a mere machine specific scheduling mechanism as Smith [Smi1988] states: 

„Process migration is most interesting in systems where the involved processors do 
not share main memory, as otherwise the state transfer is trivial. A typical 
environment where process migration is interesting is autonomous computers 
connected by a network“ 

Although included in this overview as one extreme form of support for process migration, shared 
memory multiprocessors do not affect issues of heterogeneity of hard- and software since only 
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for very specialized operating systems are used for migration among homogeneous hardware. 
As a consequence shared memory multiprocessors will not be further discussed. 

• Distributed Shared Memory 

The technique of distributed shared memory (DSM) has been developed for loosely coupled 
networks of processing units like workstation clusters. Distributed shared memory enables 
memory segments to be mapped consistently across distributed address-spaces as in Amber 
[CA+1989b]. The technique is bound in most cases to the size of memory pages and to the use 
of homogeneous hardware and operating systems. 

Distributed shared memory can be used by migration mechanisms to transfer all necessary 
kinds of information during migration through shared memory regions. The restriction of the 
memory transfer to the size of memory pages limits the usefulness of this technique for finer 
grained objects as well as the performance of the information transfer. 

• Distributed File Systems 

Distributed file systems (DFS) provide location independent access to secondary storage 
devices. In most cases distributed file systems provide transparency of access to files stored on 
remote machines or central file servers. Implementations of DFS are achieved through 
Client/Server protocols as well as through various forms of caching schemes combined in some 
cases with replication or even voting algorithms [Bor1992]. 

Migration mechanisms often use distributed file systems as common repositories for shared 
functionality or as a means for the transfer state and control information. Some process 
migration mechanisms use distributed file systems to store and transfer checkpoint images of 
processes during migration, in some cases in cooperation with the demand paging mechanisms 
of operating systems. 

• Inter Process Communication 

Almost all operating systems implement some form of inter process communication (IPC) 
mechanisms that allow information to be transferred between processes. IPC is established 
through signals, i.e. software interrupts, pipes, i.e. buffered streams of bytes, shared memory 
regions or other techniques as well as combinations of the aforementioned.  

For most distributed operating systems inter process communication mechanisms have been 
extended to work also between remote machines. In a few cases all communications between 
user processes and the operating system are performed through IPC, including input/output 
operations and file handling. 

Inter process communication can be used by migration mechanism for the transfer of 
information during migration. Some examples of process and system migration use IPC 
mechanisms of the underlying operating systems. Language migration systems do not use inter 
process communication mechanisms due to the relative high communication overhead for fine 
grained objects implied by the necessary system calls. 

In the context of process migration IPC itself is affected by migration. Since migrating a process 
takes a significant amount of time the operating system can in most cases not deliver IPC 
messages that are sent by other processes. Either the operating system has to handle this 
situation or other processes need to be informed that the process being migrated is unavailable. 

Depending on the operating system implementation, IPC messages for a process in transit have 
to be either queued at the sender of the message, the source of the migration or the destination 
of the migration. When the migrated process becomes available again the queued messages 
have to be forwarded. Alternatively the delivery of IPC messages may also be rejected and has 
to be resent by the originating process. 

After migration, the target of an IPC communication may reside at a different location and the 
communication requests have to be redirected. As mentioned before this can be done through 
forward pointers from the source of a migration, symbolic names that can be resolved via name 
server or broadcasts of queries can be used to update the location information either by the 
inter process communication mechanisms themselves or by the sender of an IPC message. 
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• Remote Procedure Call and Remote Method Invocation 

Many language environments can be extended in the context of distribution with the technique 
of remote procedure calls (RPC). In the case of object-oriented language environments an 
analog technology has been developed in the form of remote method invocation (RMI) that 
extends local method invocation in the context of distribution.  

Systems that offer transparency of invocation implement either technique but implementations 
of RPC or RMI are not necessarily transparent. Some systems distinguish between local and 
remote invocations and message that are sent to remote systems have to be constructed 
explicitly (see also chapter 4 page 158 for a detailed discussion). 

Although the availability of non-transparent remote method invocation is better than no support 
at all, migration mechanism will become more complicated if remote method invocations have to 
be managed explicitly. Even worse, the object to be migrated will have to be designed with both 
local and remote operations in mind, which will prohibit the use of migration in some cases. 

• Persistency 

Some object-based environments use persistence in order to extend the lifetime of objects 
beyond the execution time of the programs they were created with. Objects are made persistent 
by saving their state to secondary storage media for later retrieval. The persistent object storage 
mechanism can either be implemented by the objects themselves or by the corresponding 
environments. Alternatively, object database management systems (ODBMS) can be used that 
also provides additional services like indexing of the stored data. 

Persistency can be used for the transfer of the state of objects during migration of system or 
language objects [SiL1996, SiS1997]. An object that is made persistent during migration is 
stored in a serialized format that can be read by the destination environment in order to recreate 
of the migrated object. Some object database management systems support even 
heterogeneous environments through a platform independent storage format and perform the 
necessary conversions as part of the save and load operations. Figure 2.f illustrates the use of 
persistency in the context of migration systems. 

Environment A Environment B

Object a1

Object m1

Object b1

Object m1

ODBMS

Object m1

 
Figure 2.h: Persistent object storage mechanisms can be used to migrate the 

state of objects between environments. In the above example, object 
m1 is transferred to environment B using a serialized representation 
(shown here as a rectangle) that is stored by a persistent storage 
mechanism. The object is retrieved from its persistent storage upon 
recreation of the migrated object within the destination environment. 

Only the state of objects can be transferred via a persistency mechanism. The behavior of 
objects is usually assumed to be available from within the application program that makes use 
of the persistent object storage mechanisms. The application code therefore has to be deployed 
at the destination environment prior to migration before the persistent storage can be used for 
migration purposes.  
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• Network Transport 

In general, migration mechanisms can be built on top of network transports without any further 
support by the operating systems, software systems or language environments. Under these 
circumstances, a migration mechanism has to implement its own communication protocol as 
well as its own representation of the objects for the transfer over the network.  

Despite the additional effort many language based migration mechanisms and even some 
system and process migration mechanisms, are implemented using raw network transports. The 
main reasons are lack of appropriate support as well as the need for specifically optimized 
protocols. 

The use of support technologies by migration mechanisms not only depends on the general 
availability of the supporting software layers but also on significant advantages for the migration 
process. Table 2.d provides an overview of the use of software support by migration systems.  

 Process  
Migration 

System 
Migration 

Language 
Migration 

Shared Memory 
Multiprocessors 

()   

Distributed 
Shared Memory 

(x) () () 

Distributed File 
Systems 

(x) (x) (x) 

Inter Process 
Communication 

(x) ()  

Remote 
Procedure Calls 

 (x) (x) 

Remote Method 
Invocation 

 (x) (x) 

Persistence  () () 

Network 
Transport 

() (x) (x) 

Table 2.d: Migration mechanisms make different use of available support 
technologies. Shared memory multiprocessors are the only example 
of hardware support, available solely for process migration. 
Distributed shared memory is often employed in process migration 
and to some lesser extent in system and language migration. 
Distributed file systems are utilized by most migration systems. Inter 
process communication mechanisms are mainly used for process 
migration, remote procedure call mechanisms for system migration 
and remote method invocation mechanism for language migration. 
Persistence is occasionally found in system or language migration. If 
no other support is available native network protocols are used. 

Most migration systems utilize only the support readily accessible to them from existing software 
layers. If adequate support is not available simple alternatives are implemented in most cases. 
Only few migration systems implement generally applicable solutions for missing support 
functionality. However, some innovative approaches implement support functionality from the 
outset especially if they were intended to break new ground. 

Process Migration 

Process migration mechanisms are usually based on the support provided by the underlying 
operating systems. In most cases, inter process communication facilities are used to initiate and 
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control the migration process and for the transfer of process state and context as in Accent 
[Zay1987a]. System V [Che1988] even redirects all input/output operations via IPC. 

Some process migration mechanisms use distributed file systems for the transfer of snapshots 
of address spaces sometimes in conjunction with demand paging mechanisms as for example 
in Sprite [DoO1990]. In some cases, distributed shared memory mechanisms are also used for 
the transfer of process state. 

During migration, pending inter process communication requests can be queued and forwarded 
by the source of a migration as in Amoeba [SZM1994], DEMOS/MP [PoM1983], Rhodos 
[PG+1996] and System V [TLC1985]. Alternatively, the sender of an IPC requests can resent 
their messages as in Charlotte [ArF1989]. 

System Migration 

Some large software systems implement distributed shared memory mechanisms as support for 
system migration. Remote procedure call mechanism and occasionally inter process 
communication are used to control the migration process. Distributed file systems and 
persistency mechanisms are employed to transfer the functionality and sometimes also the 
state of system objects between environments. 

The software system Guide [BB+1991] based on Commandos [CH+1993] uses persistence to 
migrate objects and a combination of persistence and memory mapping is used in the agent 
system PLANET [K+1999b] to transfer agents between environments. Agent systems also use 
persistence as for example the Open Services Model (OSM) [LG+1997] that creates profiles, 
which include state and functionality of agents. 

The handling of remote procedure calls and remote method invocation during migration are 
often implemented by the particular software systems themselves. COOL [HMA1990] for 
example implements transparent message forwarding in its communication layer. The agent 
system Concordia [WP+1997] also queues messages for agents. 

Language Migration 

Language environments that implement migration, apply remote method invocation 
mechanisms to control the migration process and to transfer fine-grained objects. In some 
cases persistence mechanisms are used to help in the transfer of object state and distributed 
file systems are used to make the functionality of objects available. Distributed shared memory 
is only rarely applied because in most other cases basic network transport services are used. 

For example the parallel processing language Orca [BKT1992] uses distributed shared memory 
to migrate passive objects between threads that run on different processors. Language 
independent runtime support for distributed shared memory has also been proposed with the 
Tarmac [LuA1990] system that could be employed by migration mechanisms. 

2.3.3 Abstractions 

Migration mechanisms need to transfer the state, functionality and computations of objects 
between the participating environments. A variety of abstractions is available and different 
abstractions can be used for each kind of information although not all formats are suited equally 
well in all cases. 

The spectrum of available formats reaches from hardware oriented binary representations, 
through virtual representations for virtual machine implementations and intermediate 
representations used in language processing, to actual source code as well as at least 
theoretically to formal abstractions.  

• binary 

A binary representation9 provides no abstraction or the most primitive one, that is stored in 
the main memory of a particular machine and can be interpreted by a particular processing 

                                                 
9  The term “binary” may be misleading as all information is binary coded within today's computer systems. A more precise 

definition would be “machine interpretable representations of state and functionality”. 
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unit directly. Binary representations depend on the hardware architecture they where 
designed for and can be used directly for migrations among homogeneous environments. 
State, functionality and computations can all be represented in binary form. 

While being specific for a certain kind of processing hardware the main advantage of binary 
representations is that the performance of the direct execution by the central processing 
units (CPU) is preserved. Changes to binary representations, for example the update of 
references, are on the other side more tedious than in other representation formats. 

• virtual 

A virtual representation is a more abstract yet still machine-oriented form of representation 
used in the context of virtual machines as implemented by systems like Smalltalk 
[GoR1983] or Java [GJS1996]. A virtual machine is an efficient and portable native machine 
code program that interprets so called virtual instructions or byte codes that are generated 
instead of native machine code from a source program. The interpretation of these virtual 
instructions is usually at least an order of magnitude slower than the direct execution of 
native code by a particular processing hardware. 

The biggest advantage of virtual machine architectures is the platform independence that is 
favored by many migration mechanisms. While only functionality is represented by virtual 
abstractions, state and computations of the respective objects are dependent on the 
definition of the virtual machine as well. 

• intermediate 

An intermediate representation also achieves platform independence. Used at various 
stages in the process of program compilation in the form of abstract syntax trees (AST) it 
represents the state of compilation before a decision about code generation for a particular 
hardware platform or virtual machine has been made. 

Intermediate representations can be interpreted directly or compiled into native code. Some 
hardware independent distribution formats are based on similar representations that are 
compiled into native machine code during load time. Intermediate representations are used 
mainly to represent functionality and in some cases computations in the form of closure. 

• source 

A source representation, i.e. the textual source code written in a human legible 
programming language, can also be used as an abstraction. Source representations are 
used mainly for the transfer of functionality. State and computations can also be 
represented textually but require conversions to and from their in-memory representations 
in binary form. 

The source code transferred between environments has to be compiled at the destination 
into a native representation. Source code representations are therefore directly dependent 
on a particular programming language and limited by the availability of the corresponding 
tools at the destination. 

• formal 

A formal representation can use specification techniques like state machines, petri nets, 
higher order logic, denotational semantics or other mathematical formalisms to provide an 
abstraction for migration as well. The biggest advantage of such formal abstractions is that 
certain characteristics of these representations can be mathematically proven. 

Unfortunately, their use for practical purposes is limited as formal representations are in 
most cases only available for special research oriented environments. Their usage is 
therefore limited to dedicated software environments or specific problems of common 
interest that can be formalized platform independently. 

The existing migration mechanisms employ the whole spectrum of available representations. 
However not all representations are used at all levels and only few system use several formats 
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for different purposes. Table 2.e provides an overview of the use of abstractions by migration 
systems. 

 Process  
Migration 

System 
Migration 

Language 
Migration 

Binary x (x) (x) 

Virtual  (x) (x) 

Intermediate   () 

Source ()  () 

Formal   () 

Table 2.e: Various abstractions are used by migration mechanisms for different 
purposes. Binary representations are almost universally used for 
process migration systems and to a lesser extent for system and 
language migration. Virtual representations are frequently used for 
system and language migration. Only few examples exist for the use 
of intermediate representations in language migration. Source code 
representations are sometimes used for language migration and in an 
extreme case also for process migration. Finally, formal 
representations are used in extreme cases of language migration. 

The use of abstractions by migration mechanisms is mainly guided by the level and unit of 
migration. Binary representations are the default representation for process migration and 
different kinds of representations are used for various purposes in the context of system 
migration and language migration. 

Process Migration 

Process migration systems are usually based on binary representations since processes are 
defined by machine dependent in-memory images of address-spaces. Other abstractions would 
at least theoretically also be feasible for process migration as well but no actual examples could 
be found. One extreme form of process migration at least proposes a generated source 
representation for the migration of a process that includes its computational state [ThH1991]. 

System Migration 

Software systems that provide migration also use binary representations for large grained 
objects, especially if memory-mapping techniques are employed. Some examples of system 
migration however use virtual abstractions both internally and for the transfer between nodes as 
for example Commandos [CH+1991] that specifies a generic runtime environment. The agent 
system Omniware [LSW1995] also uses virtual code to migrate system objects. 

Language Migration 

Language based migration mechanisms take advantage of all forms of abstractions. Binary 
representations are employed as an effective way for the transfer of state as for example in 
Emerald [Jul1993]. Virtual abstractions are used by language environments that are based on 
virtual machines like Distributed Smalltalk [GaY1993]. Agent systems exist that use virtual byte 
code as well, like for example Concordia [WP+1997]. 

Only few language migration systems use intermediate representations for the transfer of 
functionality and computations as for example Obliq [Car1994]. Source code representations 
are mainly employed for the transfer of functionality as in REV [StG1990a]. Some extreme 
cases apply formal abstractions even for migration of functionality as in the agent system TNET 
[HCS1997] where state machines are used to capture the semantics of agents. Another 
example is the π-calculus that is used in some systems like Seal [ViC1998]. 

2.3.4 Algorithms 

The very heart of every migration mechanism is the migration algorithm that performs and 
controls the migration process. The migration algorithm is invoked after a migration has been 



2.3  Migration Mechanism 53 

  53 

initiated through a migration request. Almost all migration algorithms used by existing migration 
systems implement in some way or another the following three obvious steps: 

1. a representation of the object to be migrated is generated at the source environment 

2. the representation is transferred to the destination environment 

3. the object is made available at the destination and its remains are deleted at the source. 

The typical migration algorithm starts after the initiation of migration through a migration request 
that specifies at least the object to be migrated and the destination it should be migrated to. As 
a first step, a representation of the unit of migration is generated at the source that 
encompasses the information necessary to recreate the object at the destination. One or 
several of the available abstractions can be used for the representation. 

The generated representation is transferred to the destination through an available 
communication medium. In some cases, the transport mechanism is able to cope with 
communication failures and to ensure a reliable transfer of the representation. In any case, a 
migration algorithm must be able to determine whether a transfer could be completed or not. 
The migration algorithm has to either retry the migration or abort the migration and make the 
object available again at the source. 

If the communication succeeded, the transferred representation is used to recreate the 
corresponding object at the destination, possibly using functionality already available at the 
destination or retrieved from other sources like distributed file services. The migrated object is 
then made available at the destination using appropriate support like transparencies, and 
continues its operation at the destination. The completion of migration is reported to the source 
environment, which will then delete what is left of the original object. 

As part of the migration algorithm both source and destination environments need to cooperate. 
Some steps of the migration algorithms are performed at the source while others have to be 
performed at the destination. In most cases, the source will control the overall progress of the 
migration process and will give up this control only at the very last moment, when the object 
becomes available again at the destination. 

Process Migration 

Various forms of optimizations have been developed for process migration systems in order to 
minimize the latency of migration, i.e. the time a process is unavailable due to its migration. 
Most optimized process migration algorithms employ memory transfer strategies in cooperation 
with the "demand paging" memory management of the underlying operating system. 

A direct transfer of the address-space is used for process migration in Amoeba [SZM1994], 
Charlotte [ArF1989] and Locus [Thi1991]. A combination of the transfer of the process state to a 
file server with a subsequent fetch of necessary pages by the destination is used in Sprite 
[DoO1990]. An algorithm called pre-copying is used in System V [TLC1985] that incrementally 
copies dirty pages to the destination until a threshold is reached and the transfer is finally 
completed. Lazy-copying is used in Accent [Zay1987a] where only few pages of the process are 
transferred at first and the remaining ones are copied as needed through demand paging. 

The goal of the optimizations of the migration algorithms is to decrease the latency of migration, 
i.e. the time a process is unavailable. While the variations of the demand paging mechanisms 
used work in parallel with the continued execution of the process at the destination they also 
create unwanted residual dependencies (see also page 54). 

The process migration algorithm with the shortest latency is the FreezeFree algorithm 
[RoC1996] implemented for Choices [CI+1993] that only transfers one code, stack and heap 
page during migration and does not freeze inter process communication at all. However 
comparatively long residual dependency are created as dirty files are flushed to a file server and 
pages will be demanded from the source until they flush operation has ended. 
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System Migration 

Large software systems that provide migration for large grained objects often employ a 
memory-mapping phase before or after the transfer of a usually binary representation. The 
functionality of the migrated object is either assumed to be deployed prior to migration or needs 
to be made available at the destination before the object will be useful.  

The same holds for objects that are transferred using virtual representations. For example, 
Commandos [CH+1991] transfers a binary representation of the state of system objects via a 
shared memory mechanism and relies on the availability of the virtual representations of the 
corresponding functionality through a distributed file system. 

Language Migration 

Algorithms for the migration of language objects often have to consider dependencies between 
objects before a representation can be generated and transferred. The functionality of the object 
being migrated is either assumed to be available at the destination or will be transferred as well. 
The recreation of the object at the destination involves the dynamic binding of the object and its 
functionality within the respective language environment. 

Exceptions to the usual migration algorithm can be found as well. A migration mechanism that 
uses the CORBA lifecycle service shares the state of objects during migration, which means 
that the object is available during migration at both source and destination environments and 
kept consistent through a synchronization protocol [Peg1999]. 

Some agent systems do also employ different migration algorithms as for example PLANET 
[KM+2000] that uses asynchronous message passing between agent environments. An agent is 
transferred via memory mapping to a persistent store and on to the destination but may be 
already destroyed at the source while the destination may not even have started to receive it. 

2.4 Properties of Migration 

Migration mechanisms can be characterized through several properties of implementational, 
conceptual and theoretical nature. Beyond characteristics of the initiation and completion of 
migration, issues of consistency and fault tolerance are considered as well as the general 
applicability of the particular migration mechanisms. 

• preemptive 

The initiation of migration can be characterized as preemptive, when a migration can take 
place at any time. Most migration systems however defer migration requests until for 
example system calls or input/output operations have concluded. Some systems allow 
migration requests only at so called migration points in the program code [Ple1996].  

Migration points are sequences of machine instructions that do not conflict with the 
execution of a migration request, for example the code between system calls. Other 
migration systems restrict migration to inactive objects, i.e. only objects which do not take 
part in any computations at the time a migration request is received can be migrated. 

• atomic 

The migration of an object is usually expected to be atomic, i.e. the object is transferred to 
the destination either completely or not at all. This property is also known as "at most once" 
semantics. Some migration mechanisms are able to detect and handle communication 
failures and network partitions as well as node failures themselves.  

Unfortunately, many migration mechanism compromise this intended transactional nature of 
migration due to performance considerations or limitations of the implementation. The 
importance of atomicity with regard to process migration is emphasized by Artsy and Finkel 
in the design of Charlotte [ArF1989]: 

“Migration may fail in case of machine and communication failures, but it should do 
so completely. That is, the effect should be as if the process were never migrated at 
all or, at worst, as if the process had terminated due to machine failure”  
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• residual dependent 

Most optimization techniques used for migration create so-called residual dependencies, 
i.e. dependencies of the migrated object on the availability of services of the source 
environment. In the worst case, the migrated object will not be functional within the 
destination environment if the source environment becomes unavailable. Residual 
dependencies are unwanted side-effects as stated by Steketee et al. [SZM1994 page 197]: 

“In general residual dependencies are undesirable because of the chain of 
dependencies when a process is migrated several times and the continuing use of 
resources on the source machine. This has detrimental effects on both performance 
and reliability.” 

• fault tolerant 

The property of fault tolerance offered by some migration mechanisms, is related to 
atomicity. In contrast to the "all or nothing" approach of atomicity, fault tolerant mechanisms 
are able to recover from failures during a migration and continue the overall process 
eventually leading to a successful migration. 

The disadvantage of fault tolerance is the performance degradation as well as the required 
additional resources resulting from for example additional retries of network communication 
or for example from the redundant storage, for example within a logging mechanism, of the 
information that is transferred during migration. 

• symmetric, transitive 

One theoretical characteristic of a migration mechanism is the nature of sequences of 
migrations it is able to perform. A migration mechanism is called symmetric if an object that 
has been migrated from a source environment to a destination environment can also be 
migrated in the opposite direction. 

A migration mechanism is called transitive if objects can be migrated from environment A to 
environment C, when migrations from environment A to environment B and from 
environment B to environment C are possible. Although almost trivial for many existing 
migration systems these theoretical properties are much more difficult to fulfill in the 
heterogeneous case. 

Apart from the obvious conflict between fault tolerance and performance the ideal migration 
mechanism is at least atomic, symmetric and transitive. Characteristics like preemptivity, fault 
tolerance as well as the lack of residual dependencies are only rarely achieved. Table 2.f 
provides an overview of characteristics of migration systems. 

 Process  
Migration 

System 
Migration 

Language 
Migration 

preemptive (x) () () 

atomic (x) (x) (x) 

fault tolerant () () () 

residual 
dependent 

(x) (x) (x) 

Symmetric (x) (x) (x) 

Transitive (x) (x) (x) 

Table 2.f: The properties of migration mechanisms differ. Preemptive migration 
is seldom found among migration systems other then process 
migration. Most migration systems aim for atomicity but only few are 
able to work fault tolerantly. Residual dependencies are common 
among migration systems. Almost all migration systems operate 
symmetrically and transitively with only few exceptions. 
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The properties of migration mechanisms vary considerably among existing systems with 
different consequences for the objects being migrated. Whether a particular property can be 
achieved may also depend on the individual objects to be migrated as well as on the 
participating environments, especially in the heterogeneous case. 

Process Migration 

Preemptive migration is the norm for process migration systems with the exception of active 
system calls. Higher prioritized system calls will be finished before migration requests are 
serviced. Most process migration mechanisms implement atomicity because they abort the 
migration if the destination host fails. However only few systems provide fault tolerance if, for 
example a source node fails. 

A major issue of process migration are residual dependencies usually with regard to the 
process context within the source environment, if some resources still need to be available. 
Continuous access to open files can be achieved through distributed file systems and network 
connections as well as inter process communications can be rerouted, but direct hardware 
access can never be migrated. Some optimization techniques also create residual 
dependencies at lest temporarily. 

Surprisingly enough not all process migration systems operate symmetrically or transitively 
although most systems do. The residual dependencies created by many process migration 
mechanisms prevent or at least impede the symmetric or transitive migration of process objects 
after an initial migration. If residual dependencies exist only temporarily subsequent symmetric 
or transitive migrations become possible after a latency period. 

For example Amoeba [SZM1994] avoids residual dependencies and passes a token to ensure 
that at most one copy of a migrated process is running. However, the loss of a process in 
migration cannot be avoided if the source host fails during migration. Charlotte [ArF1989] avoids 
residual dependencies as well. 

Temporary residual dependencies are created in MOS [BaL1985] as any part of the process 
can remain at the source and is fetched only on demand. A temporary residual dependency on 
the virtual memory image of the source process is also created in Accent/Spice [Zay1987a] as 
well as for the access to files of the source environment which are accessed via the IPC 
mechanism. The same holds for System V [TLC1985] that performs file input/output operations 
via inter process communication as no distributed file system is available. 

Sprite [DoO1990] explicitly employs residual dependency on the home node for every migrated 
process in order to achieve complete migration transparency. No other residual dependencies 
exist if a process is migrated again to another node that is different from the home node. In 
Sprite some part of a migrated process always remains at the source and the source acts as a 
paging device for the migrated process. 

System Migration 

Software systems providing migration for large grained objects usually operate non-
preemptively because the interactions of the various system objects can be fairly complex, 
especially in the multi-threaded case. Atomicity of migration is in most cases achieved through 
an abort of the migration in the event of communication failures. 

System migration mechanisms also have to address issues of fault tolerance and residual 
dependencies as system objects are often large and dependent on one another. Symmetric and 
transitive migrations are rare in reality because system migration is mostly used for sets of 
objects to be collocated rather than for frequent moves of objects. Residual dependencies are 
created by some system like Amber [Ca+1989b] that depends on the home node for the lookup 
the new location of a migrated object. 

Language Migration 

In many cases, migration of fine-grained language objects is initiated during normal operations 
of objects, hence non-preemptively. Preemptive migration is only rarely available especially in 
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the context of the transfer of computations. Although language migration is usually implemented 
atomically, fault tolerant implementations are an exception. 

Language migration does usually not lead to residual dependencies apart from the normal level 
of remote references in distributed environments. Symmetric and transitive migrations are 
normal properties of language migration mechanisms. Fault tolerance of object migration is 
handled to some extend in Emerald [Jul1993] through the use of availability handlers. 

2.5 Heterogeneous Object Migration 

Most migration systems assume that migration only takes place between homogeneous 
environments. Homogeneous migration is assumed to be possible by definition and no checks 
whether migration can be achieved or not will be performed prior to the execution of a migration 
request or as part of the migration mechanism. 

Migration systems that support heterogeneous migration among different environments 
consider in most cases only hardware differences. These differences are addressed mainly 
through a virtual machine implementation as in Commandos [CH+1993] and only in few cases 
through the use of sophisticated conversion techniques before or after the transfer of object 
representations as in Emerald OS [StJ1995]. 

In general, several levels of heterogeneity between environments can be determined with 
different consequences for migration. To address the different levels of heterogeneity, various 
strategies can be identified some of which are in use by existing systems. Other approaches to 
overcome heterogeneity can be envisioned at least theoretically. 

2.5.1 Levels of Heterogeneity 

The characterization of two environments as homogeneous or heterogeneous depends on the 
level of abstraction as well as on the degree of detail used. While homogeneity of systems can 
be defined as absolute equivalence in all aspects, this definition would be useless in practice as 
all systems would then be heterogeneous. Even otherwise identical systems differ at least in the 
state of their respective computations as well as some basic configuration parameters like 
network addresses. 

Heterogeneity in the context of migration has to be considered either from the standpoint of the 
object to be migrated with regard to what is required by that object or as the more general 
question of compatibility between environments. While the first rather narrow viewpoint will be 
sufficient for the migration of a single object, a broader analysis will be necessary in order to 
determine the general migrateability of sets of similar objects between environments. 

At least four different levels of heterogeneity between environments can be identified. These are 
the hardware platform, the operating system, the programming languages and the libraries used 
to implement particular applications. The application level has to be added for completeness. As 
the objects to be migrated are part of the respective environments they are also affected by 
these levels of heterogeneity. 

• Hardware 

The most obvious differences of hardware platforms are determined by the central 
processing units (CPU) used, that require their own data and instructions set formats. A 
particular binary representation can be directly interpreted by the central processing units 
either directly though logic circuits or indirectly through a microprogram. 

The spectrum of hardware differences ranges from simple byte ordering through the 
representation of data, e.g. the binary format of floating point numbers to the overall 
architectures of the processing units that require different machine instruction sets as well 
as particular code optimization techniques.  

Other less obvious differences of hardware platforms are memory management schemes 
and the handling of input/output devices as well as other various forms of connections of 
peripherals. These are usually hidden from software systems through abstractions like 
operating systems calls or primitives of language environments. 
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• Operating System 

Operating systems differ in their architectures, the concepts they use and the services they 
provide. Their functionality is made available to the developer of applications through 
system calls or in the case of object oriented operating systems (OOOS) through methods 
of corresponding system objects.  

The diversity of the programming interfaces and the different conventions of parameters as 
for example incompatible security concepts are a major source of problems for migration 
mechanisms between heterogeneous operating systems. Concepts like access rights or 
directory structures can usually not be matched without some loss of fidelity. 

• Language 

Programming languages show a great deal of heterogeneity. Programming paradigms 
including declarative, logical, functional, procedural and object oriented programming differ 
in the general methodology of problem solving. Even languages of the same paradigm 
differ significantly. Object-based languages, for example, implement built-in functionality, 
base types, control structures, exception mechanisms and concepts like inheritance, or 
delegation in distinct ways. 

Different implementations of the same programming language may be heterogeneous as 
well. The memory layout and the structure of activation records as well as the code 
optimizations applied may differ significantly enough, that a direct binary transfer is 
impossible despite the fact that the same source program is used. 

• Library 

Libraries provide fundamental functionality for the construction of software systems. Several 
layers of libraries are often used to structure large systems into several increasingly finer 
levels of abstractions. In the context of object-based languages class libraries are applied 
for the construction of complex object definitions from simpler ones.  

The runtime environment of a particular programming language is usually augmented by a 
set of libraries that provide functions like memory management or input/output primitives. 
Basic operating system services like system calls are made available through libraries as 
well as higher-level services like graphical user interfaces. Application level libraries provide 
implementations of common data-structures like linked lists as well as access to additional 
software services like database management systems. 

The use of different sets of libraries may create heterogeneous environments even when all 
other levels of abstractions including the programming language implementation are 
homogeneous. On the other hand, the use of top-level libraries that abstract from 
implementation details and provide common functionality can make heterogeneous libraries 
appear to be homogeneous. The use of language independent libraries requires common 
calling conventions and memory management techniques that are not always shared in the 
context of the same operating system or processing hardware. 

• Application 

Heterogeneity of applications has to be considered if objects of one application have to be 
migrated into another application. Apart from other forms of heterogeneity applications 
employ different abstractions like data-structures for the particular solution they provide. In 
order to migrate objects between different applications, a minimum of conventions as for 
example general access methods to fundamental objects are necessary for the migrated 
objects to be useful within the destination environment. 

Some forms of heterogeneity like heterogeneous load, i.e. differences of  resource utilization 
among otherwise homogeneous environments, cited by some author of migration systems 
[Ste1998m, Röd1998] will not be considered here. While being an essential factor for decisions 
of migration policies especially for load balancing, heterogeneous load has no relevance for the 
more principle question whether an object can be migrated between two different system at all.  
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Although all forms of migration can be confronted with all levels of heterogeneity not all 
combinations of heterogeneity and migration are addressed by existing migration systems that 
support heterogeneity. Table 2.g provides an overview of the support of different kinds of 
heterogeneity by migration systems that were designed with heterogeneity in mind.  

 Process 
Migration 

System  
Migration 

Language 
Migration 

Hardware (x) (x) (x) 

Operating 
System 

 (x) (x) 

Programming 
Language 

 ()  

Libraries  () () 

Applications  () () 

Table 2.g: Not all levels of heterogeneity are addressed by existing migration 
mechanisms for heterogeneous environments. Heterogeneous 
hardware is supported by some process, system and language 
migration systems. Heterogeneous operating systems are addressed 
by system and language migration on the basis of libraries that 
provide standardized APIs. Heterogeneous programming languages 
are supported by few system migration mechanisms. Heterogeneous 
libraries and applications are supported by even less examples of 
system and language migration. 

Most migration systems that support heterogeneity address only one level of heterogeneity that 
is typically not identical to the level of migration. Only very few systems address more than one 
level of heterogeneity. Of those migration mechanisms that do address heterogeneity, 
differences of hardware and operating systems are the main targets. 

Process Migration 

Process migration systems are only affected by heterogeneous hardware platforms and 
operating systems. Heterogeneity of programming languages, libraries and applications are 
hidden by the address-space abstraction of processes. Of the few process migration systems 
that address heterogeneity all concentrate on the problem of process migration between 
heterogeneous hardware platforms as Theimer and Hayes [ThH1991], Arabe et al. [AB+1995], 
Pleier [Ple1995] or Shub [Shu1990]. None attempts to perform migration of processes between 
heterogeneous operating systems. 

System Migration 

Large software systems providing migration of system objects are affected to a different extent 
by all levels of heterogeneity. In order to avoid heterogeneity, migration mechanisms for system 
objects usually depend on a common set of libraries across all supported languages and 
operating systems. Some system migration mechanism are based on a single operating system 
but support a predefined set of language environments. 

System objects that can be migrated are designed with the respective common programming 
interfaces in mind. If heterogeneity of hardware is considered it is addressed through the use of 
virtual machine abstractions as in Commandos [CH+1993]. No system migration mechanism 
could be found that is able to migrate between different software systems. Migration between 
heterogeneous agent systems has been considered at the level of system objects [GSC2000]. 

Language Migration 

Language environments usually hide details of operating systems from the developer through 
the definition of programming primitives and standard libraries. If the objects to be migrated are 
not dependent on specific operating systems features, heterogeneity at the operating system 
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level does usually not appear as an issue. Differences of libraries and applications are 
addressed through additional higher-level libraries that provide common functionality. 

Language migration is nevertheless affected by heterogeneous hardware as different machine 
code is generated for each platform. Virtual machine abstractions are the most prominent 
means to overcome heterogeneous hardware at the language level, especially among agent 
systems some of which are based on the Java virtual machine [GJS1996]. 

Migration of fine-grained objects between heterogeneous language environments is considered 
only sparsely as for example by the agent systems Ara [PeS1997] and Planet [MMK1998]. 
However, none of these systems works without significant changes to the existing language 
environments. 

Heterogeneous libraries are also seldom addressed. For example DC++ [Scm1993a] restricts 
the use of different class hierarchies to the homogeneous case and Bennett [Ben1990] 
considers different approaches to address heterogeneous libraries for Distributed Smalltalk but 
implements only a homogeneous scheme. 

2.5.2 Approaches to Heterogeneous Migration 

The term heterogeneous migration can be applied to migration mechanisms that addresses 
aspects of heterogeneity. Various techniques to overcome heterogeneity have been developed 
for existing migration mechanisms with different motivations in mind and under different 
preconditions and circumstances. 

In order to abstract from the details of the implementation of each relevant migration 
mechanism the following characterization attempts to categorize the existing approaches in a 
consistent framework. This also opens up the possibility to identify opportunities for new 
approaches to overcome heterogeneity. 

Due to the fact that the destination environment differs from the source environment and the 
object to be migrated is initially a part of the source environment, an approach to overcome 
heterogeneity can either be applied to the object being migrated in order to adjust it to the 
conditions of the destination environment or the destination environment has to be modified in 
order to be able to accommodate the object to be migrated. 

A particular approach to overcome heterogeneity can either be performed prior to migration, for 
example through the implementation of the prerequisites of a migration mechanism within a 
particular environment or through changes made at the time of migration either to the object 
being migrated or at least theoretically to the destination environment. 

The question when a particular approach can be applied also influences the kind of objects that 
can be addressed by a particular heterogeneous migration mechanism. A priori changes can 
only be made for whole categories of objects with common characteristics. In contrast, 
migration time changes may be done in reaction to an actual migration request depending on 
the objects to be migrated or on the combination of source and destination environments. 

The approaches available prior to migration can be characterized in order of increasing 
complexity as restricting the object to be migrated and to some lesser extent of the participating 
environments, as adjusting the object to be migrated to the conditions of the destination 
environment, as embedding common functionality within both environments together with a 
common implementation of the object to be migrated, and as enabling the destination 
environment to provide the necessary functionality. 

The migration time approaches can be characterized in order of increasing complexity as 
conversion of the representation of the object being migrated, extension of the destination 
environment for example with additional functionality, adaptation of the object being migrated to 
the condition of the destination, and as transformation of the destination environment.  

Despite the fact that any combination of these techniques can be used by a migration 
mechanism, each approach will be discussed independently. Table 2.h offers an overview of the 
applicability of techniques to overcome heterogeneity with regard to the software entity the 
technique is applied to and ordered by the phase of migration the technique can be performed. 



2.5  Heterogeneous Object Migration 61 

  61 

  Source Object Destination 

Restricting (x) x (x) 

Adjusting  x  

Embedding (x) (x) x 

 
 
a priori 

Enabling   x 

Conversion  x  

Extension   x 

Adaptation  x  

 
 
migration time 

Transformation   () 

Table 2.h: The applicability of the various approaches to heterogeneous 
migration is shown in relation to the software entities involved. Prior to 
migration the “restricting” approach can be applied to the object being 
migrated and to some lesser extent to the destination environment. 
Adjusting the object to be migrated prepares it for the destination 
environment. Embedding and enabling change the environments 
during the implementation of migration and in some cases the object 
to be migrated. Conversion and adaptation change the object during 
migration while extension and transformation change the destination 
environment at the time of migration. 

Each approach to overcome heterogeneity has its own characteristics and can be applied under 
different circumstances. None of these approaches is able to address all levels of heterogeneity 
or all different aspects of heterogeneous systems. Each of these approaches has its individual 
advantages as well as drawbacks. 

The following sections provide a description and an assessment of each possible approach to 
overcome heterogeneity that can be applied prior to migration: 

• Restricting 

The simplest technique that can be used to overcome heterogeneity prior to migration is the 
restricting approach that addresses the functionality of the object to be migrated. A common 
denominator of functionality among the participating environments is determined and the 
resulting restrictions are applied to the object to be migrated and to some lesser extent to 
the destination environment. 

Although applicable only at the software levels and certainly not to overcome 
heterogeneous hardware, this technique can be very effective for a wide range of 
applications. Unfortunately, the restricting approach does not scale very well with the 
number of different heterogeneous environments involved as the common denominator 
tends to become quite small. The approach is also limited in the sense that the participating 
environments have to be known a priori and additional environments cannot be added 
subsequently except for already compatible cases. 

• Adjusting 

The adjusting approach changes the design or the implementation of an object prior to 
migration in such a way that it is able to work within the destination environment. These 
adjustments may change the functionality of the object significantly in contrast to the 
restricting approach that only limits the design to the use of common functionality. 

Although very powerful as heterogeneous operating systems, languages, libraries and 
application can be addressed, adjusting the object to be migrated requires knowledge 
about the destination environments prior to migration. Changes that have to be made to the 
object may also complicate the design and implementation of the object to be migrated. 
Adjustments required by different destination environments may also be conflicting which 
can limit the applicability of the approach significantly.  
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• Embedding 

The most common technique used to address heterogeneity at the hardware level is the 
embedding of a common functionality within both the source environment and the 
destination environment to be used by the migrated objects. Various forms of virtual 
machines are widely used examples of this technique. 

Embedding can overcome heterogeneity of hardware and operating systems and to some 
extent even of languages. Embedding essentially creates a homogeneous environment for 
the object being migrated within otherwise heterogeneous destination environments. It 
requires significant effort from the developer as the embedded functionality has to be 
implemented for each participating environment, which limits the scalability of the approach. 

Furthermore, the object to be migrated has to be designed and implemented for the 
embedded environment or has to be ported to the embedded environment prior to 
migration. In order to create the object to be migrated at the source, the embedded 
environment has to be available within the source environment too. 

• Enabling 

An unusual approach to overcome heterogeneity is the enabling of the destination 
environment with functionality required by the object to be migrated. In contrast to the 
embedding approach, enabling does not merely embed a closed environment within the 
destination environment but changes the environment accordingly. For example, an object-
based programming language that does not support dynamic binding at runtime will have to 
be enabled to do so in order to support object migration.  

Enabling can be applied at the application and library as well as to some extent at the 
language and operating system level. The enabling approach is limited in the sense that the 
functionality to be implemented by the destination environment has to be known prior to 
migration.  

The effort necessary to apply enabling depends on the complexity of the changes that have 
to be made. The enabling approach is limited in the number of source environments it is 
able to support by the possible conflicts that can arise from the different functionality to be 
added in order to accommodate different kinds of objects. 

The following approaches to overcome heterogeneity can be applied to the objects to be 
migrated during the migration process: 

• Conversion 

The most common approach to heterogeneity applied at migration time is the conversion of 
the representation of the object being migrated either prior or after the transport between 
environments. Conversion implies only representational changes but not changes of the 
functionality of objects. 

Often performed in the presence of heterogeneous hardware, conversions can become 
prohibitively complex if other levels of heterogeneity are involved. If conversion is applied at 
the binary level, full information about the construction of the binary representations, for 
example memory layouts or the format of activation records have to be known in order to 
perform the necessary conversion steps. The number of different environments that can be 
supported is limited by the effort necessary for each environment. 

• Extension 

The extension approach can be used at the level of heterogeneous libraries or applications 
when functionality required by the object being migrated is not available within the 
destination environment. If a suitable common representation exists and the destination 
environment is capable to make the required functionality available then the required 
functionality can be added as an extension to the destination environment. 

The extension approach is limited by possible conflicts with existing functionality at the 
destination as well as by potential conflicts arising from consecutive migrations. 
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Heterogeneity of hardware can only be addressed for the functionality of objects and its 
applicability to heterogeneity of operating systems is also limited to special cases. 

• Adaptation 

The adaptation of the object being migrated to the conditions of the destination environment 
extends the conversion approach. In contrast to the conversion approach, which only 
applies changes to the representation being transferred, adaptation will change the 
functionality of the object being migrated. If for example a datastructure required by an 
object is not available, the object being migrated can be adapted to use a similar structure 
available at destination that provides equivalent or even extended services.  

This approach can be used for migrations between environments with heterogeneity at the 
application, library and to some extent even at language operating system level. Although 
quite powerful conceptually, adaptation will be limited to well known cases in practical 
implementations. Its use to address heterogeneous operating systems will also be limited 
due to the complexity. 

• Transformation 

A merely theoretical approach to heterogeneous migration at the software levels is the 
transformation of the destination environment at runtime in order to provide missing 
functionality for the object being migrated. Included in this overview only for completeness, 
the transformation approach appears to be unrealistic. Even if feasible, changing the 
destination environment at migration time may simply be unreasonable. Except for extreme 
cases where objects with a very long lifetime are to be migrated the delay necessary for the 
transformation will simply be prohibitive. 

As mentioned previously, not all approaches to overcome heterogeneity can be used to address 
all kinds of heterogeneity. Table 2.i provides an overview of the possible applicability of the 
approaches to overcome heterogeneity for the different levels of heterogeneity. 

 Hardware Operating 
System 

Language Library Application 

Restricting  (x) (x) x x 

Adjusting  x x x x 

Embedding x x x x x 

Enabling  () () (x) (x) 

Conversion x (x) (x) (x) (x) 

Extension (x) (x) (x) x x 

Adaptation  (x) (x) (x) (x) 

Transformation () () () () () 

Table 2.i: The applicability of approaches to overcome heterogeneity for the 
different levels of heterogeneity. Restricting of objects to operating 
system or language functionality is only possible if a common 
denominator exists. Adjusting can be applied at all software-related 
levels and embedding also on the hardware level. Enabling has to be 
applied with care. Conversion is mainly applied to hardware 
differences and extension to heterogeneous libraries and 
applications. Adaptation will work only in a well-known context and 
transformation may not be applied at all. 

Some of the presented approaches have obvious limitations, for example, changes to the 
destination environment are not possible in the context of heterogeneous hardware. Restricting 
will not work in the context of heterogeneous operating systems and languages if the source 
and destination environments do not share the necessary common functionality. 
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Conversion is mainly applied in the context of heterogeneous hardware alone as it becomes 
more and more complicated when used with additional levels of heterogeneity. All other 
approaches may quickly lead to conflicts if applied in combination. Table 2.j provides an 
overview of the actual and potential use of approaches to heterogeneity. 

 Process  
Migration 

System 
Migration 

Language 
Migration 

Restricting (x) (x) x 

Adjusting x (x) x 

Embedding (x) x x 

Enabling (x) (x) (x) 

Conversion x (x) x 

Extension (x) (x) x 

Adaptation (x) (x) (x) 

Transformation () () () 

Table 2.j: The use of approaches to overcome heterogeneity among migration 
systems differs. An “x” indicates the actual usage of an approach by a 
migration system, while its inclusion in parentheses “(x)” indicates 
only a potential and parentheses alone “()” a very unlikely usage.  

Only few approaches to overcome heterogeneity are actually found in existing migration 
mechanisms that address heterogeneous systems. The most frequently used approaches are 
embedding and conversion. Other techniques to overcome heterogeneity are often hard to 
implement and therefore applied only seldom or not at all. 

Process Migration 

Several approaches to heterogeneity have been used by process migration systems in different 
contexts, namely restricting, adjusting and conversion. For example restricting programs to use 
only a common set of functionality is a well known portability technique that is applied for 
example in conjunction with like standards the POSIX interface to operating system services. 

The adjusting of a process implementation to be able to be migrated between heterogeneous 
platforms has been exemplified by Dome [AB+1995] that uses source code instrumentation to 
generate cross-platform compatible checkpoints. Pleier [Ple1995] combines that with the 
restricting approach in order to define migration points that are compatible across environments 
and with the conversion approach for the necessary transfer of state during migration. 

Although the use of embedding techniques would be feasible in the context of process migration 
through the use of an embedded operating system no example that uses this approach could be 
found. The enabling approach is frequently used among members of the Unix family of 
operating systems although only for portability and not for migration purposes.  

Conversion is used for heterogeneous process migration in a modified version of System V 
[Shu1990] that initiates process migration non-preemptively and uses executables deployed 
prior to migration with multiple code formats and identical memory layout across all platforms. 
The  address-space of a process is converted to the format of the destination hardware. 

The extension of an operating systems functionality at runtime has been implemented by the 
Exokernel [EKO1994] although not for migration purposes. Adaptation of processes for 
heterogeneous migration has been proposed Theimer and Hayes [ThH1991] but was not 
implemented. No use of the transformation approach for process migration could be found. 

System Migration 

Software systems that perform migrations of large grained system objects use embedding in the 
form of virtual machines in order to overcome heterogeneity of hardware and operating systems 
as for example in Commandos [CH+1993]. Some agent systems like Strat0Sphere [WAA1998] 
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that implement agents as compound objects use the Java virtual machine [GJS1996] for the 
same purpose. 

The agent system Ara [PeS1997] integrates interpreters for different languages through a 
common run-time system that has to be embedded into each participating execution 
environment. Restrictions are imposed for the individual agent code that are intended to 
guarantee compatibility of migration between the different execution environments.  

Enabling and extensions can also be used on the basis of programming interfaces but will only 
be useful if the heterogeneous systems share common functionality. All other techniques are 
probably feasible in principle but no example of an existing system that uses these techniques 
in the context of system migration could be found.  

Language Migration 

Migration mechanisms for fine-grained language objects use a combination of approaches to 
address various aspects of heterogeneity. Restricting is applied [ScM1993a] as well as 
extension [Ben1990] in the context of heterogeneous libraries. Conversion is used to address 
heterogeneous hardware directly as in OS Emerald [StJ1995]. 

A combination of approaches is employed by the agent system Planet [KM+2000] that uses 
conversion between native and canonical representations of state, functionality and 
computations in order to migrate agents between execution environments. Planet also adjusts 
mobile objects through code instrumentation to use memory-mapping primitives and applies the 
restricting approach through a common API [KM+1999b] for operating system access and 
enforcement of security domains. 

Through the use of virtual machine implementations embedding is applied by may migration 
systems in the context of heterogeneity of hardware, operating systems and to some extent 
languages. The Java virtual machine [GJS1996] is used by the majority of agent systems for 
that purpose. All other approaches though feasible in principle are not employed by any of the 
systems investigated. 

2.5.3 State of Heterogeneous Object Migration 

Existing migration systems that address heterogeneity focus mainly on one or two levels of 
heterogeneity, in most cases heterogeneity of hardware and operating systems. Only few 
systems address migration among heterogeneous languages, libraries and applications 
additionally or exclusively. 

Popular approaches to overcome heterogeneity are embedding of homogenous environments 
prior to migration as well as conversion of object representations during migration. Also applied 
often  are the approaches of restricting and adjusting prior to migration in combination with 
conversion during migration. Other approaches are only seldom used. 

The most frequent model of heterogeneous migration that can be called the embedding model 
is based on an embedded virtual machine that overcomes heterogeneity of hardware and 
operating systems. Using this model an application that uses migration is deployed across the 
participating environments. The internal representation of the objects to be migrated within the 
embedded environment is transferred during migration. 

Second frequent model that can be called the adjusting model uses the approach of restricting 
and adjusting prior to migration for the development of an application and the generation of 
appropriate code for each participation environment. During migration, a system specific 
representation is transferred and converted in accordance with the destination environment. 

Table 2.k provides an overview of the levels of heterogeneity that are addressed by existing 
migration systems as well as the usage of approaches to overcome heterogeneity. Agent 
systems have been included in this analysis as they employ similar techniques although with 
different objectives. 

Among systems that use the embedding model most are based on Distributed Smalltalk or 
Java. Notable exceptions are Obliq [Car1994] that uses its own engine to interpret abstract 
syntax trees as well as Telescript [Doe1996] that uses an interpretive language and TNET 
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[HCS1997] that is based on a state machine model. One implementation of Distributed 
Smalltalk [Ben1990] addresses also heterogeneity of libraries though the extension of 
destination environment with additional functionality. 

P
ro

ce
ss

S
ys

te
m

La
ng

ua
ge

Id
en

tit
y

S
ta

te

F
un

ct
io

na
lit

y

C
om

pu
ta

tio
ns

H
ar

dw
ar

e

O
pe

ra
tin

g 
S

ys
te

m

La
ng

ua
ge

Li
br

ar
y

A
pp

lic
at

io
n

re
st

ric
tin

g

ad
ju

st
in

g

em
be

dd
in

g

en
ab

lin
g

C
on

ve
rs

io
n

E
xt

en
si

on

A
da

pt
at

io
n

Tr
an

sf
or

m
at

io
n

(Pleier) x x x x x x x x x
(Theimer, Hayes) x x x x x x x x
D.Smalltalk (Bennet) x x x x x x x x x
DC++ x x x x x x
Dome x x x x x x x
Obliq x x x x x
OS Emerald x x x x x x x x x
System V (Sub) x x x x x x x x x
Agent Systems
MOL x x x x x x x
Odyssey x x x x x x
Omniware x x x x x x x
OSM x x x x x x x
Planet x x x x x x x x x x x
Sumatra x x x x x x x x
Telescript x x x x x x x x
TNET x x x x x x x x

during mig.migration information heterogeneity prior to mig.

 
Table 2.k: An overview of existing heterogeneous migration systems and related 

mobile agent systems. The level migration and the kind of information 
transferred are displayed as well as the level of heterogeneity 
addressed and the approaches to overcome heterogeneity prior or 
during migration. 

The adjusting model is used for process migration. Applications are designed specifically for 
migration in Dome [AB+1995] that inserts the necessary code in to the application source to 
generate checkpoint information at defined migration points. The code for the recreation of the 
execution state from the checkpoint information on other platforms is generated as well. A 
similar technique is used by Pleier [Ple1996]. 

A modification of System V by Shub [Shu1990] as well as a modified version of Emerald 
[StJ1995] use conversion to migrate processes and language objects respectively in the context 
of heterogeneous hardware. Both systems convert the binary representation of the state the 
functionality and the computations of the objects being migrated. 

Only few examples of other approaches to overcome heterogeneity exist. Omniware [LSW1995] 
uses a machine independent binary representation to transfer functionality between 
heterogeneous hardware and operating systems. As the machine independent format is 
compiled into native machine code at load time, Omniware is also able to combine functionality 
from different programming languages, which have to be enabled prior to migration with the 
necessary functionality. 

The agent system Planet [MMK1998] uses a canonical representation to capture the state, 
functionality and computations of objects that can be migrated in the context of heterogeneous 
hardware, operating systems and language environments. During the migration process the 
canonical representation is converted into the native format of the destination environment, 
which needs to be enabled prior to migration to perform the conversion. 
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Limitations and Drawbacks 

All the existing migration systems that address heterogeneity as well as the approaches to 
overcome heterogeneity they employ exhibit different limitations and drawbacks. None of the 
system investigated is able to address all levels of heterogeneity and only few able to operate 
without changes to the participating environments. 

The embedding model is able to cope with heterogeneous hardware and operating systems but 
is not well suited to address heterogeneous languages and offers not support for 
heterogeneous libraries and applications. The necessary implementation of the embedded 
environment limits the number of environments that can be supported. The confinement of the 
objects that can be migrated to functionality that is offered by the embedded environment is 
artificial and prohibits the use of functionality that is available in particular host environments. 

The perceived omnipresence of the virtual machine based Java programming language 
[GJS1996] does not mark the end of innovation in migration technology as it limits any further 
migration technique to applications that are designed and implemented for the Java 
programming environment. Apart form the ongoing discussion about the obvious execution 
overhead, the virtual machine approach renders some potential of object migration to overcome 
other forms of heterogeneity meaningless. 

The adjusting model on the other side requires significant changes to the source code of the 
objects to be migrated and as a consequence renders the use of widespread development tools 
like symbolic debuggers impossible. It is inherently limited in the number environments that can 
be supported due the possible dependencies of the generated code.  

The approach of adjusting the objects to be migrated is also related to the conversion of the 
object representation during migration. The more adjustments are applied prior to migration the 
less conversions have to be made during migration and vice versa, but both approaches do not 
scale well in terms of heterogeneity. 

The more levels of heterogeneity are addressed the more complex the combined use of the 
adjusting and conversion approaches gets. The adjusting model works well if a single level of 
heterogeneity like hardware is addressed. Combinations of different levels of heterogeneity like 
hardware and operating systems or even language environments are prohibitive to address 
using the adjusting model due to the complexity of the code generation and the necessary 
conversions. 

Migration systems that use other approaches to overcome heterogeneity or combinations of 
different approaches also suffer from limitations. The restricting approach for example is not 
able to address heterogeneity of hardware, can only be applied prior to migration and does not 
scale with either the number of levels applied to or the number of environments involved in 
migration. 

The enabling approach requires changes to existing environments in order to be able to host 
the objects to be migrated within the destination environments. Apart from being able to work 
only in combination with restricting, adjusting or conversion the enabling approach is also 
limited in the number source environments that can be supported and does not scale well with 
the number of levels of heterogeneity addressed. 

The extension approach is able to address heterogeneity at the library and application level and 
only in combination with the conversion approach also heterogeneity at the hardware and 
operating system level. It does not require changes to either the object being migrated or the 
participating environments and scales well with the number of different environments supported. 

The adaptation approach requires changes to the objects being migrated and is able to address 
all levels of heterogeneity with the exception of heterogeneous hardware that can only be 
addressed in combination with conversion. It is limited in the number of different environments 
that can be supported due to the individual adaptations necessary for each platform. 

The transformation approach requires changes to the participating environments at runtime and 
is able to address all levels of heterogeneity at least theoretically. However, no existing 
migration system could be found that uses the transformation approach. And the approach does 
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probably not scale well, neither with the number of different environments nor with the levels of 
heterogeneity supported. 

The last three approaches to overcome heterogeneity are only used by few existing migration 
systems and are therefore not well understood. Apart from the unrealistic transformation 
approach, they are at the same time due to their characteristics the most promising approaches 
for further research. 

Research Opportunities 

The analysis of the different existing approaches to heterogeneous migration reveals the 
following opportunities for further research: 

• None of the existing migration systems is able to address all levels of heterogeneity not 
even with combinations of different approaches to overcome heterogeneity. 

• None of the existing migration systems is able to work without changes either to the 
participating environments or the objects to be migrated. 

• None of the existing migration systems is able to scale with both the levels of heterogeneity 
and the number of different environments supported. 

• Heterogeneity at the level of languages, libraries and applications is addressed by only very 
few existing migration systems 

• Approaches to overcome heterogeneity during migration are used by only few existing 
migration systems 

The focus of the rest of this work lies on the development of a new migration mechanism for 
language objects that is able to address all levels of heterogeneity and that is able to work with 
existing environments. The mechanism should be open to all approaches to overcome 
heterogeneity. The mechanism should provide a framework for further experimentation and 
exploration of new approaches to heterogeneous migration. 
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3 Heterogeneous Object Migration at the Language Level 

The design of a migration mechanism for language objects that works with existing 
environments and is able to addresses all levels of heterogeneity is influenced by a lot of 
options that can be chosen as well as tradeoffs that have to be made. The following chapter 
describes the design of a novel migration mechanism that is named Heterogeneous Language 
Migration and will be referred to in the following as the HLM migration mechanism. 

This chapter outlines the decisions that shape the design of the HLM migration mechanisms as 
well as its prototypical implementation. The design follows a pragmatic approach towards 
overcoming heterogeneity at all levels. Some of the limitations of the HLM migration mechanism 
that result mainly from its focus on existing language environments may lead to the 
development of advanced migration techniques that are outlined in chapter four. 

3.1 A Pragmatic Approach 

Migration between heterogeneous language environments is confronted with a great variety of 
differences on several levels of abstraction. Disparate programming paradigms, differences of 
language concepts and constructs, of object definitions and representations as well as of details 
of the implementations of language environments need to be considered.  

The more general question of migration between language environments of different 
programming paradigms, e.g. between declarative and procedural languages, lies clearly 
beyond the scope of this work. Whether migration across language paradigms is possible at all 
will remain an open research question although some promising indications exist [Weg1987]. 
This work is focused on language environments based on object technology. 

Language environments within the realm of the object-based or object-oriented programming 
paradigm implement various concepts of object technology in different ways. Some may also 
add new variations or invent additional concepts. Even among languages that support the same 
concepts object definitions and representations differ significantly. A general migration 
mechanism would have to determine whether the concepts of the environments participating in 
a migration match, whether the implementations of these concepts are compatible, to what 
extent they differ and how migration can be performed. 

Such a comparison will not be possible in the general case regardless whether it would be 
based on a mathematical formalism or on the actual implementations. For example two 
methods can not be tested for equivalence of their behavior due to the problem of computability. 
The same applies to more complex concepts of object technology like method lookup 
algorithms or asynchronous message passing mechanisms. 

Rather then trying to find a theoretical all encompassing mechanism for migration of objects 
between all kinds of language environments, a pragmatic approach is followed here. Guided by 
a number of design objectives for the migration among heterogeneous languages in general, 
only a limited set of concepts and constructs will be supported by the migration mechanism to 



70 3  Heterogeneous Object Migration at the Language Level 

70 

be designed. The complexity of this migration mechanism is further reduced through a limitation 
of the concepts that can be supported and through prerequsites for the environments.  

The pragmatic approach taken here, does not attempt to provide the theoretical basis for a 
migration mechanism of objects between all possible language environments. Instead the 
design of the mechanism is focused on the implementation of migration between existing 
heterogeneous language environment. The pragmatic approach is expressed in the objectives 
of the HLM migration mechanism, the limited the set of supported concepts and the 
prerequisites for the environments. 

The HLM migration mechanism addresses specifically the transfer of object semantics among 
heterogeneous language environments with limited knowledge about the destination and 
without requiring changes to the participating environments. The HLM migration mechanism 
aims to achieve consistency of object semantics at the level of object definitions and 
consistency of object state at the level of object representations in the context of applications 
designed for the mechanism. 

The HLM migration mechanism and its prototypical implementation is intended as a proof of 
concept and as a testbed for further research in heterogeneous migration. Various extensions to 
the HLM migration mechanism that lift some of the restrictions imposed for the mechanism can 
be made to widen the set of supported environments. Some of these are outlined in chapter four 
and may lead to the development of future versions of the mechanism. The objectives that 
guide the design of the initial version of the HLM migration mechanisms, the concepts that are 
initially supported and the prerequisites are described in the following subchapters. 

3.1.1 Objectives 

The objectives that guide the design of the HLM migration mechanism emphasize applicability 
and ease of implementation. The goal is to maximize the applicability of the HLM migration 
mechanism without requiring changes to existing language environments. As a tradeoff a 
number of limitations apply, for example, not all language concepts can be supported. 

The following list of design objectives is ordered in terms of the importance of the individual 
objective starting with the most important one. Throughout the design process minor objectives 
have been overruled by more important objectives. Each entry in the list describes a particular 
objective and discusses its characteristics and dependencies. 

1. No Changes to existing Environments 

The HLM migration mechanism should be able to add migration to existing object based 
environments without implications for these environments. No fundamental changes of a 
language definition or the implementation of the corresponding language environments 
should be necessary in order to implement the mechanism. Especially no language syntax 
or compiler changes should be required. 

Migration should be perceived as an extension of the existing language system that can be 
incorporated into any application. Migrations that would require changes to the 
environments will therefore not be possible through the HLM migration mechanism. The 
migration of computations for example is not supported by the HLM migration mechanism, 
as changes to the participating environments would be necessary (see also chapter 4 page 
179 for a detailed discussion). 

As a consequence, applications that use the HLM migration mechanism will have to be 
designed specifically for migration. Migration of objects of existing applications can not be 
supported by the HLM migration mechanism unless they are changed accordingly. Due to 
these consequences the approach to migration exemplified by the mechanism can be 
called migration by design. 

2. Minimal Assumptions about Destination Environments 

The HLM migration mechanism should be able to operate with only minimal assumptions 
and limited knowledge about the destination environments, especially with regard to the 
functionality available at the destination. All information about the destination that is 
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necessary to perform a migration should be gathered at the time of migration and should be 
used only for consecutive migrations. The HLM migration mechanism should especially not 
require the distribution of functionality or other kind of information among the participating 
environments prior to migration. 

This objective stresses the universal applicability as well as the dynamic and spontaneous 
aspect of the HLM migration mechanism. For example the availability of object definitions 
within a particular destination environment may change over time due to development work 
within that environment. Information once gathered for destination environments may 
become invalid as these environments evolve over time. On the other hand optimization of 
the performance of the migration mechanism, although not a major goal, can be enhanced 
through the use of various caching schemes (see chapter 4 page 152). 

3. Maximum of Functionality 

The HLM migration mechanism should be able to convey as much functionality as possible 
or desirable between environments. Depending on the difference between the functionality 
available within the participating environments the functionality of the object being migrated 
should be retained at the destination as completely as possible. 

Since the transfer of functionality is usually limited by the differences between the 
participating environments, functionality will not always be transferable completely and in 
some cases migration may not be possible at all. For example objects that use 
asynchronous message passing can not be migrated into an environment with synchronous 
message passing without fundamental changes to the destination environment, which are 
ruled out by the first objective (see also chapter 4 page 203). 

4. Maximum of Object-Technology 

The HLM migration mechanism should maintain as much as possible of the object-oriented 
characteristics of a particular object to be migrated. Furthermore, following the rules of 
encapsulation, the object itself should be able to control as much of the migration process 
as possible. For example a migration should not be performed without the consent of the 
object being migrated. 

Since functionality is given a higher design priority than object technology compromises to 
the object characteristics of the objects being migrated are more acceptable then changes 
to their semantics. The implication for the developer that uses the HLM migration 
mechanism is that objects which are intended to be migrated can not be designed with the 
full fidelity of the particular language in all cases but only with a compatible set of 
functionality depending on the set of concepts supported by the HLM migration mechanism 
(see also the following subchapter page 72). 

5. Minimal Requirements 

The design of the HLM migration mechanism and its prototypical implementation should be 
independent from any specific facilities of any particular environment. An actual 
implementation of the HLM migration mechanism is free to take advantage of existing local 
services as long as the interoperability of the mechanism across heterogeneous 
environments is not affected. 

Examples of facilities that can be used for particular  implementation of the HLM migration 
mechanism are reflection as well as incremental compilation. The HLM migration 
mechanism does not require either technique, but both may be helpful in the 
implementation of the mechanism in certain environments.  

6. Use of existing Technologies 

The HLM migration mechanism should neither reinvent existing technologies nor create 
new ones unless necessary for particular aspects of the HLM migration mechanism. The 
design and implementation of the HLM migration mechanism should rather focus on 
features unique to heterogeneous migration at the language level. 
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In some cases the implementation of certain features is postponed as the use of existing 
technology for a particular purpose is obvious or does not add significant benefits to 
heterogeneous migration. For example location independent references to remote objects 
are not implemented by the prototypical implementation of the HLM migration mechanism 
as several solutions already provide the respective facilities (see also chapter 4 page 158). 

7. Minimal Implications for the Developer 

The use of the HLM migration mechanism should yield minimal implications for application 
developers, in particular no new programming model should be required. Creating 
applications that use the HLM migration mechanism should be possible with as few 
implications for the design of applications as possible. 

Due to the higher priority of the above objectives the designer is not completely unaffected 
by migration. An application that takes advantage of the HLM migration mechanism will 
have to be designed with migration in mind at least for the objects that are intended to be 
migrated. In the context of the HLM migration mechanism migration is not transparent to the 
developer but can rather be controlled by the developer (see also chapter 4 page 156). 

In addition to the design goals some explicit "non goals" of the HLM migration mechanism can 
be stated as well. As the least important aspect of the design, the compatibility of the HLM 
migration mechanism with other migration mechanisms has not been considered. Since the 
HLM migration mechanism tries to break new ground, the design should not depend on existing 
approaches and should only be influenced by these on a conceptual level. Beyond that, no 
comparable mechanism could be found with which interoperability would be possible. 

The performance of the prototypical implementation of the HLM migration mechanism is also 
almost never considered important, except where performance is improved without implications 
for other design aspects. Since the HLM migration mechanism is intended as an platform for 
further experimentation, not as a production system, performance has been given a low priority. 

3.1.2 Supported Concepts 

The set of concepts that are supported by the HLM migration mechanism has been derived 
directly or indirectly in the form of further design considerations from the objectives established 
in the previous subchapter. The support for specific concepts often implies the rejection of 
alternative concepts. The following list describes those concepts that are supported as well as 
reasons why alternative concepts have been excluded. 

• Type Annotations 

A fundamental requirement of the HLM migration mechanism is the use of type annotations 
by the participating language environments for object definitions, their components, method 
results, parameters, and variables. The type annotations are used to match the functionality 
required by the object to be migrated with the functionality available within a particular 
destination environment. 

The requirement for type annotations does not strictly imply the use of strong typing by the 
participating environments. The use of strong typing by language environments will 
nevertheless increase the applicability of the HLM migration mechanism. Untyped 
languages can be supported in principle through the use of type derivation [PaS1994] 
although that possibility is not further investigated here (see also chapter 4 page 189). 

In order to avoid confusion through name-conflicts among different languages the term 
interface is used synonymously for the type of an object as well as for its object definition. 
This convention is upheld regardless whether objects are defined via classes [GoR1983] or 
prototypes [UnS1987] or whether object definitions are implemented as objects themselves 
or only accessible as source files (see also chapter 4 page 192). 

• Single Inheritance 

The HLM migration mechanism does only support single inheritance between object 
definitions in order to reduce the overall complexity. While languages that feature multiple 
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inheritance or delegation may implement the migration mechanism as well only objects that 
are confined to single inheritance will be able to be migrated. 

The restriction toward single inheritance reduces the complexity of matching object 
definitions to an unambiguous case that can be applied universally across all language 
environments. Although equality of multiple inheritance or delegation schemes may 
eventually be proven, this additional complexity will not be considered for the HLM 
migration mechanism (see also chapter 4 page 192) 

• Unshared Local State 

The objects to be migrated using the HLM migration mechanism are confined to unshared 
local state and message passing is required to access the state. This requirement 
essentially prohibits any sharing of state between objects as well as among objects of the 
same interface. 

The design of the objects to be migrated is affected by this requirement but the complexity 
of the HLM migration mechanism is also reduced significantly. The universality of method 
invocation is used in combination with the concept of single inheritance to overcome the 
differences of state access and protection mechanisms. 

The access to the state of objects is implemented differently by various language 
environments. For example some languages like in Smalltalk [GoR1983] distinguish 
between class and instance variables. Almost arbitrary schemes of so called visibility and 
protection of state are used among object-based languages. In order to avoid the 
complexity of matching different state access schemes only state that is local to an object to 
be migrated and not shared with other objects by means other then message passing is 
supported by the HLM migration mechanism. 

As a consequence implicit sharing among objects in the form of for example class variables 
in Smalltalk [GoR1983], protected members or friends in C++ [Str1991] can not be used by 
objects that are to be migrated. Since the notion of state that is shared among all instances 
of a class can not be easily maintained in the context of distribution as the corresponding 
class object of the source does not exist at the destination, the impediments implied by this 
restriction are just a natural consequence of migration. 

The only alternatives would be a distributed access to the shared state or a replication of 
the shared state. For example, JavaParty [PhZ1997] enables instances to access their 
classes in the context of distribution through remote method invocation. Unfortunately, both 
alternatives create residual dependencies between the participating environments. 

This restriction may seem inconvenient but does not imply severe impediments for a 
developer of applications. The necessary methods to access the components of objects 
that define the local state can easily be implemented and can eventually be generated 
automatically (see page 121). Some environments like CLOS [Ste1990] already use a 
similar convention in the form of so called accessor methods. The sharing of state can be 
implemented through dedicated container objects that are references by all objects that 
take part in the sharing. 

• Synchronous Message-Passing 

The HLM migration mechanism supports synchronous message-passing and well known 
constructs as the only means to control the flow of execution among objects10. Neither 
generalized invocation mechanisms like generic functions as in CLOS [Ste1990] nor 
generalized constructs like block-objects as in Smalltalk [GoR1983] are supported. Only 
local method invocation and the constructs if then else and while do end Are 
supported by the HLM migration mechanism. 

The restriction to synchronous message passing does rule out the support of asynchronous 
method invocations. While the HLM migration mechanism may in principle also be applied 

                                                 
10  A number of additional restrictions exist for the definition of method that are discussed in chapter 4 (see page 192). 
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to active environments, dealing with asynchronous message-passing requires a more 
intense control of the migration process. A single thread of control per environment is 
therefore assumed in the context of the HLM migration mechanism. 

• Inactive Objects 

Due to the first objective that calls for "no changes to existing language environments" the 
migration of computations is not supported by the HLM migration mechanism. Language 
environments intended to be able to determine or recreate the executable state of objects 
to be migrated, would have to be modified extensively (see also chapter 4 page 179). 

As a consequence only inactive objects i.e. such that do not participate in any computations 
at the time of migration can be migrated. Migration requests for objects that are 
participating in computations, i.e. that have methods invoked while being subject to 
migration will be rejected. Only objects that are not referenced by activation records will be 
migrated by the HLM migration mechanism. Obviously, active objects, i.e. those that 
employ their own computations in the form of threads are also not supported.  

While this restriction might seem prohibitive at first it only confines the mechanism to object 
migration without thread migration. To fulfill this restriction some sort of liveliness analysis is 
required prior to the actual migration in order to ensure that only inactive objects are 
migrated. 

All other concepts not described above are not supported by the HLM migration mechanism. 
Any concept can be used in applications that use the HLM migration mechanism but not for 
objects that are supposed to be migrated. The HLM migration mechanism will work only for 
objects that are confined to the supported concepts described above. 

The chosen concepts do not limit the set of language environments that can participate in object 
migration unduly. Most existing object based language environments support the concepts 
described and the design of applications within these limitations should not restrict the use of 
the HLM migration mechanism significantly. 

Appropriate tools can be developed that ensure for language environments that offer additional 
concepts that objects intended to be migrated obey these restrictions (see also page 121). The 
addition of support for further concepts in future versions of the HLM migration mechanism is 
possible and discussed in more detail in chapter four (see also page 189). 

3.1.3 Prerequisites 

Apart from the restriction to a number of language concepts some additional prerequisites have 
to be fulfilled by the participating environments and the objects to be migrated in order to 
implement the HLM migration mechanism. In some cases the respective features can be 
implemented without changes to existing environments if they are not already available.  

In addition to the prerequisites stated for any migration mechanism in chapter two (see page 40) 
the HLM migration mechanism requires that participating environments are able to create new 
objects at runtime from object definitions added at runtime, which are based on globally unique 
type names. 

• Dynamic Loading and Binding 

Due to the fact that the semantics of objects will be migrated by the HLM migration 
mechanism some sort of dynamic loading and binding will be required for the participating 
destination environments. The definitions of objects that are transferred as part of a 
migration have to be made available by the destination environment at runtime in order to 
make the newly added functionality accessible to the migrated objects. This has to be done 
not only in the sense of a late binding of a dynamic dispatch but in the form that new code 
can be added to a running program. 

In some environments the ability to add behavior at runtime is also called dynamic 
compilation and the ability to add parts of object definitions independently is called 
incremental compilation. In the context of the HLM migration mechanism the compilation of 
object definitions does not need to be incremental in the sense that individual method 
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definitions can be compiled independently. Only the transfer of complete object definitions 
will be supported by the HLM migration mechanism.  

The HLM migration mechanism does not require the compilation process to be an integral 
part of the language environment as for example dynamic compilation in Smalltalk 
[GoR1983]. The compilation of new functionality can be done through a separate process 
as well as in the form of cross-compilation. However, the destination environment must be 
able to make the resulting object code available within the environment at runtime. 

• Dynamic Object Creation 

Language environments that implement the HLM migration mechanism need to be able to 
create new objects based on the object definitions added at runtime by using the value of a 
variable, for example a string value. The creation of objects based on programming 
language identifiers i.e. compiler symbols alone will not be sufficient. 

The name of the object definition of the object to be recreated may not be part of the source 
code of the destination environment at compile time as the object to be migrated will not be 
known prior to the actual migration. Nevertheless, the migrated objects have to be 
recreated at runtime within the destination environment. 

The generation of appropriate method-code that contains the corresponding object creation 
expression is not a substitute. Such a code will itself need to be made available through 
dynamic creation of a corresponding object. The only alternative would be the use of 
incremental compilation of appropriately generated methods for existing object definitions of 
the destination which is only supported by very few environments. 

• Globally Unique Type Names 

In order to simplify the implementation of the HLM migration mechanism the global 
uniqueness of names of types or interfaces is assumed. If two environments use the same 
type name, the corresponding types are assumed to be identical. This assumption can be 
applied without loss of generality and can be relaxed in future version of the mechanism for 
example through a consistent renaming of types (see chapter 4 page 174). 

The general problem of type equality, i.e. if two independently implemented types employ 
identical semantics can not be answered at all because of the problem of computability. 
The only alternative would be a distributed repository of types which would essentially 
ensure global consistency of types as for example in CORBA [Sie1996]. The use of such a 
repository does not add significant value to heterogeneous language migration and can be 
regarded as a detail of the implementation. 

In contrast to the prerequisites stated above, some non-prerequisites can be stated as well. The 
HLM migration mechanism does not require runtime type information or reflection to be 
available within participating environments. Type information can also be retrieved from static 
object definitions like source files. The availability of reflective capabilities can be useful for an 
implementation of the HLM migration mechanism (see chapter 4 page 206). 

Dynamic message passing, i.e. the construction of messages at runtime rather then compile 
time is also not required. All messages that are needed to implement the mechanism can be 
defined statically. Dynamic message passing can enable environments that do not offer 
dynamic object creation to participate in object migration if the necessary creation messages 
can be constructed at runtime. 

Location independence is also not required by the HLM migration mechanism as only very few 
language environments support it. Various add-on implementations of location independence 
are available for existing language environments including heterogeneous ones [Sie1996]. 
While the availability of location independence enables different forms of migration (see chapter 
4 page 158), it does not add significant value with regard to heterogeneity. 

3.2 Architecture 

Without loss of generality a migration of objects among disparate environments can be 
simplified to the “one object and two systems” case were a single object is migrated from a 
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source to a destination environment. As no detailed knowledge about the destination is 
assumed, a migration is also regarded as independent of previous or further migrations of other 
objects to the destination environment and independent of whether the object originated from 
the source environment or was migrated to it. 

The migration of a single object does also generalize the migration of a set of objects that are 
migrated consecutively one by one. However, the migration of a single object will not permit 
optimizations possible for the migration of sets of similar objects that do not need to be migrated 
independently (see also chapter 4 page 152).  

The following sections and subchapters describe the architecture of the HLM migration 
mechanism in the context of the migration of a single object. The architecture can be applied to 
the consecutive migration of sets of independent objects as well as the collective migration of 
sets of similar objects. The architecture is introduced by a stepwise description using 
progressive disclosure of the various design issues involved. 

Migration Control 

Following the principles of object technology, especially encapsulation, a naive approach to 
migration would probably attempt to implement a migration mechanism for language objects as 
part of the behavior of the object to be migrated itself. Such a straight-forward approach is not 
advisable if language migration is to be performed with only minimal requirements at both 
source and destination environments. 

An implementation of the migration mechanism as part of the behavior of the object to be 
migrated, implies that the migration mechanism itself is also migrated during migration. This 
increases the complexity of the object to be migrated unnecessarily especially if the 
management of communication-failures also has to be implemented as part of the mechanism. 

As the environments involved may fail during migration or the communication between the 
systems may become unstable, some coordination between the source and the destination 
environment is necessary in order to provide recovery from communication failures. 
Implementing the necessary communication mechanism within the object to be migrated would 
imply an undue overhead. 

Placing a generic migration mechanism within another entity will ease the implementation of the 
migration mechanism and will also simplify the coordination of the necessary communication. 
The source as well as the destination environment may serve as alternative candidates for the 
implementation of the migration mechanism. 

A reasonable design rationale minimizes the requirements of the migration mechanism for the 
behavior of the object to be migrated. The self-determination of the objects to be migrated does 
not have to be compromised as long as the objects are involved in every step of the migration 
process and can raise a “veto” for every critical decision. 

Given that three software entities participate in a migration, the question arises, which entity 
should control the overall migration process ? There are obviously also three answers: 

• Object Control 

From the standpoint of encapsulation the obvious answer is: the object to be migrated 
should control the migration process. Unfortunately control of the whole migration process 
by the unit of migration requires the availability of the object being migrated at all times 
during the migration process. While feasible in principle optimizations for large sets of 
uniform objects that benefit from being transferred collectively are precluded. 

As the object to be migrated has no knowledge about the destination environment and 
probably only limited knowledge about the source environment, implementing the control of 
the migration process as part of the object to be migrated would require large extensions to 
its behavior. 
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• Destination Control 

An alternative for the control of the migration process is to place the responsibility within an 
entity of the destination environment. This makes sense from a transactional standpoint, as 
the destination environment is supposed to complete the migration by making the migrated 
object available. Unfortunately destination control implies a high communication overhead. 

As the destination environment has no knowledge about the object being transferred and 
may even differ significantly from the source environment, a destination entity is not well 
positioned to determine what has to be transferred during migration. All necessary 
information will have to be brought to the destination first. The entity of the destination will 
have to "understand" the characteristics of the object to be migrated and eventually of the 
source environment before the migration may actually be performed. 

• Source Control 

Lastly, an entity of the source environment may control the migration process. The source 
environment provides all available information about the object to be migrated and an entity 
of the source will therefore be able to decide what needs to be transferred during migration 
with less communication overhead. 

As a source entity does not have any knowledge about the destination environment the 
necessary information will have to be transferred to the source from the destination. A 
controlling entity of the source will have all the available information about the object to be 
migrated but will have to query the destination environment in order to find out if and how 
the object can be migrated. 

It is quite obvious that none of the three entities is ideally positioned to control the migration 
process and none will be able to do so without the cooperation of the other two. While the 
amount of information to be transferred during the migration of an object itself can be regarded 
as independent of the actual controlling unit, this will not be the case for the communication 
overhead for the decision making of the migration mechanism. 

The main objective for the migration mechanism is to make the object being transferred 
operable at the destination. All the available knowledge about the object to be migrated resides 
at the source. It appears to be easier to transfer the conditions of the destination to the source 
and determine at the source whether migration is possible and what needs to be migrated.  

Alternatively, transfer of all relevant information to the destination appears to be more wasteful 
and impractical. It will also be much more difficult to let the object to be migrated take part in the 
decision whether and how it should be migrated as it will still be part of the source environment 
when this decision has to be made. 

The simplest form of migration would transfers a representation of an object to the destination 
environment which is then in charge of implementing and recreating the object. Although quite 
simple this approach has some severe disadvantages. The destination environment relies solely 
on this representation, decreasing the probability of migration-success. The source environment 
would therefore be forced to send as much information as possible.. 

Alternatively, as the source environment has no knowledge about the destination environment it 
is necessary to negotiate whether and under what circumstances the destination is able to 
implement the object to be migrated prior to the migration. The source environment is more apt 
to conduct this negotiation as it has potentially complete knowledge about the current 
implementation of the objects in question. This approach also potentially allows the object being 
migrated to participate in the negotiation process (see also chapter 4 page 177). 

As the object itself and a destination entity appear to be less suited for the control of the 
migration process source control is chosen for the HLM migration mechanism. This will 
minimize the overall communication and the amount of work performed where a migration 
proves to be impossible. 

The HLM migration mechanism uses one object called Porter for each participating language 
environment to perform and control the migration of objects. The Porter objects communicate 
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with each other and exchange the information that is necessary to process the migration. The 
Porter objects essentially implement the migration mechanism as part of their behavior. 

Only the absolutely necessary parts of the HLM migration mechanisms will be made part of the 
behavior of the objects to be migrated. In the context of the HLM migration mechanism the 
objects to be migrated will be called Migrateable objects. Figure 3.a shows a preliminary version 
of the architecture of the HLM migration mechanism. 

Environment A Environment B

Porter pa

Migrateable m1

Porter pb

Migrateable m1

 
Figure 3.a: The first two elements of the architecture of the HLM migration 

mechanism are the Porter and the Migrateable objects (shown here 
as ellipses). In the above example Porter objects pa and pb 
communicate in order to control the migration of the Migrateable m1 
and to transfer the necessary information. 

The alternative to let the Porter objects handle the migration process completely would violate 
the objective that a maximum of object technology has to be used. The migration process 
should be as much self-controlled as possible by the objects to be migrated and should require 
as few additions as necessary to the behavior of these objects. The HLM migration mechanism 
defines a message protocol for the Migrateable objects in order to control the decision whether 
such an object is willing to be migrated by the Porter or not. 

Implementing only the minimal part of the migration mechanism within the behavior of the 
Migrateable objects will also limit the changes that are necessary to the design of objects in 
order to render them migrateable. It will also reduce the complexity of the HLM migration 
mechanism itself as less dependencies exist. 

This decision does also conform with the first objective for the HLM migration mechanism, which 
requires that definitions of the participating languages should not be changed. The capability of 
objects to migrate is associated with their type and not implemented orthogonal to their type as 
for example within Emerald [Jul1993]. The later would only be possible through changes to the 
participating language environments. 

Relationship Management 

The definition of Porter and Migrateable objects alone will not be sufficient to implement object 
migration in the general case. Objects that are supposed to be migrated are in most cases 
related to other objects they need to exchange messages with. Various kinds of relationships 
exist that need to be taken care of during the migration process. 

A relationship between objects is made explicit through a unidirectional reference between the 
objects. An object that is referenced by the object to be migrated or references itself the object 
to be migrated is called a related object. The set of related objects of the object to be migrated 
has to be determined at the time of migration because the references between the objects can 
change at any time prior to migration. Figure 3.b illustrates the discriminating cases of 
relationships between objects. 
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Object a1 Object b1

Object e1

Object d1Object c1

Object  f1

Migrateable m1

 
Figure 3.b: A Migrateable m1 may hold references to other objects (a1, b1 and 

d1 in the above example). The Migrateable m1 may be referenced by 
other objects (c1 and d1 in the above example) as well. Other objects 
can be indirectly affected (e1 and f1 in the above example). 

The different relationships that may exist between a Migrateable and other objects can be 
identified using the example in figure 3.b as follows: 

• explicit 

If a Migrateable references another object, for example m1 references object a1, then a1 is 
called to be explicitly related to m1. 

• indirect 

If an object explicitly related to a Migrateable references another object, for example m1 
references object b1 and object b1 references object e1, then e1 is called to be indirectly 
related to m1. 

• transitive 

If an object indirectly related to a Migrateable references another object either explicitly or 
transitively, for example m1 references object b1 and object b1 references object e1 which 
references object f1, then f1 is called to be transitively related to m1. 

• implicit 

If a Migrateable is referenced by another object, for example object c1 references m1, then 
c1 is called to be implicitly related to m1. 

• mutual 

If both a Migrateable and a related object reference each other, for example object d1 
references m1 and vice versa, then d1 is called to be mutually related to m1. 

How the various relationships are treated during the migration process depends on whether the 
references between the objects can be maintained in the context of distribution. The 
relationships between objects are independent from migration if the existing references are not 
invalidated through a migration and messages can be send between the objects even after 
migration. Any object can then be migrated freely. 

In order to achieve this freedom, transparency of location and of invocation have to be available 
within all participating environments. Unfortunately, only few language environments offer this 
level of transparency as a built-in feature. Several technologies to achieve this level of 
transparency are available even for the heterogeneous case [Sie1996]. 

Rather then integrating an existing transparency technology the design of the HLM migration 
mechanism will focus on the more interesting question what has to be done if transparency of 



80 3  Heterogeneous Object Migration at the Language Level 

80 

location and invocation are not available, which is also the default case among existing 
language environments. 

If the references between an object to be migrated and its related objects can not be maintained 
in the context of distribution the related objects have to be migrated as well or the relationships 
have to be cut. This can only be decided upon and performed in cooperation with both objects. 
Otherwise an invalid reference will exist if the object being migrated is simply deleted in 
environments that support manual memory management. Within environments with garbage 
collection an object to be migrated would not be collected after it has actually been migrated.  

Implicitly related objects are especially problematic in this regard. A Migrateable is not aware of 
its implicit relationships and a reference from an implicitly related object to a Migrateable will be 
broken by the migration process without prior notification. This will probably have disastrous 
consequences. The HLM migration mechanism needs to address implicit relationships between 
Migrateables and other objects in one of the following three ways: 

• Recursive Traversal 

The obvious and straightforward way to handle implicit relationships is a traversal of all 
relevant references at the time of migration. Since the objects that may reference the object 
to be migrated are unknown this task is equivalent to a full traversal of all objects within an 
environment similar to garbage collection mechanisms.  

• Central Registration 

An alternative way to handle implicit relationships may be implemented by registering the 
implicitly related objects with the special object of the respective environment, for example, 
the Porter object. As many Migrateable objects may exist in an application but only relative 
few will actually be migrated the Porter object will then have to manage a lot of implicitly 
related objects in vain.  

• Decentral Registration 

As a third option only mutual relationship may be allowed between the Migrateable object 
and its related objects. The designer of an application will be required to match each implicit 
relationship with an explicit one. In order to make this task as easy as possible each 
Migrateable object can offer a way to register its related objects. 

A recursive traversal can not be implemented without changes to language environments and 
will probably impede the performance of the migration mechanism prohibitively. A central 
registration also has severe performance implication as every creation or destruction of a 
reference has to be matched with a registration or deregistration of the related pair of objects. 

Due to this consideration decentral registration is chosen for the HLM migration mechanism. 
This alternative provides better control for the Migrateable objects with regard to the 
determination of related objects. Migrateable and related objects are effectively required to be 
designed to use only mutual relationships. This design constraint for applications that use the 
HLM migration mechanism can be supported by appropriate development tools (see page 121). 

Objects related to a Migrateable will either be migrateable themselves or not. Objects that can 
not be migrated but are related to a Migrateable object still need to use mutual relationships 
with the respective Migrateable. These objects will be called Owner objects, as they own a 
reference to a Migrateable object. Owner objects effectively define the border of the set of 
objects that can be migrated in the lattice of all objects of an application. 

The designer has to decide which objects of an application are Migrateable objects, which have 
to be Owner objects and which are not related to Migrateable objects and can be implemented 
independently. Appropriate tools can help with these design decisions as well as to generate 
the necessary object definitions (see also page 121). 

Depending on the individual application some Migrateable objects will need to access objects of  
a particular language environment that are predefined and can not be changed by the designer 
of the application. For example input/output related objects fall into this category. Such objects 
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have to be encapsulated in Owner objects that are able to handle a possible migration of the 
related Migrateable objects appropriately. 

An number of standard objects as well as special object called Environment will be required for 
each implementation of the HLM migration mechanism in order to provide access to basic 
services of every participating language environment. The Environment object will also help to 
ease the design of applications of the HLM migration mechanism. There should be only one 
Environment object per participating environment that will also be known to the Porter object. 

All other existing objects that can not be extended for mutual relationships will have to be 
separated by the designer of an application from the Migrateable objects through the use of 
Owner objects that will maintain the implicit relationships on behalf of the Migrateables. Figure 
3.c illustrates the various relationships of an object that may exist within the context of the HLM 
migration mechanism. 

Porter pOwner o

Migrateable m

Migrateble r Migrateable s

Migrateable u

Migrateable t

Object x

Owner q

Object z

Environment e

Object y

Set of all Migrateables

 
Figure 3.c: The relationships between objects (shown here as ellipses) have to 

be designed differently in the context of the HLM migration 
mechanism. In the above example the Migrateable object m is 
mutually related to other objects that are either migrateable 
themselves like the objects r, s and t or Owner objects like the objects 
o and q or the Porter object p. Neither explicit nor implicit references 
between Migrateable and other objects are allowed (shown as 
dashed lines between Migrateable t and the objects x and z). 

Objects that are not Owner objects but reference a Migrateable object and do not register with it 
are not supported (object z in the example of figure 3.c). Some environments as for example 
Loops [SB+1983] offer features to manage such references as well as to conduct recursive 
traversals to detect such references but such means are not commonplace among existing 
language environments. 

No prohibitive actions will be implemented as part of the HLM migration mechanism in general. 
There may be cases where such references are necessary and the designer of the respective 
objects will be responsible for their management. Appropriate design tools can help in 
identifying and managing these cases (see also page 121). 

Migration Architecture 

The reference architecture of the HLM migration mechanism also called the migration 
architecture consists of four kinds of objects: a Porter object that controls the migration, 
Migrateable objects that can be migrated, Owner objects that are related to the Migrateables but 
are not migrateable themselves and an Environment object that will make services of the 
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particular language environment accessible to the Migrateable objects. Figure 3.d illustrates the 
migration architecture. 

Environment A Environment B

Porter paOwner o1 

Migrateable m1

Environment ea

Porter pb

Owner o2

Migrateable m1

Environment eb

 
Figure 3.d: The migration architecture of the HLM migration mechanism. Both 

environments employ their own Porter object pa and pb as well as 
Environment objects ea and eb respectively. The Migrateable object 
m1 can be disconnected from Owner object o1 in environment A, 
migrated to environment B and with the help of the Porter object pb 
may be connected with a completely different Owner object o2. 

The various object roles that are identified in the migration architecture are formalized via object 
definitions that specify the corresponding behavior. These have to be used in their language 
specific variants for all objects participating in the HLM migration mechanism. The object 
definitions are related through a single inheritance relationship. An object definition called for 
the root of the resulting inheritance hierarchy named Object is added as well. Figure 3.e 
illustrates the inheritance tree of the migration architecture. 

Object

Owner Environment

Migrateable

Porter

 
Figure 3.e: The migration architecture of the HLM migration mechanism is 

constructed of object definitions that are related by a single 
inheritance relationship and form a inheritance hierarchy. 

The inheritance hierarchy of the migration architecture is quite simple. The Migrateable object 
definition inherits part of its behavior from the Owner object definition. All other objects of the 
architecture inherit from the object definition Object. The behavior of the object definitions within 
the architecture of the migration mechanism is described in the following subchapters. 

3.2.1 Porter 

The Porter object is intended to coordinate the migration process. It serves as the addressee of 
migration requests and initiates and controls all steps of the migration process. It essentially 
implements the HLM migration algorithm through its behavior and corresponds with the 
Migrateable objects, Owner objects and the Environment object in order to perform a migration. 

Although only one Porter object is necessary to perform a migration, an actual implementation 
may choose to employ several Porter objects for example in order to allow several migrations 
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simultaneously. To do so the respective environments need to be multithreaded and 
synchronization mechanisms like Monitors [Hoa1974] will have to be used for all objects that 
can potentially be shared by different migrations (see also chapter 4 page 203). 

The prototypical implementation of the HLM migration mechanism does not strictly require the 
participating environments to be single-threaded but it is confined to one Porter object per 
environment and only one migration at a time may take place. If the HLM migration mechanism 
is implemented on top of a multithreaded environment the designer of applications will have to 
provide the necessary synchronization manually. 

3.2.2 Owner 

An Owner object is an object that is not migrateable but references one or more Migrateable 
objects. Owner objects correspond with Migrateable objects in order to establish a mutual 
relationship and to deconstruct it once the Migrateable object is actually migrated. Owner 
objects effectively define the boundary of the set of Migrateable objects within the set of all 
objects of an application. 

Owner objects participate actively in the migration process. They take part in the decision 
whether the migration of the Migrateable objects takes place and they cooperate in the actual 
migration. They invalidate their references deliberately as the respective Migrateable objects 
prepare to be deleted from the source environment. 

Owner objects of the destination environment can actively participate in the migration process 
as well. New relationships between Owners objects and Migrateable objects that have just been 
migrated into an environment can be established with the help of the Porter object. However 
their actual role depends of the particular application that uses the HLM migration mechanism. 

3.2.3 Migrateable 

A Migrateable object is an object that is able to be migrated. It needs to be aware of all its 
relationships with other objects of the source environment. A registry of all related owner objects 
is managed by an Migrateable object. As the object definition of the Migrateable objects is 
derived from the object definition of the Owner objects, a Migrateable can fulfill the role of an 
owner of other Migrateable objects as well (see also page 96). 

The designer of an application of the HLM migration mechanism has to decide which objects 
have to be migrateable. These objects will have to inherit from the Migrateable object definition. 
For objects that will remain within the source environment but are related to Migrateable 
objects, inheritance from the Owner object definition will have to be used instead. 

The Migrateable object has to give its consent whether it can be migrated or not. It will make 
that decision based on its current state and will query all its Owner objects whether they agree 
as well. If only a single Owner disagrees with the requested migration the migration will have to 
be aborted (see also page 96). 

3.2.4 Environment 

For migrated objects to be useful within destination environments they need to correspond with 
built-in objects of that environment. These will be made available through the use of an 
Environment object that serves as a pathway for messages between the objects involved. The 
relationship of a Migrateable object with the Environment object is established via the Porter of 
the destination environment. 

Although several Environment objects could be used within a particular destination 
environment, all of these would in principle serve the same role. Therefore only one 
Environment object per participating environment is used by the HLM migration mechanism. 
The implementation of the Environment object may differ significantly among environments. 

Environment objects are referenced by Migrateable objects but are not involved in the decision 
making of the migration process. The Migrateable object initiates any housekeeping that has to 
be performed by the Environment object prior to migration. The Porter will inform the 
Environment object which migrated objects are no longer available and will trigger any 
housekeeping to be executed by the Environment object after migration. 
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3.2.5 Object 

An universal object definition named Object is used as the root for all object definitions including 
those for the Porter, Owner, Migrateable and Environment objects. Despite the fact that all other 
objects do not reference a Migrateable object they are not completely independent of the whole 
migration process.  

The object definition of Object contains a minimal behavior that is required for all objects on the 
behalf of the HLM migration mechanism. This includes a test whether an object is a Migrateable 
object or not and a query of the name of the object definition of an object. Depending on the 
support available within a particular environment this requirement may be lifted for the individual 
case as other means to distinguish Migrateable objects may exist. 

3.3 Abstractions 

The HLM migration mechanism needs to transfer all information about an object to be migrated 
in such a way that the object can be recreated and is able to function as intended within the 
destination environment. The information to be migrated include at least the functionality and 
the state of the object to migrated. 

In the context of heterogeneity different representations can be used for various information that 
have to be transferred as part of the migration of objects. A definition of an object to be migrated 
may either be generated in the format of the source and then parsed with an additional parser at 
the destination. Alternatively it may be generated with an additional generator at the source in 
the format of the destination and then parsed natively at the destination. If all participating 
environments either implement additional parsers or all implement additional generators, 
arbitrary migration will be possible. 

To allow migration between an arbitrary number of languages every participating environment 
would have to either parse or generate every other object definitions in a brute force approach. 
Given that n environments can potentially participate in migration, every environment would 
have to implement n-1 parsers for all other representations except its own, resulting in a total of 
n²-n parsers to be written. The same number of generators would have to be written otherwise. 

Alternatively a single representation can be used. Any representation of the participating 
environments could be used but this would set an undue prejudice. A single generator and a 
single parser will be necessary for each environment if the common representation is artificial 
and not native to any of the environments. The use of a common representation reduces the 
amount of work to be done to 2*n generators and parsers to be written altogether . Figure 3.f 
provides a principal overview of the alternative approaches. 

In the context of heterogeneous language environments a great variety of source, intermediate, 
virtual and binary formats are available and can be used for both the representation of the state 
and the behavior of the objects being transferred. Unfortunately not all of these representations 
are used by all existing language environments. Hardware-oriented binary representations are 
not compatible with virtual machine implementations and vice versa. Intermediate 
representations are only available within few language environments. The only format that is 
available for all language environments is source code. 

Although binary, virtual or intermediate formats may offer performance advantages as they can 
be translated more directly the source format was chosen for the HLM migration mechanism, as 
it also eases the implementation and debugging of both the prototypical implementation and the 
objects to be migrated. The use of other forms of representation can be investigated in future 
versions of the HLM migration mechanism (see also chapter 4 page 179). 

As part of the HLM migration mechanism a source code representation of the semantics of the 
object to be migrated at the destination is generated within the source environment and 
transferred to the destination environment. The state of the objects to be migrated is also 
transferred in source code format. A binary representation of the state of objects would require 
less communication overhead but a simple source code format was chosen for ease of 
implementation and debugging. 
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Figure 3.f: The use of a common representation reduces the number of 

translations required for n supported environments from n²-n to 2*n. 
Each participating environment requires one translation from the 
common representation into the native representation as well as one 
with additional checks in the opposite direction. 

The HLM migration mechanism abstracts from the objects to be migrated through the use of so 
called interfaces. An interface captures the definition of an object independent from its actual 
state. The state of an object is captured as a so called object representation. The interface and 
the representation of an object are established through abstraction languages. 

The abstraction languages used by the HLM migration mechanism have been specifically 
designed for the mechanism. The language used to represent the semantics of objects is called 
Generalized Object Abstraction Language (GOAL) and the language use to represent the state 
of objects is called Object Representation Language (ORL) (see also page 88).  

The GOAL language consists of two parts, one used for interface declarations and one used for 
interface definitions with the latter being a syntactical extension of the first. Both the interface 
declaration and the interface definition are also synonymously called the interface of an object. 
The term interface definition is equivalent to the term object definition and is used to denote the 
GOAL abstraction of an object of any particular language environment. 

The GOAL language is based on a combination of a subset of the Interface Definition Language 
(IDL) defined by the Object Management Group (OMG) [Sie1996] and of a subset of the Java 
programming language defined by Sun Microsystems [GJS1996]. The HLM migration 
mechanism does not rely on either the OMG CORBA standard or the Java language in general. 
This combination was chosen for ease of implementation and for reasons of extensibility. A 
completely different language was used in an earlier version of the prototypical implementation.  

For the representation of the state of the objects to be migrated a language called Object 
Representation Language (ORL) is used. The ORL language is based on a syntax similar to the 
functional programming language Lisp [Ste1990] and is able to express atomic data values as 
well as data structures of arbitrary complexity. 

3.3.1 Interface Declarations 

The interface declaration part of the GOAL language is used to specify the behavior of the 
objects and optionally the structure of the state of objects. The behavior is described in terms of 
the signatures of messages that can be sent to an object. A signature is used for every method 
an object implements including the accessor methods used to manage its state. 

A GOAL interface declaration contains all the necessary parts of the interface of an object that 
are required by the HML1 migration mechanism to process a migration. In addition the 
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components of an object, i.e. the structure of the state of an objects can optionally be part of its 
interface declaration. This optional information may be required by future versions of the 
migration mechanism (see chapter 4 page 156). 

An interface declaration in GOAL is composed of an interface name, optionally the name of an 
ancestor interface the one being declared inherits from, an optional set of components and a set 
of signatures. The components of an interface that define the structure of the corresponding 
objects are defined as pairs of interface and component names. The signatures that describe 
the messages that can be sent to the corresponding objects are defined in terms of the interface 
name of the result, a signature name, and a list of parameters consisting of pairs of interface 
and parameter names . Figure 3.a shows an example of a GOAL interface declaration. 

interface Personal_Account : Bank_Account { 
Bank_Customer customer; 
Bank_Manager manager; 
Currency balance; 
Bank_Account open_account( 
 Bank_Customer c, 
 Bank_Manager m, 
 Currency b); 
Bank_Account assign_manager(Bank_Manager m); 
Bank_Manager get_manager(); 
Currency get_balance(); 
Bank_Account deposit(Currency c); 
Bank_Account withdraw(Currency c); 
Currency close_account(); 
}; 

Excerpt 3.a: An interface declaration expressed in the GOAL language. In the 
above example the interface Personal_Account inherits from the 
interface Bank_Account and contains the components customer, 
manager and balance of the interfaces Bank_Customer, 
Bank_Manager and Currency respectively. Personal_Account 
also defines signatures for opening an account, assigning and 
querying the manager and the balance of the account, depositing and 
withdrawing money and closing the account. 

The interface declaration part of GOAL is essentially a subset of OMG-IDL, which is part of the 
Common Object Request Broker Architecture (CORBA) [Sie1996]. This representation was 
chosen because CORBA can potentially be used to implement remote method invocations 
across heterogeneous environments, a feature that may be added to the migration mechanism 
in the future (see also chapter 4 page 158).  

The information provided by the interface declaration is sufficient for a comparison of the 
functionality available at the destination with the requirements of the object to be migrated (see 
also page 103). Alternative representation would either involve more details of implementation 
or have a more formal character. 

Using a formal specification like representation would allow for additional information like pre- 
and post-conditions of method invocations. While some language like Eiffel [Mey1992] provide, 
for example assertions that allow the definition of such conditions, these are not supported by 
the majority of language environments. The use of such a representation would therefore limit 
the set of supported languages unnecessarily. 

3.3.2 Interface Definitions 

The interface definition part of the GOAL language is essentially an extension of the interface 
declaration part with signature bodies that are composed of variable definitions and executable 
statements. The variable definitions are composed of interface and variable names. The 
statements that can be used comprise assignments to local variables, message passing 
expressions, object creation expressions, the control structures if-then-else and while-
do-end and do-while as well as return statement.  
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The components of an object are a required part of a GOAL interface definition and no longer 
optional as with interface declarations. The set of components consists of interface and 
component names that are listed prior to the set of signatures. Excerpt 3.b shows an example of 
a GOAL interface definition. 

interface Personal_Account : Bank_Account { 
Bank_Customer customer; 
Bank_Manager manager; 
Currency balance; 
Bank_Account open_account( Bank_Customer c, 
     Bank_Manager m, 
     Currency b) { 
 customer = c; 
 manager = m; 
 balance = b; 
 return this;}; 
Bank_Account assign_manager(Bank_Manager m) { 
 manager = m; 
 return this;}; 
Bank_Manager get_manager() { 
 return manager;}; 
Currency get_balance() { 
 return balance;}; 
Bank_Account deposit(Currency c) { 
 balance = balance.plus(c) 
 return this;}; 
Bank_Account withdraw(Currency c) { 
 balance = balance.minus(c); 
 return this;}; 
Currency close_account(){ 
 Currency c; 
 c = balance; 
 balance = 0; 
 manager = null; 
 customer = null; 
 return c;}; 
}; 

Excerpt 3.b: An interface definition expressed in the GOAL language. In the above 
example the method bodies are added to the signature of the 
interface Personal_Account introduced in excerpt 3.a. The 
methods essentially use assignment and return statements with the 
exception of the deposit and withdraw methods that use message 
passing expressions. 

The interface definition part of the GOAL language is essentially a subset of the programming 
language Java [GJS1996]. Java was chosen because of the possibility to prove the 
executability of the represented object semantics easily. The HLM migration mechanism does 
not rely on Java in any form though Java can be a participating environment that implements 
the HLM migration mechanism.  

The set of statements used by the GOAL interface  definitions comprises only a small subset of 
the Java language. Only constructs that are found among most programming languages or can 
be translated easily into most programming languages are used. The executable part of the 
GOAL language has been kept as small as possible but is computationally complete. 

Almost any other executable representation can be used and a completely new representation 
could be invented that requires its own interpreter or compiler. Although the latter approach was 
chosen with an earlier version of the HLM migration mechanism it proved to add little value to 
the general problem of heterogeneous migration. 

Some other executable representation, for example Lisp would provide more flexibility through 
its interpreter based execution model. However, the general use of a compiler based execution 
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model seemed more appropriate as the majority of existing environments follow that model. The 
subset of the Java language was therefore chosen as the most adequate. 

3.3.3 Object Representations 

The object representation that is used to transfer the state of objects to be migrated is 
essentially an externalization or serialization of the objects in question. The HLM migration 
mechanism uses a separate language called Object Representation Language (ORL) for this 
purpose. The representation of the state of an object in ORL is composed of two parts, the 
interface and identity information part and the object initialization information as the second part. 

The first part of an ORL representation consists of a list of pairs of interface-names and unique 
numbers called the object migration identifier, one pair for each object to be migrated. This 
format essentially associates every object to be migrated with an unique number in order to 
identify it with the corresponding newly created object within the destination environment in the 
context of the current migration. 

The second part of the ORL representation consists of a list of pairs of a unique number 
identifying a particular object to be migrated and a list of either textual representations for 
atomic values, unique numbers preceded by a colon “:” sign that are used to reference other 
migrated objects, star signs “*” that indicate optional components, or all of the above in nested 
lists delimited by pairs of parentheses. This format is used to reconstruct the individual migrated 
objects within the destination environment. Excerpt 3.c shows an example of an ORL object 
representation of an object like the ones defined in excerpt 3.b above. 

Personal_Account 1  
Bank_Customer 2  
Bank_Manager 3  
Currency 4  
| 
1 (:2 :3 :4)  
2 ("Max Mustermann")  
3 ("Boris Banker")  
4 ("Euro" 1000)) 

Excerpt 3.c: The ORL language can be used to represent the state of objects. In 
the above example a list of pairs of interface-names and numbers 
defines and identifies the objects to be migrated. This list ends with a 
single vertical bar "|". The following lines contain for each identified 
object a list of atomic values or identifications of referenced objects 
that comprises the state of the respective objects to be migrated. 

The format of the GOAL object representation may seem arbitrary but is tightly related to the 
HLM migration mechanism. Although less compact than an binary representation a source code 
format was chosen for the representation of the state of objects to be migrated in order to ease 
debugging of the prototypical implementation of the HLM migration mechanism and of the 
objects being migrated. Future version of the HLM migration mechanism may nevertheless use 
different representations for performance reasons. 

As an alternative, an existing serialization format like the externalization service of CORBA 
[Sie1996] could be used instead of a newly invented one. This new implementation was chosen 
because only a limited functionality was necessary for the externalized representation. Using a 
complex mechanism like the CORBA Externalization Service appeared to add little to the 
general problem of heterogeneous migration.  

3.4 Standard Interfaces 

The HLM migration mechanism is designed to work with only minimal knowledge about the 
destination environment prior to migration. Yet a designer of an application will need some 
common functionality in order to implement Migrateable objects that can be useful within the 
destination environment. A set of interfaces called standard interfaces is used to provide the 
necessary common functionality among environments. 
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The set of standard interfaces used for the HLM migration mechanism consist of two parts: an 
inheritance hierarchy of commonly used interfaces and a small set of so called singular 
interfaces that is not part of the inheritance hierarchy. The set of singular interfaces was chosen 
in order to represent abstractions for atomic values that occur in hybrid language environments. 
Atomic values that are not represented by objects will also be called singular objects. 

Because of the use of singular interfaces the HLM migration mechanism is able to support both 
pure and hybrid language environments. Atomic values of hybrid languages can be abstracted 
through singular interfaces and recreated as objects of pure languages and vice versa. As a 
consequence the definition of subtypes of singular interfaces in pure environments is not 
supported by the HLM migration mechanism. 

The standard interfaces have to be implemented in the context of the participating 
environments. A native implementation will not always be required though. A wrapper around 
existing object definitions that provides the necessary functionality will be sufficient in most 
cases. The singular interfaces may not be defined within hybrid environments at all as only the 
appropriate constructs of the destination need to be generated during the migration process. 

The selected set of standard interfaces used in the prototypical implementation of the HLM 
migration mechanism serves as a starting point for further experimentation and is neither 
complete nor comprehensive. The set may well be changed or extended in future versions of 
the mechanism and in response to the support of additional language environments.  

The actual set of standard interfaces that can be used for applications of the real world will have 
to be defined by standardization efforts rather than research. In order to support different 
application purposes several disjunctive or alternative sets of standard interfaces can be 
defined as well (see also chapter 4 page 154). 

All standard interfaces of the prototypical implementation of the HLM migration mechanism bear 
names with the prefix OM_ an abbreviation of “object migration”, in order to avoid name conflicts 
with existing interfaces of particular environments. Additional standard interfaces may follow this 
convention or use different techniques to avoid name conflicts. 

The standard interfaces of the HLM migration mechanism include the singular interfaces 
OM_Boolean, OM_Integer, and OM_Float. The singular interfaces are only specified through 
interface declarations. The actual implementation of the standard interfaces is specific to each 
participating language environment. Some environments may chose to map them to built-in 
types while other may use wrapper code around existing object definitions. Regardless of their 
implementation singular objects will be captured with a common textual representation within 
ORL object representations. 

The other standard interfaces comprise the basic interfaces OM_Object, OM_Character, 
OM_String,, the data-structure oriented interface OM_Set, the input/output oriented 
interfaces OM_Stream, OM_File, OM_Directory as well as the network oriented interfaces 
OM_ServerSocket and OM_Socket. The elements of the migration architecture are also 
defined as the standard interfaces OM_Porter, OM_Owner, OM_Migrateable and 
OM_Environment11. Figure 3.g provides an overview of the standard interfaces. 

The consistent functionality across all participating environments is essential but can be 
problematic for singular interfaces. The singular interfaces OM_Boolean, OM_Integer and 
OM_Float provide only the minimal functionality that is common among most environments. 
Additional functionality that is provided by some environments is not supported. The signatures 
that are defined by these interfaces serve only as substitutes for special syntactical constructs 
like operators used within most language environments. 

                                                 
11  A number of additional standard interfaces exist that are not shown here for reasons of space. 
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Figure 3.g: The set of standard interfaces used by the HLM migration 

mechanism. The interfaces OM_Boolean, OM_Integer and 
OM_Float are singular interfaces while all other interfaces inherit 
from the generic interface OM_Object. 

The OM_Boolean interface provides only common Boolean operations. The implementation of 
the interface OM_Boolean is usually only affected by syntactic differences of operators and 
constants that have to be taken care of when a GOAL object definition is translated into a native 
object definition of a participating environment. Excerpt 3.d shows the interface declaration of 
the OM_Boolean interface. 

interface OM_Boolean { 
 OM_Boolean not(); 
 OM_Boolean and(OM_Boolean b); 
 OM_Boolean or(OM_Boolean b); 
 OM_Boolean xor(OM_Boolean b); 
}; 

Excerpt 3.d: The interface declaration OM_Boolean provides signatures for the 
most common Boolean operations. 

The interfaces OM_Integer and OM_Float can not be guaranteed to provide equivalent 
results for arithmetic operations across environments in all cases. Although standards exist that 
can provide such equivalence, most languages provide their own idiosyncrasies for arithmetic 
operations. Even with identical interface definitions minimum and maximum values as well as 
the effects of rounding may differ between platforms. Floating point operations should therefore 
be used with special caution within Migrateable objects. This problem was also identified for 
other approaches as stated by Theimer and Hayes: 

“Many programming languages do not specify the semantics of their behavior 
exactly or in a machine-independent manner. For example, the same floating point 
operation may yield different results on different machines. Machine dependent 
values like the size of data types may be available as part of the language, allowing 
programs to exhibit machine-dependent behavior.” [ThH1991] 
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A consistent behavior of the OM_Integer and OM_Float interfaces will only be possible if 
widespread implementations of common standards can be used. This can not be forced or 
guaranteed due to the objective that the participating environments should not be changed. 
Excerpt 3.e shows the OM_Integer and OM_Float interface declaration. 

interface OM_Integer { 
 OM_Boolean is_equal(OM_Integer i); 
 OM_Boolean is_less(OM_Integer i); 
 OM_Boolean is_less_equal(OM_Integer i); 
 OM_Boolean is_greater(OM_Integer i); 
 OM_Boolean is_greater_equal(OM_Integer i); 
 OM_Integer plus(OM_Integer i); 
 OM_Integer minus(OM_Integer i); 
 OM_Integer times(OM_Integer i); 
 OM_Float divide_by(OM_Integer i); 
 OM_Float toFloat(); 
}; 

interface OM_Float { 
 OM_Boolean is_equal(OM_Float f); 
 OM_Boolean is_less(OM_Float f); 
 OM_Boolean is_less_equal(OM_Float f); 
 OM_Boolean is_greater(OM_Float f); 
 OM_Boolean is_greater_equal(OM_Float f); 
 OM_Float plus(OM_Float f); 
 OM_Float minus(OM_Float f); 
 OM_Float times(OM_Float f); 
 OM_Float divide_by(OM_Float f); 
 OM_Integer toInteger(); 
}; 

Excerpt 3.e: The interface declarations for OM_Integer and OM_Float provide 
mathematical operations as well as conversion methods. 

The signatures defined by the singular interfaces OM_Boolean, OM_Integer and OM_Float 
are never implemented as such within language environments. Their only role is to define the 
common functionality that has to be matched by the translation of the GOAL-Representation 
into a language environment that implements the HLM migration mechanism. 

The interface OM_Object serves as the root interface of the single inheritance tree that 
comprises all interfaces that can be used for the definition of Migrateable objects within 
applications of the HLM migration mechanisms. The interface OM_Object provides only three 
very simple signatures that can be implemented quite differently by the participating language 
environments. Excerpt 3.f shows the OM_Object interface declaration. 

interface OM_Object { 
 OM_Boolean identical(OM_Object o); 
 OM_Boolean is_migrateable(); 
 OM_String interface_name(); 
}; 

Excerpt 3.f: The interface declaration for OM_Object provides only three 
signatures, i.e. a test for identity, a test whether the object is a 
migrateable object and a retrieval operation for the name of the 
interface of the object. 

Some of the signatures defined by the interface OM_Object have a reflective character, namely 
is_migrateable()and interface_name(). These two pieces of information about an 
object are needed by the HLM migration mechanism during the processing of a migration 
request. These signatures can be very easily implemented, for example by providing constants 
for each interface involved.  

The alternative of requiring a reflective functionality for each participating language environment 
appears to be to restrictive as few existing language environments provide reflection (see also 
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chapter 4 page 206). The aforementioned signatures can nevertheless be implemented using 
reflective techniques within particular language environments. 

Some environments implement characters and strings via language primitives but the interfaces 
OM_Character and OM_String are not included in the set of singular interfaces. Due to the 
differences that can be found among languages in this regard and because of the additional 
functionality required for these interfaces, the use or wrapper code will be required for their 
implementation. The signature set_this() and get_this() are provided in order to initialize 
objects from atomic values and to generate atomic values from objects respectively. 

The interface OM_Character inherits from OM_Object and provides some basic functionality 
for handling characters as well as some signatures for parsing purposes. The interface 
OM_Character will have to be implemented as using wrapper code and requires the use of the 
American Standard Code for Information Interchange (ASCII). Since most language 
environments use that standard or the superset Unicode this restriction does not seem to be 
significant. Excerpt 3.g shows the OM_Character interface declaration. 

interface OM_Character : OM_Object { 
 OM_Boolean set_this(OM_Character om_c); 
 OM_Character get_this(); 
 OM_Character set_eof(); 
 OM_Boolean is_equal(OM_Character om_c); 
 OM_Boolean is_less(OM_Character om_c); 
 OM_Boolean is_less_equal(OM_Character om_c); 
 OM_Boolean is_greater(OM_Character om_c); 
 OM_Boolean is_greater_equal(OM_Character om_c); 
 OM_Boolean is_printable(); 
 OM_Boolean is_nonprintable(); 
 OM_Boolean is_whitespace(); 
 OM_Boolean is_mumber(); 
 OM_Boolean is_alpha(); 
 OM_Boolean is_alpha_num(); 
 OM_Boolean is_id_char(); 
 OM_Boolean is_eof(); 
 OM_Boolean is_exponent(); 
 OM_Boolean eq_tab(); 
 OM_Boolean eq_lf(); 
 OM_Boolean eq_cr(); 
 OM_Boolean eq_blank(); 
 OM_Boolean eq_not(); 
 OM_Boolean eq_quotes(); 
 OM_Boolean eq_data(); 
 OM_Boolean eq_dollar(); 
 OM_Boolean eq_percent(); 
 OM_Boolean eq_and(); 
 OM_Boolean eq_quote(); 
 OM_Boolean eq_lb(); 
 OM_Boolean eq_rb(); 
 OM_Boolean eq_times(); 
 OM_Boolean eq_plus(); 
 OM_Boolean eq_comma(); 
 OM_Boolean eq_minus(); 
 OM_Boolean eq_point(); 
 OM_Boolean eq_slash(); 
 OM_Boolean eq_colon(); 
 OM_Boolean eq_semicolon(); 
 OM_Boolean eq_lt(); 
 OM_Boolean eq_equal(); 
 OM_Boolean eq_gt(); 
 OM_Boolean eq_questionmark(); 
 OM_Boolean eq_at(); 
 OM_Boolean eq_lsb(); 
 OM_Boolean eq_backslash(); 
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 OM_Boolean eq_rsb(); 
 OM_Boolean eq_caret(); 
 OM_Boolean eq_underscore(); 
 OM_Boolean eq_backquote(); 
 OM_Boolean eq_lrb(); 
 OM_Boolean eq_or(); 
 OM_Boolean eq_rrb(); 
 OM_Boolean eq_tilt(); 
 OM_Integer asInteger(); 
 OM_Boolean fromInteger(OM_Integer i); 
}; 

Excerpt 3.g: The interface declaration for OM_Character offers basic 
construction, conversion and comparison functionality in addition to 
the signatures inherited from the OM_Object interface. 

The interface OM_String manages sequences of OM_Character objects. Because it is 
intended to offer on the fly changes in string length it should be implemented through a suitable 
data structure that offers dynamic allocation and deallocation within each participating language 
environment. Some of the more unusual comparison functionality offered by OM_String is also 
used for parsing purposes. Excerpt 3.h shows the OM_String interface declaration. 

interface OM_String : OM_Object { 
 OM_Booleam set_this(OM_String om_s); 
 OM_String get_this(); 
 OM_Boolean is_empty(); 
 OM_Boolean is_equal(OM_String om_s); 
 OM_Boolean is_less(OM_Character om_c); 
 OM_Boolean is_less_equal(OM_Character om_c); 
 OM_Boolean is_greater(OM_Character om_c); 
 OM_Boolean is_greater_equal(OM_Character om_c); 
 OM_Boolean contains(OM_Character om_c); 
 OM_Boolean contains(OM_String om_s); 
 OM_Boolean starts_with(OM_String om_s); 
 OM_Boolean ends_with(OM_String om_s); 
 OM_Boolean start_of(OM_String om_s, OM_Integer om_i); 
 OM_Integer string_length(); 
 OM_Character at(OM_Integer i); 
 OM_Boolean string_append(OM_Character om_c); 
 OM_Boolean string_append(OM_String om_s); 
 OM_Boolean string_append(OM_Integer om_i); 
 OM_Boolean string_append(OM_Float om_f); 
 OM_Boolean string_append_newline(); 
 OM_Boolean string_append_tabs(OM_Integer om_i); 
 OM_String string_copy(); 
 OM_String nth_substring(OM_Integer om_i); 
 OM_String string_left(OM_String om_s); 
 OM_String string_right(OM_String om_s); 
 OM_Character asCharacter(); 
 OM_Boolean fromCharacter(OM_Character c); 
 OM_Integer asInteger(); 
 OM_Boolean fromInteger(OM_Integer i); 
 OM_Float asFloat(); 
 OM_Boolean fromFloat(OM_Float f); 
 OM_Boolean print_to(OM_Stream s); 
}; 

Excerpt 3.h: The interface declaration for OM_String builds on the 
OM_Character interface and offers comparison, conversion and 
output functionality. 

The OM_String interface includes an output operation in form of the print_to (OM_Stream 
s) signature. Conversion functionality for the more fundamental interfaces is also provided. The 
interface OM_String plays a pivotal role in the generation or the various representations that 
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are used by the HLM migration mechanism. The conversion functionality for the singular objects 
is located differently within various languages. Therefore it has to be integrated in the wrapper 
code of the OM_String interface by the implementation of the HLM migration mechanism for a 
particular language environment. 

The other standard interfaces will only be briefly mentioned here as their declarations and in 
depth discussion takes up to much space but would add little value. The remaining standard 
interfaces not already described are: OM_Set, OM_Stream, OM_File, OM_Directory, 
OM_ServerSocket and OM_Socket.  

The OM_Set interface defines the usual mathematical operations like union, intersection and 
difference for sets of objects of any interface derived from OM_Object. Signatures for iterations 
through the whole set of elements are offered as well as per-element operations for union and 
difference including a contains test. Additional interfaces that inherit from OM_Set are defined in 
the context of th emigration architecture, namely OM_OwnerSet and OM_MigrateableSet. 

Limited input/output operations based on the OM_Character and OM_String interfaces are 
provided by the OM_Stream interface and similar operations are offered by the OM_File 
interface for the management of background storage. The interface OM_Directory provides a 
simple management of file system structures. 

Network operations based on the TCP/IP standard are supported by the OM_ServerSocket 
and OM_Socket interfaces. The OM_ServerSocket can be used to listen for incoming 
communication requests while the OM_Socket interface can be used for actual communications 
on either server or client side. A complete listing of the interface declarations of the standard 
interfaces is provide in the appendix (see page 154). 

The objects of the migration architecture of the HLM migration mechanism, are also defined as 
standard interfaces as the mechanism itself is operating in the same way across all participating 
environments. The platform-independent nature of the migration mechanism becomes apparent 
through the fact that the HLM migration mechanism is solely implemented in GOAL except for 
environment specific parts. The interfaces of the migration architecture are named OM_Porter, 
OM_Owner, OM_Migrateable and OM_Environment. 

The OM_Environment interface is implemented natively as it encapsulates the platform-
specific parts of the migration mechanism like the initiation of the target code generation, the 
compilation of the target code, the dynamic binding of the resulting object code and the dynamic 
creation of objects The details of the interfaces of the HLM architecture will be described 
throughout the following sub chapter that explains the migration mechanism in detail. 

3.5 Algorithm 

The heart of the HLM migration mechanism is the migration algorithm that actually performs the 
migration. The migration algorithm operates on two levels, the environment level and the object 
level. The sequence of messages that are exchanged among the participating environments 
throughout the migration process is call the migration protocol. 

Within both the source and destination environment the objects of the migration architecture 
employ synchronous message passing to prepare the information that needs to be transferred 
between the systems as well as to process the transferred information. Between the 
participating environments messages are exchanged using different communication means in 
order to actually transfer the necessary information and to control the whole migration process. 

The migration algorithm of the HLM migration mechanism is implemented as part of the 
behavior of the OM_Porter interface and consists of the following six phases that are executed 
in cooperation of the OM_Porter objects of the particular source and destination environments. 
The migration algorithm is invoked upon the receipt of a migration request by the OM_Porter 
object of the source environment. 



3.5  Algorithm 95 

  95 

1. Initiation  

The initiation phase ensures the communication between the source environment and the 
destination environments specified by the migration request. 

2. Check 

The check phase tests whether the object to be migrated as well as its related objects 
agree with the migration and determines the set of related objects that need to be migrated 
as well. 

3. Negotiation 

The negotiation phase determines the requirements of the object to be migrated and its 
related objects and identifies the semantics that need to be added to the destination 
environment. 

4. Transfer of Semantics 

The transfer of semantics phase makes the necessary semantics available within the 
destination environment. 

5. Transfer of State 

The transfer of state phase recreates the migrated objects within the destination 
environment. 

6. Completion 

The completion phase commits the migration. 

The migration algorithm of the HLM migration mechanism will abort the migration if an error 
occurs during any phase and the subsequent phases will then not be executed. These six 
phases of the migration algorithm are described in detail in the following subchapters. 

3.5.1 Initiation 

In the context of the HLM migration mechanism, the migration of an OM_Migrateable object 
to another environment is initiated through a message, called migration request, to the 
OM_Porter object of the source environment. The migration request needs to specify the 
object to be migrated as well as a destination for the migration. 

In the context of location independent object references an OM_Owner object of the destination 
environment could be specified directly as the target of the migration. Since the prototypical 
implementation of the HLM migration mechanism does not support location transparency the 
simplest form of location information available is used. 

A migration request has three parameters: a local reference to the object to be migrated, called 
the root object of the migration request, an network address and the port number of the popular 
TCP/IP network protocol at which the OM_Porter object of the destination environment is 
supposed to be listening. This scheme can also be applied to migration between environments 
running on a single host. Excerpt 3.i shows a code fragment containing a migration request. 

OM_Porter ap; 
OM_Migrateable am; 
... 
ap.migrate_via_network(am, "127.0.0.1", 9876); 

Excerpt 3.i: An actual migration of the HLM migration mechanism is initiated 
through a migration request. In the above example a message is sent 
to the OM_Porter object ap including a reference to the 
OM_Migrateable object am and the Internet address and port 
number of the OM_Porter object of the destination environment. 

A migration request can be the result of an end-user interaction with an on-screen 
representation of an object or may be caused by a commando given to a command-line 
interface. Also, an application may request a migration due to some criteria of the application 
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logic. The only alternative that is ruled out, is a migration request that is sent by the 
OM_Migrateable object itself to the OM_Porter object. 

A migration request by an OM_Migrateable object is not feasible in the context of the HLM 
migration mechanism as the OM_Migrateable object is supposed to be inactive, i.e. it can not 
be referenced by activation records. Consequently, an initiation of migration through a message 
to the object to be migrated like in many migration systems is not possible in the context of the 
HLM migration mechanism. 

Even if the object to be migrated would not control the migration process itself but rather 
delegate the control to the OM_Porter object, for example through a message, the object 
would not be inactive as it would still be referenced by an activation record. The necessary 
provisions to make sure that the object to be migrated is not referenced by activation records 
are discussed in the following subchapter (see page 96). 

An alternative for the initiation of a migration via the OM_Porter object would be a message to 
an OM_Owner object of the object to be migrated. As there is no distinct OM_Owner object in 
most cases an arbitrary one would have to be chosen. Even in cases where there is only one 
OM_Owner object of a OM_Migrateable object, that OM_Owner object would still have to 
delegate the control of the migration process to the OM_Porter object. As the OM_Porter 
object is designed to be the sole entity that controls the migration process within the migration 
architecture it has to be addressed directly by a migration requests. 

In response to the migration request the OM_Porter object checks whether another migration 
requests is already being processed and aborts the newly received request if that is the case. 
The processing of every migration request has to be committed or aborted before another 
request can be serviced. An additional migration request may for example be erroneously 
invoked during the processing of a prior migration request by one of the participating objects. 

The initiation phase continues with an initial exchange of message between the two 
OM_Porter objects in order to verify communication. The OM_Porter object of the source 
environment checks whether a OM_Porter object is actually available with the given 
destination environment and whether it is capable of performing the migration, i.e. not busy with 
another migration. If the OM_Porter object of the destination environment can not be reached 
after a timeout period the current migration is aborted. 

If the migration request can be serviced and a communication has been established a so called 
migration identifier is generated and used to identify the current migration. The OM_Porter 
object of the source environment then continues the migration with a check of the object to be 
migrated as the next phase of the migration algorithm. 

3.5.2 Checks 

Once a migration has been initiated a migration check is performed to ensure that the 
OM_Migrateable object specified by the migration request and that all related objects either 
approve the migration or can be migrated as well. As a result of the check the so called 
migration set that consists of all related objects that have to be migrated together with the root 
object of the migration request is constructed. Prior to the migration check a so called inactive 
check needs to be performed that is described later. 

Migration Check 

The decision whether an OM_Migrateable object is ready to be migrated and whether an 
OM_Owner object is ready to let a related OM_Migrateable object migrate is made by the 
respective objects themselves based upon their current state and through application 
dependent messages that are sent between the respective objects. 

The OM_Porter object sends a ready_to_migrate() message to the root object of the 
migration request including the migration identifier and an OM_MigrateableSet object that 
represents the migration set as parameters. The migration identifier is used to distinguish the 
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current migration request from previously aborted migrations. The OM_Migrateable object 
checks its local state and sends appropriate messages to its related objects. 

The OM_Migrateable object will send ready_to_let_component_migrate()messages 
to all its owners to make sure that all owners agree with its migration. The OM_Migrateable 
object will return false to the OM_Porter if a single owner disagrees and the OM_Porter will 
abort the migration. 

If all its owners agree the OM_Migrateable object will send either ready_to_migrate() or 
ready_to_let_owner_migrate() message to its non-singular components depending on 
whether it requires a particular component to be migrated as well or not. If a component that is 
sent a ready_to_let_owner_migrate() message disagrees, the OM_Migrateable object 
can send the component an additional ready_to_migrate() message to test whether the 
component will accept to be migrated itself.  

If a component that is sent a ready_to_migrate() message disagrees the 
OM_Migrateable object has to return false to the OM_Porter which will abort the migration. 
Excerpt 3.j shows a fragment of the object definition of a OM_Migrateable object that 
illustrates the implementation of the migration check. 

interface My_Migrateable : OM_Migrateable { 
... 
OM_OwnerSet owners; 
OM_Migrateable component1; 
OM_Migrateable component2; 
... 
OM_Integer current_om_id; 
... 
OM_Boolean ready_to_migrate(OM_Integer om_id, OM_MigrateableSet ms){ 
 ... 
 if (current_om_id == om_id) { 
  return true; 
 } else { 
  current_om_id = om_id; 
 }; 
 // local state check ... 
 if (!owners.ready_to_let_component_migrate(om_id, this)) { 
  return false;}; 
 if (!component1.ready_to_migrate(om_id, this, ms)) { 
  return false;}; 
 ... 
 }; 
 if (!component2.ready_to_let_owner_migrate(om_id, this)) { 
  if (!component2.ready_to_migrate(om_id, this, ms)) { 
   return false; }; 
 }; 
 ... 
 ms.union(this); 
 return(true);  
}; 
... 
}; 

Excerpt 3.j: In the above example the object definition of an interface called 
My_Migrateable extends the OM_Migrateable interface that 
defines the ready_to_migrate() signature. The signature 
ready_to_let_component_migrate() of the OM_OwnerSet 
interface is used to check each OM_Owner object registered with the 
My_Migrateable object iteratively. If all owner objects agree the 
components of the My_Migrateable object will be checked 
recursively using their ready_to_let_owner_migrate() and 
ready_to_migrate() signatures. 



98 3  Heterogeneous Object Migration at the Language Level 

98 

An OM_Migrateable object has a component called owners of interface OM_OwnerSet that 
is used to register all OM_Owner objects related to the OM_Migrateable. The OM_OwnerSet 
interface offers a ready_to_let_component_migrate() signature that iterates through the 
set and sends each element a ready_to_let_component_migrate() message including 
the migration identifier and a reference to the OM_Migrateable object that initiated the 
iteration as parameters. 

The owners of an OM_Migrateable object are checked first because there are usually only 
few owners per OM_Migrateable object and the owners usually do not need to ask other 
objects recursively. As one OM_Owner object may “own” several OM_Migrateable objects an 
OM_Owner may be asked several times in the context of a single migration, each time for a 
different OM_Migrateable object.  

The designer can apply optimizations internal to an OM_Owner object like caching of the 
migration identifier, to avoid repeated computations. Nevertheless, the OM_Owner has to be 
asked several times as it may decide differently for each OM_Migrateable object. A reference 
to the current OM_Migrateable object being checked is therefore included in the 
ready_to_let_component_migrate() message sent to the OM_Owner object as well12. 

All these messages include the migration identifier as well as a reference to the 
OM_Migrateable object that sends the message. The last parameter is necessary as an 
owner or component of an OM_Migrateable object may reference several OM_Migrateable 
objects as components or owners respectively and has to be able to determine which has sent 
the particular message. 

The ready_to_let_owner_migrate() messages that are sent to components of an 
OM_Migrateable object include these parameters as well for the same reasons. The 
ready_to_migrate() message that are sent to components of an OM_Migrateable object 
include additionally the reference to the OM_MigrateableSet object as a parameter that has 
been passed to the OM_Migrateable object in the first place (the reason will be explained in 
the next section below). 

The check whether an OM_Migrateable object is ready to be migrated is implemented as a 
recursive descent from the root object of the migration request. In order to handle cyclical 
structures the OM_Migrateable object may cache the migration identifier and return true if it 
has already been traversed for the current migration. The ready_to_let_owner_migrate() 
signature of the OM_Migrateable interface that is used in the recursion is defined analogous  
to the ready_to_let_component_migrate() signature described above. 

Collection of the Migration Set 

If all owners and components of a OM_Migrateable object agree to its migration the 
OM_Migrateable object will add itself to the OM_MigrateableSet object that was passed as 
a parameter in the ready_to_migrate() message. This object represents the migration set, 
i.e. the set of all objects that need to be migrated together with the root object of the migration 
request. 

The root object decides which of its components should be included in the migration set or 
should remain within the source environment by either sending it a ready_to_migrate() 
message or a ready_to_let_owner_migrate() message respectively. If the component is 
sent a ready_to_migrate() message and agrees to the migration of the root object, it has 
already added itself to the migration set and will be migrated as well. 

The migration check, the determination which related objects are to be migrated together with 
the root object of a migration request and the construction of the migration set are all performed 
with a single recursive descent. The recursive descent can further be optimized as objects that 
                                                 
12  The OM_Porter uses the same signature for the initial ready_to_migrate() message to the root object of the migration 

request with a reference to the root object as the parameter. This detail has been omitted from the code fragments in order to 
avoid confusion. 
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have already been visited can detect this using the migration identifier and do not necessary 
have to perform their own checks again unless their semantics requires to do so. 

As part of the recursive descent a OM_Migrateable object may also receive a 
ready_to_let_owner_migrate() message from one object and a ready_to_migrate() 
message from another object. As the second check has precedence over the first the recursive 
checks will have to be performed as well. The OM_Migrateable object may nevertheless 
decide differently for each invoked check.  

If an OM_Migrateable object has already agreed to a ready_to_migrate() message it 
may simply return true if its sent a ready_to_let_owner_migrate() message. The code 
for the construction of the object representations and for the recreation of the objects within the 
destination environment is able to cope with such a situation (see also page 109). 

Inactive Check 

Prior to the migration check and the collection of the migration set an additional inactive check 
need to be performed by the migration algorithm of the HLM migration mechanism. As 
mentioned previously the OM_Migrateable objects that are supposed to be migrated have to 
be inactive, i.e. they can not be referenced by activation records as these references will be 
broken when the objects are migrated. 

If an applications of the HLM migration mechanism is not designed in such a way that a 
migration can only be requested when the corresponding OM_Migrateable objects are 
inactive the check phase of the migration algorithm has to be able to detect previous 
invocations of the root object of the migration request and its related objects. 

This is necessary because any invocations of methods of the OM_Migrateable object in 
question will require the object to be available when the subsequent invocations that eventually 
requested the migration return. Any attempted access to the OM_Migrateable object in this 
regard will fail if the object has been migrated in the meantime. 

Likewise any invocations of methods of OM_Owner objects of the OM_Migrateable object in 
question that take the OM_Migrateable object as a parameter may try to access that 
parameter and will fail if the object has been migrated in the meantime. Both kinds of 
invocations will need to be detected prior to migration by what can be called an invocation 
check in order to inhibit the current migration from being performed. Figure 3.h illustrates the 
stack of activation records including unacceptable activation records at the time of migration. 

The migration algorithm of the HLM migration mechanism can perform the detection of previous 
invocations of OM_Migrateable objects in one of the following two ways: 

• Stack Traversal 

The straightforward way to detect unacceptable invocations that occurred prior to the 
migration request would be a traversal of the activation records of the execution stack at the 
time of migration. Unfortunately only very few language environments as for example Beta 
[MMN1993] and Loops [SB+1983] provide programmatic access to activation records. 

• Invocation Counter 

The detection of unacceptable activation records can also be achieved through the use of 
invocation counters that are incremented with any relevant invocation and decremented 
upon its return. The detection of an unwanted previous invocations is thus reduced to the 
test whether the relevant invocation counters have values greater then zero. 

Due to the first objective that precludes changes to the participating language environments the 
second alternative is chosen for the HLM migration mechanism. Invocations counter have to be 
maintained consistently for all OM_Migrateable objects as well as all components of 
OM_Owner objects separately.  
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porter.migrate(...)

my_migrateable.ready_to_migrate(...)

prior
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my_owner.some_method(my_migrateable, ...)

my_migrateable.my_method(...)

 
Figure 3.h: The stack of activation records at the time of migration consists of the 

method invocations that are necessary to process the migration as 
well as of the invocations that occurred prior to the migration request 
porter.migrate(my_migrateable,...) in the above example. 
Any invocation of methods of the object to be migrated like 
my_migrateable.my_method() as well as any invocation of an 
owner of the object to be migrated that uses that object as a 
parameter like my_owner.some_method(my_migrateable,...) 
are unacceptable. 

The designer of an OM_Migrateable object has to ensure that a invocation counter is 
incremented with every invocation and decremented just before a return from any invocation 
within the method code of every signature of the OM_Migrateable object. Excerpt 3.k shows 
an example of the necessary code for the invocation counter of OM_Migrateable objects. 

interface My_Migrateable : OM_Migrateable { 
OM_Integer invocations; 
... 
OM_Boolean my_method(){ 
 invocations = invocations + 1; 
 if (...) { 
  invocations = invocations - 1; 
  return true; 
 } else { 
  invocations = invocations - 1; 
  return false; 
 }; 
}; 

Excerpt 3.k: In the above example the interface My_Migrateable defines a 
signature my_method() that increases the invocations counter of 
the My_Migrateable object upon invocation and decreases it for 
each possible return. 

A similar invocation counter can be used by OM_Owner objects for each of their 
OM_Migrateable components. During the execution of an application one of the OM_Owner 
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objects of an OM_Migrateable object may use its reference to the OM_Migrateable object 
as a parameter in an invocation of a method of another object. 

Since the reference is passed outside of the control of the migration architecture the invocation 
counter for that component will ensure that no migrations of the corresponding 
OM_Migrateable can be performed until that invocation returns. Any subsequent invocations 
for that component will be accounted for as well. 

An invocation counter must be used not just a simple flag as the methods that increment the 
counter may be called recursively. A single invocation counter per component of an OM_Owner 
will be sufficient though. Separate counters per signature or even for each call that passes a 
reference to an OM_Migrateable are not necessary. 

The invocation counter for the OM_Migrateable component of the OM_Owner object will have 
to be increased prior to each invocation that takes that component as a parameter and 
decreased when the invocation returns. Excerpt 3.l shows an example of the necessary method 
code for the invocation counters of OM_Owner objects. 

interface Some_Interface { 
... 
OM_Boolean some_method(My_Migrateable my_migrateable,...){ 
 ... 
}; 
 
interface My_Owner : OM_Owner { 
... 
My_Migrateable component1; 
Some_Interface some_object; 
OM_Integer component1_invocations; 
... 
OM_Boolean any_method(...){ 
 ... 
 component1_invocations = component1_invocations + 1; 
 some_object.some_method(my_migrateable,...); 
 component1_invocations = component1_invocations - 1; 
 ... 
}; 

Excerpt 3.l: In the above example the interface Some_Interface defines a 
signature some_method() that takes an My_Migrateable object 
as a parameter. The interface My_Owner defines a signature 
any_method() that invokes some_method(). The counter 
component1_invocations has to be increased prior to the 
invocation and decreased when it returns. 

As part of an invocation an OM_Owner object may pass a reference to an OM_Migrateable to 
another object x. That object x is only allowed to invoke methods of the OM_Migrateable or 
use the reference as a parameter in another invocation. It is not allowed to store that reference 
as a component effectively creating an unacceptable implicit relationship. Such a behavior is 
only acceptable if the object x also inherits from the OM_Owner interface and registers with the 
OM_Migrateable when it stores the reference as a component (see also page 78). 

If a reference to an OM_Migrateable object is just passed along as a parameter between non-
owner objects the first invocation will be counted by the original OM_Owner object and 
discounted with the last return of that chain of invocations. Using references to 
OM_Migrateable objects as parameters is acceptable as long as the first invocation is 
counted and no “copies” of that reference remain after that invocation returns.  

Using invocation counters seems tedious for the developer but the necessary code can be 
generated statically during development through appropriate tools (see also page 121). Such 
tools can also help to ensure that all objects that can hold references to OM_Migrateable 
objects are designed to inherit from the OM_Owner interface. 



102 3  Heterogeneous Object Migration at the Language Level 

102 

The invocation counters effectively duplicate some information of activation records which is 
inaccessible within most language environments. As mentioned briefly before the invocation 
check is only necessary if the designer of an application is not able to ensure otherwise that a 
migration request are only issued for inactive objects. 

This is usually the case for applications that use event-based graphical user interfaces 
especially when user interactions like mouse clicks can lead to migration requests. Applications 
that migrate objects only under well known conditions can be designed to avoid an invocation 
check altogether (see also page 125). 

If an invocation check is necessary the ready_to_migrate() signature of an 
OM_Migrateable object will have to be implemented differently then the first version shown in 
excerpt 3.l. Since a OM_Migrateable object is also an owner of its components the necessary 
check to be performed analog to the OM_Owner interface have to be included as well. Excerpt 
3.m is a fragment of the interface definition of an OM_Migrateable object that shows the 
implementation of the invocation check. 

interface My_Migrateable2 : OM_Migrateable { 
... 
OM_Integer invocations; 
OM_OwnerSet owners; 
OM_Migrateable component1; 
OM_Integer component1_invocations 
OM_Integer current_om_id; 
... 
OM_Boolean ready_to_migrate(OM_Integer om_id, OM_MigrateableSet ms){ 
 if (current_om_id == om_id) { 
  return true; 
 } else { 
  current_om_id = om_id; 
 }; 
 if(invocations > 0 ) then {return false}; //1 
 if (component1_invocations > 0) then {return false}; //2 
 // local state check ... 
 if (!owners.ready_to_let_component_migrate(om_id, this) { 
  return false;}; 
 if (!component1.ready_to_migrate(om_id, ms) {return false;}; 
 ... 
 ms.union(this); 
 return(true); }; 
... 
}; 

Excerpt 3.m: In the above example the ready_to_migrate() signature of the 
My_Migrateable2 interface contains an invocation check in the 
form of a test of an invocation counter (see //1) as well as of a test of 
an invocation counter for each component (see //2). 

If the test of the invocation counters maintained by an OM_Migrateable object for its own 
invocation as well as for the invocations of its components is positive the usual migration check 
as well as the collection of the migration set can be performed. As part of the migration check 
the owner objects of the OM_Migrateable object will perform their part of the invocation 
check. 

An OM_Owner object that is sent a ready_to_let_component_migrate() message 
performs its part of the invocation check by testing its invocation counter for the 
OM_Migrateable object, which was included as a parameter of the message and which 
should be identical to one of the components of the OM_Owner object. If the OM_Migrateable 
object can be identifier as a component and the corresponding invocation counter is zero any 
additional tests of local variables of the OM_Owner object are performed and the appropriate 
result is returned. Excerpt 3.n is a fragment of the OM_Owner object definition that shows the 
implementation of the invocation check. 
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interface My_Owner : OM_Owner { 
... 
OM_Migrateable component1; 
OM_Integer component1_invocations; 
... 
OM_Integer current_om_id; 
... 
OM_Boolean ready_to_let_component_migrate( 
 OM_Integer om_id, OM_Migrateable m){ 
 ... 
 if ((component1 = m ) &  
  (component1_invocations > 0)) { //1 
  return false;} 
 else {...}; 
 // local check 
 ... 
 }; 
... 
}; 

Excerpt 3.n: In the above example the ready_to_let_component_migrate() 
signature of the My_Owner interface contains a test of an invocation 
counter for the respective OM_Migrateable component (see //1). 

When the recursive invocation and migration check of the root object of the migration request 
have been positive and the migration set has been collected along the way the migration 
algorithm can proceed with the negotiation phase. Otherwise the migration will be aborted and 
the OM_MigrateableSet object that represents the migration set is deleted. 

3.5.3 Negotiation 

Since objects are defined through the encapsulation of state and behavior the migration of 
objects at the language level has to deal with these two interdependent levels of abstraction. 
Any approach to the migration of language objects has to consider that the state of objects can 
not be transferred without knowledge whether the corresponding behavior is available within the 
destination environment. If the behavior is not available within the destination, the necessary 
functionality needs to be transferred as well in the form of the corresponding object semantics. 

The minimal state to be transferred consists theoretically of only the root object of the migration 
request while the minimum behavior to be transferred consists of only the interface definition of 
this object. Because an object to be migrated in most cases relies on related objects to be 
useful, these objects have to be migrated as well and their behavior also needs to be available. 

In the context of the HLM migration mechanism all interfaces that are derived from the 
OM_Migrateable interface define a set of interfaces that can be called the migrateable 
interface set. All objects whose interfaces are members of the migrateable interface set can at 
least potentially be migrated and define a set of objects that can be called the migrateable 
object set. 

The transitive closure of the set of related objects of the root object of a migration request that 
inherit from the OM_Migrateable interface defines a set of objects that can be called the 
related set. The set of objects that need to be transferred for a particular migration is 
determined recursively during the previous check phase and is called migration set. The 
migration set is a subset of the related set which is a subset of the migrateable set. 

As the objects of the migration set are to be migrated their semantics need to be available 
within the destination environment. The transitive closure of the interface definitions of the 
objects of the migration set are dependent upon, defines the set of interfaces that have to be 
available within the destination environment for the objects of the migration set to be able to 
work within the destination environment. This set of interfaces can be called the dependent 
interface set.  
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The dependent interface set is not necessarily a subset of the migrateable interface set as it will 
at least contain some standard interfaces and may include interfaces derived from the 
OM_Owner interface. If different rules are enforced for the design of OM_Migrateable objects 
the dependent interface set may include other interfaces as well (see chapter 4 page 156). 
Figure 3.i illustrates the relationship between the migrateable and related objects and 
interfaces. 

interfaces

objects

migrateable object set

interfaces

Environment A Environment B

objects

related set

migration set

m1

migrateable interface set

dependent interface set

 
Figure 3.i: The root object of a migration request (object m1 in the above 

example) defines the set of objects that need to be transferred during 
migration recursively, i.e. the migration set. The migration set defines 
the set of interfaces that need to be available within the destination 
environment, i.e. the dependent interface set. The migration set is a 
subset of the set of objects that can be migrated, i.e. the migrateable 
object set (Environment B is shown here as it will be involved in 
subsequent phases of the negotiation process). 

The minimal migration set consists of the root object of the migration request as the only object, 
while the maximal migration set may be identical to the migrateable object set. The minimal 
dependent interface set includes only the interface of the root object of the migration request, 
while the maximal dependent interface set may comprise all interfaces derived from the 
OM_Owner interface as well as all standard interfaces. 

The object migration is possible if the objects of the migration set can be made functional within 
the destination environment. All interfaces of the dependent interface set therefore need to be 
available within the destination environment. As not all of these will be available prior to 
migration, the migration algorithm needs to determine which interfaces are available and 
whether the other interfaces of the migration interface set can be made available within the 
destination environment. The HLM migration mechanism uses the extension approach to 
overcome heterogeneous migration in this regard. 

An interface can be made available within the destination environment if all the interfaces it 
depends upon are available within the destination environment or can be made available within 
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the destination environment. The respective interfaces are called extensible with regard to the 
destination environment. The negotiation phase of the migration algorithm therefore identifies 
the interfaces that need to be transferred to the destination environment. 

In order to determine which interfaces are available within the destination environment GOAL 
interface declarations are generated for all interfaces of the destination environment and 
transferred to the source environment. The resulting set of interface declarations is called 
supported interfaces and is used to determine the set of extensible interfaces, i.e. all interfaces 
of the source environment that can potentially be made available within the destination 
environment. Figure 3.j illustrates the determination of the set of extensible interfaces. 
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Figure 3.j: The set of extensible interfaces comprises all interfaces that can be 

made available within the destination environment because their 
dependent interfaces are contained by the set of supported 
interfaces, i.e. already available within the destination environment, or 
can be made available within the destination environment, i.e. are 
extensible interfaces themselves. 

If the dependent interface set is a subset of the union of the set of supported interfaces and the 
set of extensible interfaces then the migration can proceed. The set of interfaces that actually 
needs to be transferred is determined as the difference of the dependent interface set without 
the set of supported interfaces and can be called the interface set.  

The logic behind the determination of the migration set and the interface set can also be 
paraphrased as a set of rules for the migrateability of individual objects and interfaces.  

An object is migrateable if: 

• all related objects it depends upon are migrateable and 

• its interface is migrateable 

An interface is migrateable if: 

• all interfaces it depends upon are supported or migrateable themselves 
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These rules are applied recursively in order to determine whether an object is migrateable and 
to construct the set of interfaces to be transferred. Although the interface set is a prerequisite for 
the transfer of the migration set, there does not need to be a one to one dependence between 
objects in the migration set and their interfaces being part of the interface set. Figure 3.k 
illustrates the relationship between the migration set and the interface set for a migration. 
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Figure 3.k: The set of interfaces to be transferred to the destination environment 

called interface set is the intersection of the dependent interface set 
and the set of extensible interfaces. 

The negotiation process just described is the main part of the migration algorithm of the HLM 
migration mechanism. The prototypical implementation of the negotiation process does not work 
with the recursive definition of migrateability specified in the above discussion but rather 
constructs the interface set using a delta iteration in order to achieve a better performance. 
Excerpt 3.o shows a simplified fragment of the negotiation process. 

OM_Boolean migrate_via_network(OM_Migrateable m,...){ 
OM_Integer mid;   //migration identifier 
OM_MigrateableSet ms; // migration set 
OM_InterfaceSet si;  // supported interfaces 
OM_interfaceSet ip;  // interfaces to process 
OM_InterfaceSet is;  // interface set 
OM_Interface i; 
OM_String in;   // interface name 
OM_ComponentSet cs; 
OM_Component c; 
OM_SignatureSet ss; 
OM_Signature s; 
OM_ParameterSet ps; 
OM_Parameter p; 
OM_VariableSet vs; 
OM_Variable v; 
... 
m.ready_to_migrate(mid,m,ms); // check migration and collect migration set 
... 
si=parse_goal(socket_stream); // receive supported interface set 
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... 
ip = ms.collect_interfaces(); //1 
while (i != null) { 
 in = i.name(); 
 if (si.contains(in) == false) { //2 
  is.union(i); 
  in = i.parent_name(); 
  if (si.contains(in) == false) { 
   i = this.resolve_interface_name(in); 
   ip.union(i); 
  }; 
  cs = i.components(); 
  c = cs.element(); 
  while (c != null ) { 
   in = c.component_interface_name(); 
   if ((this.base_interface(in) == false)) & 
    (si.contains(in) == false)) { 
    i = this.resolve_interface_name(in); 
    ip.union(i); 
   }; 
   c = cs.next(); 
  }; 
  ss = i.signatures(); 
  s = ss.element(); 
  while (s != null ) { 
   in = c.result_interface_name(); 
   if ((this.base_interface(in) == false) & 
    (si.contains(in) == false)) { 
    i = this.resolve_interface_name(in); 
    ip.union(i); 
   }; 
   ps = s.parameters(); 
   p = ps.element(); 
   while (p != null ) { 
    in = p.parameter_interface_name(); 
    if ((this.base_interface(in) == false) & 
     (si.contains(in) == false)) { 
     i = this.resolve_interface_name(in); 
     ip.union(i); 
    }; 
    p = ps.next(); 
   }; 
   vs = s.variables(); 
   v = vs.element(); 
   while (v != null ) { 
    in = v.parameter_interface_name(); 
    if ((this.base_interface(in) == false) & 
     (si.contains(in) == false)) { 
     i = this.resolve_interface_name(in); 
     ip.union(i); 
    }; 
    v = vs.next(); 
   }; 
   s = ss.next(); 
  }; 
 }; 
 i = ip.next(); 
}; 
... 

Excerpt 3.o: A simplified fragment of the migrate_via_network() signature of 
the object definition of the OM_Porter interface shows the 
negotiation process of the HLM migration algorithm. An iteration 
through the set of dependent interfaces is performed, starting from 
the interfaces of the objects of the migration set (see //1). This 
iteration determines all interfaces that are not supported (see //2) 
and therefore need to be part of the interface set including the 
interfaces of ancestors, of components, or signature results, 
parameters or variables. 
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The negotiation process is performed by the OM_Porter with the interfaces of the objects of 
migration set as the set of interfaces to process that is called the negotiation set. It may seem 
appropriate to start with the interface of the root object alone, but this would not be sufficient as 
dynamically created objects would not be handled correctly (see also page 125). 

An delta iteration is performed for all interfaces of the negotiation set as follows. If an interface 
of the negotiation set is not contained in the set of supported interfaces it is added to the 
interface set. This check is performed iteratively for all components and signatures of the 
interface. The dependent interfaces that define the components as well as the result, the 
parameters and the variables of signatures are added to the negotiation set and will be 
processed by one of the next iterations. 

The determination of the interface of an object is based on the appropriate means for each 
participating environment which will retrieve the name of the interface of an object. The 
interface_name() signature that is declared in the OM_Object interface is used for this 
purpose and need to be implemented appropriately within each participating environment. 

The resolve_interface_name() signature of the OM_Porter object is used to retrieves 
the interface definition for any given interface name. In the simplest case the interface 
definitions will be read from GOAL files that have been generated during the development of the 
application. The prototypical implementation of the HLM migration mechanism manages 
interface definitions internally as trees of objects that represent syntactical elements. 

The negotiation algorithm shown in excerpt 3.o does not check whether the interfaces of 
components are derived from the OM_Migrateable or OM_Owner interface. The negotiation 
algorithm its therefore able to support different design rules that can be developed for future 
version of the migration mechanism (see also chapter 4 page 156). 

The whole negotiation process is controlled through a number of messages that are exchanged 
between the OM_Porter objects of the participating environments. The source environment 
asks the destination about its supported interfaces. The destination environment generates and 
sends the GOAL interface declarations to the source and the source environment confirms that 
it has received the information. 

If the GOAL interface declarations could not be received, the set of supported interfaces could 
not be constructed or the interface set could not be determined, an abort message is sent to the 
destination environment and the OM_Porter of the source will abort the migration. Otherwise 
the migration process continues with the transfer of the interface set. 

3.5.4 Transfer of Semantics 

When the negotiation phase has concluded a representation of semantics of the interfaces in 
the interface set is generated within the source environment using the GOAL language. The 
OM_Porter object conducts an iteration through the interface set and accumulates the 
representation of the semantics to be migrated in the form of interface definitions. 

The generated GOAL source is transferred to the destination environment and the OM_Porter 
object of the destination environment acknowledges the transfer. The representation of the 
semantics is then parsed and the corresponding source code native to the destination 
environment is generated and compiled with the help of the OM_Environment object of the 
destination environment. 

If the compilation of all interfaces concludes successfully the availability of the interface 
extensions within the destination environment is reported to the OM_Porter object of the 
source. The migration process then continues with the transfer of a representation of the state 
of the objects being migrated. 

The migration will be aborted though if any of the intermediate steps fail. Occasions for 
termination include failure to generate the abstract representations, interruptions of the 
communication, failed parsing of the GOAL interface, inability to generate the native source 
code of the destination environment or failure to compile the native source code. 
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If a migration is aborted after the transfer of semantics phase the destination environment is 
free to decide whether to delete any already successful compiled interfaces or to keep them for 
possible subsequent migration attempts of the same migration set or for consecutive migrations 
of different objects. 

3.5.5 Transfer of State 

Once all necessary interfaces are available within the destination environment, the migration 
algorithm of the HLM migration mechanism performs the following steps to migrate the objects 
in the migration set: a representation of the state of the objects is generated, the relationships of 
the objects of the migration set to other objects of the source environment are deactivated, the 
representation is transferred to the destination environment, the destination environment 
recreates the objects of the migration set and reinitializes them. 

If the migration is aborted during the transfer of state phase any already recreated objects will 
be deleted and the relationships of the objects of the migration set to other objects of the source 
environment are reactivated again. These steps of the transfer of state phase are described in 
more detail in the following sections. 

Representation 

A representation of the state of the objects in the migration set is generated within the source 
environment using the ORL language. In order to transfer the objects between environments, a 
linearized representation has to be constructed that is able to transfer object graphs of arbitrary 
complexity including circular structures. 

The HLM migration algorithm uses a two phase approach both to generate a linearized 
representation of the objects in the migration set within the source environment and to 
reconstruct the migrated objects and the structure of their relationships within the destination 
environment. Figure 3.p shows a simplified object structure that can be transferred between 
environments using an ORL representation. 

migration set

OM_Migrateable m1

OM_ Migrateable m2 OM_ Migrateable m4

OM_Porter p

OM_ Owner r

OM_ Owner s

OM_Object x

OM_Environment e

OM_ Migrateable m3

OM_Owner q

 
Figure 3.p: An example of a migration set with a cyclical object structure that can 

be transferred between environments using an ORL representation. 

Within the source environment the OM_Porter object performs an iteration through the 
migration set that has been built during the migration check and assigns a unique number called 
object migration identifier to each object in the migration set. For each object the OM_Porter 
queries the interface name and uses it together with the object migration identifier to generate 
the first part of the ORL representation. This process starts with the root objects of the migration 
request. 

In a second iteration the OM_Porter asks the objects in the migration set to generate their own 
ORL representations. Each object uses its object migration identifier and its components to 
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generate its individual ORL representation. Each object processes its components in one of the 
following two ways: 

• Singular Objects 

If the component is a singular object, a character based representation of the 
corresponding atomic value is generated, added to the ORL representation and delimited 
by a whitespace character. 

• Non-Singular Objects 

If the component is a reference to an object of the migration set, the object migration 
identifier of the referenced object is queried and a colon : sign as well as a textual 
representation of the object migration identifier is added to the ORL representation and 
delimited by a whitespace character. 

The object migration identifiers are used to reestablish the relationships between the migrated 
objects after their recreation within the destination environment. The use of object migration 
identifiers to distinguish objects of the migration set within the ORL representation essentially 
preserves the relative identity of the objects in the migration set during migration.  

For each object of the migration set that is processed a lookup for each of its components is 
performed whether that component is a member of the migration set. This is necessary as an 
OM_Migrateable object may have sent a ready_to_let_owner_migrate() message to 
one of its components during the migration check in order to let it remain within the source 
environment, but another OM_Migrateable object may have sent a ready_to_migrate() 
message to it in order to migrate it as well. 

The lookup for membership in the migration set will tell each OM_Migrateable object which of 
its components will actually be migrated. These should be at least all objects that the 
OM_Migrateable itself has intended to be migrated. If this is not the case the 
OM_Migrateable performing the lookup can either cope with the situation gracefully or abort 
the migration at that point. 

Deactivation 

After the ORL representation has been generated another iteration through the migration set is 
performed and a deactivate() message is sent to each object of the migration set. This will 
essentially reduce all mutual relationships of the objects of the migration set to explicit 
relationships. 

In reaction to the deactivate() message each object of the migration set will send  
deactivate_component() messages to its owners and  deactivate_owner() messages 
to all components that are not members of the migration set. Each of these messages will 
include a reference to the particular OM_Migrateable object that sends the message. 

The corresponding OM_Owner and OM_Migrateable objects will delete their references to the 
OM_Migrateable object passed in the deactivate_component() and 
deactivate_owner() message respectively, effectively reducing the mutual relationships to 
direct ones that are rooted with the objects of the migration set. 

This process is called deactivation. It effectively deletes all relationships to objects of the 
migration set from objects outside of the migration set. After deactivation, the source 
environments is in a ‘ready to commit’ state of a two phase commit protocol that is used to 
ensure the atomicity of the migration of the whole migration set. 

The objects of the migration set themselves still hold references representing the deactivated 
relationships. This enables them to recover from an abort of the migration during the transfer of 
state phase. Figure 3.q shows the object structure of the example shown in figure 3.p in the 
“ready to commit” state, i.e. when the ORL representation has been generated successfully and 
all objects of the migration set have been deactivated. 
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Reactivation 

The migration process will be aborted during the transfer of state phase if an object of the 
migration set is not able to generate its ORL representation or the deactivation of an object fails. 
In the case of an abort the already generated ORL representation will be discarded and the 
already deactivated relationships will be reactivated. 

To accomplish this the OM_Porter object will send a reactivate() message to all objects of 
the migration set that have already been deactivated. Those objects will themselves send 
reactivate_component() messages to their owners and reactivate_owner() 
messages to their components that are not members of the migration set. These messages will 
include a reference to the particular OM_Migrateable object of the migration set. 

The corresponding OM_Owner and OM_Migrateable objects will recreate their references to 
the OM_Migrateable object passed in the reactivate_component() and 
reactivate_owner() messages respectively, effectively reestablishing the mutual 
relationships with the objects of the migration set. 
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OM_Migrateable m1 #1

OM_ Migrateable m2 #3 OM_ Migrateable m4 #2

OM_Environment e

OM_ Migrateable m3
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OM_ Owner s

OM_Object x

 
Figure 3.q: An example of a migration set in “ready to commit” state. All objects 

have been assigned object migration identifiers and after deactivation 
none of the objects of the migration set will be referenced by any 
object outside of the migration set (the deactivated references are 
shown here as dashed arrows). However, the references from the 
objects of the migration to their related objects outside of the 
migration set still exist. 

If the ORL representation could be generated and all objects of the migration could be 
deactivated, the ORL representation will be sent to the OM_Porter of the destination 
environment. Excerpt 3.p shows the ORL representation generated for the example in figure 3.p 
including some illustrative atomic values as components. 

OM_Migrateable 1  
OM_Migrateable 2  
OM_Migrateable 3  
 | 
1 ("test" :3 :2 ) 
2 (3,1415 :1 * :3 ) 
3 (9876 :1 :2 * ) 

Excerpt 3.p: The ORL representation of the objects in the migration set consists of 
the interface names and object migration identifiers as well as of the 
linearized state of each particular object. 
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The OM_Porter of the destination environment will acknowledge the transfer of the information. 
If the transfer of the representation fails for example due to a communication error an abort 
message will be sent from the OM_Porter of the destination environment to the OM_Porter of 
the source environment and the objects of the source environment will be reactivated as 
described above13. 

Rebuild 

At the destination environment the first part of the ORL representation is parsed by the 
OM_Porter object. For each retrieved interface name an appropriate object is created possibly 
using a previously migrated interface and the corresponding migration object identifier is 
assigned to the object.  

The newly created objects are collected in the so called rebuild set of the destination 
environment. The first object of the ORL representation is identified as the root object of the 
rebuild set that is equivalent to the root object of the migration request within the source 
environment. 

In a following iteration through the rebuild set the OM_Porter object sends a rebuild() 
message to each object including a reference to the transferred ORL representation. The 
individual object will read its own ORL representation and restore its components either from 
the atomic values of the ORL representation or by reestablishing the relationships with other 
migrated objects. A signature of the OM_Porter provides access to the migrated object 
corresponding to the migration object identifier. 

After this rebuild step the objects of the transferred representation have been recreated within 
the destination environment and all relationships between these objects have been 
reestablished using the object migration identifier as the relative identity of the migrated objects 
in the context of the rebuild set. 

Reinitialization 

After all objects of the rebuild set have been reconstructed the OM_Porter object sends a 
initialize_after_migration() message to the root object that includes a reference to 
the OM_Porter object. This message may also include a reference to the application 
dependent OM_Owner object designated for the root object within the destination environment. 
The OM_Porter object will also provide access to the OM_Environment object of the 
destination environment through appropriate signatures. 

The root object of the migration will then perform the operations that have been provided by its 
designer to ensure that it is working as intended within the destination environment. The root 
object will send initialize_after_migration() or other appropriate messages to its 
components recursively in order to ensure that they are working as intended. At this point the 
migrated objects will only establish unidirectional, i.e. explicit relationships with other objects of 
the destination environment. Full mutual relationships will be established during the completion 
phase of the migration process (see next subchapter). 

At the end of the transfer of state phase of the HLM migration algorithm the newly established 
objects at the destination environment will represent the same structure as their still existing 
counterparts of the source environment. If any parts of the ORL representation can not be read, 
an object can not be created, an object can not rebuild itself or the reinitialization fails, migration 
will be aborted as described above.  

At the end of the transfer of state phase the OM_Porter of the destination environment sends a 
message to the source environment indicating that all objects have been rebuilt and that the 
reinitialization was successful. At this point both environments are in a "ready to commit" state 
and the completion of the migration can be performed. 

                                                 
13  The prototypical implementation of the HLM migration mechanism waits indefinites for a network communication to conclude. 

Alternatively an abort may be issued after a timeout on either side in conformance with the two phase commit protocol. 
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3.5.6 Completion 

The migration algorithm of the HLM migration mechanism performs the completion of a 
migration if both source and destination environments are in “ready to commit” state. The final 
"commit" is signaled by the OM_Porter object of the source environment to the OM_Porter 
object of the destination environment before the local completion of the migration is performed. 

When the OM_Porter object of the destination environment receives the “commit” message it 
sends an activate() message including the migration identifier to the root object of the 
migration. This will establish its intended relationships with for example input/output objects like 
OM_Stream objects via the OM_Environment object.  

The root object of the migration will also register with its components as an owner and send an 
activate() message including the migration identifier to all of its components which will 
perform the same operation recursively. Each object of the migration set will use the migration 
identifier to determine whether it has already been activated, a precaution for cyclic object 
structures. 

At the same time the OM_Porter object of the source environment sends a release() 
message to the root object of the migration set within the source environment which will forward 
this message including the migration identifier to its components recursively. Every object in the 
migration set will then check via the migration identifier whether it already received a 
release() message. If not, it will delete its atomic values, send its components a release() 
message and delete its references to them. 

In the case of a loss of communication after the source has sent the commit message the 
destination environment will wait in "ready to commit" state until communication is 
reestablished. The OM_Porter object of the source can then resent the commit message and 
the destination porter will proceed as described while the source OM_Porter object may 
already have released its migration set.14 

When both environments are in “ready to commit” state an “abort” message may for some 
reason be sent instead of the “commit” message by the OM_Porter object of the source to the 
OM_Porter object of the destination environment. The OM_Porter object of the destination 
environment will then send an abort_migration() message to the root object of the 
migration while the OM_Porter object of the source will send a reactivate() message to 
the root object of the migration request.  

3.6 Implementation 

The prototypical implementation of the HLM migration mechanism is constructed out of several 
interdependent layers of software. Wherever possible, the HLM migration mechanism is written 
in the GOAL language itself in order to maximize the portability of the migration mechanism. 
Only the necessary parts are implemented in the native languages of the participating 
environments. 

The layers that build up the HLM migration mechanism are the standard interfaces, the 
interfaces that implement the GOAL language processing and the interfaces that implement the 
migration architecture. Applications that use the HLM migration mechanism define their own 
interfaces on the basis of the migration architecture, use the standard interfaces and may also 
use services of the native language environment. Figure 3.r shows the structure of an 
environment that implements the HLM migration mechanism as well as of an application that 
uses it. 

All standard interfaces are specified via GOAL interface declarations but their implementation 
differs. The singular interfaces OM_Boolean, OM_Integer and OM_Float will in most 
language environments not be implemented themselves. Rather they are provided via 
mappings to existing language constructs as part of the code generation for the particular native 
language. Alternatively wrappers around existing object definitions can be defined. 

                                                 
14  The resent of the “commit” message is not implemented in the prototypical implementation. 
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The other standard interfaces including OM_Character, OM_String, OM_Set, OM_Stream, 
OM_File, OM_Directory, OM_ServerSocket and OM_Socket can be fully or partially 
implemented in the native language. The more abstract signatures of these interfaces can as 
well be implemented independently in the GOAL language and the necessary environment 
specific code can be generated from the GOAL source. 

Hardware

GOAL Interfaces

Operating System

Standard Interfaces

Language Environment

HLM Application
migrateable objects

Migration Architecture

 
Figure 3.r: The HLM migration mechanism consists of three layers (shown here 

in gray): the standard interfaces that build the foundation for the main 
parts of the mechanism, the GOAL interfaces and the migration 
architecture. 

Written solely in the GOAL language are the so called GOAL Interfaces that implement the 
management of GOAL representations based on the basic services of the standard interfaces. 
The language processing implemented by these interfaces uses an universal scanner to 
generate a token stream that is the input for a recursive descent parsing mechanism 
implemented on the basis of one interface for each syntactical construct. 

The recursive descent approach is less efficient in the actual processing of the GOAL source 
code than a comparable stack based parsing mechanism. However, it facilitates the integration  
of code to generate additional target languages. The interface for each syntactical element of 
the GOAL language like for example OM_Interface, OM_Statement or OM_Expression 
only needs to be extended by additional signatures to generate code for the additional language 
environments (see also the next subchapter page 117). 

The GOAL Interfaces are used together with the standard interfaces by the interfaces 
OM_Object, OM_Porter, OM_Owner, and OM_Migrateable that define the migration 
architecture of the HLM migration mechanism. These interfaces implement the HLM migration 
mechanism and the OM_Owner, and OM_Migrateable interfaces can serve as templates for 
the constructions of applications of the HLM migration mechanism. They are written solely in 
GOAL source code. Only the supporting interface OM_Environment is environment 
dependent. 

The migration algorithm of the HLM migration mechanism is implemented by the OM_Porter 
interface as a series of signatures, one for each phase of the migration process. The 
decomposition of the migration algorithm into several largely independent building blocks also 
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helps to support different communication means that can be used to convey the migration 
protocol between the environments that participate in a migration. 

The different phases of the HLM migration algorithm are implemented as separate signatures of 
the OM_Porter interface under the control of the migrate_via_network() and the 
handle_migration_via_network() signatures. In the following description of the 
prototypical implementation of the HLM migration mechanism the word “communicate” is used 
to indicate that information is exchanged over the network of through any other communication 
means between the source and the destination environment15. 

1. Initiation 

During the initiation phase of a migration the signature migrate_via_network() is used 
by the OM_Porter object of the source environment to establish the communication with 
the OM_Porter object of the destination environment and to execute the migration request. 
The signature handle_migration_via_network() is used by the OM_Porter of the 
destination environment to react to the initiation of communication by the source and to 
perform the destination part of the migration. 

2. Check 

During the check phase, the signature migration_check() is used by the OM_Porter 
object of the source environment to test whether the migration can be performed and to 
collect the migration set along the way. 

3. Negotiation 

At the beginning of the negotiation phase a “send supported interfaces” message is 
communicated to the OM_Porter of the destination that uses the signature 
supported_interfaces() to collect the relevant interface declarations. The resulting 
GOAL representation is communicated to the OM_Porter of the source environment and 
parsed there. The signature process_migration() is used by the OM_Porter object of 
the source environment to construct the interface set.  

4. Transfer of Semantics 

During the transfer of semantics phase the interface definitions of the interface set are 
collected by the OM_Porter object of the source environment and the resulting GOAL 
representation is communicated to the OM_Porter of the destination environment. The 
transferred interface set is make available by the OM_Porter of the destination 
environment through the signature implement(). 

5. Transfer of State 

During the transfer of state phase the signature generate_representation() is used 
by the OM_Porter object of the source environment to construct the representation of the 
objects in the migration set and the deactivate() signature is used to reach the “ready 
to commit” state. The resulting ORL representation is communicated to the OM_Porter of 
the destination environment which uses the signature represent() to rebuild and 
initialize the migrated objects and to reach the “ready to commit” state. 

6. Completion 

Both the OM_Porter object of the source environment and of the destination environment 
use the signatures activate() and release() to make the migrated objects available 
and to delete the original ones, respectively. The reactivate() and abort() signatures 
are used in the case of an abort of the migration at the source to make the original objects 
available as well as at the destination to perform the necessary housekeeping respectively. 

                                                 
15  Communications for control and handshaking purposes that occur for each phase have been omitted to avoid confusion. 
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The OM_Porter objects of the two environments that participate in a migration communicate 
with a number of messages in order to control the migration process. Communication 
techniques that have been implemented for the HLM migration mechanism include a native 
network protocol based on the TCP/IP standard as well as the use of common file system 
services. For testing purposes the migration protocol has also been build using method 
invocation within a single environment. Figure 3.s illustrates the migration protocol as well as 
the whole migration process. 
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Figure 3.s: The migration process is implemented as a series of method 

invocations shown here as rounded rectangles alternating with 
communications shown here as arrows, that are exchanged between 
environments to control the migration process. Any of the messages 
communicated between the environments may as well be replaced by 
an abort message in the case of an error. The phases of the 
migration algorithm are shown in the background as gray rectangles. 

The use of the GOAL language as an implementation language for the HLM migration 
mechanism was mainly motivated by the increased portability and extensibility. Porting the 
mechanism to a new language environment is relatively simple and can be done through cross-
compilation. The only exception are the standard interfaces that have to be implemented 
natively (see next subchapter for details). 

The migration mechanism as well as the GOAL language can also be extended through the 
introduction of new standard interfaces (see also chapter four page 154) as well as new 
negotiation algorithms (see also chapter four page 174) that can become available across all 
supported platforms rapidly. The layered architecture and the building block approach to the 
migration process provide the necessary openness to introduce improvements and new ideas. 

The downside of the prototypical implementation of the HLM migration mechanism is its lack of 
efficiency. Since the implementation was intended as a proof of concept rather than as a 
production system efficiency was not considered high priority. One particular area of 
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improvement will be the use of stack based parsing techniques as the definition of the GOAL 
language becomes more mature. 

The HLM migration mechanism has been ported to several target languages throughout its 
design and development using a simple bootstrap approach. The same process can be used to 
implement the mechanism for additional target languages as described in the following 
subchapter. 

3.6.1 Bootstrapping Object Migration 

The prototypical implementation of the HLM migration mechanism was done in the Java 
Programming Language Environment [GJS1996] and has been subsequently ported to the 
Common Lisp Object System (CLOS) [Kee1989]. Limited versions of the mechanism have been 
implemented for the Python programming language [LoF1997]. 

The following bootstrap process was used to create the Java based prototypical implementation 
of the HLM migration mechanism. As a first step, a GOAL-to-Java compiler was written in Java 
and used for the development and the test of a first version of the standard interfaces and the 
migration mechanism that were defined partially in the Java as well as in the GOAL language. 

The Java-based GOAL-compiler was also used as a tool for the reimplementation of the 
compiler in GOAL, up to the point where the new compiler was able to compile itself. Using the 
GOAL-based GOAL-to-Java compiler the HLM migration mechanism itself was rewritten in the 
GOAL language and compiled to Java. 

The Java based prototypical implementation allowed the first proof of concept of the HLM 
migration mechanism. The migration of objects between distributed Java environments that are 
heterogeneous at the library and application level could be demonstrated. Several problems 
with an earlier version of the design could be solved. 

The HLM migration mechanism was then ported to the Common Lisp Object System (CLOS) 
through a native implementation of the standard interfaces and a cross-compilation of the 
migration architecture and the GOAL Interfaces. Although in its third iteration this combined 
Java/CLOS implementation of the HML migration mechanism is fully functional but still has a 
prototypical character. 

The Java/CLOS implementation of the HLM migration mechanism can be used for a full proof of 
concept as migration of objects between environments with heterogeneity at the hardware, 
operating system, language, library and application level can be demonstrated. The HLM 
migration mechanism has been tested using an interactive application (see also page 125). 

Porting 

The HLM migration mechanism can easily be ported to additional language environments that 
fulfill the prerequisites of the mechanism through the following three steps. The new language 
has to be supported through code generation and the standard interfaces including the 
OM_Environment interface have to be implemented natively. All other elements of the 
migration architecture can then be cross generated for the new environment. 

The first step of the porting process is the extension of the GOAL interfaces with code 
generating functionality for the new target language. This also simplifies the subsequent porting 
of the standard interfaces. Because the code generator for the target language is an extension 
to the existing GOAL interfaces it can be translated into any of the already supported 
languages. 

Using such a cross-compiler, the standard interfaces and the migration architecture can be 
generated in the source code of the new language within one of the already supported 
environments. The resulting native source code of the standard interfaces will then have to be 
extended according to the specifics of the new environment. 

Once the porting work for the standard interfaces has been done the additional environment will 
be able to take part in object migration as a native implementation of the GOAL interfaces and 
migration architecture can be generated and tested. In order to receive or migrate objects from 
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or to other environments an application that uses objects that are able to migrate will have to be 
developed for the new language environment. 

3.7 Development using Migration 

The HLM migration mechanism imposes a number of constraints on applications which have to 
be designed specifically for migration. The following subchapter tries to provide some guidelines 
for the development of new applications that use the HLM migration mechanism as well as for 
the integration of the migration mechanism into existing applications. 

In order to simplify the development of applications a number of design tools are proposed in 
the second subchapter that can help to satisfy the implementation constraints imposed by the 
HLM migration mechanism. The integration of support for the HLM migration mechanism into 
existing development environments is also discussed briefly. 

3.7.1 Migration by Design 

Applications of the HLM migration mechanism have to be designed specifically for migration 
due to the chosen objectives. Especially the objectives not to change the objects to be migrated 
during migration or the participating environments prior to migration impose a number of design 
constraints for the use of the migration mechanism in practical applications. 

Most problems of migration, especially the handling of references between objects, have to be 
resolved prior to migration within the design of the objects to be migrated as well as within the 
design of the objects of the surrounding application. As mentioned before the whole approach to 
migration can be called migration by design. 

The migration by design approach can be applied within the context of existing environments 
and to some extend even for existing applications. Alternative approaches to migration that for 
example implement migration as an operating system feature or as a programming language 
characteristic orthogonal to type can not be used with existing environments but will require new 
language implementations or significant changes to existing ones. 

The use of the HLM migration mechanism requires that the standard interfaces and the 
migration architecture are available in the context of the particular language environment and 
that the corresponding applications are designed for migration. I.e. applications of the HLM 
migration mechanism either encapsulate some of their functionality as OM_Migrateable 
objects or open themselves to incorporate objects from other environments. 

The capability to receive objects that are migrated can be integrated easily into new and to 
some extend also into existing applications that are redesigned. The migration architecture has 
to be incorporated into the application and an OM_Porter object has to be created that 
processes migration requests. Depending on the particular application, the OM_Porter object 
may only be created in conjunction with user interactions, for example in reaction to a drop 
event of a graphical user interface. 

Optionally OM_Owner objects may be created or some exiting interfaces may be changed or 
wrapped to conform with the OM_Owner interface in order to provide objects the migrated object 
can interoperate with. Depending on the particular application the migrated objects may well be 
able to function using only the standard interfaces, for example the input/output operations 
provided by the common OM_Environment object and its related objects. 

The development of applications that are able to migrate some of their objects to other 
environments require more work especially if an attempt to enable migration in existing 
applications is made. Both the objects to be migrated as well as the objects that will be left 
behind at the source have to be designed for migration which is sometimes hard to enforce 
within existing application structures. 

According to the migration architecture the objects of an application will have to be either 
OM_Migrateable, OM_Owner or unrelated objects. The latter objects are not supposed to 
participate in the object migration process at all, while the OM_Owner objects are used to 
separate the non-migrateable objects from the migrateable ones.  
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An application that is created from scratch can be developed with the usual design 
methodologies but special attention has to be applied to the migration aspect once the basic 
structure of the application has been identified. Starting with migration as the main purpose of 
an application will only be reasonable in special cases. 

The following guidelines can be used for the design of applications that make use of the 
migration mechanism. These rules apply to both newly designed applications as well as to 
existing applications that are extended with migration. The latter case is also mentioned 
separately within each guideline. 

1. Rightsizing of Functionality 

The objects that are supposed to be migrateable will have to be chosen with care. These 
objects should neither be to large nor to small both in terms of their structure, i.e. the 
number and complexity of their components as well as in terms of their behavior, i.e. the 
number of methods.  

If the objects to be migrated are to large, the probability that all of their functionality will be 
useful at the destination becomes small and the amount of checking to be done prior to 
migration will probably not be worthwhile. If objects to be migrated are too small, the 
overhead necessary to perform their migration might not be worth the limited functionality 
they add to the destination either. 

As a general rule its seems better to have smaller objects that can cooperate rather then to 
have one large object that is not fully used after migration. If smaller objects are not 
available, a large one may be broken into smaller ones that can be migrated independently. 
Each smaller object should implement some significant functionality that it is able to perform 
even on its own if necessary. 

To chose the right objects and the right functionality is especially hard for existing 
applications that are already confined to a fixed inheritance lattice. In most cases significant 
changes to the inheritance lattice will be necessary in order to comply with the migration 
architecture, but these changes might be impossible to implement. 

A different approach may be chosen for existing applications if a suitable amount of 
functionality can be identified within an existing object. The functionality suitable for 
migration may be factored out into a separate object that is only referenced as a component 
by the original one. The separate object may then inherit from the OM_Migrateable 
interface to be part of the migration architecture. An OM_Owner object will have to be used 
to connect the two. 

2. Minimization of Relationships 

Once the objects to be migrateable are identified their relationships to other objects will 
need special attention. As defined by the migration architecture the related objects need to 
be either OM_Migrateable objects or OM_Owner objects that are migration aware. The 
objects that are related to the OM_Migrateable objects have to be chosen with care. 

As a general rule the number of relationships of a OM_Migrateable object should be 
confined to the absolute minimum necessary for the object to operate. The migration 
overhead will be lower the fewer relationships need to be processed for each 
OM_Migrateable object.  

References from several objects to an OM_Migrateable can be folded into one if an 
OM_Owner object is created as a handle that is stored as a component of the related 
objects. The objects that use that handle have to be aware of the fact that the relationship to 
the OM_Migrateable object through the handle may be released through migration. 

In order to factor out migrateable objects within existing applications, the creation of a pair of 
an OM_Migrateable and an OM_Owner object will have the minimal implications for the 
overall design of the application. An object that is identified as a candidate for migration will 
therefore be split into three parts: an OM_Migrateable object that may actually migrate, an 
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OM_Owner object that obeys the migration protocol and the remaining original object that 
interacts with the rest of the application as before. The OM_Owner object may also be used 
by other objects as a handle to the OM_Migrateable object. 

3. Maximization of Interoperation 

After the number of relationships of the OM_Migrateable objects have been minimized it is 
reasonable to extend the possible forms of interoperation of the migrateable objects with the 
potential destination environments. Depending on the kind of application several different 
approaches more or less independent of the relationships of the source environment can be 
used. 

As a general rule, objects to be migrated should be useful in as many ways as possible as 
long as their extension in this regard does not add disproportionately to their complexity. As 
a fallback, a simple interoperation of the migrated objects with a command line user 
interfaces will be possible using only the standard interfaces.  

The inclusion of such a low profile alternative of interoperation will enable migration of 
objects even into environments that do not provide suitable OM_Owner objects to 
interoperate with. Sophisticated applications will implement specialized OM_Migrateable 
objects that require a specific set of OM_Owner objects in order to be functional. 

Objects of existing applications that have been identified for migration are more likely to be 
of only limited usefulness. As no significant changes can be applied to existing objects a 
predefined set of objects to relate to will be required in most cases even if migrateable 
functionality can be identified. 

Migrateable objects factored out of existing applications will need to be made interoperable 
using only the standard interfaces in order to be useful within other destination 
environments. If such an extension is not possible the objects can probably only be migrated 
to other installations of their original application on different platforms. 

The design of new applications can be changed in order to accommodate migration and in 
some cases applications may be specifically designed for migration. Migration can be an 
integral part of the design of new applications and will then be available when they are first 
used. Later extensions to these applications can then also be migration aware. 

If migration is added to existing applications the design of some of the interfaces that make up 
the application will need to be changed. As a consequence existing objects whose data may be 
stored for example in object database management systems will need to be converted to 
adhere the changed interfaces. 

Some object environments provide automatic tools to convert existing objects to updates of their 
interfaces. Otherwise the developer who integrates migration into these applications will have to 
convert the relevant objects. The necessary conversions can be implemented as separate 
utilities or as an additional initialization phase of the extended application. 

If a conversion of existing objects is not possible the integration of migration into existing 
applications will only yield code reuse but not reuse of the existing objects. If the effort to 
integrate migration into an existing application will be worthwhile in such a hybrid case depends 
on the particular circumstances. 

Migration of objects may also be possible between new and existing applications in either 
direction. The probability whether migration can be implemented and performed in each 
individual case differs largely due to the amount of changes required. Table 3.a provides an 
overview of all possible cases. 

By far the highest probability that migration can be successful exists between new applications 
that can still be influenced by migration in early stages of their development. The migration of 
existing objects into new applications can also be implemented comparatively easily as the 
receiving applications can be extended to a hosting environment. 
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Significantly harder to implement are migrations from new applications to existing ones. 
Although newly created objects can be adjusted to some extend to fit into the receiving 
environment, the existing functionality will probably limit the usefulness of the migrated objects. 
On the other hand the design of the new application should not be compromised by limitations 
of other existing software. 

 to new applications to existing application 

from new applications high low 

from existing 
applications 

medium very low 

Table 3.a: The probability of migration between new and existing applications 
depends on the extent of changes that have to be applied. Objects of 
new application are more likely to be migrateable and new 
applications are more likely to be able to accommodate migrated 
objects. 

By far the most complicated case is the migration of predefined objects into existing applications 
which will not be possible at all in many cases. Exceptions will be families of applications that 
for example share large parts of a common inheritance lattice and are therefore good 
candidates for successful migrations. 

In any case extensive testing of migration with different destination environments will be 
necessary in order to verify the chosen design. These tests will not only have to include the 
migration process as such but also the operation of the migrated objects within the destination 
environments. As with software development in general even extensive testing will not prove 
whether a migration design will work in a particular case but it will increase the probability. 

3.7.2 Development Tools 

As a downside of the migration by design approach a number of constraints exist for the 
development of applications for the HLM migration mechanism. Some requirements have to be 
considered in the design of the application objects and a significant amount of coding is 
necessary. However, several tools can be envisioned that simplify the overall design and 
development process significantly. 

Regardless whether new applications are designed or existing applications are extended to take 
advantage of the HLM migration mechanism, three basic tasks recur in any development of 
applications of the HLM migration mechanism. New interfaces will have to be created that need 
to conform with the migration architecture, changed source code fragments will have to be 
checked for conformance and the changed interfaces have to be tested. 

Applications that uses the HLM migration mechanism consist of the application objects that 
conform to the migration architecture, of some integration code that is necessary to execute the 
application objects within the particular language environment, and of additionally GOAL 
interface definitions for the application objects. The additional GOAL interface definitions are a 
requirement of the prototypical implementation. Future versions of the HLM migration 
mechanism may be able to generate the necessary interface definitions on the fly or work with 
different representations formats (see also chapter 4 page 206).  

In the context of the prototypical implementation of the HLM migration mechanism, applications 
that use the HLM migration mechanism can be developed in the following two ways: 

• GOAL based Development 

The relevant objects of the application can be developed using the GOAL language and the 
object implementations in the target language are generated from the GOAL source. 

• Target Language based Development 

The relevant objects of the application can be developed in the target language and the 
necessary interface definitions in the GOAL language are generated from the source files . 
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The code that integrates the application objects into the particular language environment has to 
be developed additionally in both cases. The finished application is running within the 
environment of the target language while the interface definition can be stored as GOAL files 
that are accessible by the application if a migration is initiated. 

If the application is supposed to be the destination of a migration all relevant GOAL interface 
definitions supported by the environment need to be available to the application for the 
negotiation phases of the HLM migration mechanism. The corresponding source code files have 
to be available as well for the compilation and dynamic load during the transfer of semantics. 

The GOAL based development process can be supported by the code generation for the target 
language that is part of the implementation of the HLM migration mechanism within the 
particular language environment. The code generator can be also be rebundled as a separate 
tool that works as compiler from the GOAL language into the particular target language. 

GOAL-to-Target Compiler 

A GOAL-to-target compiler can be used as a tool for the GOAL based development of 
applications of the HLM migration mechanism. Applications are written in the GOAL language 
and translate in to the particular target language using this tool. The minimal integration code 
that is necessary to execute the generated application with the environment of the target 
language has to be written manually. Figure 3.t illustrates the GOAL oriented development 
process and the use of a GOAL-to-target compiler. 
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Figure 3.t: The GOAL based development of applications of the HLM migration 

mechanism uses a GOAL-to-target compiler (G2T) to translate the 
manually developed GOAL source files into the particular target 
language (source files are shown here as dog-eared rectangles, 
manual changes to source files are shown as dashed arrows). The 
resulting object definitions are compiled together with additional 
manually developed integration code into an executable with the use 
of the normal compiler of the target language (TC). 

The GOAL based development style was used in the design of the HLM migration mechanism 
and for its prototypical implementation as well as for the development of some example 
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applications. Although this development method can be characterized as solid it has some 
inherent limitations. 

The use of the GOAL language as the source language for the development of applications 
complicates or inhibits the use of functionality that is already available within the particular 
language environment. Existing functionality has to be integrated manually into the GOAL 
based applications, which limits the use of the HLM migration mechanism. 

Target Language based Development 

The target language based development styles does not complicate the integration of existing 
functionality into applications of the HLM migration mechanism as the particular target language 
is used as the source language to develop applications. However new tools have to be 
developed in order to support this alternative development style. 

As the application objects that conform with the migration architecture of the HLM migration 
mechanism are developed in the target language a tool that generates the corresponding 
interface definition in the GOAL language is necessary. Such a target-to-GOAL compiler can 
also help in the design of HLM compliant applications as it can indicate problems with the target 
language based implementation. 

In order to provide a head-start in the development of application of the HLM migration 
mechanism in a target language preliminary object definitions of the necessary applications 
objects could be generated from GOAL object declarations through a tool that can be called 
template generator. 

Template Generator 

New interfaces that can be defined for applications in the context of the HLM migration 
mechanism will either have to inherit from the OM_Migrateable or the OM_Owner interfaces 
regardless whether directly or indirectly. The basic functionality required by the migration 
mechanism can be generated in the form of so called templates, i.e. new object definitions that 
have to be filled in with actual application functionality by the developer. 

The generated object definitions will have to include all signatures that are necessary for the 
respective objects to fulfill their role within the migration architecture. Appropriate method code 
can be generated if additional components and methods are specified in the GOAL interface 
declarations that are used as input for the template generator. Alternatively the template 
generator can emit the required additional method definitions for existing object definition of the 
particular target language16. 

The following methods have to be generated as part of a template: 

ready_to_migrate() 
ready_to_let_component_migrate() 
ready_to_let_owner_migrate() 
represent() 
deactivate() 
rebuild() 
initialize_after_migration() 
activate() 
reactivate() 
release() 

The recursive descent implemented by some of these signatures can be generated for all 
specified components, significantly reducing the effort for the developer. Only minor additions 
by the developer will be required who will be able to focus on the application specific 
functionality instead. Optionally, the necessary code to manage invocations counters can also 
be generated for all relevant signatures by the template generator. 

                                                 
16  This alternative is not shown in figure 3.u in order to avoid confusion. 



124 3  Heterogeneous Object Migration at the Language Level 

124 

The generation of templates is only possible for an initial specification of new interfaces. If 
additional components or signatures are added to the interface declarations, the resulting object 
definitions will have to be generated anew. After the initial object definitions have been 
generated in the target language the interface declarations used as input can be discarded and 
subsequent manual changes to the object definitions in the target language can be processed 
by a target-to-GOAL compiler. 

Target-to-GOAL Compiler 

Apart from the generation of GOAL interface definitions for object definitions of the particular 
target language, a target-to-GOAL compiler will also be useful to ensure that the source code 
created by the developer will conform with the migration architecture. Unlike the template 
generator, the target-to-GOAL compiler will not produce additional code but rather emit error-
messages if some of the various tests are not passed.  

Due to the complexity of the code that can be added by the developer automatic additions to the 
code will not be possible but static checks of the given source can be performed. The necessary 
tests will make sure that the relationships between the objects involved are handled correctly, 
for example via mutual relationships to OM_Owner interfaces and that all components are taken 
care of in the recursive migration check. Figure 3.u illustrates the use of the template generator 
and the target-to-GOAL compiler in the context of the target language based development style. 
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HLM application
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Figure 3.u: The GOAL based development of applications of the HLM migration 

mechanism uses a GOAL-to-target compiler (G2T) to translate the 
manually developed GOAL source files into the particular target 
language (source files are shown here as dog-eared rectangles, 
manual changes to source files are shown as dashed arrows). The 
resulting object definitions are compiled together with additional 
manually developed integration code into an executable with the use 
of the normal compiler of the target language (TC). 

Additionally, all uses of language concepts that are not supported by the HLM migration 
mechanism will be reported by the target-to-GOAL compiler as an error since GOAL interface 
definitions can not be generated in this case. This includes for example language specialties 
like friends of C++ [Str1991] or before and after methods of CLOS [Pae1993].  
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Optionally, the management of invocation counters for each relevant signature of 
OM_Migrateable interfaces can be checked by the target-to-GOAL compiler statically as an 
increment has to be inserted as the first statement of each method and each return statement 
within every method body has to be preceded by a counter decrement regardless of its actual 
use during execution. Invocation counters for all relevant components of OM_Owner interfaces 
can be checked but the use of source code hints like special comments is advised in order to 
reduce the checks to relevant cases. 

As a side effect the target-to-GOAL compiler will be able to produce a list of the interface-names 
of the maximum interface set required for each migrateable objects of the corresponding 
application. The list can be used in additional tests to determine whether objects of the 
respective interface will be able to migrate between particular environments.  

After the development of an application of the HLM migration mechanism need to be tested. 
Like every programming language tool the HLM migration mechanism can not guarantee that 
an object can be migrated. Extensive testing is required to make sure the implemented code 
actually works as intended and a test tool can be helpful in this regard. 

Test Tool 

A full test of an application of the HLM migration mechanism would require that a migration is 
attempted for every possible combination of hardware, operating system, programming 
language, library and application heterogeneity a migrateable object can be confronted with. 
This is obviously an insurmountable task. 

In order to ensure that the migrateable objects can be migrated in real life situations a test tool 
that is able to simulate the conditions of an actual migration can be very helpful in the 
debugging of applications of the HLM migration mechanism. In order to reduce the number of 
test cases to the relevant ones the test tool should be able to load only a defined number of 
interfaces into the participating environments. 

One possible approach to testing object migration would be the simulation of actual migration 
requests. The amount of interfaces available could be varied and the number of existing objects 
at the destination environment could be changed. Although its is impossible to test all relevant 
situations, some extreme as well as various typical conditions for migration can be checked. 

Dependent on the problem domain of the particular application certain test scenarios as well as 
a number of well known environments that are likely targets for a migration can be chosen to 
“certify” the migrateable objects against. Although this approach does not guarantee 
migrateability in the general case it can be sufficient for specific purposes (see also page 125). 

Integrated Development Environments 

Apparently all of the tools described above could be aggregated into the various existing 
integrated development environments (IDE). Especially the template generator would be very 
helpful in conjunction with the analysis and design tools that are in common use today. The 
GOAL-to-target and the target-to-GOAL compilers could be integrated as well and the test tool 
could be part of distributed debugging environments. The target-to-GOAL compiler for example 
could be activated automatically in the context of incremental compilation. 

A tight integration of the development tools will on the other hand limit the extensibility of the 
migration mechanism. Changes to the mechanism will have to be reflected within the 
development tools as well. A tighter integration of these tools will result in additional 
dependencies that have to be taken into account and might limit innovation. 

3.8 Migration in Practice 

This subchapter describes the design and implementation of a sample application of the HLM 
migration mechanism. This application serves both as a proof of concept for the prototypical 
implementation of the HLM migration mechanism and as a demonstration of the benefits of 
heterogeneous migration in general. 

The sample application uses the HLM migration mechanism to trade derivatives, i.e. financial 
instruments whose values are derived from other securities or currencies. Migration is used by 
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the application to close deals where derivatives are sold and bought among brokers of a 
derivatives marketplace17.  

The application that can be used by a derivatives broker is called DerivativeShell. The following 
subchapters describe some details of the problem domain, the design and the implementation 
of the DerivativeShell application as well as a protocol of two concurrent sessions that 
demonstrate the use of the HLM migration mechanism by the DerivativeShell. 

3.8.1 Problem Domain 

A derivative is a financial instrument that is based on an so called underlying security. It is 
issued by a financial institution that grants the holder18 of the derivative certain rights about the 
underlying securities, for example to buy shares of the underlying security at a certain price. 
The derivatives themselves are traded and the price of the derivative (not of the underlying 
security !) depends on the granted rights and fees of the derivative as well as on the current 
quotation of the underlying security. 

A great number of derivatives exist as derivatives can be defined freely by the issuing financial 
institutions using different parameter to define the rights and fees. Without loss of generality the 
scope of this sample application of the HLM migration mechanism will be confined to only two of 
the most well-known types of derivatives, so called calls and puts. 

Call 

A call is a derivative that entitles its holder to buy shares of the underlying security at a certain 
price, called the execution price. The issuing institution is charging the holder of the derivative a 
fee called premium when the right granted by the call is executed. The call itself is traded freely 
and its price is usually related to the current quotation of its underlying security. 

A broker will buy a call if he expects that the quotation of the underlying security will rise above 
the execution price of the call. The buyer will then be entitled to buy shares of the underlying 
security below the quotation. He will be able to sell the shares at a higher price and yield the 
difference of the execution price and the quotation as earnings after a deduction of the premium 
as well as the price he has bought the call at. The issuer of the call has to provide the 
underlying shares that the holder of the call will request if the call is executed. 

However, if the quotation of the underlying security does not rise above the execution price of 
the call, the buyer of the call will not execute the granted right and will loose the money the call 
was bought at. The issuer of the call on the other side will yield the price he sold the call at as 
earnings. 

A call can be characterized as a bet between the issuer of the call and the holder whether the 
quotation of the underlying security will rise or not. The issuer thinks its will not rise and offers to 
bet against it and the buyer of the derivative thinks it will rise and bets for it through buying the 
call offered. 

The issuer of a call can limit his potential losses in two ways. A so called cap price as well as an 
expiration date can be defined for a call. A cap price is the maximum quotation of the underlying 
security at which the call will be executed. The cap price of a call is always significantly higher 
than the execution price of the call. 

The cap price limits the amount of money the issuer of the call will have to pay in order to 
provide the shares for the execution of the call. The cap price also limits the potential earnings 
of the holder of the call. The expiration date of a call limits the time the call can be traded freely 
as it defines the day at which a call will be executed irrevocably. Figure 3.v illustrates the 
parameters of a call. 

The price a call is traded at is usually only a fraction of the quotation of the underlying security. 
The lower the probability that the call will be executed the lower the price will be. The maximum 
price is theoretically defined by the maximum earnings, i.e. the cap price minus the execution 
                                                 
17  The description of derivatives has been simplified in order to reduce the complexity of the sample application. 
18  The correct legal term would be “owner”, but the term “holder” is used here in order to avoid confusion with terminology used for 

the migration architecture. 
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price minus the price the call was bought at. The initial price of a call is defined by the issuer 
based on the execution-probability at the time of issue. If a broker is willing to take the bet he 
will buy the call. The holder of the call may sell the call to another broker at any price. 

The value of a call to its holder does not only depend on the quotation of the underlying security 
but also on the price the call was bought at. Even if the quotation of the underlying security is 
already above the execution price of the call the value to the holder may still be negative if it 
was bought at a price higher then the difference between the quotation and the execution price 
minus the premium. 

quotation

time

execution price

cap price
call

expiration date
 

Figure 3.v: A call is defined by an exercise price, a premium (not shown), a cap 
price and a expiration date. If the quotation of the underlying security 
rises above the execution price the holder of the call is entitled to buy 
shares of the underlying security at the execution price. If the 
quotation of the underlying security reaches the cap price or the 
expiration date is reached, the call is executed immediately. 

Whether a holder of a call will execute the call as soon as its value is positive, whether the 
holder will wait until the quotation of the underlying security reaches the cap price or until the 
expiration date is reached, whether the holder will sell the call and at what price depends on the 
market conditions and the temper of the holder. Apart from its relation to the underlying security 
a derivative is traded just like any other security. 

Put 

A put is a derivative that is the opposite from a call. A put entitles the holder to sell shares of the 
underlying security at the execution price. The issuer of a put is also charging the holder a 
premium for the execution of the put. A put may also be limited by an expiration date and by a 
cap price at which the put is executed immediately. 

A broker will buy a put if he expects that the quotation of the underlying security will fall below 
the execution price of the put. The buyer will then be able to buy shares of the underlying 
security on the free market below the execution price. Through execution of the put he will be 
able to sell the shares at the higher execution price and yield the difference of the execution 
price and the quotation as earnings after a deduction of the premium as well as the price he has 
bought the put at. The issuer of the put has to buy the underlying shares that the holder of the 
call will offer if the put is executed. 

However, if the quotation of the underlying security does not fall below the execution price of the 
put, the buyer of the put will not execute the granted right and will loose the money the put was 
bought at. The issuer of the put on the other side will yield the price he sold the put at as 
earnings. 
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A put can be characterized as a bet between the issuer of the put and the holder whether the 
quotation of the underlying security will fall or not. The issuer thinks its will not fall and offers to 
bet against it and the buyer of the derivative thinks it will fall and bets for it through buying the 
put offered. The expiration date and the cap price work just as with calls with the exception that 
the cap price of a put is always significantly lower than the execution price of the put. Figure 3.w 
illustrates the parameters of a put. 

quotation

time

cap price

execution price
put

expiration date
 

Figure 3.w: A put is defined by an exercise price, a premium (not shown), a cap 
price and a expiration date. If the quotation of the underlying security 
falls below the execution price the holder of the put is entitled to sell 
shares of the underlying security at the execution price. If the 
quotation of the underlying security reaches the cap price or the 
expiration date is reached, the put is executed immediately. 

Call and puts are comparatively well known among investors as they promise to yield high 
earnings with the investment of comparatively low money. On the other side, even a small 
investment will be lost completely if the quotations of the underlying security are moving into the 
“wrong direction”. 

A financial institution that issues calls and puts will yield its earnings from the premium that is 
charged when the calls and puts are executed as well as from the “lost bets”, i.e. those calls 
and puts that have not been executed when they expire and the full issuing price will be gained. 
A financial institution will try to define the parameters of the call and puts it issues in the way 
most favorable to its own interests. 

The real significance of the derivatives does not stem from their speculative nature but rather 
from their use as a financial instrument. Derivatives are frequently used by institutional investors 
to limit potential losses of their investments. Derivatives are also deliberately issues by financial 
institutions for that purpose. 

If for example an institutional investors makes a large investment in a certain security because a 
long term increase of its quotation is expected the investor may also buy a equal number of puts 
at only a tiny fraction of the investment. The put will be used as an “insurance” against a short 
term decline of the quotation as potential losses will be limited. The investor will also gain the 
time until the puts expires to decide which other securities appear more profitable. 

This use of derivatives as an “insurance” against uncertainties is even more formalize through 
the combination of elementary derivatives to higher order derivatives. Almost arbitrary 
combination of derivatives can be envisioned but only one of the most well known is described 
here, the so called spreads. 
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Higher Order Derivatives: Spreads 

A spread is a combination of a call and a put with similar parameters to a higher order derivative 
that can be traded just as any other security. A spread has guarding effect with respect to an 
underlying security as it limits losses if the quotations falls and it guarantees earnings if the 
quotation rises. Figure 3.x illustrates the effect of a spread. 
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Figure 3.x: A spread is a higher order derivative that combines a call and a put in 

order to limit potential losses and to guarantee earnings with regard 
to the underlying security. 

Elementary as well as higher order derivatives can be combined by financial investors for 
arbitrary purposes. One popular use lies in the limitation of currency-risks for investments in 
foreign markets. If for example the exchange rate Euro-Yen can be balanced against a base 
currency like the US-Dollar through the combination of two spreads Euro-Dollar and Dollar-Yen. 

It is important to note that the value of a higher order derivative to its holder is influenced by the 
parameters of all derivatives the spread is constructed from as well as from the purchase prices 
of all participating derivatives. The possibilities to combine simpler derivatives to higher order 
derivatives are virtually limitless. 

3.8.2 Application 

The DerivativeShell application of the HLM migration mechanism resembles the computerized 
workplace of a derivatives broker who is also able to issue new kinds of derivatives as well. The 
application solves several problems inherent to the volatile derivatives marketplace through the 
use of the HLM migration mechanism. 

Derivatives are comparatively short-lived products and the derivatives marketplace is 
characterized by a high velocity of trading. The lifespan of derivatives from their inception to 
their expiration ranges from weeks to month. A newly issued derivative has to be brought into 
the marketplace very quickly. 

The issuer of a new derivative has to have full control over the characteristics of his creation, 
e.g. under which conditions the derivatives is offered and how the various parameters are used. 
A broker on the other hand must have full confidence about these characteristics and must be 
able to compute the value a derivative has correctly. 

Both issuer and broker must be able to combine existing derivatives to higher order derivatives 
in arbitrary ways with full confidence in the correct computation of the value of such higher order 
derivatives. Both issuer and broker must also be able to sell and buy single derivatives as well 
as higher order derivatives freely. 
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Conventional Approach 

A conventional approach to support issuers and brokers of derivatives will probably offer both 
an information systems that implements the computation of the value of the various derivatives. 
The trading of derivatives will probably be implemented as an exchange of data that defines the 
various parameters of the derivatives traded. 

Although functional, such a conventional approach implies a severe limitation that restrains the 
full development of a derivatives marketplace. In the context of the conventional approach the 
rate at which new versions of the supporting software can be deployed among the members of 
a marketplace limits the rate of innovation. 

If an issuer who wants to change the characteristics of a new derivative in a way that is not 
previously implemented by the supporting software will only be able to offer his creation in the 
marketplace if a new version of the software is created and distributed among all members of 
the marketplace. A broker on the other hand will not buy a new derivative if he can not be sure 
that its value is computed correctly. 

This problem will become even more problematic if the supporting software is implemented for 
several different platforms. The various heterogeneous versions of the software communicate 
with each other for the trading of derivatives but may be implemented quite differently. In order 
to introduce a new kind of derivative new versions of the software for each supported platform 
will have to be created and deployed. 

Using the HLM Migration Mechanism 

The limitation of the conventional approach can be avoided if the supporting software is 
implemented using object technology and the HLM migration mechanism is used to exchange 
not only the parameters of derivatives but also their semantics among heterogeneous platforms 
and implementations. 

Derivatives can be easily implemented as objects that encapsulate not only their parameters as 
state but also as their behavior how their value is computed and how they interact with other 
derivates. The HLM migration mechanism will be able to transfer both the state and the 
semantics of derivatives through migration among heterogeneous systems. 

The design of an application that uses the HLM migration mechanism to support the creation 
and trading of derivatives is quite simple and illustrates the use of the migration architecture. 
Following the conventions of the HLM migration mechanism the application is implemented as 
an interface named OM_DerivativeShell. 

The derivatives are implemented as an interface OM_Derivative that inherits from the 
OM_Migrateable interface since derivatives are supposed to be migrated between 
environments. The interface OM_DerivativeShell that manages the OM_Derivative 
objects inherits from the OM_Owner interface. 

The OM_DerivativeShell does not store the derivatives itself, but uses an interface 
OM_DerivativeSet that inherits from the standard interface OM_MigrateableSet. The 
OM_DerivativeShell also centrally manages the quotes of the underlying securities through 
the use of the interfaces OM_Quote and OM_QuoteSet respectively19. 

The OM_DerivativeShell implements a read-eval-print loop that offers the user a command 
line interface to create, manage and trade derivatives. The user may choose from the following 
commands: 

• help 

The help commando displays a summary of the available commands and their parameters 
in alphabetical order. The description of each command also distinguish required as well as 
optional parameters. 

                                                 
19  In the context of this demonstrative application quotations are generated randomly. 
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• create 

The create command enables the creation of a new derivative with the following 
parameters: the name of the interface that implements the derivative, the name of the 
derivative and the name of the underlying security. Optionally the execution price, the 
premium, the cap price, and the expiration date20 can be specified as well. 

• list 

The list command displays a list of all derivatives in the portfolio. The derivatives in the 
portfolio are numbered and higher order derivatives are indicated through a hierarchical 
numbering using a dot sign a the delimiter. The listing displays the number and the name of 
the derivative, the name of the underlying security, the execution price, the premium, the 
cap price, the purchase price, the current quotation of the underlying security, the resulting 
value of the derivative to the holder and the name of the interface that implements the 
derivative21. 

• sub 

The sub command allows the construction of higher order derivatives through the 
subsumption of one derivative under the other. Both derivatives are indicated through their 
number in the listing of the portfolio. 

• sell 

The sell command can be used to offer a derivative with another broker who is willing to 
buy the derivative. The derivative to sell is indicated through the number of the derivative in 
the listing of the portfolio. 

• buy 

The buy command is used to indicate a willingness to buy a derivative at a certain price 
from anyone who is selling at that price. 

Through these commands the OM_DerivativeShell can be used to create derivatives, view 
their parameters, build higher order derivatives out of existing ones and to sell and buy both 
single and higher order derivatives. The OM_DerivativeShell checks the parameters typed 
by the user and indicates whether the respective command was executed correctly or not. 

The commands of the OM_DerivativeShell application offer the minimal functionality that is 
necessary to support the problem domain. Several additional command may be useful but the 
application is focused on the functionality necessary to demonstrate the feasibility and the 
benefits of the HLM migration mechanism.  

In addition to the basic characteristics of the problem domain a specific scenario within that 
domain is used to emphasize the benefits of the HLM migration mechanism. 

Scenario 

An member of the derivatives marketplace wants to offer new kinds of derivatives whose 
premium is not a constant but dependent on the development of the underlying security. 
The premium of one kind of derivative is supposed to be priced at a fixed percentage of the 
quotation of the underlying security. The premium of a second kind of derivative is 
supposed to be priced at a percentage of the average quotation of the underlying security 
since its creation. 

In the context of this scenario an issuer implements an interface to be named 
OM_Derivative_WithStatistics that inherits from OM_Derivative and is able to 
accumulate and use statistical information about its underlying security. The statistical data is 
managed by an interface named OM_QuoteStatistics. 

                                                 
20  The expiration date is not used in the demonstration and only included here for completeness. 
21  The name of the interface is added here for demonstrational purposes and would not be necessary in reality. 
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The issuer also implements an interface named OM_Derivative_Percent that inherits from 
OM_Derivative_WithStatistics and computes its premium as a percentage of the 
quotation of the underlying security at the time of execution. Another interface 
OM_Derivative_Average that also inherits from OM_Derivative_WithStatistics and 
computes its premium as a percentage of the average quotation of the underlying security since 
the time its was created. 

If the different derivatives are combined to higher order derivatives they must be able to share 
the same statistics. In order to support this additional feature. The issuer also implements a new 
version of the trading workplace using an interface named OM_DerivativeShell2 that 
inherits from OM_DerivativeShell and offers an additional command. 

• share 

The share command allows two derivatives to share common statistics. Both derivatives 
are indicated through their number in the listing of the portfolio. 

The interfaces defined by the issuer are additions to the interfaces defined for the common 
application that supports derivatives trading marketplaces. Figure 3.y shows the inheritance 
lattice of the objects the application is constructed of in the context of the migration architecture. 

OM_Object

OM_Owner OM_SetOM_Quote

OM_Derivative_WithStatistics

OM_Derivative_Percent OM_Derivative_Average

OM_Derivative OM_DerivativeSetOM_QuoteStatisticsOM_DerivativeShell2

OM_MigrateableOM_ DerivativeShell OM_QuoteSet OM_MigrateableSet

 
Figure 3.y: The inheritance lattice of the interfaces used by the 

OM_DerivativeShell application in the context of the migration 
architecture (interfaces that are added for the 
OM_DerivativeShell2 application are depicted with dashed lines). 

The architecture of the of the application is quite simple. The OM_DerivativeShell 
references a OM_DerivativeSet and a OM_QuoteSet object in order to manage 
OM_Derivative and OM_Quote objects respectively. The managed OM_Derivative objects 
can reference other OM_Derivative objects up to an arbitrary depth.  

In the context of the OM_DerivativeShell2 some derivative objects may reference 
OM_QuoteStatistics objects and several derivative objects may share the same 
OM_QuoteStatistics objects as well. Figure 3.z shows the architecture of the application 
that supports the derivative marketplace in the context of the HLM migration mechanism. 
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Simplifications 

As pointed out earlier the sample applications are focused on the demonstration of the 
feasibility and the benefits of the HLM migration mechanism in the context of the problem 
domain. Without loss of generality several simplifications have been applied to the sample 
applications. These limitations can be addressed comparatively easily in order to make the 
applications usable in the real world. 

The applications support both issuers and brokers of derivatives, but in the real world a broker 
may not be entitled to issue derivatives. In order to be able to demonstrate different scenarios 
both roles are supported by the same applications. A separation of these user-roles can 
nevertheless be implemented easily. 
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OM_Derivative

OM_DerivativeSet

OM_QuoteStatistics

OM_DerivativeShell2
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Figure 3.z: The architecture of the application that supports the derivative 

marketplace. The hierarchy of derivatives objects that construct a 
higher order derivative can be arbitrarily deep. Statistics objects can 
be shared by derivatives (the references from migrateable objects to 
their owners are shown as dashed arrows). 

Quotations and all parameters of derivatives are defined as integers which represent 
basepoints. This limitation was necessary as the prototypical implementation of the HLM 
migration mechanism does currently not implement floating point operations. It also simplifies 
the consistent formatting of the display significantly. The same holds for the expiration date 
which is not displayed. Both support for floating point operations and more sophisticated 
formatting functionality can be added to the mechanism with reasonable effort. 

The quotations of underlying securities are only simulated through a random number generator, 
primarily in order to be able to demonstrate the application offline. The applications do not offer 
a mechanism for price-finding, price-negotiation or for the monetary transactions that are 
necessary to buy derivatives in the real world. The trading of derivatives is also reduced to the 
simplest case, i.e. a single derivative is traded for a single share of an underlying security. In the 
real world a derivative may entitle rights for many shares of the underlying security and many 
derivatives may be traded at once. 

Last not least several derivatives marketplaces exist that have specified different conditions for 
the derivatives that can be offered and traded. The sample applications are designed to trade 
derivatives freely but can also be extended to obey the standards of different real world 
derivatives marketplaces. 
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3.8.3 Demonstration 

The following demonstration shows the feasibility of the HLM migration mechanism and its 
benefits in the context of the application scenario described in the previous subchapter. The 
demonstration is based on the prototypical implementation of the HLM migration mechanism for 
the Java and CLOS language environments.  

The demonstration is documented through a transcripts of the interactions of two users with 
their respective applications. An issuer of a derivative marketplace uses a CLOS based version 
of the OM_DerivativeShell2 application to create and offer a higher order derivative that is 
composed out of three elementary ones. A broker of that marketplace uses the 
OM_DerivativeShell application to buy the newly issued derivative.  

The transcripts of interactions of the users are shown side-by-side in a two-page format. The 
interactions are broken up into several steps and comments are inserted to explain what is 
happening. The interactions of the issuer that acts as the source of the resulting migration are 
shown on the left hand side and the interactions of the broker that acts as the destination of the 
resulting migration are shown on the opposite page on the right. 

The transcript shows the interactions, i.e. the input/output of the applications in a bold fixed-
width font. Comments are inserted using the normal font. The layout of the transcript 
“synchronizes” the sequence of events through the insertion of the appropriate number of blank 
lines of either side. These blank lines to not appear in the real interactions. 

Source Transcript 
OM_DerivativeShell2 started ! 
OM_DerivativeShell2>  

The OM_DerivativeShell2 is started and displays its command line prompt. 
OM_DerivativeShell2>  
command: create OM_Derivative_Percent Call ABC 600 5 750 
Created derivative: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
1 Call ABC 600 34(5) 750 0 679 45 OM_Derivative_Percent 
  min: 679 avg: 679 max: 679 

A first derivative is created using the OM_Derivative_Percent interface. It is named Call, is 
based on the underlying security ABC, has an execution price of 600 basepoints, a premium of 5 
percent and a cap price of 750 base points. The output immediately after the creation shows the 
parameters of the derivative, a purchase price of 0, a quote of 679 and a resulting value of 75. 
The value of the derivative is the difference of the quotation an the execution price minus the 
premium which is 34 basepoints (5% of the quotation). The line below the listing of the 
derivative shows the data gathered by the automatically created OM_QuoteStatistics object 
so far, i.e. minimum, average and maximum quotations of the underlying security ABC. 
OM_DerivativeShell2> 
command: create OM_Derivative_Average Put ABC 400 10 250 
Created derivative: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
2 Put ABC 400 0(10) 250 0 665 0 OM_Derivative_Average 
  min: 665 avg: 665 max: 665 

A second derivative is created using the OM_Derivative_Average interface. It is named Put, 
is based on the underlying security ABC, has an execution price of 400 basepoints, a premium 
of 10 percent and a cap price of 250 base points. The output immediately after the creation 
shows the parameters of the derivative, a purchase price of 0, a quote of 665 and a resulting 
value of 0. The value of the derivative is 0 because the quotation is higher then the execution 
price, i.e. the derivative can not be executed. The line below the listing of the derivative shows 
the data gathered by the automatically created OM_QuoteStatistics object so far, i.e. 
minimum, average and maximum quotations of the underlying security ABC. 
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Destination Transcript 
OM_DerivativeShell started ! 
OM_DerivativeShell> 

The OM_DerivativeShell is started and displays its command line prompt. 
command: list 
Derivatives in the portfolio: 
#       Name    USec    ExecP   Prem    CapP    PurP    Quote   Value   Interface 
none 
Legend: 
USec - Underlying Security, ExecP - Execution Price, Prem – Premium 
CapP - Cap Price, PurP - Purchase Price 

The list command is executed and shows an empty portfolio of derivatives. 
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Source Transcript (continued) 
OM_DerivativeShell2>  
command: share 1 2 
Share operation successful ! 

The share command is executed to share the OM_QuoteStatistics object of derivative 
number 2 with derivative number 1, the other OM_QuoteStatistics Object is discarded. 
OM_DerivativeShell2>  
command: list 
Derivatives in the portfolio: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
1 Call ABC 600 45(5) 750 0 671 26 OM_Derivative_Percent 
  min: 665 avg: 668 max: 671 
2 Put ABC 400 67(10) 250 0 671 0 OM_Derivative_Average 
  min: 665 avg: 668 max: 671 
Legend:  
USec - Underlying Security, ExecP - Execution Price, Prem – Premium 
CapP - Cap Price, PurP - Purchase Price 

The list command is executed and displays the two derivatives in the portfolio which now share 
a single OM_QuoteStatistics object (indicated by the identical statistics). 
OM_DerivativeShell2>  
command: create OM_Derivative Spread ABC 
Created derivative: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
3 Spread ABC 0 0 0 0 669 0 OM_Derivative 

A third derivative is created using the OM_Derivative interface. It is named Spread and is 
based on the underlying security ABC but no optional parameters are used. 
OM_DerivativeShell2>  
command: sub 3 1 
Subsume operation successful ! 

OM_DerivativeShell2>  
command: sub 2 1 
Subsume operation successful ! 

The sub command is executed two times to subsume the two previously created derivatives 
under the last one to create a higher order derivative. 
OM_DerivativeShell2>  
command: list 
Derivatives in the portfolio: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
1 Spread ABC 0 0 0 0 673 40 OM_Derivative 
1.1 Call ABC 600 33(5) 750 0 673 40 OM_Derivative_Percent 
  min: 665 avg: 670 max: 673 
1.2 Put ABC 400 67(10) 250 0 673 0 OM_Derivative_Average 
  min: 665 avg: 670 max: 673 
Legend:  
USec - Underlying Security, ExecP - Execution price, Prem – Premium 
CapP - Cap Price, PurP - Purchase Price 

The list command displays the higher order derivative with the subsumed derivatives indicated 
with hierarchical numbering. The value of the higher order derivative is computed as the sum of 
the subsumed derivatives. 
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Destination Transcript (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
OM_DerivativeShell> 
command: buy Spread ABC 50 9876 
Waiting for offer at port: 9876 

The buy command is used to indicate the willingness of the user to buy a derivative with the 
name Spread of the underlying security ABC for the amount of 50 basepoints using the TCP/IP 
port 9876.  

The following output is generated solely for the demonstration of the HLM migration 
mechanism. 
OM_Porter.handle_migration_via_network() begin 
listening at: 9876 

As a consequence the handle_migration_via_network() signature of the OM_Porter 
object is invoked and starts to listen at TCP/IP port 9876 for incoming communications from 
other environments. 
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Source Transcript (continued) 
OM_DerivativeShell2>  
command: sell 1 9876 127.0.0.1 
Selling derivative: 1 at port: 9876 to host: 127.0.0.1 

The sell command is used to initiate the sale of the derivative number 1 via port 9876 at TCP/IP 
address 127.0.0.1.  

The following output is generated solely for the demonstration of the HLM migration 
mechanism. 
OM_Porter.migrate_via_network() begin 

INITIATION 

 

connection established 

The migrate_via_network() signature of the OM_Porter objects is invoked to perform the 
migration of the derivative object. 

The initiation phase successfully establishes a connection with the OM_Porter object of the 
destination environment. 
CHECK 
ready to migrate 
migration set: 
OM_Derivative 
OM_Derivative_Percent 
OM_QuoteStatistics 
OM_Derivative_Average 

The check phase performs the migration check and displays the interfaces of the objects of the 
migration set. 
NEGOTIATION 
requesting supported interfaces 

 

 

supported interfaces:  
OM_DerivativeShell 
OM_Character 
OM_DerivativeSet 
GOAL_Token 
OM_Directory 
OM_Environment 
OM_Error 
OM_File 
OM_Migrateable 
OM_MigrateableSet 
OM_Owner 
OM_OwnerSet 
OM_Porter 
OM_ServerSocket 
OM_Set 
OM_Socket 
OM_Stream 
OM_String 
OM_Token 
OM_Quote 
OM_QuoteSet 
OM_Object 
OM_Interface 
OM_InterfaceSet 
OM_Derivative 

The negotiation phase requests the supported interfaces from the OM_Porter of the 
destination environment and displays the list upon receipt. 
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Destination Transcript (continued) 

 

 

 

 

 

 

 
connection established ! 

The OM_Porter object of the destination environment acknowledges the communication with 
the source environment. 

 

 

 

 

 

 

 

 

 
command: SEND_SI 

supported interfaces sent ! 

The OM_Porter object of the destination environment receives the command to send the 
supported interfaces to the source environment. 

A confirmation is printed that all interface declarations have been sent. 
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Source Transcript (continued) 
collecting interfaces to process 

interfaces to process: 
OM_Derivative 
OM_Derivative_Percent 
OM_QuoteStatistics 
OM_Derivative_Average 

The set of interfaces to process, i.e. the negotiation set is constructed as a collection of the 
interfaces of the objects of the migration set.  
processing interfaces 

interface set:  
OM_Derivative_Percent 
OM_QuoteStatistics 
OM_Derivative_Average 
OM_Derivative_WithStatistics 

The interface set is determined as the set of dependent interfaces that are not supported by the 
destination environment. 
TRANSFER OF SEMANTICS 

interfaces sent 

The transfer of semantics phase generates an interface definitions for each interface in the 
interface set and transfer that representation to the OM_Porter object of the destination 
environment. 

A confirmation is printed when all interface definition have been sent. 
 

interfaces implemented 

The OM_Porter object acknowledges the implementation of the interface definitions by the 
destination environment. 
TRANSFER OF STATE 
objects to represent: 
OM_Derivative 
OM_Derivative_Percent 
OM_QuoteStatistics 
OM_Derivative_Average 

representation: 
OM_Derivative 1 OM_Derivative_Percent 2 OM_QuoteStatistics 3 OM_Derivative_Average 4  
| 1 (Spread ABC 0 0 0 :2 :4 ) 2 (Call ABC 10 600 750 :3 ) 3 (ABC 673 665 2009 3 ) 4 
(Put ABC 10 400 250 :3 ) 

local objects deactivated: ready to commit locally 

representation sent 

The transfer of state phase constructs the ORL representation of the objects of the migration 
set, prints that representation, and deactivates the object of the migration set, to reach “ready to 
commit” state. 

A confirmation is printed when the ORL representation has been sent to the OM_Porter object 
of the destination environment. 
 

 

 

objects represented: ready to commit remotely 

The OM_Porter object acknowledges the representation of the objects of the migration set by 
the destination environment. 
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Destination Transcript (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 
command: IMPLEMENT 

javac -d c:\classes c:\src\goal\om\dest\OM_Derivative_Percent5.java 
javac -d c:\classes c:\src\goal\om\dest\OM_QuoteStatistics.java 
javac -d c:\classes c:\src\goal\om\dest\OM_Derivative_Average10.java 
javac -d c:\classes c:\src\goal\om\dest\OM_Derivative_WithStatistics.java 

interfaces implemented 

The OM_Porter object of the destination environment receives the command to implement the 
interface definitions that are transferred by the OM_Porter object of the source environment. 
Local source files are generated and complied for each interface received.  

A confirmation is printed and sent to the OM_Porter object of the source environment. 

 

 

 

 

 

 

 
command: REPRESENT 

OM_Derivative 1 OM_Derivative_Percent5 2 OM_QuoteStatistics 3 OM_Derivative_Average10 
4  | 1 (Spread ABC 0 0 0 :2 :4 ) 2 (Call ABC 10 600 750 :3 ) 3 (ABC 673 665 2009 3 ) 4 
(Put ABC 10 400 250 :3 ) 

objects represented 

The OM_Porter object of the destination environment receives the command to represent the 
objects of the migration set and prints the ORL representation received. 

A confirmation is printed and sent to the OM_Porter of the source environment when all 
objects of the migration set have been successfully rebuild and reinitialized. 
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Source Transcript (continued) 
COMMIT 

The commit phase sends a commit command to the OM_Porter of the destination 
environment. 
 

 

objects activated remotely 

An acknowledges of the activation of the objects of the migration set by the destination 
environment is printed. 
 

 

 

 

objects released locally 

migration successfull 

The OM_Porter object releases the objects of the migration set and prints an 
acknowledgement of the success of the migration operation. 
closing connection 

The connection with the destination environment is closed. 
 

 

OM_Porter.migrate_via_network() end 

The invocation of the migrate_via_network() signature returns. 

The following output represents the normal interaction of the OM_DerivativeShell2 with its 
user that is independent of the destinations environment. 
Sell operation successful ! 

The sell command of the OM_DerivativeShell2 is finished. 
OM_DerivativeShell2>  
command: list 
Derivatives in the portfolio: 
# Name USec ExecP Prem CapP PurP Quote Value Interface 
none 
Legend:  
USec - Underlying Security, ExecP - Execution price, Prem – Premium 
CapP - Cap Price, PurP - Purchase Price 

The list command is invoked and displays an empty portfolio of derivatives. 

End of Transcript 
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Destination Transcript (continued) 

 
command: ACTIVATE 

migrated objects activated 

migration successfull 

The OM_Porter object of the destination environment receives the command to commit the 
migration and activates the objects of the migration set. 

An acknowledgement of the activation of the objects of the migration set is printed and sent to 
the OM_Porter object of the source environment. 

An acknowledgement of the successful migration set is printed. 
 

 

 

 

 

 

 

closing connection 

OM_Porter.handle_migration_via_network() end 

An acknowledgement of the closing of the connection is printed and the invocation of the 
handle_migration_via_network() signature of the OM_Porter object returns. 

The following output represents the normal interaction of the OM_DerivativeShell2 with its 
user that is independent of the source environment. 
Buy operation successful ! 

The buy command of the OM_DerivativeShell is finished. 
OM_DerivativeShell> 
command: list 
Derivatives in the portfolio: 
# Name Usec ExecP Prem CapP PurP Quote Value Interface 
1 Spread ABC 0 0 0 50 677 -6 OM_Derivative 
1.1 Call ABC 600 33(5) 750 0 677 44 OM_Derivative_Percent 
  min: 665 avg: 671 max: 677 
1.2 Put ABC 400 67(10) 250 0 677 0 OM_Derivative_Average 
  min: 665 avg: 671 max: 677 
Legend: 
USec - Underlying Security, ExecP - Execution price, Prem – Premium 
CapP - Cap Price, PurP - Purchase Price 

The list command is invoked and displays the newly bought derivative whose value is now 
computed as –6. The Call and the Put have a combined value of 44 but the Spread was 
purchased at 50 basepoints resulting in a negative value of the higher order derivative that will 
change if the quotation of the underlying security rises some more. 

End of Transcript 

After the end of the transcript, the interactions of the users may continue on both sides and may 
include additional communication partners as well as more complex higher order derivatives or 
derivatives of interfaces with more functionality. The HLM migration mechanism will enable the 
trading of all these derivatives as long as they are implemented in accordance with the 
migration architecture. 
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Evaluation 

The above transcript demonstrates the feasibility of the HLM migration mechanism and its 
applicability to the problem domain. The use of the HLM migration mechanism enables the 
transfer of the derivative objects including their semantics which assures the seller that the 
value of the bought derivative is computed correctly.  

Despite the use of new functionality for the creation of the offered derivative the buying 
transaction can be performed at runtime without the deployment of new software as the 
destination environment is extended with the necessary semantics on the fly. The state 
necessary to compute the parameters of the higher order derivative is also transferred correctly. 

Apart from these benefits of the HLM migration mechanism for the problem domain several 
highlights of this demonstration that are of general interest have to be emphasized: 

• Support for Dynamically Created Objects 

The HLM migration mechanism is able to handle objects that are created at runtime 
dynamically, i.e. from interfaces that are not specified in the source code of the source 
application but that are defined through user input. The create commando of the 
OM_DerivativeShell takes the name of the interface to use as a parameter. If the 
interface is not available an error message will be given. 

This is an important detail of the HLM migration mechanism as the determination of the 
interface set by the negotiation phase would not be correct if it was based on the object 
definition of the root object of the migration request alone. The collection of the interfaces of 
the objects in the migration set ensures that the interfaces of the actual interfaces are 
investigated not only those specified by the source code of the root object. 

• Support for Arbitrary Object Structures 

The HLM migration mechanism is able to migrate arbitrary object structures. The higher 
order derivatives form a hierarchy but the OM_DerivativeShell2 can be used to build 
arbitrary objects structures. The OM_Derivative_With_Statistics objects as well as 
the OM_QuoteStatistics objects can have arbitrary numbers of components or owners 
respectively.  

If used independent of their role within the sample application these interfaces can be used 
to build arbitrary complex graphs of objects that can be migrated by the HLM migration 
mechanism. Such structures will probably not make much sense in the context of the 
problem domain and their listings in the OM_DerivativeShell2 will be virtually 
unreadable but the ability of the HLM migration mechanism to migrate these structures is a 
proof of its universal applicability in this regard. 

• Correct Handling of Ambiguous Dependencies 

The HLM migration mechanism is also able to handle ambiguous dependencies among 
migrateable objects correctly. Although not visible directly in the above transcript, the  
OM_Derivative_Percent object does not depend on the OM_QuoteStatistics object 
it references and sends it a ready_to_let_owner_migrate() message. 

The OM_Derivative_Average object on the other side does depend on the 
OM_QuoteStatistics object and sends it a ready_to_migrate() message. As a 
result the OM_QuoteStatistics object becomes part of the migration set and that fact is 
handled correctly by the OM_Derivative_Percent object during the construction of its 
ORL representation as well as during the rebuild operation. 

It is essential to note that the HLM migration mechanism is able to handle ambiguous 
dependencies of objects correctly as the probability of ambiguities will rise with the number 
of objects that are involved in a single migration. Ambiguous dependencies are supported 
though the ORL representation and the relevant interfaces need to be implemented 
correctly which can be assured through appropriate development tools (see also page 121). 
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• Migration of Semantics without Corresponding User Interface 

It is interesting to note that the above demonstration migrates an object structure to an 
application that can not be used to create that object structure itself. The 
OM_DerivativeShell application does not support the sub command necessary to 
combine the statistics of two OM_Derivative_WithStatistics objects but it is able to 
receive such a structure through migration although is was designed to support such a 
structure explicitly. 

Yet the migration makes sense as the migrated objects structure can be displayed like any 
other higher order derivative and can even be sold, i.e. migrated to other 
OM_DerivativeShell applications without loss of fidelity. This simple example shows 
that the migration of objects can be useful even between applications that do not have the 
same user interface. 

• Support for all Kinds of Heterogeneity 

Last not least, the above demonstration shows that the HLM migration mechanism is able 
to address all levels of heterogeneity as different hardware, operating systems and 
language environments are used for the demonstration. The source is a CLOS environment 
under Microsoft Windows NT running on an Intel PC and the destination is a Java 
environment running under Solaris of a Sparc workstation. The library level is 
heterogeneous in so far as different sets of interfaces are used, which could also build two 
different inheritance hierarchies. An the applications are heterogeneous as they offer 
different functionality and implement different user interfaces. 

Although the extent of the heterogeneity at the library and application level is not to far the 
basic feasibility of the HLM migration mechanism is shown. Based on the interfaces of the 
objects of the migration set the OM_Derivative_WithStatistics object is determined 
as a dependent interface that need to be transferred to the destination environment. An 
arbitrary number of application as well as library specific interfaces could be determined as 
well and would be transferred in the same way. 

The above demonstration shows that the HLM migration mechanism conforms to its objectives 
and fulfills its the research goals. It is able to address all levels of heterogeneity, to transfer 
objects without applying changes to their definitions during migration and is able to work with 
existing language environments. An in depth analysis of the characteristics of the HLM 
migration mechanism will be given in the following chapter four that also discusses possible 
augmentations of the mechanism and the general applicability of heterogeneous language 
migration. 
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4 Augmentation of Heterogeneous Language Migration 

The HLM migration mechanism implements object migration among heterogeneous language 
environments with the main objectives not to require changes to object definitions during 
migration or to the implementation of participating language environments prior to migration. 
These and other objectives chosen for the HLM migration mechanism are intended to ensure its 
applicability to existing language environments. 

The prototypical implementation the HLM migration mechanism is limited in its applicability by a 
number of deficiencies but also by its objectives. It is confined to certain characteristics of 
objects that can be migrated, to the kind of information that can be transferred as well as to a 
defined set  language concepts that are supported. 

To overcome these limitations several improvements of the prototypical implementation can be 
conceived and the HLM migration mechanism can be augmented in several ways. The possible 
changes to the HLM migration mechanism differ in their scope and consequences and can be 
classified as enhancements or extensions. 

Enhancements to the HLM migration mechanism can be applied without violating the objectives 
while extensions can only be implemented through changes to the mechanism that transgress 
the constraints implied by the objectives. Figure 4.a illustrates the difference between 
enhancements and extensions. 

Enhancements as well as extensions may widen the applicability of the HLM migration 
mechanism to additional kinds of objects, new language concepts or even previously 
unsupported categories of language environments. However several augmentations may be 
contradictory and can not be implemented together within a single environment. As a 
consequence a partitioning of the migrateability of objects among environments into disjunctive 
sets of environments that implement different versions of the migration mechanism may result.  

This chapter tries to explore the scope of applicability of heterogeneous migration through the 
discussion of the most promising enhancements and extensions to the HLM migration 
mechanism. A brief characterization of the HLM migration mechanism is provided as a starting 
point and as a reference for the various changes that can be applied. 

Enhancements for consecutive migrations, additional standard interfaces, migrations of objects 
that use non-standard interfaces as well as migrations in the context of distributed identity are 
discussed in the second subchapter including selected issues of the implementation of these 
enhancements.  

The third subchapter introduces advanced migration techniques that deviate from the objectives 
of the HLM migration mechanism and that can be used to implement various extensions that 
broaden the applicability of the mechanism. Techniques that change interface definitions can be 
used to implement additional forms of negotiation as well as the migration of fragments of 
objects. Changes to the participating language environment are required to implement the 
transfer of computations in the context of the HLM migration mechanism. 
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Figure 4.a: The HLM migration mechanism can be augmented through 

enhancements that adhere to its objectives or through extensions that 
are not confined by the restrictions implied by the objectives. The 
above diagram uses the main objectives not to change objects during 
migration and environments prior to migration as examples. 

A discussion of additional language concepts and how they can be supported through the 
implementation of extensions of the HLM migration mechanism are provided in the fourth 
subchapter that concludes with an overview of potential migrateability among existing object-
based language environments. 

4.1 Characterization of the HLM Migration Mechanism 

The HLM migration mechanism can be characterized in terms of the systematic introduced in 
the second chapter. The following characterization of the mechanism discusses each criteria 
separately and provides some hints at possible enhancements and extensions that will be 
described in consecutive subchapters. 

Unit of Migration 

The unit of migration used by the HLM migration mechanism and the level at which migration is 
performed are obviously atomic objects and the language level respectively. The relative 
identity and the state of an object to be migrated and its set of dependent objects is transferred. 
The functionality that is necessary for the these objects to operate within the destination 
environment is determined and transferred as well. The HLM migration mechanism does not 
support the transfer of distributed identity or computations of objects.  

Identity 

The transfer of the distributed identity of objects is not supported by the HLM migration 
mechanism as it is intended to work with existing language environments most of which do not 
support distributed identity. Only the relative identity of objects with regard to the set of 
dependent objects is transferred.  

The implementation of location independence through remote references directly will not be 
possible without changes to the participating environments. Support for distributed identity can 
however be added to the HLM migration mechanism as an enhancement using proxy objects 
which unfortunately introduce residual dependencies (see page 158). 

State 

The state of objects is transferred by the HLM migration mechanism using a source 
representation in the form of the ORL language. Following a hybrid approach, booleans, 
integers, floating point numbers, characters and strings are treated as atomic values rather than 
as objects. The relationships between transferred objects are preserved .  
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The HLM migration mechanism follows the conversion approach to overcome heterogeneity of 
hardware and languages as the state of objects of the source environment is converted to an 
independent representation for the transfer, which is used to rebuild newly created objects 
within the destination environment. The restriction approach to overcome heterogeneity is 
applied as well, as the HLM mechanism is confined to objects with mutual relationships. 

Alternatively representations of state can be used to enhance the HLM migration mechanism as 
for example the Extensible Markup Language (XML) defined by the World Wide Web 
Consortium (W³C) which provides a more versatile textual format. Binary representations as 
used by persistence services can be employed as long as they support heterogeneity of 
hardware, operating systems and languages. 

Functionality 

The transfer of the semantics of objects can be considered the main focus of the HLM migration 
mechanism and is performed using the GOAL abstraction language. A negotiation algorithm 
determines which functionality needs to be transferred and ensures that the required 
functionality is available within the destination environment. 

The HLM migration mechanism employs a combination of the conversion and the extension 
approach to overcome all levels of heterogeneity in this regard. The functionality of objects is 
converted to an independent representation and the destination environment is extended with 
object definitions that are generated from the transferred GOAL interface definitions. 

The negotiation algorithm can be enhanced through the use of different interface equivalence 
relations which can widen the applicability of the mechanism but may also lead to only partial 
migrateability. Extensions of the HLM migration mechanism will enable changes to the 
functionality of objects for various purposes following the adaptation approach to overcome 
heterogeneity (see page 174). 

The use of intermediate, virtual or binary representations of functionality will only be possible in 
the form of extensions to the HLM migration mechanism as changes to the participating 
environments will be necessary. These alternative formats can be used to achieve higher 
performance as only a partial translation into the native code of the destination platform will be 
necessary. However the implementation of the necessary conversions will also be more difficult 
(see page 179). 

Computations 

The transfer of computations of objects is not supported by the HLM migration mechanism as 
only few language environments provide means to capture or recreate the state of execution. It 
is difficult to transfer computations among two different hardware architectures, but the task 
becomes even harder if it is pursued in the context of heterogeneity of languages, operating 
systems, and hardware. 

The HLM migration mechanism can be extended to transfer computations of objects through the 
analysis of the execution state of the runtime environment at the source and the reconstruction 
of an equivalent execution state within the destination environment. Such a fundamental 
alteration of the mechanism requires changes to the participating environments (see page 179).  

Policy 

The HLM migration mechanism implements no particular policy for the initiation of migrations. 
Migration request can be created by any policy that uses the mechanism. Reasons to migrate 
an object among heterogeneous environments can include the whole spectrum of motivations 
from load balancing to fault tolerance. The capability of the HLM migration mechanism to add 
new functionality to existing systems can be regarded as a reason in its own right and can 
encourage the interactive initiation of object migration as well (see also chapter 3 page 125). 

The prototypical implementation of the HLM migration mechanism requires that the destination 
of a migration has to be specified explicitly in the form of the IP address and port number of a 
listening OM_Porter object. With the possible extension of the HLM migration mechanism to 
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support distributed identity a reference to a remote OM_Owner object may also be used to 
specify the target or a migration in a less implementation dependent way (see page 158). 

Mechanism 

The prototypical implementation of the HLM migration mechanism has only minimal 
prerequisites and does deliberately not use any supportive features of the participating 
language environments in order to avoid implementational dependencies. The mechanism uses 
source code as the abstract representations for the transport of state and functionality of objects 
and employs a migration algorithm with six phases. 

Prerequisites 

The prerequisite of the prototypical implementation of the HLM migration mechanism are the 
TCP/IP network protocol and the availability of a listening OM_Porter object within the 
destination environment as well as the ability of the destination environment to load object 
definitions and create objects dynamically at runtime. 

The destination environment has to implement at least the receiving functionality of the HLM 
migration mechanism which requires also the other prerequisites mentioned. In contrast to the 
high availability of the TCP/IP network protocol, the ability to load object definitions at runtime or 
to create objects dynamically is comparatively rare among language environments (see also 
page 211). 

Support 

The TCP/IP network transport is the only kind of support of the participating environments used 
by the prototypical implementation of the HLM migration mechanism. The TCP/IP protocol is 
used for the communications between the OM_Porter objects of the source and destination 
environments. A distributed file system service can be employed as an alternative transport but 
its use will also reduce performance. 

As an additional kind of support, that is available only within particular language environments, 
runtime type information systems as well as reflective capabilities can be used to simplify the 
implementation of the HLM migration mechanism especially throughout the negotiation phase 
(see also 206). 

Abstractions 

The HLM migration mechanism uses source code as an abstraction for the transfer of state and 
the functionality of objects in the form of the ORL and the GOAL languages respectively. 
Although certainly not an optimal form of representation, the source code abstraction helps to 
overcome heterogeneity through the compilation of the required functionality. 

Despite its use of source code for communication means the HLM migration mechanism makes 
no assumption about the representation of the interface definitions within the participating 
environments. Apart from the use of source files by the prototypical implementation other forms 
for interface definitions can be used as well (see also 206). 

The use of reflection that renders the behavior of objects available through for example class 
objects in CLOS [Pae1993] or Smalltalk [GoR1983], may offer more efficient ways of 
implementing the negotiation algorithm in certain environments. Other form of representation 
like virtual machine abstractions can also be adopted if the HLM migration mechanism is 
extended accordingly (see also page 179). 

Algorithm 

The HLM migration mechanism consists of the phases initiation, check, negotiation, transfer of 
semantics, transfer of state and completion. The initiation phase ensures communication with 
the destination environment. The check phase determines whether the objects in question can 
be migrated and constructs the migration set, i.e. the set of dependent objects that are migrated 
collectively. 

The negotiation set determines the interface set, i.e. the set of interfaces the object of the 
migration set are dependent upon but that are not supported by the destination environment. 
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The transfer of semantics phase implements the interfaces of the interface set while the transfer 
of state phase reconstructs the objects of the migration set. The completion finally performs the 
commit of the migration operation. 

The migration algorithm of the HLM migration mechanism has not been optimized for 
performance but can be improved through caching techniques. The migration algorithm will also 
be affected by enhancements and extensions of the migration mechanism some of which 
require changes to individual phases while others require fundamental changes (see page 152). 

The implementation of support for distributed identity will affect the check as well as the transfer 
of state phase (see page 158). The negotiation phase can be enhanced through different forms 
of equivalence relations of interfaces (see page 174). More fundamental extensions to the 
migration algorithm like the pursuit of the adaptation approach to overcome heterogeneity will 
change the migration algorithm significantly (see page 177). 

Properties 

The HLM migration mechanism is working non-preemptively since migration can only be 
initiated through synchronous message passing. As an additional precondition migration can 
only be performed when the objects involved are inactive, i.e. their methods have not been 
invoked and these objects are not referenced by activation records. The migration of 
computations of objects can only be implemented through an extension of the mechanism (see 
page 179).  

The migration itself is performed atomically as either the object to be migrated and its 
dependent objects are transferred to the destination as a whole or no changes to the 
participating environments are made at all. The migration protocol concludes with either the 
release / activation or the reactivation / abort sequences of a two phase commit protocol that 
are able to commit or roll back changes made to either environment. 

The HLM migration mechanism leaves no residual dependencies at the source as objects are 
migrated to the destination environment completely. This property may change if support for 
distributed identity is added to the mechanism. The use of proxy objects will create residual 
dependencies (see page 158). 

Fault tolerance is supported by the HLM migration mechanism to the extent that the 
impossibility of migration can be detected early in the process and communication failures as 
well as late aborts of the migration process are handled gracefully22. The continuation of a 
previously interrupted migration, due to for example a communication failure is not supported 
and the migration will have to be initiated anew by the particular application.  

The fault tolerance capabilities of the HLM migration mechanism with respect to migrateability 
can be improved with the utilization of advanced migration techniques. For example a migration 
that fails using the standard negotiation may be successful using an advanced form of 
negotiation (see page 177). 

The HLM migration mechanism can be characterized as symmetric as well as transitive with 
regard to the sequence of migrations. It is symmetric because both the environments involved 
are able to perform a migration using the migration architecture and the necessary interfaces for 
the migrated objects will be available within both environments after a migration has been 
performed. The transitive nature of the migration mechanism stems from the same reasons. 

The characterization of symmetry and transitivity does not hold in the context of the distributed 
identity of an object as only relative identity is maintained during migration. For example an 
object that is migrated to another environment will not be regarded as the same object when it is 
migrated back to its original source environment [Sil1996]. Enhancement as well as extension to 
the migration mechanism may also impede the symmetric as well as the transitive character of 
the HLM migration mechanism (see page 158). 

                                                 
22  The handling of communication failures depends on the participating language environments and operating systems. 
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Levels of Heterogeneity 

The HLM migration mechanism addresses all levels of heterogeneity albeit through the use of 
different means. The heterogeneity of hardware, operating systems and to some extent 
languages is overcome using common source code representations as abstractions for both the 
transfer of behavior and state. Not all differences between language environments can be 
overcome because the HLM migration mechanism supports only a limited set of common 
concepts that are to be used for the objects to be migrated.  

The differences between the programming interfaces of the language environments are 
addressed to the extent that a common set of standard interfaces is used. Differences of the 
libraries and applications involved are handled through the negotiation algorithm that identifies 
those interface definitions that are not supported by the destination environment but are 
required by the object to be migrated. 

Approach to Heterogeneity 

The approaches used in the HLM migration mechanism to overcome heterogeneity are 
restricting, enabling, conversion and extension. The prerequisites of the migration mechanism is 
restricting the language environments that can participate in migration. The set of supported 
concepts, the standard interfaces, and the requirements for the design of applications are 
restricting the definitions of objects that can be migrated.  

The implementation of the HLM migration mechanism as well as of the standard interfaces is 
enabling language environments to participate in migration. The use of abstractions to transfer 
interface definitions and the state of objects requires conversion between the common 
representation and the native representations of the participation environments. The interface 
definitions transferred provide an extension to the destination environment that adds the 
functionality required by the objects to be migrated.  

Some of the restrictions of the HLM migration mechanism can be lifted if additional standard 
interfaces (see page 154) as well as concepts (see page 189) are supported through 
enhancements and extensions of the mechanism respectively. The use of different forms of 
abstractions like binary, virtual or intermediate representations will also require conversion (see 
page 179). Other approaches to overcome heterogeneity like adaptation are used in the context 
of extensions to the HLM migration mechanism (see page 174). 

4.2 Enhancements of the HLM Migration Mechanism 

The following subchapters describe enhancements of the HLM migration mechanisms that can 
be implemented in the context of the constraints implied by the objectives of the mechanism. 
These enhancements include optimizations of the performance of the migration mechanism, the 
integration of additional standard interfaces, the migration of non-standard interfaces and the 
support of distributed identity in the context of the HLM migration mechanism. 

4.2.1 Consecutive Migrations 

The prototypical implementation of the HLM migration mechanism treats every migration 
separately and starts all over again with each new migration request. As a consequence several 
consecutive migrations from one environment to the same destination environment are not 
handled very efficiently. The set of supported interface definitions is transferred anew each time 
and the determination of the interface set starts all over again, despite the fact that the 
information has already been gathered at least partially by the previous migration. 

The stateless nature of the HLM migration mechanism results from the objective that only 
minimal knowledge about the destination environment should be required prior to a migration. 
The migration does not rely on assumptions about the availability of interfaces within the 
destination environment. An undue slowdown of consecutive migrations does not have to be an 
inevitable result of this objective as simple but effective optimizations of the prototypical 
implementation can be implemented. 

A caching mechanism can speed up consecutive migrations significantly. The sets of supported 
interfaces of environments that have been the destination of recent migrations can be cached at 
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the source and reused in subsequent migrations. This cache can be called source cache and 
can be managed with a “least recently used” strategy that deletes the oldest entries first. 

When a new migration to the destination of a recent migration is initiated the source cache can 
provide the set of supported interfaces which does not need to be transferred anew. However, 
the destination environment may have gathered additional interfaces in the meantime through 
for example migrations from other sources or interfaces may have been added manually. 

The set of supported interfaces need to be verified despite the use of the source cache. This 
can be done in two ways. The source can send the names of the supported interfaces it has 
retrieved from its cache to the destination which matches them internally and sends the 
additional interfaces back to the source. 

Alternatively the destination environment can cache the set of supported interfaces it has sent 
to each source environment, in a so called destination cache, and can determine on its own the 
additional interfaces that have to be sent to each particular source environment that attempts a 
new migration. Figure 4.b shows the use of interface caches at both the source and destination 
for consecutive migrations. 

Environment A Environment B

object a1 object b1

object m1 object m1

Interface C

Source Cache

Environment B:

Interface A

Interface B

?

Interface A

Interface B

Interface A

Interface B Interface C

Destination Cache

Environment B:

Interface A

Interface B

 
Figure 4.b: Interface caches (shown here as rectangles) can be used at both 

source and destination in order to streamline consecutive migrations. 
In the above example the source environment A reuses object 
definitions (shown as blocks) known from a previous migration during 
the subsequent migration of object m1. The set of supported interface 
of environment B is retrieved from the source cache and only the 
changes to that set are requested. The destination environment B has 
stored in the destination cache what interfaces have been sent to 
which source environment. Upon request from environment A the 
destination retrieves the cached information and sends only those 
interfaces to the source that have not already been transferred but 
have been defined meanwhile, in this example interface C. 

In both cases a request of the source for potentially new interfaces of the destination is only 
necessary if the dependent interfaces are not extensible with the cached set of supported 
interfaces. If interfaces can also be deleted within the destination environment the request from 
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the source has to be sent in any case and the deletion of interfaces does also have to be 
reported to the source. 

As several migrations between the same environments may occur back and forth both 
environments effectively cache the set of common interfaces that are available at both source 
and destination. This set will then no longer be transferred during the migration process if no 
changes have been made. Both the communication overhead as well as the total time of the 
migration process can be reduced significantly. 

The basic caching mechanism optimizes only the management of the interface declaration of 
the supported interfaces between the participating environments and is not affected by other 
enhancements to the HLM migration mechanism. This optimization will also work with 
extensions to the migration mechanism that for example change the negotiation process as long 
as the destination environment is only required to provide the available interfaces (see also 
page 177). The optimization will probably not work with extensions to the migration mechanism 
that change the role of the destination environment. 

4.2.2 Additional Standard Interfaces 

The addition of new standard interfaces can be regarded as the "default way" to enhance the 
HLM migration mechanism. It may sound simple to add more standard interfaces but that task 
in itself can be quite complex. Additional standard interfaces have to be general enough to be 
working on all supported platforms and specific enough to add significant value. 

For example several well known data structures can be added as standard interfaces, like lists, 
stacks and various forms of trees. Standard interfaces have to be specified as GOAL interface 
declarations and can be implemented within all supported language environments in two ways: 
through wrapper code or as native implementations 

For some languages the implementation of a standard interface may be done through wrapper 
code around an existing object definition which matches the functionality of the existing object 
definition with the functionality defined by the standard interface. Other language environments 
will have to extend existing object definitions or implement the functionality from scratch. 

The HLM migration mechanism will treat additional standard interfaces not differently from other 
interfaces. Since standard interfaces are supposed to be available within every participating 
environment there is no need to transfer their interface definitions during the negotiation phase. 
If corresponding objects of the new standard interfaces are supposed to be transferred during 
object migration, an appropriate ORL representation has to be implemented. 

Objects of standard interfaces that obey the OM_Owner or OM_Migrateable interface will 
conform with the migration architecture and will be migrateable themselves using their own ORL 
representation. Designers of migrateable objects are free to use additional standard interfaces 
as long as they generate the ORL representation of their objects accordingly. 

With additional standard interfaces more functionality is available to the designer of migrateable 
objects. Due to the added functionality the need to invent new objects may be lowered and 
therefore probably less interfaces have to be transferred during migration. As a side effect the 
added functionality may also increase the usefulness of the application specific migrateable 
objects within the destination environments. 

Arrays 

One notable exclusion from the list of standard interfaces of the HLM migration mechanism are 
arrays of objects. While the basic definition of arrays can be easily implemented with a 
syntactical extension of the GOAL language, the cross-platform aspects are more complex as 
almost each existing language environment implements arrays in its own specialized way. 

Most object based language environments, especially hybrid ones, implement arrays via native 
language constructs for their creation and access. Arrays have to be declared at compile time, 
sometimes with a fixed size that is used to preallocate the necessary memory. Such an 
implementation of arrays can not be used in the context of migration as the corresponding data-
structures can not be recreated during runtime within the destination environment. 
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A standard interface for arrays will have to allow dynamic allocation of arrays at runtime using 
sizes specified through variables. Languages that support dynamic allocation through their built-
in constructs may implement such a standard interface for arrays through wrapper code that 
restricts or extends the existing functionality accordingly. The language specific syntax will have 
to be translated into the GOAL representation and vice versa for application specific 
migrateable objects that use a potential standard interface for arrays. 

For all other languages that do not support the dynamic allocation of arrays a native 
implementation of the standard interface for arrays will have to be implemented using dynamic 
allocation of other native data-structures. Unfortunately, performance tradeoffs are probably 
inevitable as dynamic allocation of, e.g. list structures can not be as efficient as native arrays. 

Conflict Management 

Like arrays, some interesting candidates for standard interfaces will require more than simple 
interface definitions and wrapper code because fundamental characteristics of the participating 
language environments are addressed. The requirement for cross platform compatibility may in 
some cases even prohibit the definition of standard interfaces for features that are common to 
some language environments but foreign to others. 

In order to support migration not only between as many environments as possible but also in 
the most functional way, the set of standard interfaces may be enlarged with several additional 
subsets that are only available within a limited number of languages. Such standard interfaces 
can be called partially supported standard interfaces. Likewise, the “normal” standard interfaces 
may be called universally supported standard interfaces or universal standard interfaces 
instead. Figure 4.c shows the partitioning effect of partially supported standard interfaces. 

extension X
universal 
standard
interfaces
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environments that support the universal standard interfaces

environments that support also extension X

Environment B
Environment A

Environment C

Environment D
m1 (using X)
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Figure 4.c: The addition of standard interfaces that are not supported by all 

environments will result in a partitioning of migrateability. In the above 
example the extension X to the set of universal standard interfaces 
(sets of standard interfaces are show here as circles) is only 
supported by the environment C and D (shown as rounded 
rectangles). A migration of objects that use the interfaces of extension 
X like object m2 (show as an ellipses) will only be possible between 
Environment D and E. Object that do not use extension X can be 
migrated freely between all environments shown. 
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Migration of objects that use partially supported standard interfaces will only be possible 
between environments with appropriate support. Attempts to migrate to destinations that offer 
no adequate support will fail during the implementation phase. The partially supported standard 
interfaces will be identified as dependent interfaces but no GOAL interface definitions can be 
sent to the destination as standard interfaces are implemented natively. 

Whether the benefits of partially supported standard interfaces, i.e. the added functionality that 
can be used for some migrations will outweigh the loss of general migrateability remains an 
open question. The answer to this question is less a research concern but rather a matter of 
discussion for standardization organizations that would have to define the universal standard 
interfaces as well as partially supported standard interfaces if a migration mechanism such as 
the HLM migration mechanism is ever to be used in real applications. 

4.2.3 Migration by Encapsulation 

The HLM migration mechanism limits the kind of objects that can be transferred to a destination 
environment to objects that inherit from the OM_Migrateable interface either directly or 
indirectly. The applicability of the HLM migration mechanism can be enlarged significantly if this 
requirement for objects to be transferred is lowered. 

Support for the migration of objects that do not inherit from the OM_Migrateable interface can 
be added to the HLM migration mechanism as an enhancement. Objects that are not 
migrateable themselves can be encapsulated by OM_Migrateable objects. An 
OM_Migrateable object can be designed to include the objects it encapsulates as part of its 
own representation. 

An object is a so called encapsulated object if the following conditions hold: 

1. the object is referenced only by a single OM_Migrateable object, called its anchor object,  

2. the object does not reference other objects themselves except: 

a. OM_Migrateable objects that are included in the migration set, 

b. other encapsulateable objects of the same anchor object, or 

c. singular objects, i.e. objects of standard interfaces that are represented as atomic values 

If these restrictions apply, the anchor object can provide the necessary functionality to check, 
represent, negotiate, rebuild, reinitialize and deactivate/activate or reactivate/abort the 
encapsulated objects it references. An anchor object will include the objects it encapsulates as 
part of its own ORL representation and will essentially handle the whole migration process for 
the encapsulated objects. 

An encapsulated object can only be referenced by a single anchor object as a migration would 
otherwise have to be coordinated among several anchor objects in the same way as between 
OM_Migrateable objects and OM_Owner objects. Encapsulated objects are supposed to lower 
the requirements of the HLM migration mechanism not the contrary. 

Encapsulated objects cannot be referenced from other objects because these may be left with 
dangling references after the encapsulated objects are migrated. The designer of the respective 
application is responsible to prevent such situations. Appropriate development tools can help to 
detect whether references to encapsulated objects that are created by anchor objects are 
passed to other objects (see also chapter 3 page 121). 

Encapsulated objects are free to reference other encapsulateable objects as long as these can 
be handled recursively by the same anchor object. Encapsulated objects can reference other 
OM_Migrateable objects of the migration set. These references can be represented by the 
anchor objects via the corresponding object migration identifiers and can also be reestablished 
within the destination environment. 

Encapsulated objects can also reference other objects that are not encapsulated as long as 
they do not pass references to the other objects. A condition  that can also be detected by 
appropriate development tools. As the anchor object does only handle the migration for 
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encapsulated objects the non-encapsulated objects referenced by encapsulated objects can not 
be migrated. Figure 4.d illustrates the requirements for encapsulated objects. 

Porter pOwner o

Migrateable m1

Migrateable m2

Object x1

Object z

Environment e

Object x2

set of Migrateable objects

Object y

. . .

Object x3

 
Figure 4.d: Encapsulated objects can be referenced only by a single 

OM_Migrateable object either directly or indirectly. In the above 
example the objects x1, x2 and x3 are encapsulated by anchor object 
m1. References from encapsulated objects to other 
OM_Migrateable object of the migration set (e.g. x1 to m2) or to 
other encapsulated objects of the same anchor object (e.g. x3 to x1) 
are permissible. References to other objects ( e.g. x1 to y) or from 
other objects (e.g. z to x1) are prohibited (references that are not 
permissible are shown here as dashed arrows). 

A good example of an encapsulated objects is a datastructure like a list that is used by an 
OM_Migrateable objects to manage other OM_Migrateable objects. The objects the list 
consist of do not have to be transferred as the list can also be reconstructed within the 
destination environment. The anchor object of the list has to include the object migration 
identifiers of the elements the list refers to as part of its ORL representation and has to 
reconstruct the list accordingly as part of the reinitialization step of the transfer of state phase.  

The encapsulated objects can only use standard interfaces and interfaces that are descendants 
of the migration architecture. Otherwise the migration of encapsulated objects will not succeed 
as the necessary interfaces are probably not supported by destination environments and can 
also not be added through extension. 

An actual migration of encapsulated objects will be processed in the usual way as the anchor 
object performs all steps of the migration algorithm on behalf of the encapsulated objects. The 
anchor objects are the only objects referencing the encapsulated objects and therefore the only 
objects able to send messages to them.  

The anchor objects therefore “knows” whether methods have been invoked for the 
encapsulated objects and is able to maintain an invocation counter for each encapsulated 
object it references. In order to maintain control over the encapsulated objects, the anchor 
object is not supposed to pass references to the encapsulated objects to other objects (see 
chapter 3 page 99). 

Whether the interfaces of the encapsulated objects have to be transferred as part of the 
interface set will be determined by the negotiation algorithm in the normal way. For the transfer 
of state the encapsulated objects will be represented by their anchor object as part of its ORL 
representation and not as separate entities with their own object migration identifiers. 

As a consequence the encapsulated objects will not be recreated by the OM_Porter object of 
the destination environment but as part of the  initialize_after_migration() method of 
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their anchor object. Similarly the encapsulated objects will not have to provide their own 
deactivate/release, activate or reactivate methods but the necessary work will have to be 
performed by the corresponding methods of their anchor object. 

The whole process can be called migration by encapsulation and typical candidates for this kind 
of migration are all kinds of supportive datastructures like lists, stacks and trees. These versatile 
objects are used in all kinds of applications but their use in application of the HLM migration 
mechanism would require special OM_Migrateable based implementations for each of them. 

Migration by encapsulation is able to widen the interface set of migrations and therefore the 
applicability of the HLM migration mechanism. The design of applications that use migration can 
be simplified as fewer objects that inherit from the OM_Migrateable interface need to be 
defined. Most importantly the interfaces of the encapsulated objects do not need to be changed 
but can be used as they are. 

4.2.4 Partial and Incremental Migration 

The HLM migration mechanism does not support distributed identity due to its focus on existing 
environments most of which do not support any kind of location independence. The prototypical 
implementation of the migration mechanism always performs a so called complete migration as 
no relationships remain between the objects of the source and the transferred objects. 

The addition of support for distributed identity to the migration mechanism can on the other 
hand open up new ways of performing object migrations. With distributed identity, related 
objects do not have to be migrated along with the object the migration has been initiated for. 
Relationships among objects can be extended in the context of distribution between the 
participating environments.  

A migration that that does not transfer objects completely can be called a partial migration as 
the relationships between the root object and its related objects at the source still exists after 
migration. Furthermore related objects can be transferred subsequently as the need arises by 
what can be called incremental migrations. 

The techniques that are used to implement location independence differ largely between 
distributed systems. With regard to object migration three forms of location independence can 
be distinguished: non-transparent remote references, transparent remote references as well as 
the use of proxy objects.  

Non-transparent Remote References 

If location independence is implemented through non-transparent remote references that are 
built into language environments a developer of a distributed application will have to 
differentiate between local references and remote references as well as between local 
invocations and remote invocations. As a consequence the distributed identity of objects will 
differ from the local identity and has to be expressed within the program code explicitly. 

Only few systems differentiate between local and remote references like Amber [CA+1989b]. 
The Common Object Model (COM) defined by the Microsoft Corporation also uses so-called 
Monikers to identify distributed resources. The COM environment is available for a number of 
object-based languages and implements transparent remote procedure calls for COM objects. 

In the context of non-transparent remote references objects of distributed applications have to 
be designed with conditional behavior that depends on local and remote operations. 
Heterogeneous object migration can only be performed if both source and destination 
environments support compatible non-transparent remote references. 

In order to perform migrations in the context of non-transparent remote references local 
references of objects of the source environment to the object to be migrated have to be 
substituted with remote references to the migrated object after migration. If the objects to be 
migrated reference objects of the destination remotely prior to migration the reverse operation 
has to be applied to these relationships during migration. 

References of the object to be migrated to objects of other environments are left unchanged 
during migration. References of objects of other environments to the migrated object have to be 



4.2  Enhancements of the HLM Migration Mechanism 159 

  159 

updated with the new location information. Remote method invocations have to be used 
between the migrated object and its related objects that remain at the source or elsewhere. 

Migrations between environments that use non-transparent remote references and 
environments that use other forms of location independence can not be supported without 
changes to the definitions of the objects to be migrated and changes to the participating 
environments. The transfer of computations of objects is not possible as local references from 
activation records can usually not be exchanged for non-transparent remote references if the 
referenced objects are migrated (see also page 179). 

Despite the fact that the HLM migration mechanism can probably be enhanced to perform 
object migrations in the context of non-transparent remote references for homogeneous 
environments support for this kind of location independence is not investigated further. Apart 
from an inevitable increase of complexity in the context of migration, non-transparent remote 
references are only seldom used as newer techniques have been developed. 

Transparent Remote References 

Transparent location independence is achieved when remote references are built into language 
environments that do not have to be distinguished from local references and remote method 
invocations can be programmed like local method invocations. Every reference to an object will 
be a remote reference and the code of applications does not have to differentiate whether 
methods of local or remote objects are invoked. In some cases even references of activation 
records can be transparent remote references as well. 

Only few systems as for example Emerald [Jul1993] implement transparent remote references 
in the form described above and notably Emerald is deliberately designed to implement 
transparent object migration. Interestingly enough Emerald transfers also the activation records 
of methods that have been invoked for objects (see also page 179). 

In the context of transparent remote references objects can be migrated freely among 
environments. If activation records are also implemented using transparent remote references 
computations of objects can be migrated freely as well. The remote references of related 
objects or activation records only have to be updated with the new location information of the 
migrated objects (see also chapter 2 page 42). 

Unfortunately, heterogeneous migrations will only be possible if both the source and destination 
environments implement transparent remote references in a compatible way. Interoperability 
with other forms of location independence will not be possible unless changes to the definitions 
of the migrated objects are applied as well as to the participating environments. 

The HLM migration mechanism can probably be enhanced to migrate arbitrary sets of objects in 
the context of transparent location independence. An object that references an object to be 
migrated will not notice when that object actually migrates to another environment. The 
migration of objects will be transparent. If references of activation records are also remote 
references even objects that are referenced as parameters in computations can be migrated. If 
a method has been invoked for an object that object can not be migrated unless the activation 
records can be migrated as well (see also page 179). 

Despite the obvious advantages of transparent remote references their support in the context of 
the HLM migration mechanism is not investigated any further. Transparent remote references 
are only used by very few systems and their support in a heterogeneous context of would 
require significant changes to the participating environments. 

Location Independence through Proxy Objects 

In the context of object-based environments, location independence can be implemented in the 
form of proxy objects that are established as local representations of remote objects. Proxy 
objects encapsulate remote references and implement remote method invocation through the 
forwarding of local messages (see also chapter 2 page 42). 

A proxy object participates in the local message passing but relays messages through a 
network protocol to its corresponding remote object, which is called here the sovereign object of 
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the proxy object. The sovereign object executes the appropriate method and sends the result 
back to the proxy that returns it to the message sender. Whether the message is executed 
locally or remotely is indistinguishable for the original sender of the message apart from a 
possible delay due to the communication overhead. 

Proxy objects are frequently used within distributed systems to achieve location independence 
of system objects as for example in SOS [SG+1998] or language objects as for example in 
Brouhaha [DNX1992] or DOWL [Ach1993b]. Agents system like Voyager [Gla1998] also employ 
proxy objects for the communication between agents. 

Proxy objects can be employed in the context of migration to maintain relationships between 
objects. A reference to an object that is migrated can be maintained through the creation of a 
proxy object in place of the migrated object23. Altogether six different cases have to be 
distinguished for the management of proxy objects during migration: 

1. When an object is migrated to another environment a proxy object will have to be created in 
its place in order to let related objects access the migrated object transparently. 

2. References of the object to be migrated to other objects of the source have to reestablished 
once the object is migrated through the creation of proxies within the destination 
environment. 

3. Proxy objects within the source environment that are used by the object to be migrated as 
references to objects of the destination environment have to be destroyed during migration 
and local references can be established within the destination environment once the object 
is migrated. If the proxies of the source environment are used by other objects of the source 
the proxies have to be maintained though. 

4. Proxies of the object to be migrated that exist within the destination environment have to be 
replaced by local references once the object is migrated. 

5. Proxy objects of the source that are used by the object to be migrated to reference objects 
of other environments have to be reestablished within the destination environment and 
destroyed at the source unless they are used by other objects of the source environment.  

6. Proxies objects of the object to be migrated within other environments need to be updated 
with the new location information after migration. 

Although confusing at first sight, the interplay of migration and proxy objects is actually quite 
simple. During migration all relationships to and from the migrated objects will be turned from 
local references to proxy-based references and vice versa within both the source and 
destination environments. Proxy-based references to and from other environments will be 
migrated as well or updated with the new location respectively. Figure 4.e illustrates migration in 
the context of proxy objects. 

Proxy objects forward local message to their sovereign objects. To do so proxy objects marshal 
a message passed to them including its parameters and send the serialized message over the 
network to their remote object. The sovereign object has to demarshal the message, invoke the 
corresponding method and send the result back in the same way. The proxy will again 
demarshal the result and pass it back to the local sender of the original message. 

In the context of object migration potentially every object has to be able to work with its own 
proxies that can be created in other environments. This condition is obviously prohibitive as it 
would require proxy implementations for all objects of an application or at least for all objects 
that can potentially be referenced by the objects that can be migrated.  

A second problem with the management of proxies in the context of migration is the 
replacement of the migrated object with its own proxy within the source environment. A 
seamless replacement can only be achieved if the particular environment provides a built-in 
operation to replace an object with its proxy while keeping all relevant references consistent. 

                                                 
23  There are several ways to implement proxy objects, but only the most common one that uses proxy objects for all references 

between environments will be discussed here. 
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If for example memory addresses are used as local references this operation would have to 
replace the object at the exact same memory location and all other implementational details like 
method-tables would also have to match perfectly. This condition is also obviously unrealistic as 
none of the existing language environments provides such an operation. 

Environment BEnvironment A

proxy b1 object b1

Migrateable m1 Migrateable m1

Owner oa 

Porter pa

Environment ea

Porter pa

Environment ea

Porter pb

Environment eb

proxy m1

object b2

proxy m1

proxy oa 

proxy x1 proxy x1

 
Figure 4.e: Partial migration can be implemented in the context of proxy objects. 

In the above example the Migrateable m1 is transferred to 
environment B and the proxy object m1 is created in its place to be 
referenced by Owner oa (case 1 as mentioned above). The reference 
of m1 to oa is maintained through the creation of proxy oa (case 2). 
Proxy b1 that was used by m1 to reference object b1 is replaced by a 
local reference in environment B and deleted in environment A unless 
its is still used (case 3). Proxy m1 that was used within environment B 
by object b2 to reference m1 is replaced by a direct reference from b2 
to the now migrated m1 (case 4). Proxy x1 that was used by m1 to 
reference an object of another environment is moved to environment 
B or copied if it is still used within environment A (case 5). The update 
of proxies of m1 in other environments is not shown (case 6) (Proxies 
that are created or that may be deleted during migration are shown 
here with double lines and dashed double lines respectively). 

As a consequence the object to be migrated and its related object will have to cooperate to 
perform the necessary handling of proxy objects. The object to be migrated has to be able to 
inform all objects that reference it about its replacement with a proxy object. This consideration 
is just a reiteration of the one that led to the development of the migration architecture of the 
HLM migration mechanism (see also chapter 3 page 75). 

The HLM migration mechanism can be enhanced to support distributed identity through proxy 
objects even in the context of heterogeneous systems. Proxy objects can be defined as an 
addition to the migration architecture and the migration algorithm can be augmented to support 
proxy objects during migration. 

Migration Architecture 

A proxy object must be able to forward all messages defined for the object they stand for. The 
object that is represented by a proxy object must be able to handle all forwarded messages in 
order to become what can be called a sovereign object to all its proxy objects. Proxy objects 
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can be defined through interfaces that inherit from the interface of the objects they stand for24. 
The interface of a proxy object will be called proxy interface. The interfaces of objects that are 
augmented to become sovereign objects can be called sovereign interfaces. 

To allow the use of proxy objects in the context of the HLM migration mechanism all 
OM_Migrateable objects as well as all OM_Owner objects need to become sovereign objects. 
For each sovereign interface a proxy interfaces need to be defined, which as a convention can 
be named with a _Proxy suffix to the name of the sovereign interface.  

Fortunately the generation of proxy interfaces does not interfere with single inheritance as 
additional descendants can be defined for sovereign objects. The descendant will have 
separate proxy objects though as they may redefine or add signatures. Figure 4.f shows the 
necessary enlargements of the migration architecture. 

OM_Porter_Proxy

MyMigrateable_Proxy

OM_Object

OM_Migrateable

MyMigrateable2

MyOwner

MyOwner2_Proxy

OM_Porter

MyMygrateable2_Proxy

MyMigrateable

OM_Owner

MyOwner_ProxyMyOwner2

 
Figure 4.f: The migration architecture in the context of proxy objects. Each 

interface that inherits from the OM_Owner or OM_Migrateable 
interfaces is augmented to become a sovereign interface and a proxy 
interface is generated as a descendant. 

Both the proxy interfaces as well as the sovereign interfaces have to contain the necessary 
code for the serialization of message parameters which has to be based on the standard 
interfaces of the HLM migration mechanism. The necessary serialization code can be generated 
statically at development time by appropriate development tools (see also chapter 3 page 121). 

Migration Algorithm 

Several phases of the migration algorithm of the HLM migration mechanism have to be 
augmented in order to support proxy objects. Significant changes have to be applied to the 
check phase, the transfer of state phase and the completion phase. The initiation phase can be 
simplified, and the negotiation and transfer of semantics phases do not need to be changed at 
all. Figure 4.g shows an example that is used to illustrate the support of proxy objects. 

                                                 
24  Other approaches to define proxy objects, e.g. as separate interface with the same signatures will not work in context of the 

HLM migration mechanism due to the negotiation phase that is necessary to overcome heterogeneity. 
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MyMigrateable2 m2

Environment ea

migration set

MyOwner2 oa2

Porter_Proxy pbp

BOwner_Proxy ob1p

BMigrateable_Proxy mb1p

MyMigrateable_Proxy m1p

BMigrateable mb1

XOwner_Proxy ox1p

Porter pb
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Environment A Environment B  
Figure 4.g: The above example is used to illustrate the changes that have to be 

applied to the migration algorithm of the HLM migration mechanism in 
order to support proxy objects. The MyMigrateable object m1 is 
supposed to be migrated to environment B to the BOwner ob1 that 
already references m1 via its proxy m1p. The BMigrateable mb1 of 
Environment B is referenced by m1 via proxy mb1p and m1 also 
references the proxy ox1p of an XOwner ox1 of another environment 
that is not shown here for reasons of space. The MyMigrateable 
m1 is also related to the MyOwner oa1 and the MyMigrateable2 
m2 which itself is related to MyOwner2 oa2. The only case that is not 
shown here is a proxy object of m1 or m2 that may exists within a 
different environment. 

In the context of location independence through proxy objects a migration request can contain a 
reference to a remote OM_Porter object that is represented within the source environment 
through a proxy object. The communication between the OM_Porter objects of the source and 
the destination can be implemented as a number of remote method invocations. Additionally an 
OM_Owner object of the destination can be defined as a target for the migration as well.  

Initiation 

If a proxy object is used to reference the OM_Porter object of the destination within the 
migration request the initiation phase of the migration algorithm can be simplified. The attempt 
to establish a network connection can be replaced by a simple remote method invocation for the 
OM_Porter object of the destination environment. 

Check 

The check phase does no longer have to perform a migration check that determines whether 
the dependent objects of the root object of the migration request can be migrated. Rather each 
related OM_Migrateable object of the root object can decide independently whether it is part 
of the migration or not. The relationships of the root objects to other objects will not have to be 
cut but will have to be replaced by proxy objects either at the source or at the destination. 

The migration check will still be a recursive descent that starts from the root object of the 
migration request. Every related object that inherits from the OM_Migrateable interface is 
asked whether it wants to be part of the migration. If so, the object is added to the migration set, 
its interface is added to the set of interfaces to process, i.e. the negotiation set and the recursive 
decent continues for its components.  

If the related object does not want to part of the migration, the proxy interface of the object is 
added to the negotiation set and the recursive descent backtracks. If the related object is 
represented by proxy object, the proxy interface is added to the negotiation set and the 
recursive descent backtracks. These steps are necessary as related objects that are not 
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migrated will have to be referenced via proxies from the destination and proxies that reference 
objects of other environments have to be recreated within the destination environment. 

Despite the use of proxy objects, computations of objects will still not be migrateable even with 
an enhanced HLM migration mechanism as references of activation records can not be 
redirected from objects to proxies and vice versa without changes to the existing language 
environments (see also page 179). The objects to be migrated therefore still need to be inactive. 

Fortunately activation records of remote environments will reference the objects to be migrated 
via proxy objects and will not be affected by migration. Only the location information of the 
corresponding proxy objects have to be updated after the migration. Therefore no additional 
inactive checks to the local ones already described are necessary (see chapter 3 page 99). 

The migration set that is constructed for the example of Figure 4.g may contain the objects m1 
and m2. As a consequence, the negotiation set will contain the interfaces MyMigrateable, 
MyMigrateable2, MyOwner_Proxy, MyOwner2_Proxy, BMigrateable_Proxy, and 
XOwner_Proxy. 

Negotiation 

The negotiation phase will be performed in exactly the same way as before. The supported 
interfaces of the destination environment will be requested and the set of interfaces received 
which will now also include the proxy interfaces available within the destination. The negotiation 
algorithm will determine the interface set which will now also include proxy interfaces for all 
proxies that have to be established anew within the destination environment. 

In the context of the example of figure 4.g the negotiation process will probably determine that 
the interface BMigrateable_Proxy is already supported by environment B. Under the 
assumption that none of the interfaces of the application of environment A is supported by 
environment B the interface set will at least contain the interfaces MyMigrateable, 
MyMigrateable2, MyOwner_Proxy, MyOwner2_Proxy, and XOwner_Proxy, as well as 
MyOwner and MyOwner2. 

Transfer of Semantics 

The transfer of semantics phase will also be performed in the same way as before. Interface 
definitions will be generated within the source environment for all interfaces of the interface set. 
These interface definitions will be sent to the destination environment and compiled there into 
native object implementations which will be loaded dynamically. 

Transfer of State 

The transfer of state phase of the HLM migration mechanism starts with the representation of 
the objects to be migrated, deactivates the objects of the migration set, transfers the 
representation, and rebuilds and reinitializes the objects within the destination environment. The 
order of events will be the same as before but the individual operations have to be modified in 
order to support proxy objects. 

- Representation 

The ORL language that is used for the representation and transfer of the objects of the 
migration set has to be changed in order to support proxy objects. The relationships between 
the objects to be migrated and their related objects have to be represented as proxy objects in 
addition to the usual representation of the state of the objects in the migration set. 

The ORL representation of proxy objects has to contain enough information that the relationship 
between proxy objects and their sovereign objects can be determined and that messages can 
be forwarded to the sovereign objects from their proxies. The ORL representation therefore has 
to include information about the location of objects or their environments respectively as well as 
information that enables the identification of particular objects within their environments. 

In the context of the HLM migration mechanism the simplest form of location and identification 
information can be used as more sophisticated techniques can be added in future versions of 
the mechanism. The location information to be added to the ORL representation can consists of 
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the TCP/IP address of the environment of the particular object as well as of an integer number 
called object identifier that identifies the particular object within its environment. As the textual 
representation of the TCP/IP address the textual dot “.” delimited four byte format can be used 
which has to be prefixed by a separator for example an ampersand “&” sign. 

The object identifier of an object can be defined by the OM_Porter object of an environment 
using a request that included a reference to the object. The OM_Porter generates a new object 
identifier and registers the object using the object identifier within directory of all objects of the 
corresponding environment that can be access via proxy objects. The OM_Porter will also 
maintain a so called proxy directory of all proxy objects of  its environment. 

When the objects of the migration set are migrated the related objects of the source 
environment have to be addressed via proxy object from the destination and vice versa. The 
proxy objects of related objects that reside within different environments have to be recreated 
within the destination environment as well. The ORL representation has to be changed to allow 
the management of proxies to be performed before the relationships of the migrated objects are 
reestablished within the destination environment. 

The ORL representation is constructed as before with two iterations through the migration set 
although the operations performed and the format of the ORL representation differ. The first 
iteration assigns an object migration identifier to each object within the migration set as well as 
to each related object. It will be sufficient that a proxy objects store the object migration identifier 
on behalf of its sovereign object in order to minimize the communication overhead. 

For each object of the migration set the object migration identifier, the interface of the object, the 
TCP/IP address of its environment as well as the object identifier are added to the ORL 
representation and an iteration of the related objects is performed. If an object does not have an 
object identifier it will have to register with the OM_Porter object of its environment as an 
object that can be addressed by proxy objects and will receive its object identifier in return. 

For each related object that is not a member of the migration set the object migration identifier, 
the corresponding proxy interface of the object, the TCP/IP address as well as the object 
identifier of the sovereign object are added to a separate ORL representation that can be called 
the proxy representation. 

For each related object that is represented by a proxy object within the source environment, the 
object migration identifier, the proxy interface, and the TCP/IP address and object identifier of 
the sovereign object are added to the proxy representation. Related objects that are members 
of the migration set will be processed as part of the iteration. 

After the first iteration has been performed the first part of the ORL representations has been 
constructed as a combination of the individual representations of the objects of the migration 
set. The proxy representation that has been gathered along the way is added as a new second 
part to the ORL representation; delimited by a pair of bar “|” signs.  

The proxy representation contains the information about the relationships of the objects of the 
migration set that have to be reestablished within the destination environment in the form of 
proxy objects. The proxy representation is not a one-to-one representation of the corresponding 
related objects within the source environment but rather a representation of how these objects 
are going to be references from the destination environment, i.e. via proxy objects. 

The second iteration through the migration set adds an individual representation of each objects 
state to the ORL representation. For each object of the migration set the object migration 
identifier, the textual representations of its components that are singular objects as well as the 
object migration identifiers of all related objects each preceded by a colon ”:” sign are added.  

The related objects do not need to be represented as they will be references via newly created 
proxy objects from the destination environment. Only the state of those objects that are actually 
migrated needs to be represented. Excerpt 4.a shows the ORL representation that is generated 
for the example of Figure 4.g. 



166 4  Augmentation of Heterogeneous Language Migration 

166 

1 MyMigrateable &127.0.0.1 5362 
5 MyMigrateable2 &127.0.0.1 5463 
| 
2 MyOwner_Proxy &127.0.0.1 3645 
3 BMigrateable_Proxy &127.0.0.10 5362 
4 XOwner_Proxy &127.0.0.99 8293 
6 MyOwner2_Proxy &127.0.0.10 3847 
| 
1 (:2 :3 :4 :5 ) 
5 (:1 :6 ) 

Excerpt 4.a:  The ORL representation for the example of figure 4.g. The TCP/IP 
addresses and object identifiers that are used to distinguish 
environments and objects are arbitrary. 

- Deactivation 

After the ORL representation has been constructed the deactivation of the related objects is 
performed with another iteration through the migration set. The OM_Porter sends a 
deactivate() message to the objects of the migration set. Each object sends its owners and 
components that are not members of the migration set and that are not proxy objects a 
deactivate_component() or deactivate_owner() message respectively. 

The related objects that reside within the source environment will be deactivated, i.e. these 
objects will be informed that their relationship to the particular member of the migration set is 
not longer active. Related objects that are members of the migration set will be processed in the 
same way as part of the iteration. 

There is no need to deactivate proxy objects as the corresponding remote owners or 
components communicate with the objects of the migration set through proxy objects within 
their remote environments. These location information of these remote proxies needs to be 
updated after the migration has been performed. 

With a successful deactivation of the relationships of the objects of the migration set, the source 
environment will reach “ready to commit” state. I.e. source environment is ready to either 
destructively complete the migration or roll back any changes made so far. Figure 4.h shows the 
state of the migration process after deactivation has been performed. 

After the successful deactivation the ORL representation will be transferred to the OM_Porter 
object of the destination environment. The OM_Porter object recreates the objects of the 
migration set as before with a rebuild and a reinitialization step. Both of these steps need to be 
modified to support proxy objects. 

- Rebuild 

The OM_Porter object of the destination environment parses the first part of the ORL 
representation, creates each represented object from the corresponding interface, and assigns 
it the individual object migration identifier. The newly created object is then added to the set of 
objects recreated for the current migration that is called the rebuild set. The first object of the 
ORL representation will also be regarded as the root object of the migration. 

The recreated objects will be also assigned their previous TCP/IP address and object identifier 
as well as separately a newly determined object identifier within the destination environment. 
The objects will be added to the directory maintained by the OM_Porter object under their new 
object identifier. 

The OM_Porter then continues for the second part of the ORL representation, creates each 
represented proxy object and assigns it the individual object migration identifier, if such a proxy 
does not already exists within the destination environment. The newly created proxy object is 
then added to the set of proxy objects recreated for the current migration that can be called the 
proxy set. Existing proxies that match the second part of the ORL representation will be added 
as well. 
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For each recreated proxy object whose TCP/IP address matches that of the destination 
environment the OM_Porter performs a lookup in its directory of object identifiers and retrieves 
the corresponding object of the destination environment. This match will only be possible for 
proxy objects of the source environments that act on behalf of objects of the destination 
environment. 

As the object of the rebuild set are supposed to reference these objects directly within the 
destination environment the OM_Porter object will replace the proxy stored in the proxy set 
with the object retrieved from the directory and will also reassign the particular object migration 
identifier accordingly. 

Porter pa
MyOwner oa1 2

MyMigrateable m1 1

MyMigrateable2 m2 5

Environment ea

migration set

MyOwner2 oa2 6

Porter_Proxy pbp

BOwner_Proxy ob1p

BMigrateable_Proxy mb1p 3

MyMigrateable_Proxy m1p

BMigrateable mb1

XOwner_Proxy ox1p 4

Porter pb

BOwner ob1

Environment A Environment B  
Figure 4.h: After the representation and deactivation steps of the transfer of state 

phase have been performed to the example of figure 4.g all 
references to objects of the migration set are inactive and object 
migration identifiers have been assigned to each related object or its 
proxy (references that are no longer active are shown here as dashed 
arrows and the object migration identifiers as bold numbers, object 
identifiers as well as the directory kept by the OM_Porter objects are 
not shown for reasons of space, objects that will be deleted by 
subsequent phases are shown with dashed lines, objects that can be 
deleted with double dashed lines) 

In the example shown in figure 4.h the proxy mb1p of interface BMigrateable_Proxy will be 
recreated within environment B but matched and replaced with the object mb1 of interface 
BMigrateable. A new proxy ox1p of interface XOwner_Proxy will be created within 
environment B as well as the proxies oa1p of interface MyOwner_Proxy and oa2p of interface 
MyOwner2_Proxy all of which are not affected by the replacement operation. 

- Reinitialization 

After all objects have been created a initialize_after_migration() message is sent to 
the root object of the rebuild set. The root object parses its ORL representation and 
reestablishes its references to the other objects of the rebuild set as well as of the proxy set with 
the help of the OM_Porter that returns a reference to the particular object or proxy object for 
each lookup of an object migration identifier. 

The root object will then send an initialize_after_migration() message or a similar 
message with additional information to its related objects that are members of the rebuild set. 
The related objects will process their part of the ORL representation in the same way as the root 
object and will send appropriate messages recursively. 

After the reinitialization phase the migrated objects will have established only direct 
relationships to objects within the destination environment. The destination environment will 
therefore have reached “ready to commit” state as the migrated objects can be fully activated or 
all changes so far can be rolled back. 



168 4  Augmentation of Heterogeneous Language Migration 

168 

Completion 

During the completion phase either a commit or an abort is performed. With a commit, the 
migrated objects within the destination environment are activated and the object of the migration 
set within the source environment are deleted. With an abort all newly created objects within the 
destination environment are deleted and the objects in the migration set within the source 
environment are reactivated. All these operations have to be augmented in order to support 
proxy objects. 

- Activation 

The activation step is performed by the OM_Porter of the destination environment in the case 
of a commit. An activate() message will be sent to the root object of the migration which 
performs additional initializations and sends an activate() message including a reference to 
itself to all its related objects that are not represented by proxy objects within the destination 
environment. 

Each related object that is not in the rebuild set will check whether it references a proxy object 
of the migrated object. In order to do so, the TCP/IP address and the object identifier stored by 
the proxy object and the previous TCP/IP address and object identifier stored by the migrated 
object are compared. If a match is detected the reference of the related object to the proxy will 
be replaced with a reference to the migrated object. With this operation a reference to a once 
remote object via a proxy is replaced with a local reference to the migrated object. 

Proxy objects that represent sovereign objects of other environments will perform any 
necessary initialization upon receipt of the activate() message. Each related object that is 
part of the rebuild set will also perform its own initialization and will send activate() 
messages recursively to its related objects including an appropriate reference. 

When the activation of the migrated objects has been performed within the destination 
environment the corresponding objects of the source environment need to be informed of the 
new location of the migrated objects. The OM_Porter object will therefore have to collect an 
new ORL Representation of all objects of the rebuild set that includes the object migration 
identifier, TCP/IP address and the new object identifier of each object as defined by the 
destination environment. This ORL representation will be called update information. 

The update information is sent back to the OM_Porter of the source environment as an 
acknowledgement that the activation was successful. The OM_Porter will parse the ORL 
representation and assign the new TCP/IP address and object identifier as a separate 
information to each object in the migration set. 

- Release 

The release step is performed by the OM_Porter of the source environment in the case of a 
commit. An release() message is sent to the root object of the migration set which creates a 
proxy object of itself. The root object sends its related objects that are not members of the 
migration set and not proxies themselves a replace_component_with_proxy() or 
replace_owner_with_proxy() message depending on the mutual relationship including a 
reference to itself as well as to its proxy.  

The related objects will replace their reference to the migrated object with the reference to the 
proxy. The root object will delete its references to proxy objects and send a release() 
message recursively to its related objects that are members of the migration set. With end of the 
release step the migration is performed successfully and the OM_Porter object can delete the 
migration set. Figure 4.i shows the example of figure 4.g after the migration has been performed 
successfully. 
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Figure 4.i: The migration has been performed successfully for the example of 

figure 4.g. The migrated objects have been replaced by proxy objects 
within the source environment and their related objects are 
referenced from the destination environment via proxies. Proxies of 
objects of other environment have been transferred and relationships 
with objects of the destination environment have been replaced by 
direct references within the destination environment. 

- Abort 

In the case of an abort of the migration during the completion phase all objects of the rebuild set 
and proxy set are deleted by the OM_Porter of the destination environment. The only 
exception are non-proxy objects of the proxy set, i.e. objects of the destination environment that 
have replaced proxies within the proxy set as well as proxies that existed previously. 

- Reactivate 

In the case of an abort of the migration during the completion phase, the OM_Porter of the 
source environment sends a reactivate() message to the root object of the migration 
request. The root object will forward the message to its related objects recursively, which will 
reestablish their relationships and will also forward the message recursively (see page 158). 

The HLM migration mechanism can not only be extended to support proxy objects it will also be 
able to perform partial migrations in the context of heterogeneous systems. Since proxy object 
can be added to existing languages they can be regarded as the default way to implement 
distributed identity in the context of the HLM migration mechanism. The interoperability with 
other forms of location independence can always be achieved through the implementation of 
proxy objects in addition to for example transparent remote references. 

Despite the possible use of proxy objects to support distributed identity the HLM migration 
mechanism will not be able to transfer computations of objects during migration as references of 
activation object to object to be migrated can not be replaced by references to proxy objects 
without changes to the participating environments (see also page 179).  

Implementation of Proxy Objects 

Although feasible the use of proxy objects within the HLM migration mechanism implies a 
number of subtle consequences for the implementation of both the HLM migration mechanism 
as well as the proxy objects. The problems that arise from the interdependence of the migration 
mechanism and the proxy objects can only be mentioned here briefly and some hints at 
possible solutions can be given. An exhaustive discussion of the more general questions behind 
these problems lies beyond the scope of this work. 
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The HLM migration mechanism is intended to work with only minimal assumptions about the 
destination environments. Although an implementation of the mechanism is required for the 
participating environment no assumptions about the availability of interfaces within destination 
environments are made. 

As a consequence the implementation of proxy objects in the context of the HLM migration 
mechanism have to be able to be added as extensions to particular destination environments, 
i.e. GOAL interface definition have to be available for each proxy object. This implication 
essentially prohibits the use of existing proxy implementations in the context of the HLM 
migration mechanism. 

Existing implementations of location independence as for example CORBA [Sie1996] generate 
proxy implementations at development time for specific server objects and assume the 
availability of these implementations in the context of distributed applications. The existing 
implementations of proxy objects use their own specific way to generate the necessary code for 
the marshalling and demarschalling of messages that are forwarded between the proxies and 
the objects they act on behalf of. 

The generation of GOAL interface definitions for proxy objects will not be possible without 
significant changes to the existing implementations of location independence. Rather then 
changing existing implementations of proxy objects the necessary infrastructure to support 
proxy objects can be added to the HLM migration mechanism as well. 

The HLM migration mechanism will have to provide its own implementation of proxy objects as 
well as a supporting infrastructure for finding objects in the case of communication failures and 
for managing proxies within environments. This infrastructure has to be implemented for each 
participating environment. Interoperability with other implementations of location independence 
can be achieved on the level of remote method invocations. 

Proxy Object Infrastructure 

The implementation of an infrastructure for proxy objects in the context of the HLM migration 
mechanism has to be as simple as possible in order in be portable across all participating 
environments. In order to simplify the implementation the proxy infrastructure can be 
implemented as part of the OM_Porter interface. 

The OM_Porter object of each participating environment can be used to locate sovereign 
objects, establish communication between proxy objects and sovereign objects, and will provide 
the necessary management for sovereign and proxy objects with in the particular environment. 
The OM_Porter object can be used to manage the location information of objects as well. 

The OM_Porter will maintain a directory of all sovereign objects that exist within an 
environment, which can be called sovereign directory. Each sovereign object is required to 
register with the OM_Porter upon creation and will be assigned an object identifier that is also 
used to identify the sovereign object within the directory.  

In order to maintain no more then one proxy per foreign sovereign object per environment the 
OM_Porter will also maintain a directory of proxy objects that exist within a particular 
environment which can be called proxy directory. For each proxy object the TCP/IP address and 
the object identifier of their sovereign object will be used to identify proxy objects within the 
directory. 

The implementation proxy objects and sovereign objects can be generated for descendants of 
the OM_Owner and OM_Migrateable interfaces. In order to be able to forward messages to 
sovereign objects a proxy object needs to implement all signatures of their sovereign object and 
perform the necessary marshalling of messages including their parameters. 

Based on an existing interface definition each signature can be redefined for the proxy object 
with the generated serialization code as a so called proxy signature. Each proxy signature will 
send a send_remote_method_invocation() message to the OM_Porter of the particular 
environment, which establishes and manages the network communication to the remote 
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OM_Porter of the sovereign object. Excerpt 4.b shows an interface definition and the 
corresponding proxy interface that can be generated. 

interface My_Migrateable : OM_Migrateable { 
OM_Boolean my_method(...){ 
 OM_Booolean ok; 
 ... 
 return(ok); 
}; 
}; 

interface My_Migrateable_Proxy : My_Migrateable { 
OM_Boolean my_method (...){ 
 OM_Boolean ok; 
 // marshal parameters 
 porter.send_remote_method_invocation(...); 
 // demarshal result 
 return(ok); 
}; 
}; 

Excerpt 4.b:  The proxy interface that can be generated automatically. In the 
above example the proxy signature my_method() is only shown 
schematically as the code to marshal the message and demarschal 
the result would be too long. 

The OM_Porter establishes a network communication with the OM_Porter of the sovereign 
object based on the TCP/IP address that is stored by the proxy object. The object identifier of 
the sovereign object and the serialized message is send to the remote OM_Porter which 
performs a lookup of the object identifier in its sovereign directory and invokes the 
handle_remote_method_invocation() signature of the sovereign object. 

Each sovereign object must be able to react to messages that are forwarded to it by its proxy 
objects. In order to do so an existing interface can be augmented automatically with a 
handle_remote_method_invocation() signature that contains the automatically 
generated code for the demarshalling of forwarded messages as well as the marshalling code 
for the return of the results. Excerpt 4.c shows the interface definition of excerpt 4.b and the 
signature that can be generated automatically to make it a sovereign signature 

interface My_Migrateable : OM_Migrateable { 
OM_Boolean my_method(...){ 
 OM_Booolean ok; 
 ... 
 return(ok); 
}; 
OM_Boolean handle_remote_method_invocation(...){ 
 // demarshal message 
 if (selektor = "my_method") { 
  // demarshal parameters 
  ok = this.my_method(...) 
  // marshall return 
  // return serialized result to porter 
 }; 
 ... 
}; 
}; 

Excerpt 4.c: The interface of excerpt 4.b can be augmented to become a 
sovereign interface through a signature that can be generated 
automatically. In the above example the signature 
handle_remote_method_invocation() is only shown 
schematically as the code to demarshal the message and marshal 
the result would be too long. 
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The handle_remote_method_invocation() signature will invoke the method that 
corresponds to the message of the original sender, i.e. the method my_method() in the 
example of excerpt 4.c. The return of this method invocation will be marshaled and the 
serialized result will be returned to the OM_Porter as the result of the invocation of the 
handle_remote_method_invocation() signature. 

The OM_Porter will send the serialized result via the network connection back to the 
OM_Porter of the environment of the proxy object. That OM_Porter returns the still serialized 
result to the proxy objects. The proxy object demarshals the result and returns it to the sender 
of the original message.  

Marshalling and Demarshalling 

The marshalling and demarshalling code will generate and parse serialized representations of 
singular objects that are passed as parameters in messages to proxy objects or that are 
returned as results from methods invoked by sovereign objects. References that are passed as 
parameters or that are returned as results are managed in cooperation of the proxy and the 
sovereign object. 

If a reference to a local sovereign or a local proxy object is passed in the message to a proxy 
object the marshalling code will determine the TCP/IP address and the object identifier of the 
corresponding sovereign object as well as the name of the corresponding proxy interface and 
will include all three in the serialized message.  

The demarshalling code of the sovereign object the serialized message is forwarded to will 
determine if the TCP/IP address matches the one of its own environment. If so the OM_Porter 
is asked for a reference to the local object with the given object identifier, which the OM_Porter 
will retrieve from its sovereign directory.  

If the TCP/IP address does not match the OM_Porter is asked for a reference to a proxy object 
for the given sovereign object. The OM_Porter will look into the proxy directory to determine 
whether a proxy already exists and will return a reference to the local proxy object if it does. If 
not the OM_Porter will create a proxy object from the proxy interface specified in the serialized 
message, add the new proxy object to the proxy directory and return a reference to it. The 
analogous operation is performed if necessary for the return of the result of the remote method 
invocation. 

If the proxy interface specified within the serialized message is not available within the 
environment of the sovereign object the OM_Porter can ask the OM_Porter of the 
environment of the proxy object that send the remote method invocation to execute the 
negotiation algorithm of the HLM migration mechanism in order to determine the set of 
interfaces that need to be transferred in order to implement the missing proxy interface. 

The need to transfer the interface definition for a proxy object may arise when an object of a 
newly created descendant interface is passed as a parameter in a message that is defined for 
the ancestor interface. Although legal in term of strong typing as the corresponding signature of 
the sovereign object can be compiled the implementation of the corresponding proxy may not 
be available within the environment of the sovereign object. 

In addition to the basic operations described above the implementation of proxy objects in the 
context of the HLM migration mechanism has to be able to cope with several problems that may 
arise for the participating objects and environments. The problems include the inability to locate 
objects as well as the inability to contact the OM_Porter object of a participating environment. 

Locating Sovereign Objects 

During the execution of a remote method invocation the network connection that is used 
between the environment of the proxy object and the environment of the sovereign object may 
be lost due to communication failures. Such an event can be handled by the OM_Porter 
objects of both environments in a way that is transparent to both the proxy as well as the 
sovereign objects except for possible delays. 



4.2  Enhancements of the HLM Migration Mechanism 173 

  173 

The OM_Porter that tries to communicate a serialized message or a serialized result 
respectively will retry to establish the communication once the network connection has been 
lost. The receiving OM_Porter can also verify a check-sum of the transferred data to determine 
whether the data has been corrupted while in transit. If so a retransmission can be requested. 

More problematic are cases where the location information about a sovereign object stored by a 
proxy object, i.e. its TCP/IP address and object identifier is outdated. An OM_Porter that tries 
to establish a communication with a sovereign object via the corresponding OM_Porter object 
may receive an error-message that no object could be found for the given object identifier. 

This is usually the case when the respective object has been migrated to another environment 
during the time since last forwarded message from the outdated proxy object. In order to 
prevent such a situation the OM_Porter object of the sovereign object can store the new 
TCP/IP address and object identifier of the migrated object that it receives as the update 
information during the release step of the completion phase of a migration. 

The OM_Porter can maintain the entry with the new location information within the sovereign 
directory in order to provide a so called forward pointer to the sovereign object. The OM_Porter 
of the environment of the proxy object can then follow the forward pointer to find the sovereign 
object within another environment. 

As an alternative a sovereign object can be required to know the locations of all its proxy 
objects in order to perform an immediate update as soon as the sovereign object is migrated. 
This operation will imply a high overhead with each migration operation while a some proxy may 
not be used during the time of several migrations of their sovereign objects. As the HLM 
migration mechanism is supposed to create as few dependencies between environments as 
possible, the former alternative is chosen. 

Although feasible the use of forward pointer is not a complete solution to the problem, as the 
chain of forward pointers may break if just one directory entry is lost due to a malfunction of an 
environment. Forward pointers are also no help if one of the OM_Porter objects that maintain 
the chain of forward pointers is not available at the time a remote method invocation is 
attempted. 

Directory Service 

A more helpful solution would be the registration of sovereign objects with a federated directory 
service that maintains the location information on several hosts. This will not only lower the 
probability of total failure but will also enable a direct retrieval of update information about object 
that have migrated, provided the migration is registered with the directory service. 

Host failures will no longer impede the operation of proxy objects as the an OM_Porter can 
access a different directory server if the default one fails and retrieve the necessary information 
from there. Furthermore, objects can be given symbolic names and a discovery of objects 
based on hierarchical namespaces can be performed as an alternative to direct location 
information with TCP/IP addresses and object identifiers. 

Additionally the lifecycle of sovereign objects can also be managed with a federated name 
service. If a sovereign object is not only registered when it is created but also deregistered 
when it is deleted a “left-over” proxy object will be informed immediately that its sovereign object 
no longer exists. 

Without the directory service and the lifecycle management a proxy object will learn that its 
sovereign objects has been deleted only after all forward pointers have been followed and the 
sovereign directory of the last OM_Porter of the forward chain does not contain an object for 
the given object identifier. 

As an alternative proxy objects could be implemented to stay connected with their sovereign 
objects all the time. Despite the fact that a much higher consumptions of resources would result 
the resulting dependencies between environments would be prohibitive for some uses like 
migration to and from mobile devices. As the HLM migration mechanism is supposed to create 
as few dependencies between environments as possible, the former alternative is chosen. 
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Unfortunately the use of a federated name service will imply a significant higher effort for the 
implementation of proxy objects in the context of the HLM migration mechanism. The name 
service does not have to be a part of an implementation of the HLM migration mechanism but 
each participating environment will need to have access to at least one name server. 

4.3 Extensions to the Migration Mechanism 

Extensions to the HLM migration mechanism provide new features and capabilities for 
heterogeneous migration that question the objectives of the HLM migration mechanism. While 
extensions enlarge the applicability of the migration mechanism significantly they also place a 
high burden on the implementer of augmented versions of the HLM migration mechanism. 

A great variety of extensions to the HLM migration mechanism can be envisioned but only the 
most promising examples in terms of their scope of applicability and ease of implementation are 
described here. Most of these extensions apply changes to object definitions and one requires 
changes to the participating environments.  

The first subchapter describes an advanced migration techniques called adaptation that applies 
changes to object definitions during migration. This technique is used to implement several 
extensions of the HLM migration mechanism that are described in consecutive subchapters. 
The second subchapter outlines the use of adaptation to implement additional forms of 
negotiation. 

The third subchapter describes fundamental changes to the migration algorithm of the HLM 
migration mechanism that are made possible through adaptation. The fourth subchapter finally 
explains how computations of objects can be transferred in the context of the HLM migration 
mechanism, through an extension that requires changes to the participating language 
environments. 

4.3.1 Adaptive Migration 

Several problems of heterogeneous migration that are not addressed by the HLM migration 
mechanism can not be solved without changes to the definitions of the objects to be migrated. If 
for example functionality that an object depends upon can not be added to the destination 
environment through an extension, migration will not be possible in the context of the HLM 
migration mechanism. If however the definition of the object to be migrated can be changed to 
use functionality that is available within the destination environment migration can be 
performed. 

Changes to the definitions of objects will only be possible in simple well known cases as a 
general match between different object definitions can not be determined due to the problem of 
computability. In order to be able to work with differences of object definitions among 
environments new migration techniques need to be developed. 

The HLM migration mechanism has to be able to determine certain properties of interface 
definitions which can be done by a technique that can be called code analysis. A comparison of 
interfaces based on these properties may reveal that an interface to be transferred to a 
destination environment needs to be changed. 

The HLM migration mechanism must be able to apply changes to interface definitions through a 
technique that can be called code adaptation. Both of these techniques are described briefly in 
the following sections and several uses of these techniques are outlined in the subsequent 
subchapters 

Code Analysis 

The HLM migration mechanism uses only interface declarations to determine the dependent 
interfaces of the objects to be migrated. The method-code of the corresponding object 
definitions is not taken into consideration. An analysis of the method code can reveal new ways 
to perform a migration in situations where the dependent interfaces are not supported. 

Objects almost never use the full functionality of other objects they reference as components. 
Therefore an analysis of the message passing expressions employed to access components 
can determine the subset of signatures of a dependent interface that is actually used. This 
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subset of the interface of an dependent object can be statically determined at compile time 
using techniques similar to liveliness analysis [AcS1997] and type inference [PaS1994]. 

While a general analysis of the semantics of an object is not possible due to the halting problem 
some simple questions about the actual usage of an object can nevertheless be answered. 
Whether for example a method of an object is used or not can be answered by searching for the 
corresponding message expressions within the application code. 

The subset of the interface that is actually used can be called the effective interface with regard 
to its use as a component of an object. The effective interface can be used for example for new 
kinds of negotiations that determines whether the effective interfaces of dependent objects are 
supported by the destination environment. In order to be able to migrate an object under such 
circumstances definition of the dependent interface need to be changed accordingly. 

Code Adaptation 

An objective of the HLM migration mechanism states that the definition of objects involved in a 
migration are not changed by the migration mechanism. Changes to the corresponding interface 
definition of an object that is transferred during migration can nevertheless be used to overcome 
some limitations of the mechanism in special cases. Migration techniques that change interface 
definitions will be collectively called code adaptation. 

Individual changes to interfaces definitions, also called adaptations reach from a simple 
exchange of interface names though the consistent renaming of signatures and message 
passing expressions to complex code changes like the generation of new signatures or whole 
new interfaces (see also the following subchapter).  

Extensions to the HLM migration mechanism that use code adaptation will collectively be called 
adaptive migration. The advantage of adaptive migration is derived from the new ways to 
perform migrations in cases where the HLM migration mechanism falls short. For example the 
HLM migration mechanism will abort a migration when the interfaces necessary to migrate an 
object are neither supported nor extensible (see chapter 3 page 103). With adaptive migration 
other interfaces may be substituted through an appropriate change to the interface definitions 
that are transferred during migration. 

Unfortunately, adaptive migration decreases the probability that the object semantics 
transferred during migration can be compiled within the destination environment. An adaptation 
may also cause the migrated objects to loose functionality or performance or both and the 
migration process may no longer be symmetric or transitive. The designer of the objects to be 
migrated has to decide whether such tradeoffs are worthwhile and what adaptations are 
acceptable under what circumstances. Being able to migrate objects at all will in most cases be 
the main reason to use adaptive migration. 

While the idea of generating code during adaptive migration may appear unusual, examples of 
such techniques exist in other areas. Dynamic code generation at runtime is performed in the 
operating system Synthesis [Sch1996, PMI1988] for optimization purposes. Another example is 
the Exokernel [EKO1994] which extends the notion of dynamic code towards the underlying 
hardware-interfaces. Whole applications are generated for C++ in ERDoS [Cha1999] and for 
Java in Harness [MD+1998]. None of the approaches uses the technique for migration purposes 
though. 

4.3.2 Variations of Negotiation 

One of the characteristics of the HLM migration mechanism is that it compares interfaces only 
on the basis of their names which are supposed to be globally unique and unequivocal. With the 
ability to change the interface of an object to be migrated through adaptive migration other kinds 
of equivalence relations can be used. 

In the general case the uniqueness of interface names can only be guaranteed when the 
designers of applications that use the HLM migration mechanism have access to a federated 
repository of interface definitions that is constantly maintained [WAA1998]. Since this is not 
likely to be the general case more sophisticated equivalence test will be necessary and naming 
conflicts that may arise need to be resolved. 
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A generic test for interface equivalence that is able to detect equal semantics of arbitrary named 
interfaces is not possible due to the halting problem. However, the structure of interfaces can be 
used for an partial test that is not just based on the name of the interface alone. All parts of an 
interface, its name, the name of the interface it inherits from, the names of interfaces of its 
components, the names of its signatures as well as the interface names of their parameters and 
their results can be part of such a test, that can be called structural interface equivalence. 

In cases where the names of two interfaces or other elements of their structure do not match a 
measurement for their similarity can be provided on the basis of structural interface equivalence 
and can be used to find the best match for a specific interface within a whole set of different 
interfaces. Likewise, two equally named interfaces can be distinguished if their interface 
definitions do not match structurally. 

Structural interface equivalence is by no means an ideal tool because interfaces with identical 
structures may still implement different semantics25. The ability to detect that interfaces do not 
match may nevertheless be high enough for practical purposes especially if names of standard 
interfaces are involved. The structural interface equivalence can be used to both detect naming 
conflicts as well as similarities among interfaces as exemplified in the following sections. 

Interface Renaming 

Using structural interface equivalence the negotiation algorithm of the HLM migration 
mechanism will be able to detect if an interface supported by a destination environment bears 
the same name but has a different structure than an interface that is used by an object to be 
migrated. The resulting name conflict can be resolved through a consistent renaming of all 
occurrences of the ambiguous interface name in question within all interfaces of the interface 
set to an arbitrary interface name prior to the negotiation process. 

This technique can be called interface renaming and it enables the transfer of the interface in 
question as well as its use within the destination environment provided that the renamed 
interface is migrateable, i.e. all interfaces it depends upon are either supported or extensible. 
The renaming of interfaces represents the simplest form of adaptive migration. Consistent class 
renaming is for example performed in OZ [NN+1998] in the context of homogeneous migration. 

In order to support consecutive or reverse migrations the renamings applied need to be stored 
by both environments in order to simplify further migrations. Structural interface equivalence will 
be able to detect a renaming due to a naming conflict, i.e. two interfaces match in their structure 
but not in their name. Whether a reverse renaming of interface names can be performed 
automatically in such a situation depends on the individual case. 

Interface Mapping 

If a dependent interface is not supported and it is also not extensible in the context of the 
destination environment the HLM migration mechanism will abort. Using structural equivalence 
and adaptive migration another interface may be used to replace the missing one in order to 
continue the migration. All migration techniques that map one interface to another will 
collectively be called interface mapping26. 

The following two interface mapping techniques can be used as extensions to the HLM 
migration mechanism when the normal negotiation algorithm is not successful. These 
techniques aim to determine a surrogate interface if a dependent interface is not available. 
Additional mappings can be defined as the two examples of this techniques described here do 
not provide a complete list of possible variations of interface mapping. 

Interface Reduction 

Probably the simplest example of an interface mapping technique is the comparison of an 
interface against its ancestor. Based on structural interface equivalence and the effective 
interface of an object a match of an interface against its ancestor may reveal that only 

                                                 
25  Also, two interfaces with the same name but different structure may still implement the same semantics. 
26  Interface mapping uses interface renaming to replace an interface name with a specific other one. 
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signatures inherited from the ancestor interface are actually used. The ancestor interface can 
then be used in place of the interface in question. 

This test may be extended to a comparison of the transitive closure of the inheritance relation of 
the interface in question. What interfaces further up in the inheritance tree are still acceptable 
depends upon whether signatures that have been redefined or added are used by the effective 
interface. As a general rule only the most specific interfaces of the inheritance chain with regard 
to the effective interface can be used. 

If a matching interface is found it can be inserted into all relevant interface definitions of a 
negotiation set in place of the unsupported one using adaptive migration. Because this 
technique effectively reduces the need for a specific interface to the use of its ancestor interface 
this interface mapping technique can be called interface reduction. 

An example of interface reduction may be a migration of an object that uses a double linked list 
which extends the interface of a single linked list. A code analysis of the use of the list may 
reveal that the effective interface includes only signatures defined by the interface of the single 
linked list which may therefore be used instead. 

Interface Substitution 

In the general case an unsupported interface may be substituted with a different one if the 
effective interface of the unsupported one is structural equivalent to the different one. This 
condition ensures that at least every signature used can be matched with a method that can be 
invoked. The new interface can be substituted in place of the old using consistent renaming. 
This interface mapping technique can be called interface substitution. 

The probability that an object will still work as intended when it is recreated within the 
destination environment with a structural equivalent but differently implemented interface 
depends upon the individual case. As this question is undecidable in general due to the halting 
problem, heuristics have to be developed that can be used by the designers of applications of 
migration to decide at runtime whether a migration using interface substitution should be 
attempted or not. 

In addition to the measurement of the similarity of interfaces that can be developed, 
preconditions for the substitution of interfaces can be defined by the developer of an object for 
the dependent interfaces used. E.g. certain interfaces can not be substituted, other can only be 
reduced etc. The possible combinations of interface mapping techniques to define new forms of 
negotiation are virtually limitless; yet these techniques have to be tried intensively in practical 
scenarios to assess their applicability. 

Similar techniques to the ones described above have been proposed for homogeneous 
migration. For example OZ++ [TH+1995] combines different versions of classes of a multiple 
inheritance lattice during migration. A dynamic load technique has been developed by Acharya 
and Saltz [AcS1996] that allows the integration of functionality of the destination environment 
into a migrated object. Last not least, type conformity among abstract types is defined in 
Emerald [RT+1991] but not used during migration, as a homogeneous environment is assumed. 

4.3.3 Informed Migration 

The determination of the migration set within the HLM migration mechanism is performed 
without knowledge about the destination environment. The root object of a migration request as 
well as its related objects can determine which objects they depend upon only on the basis of 
their state and their relationships. This form of migration can be characterized as uninformed 
migration. 

If the set of interfaces supported by the destination environment is available during the 
determination of the migration set the objects involved can use that information for their decision 
about which objects they depend upon. The use of knowledge about the destination 
environment within the migration process can be characterized as informed migration. 

Despite the fact that knowledge about the destination environment can be gathered early in the 
migration process, informed migration can only be implemented in the context of adaptive 
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migration. An informed decision of an OM_Migrateable object not to depend on a component 
whose interface is not supported makes only sense if the interface definition of that object can 
be changed accordingly. 

The HLM migration mechanism can be extended with a second negotiation phase that uses 
informed migration and adaptation. The normal negotiation algorithm of the HLM migration 
mechanism may not be able to identify supported interfaces or extensible interfaces for all 
dependent interfaces of a given migration set.  

A second negotiation phase using informed decisions of the OM_Migrateable objects about 
their dependent objects can be used to reduce the migration set in such a way that the set of 
dependent interfaces is included in the union of the set of supported interfaces and the set of 
extensible ones. The interfaces of the objects of the migration set will then have to be changed 
accordingly using adaptive migration. 

For example a designer of a migrateable object may use an interface that implements a 
balanced tree for its implementation. Using informed migration he can also implement a fallback 
to the interface of a sorted list that is used if the interface of the optimized tree is not available 
within a destination environment. 

The combination of informed and adaptive migration can even be used to merge the 
determination of the migration set and the determination of the interface set into a single phase. 
Using the knowledge about the destination environment the objects to be migrated can find out 
themselves which of their dependent interfaces are supported or extensible and can indicate the 
appropriate adaptations to their object definitions. Such a significant change to the migration 
algorithm of the HLM migration mechanism can lead to new forms of migration. 

Fragmented Migration 

With the above combination of informed migration and adaptive migration a migrateable object 
can be designed to split itself if only a part of its behavior is supported within the destination 
environment. If an object can not be migrated because some of its dependent interfaces are not 
supported the designer can enable the object to manipulate its interface definition and 
representation in such a way that the unsupported parts of the object are left at the source and 
only a so called fragment of the object whose interfaces are supported is migrated. 

A new interface definition for the supported part will have to be generated using adaptive 
migration and only the corresponding part of the state of the object needs to be represented. 
The remaining part of the object will have to be designed with conditional behavior as only a 
subset of its state will be accessible locally after migration. Alternatively both the remaining and 
the migrated fragment of an object that is split in this way may use appropriately generated 
proxy objects to communicate and exchange state changes in order to maintain a shared state. 
The transfer of only a fragment of an object can be called fragmented migration. 

The migration of only a fragment of the original object touches a design related question. It 
marks the opportunity to split an object into a migrateable and non-migrateable part. Being able 
to decide this question not statically at design time but at the time of migration based on the 
availability of interfaces and the actual state of the object and being able to combine this 
decision with the possibility to share state among the fragments leads to a novel mix of object 
migration and object replication. 

In the context of fragmented migration the behavior of an object will have to be designed with 
defined joints. The fragments will either share the identity of the object they have been created 
from and will have to be managed like replicas or a new identity will have to be created for 
either the remaining or the migrated fragment. As a consequence the fragments will 
communicate like replicas using a synchronization protocol or work completely independent 
once the supported fragment has been migrated. 

During the course of several migrations the need of the reverse operation to fragmentation may 
also appear. When fragments of an object that have been created through previous fragmented 
migration happen to be migrated to the same system again a reverse merge of the fragments to 
a single object may be performed. If an object can be split along various joints and several 
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consecutive fragmented migrations and mergers are performed arbitrary combinations of object 
fragments may result at least theoretically. 

The use of fragments has been implemented for homogeneous migration in SOS [SG+1989] 
where fragments of objects are defined statically as special kinds of proxies. Fragments are 
also implemented in HADAS [HoB1997] and HERON [FJ+1992] as well as in combination with 
replication in AscpetIX [GS+1998]. The agent system Open Services Model [LG+1997] also 
defines split and sync operations for the implementation of mobile agents. 

4.3.4 Heterogeneous Migration of Computations 

The HLM migration mechanism does not support the transfer of computations of objects among 
existing heterogeneous language environments. This problem has been excluded from the 
design of the mechanism because it can not be addressed without changes to the participating 
environments prior to migration. 

The migration of computations of an object involves the transfer of the activation records of the 
object to be migrated in addition to its identity, functionality, and state. An activation record is 
created for each invocation of a method of an object and is stored on a so called stack of 
activation records or stack frames. 

A stack of activation records together with a stack pointer and program counter are called a 
thread. A thread represents the execution of the semantics by the processing hardware. The 
flow of control among objects manifests itself as a stack of activation records and the context of 
the execution at any point in time is defined by the stack pointer and the program counter that 
refer to the current invocation as well as to the current instruction to be executed respectively. 

The migration of computations of objects requires the transfer of all sequences of activation 
records that have been invoked for the objects to be migrated to the destination environment. 
The transfer of these so called stack segments is necessary in order to be able to continue the 
execution after migration has been performed.  

When the flow of control returns to an activation record the code of the methods that have been 
invoked and the state of the objects the method have been invoked for have to be available 
within the same execution environment. As the objects, i.e. their state and their behavior in the 
form of methods are migrated the corresponding activation records have to be transferred to. 

As a consequence, the thread or more precisely the stack of activation records becomes 
distributed and the flow of control needs to be passed back and forth between the environments 
in order to continue the computation. New invocations of methods may occur within both 
environments, but the flow of control will have to move between environments depending where 
the object whose methods are invoked reside. Figure 4.j: illustrates the transfer of activation 
records and the distributed flow of control that results. 

The HLM migration mechanism initiates migration synchronously, i.e. via method invocation and 
is supposed to work for single threaded environments. As a consequence the execution of the 
migration algorithm will happen at the top of the stack while the activation records of the objects 
to be migrated have to be extracted from lower portions of the same stack (see also chapter 3 
page 99). 

In contrast multi-threaded environments enable the execution of several more or less 
independent threads in parallel and complete threads including all activation records can be 
migrated among homogeneous environments through an operation called thread migration. As 
a consequence of thread migration the objects the activation records depend upon have to be 
transferred as well during thread migration or have to be migrated to the place of execution as 
necessary during the continued execution of the thread (see also page 203). 

In the context of the HLM migration mechanism only the relevant segments of a single thread 
are transferred and in all cases additional activation records of previous or subsequent 
invocations will remain at the source. As a consequence proxy objects have to be used for the 
references of activation records that refer to objects of the other environment.  
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Additionally the stacks of activation records at both source and destination environments have 
to be modified in such a way as if remote method invocations between the object of the source 
and the objects migrated to the destination had occurred in the first place. These modifications 
of the stack of activations records can not be performed without the cooperation of the 
participating environments. 

The transfer of computations of objects can be regarded as the reverse operation to remote 
method invocation as not an new activation record is created within a remote environment in 
order to move the flow of control to a remote object but an existing object and its activation 
records are moved to a remote environment and flow of control will follow when it comes around 
to return to theses activation records. 
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Figure 4.j: The migration of computations of an object requires the transfer of the 

activation records that have been created for invocations of the 
methods of the object. The flow of control will have to move between 
the source and the destination environment in order to continue the 
computations. In the above example the activation records for the 
methods mx(), my() and mz() of object m1 are transferred with the 
state and the methods of object m1 to environment B. The flow of 
control (shown here as a dotted line) will have to return after the 
migration has been performed to the transferred activation records 
and additional invocations may occur throughout the course of the 
continued computation (the various references are not shown here in 
order to avoid confusion). 

In order to implement the transfer of computations in the context of the HLM migration 
mechanism an additional “transfer of computations” phase has to be performed by the migration 
algorithm after the transfer of state phase. Additionally the completion phase of the migration 
algorithm has to be modified. 

At that stage in the migration process the semantics of the object to be migrated as well as the 
state of objects including the proxy objects of their related objects of the source environment will 
have been established within the destination environment. Excerpt 4.d shows a code fragment 
that is used throughout the rest of the chapter to illustrate the necessary operation of the 
transfer of computations phase. 
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interface K : OM_Owner { 
... 
OM_Boolean mk(M pm,...) { 
OM_Boolean ok; 
ok = pm.mm(n1,...);  //1 
return(ok);}; 
}; 

interface M : OM_Migrateable { 
... 
OM_Boolean mm(N pn,...){ 
OM_Boolean ok; 
ok = pn.mn(o1,...);  //2 
return(ok);};  
}; 

interface N : OM_Owner { 
... 
OM_Boolean mn(O po,...) { 
OM_Boolean ok; 
ok = po.mo(p1);    //3 
return (ok); }; 
}; 

interface O : OM_Object { 
... 
OM_Boolean mo(P pp, ...){ 
OM_Boolean ok; 
ok = pp.mp(...);   //4 
return (ok); }; 
}; 

interface P : OM_Object { 
OM_Boolean mp(...){ 
... 
return (true); }; 
}; 

Excerpt 4.b: Five invocations of methods of five different interfaces are used as 
the example to illustrate the transfer of computations in the context of 
the HLM migration mechanism. The chain of invocations starts with 
the method mk() of the interface K that takes a parameter pm of 
interface M and send it the message mm() with the actual parameter 
p1 (see //1). The other invocations follow the same scheme (see 
//2 through //4 methods are named with a prefix m while 
parameters are named a the prefix p, the declarations of the related 
objects that are passed as actual parameters as well as additional 
lines of code are not shown for reasons of space). 

The transfer of computations phase performs the following steps: the relevant stack segments 
are identified and transferred, the references of all activation records are substituted, stack 
frames for the remote method invocations are inserted and finally the return addresses are 
redirected. These steps can not be performed without the availability of the necessary 
functionality within the participating environments. 

A. Identification and Transfer 

The first step of the transfer of computations phase is the identification of the relevant stack 
segments as well as their transfer. One or several consecutive invocations of methods of 
objects of the migration set form a relevant stack segment. Each stack segment that is 
transferred also has to include the activation record of the next invocation as this will be needed 
later for the insertion of the corresponding remote method invocation.  

The identification of the relevant stack segments can not be performed without the availability of 
the necessary information within the source environment. Implementations of object-based 
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languages usually include a reference to the receiver of a message within the activation record 
or the corresponding method invocation. However no information about the layout of activation 
records is included on the stack or in the executable code. 

In order to enable the identification of the relevant activation records a language environment 
does not only have to provide means of access to activation records but also the information 
about their layout. Since a traversal of the whole stack would still be necessary a language 
environment can also chain activation records of each object during execution. 

The relevant activation records can then be collected easily through a traversal of the 
references that point from one activation record of an object to the next one which may appear 
many invocations later on the stack. Unfortunately such a chaining of activations records can 
have significant performance implication [JL+1988]. Figure 4.k shows the situation of the 
example of excerpt 4.b prior to migration. 
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Environment B
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Figure 4.k: The situation of excerpt 4.b before object m1 will be migrated. A 

fragment of the execution stack is shown as well as four objects that 
are used as parameters and receivers of messages respectively. The 
stack segment (shown here as a bold rectangle) that needs to be 
transferred for object m1 consists of the invocation of method mm() as 
well as of the subsequent invocation of method mn(). (References of 
activation records to objects are shown as arrows, curved dotted 
arrows are used to link return addresses with the methods they point 
to, only the most relevant references are shown to avoid confusion 
and additional parameters have been omitted) 

The relevant stack segments have to be transferred to the destination environment in an 
appropriate format that contains the following information: the contents of activation record that 
include the actual parameters, a reference to the object the method was invoked for as well as 
the return address, the name of the method invoked, and the name of the interface of the object 
the method was invoked for. 

The actual parameters of the activation record including the reference to the object the method 
was invoked for have to be represented in a similar way as within serialized messages of 
remote method invocations in order to allow the substitution of references (see page 158). The 
return address contained within the activation records has to be transferred in a special format 
in order to allow its redirection. The name of the method that have been invoked and the name 
of the interface of the object the method was invoked for can be represented textually. 
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While all activation records of each relevant stack segment are transferred to the destination, 
the first and the last activation record, in the order of invocation, of each stack segment are 
maintained within the source environment. These activation records will be reused for the 
remote method invocations that will be added in the insertion step. 

B. Substitution 

As a second step, both the source and the destination need to substitute the references of 
activation records that either remain at the source but refer to migrated objects or that are 
transferred to the destination but refer to objects that remain at the source. The invalid 
references have to be replaced with references to corresponding proxy objects that have to be 
created if they not already exist within the respective environments. 

Within the source environment references of remaining activation records to migrated objects 
have to be substituted with references to the corresponding proxy objects. At this point in time 
the state of these objects has just been migrated and the proxy objects will have to be created 
anew, effectively obviating their creation during the completion phase. 

Within the destination environment references from activation records that have been 
transferred to objects that remains at the source have to be substituted with references to 
corresponding proxy objects. If the objects referred to are also related to the migrated objects 
their proxies haven been created during the transfer of state phase; if not they have to be 
created now. Figure 4.l shows the example of figure 4.k after substitution of references has 
been performed. 
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Figure 4.k: The situation of the example of excerpt 4.b after the substitution of 

references has been performed. Object m1 has been migrated to 
environment B including the relevant stack segments. The proxy 
object m1p has been created in environment A and the reference of 
the parameter pm of the invocation of method mk() has been 
substituted. Within environment B the proxy objects o1p and n1p 
have been created and the references of the transferred activation 
records have been substituted accordingly (newly created object as 
well as substituted references are shown here as bold lines and 
arrows respectively, only the most relevant references are shown to 
avoid confusion and additional parameters as well as links of return 
addresses have been omitted). 
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Migrated activation records may also contain singular objects that are passed as parameters. 
These singular objects have to be converted accordingly if a binary format is used and the 
internal representations of source and destination environments differ. The ORL representation 
can be used as a common ground for the transfer as well. 

In the context of the HLM migration mechanism access to local state of object is only possible 
through the invocation of methods. Therefore no references to internals of objects can exist 
within activation records. Unfortunately optimization techniques applied by modern language 
compilers may invalidate that assertion and have to be handled specifically. 

The substitution of references of existing activation records within the source environment and 
the creation of new activation records within the destination environment can not be performed 
without the availability of the necessary functionality to create and manipulate activation records 
within the participating language environments. 

C. Insertion  

As a third step, the now distributed stack segments will be arranged as if remote method 
invocations among the environments had been performed in the first place. In order to do so 
existing activation records will be remapped to methods of proxy and sovereign objects as 
appropriate and additional activation records will be inserted for the management of remote 
method invocations as necessary. 

In the original sequence of events local method invocations of objects of the source 
environment have been performed and have led to the migration that is being performed. As 
part of the migration activation records that are awaiting the return of the flow of control are 
transferred as part of the migration of their objects. 

The migration process has to create the “missing” activation records that are necessary to let 
the now distributed stack segments appear to be the result of remote method invocations. 
Existing activation records have to be changed and new stack frames have to be created to 
achieve this metamorphosis. 

The original invocations of methods of migrated objects are mapped to invocations of the 
equivalent methods of the corresponding proxy objects. After each invocation of methods of 
proxy objects of the migrated objects an additional activation record is inserted for the 
necessary invocation of the send_remote_method_invocation() method of the 
OM_Porter object. 

At the destination environment additional invocations of the handle_rmi() method of the 
OM_Porter and of the send_remote_method_invocation() method of the migrated 
objects are inserted for each transferred stack segment. The original invocations of methods of 
object of the source environment by migrated objects are transferred as part of the stack 
segments and are mapped to invocations of the equivalent method of proxy objects of the 
destination. After each invocation of methods of proxy objects of objects of the source an 
additional activation record is inserted at the destination for the necessary invocation of the 
send_remote_method_invocation() method of the OM_Porter object. 

The original invocations of methods of object of the source by the migrated objects are 
maintained but activation records for the invocations of the handle_rmi() method of the 
OM_Porter and of the send_remote_method_invocation() method of the object of the 
source are inserted in each case. 

The newly created activation records are created with the appropriate parameters that are 
known to the respective OM_Porter objects. The references to the receivers as well as the 
TCP/IP addresses and object identifier of sovereign and proxy objects can be determined by the 
OM_Porter objects easily. Figure 4.l shows the example of excerpt 4.b after the insertion of 
activation records has been performed. 

The insertion of additional activation records is not possible without availability of necessary 
functionality within the participating language environments. New activation records have to be 
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created within the existing stack of activation records of the source environment or outside of 
the stack within the destination environment, to be inserted later. 
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Figure 4.l: The situation of the example of excerpt 4.b after the substitution of 

references has been performed. For each proxy object a pair of 
invocations of the send_rmi() and a handle_rmi() methods of 
the corresponding OM_Porter has to be inserted into the distributed 
stack fragments (newly created activation records are shown here 
with bold lines, for reasons of space the method names have been 
abbreviated and not all activation records that have to be created are 
shown, only the most relevant references are shown to avoid 
confusion and additional parameters as well as links of return 
addresses have been omitted). 

The implementation of proxy objects in the context of the HLM migration mechanism 
encapsulates the marshalling and demarshalling of messages and results within proxy and 
sovereign objects and encapsulates the network connection management within the 
OM_Porter interface. This separation enables the recreation of remote method invocations that 
have not happened in the first place. 

D. Redirection 

As a fourth step the return addresses of the activation records have to be redirected as the 
corresponding methods have been migrated or the activation records have to be remapped to 
proxy objects. The determination of the correct return addresses is not possible without the 
preparation of the necessary information by the participating language environments. 

As proxy objects have been substituted for the migrated objects as well as for the objects of the 
source that need to be referenced from the destination environment the return addresses of the 
respective activation records will have to be redirected to the instruction after the forwarding of 
the corresponding message returns. All possible return addresses for this case can be 
determined statically during the generation of the method code for the proxy interfaces. 

Invocations of methods of objects that are used as sovereign objects after migration by their 
newly created proxies have to be redirected to the corresponding invocations by their 
handle_remote_method_invocation() methods instead of returning locally. All possible 
return addresses for this case can be determined statically during the generation of the method 
code for the sovereign interfaces. 
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Additionally, the return addresses of activation records that are transferred to the destination for 
migrated objects are no longer valid. For each of these activation records the return address 
within the source environment has to be matched to a symbolic value and the corresponding 
method invocation has to be identified for the newly generated method code within the 
destination environment. Figure 4.m shows the example of excerpt 4.b after the redirection of 
return addresses. 
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Figure 4.m: The example of excerpt 4.b after the redirection of return addresses 

has been performed. The return of the flow of control “to” proxy 
objects as well as “to” sovereign objects has to be determined anew 
including the handling of network communications through the 
OM_Porter (not shown here; redirected return addresses are shown 
here as bold dotted arrows, only the most relevant references are 
shown to avoid confusion and additional parameters have been 
omitted). 

Redirection of return addresses are only possible if both source and destination environments 
provide enough symbolic information as an augmentation of the executable method code that a 
match of the execution state on a message by message basis can be performed by the 
OM_Porter that processes the migration. 

Completion 

If the transfer of computations phase has been successful the migration algorithm of the HLM 
migration mechanism can perform the completion phase in the same way as before. If an 
commit is performed some proxy objects are already available within the source environment as 
they have been created by the substitution step of the transfer of computations phase. 

After the migration has been completed successfully, the newly created stack segment within 
the destination environment have to be moved to the top of the stack and the flow of control is 
redirected to that part of the send_rmi() method of the OM_Porter that waits for a the 
communication of the result. 

This manipulation of the stack and redirection of the flow of control is necessary to ensure the 
migrated computations are executed correctly within single-threaded environments. The 
transferred stack segment will be executed in place of the handle_migration() activation 
record that performed the destination part of the migration. The flow of control of the destination 
will return to the invocations prior to the migration after the migrated computations of the object 
have been completed. 
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The manipulation of the stack and of the program counter can not be performed without the 
availability of the necessary functionality within the destination environment. These operation 
are especially delicate as they have to be performed without the creation of new activation 
records on the stack. 

For the execution of the artificial remote method invocations between the source and 
destination environments the OM_Porter objects have to be able to reestablish 
communications for the return of the serialized results as if network connection hand been 
disrupted in the meantime. 

The support of the transfer of computations in the context of the HLM migration mechanism 
requires the enabling of the participating languages environments with the necessary services 
prior to migration. The enabling approach to overcome heterogeneity can be used in addition to 
the restricting, conversion and extension approaches used by the HLM migration mechanism 
(see also chapter 2 page 60). 

The functionality the environments have to be enabled with comprises the identification, access 
and manipulation of activation records, the shift of whole portions of a stack, the creation of new 
activation records, the replacement of the topmost stack frame as well as the redirection of the 
program counter. 

Furthermore, the compiler of the participating environments has to provide enough information 
to perform all these operations as well as to determine the location of return addresses within 
the generated method code based on message expressions that are specified by the 
corresponding interface definitions. 

The implementation of this enabling functionality requires significant if not fundamental changes 
to the participating language environments. Fortunately the enabling functionality can be 
implemented independently of the particular programming languages, i.e. the language 
definitions do not have to changed. 

Problems with Heterogeneous Computations 

In addition to the significant implementation effort that is required in order to provide the 
necessary enabling functionality, the support for the transfer of computations in the context of 
the HLM migration mechanism will also lead to a number of unforeseen problems that have to 
be addressed. 

Code Optimization 

The necessary identification and extraction of activation records can become prohibitively 
complex if sophisticated code optimization techniques are used. The use of register allocation, 
or code movement can have detrimental effects on the implementation transfer of computations 
as not all information about invocations may be saved in the corresponding activation records. 

Information that is kept in registers of the central processing unit may be saved in different 
activation records if for example the register allocation for that invocation runs out of registers. 
The information that should be kept within a single activation record may be scattered among 
various records or may not be stored in activation records at all.  

The movement of code across method invocations that is not unusual with wide-spread 
superscalar processor architectures may undermine the assertion that a message passing 
expression within the source code can be mapped to an invocation of a new stack frame within 
the native machine code. 

Although some techniques have been proposed to address the increasing semantic gap 
between high level languages and highly optimized machine code no practical solution for this 
problem is available. The use of sophisticated code-optimization techniques will likely prohibit 
the implementation of the transfer of computations in some cases. 

Multi-threading 

Unfortunately, the proxy-based implementation of support for the transfer of computations does 
not make much sense without support for multi-threading. The prototypical implementation of 
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the HLM migration mechanism implements a rendezvous of the OM_Porter objects of two 
environments that perform the migration and continued with their single-threaded operations 
afterwards. TCP/IP sockets are used to perform the rendezvous. 

The support of proxy objects in the context of the HLM migration mechanism introduces a 
dependence between the environments as remote method invocations have to be alternated 
with migration requests. The confinement to a single thread deteriorates the performance of the 
remote method invocations as only single request can be handled at a time. 

The support of transfer of computations in the context of the HLM migration mechanism 
requires that computations of the destination are suspended until the migrated computations 
have been finished. This creates an almost unbearable situation that becomes a deadlock, if a 
remote method invocation to the destination has occurred between the last migrated 
computation and the migration request. 

A much better solution in the context of multi-threaded environments uses a separate thread to 
wait for incoming network connections and creates a new tread to handle each remote method 
invocation. Unfortunately only few existing language environments support multi-threading 
natively and even worse as the HLM migration mechanism is supposed to be working 
symmetrically all environments will have to support multithreading. 

Heterogeneous migration of computations within multi-threaded environments becomes more 
complicate as an object may take part in several independent computations. The activation 
records of several threads will have to be transferred accordingly. The control of the access to 
the state of the object through the usual synchronization primitives, like semaphores or 
monitors, will have to be performed in a distributed fashion and the prevention of deadlocks will 
become very complex. 

Other Techniques 

Several different techniques exist for the migration of computations of objects or whole threads 
among homogeneous environments. These techniques have not been chosen as extensions of 
the HLM migration mechanism due to their limited support for heterogeneity as well as various 
specific problems. 

Distributed computations have been implemented successfully by Emerald [JH+1988] for 
homogeneous environments using transparent remote references. OS Emerald [StJ1995] 
extends this support to heterogeneous hardware using the conversion approach. The 
implementation benefits from the fact that activation records are managed within Emerald in the 
same way as migrateable objects. The benefits of this technique are described by Jul et al. 
[JL+1988] as follows : 

“Moving invocation frames along with the objects in which they execute ensures that 
execution can continue as long as possible and removes the computational burden 
from nodes that do not need to be involved in communications” 

A similar technique is used for homogeneous thread migration in the agent system Sumatra 
[ARS1996] that extend the Java virtual machine to be able to save the computational state. The 
transfer of computational state is implemented at the source code level in the programming 
language Beta [BrM1993] that features activation records as first class objects, i.e. patterns. 

A number of source based approaches to the migration of computational state have been 
proposed on the basis of source code transformations. In the WASP project [Fue1998] the Java 
exception mechanism is used to initiate migration and to unwind the stack of activation records 
through state saving operations within an exception handler for each method. The 
computational state is recreated at the destination using generated conditions within the method 
code.  

Code transformations are also used in Arachne [DiR1998] to enable heterogeneous thread 
migration in the context of a number of additional source code restrictions. The programming 
language Borg [BeH2000] enables the reification of computational state through the use of 
explicit push statements. 
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All source code based approaches share a number of disadvantages. The necessary 
transformation of source code through preprocessors prohibits the use of source code 
debugging tools as the code written by the developer is changed significantly prior to 
compilation. The additional operations necessary may also slow down the execution of the 
generated native code to some extend. 

As a less problematic alternative a similar instrumentation of Java byte code has also been 
proposed [CT+2000]. This technique is able to capture activation records directly through the 
augmentation of the compiled code of methods. Although independent of source code changes 
this approach also impedes the use of debugging tools. 

4.4 Additional Language Concepts 

The HLM migration mechanism is able to migrate objects between existing language 
environments through the restriction of the design of the objects to a common set of concepts, 
namely encapsulation of state and behavior, single inheritance and synchronous message 
passing. Environments that offer additional concepts can still participate in migration if the 
objects to be migrated are designed and implemented using only these supported concepts. 

Support for additional language concepts can be added to the HLM migration mechanism 
through various extensions but the necessary design changes will differ depending on the 
particular concept to be added. The implementation effort will also vary with the participating 
environments. As concept may be added easily to some environments but very hard to others. 

A concept is often difficult and in some cases impossible to address by migration if an object 
that uses the concept has to be migrated to an environment that does not natively support the 
concept. Because some concepts are even contradictory equivalent support by all environments 
as well as support of any combination of concepts will not be possible in all cases. 

The effort that is necessary to support a particular concept may reach from the implementation 
of an additional standard interfaces or minor enhancements of the HLM migration mechanism to 
adaptive changes of the objects being migrated during migration as well as to enabling changes 
of the participating environments prior to migration. 

The grade of migrateability of objects can be determined in terms of the effort necessary to 
support a particular combination of concepts used by an objects in the context of particular 
source and destination environments. As the support for a concept for a particular combination 
of environments may require relative high efforts in one and comparatively low efforts in the 
other direction migration can also be characterized as one way in this regard. 

The following subchapters discuss what techniques can be used to support some prominent 
language concepts in the context of HLM migration mechanism. Each subchapter discusses a 
group of related concepts but the list of concepts is not complete as not all existing concepts 
and environments can be covered. Only the concepts with the greatest practical relevance have 
been chosen. An overview of principle migrateability between existing language environments 
concludes this chapter. 

As the conditions of migration my vary significantly depending on the concepts supported by the 
participating environments, each concept is discussed separately. The effort to support a 
particular concept may also differ significantly whether the concept is available at the source or 
at the destination or at both sides but in different form.  

In order to distinguish each particular case a separate headline that denotes the characteristics 
of the source and destination environment is used in the following subchapters wherever 
appropriate. Within these headline, the direction of migration is indicated through the source 
environment on the left and the destination environment on the right and an greater-or-equal => 
sign indicates that migration can be performed on the basis of the HLM migration mechanism.  

Parentheses around the greater-or-equal (=>) sign indicate that migration can not be performed 
in all cases using the HLM migration mechanism as it has to be enhanced. Parentheses around 
a greater (>) sign indicate that significant extensions to the HLM migration mechanism will be 
required or to the participating environments. 
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4.4.1 Type Systems 

The majority of programming languages uses the notion of types to classify data and 
operations. A type defines the format that is used to represent data of that type and it defines 
the operations that can be applied to the data. A language is said to be typed if type annotations 
are used in declarations of variables and operations. Object based programming languages 
encapsulate state and behavior in objects that are typed in most environments. 

A number of so called built-in or base types are usually predefined by programming 
environments and more complex user-defined types can be built from more primitive ones using 
type-constructors. Types can be related because the same or similar operations can be applied 
to values of related types. For example an addition operation can be performed both for integer 
and floating-point numbers or any combination, a feature also know as polymorphism. 

The most prominent relation between types, the subtype relation can be paraphrased as 
follows: type B is a subtype of type A if all operations of type A can also be applied to data of 
type B. The inverse relation of the subtype relation is the supertype relation. These relations are 
used in many forms within object-based language environments. 

Type systems of programming languages differ and can be characterized through a number of 
criteria like strictness, homogeneity or flexibility. The techniques that can be used to overcome 
differences between type systems in the context of heterogeneous language migration vary and 
are discussed in the following sections.  

strong / weak - static / dynamic - typed / untyped 

Languages whose type system requires that the type of every variable, operation and 
expression can be verified with type conformance rules is called strongly typed. If the necessary 
checks can all be performed at compile time the language is said to be statically typed. 
Otherwise a language is said to be weakly typed or dynamically typed respectively.  

Types are usually specified through keywords, so called type annotations, in the program text of  
languages. Type information that can be derived from other information is said to be typed 
implicitly. A language that uses type annotations is said to be typed, an untyped language does 
not use types annotations at all. 

Strong static typing is usually favored because it allows to find common programming errors at 
compile time which then can be fixed early in the life cycle of applications. Dynamically typed 
languages check and catch some type errors at runtime. Untyped languages do not catch type 
errors at compile time but do usually employ special mechanisms for errors that arise during 
execution, like the “Message Not Understood” mechanism of Smalltalk [GoR1983]. 

The HLM migration mechanism requires type information from both the source and destination 
environments in order to identify the functionality that has to be transferred during migration. 
This determination is performed on the basis of interfaces, i.e. abstractions of language specific 
types that are represented in the GOAL language. The prototypical implementation of the 
mechanism therefore requires that both participating environments use explicit strong typing. 

untyped (>) typed 

If the necessary type information is not available from environments supposed to participate in 
migration it can be gathered through the implementation of type inference [PaS1994] for these 
particular environments using the enabling approach. Within source environments type 
information of objects to be migrated can be derived during the design of the respective 
applications through the use of appropriate development tools (see chapter 3 page 121). 

typed (>) untyped 

The type information of destination environments can also be computed prior to a migration 
request and object definitions that are added to an environment at runtime need to be 
processed upon their availability as well. The type information captured in interfaces transferred 
by the HLM migration mechanism to an untyped environment should be preserved to aid in 
future migrations. The transferred interface definitions are can be stored in files as GOAL 
source code for example. 
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The inference of types is usually a complex and time-consuming effort that is likely to be 
prohibitively long if attempted at the time of migration. Even if type inference can be applied 
prior to migration, the implementation of the type inference algorithm will imply an very high 
development effort. Migration between typed and untyped environments can therefore be 
characterized as prohibitively complex in both directions. 

Differences between strong and weakly typed languages as well as between statically and 
dynamically typed languages will be of minor importance, as long as type annotations are 
available for all variables and signatures. In the context of the HLM migration mechanism only 
objects that are designed for migration, i.e. OM_Migrateable objects that use the defined 
standard interfaces can be migrated.  

Whether type checking within the destination environment is performed statically or dynamically 
has to be considered during the generation and compilation of the native implementation during 
the transfer of semantics phase but has no direct implications for general migrateability of 
objects among the particular environments. 

hybrid / pure 

Object oriented languages can be either developed independently from scratch or implemented 
on top of existing programming languages. In the latter case language environments are called 
hybrid like C++ [Str1998] and CLOS [Ste1990], because they employ base types defined by the 
non object based host language. Object based languages that have been implemented 
independently are called pure like Smalltalk [GoR1983] or Self [Sun1992] as they usually 
employ only objects and do not have to distinguish between objects and base types27. 

The HML migration mechanism honors this distinction by defining standard interfaces for 
singular objects that may or may not be implemented through built-in types. Due to reasons of 
performance standard interfaces will be matched with predefined types in most environments 
during the generation of native code by the HLM migration mechanism. 

hybrid (=>) pure 

A migration of interfaces form a hybrid environment to a pure environment can be performed on 
the basis of the HLM migration mechanism unless the definitions of the base types, the 
standard interfaces are mapped to, have been changed within the destination environment. The 
compilation of the transferred functionality may fail or the behavior of the transferred objects 
may simply not be correct. 

pure (=>) hybrid 

If changes to base types have been applied in the context of the source environment a modified 
behavior of objects may result that can not be conveyed to the destination using the HLM 
migration mechanism. The standard interfaces of the HLM migration mechanism are considered 
to be static as they are implemented manually within the participating environments. 

A alternative to static definitions of standard interfaces would be the requirements that standard 
interfaces have to be implemented via wrapper types around predefined types within all 
participating environments. The wrapper types can then be extended manually. Whether the 
necessary effort and the limited performance are worthwhile has to be examined by a 
standardization efforts of the HLM migration mechanism for its use in the real world. 

parameterized types 

Some languages define higher order types, so called parameterized types that allow the use of 
type variables within type declarations. Any defined type can be substituted for a type variable 
when the parameterized type is actually used. Parameterized types are only used by some 
strong typed languages like C++ [Str1991] or Eiffel [Mey1992] in order to avoid 
reimplementations of similar data-structures for each type they are used with. For example a list 
of type A may implement a list of integers as well as a list of strings.  

                                                 
27  Such a distinction may exist on the implementation side for optimization purposes but not conceptually. 
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parameterless (=>) parameterized 

The HLM migration mechanism is able to perform a migration from an environment without 
parameterized types to a environment with parameterized types if the destination environment 
excludes the parameterized types from the set of supported interfaces. The migrateability of 
objects of the source environment will depend on the number and kind of parameterless types 
defined by the destination environment. 

If a migration from an parameterless environment to an environment with parameterized types 
is not successful, an additional negotiation phase can be implemented as an extension of the 
HLM migration mechanism. The second negotiation phase can attempt to find appropriate 
bindings for unsupported interfaces of the source through the determination of appropriate 
bindings for parameterized types of the destination. However, the corresponding interface 
definitions will have to be changed accordingly using adaptive migration. 

parameterized (=>) parameterless 

The reverse migration from an environment that supports parameterized types to an 
environment with no support can only work if all parameterized types can be converted to 
normal types prior to the negotiation phase. The bindings of type variables are used for the 
objects to be migrated have to be determined and the corresponding interface definitions have 
to be generated during the development phase. 

The alternative change of the GOAL language to support parameterized types will lead to a 
partitioning of migrateability as only few environments support parameterized types. Migration of 
object that use parameterized types will then be possible between environments that implement 
parameterized types but not with environments that do not. 

4.4.2 Object-Orientation and Prototypes 

Programming languages that operate on objects can be characterized in several ways. 
Following the systematic of Wegener [Weg1990] encapsulation and message passing can be 
defined as the most general characteristics of all so called object-based languages, i.e. 
languages that support the concept of objects.  

Object based languages can be further subdivided into prototype based and object-oriented 
languages according to their use of the concepts of prototypes, cloning and delegation or 
classes, instantiation and inheritance respectively. Figure 4.n illustrates the relationship 
between the different kinds of languages. 

object based

prototype based object-oriented

encapsulation + message passing

+ cloning + delegation + instantiation + inheritance

 
Figure 4.n: The relation between object-based, prototype-based and object-

oriented language environments is characterized by the extension of 
the fundamental concepts of encapsulation and message passing 
through either cloning and delegation or instantiation and inheritance 
respectively. 

As the concepts of object-based language are all interdependent, brief overview of the 
individual concepts of object-oriented and prototype-based language environments is given in 
the following and a more detailed discussion on the basis of more general categories is 
provided in the subsequent subchapters. 
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object-oriented 

Object-oriented environments define the structure and behavior of objects through classes that 
can themselves be represented as objects as for example in Smalltalk [GoR1983] or that may 
only exist as a textual representations within corresponding source files like in C++ [Str1991]. 
Instantiation is the process of creating a new object as defined by a class. An object instantiated 
from a class is called an instance of that class. The instance of relationship connects an object 
with its class and the subtype relationship between classes is called inheritance.  

The subtype relationships can be a hierarchy in the case of single inheritance or a directed 
acyclic graph as in the case of multiple inheritance. I.e. each class can be a subclass of one or 
more superclasses. The access to the state of objects can be protected in terms of the subtype 
relationship and the method lookup can differ whether an instance or a class object is 
addressed by a message passing expression. Figure 4.o illustrates the concepts of object-
oriented language environments. 

class A {
class int p;
int x;
class m1a(){

p=1;
};
m2a(){

x=2;
};

};

class B : A {
class int q;
int y;
m1b(){

p=11;
x=12;
q=13;
y=14;

};
};
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Figure 4.o: Some object-oriented languages distinguish between class- and 

instance variables and -methods. In the above example class A 
(shown here as a rounded rectangle) defines a class variable p, an 
instance variable x as well as a class method m1a() and an instance 
method m2a(). Class B defines an instance variable y and an 
instance method n1b(). The example depicts the situation after two 
instances a1 and b1 have been created for class A and B respectively 
and the method m1a(), m2a(), and m1b() have been invoked for 
class A, instance a1 and instance b1 respectively. The corresponding 
in-memory representation is shown schematically on the right side. 

Message passing is used to trigger the invocation of methods that are determined in a process 
called method lookup, dynamic dispatch or dynamic binding. The method determined is 
executed in a context that includes the object the message was originally send to as the 
receiver of the message regardless of the class or superclass the method invoked is actually 
defined for. Most object-oriented languages invoke methods in a synchronous manner where 
the sender of a message waits for the return of the result. 
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prototype-based 

Prototype based environments employ the concept of prototypes, cloning and delegation in 
addition to encapsulation and message passing. Prototypes are normal objects that are self-
describing and can be used to create other objects through a process called cloning. Cloning 
creates a copy of an object and establishes a so called parent reference that connects the 
newly created object and its prototype.  

The parent reference establishes a partial subtype relationship between prototypes that is called 
delegation and is used to forward variable accesses and messages that can not be handled by 
an object itself. Only variables and methods that are defined or redefined for the object 
respectively are handled by the object directly. Figure 4.p illustrates the concepts of prototype-
based language environments. 
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Figure 4.p: Some prototype based languages determine delegation between 

prototypes for each variable and method separately as for example 
Self28. In the above example prototype P defines variable x and 
method mp(), prototype Q defines a variable q with P as a parent, 
variable y and method mq, prototype R defines a variable r with Q as 
a parent, variable z, and method mr. The example depicts the 
situation after method mr has been executed for prototype R as 
follows. The value 21 is assigned to variable x, which is found through 
the parent relationships of R in prototype P. A variable p with R (the 
value of self, the pseudo variable for the receiver of the message) as 
a parent is added to prototype P, which is accessed through the 
variables r and q. Method mq, which is found through the parent 
relationship as being defined by Q, is invoked for variable p, which is 
found through the parent relationship of R in prototype P. Method mq 
assigns the value 11 to variable y, which is found through the parent 
relationship of P in prototype Q. The corresponding in-memory 
representation is shown schematically on the right side. (The variable 
and parent relationship that is added through mr is shown here with 
dashed lines). 

                                                 
28  The example shows simplified prototype definitions of the Self language [Sun1992]. 
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A single or multiple parent relationships can be defined for prototypes up to the point where 
each variable or method of a prototype can be delegated to a different prototype individually 
including cyclic parent relationships. In some prototype languages variable and method can be 
protected from access and invocation by objects other the individual prototype itself.  

The access to state as well as the method lookup honor the diverse parent relationships and 
determine each variable to access and each method to invoke anew, based on the individual 
receiver of the corresponding message. The invocation of methods is performed in a context 
that usually included the original receiver of the message but may also include the object the 
variable or method is defined for as the object the message has been forwarded to. The 
execution of message passing expression can be performed as synchronous as well as 
asynchronous invocations. 

object-based Migration 

The HLM migration mechanism deliberately abstracts from classes and prototypes through the 
use of interface definitions that do not have to be implemented as objects but can be managed 
on the basis of source code files. Each environment can map interface definitions to individual 
abstractions as appropriate. The concept of single inheritance and synchronous message 
passing are also used by the HLM migration mechanism as a common ground among all object 
based language environments. 

The following sections discuss various sets of related concepts of object-based languages as 
well as the techniques that can be used to enhance or extend the HLM migration mechanism in 
order to support them. The concept of inheritance and delegation, instantiation and cloning, 
various forms of access to state as well as several method lookup schemes are discussed. 
Different forms of message passing are discussed in a subsequent subchapter. 

Single Inheritance / Multiple Inheritance / Delegation 

Object-based environments offer different forms of inheritance or delegation to share state and 
behavior among objects. Various forms like single or multiple inheritance as well as delegation 
can be determined among existing language environments. Some environments offer 
combinations of inheritance and delegation, as for example Calico [Bel1993], Java [GJS1996] 
or Objective C [Cox1992]. 

Single Inheritance 

In an environment that supports single inheritance a definition of an object can only depend on 
one other object definition in order to specify the state and behavior of objects. As a result, all 
object definitions form a hierarchy and the determination of variable and method definitions can 
be performed unambiguously. An example of single inheritance among object definitions is 
shown in figure 4.o above (see page 193). 

Individual object definitions can redefine variables or methods that are otherwise inherited from 
their ancestors and new variable and method definitions can be added. The differentiation of 
descendants of a object definition is also called specialization. Few language environments 
even allow the deletion of inherited features, that will not be available for all descendants of the 
object definition that defines the deletion. 

Multiple Inheritance 

Object-based languages that support multiple inheritance allow several ancestor for each object 
definition. As a consequence the subtype relationship is a directed acyclic graph and the 
determination of variable and method definitions can be ambiguous, as a given feature can be 
inherited along different paths of the inheritance lattice. 

Various solutions to the problem of ambiguity have been proposed and are used within 
language implementations. These range from special hints for ambiguous cases through 
compiler checks preventing ambiguity to a total ordering of interfaces. Figure 4.q illustrates 
multiple inheritance. 
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A
m()

B : A C : A
m()

D : B, C

this.m()
 

Figure 4.q: Multiple inheritance can lead to ambiguities. In the above example 
The object definition D (shown here as a rounded rectangle) inherits 
from B and C while B and D themselves both inherit from A. The 
determination of the definition of method m() for an instance (shown 
as an ellipses) may lead to the definition of A or C depending on the 
particular rule chosen for the determination (the different path of 
inheritance are shown as broken gray lines). 

Multiple inheritance allows to inherit different features from different ancestors and is perceived 
to simplify the design of object-oriented applications in some cases. Alternative techniques that 
offer similar capabilities for single inheritance have been developed though. Whether multiple 
inheritance offers significant advantages to single inheritance that justify the additional effort of 
dealing with ambiguity is an open problem.  

Delegation 

Prototype based environments use the concept of delegation among objects that is related to 
inheritance among object definitions. The parent relationship between objects as established by 
cloning resembles single inheritance between object definitions but some environments allow 
multiple parents to be defined. In the most complex case arbitrary delegation of each individual 
variable or method to a different object definition will be possible. 

The determination of the definitions of variables or methods is performed on a case by case 
basis following the parent relationships except for  variables and methods that are defined for 
he particular object directly. As delegation relationships can become arbitrarily complex, 
including cyclic structures different forms of prevention and resolution of ambiguities have been 
developed. An example of delegation is shown in figure 4.p above (see page 194). 

The HLM migration mechanism requires a restriction to the use of single inheritance among the 
participating environments. Only interfaces that use single inheritance either from the source or 
destination environment can be considered during the negotiation process in order to ensure 
compatibility among environments. 

single inheritance (=>) multiple inheritance 

A migration form an environment that supports single inheritance to an environment that 
supports multiple inheritance can be performed using the HLM migration mechanism. The 
determination of the supported interfaces within destination environment has to be restricted to 
object definitions that use single inheritance as multiple inheritance can not be considered by 
the negotiation algorithm. 
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multiple inheritance (>) single inheritance 

A migration form an environment with multiple inheritance to an environment with single 
inheritance is not possible in the general case. Only the special case, that the multiple 
inheritance lattice of the dependent interfaces of the source environment can be matched with a 
single inheritance hierarchy of the destination environment can be supported in the context of 
the HLM migration mechanism.  

Informed migration will have to be used as the interface definitions and object representations to 
transfer will have to be generated on the fly, depending on the available interfaces at the 
destination. The symmetric and transitive nature of migration may be lost as the migrated 
objects will be adapted for the destination environment specifically. 

multiple inheritance1 (>) multiple inheritance2 

The same holds for migration between environments with different multiple inheritance 
schemes. In the general case a match of different inheritance schemes is not possible due to 
the computability problem. Even in cases where both environments employ the same technique 
to avoid ambiguities the transfer of objects definition may still be impossible due to 
contradictions between the inheritance lattices. 

In order to support cases where different multiple inheritance scheme match, the HLM 
mechanism can be extended to perform the necessary adaptation of the object definitions to be 
transferred. The determination whether two multiple inheritance scheme are compatible has to 
be done manually prior to migration. 

The apparently simple alternative, the addition of multiple inheritance to the GOAL language 
would implies a commitment to a certain kind of ambiguity prevention that would rule out all 
other forms. Likewise environments that support only single inheritance could no longer 
participate in migration based on the HLM migration mechanism. 

single inheritance (=>) delegation 

Migration from environments that support single inheritance to environments that support 
delegation can be performed by the HLM migration mechanism provided that the destination 
environment supports a single inheritance compatible form of delegation and that the 
determination of supported interfaces is also based on single inheritance.  

Apart from the necessary management of interface definition within the destination environment 
no changes to the HLM migration mechanism will be necessary. The code generation for the 
native object implementations of the destination environment can take care of the necessary 
conversion of object definitions. 

delegation (>) single inheritance 

The general case of migration from environments that support delegation to environments that 
support single inheritance is not possible except for objects that are confined to delegation in a 
single inheritance style. As single inheritance is covered by delegation, no provisions for the 
determination of supported interfaces are required. 

A match of arbitrary complex delegation schemes with a single inheritance hierarchy is not 
possible in the general case, but whether a subset of prototypes of a delegation based source 
environments are defined in a simple inheritance style can be tested automatically. Such a test 
can be included in the check phase of the implementation of the HLM migration mechanism for 
the prototype based environment. 

multiple inheritance (>) delegation 

Migrations from environments with multiple inheritance to environments with delegation can only 
be performed if the multiple inheritance lattice of the source can be matched with the delegation 
scheme at the destination. Such a determination has to be performed manually prior to 
migration due to the problem of computability. 

If the compatibility is determined for a combination of environments the HLM migration 
mechanism can be extended to perform the necessary adaptations of the interface definitions 
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using informed migration. Multiple inheritance will have to be added to the GOAL language in 
order to be able to perform the negotiation. 

delegation (>) multiple inheritance 

Migration from environments with arbitrary delegation to environments with multiple inheritance 
will not be possible in the general case due to the problem of computability. If the source 
environment uses delegation in a multiple inheritance style, migration will be possible, but such 
a determination has to be made manually. 

If two environments can be determined to be compatible the HLM migration mechanism can be 
extended to perform the necessary adaptation of object definitions using informed migration. A 
version of the GOAL language that supports multiple inheritance has to be used in order to 
negotiate the supported interfaces and to transfer the necessary interface definitions. 

delegation1 (>) delegation2 

Migration between environments with different delegation schemes will also not be possible in 
the general case as a match of arbitrary delegation schemes can not be computed. The 
delegation mechanism of two prototype-based environments can match nevertheless in special 
cases and the HLM migration mechanism can be extended to perform the necessary 
adaptations accordingly. 

The alternative addition of delegation to the GOAL language would require a commitment to a 
fixed style of delegation that precluded the migration with environments that are not compatible 
with this style. Such an addition would also not be sufficient for migrations between prototype-
based and object-oriented environments. 

State Access 

Object-oriented languages that implement classes as objects often distinguish between class- 
and instance-variables as well as class- and instance-methods, for example Smalltalk 
[GoR1983]. While class-variables exist only once within the corresponding class object and are 
shared among all instances of the particular class, instance-variables are created with each 
instance individually and are accessed and changed separately. 

Class methods are distinguished from instance methods as class methods can only be invoked 
for the particular class object, while instance methods can be invoked for all instances of the 
class. Some languages employ constructs that enable the access to variables of objects 
independent from the message passing mechanism like friends in C++ [Str1991]. 

Some languages allow direct access to variables only from methods defined as part of the 
corresponding class-definition and otherwise require so called accessor-methods like CLOS 
[Pae1993]. Object-oriented languages define various levels of protection for variables and 
methods that enable or prohibit access to and invocation of state and behavior. 

Prototype base languages do also distinguish different forms of access to the local state of 
objects and share state through delegation directly. An object that is cloned from a prototype 
delegates access to local variables and the invocation of methods to its prototype unless 
variables or methods are assigned to or redefined for the object itself. Cloned objects effectively 
share the variables and methods of their prototypes until specialization. 

The HLM migration mechanism ensures the compatibility between different forms of 
encapsulation through the requirement that local variables of objects can only be access from 
local methods. Only message passing can be used to transfer state between objects and 
appropriate accessor signatures have to defined. The access to the state of objects is 
essentially subsumed under the message passing mechanism. 

not shared (=>) shared 

A migration from an language that does not support sharing of state among objects to an 
environment that does can be performed by the HLM migration mechanism provided that the 
supported interfaces do not rely on sharing of components. The interface definitions that are 
transferred do not make use of sharing and can be compiled into native implementations. 
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The determination of the supported interfaces can leave the shared components out of the 
interface declarations that are transferred to the source environment. The implications are that 
less interfaces are available for negotiation but the shared declarations could not have been 
matches anyway. 

The alternative to add shared state to the GOAL language would require a commitment to one 
kind of sharing and would rule out all other kinds. Furthermore the use of declarations of shared 
state would imply additional dependencies between object that have to be considered during 
the check and negotiation phases [Ben1990, PhZ1997]. 

shared (>) not shared 

A migration from an environment that supports shared state to an environment that does not will 
not be possible without changes to the interface definitions transferred. A sharing of state that 
depends on the type of the objects within the source environment can not be expressed within 
the destination environment but can be simulated using appropriate generated code. 

The state that is shared within source environments in an automated fashion can be substituted 
with the definition of appropriate accessor signatures and the use of common objects that 
manage the shared state. The interface definitions for the common objects have to be 
generated at migration time and the changes to the definitions of existing objects have to be 
performed through adaptive migration by the HLM migration mechanism. 

shared1 (>) shared2 

A migration between two environments that support different forms of sharing will not be 
possible in the general case. If the sharing model of the source can be subsumed under the 
sharing model of the destination migration will be possible through adaptive behavior of the 
HLM migration mechanisms. 

If the destination offers less sharing than the source environment migration will only be possible 
with techniques described in the previous case that require significant changes to the definitions 
of the objects involved and the appropriate extensions to the generation of the object definitions 
to be  transferred by the HLM migration mechanism in the form of adaptive migration. 

unprotected => protected 

A migration form an environment that does not protect state to an environment that does protect 
state can be performed by the HLM migration mechanism. The interface definition transferred 
will not have to be changed as the objects of the source environment to not make use of 
protective features. 

The determination of the supported interfaces will have to leave out declarations of protected 
state that will not be used to the migrated objects anyway. The negotiation algorithm is not 
affected and the native implementations of the migrated objects can be compiled as the existing 
object definitions that use protection are not changed. 

The alternative to add declarations of protection of state to the GOAL language would require a 
commitment to one form of protection that would rule out all others. The use of protection by 
objects to be migrated would also rule out their migration to environments that doe not support 
protection of state. 

protected (=>) unprotected 

A migration from a language that offers protection of state to an environment that does not will 
be possible in the context of the HLM migration mechanism if all protected components of the 
source can become unprotected in the destination environment. This simple change can be 
performed during the generation of interface definitions at the source. 

Unfortunately, the “out-coming” of the protected state of objects can have devastating effects if 
the interfaces definitions transferred are used in manual development efforts within the 
destination. Furthermore the change of protection of the migrated objects will inhibit symmetric 
migration of the object back to their source environments without further provisions. 
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protected1 (>) protected2 

A migration  between environments with different protection models will not be possible in the 
general case. In the special case that the protection model of the source can be subsumed 
under the protection model of the destination environment, migration will be possible in the 
context of the HLM migration mechanism provided the appropriate adaptations can be applied. 

Method Lookup and Invocation 

Object based environments use message passing between objects in the form of message 
passing expressions to execute the underlying semantics. Regardless whether a message is 
actually communicated between two objects or whether a message is only used as an 
abstraction, a message passing expression is executed in two steps. 

When a message is received by an object a so called method lookup or dynamic dispatch is 
performed that determines the actual method to be executed. When a match is found a so 
called method invocation is performed that uses dynamic binding to construct an activation 
record that contains the receiver and the parameters of the message as local variables. The 
code of the method is executed in the so called message context defined by the established 
activation record. 

Object-based environments differ in the way they perform both the method lookup as well as the 
method invocation. Although similarities can be found among most environments or can at least 
be achieved through appropriate restrictions some particularities can prevent the migration 
between individual environments altogether. 

Method Lookup 

The method lookup that is performed by object-based languages depends primarily on the input 
factors that are used to guide the lookup which are either contained in the message that was 
sent or are established by the runtime environment. The method to invoke is usually determined 
on the basis of the receiver of the message, the selector or name of the message and the 
parameters of the message. In some cases the type of the result as well as the sender of the 
message are also considered. 

Even environments that use the same input factors for their method lookup algorithms may 
differ in the way these factors are interpreted. For example some languages interpret null values 
as implicit subtype of any type and allow null values as parameters. Other language are unable 
to cope with “typeless” null values as parameters. 

From a theoretical point of view the dependencies between parameters of a message and its 
result can be characterized as covariant or contravariant. Covariance and contravariance 
respectively specify whether methods arguments vary with the subtype relationships of the 
objects they are defined for or not. As a result covariant and contravariant method lookup are 
incompatible in most cases. 

Fortunately, only very few languages use covariance, for example Eiffel [Mey1992], and most 
object-based languages use contravariance. The theoretical differentiation of covariance and 
contravariance does not matter in practical situations due to other preconditions of the HLM 
migration mechanism (see also page 211). 

The method lookup algorithms take the dependencies between the object definitions into 
account if an appropriate method is not found within the definition of the receiver object. The 
method invoked depends on the use of single or multiple inheritance or delegation relationships 
that exist between the relevant object definitions. 

Most environments ensure at compile time through type checking that each message passing 
expression can be executed, i.e. a matching method can be found. Some languages, especially 
untyped languages do not ensure that a matching method exists and raise an error if no 
matching method can be found for a message expression at runtime. Smalltalk [GoR1983] for 
example sends the MessageNotUnderstood if no matching method can be found. 

Some languages provide a construct for the forwarding of messages between objects. The 
super keyword is often used to forward a message to the ancestor of a receiver if it can not be 
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handled by a matching method of the receiver directly. Some prototype based languages offer a 
resend construct that can be used to forward the message to an arbitrary object. 

As an extreme case the Common Lisp Object System (CLOS) implements a concept called 
method combination that allows the execution of a number of methods in reaction to the receipt 
of a single message. The additional methods that are executed before and after the main 
method can be defined throughout the multiple inheritance lattice of CLOS that is totally 
ordered. 

CLOS also implements methods as generic functions, a concept that is found in the form of 
Multimethods also in other object-based languages like Cecil [Cha1993]. Generic functions or 
multimethods generalize the concept of methods as a generic function does not belong to a 
specific receiver type but can be invoked for a number of receiver types. 

The method lookup algorithms that is used in the context of generic functions or multimethods 
determines the method to execute not only on the basis of the receiver type and the selector of 
the message but takes also all other parameters of the message into consideration. The method 
to execute is identified as the most specific one with regard to all parameters of the message 
passing expression. 

method lookup1 (=>) method lookup2 

In the context of the HLM migration mechanism the definitions of methods are confined to the 
most simple case. Methods have to be distinguished by the type of the receiver and of the 
selector of a message alone and the use of null values has to be avoided within message 
passing expressions. 

As a consequence the designer of an application that uses the HLM migration mechanism has 
to make sure that all methods are defined appropriately and that all variables that are used as 
parameters of messages are initialized before they are used. Appropriate development tools 
can be used to ensure these preconditions of migration (see chapter 3 page 121). 

Support for more elaborate method lookup schemes is not possible in the general case due to 
the problem of computability. Whether different method lookup mechanisms can be matched 
and how one form of message passing can be converted in to a matching different one can only 
be determined manually. 

If a match of the method lookup algorithms between two environments is identified the HLM 
migration mechanism can be extended to perform the appropriate adaptations of the object 
definitions to be transferred. The GOAL language has to be changes appropriately and the 
determination of the supported interfaces take the compatibility of signatures into consideration. 

Method Invocation 

The method invocations that are performed among environments can also differ as the bindings 
of implicit parameters that are establish prior to the execution of the method code can deviate. 
The receiver of a message is usually bound to a special variable called self or this that is 
part of the invocation context. 

Apart from the parameters of the message passing expressions further implicit parameters can 
be bound like the sender of the message or the object a message has been forwarded to. 
Further but very uncommon alternatives of message passing, e.g. the use of a receiver of the 
result of a method invocation that is independent of the receiver of the message, are not 
discussed here. 

Some language environment also distinguish whether parameters of message passing 
expressions are passed by value or reference, i.e. whether parameters are used as read only 
input or can be changed as writeable in/out or out parameters. The use of call-by-reference 
requires the availability of pointers within language environments (see page 209). 

invocation1 (=>) invocation2 

The GOAL language uses only the this keyword as an implicit parameter of a method 
invocation that is bound to the receiver of a message. The HLM migration mechanism requires 
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to confine the design of objects to be migrated to the use of no other implicit parameters, even if 
they are available within source environments. Additionally all parameters are considered to be 
passed by value even if the object implementations within destination environments differ, i.e. 
the writeable “out” character of parameters that may exists is never used. 

Migration between environments with different invocation contexts can not be performed in the 
general case as implicit variables that are available within one environment and that are used 
by the objects to be transferred can not be reconstructed in a destination environment without 
changes to the runtime environment itself. 

Instantiation / Cloning 

The creation of objects differs among object-based environments. Object-oriented languages 
employ a process called instantiation that creates a new object on the basis of its definition that 
is represented by a class object. The instance variables defined for the class object are 
allocated and a instance-of relationship to the class object is established. 

Object-oriented languages vary in the ways the initialize the instance variables of newly created 
objects. Some define so called constructors, i.e. methods that are invoked implicitly upon the 
creation of objects. Other rely the explicit initialization of instance variables through the user. 
Likewise some languages define destructors, i.e. methods that are invoked implicitly when an 
object is destroyed (see also page 209). 

Prototype based environment use a process called cloning that in the simplest case creates a 
new object from a prototype as a clone that contains no more then a parent relationships to its 
prototype. Only variables and methods that are defined directly for the new objects are added to 
its internal representation. 

instantiation (=>) cloning 

Migration from environments that support instantiation to environments that support cloning can 
be performed in the context of the HLM migration mechanism through adaptive migration. The 
translation of the transferred interface definition has to be done in such a way that all variables 
that are considered instance variables are redefined for the cloned object within the destination 
environment. 

The determination of supported interfaces within the destination environment has to be confined 
to predefined interface definitions though. If variables of prototypes can be redefined at runtime, 
the set of variables that are redefined for a particular prototype can not be determined due to 
the problem of computability. 

cloning (=>) instantiation 

Migration from environments that support cloning to environments that support instantiation if 
redefinitions of cloned objects are restricted to be performed during the creation of objects. In 
such a case the object definitions of prototypes can be matched with supported interfaces and 
the local variables will be allocated through the instantiation process automatically. 

The alternative would require reflective capabilities within the destination environment as the 
definitions of objects of the destination environment would have to be changed at runtime if 
redefinitions of objects at the source have to be matched with equivalent operations within the 
destination environment. 

instantiation1 (=>) instantiation2 

Migration between environments that offer different forms of instantiation will only be possible if 
the allocation of memory for each newly created object as well as the initialization of instance 
variables is performed in a compatible way. The allocation of instance variables is performed 
similarly among most object-oriented languages, i.e. instance variables of the objects definition 
as well as of its ancestors are allocated collectively. Unfortunately, the initialization of newly 
created objects differs among languages. 

In order to avoid problems with different initialization mechanisms of the HLM migration 
mechanism requires that variables of newly created objects are either initialized with null values 
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automatically through the appropriate means or that explicit initialization is performed through a 
dedicated signature like initialize(). 

Object-oriented / Prototype-Based 

Despite the many differences that exists between object-oriented and prototype-based 
environments, migration between such environments can be performed in the context of the 
HLM migration mechanism if the appropriate restrictions are applied to the design of the objects 
to be migrated in either direction. 

classes (=>) prototypes 

The HLM migration mechanism can be enhanced to support migration from object-oriented to 
prototype based environments although only prototypes that are designed for the migration 
mechanism can be used as supported interfaces. E.g. delegation has to be confined in a single 
inheritance style, redefinitions have to be static, and implicit invocation parameters can not be 
used. 

The implementation of the interface set can be performed straightforwardly as the single 
inheritance relationship that can be resembled by the parent relationships. Instantiation can be 
resembled by cloning because several "instance" objects can be cloned from a single prototype 
that fulfills the role of a "class" object, i.e. instance variables have to be assigned to each cloned 
object individually. The translation of the transferred interface definition into native source code 
has to be performed accordingly. 

prototypes (=>) classes 

A migration from a prototype based environment to a object-oriented one will be possible in the 
context of the HLM migration mechanism if the objects to be migrated use delegation only in a 
single inheritance style, redefinitions can be determined statically, state is not shared and 
implicit invocation parameters are not used. As each prototype will define its own interface a 
new class will have to be created within the destination environment for all prototypes that do 
not share interface definitions. 

The generation of interface definitions in the GOAL language has to translate the prototype style 
syntax to a class style syntax, e.g. cloning expressions have to be expressed as object creation 
expressions. A check of the conditions for the migration of prototypes has to be performed 
statically at design time through appropriate development tools and can be combined with the 
generation of interface definitions. 

Migrations between class-based and prototype-based environments will not be possible in the 
general case as prototype based systems are generally more flexible than object-oriented ones. 
Arbitrary delegation the redefinition of variables and methods at runtime, the different sharing 
and protection of state as well as different implicit invocation parameters will inhibit migration in 
the general case. 

4.4.3 Message Passing 

Object based languages define the behavior of objects through methods that can be invoked 
through message passing. Messages that are sent between objects control the flow of 
execution in object based systems. When a message is received by an object, an appropriate 
method is determined and invoked using the execution context specified by the message. 

The execution of messages passed between objects can be performed synchronously or 
asynchronously. With synchronous message passing an object that sends a message to 
another object will wait for the result of the method called to be returned. The objects that are 
subject to synchronous message passing are called passive objects as they do not employ they 
only react to messages that are sent to them but are not able to conduct computations on their 
own, independent of message passing. Figure 4.r illustrates synchronous message passing. 
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a1 b1

b1.m()

m()

 
Figure 4.r: During synchronous message passing the sender object blocks until 

the receiver answers. In the above example object a1 invokes 
method m() of object b1 and waits for b1 to return the result of its 
computation (computations are shown here as thick arrows while 
communications are shown as thin dashed arrows). 

Alternatively asynchronous message passing can be used where the object that sends a 
message does not wait for the result to return but continues with its own independent 
computation. The result computed by the receiver of the message will be returned in the same 
way as a result message, i.e. through a message to the sender of the original message. 

Objects that implement their own computations are called active objects. Active objects manage 
incoming messages via so called message queues that store incoming messages until the are 
processed through method invocations on a first come first serve basis. Figure 4.s illustrates 
asynchronous message passing. 

a1 b1

m()
k()

k()

m()

...()

g()
h()

h()
...
b1.m()

g()

m()=...
g()

#m()

return(...)

 
Figure 4.s: With asynchronous message passing between objects (shown here 

as ellipses) messages are buffered in message queues (shown as 
rectangles), processed on a first come first served basis and their 
results are sent back as messages as well. In the above example 
object a1 sends a message m() to object b1. The message is 
queued until the previous message k() is processed. The result of 
the invoked method m() is send back to a1 and is also queued there 
until the intermediately invoked method g() is processed. (The 
sequence of computations that are related to the message m() are 
shown here as thick arrows, other computations are shown as gray 
arrows, communications between the objects are shown as dashed 
arrows) 
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Active objects act much like operating system processes [Hoa1978] that communicate with 
each other through inter process communication mechanisms. Asynchronous message passing 
is also similar to the communication between distributed systems that operate independently 
while remote method invocation resembles synchronous message passing in the presence of 
distribution. Unlike their operating system relatives active objects usually share a single address 
space and require a runtime environment that is capable of executing multiple threads. 

Synchronous and asynchronous message passing as described above mark two extremes of a 
spectrum of implementation choices that consists of all kinds of multi-threaded environments in 
between these two extremes. With asynchronous message massing and active objects each 
object employs its own thread, but no threads exists outside of these active objects. With 
synchronous message passing only a single thread exists within the whole environment. 

Multi-threaded environments, i.e. environments that enable the execution of multiple flows of 
control in parallel, can implement synchronous message passing as well as asynchronous 
message passing. Different means of synchronization between threads like semaphores or 
monitors are used to coordinate the access of several threads to shared resources. Table 4.a 
shows the relation between form of threading and of message passing. 

 Single-Threading Multi-Threading Active Objects 

Synchronous 
Message 
Passing 

x x - 

Asynchronous 
Message 
Passing 

- x x 

Table 4.a: The possible combinations of synchronous and asynchronous 
message passing with single- or multithreading as well as active 
objects respectively. 

The containment of threads within active objects can be relaxed in multi-threaded environment 
such that both objects that encapsulate threads as well as passive objects can exist side by 
side. Several flows of control can be executed in parallel within these environments that involve 
method invocations of different passive objects including synchronized invocations as well as 
rendezvous with encapsulated threads. 

Additionally multi-threaded environments may implement objects that encapsulate several 
threads as well as several threads that execute only among many passive objects. Which form 
of multithreading and combination of passive and active objects can be implemented by a 
particular environment depends on the built-in primitives that re used to manage the threads. 

The HLM migration mechanism relies upon synchronous message passing and does not 
support the transfer of computations. As mentioned previously the HLM migration mechanism 
can be extended to support heterogeneous migration of computations if the participating 
language environments are enabled accordingly. Migration of computations can also be 
supported in multithreaded environments if the necessary synchronization is performed (see 
also page 179). 

synchronous (=>) asynchronous 

A migration form a synchronous to an asynchronous environment can be performed in the 
context of the HLM migration mechanism if the interface definitions transferred are translated in 
such a way that asynchronous message sends will wait for the return of the result. However the 
asynchronous nature of the objects if the destination environment will have to be considered in 
the determination of the supported interfaces. 

asynchronous (>) synchronous 

A migration from an asynchronous to a synchronous environment will only be possible if the 
destination environment supports multithreading and a new thread can be started for each 
incoming message. The GOAL language will have to be change to differentiate between 
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synchronous and asynchronous message sends and the necessary code has to be generated 
in the context of the HLM migration mechanism using adaptive migration. 

single-threaded (=>) multi-threaded 

A migration from a single-threaded environment to a multi-threaded environment can be 
performed in the context of the HLM migration mechanism if a new thread can be created for 
the transferred objects. The determination of the supported interfaces has to take the multi-
threaded nature of some object definitions of the destination into account. 

multi-threaded (>) single-threaded 

A migration form a multi-threaded environment to a single-threaded environment will not be 
possible in the general case as the parallel nature of objects of the source can not be recreated 
within the destination. Migration will be possible only in the special case where passive objects 
that employ not more then a single thread are migrated from the source to the destination 
environment. The later case is assumed in the context of the HLM migration mechanism. 

Multi-threaded1 (>) multi-threaded2 

Whether migration can be performed between environments that employ different forms of 
multi-threading depends on the individual case. Especially the extreme form of multi-threading 
that implements only active objects is problematic in this regard. Environments that employ only 
active objects can not recreate combinations of active and passive objects or multiple threads 
among passive objects alone. Active objects can however be migrated to multi-threaded 
environments if threads can be encapsulated by objects within the destination environments. 

4.4.4 Other Concepts 

The following concepts of object based languages are not available within all object-based 
environments but they are prominent enough to deserve a detailed discussion. Although a 
partitioning of migrateability will result from the support of these concepts possible techniques to 
augment the HLM migration mechanism as well as general aspects of migration in the context 
of these concepts are discussed nevertheless. 

Only the most interesting concepts are chosen here, namely reflection and introspection, 
blocks, exceptions, as well as pointers, garbage collection and finalization. A great number of 
further concepts exists but not every concept of all existing object-based language 
environments can be covered here for reasons of space. 

reflection 

The term reflection denotes a concept implemented by some object-oriented languages like 
Smalltalk [GoR1983] or CLOS [Pae1993] that renders the state and behavior of objects 
accessible within object-oriented programs through the definition of the higher-level objects that 
are used to define instance- and class-objects. A similar concept called introspection has been 
defined for prototype based environments like Self [Sun1992] and a read-only form of reflection 
is available within some languages like C++ [CKW1998] under the name runtime type 
information. 

Within object-oriented languages reflection is often implemented through the threefold instance 
- class - metaclass hierarchy in the tradition of Smalltalk [GoR1983]. As the behavior of 
instance-objects is specified by class-objects the behavior of class-objects is defined by 
metaclass-objects. The behavior of metaclass-objects is usually not defined by another level of 
abstraction but the potentially unlimited instance-of hierarchy is limited by a predefined class-
object called MetaClass that defines the common behavior of all metaclasses29 including itself.  

With reflection the definitions of state and behavior of objects are available at runtime in the 
form of class or metaclass objects and can be changed more or less directly. For example, new 
variables can be added to the definition of objects or methods can be redefined or deleted. 

                                                 
29  As the root of the instance-of tree the metclass Metaclass defines the only exception to the irreflexive nature of the instance-of 

relationship. 
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Whether these changes are propagated to the existing objects or just valid for new created 
objects depends on the actual implementation. 

Some prototype based systems employ introspection, a concept similar to reflection that makes 
the definition of state and behavior of prototypes directly accessible. Some prototype languages 
like Self [Sun1992] use so-called mirror objects that can be used to manipulate the structure 
and behavior of prototypes. Figure 4.t shows the Instance - Class - Metaclass hierarchy. 

Object

Class

Metaclass AbstractClass

A

B

a1

c1
instance of

subclass of

C
 

Figure 4.t: The Instance - Class - Metaclass hierarchy is used by object-oriented 
environments to implement reflection. In the above example the 
"subclass-of" relationship is shown from bottom to top and the 
"instance-of" relationship is shown from right to left. 

The HLM migration mechanism does neither support nor rely upon reflection or introspection. A 
implementation of the mechanism may benefit from reflective or introspective features of a 
language environment because information about interfaces of objects can be gathered at 
runtime. Especially the advanced forms of migration like adaptive or informed migration will 
benefit from the availability of reflective or introspective features as only the necessary details of 
interfaces in question have to be retrieved. 

non-reflective (=>) reflective 

A migration from an environment that does not offer reflection to an environment that offers 
reflection can be performed in the context of the HLM migration mechanism as the object to be 
transferred will not employ any reflective capabilities. The determination of the supported 
interfaces has to filter out any reflective interfaces that can not be represented in the GOAL 
language anyway. 

reflective (>) non-reflective 

A migration from a environment that offers reflection to an environment that does not support 
reflection will not be possible without significant changes to the destination environment. Since 
reflective behavior can not be recreated without the necessary built-in functionality the definition 
of the particular language or the implementation of the environment would have to be changed. 

reflective1 (>) reflective2 

A migration between two environments that support different forms of reflection will not be 
possible in the general case. A determination whether two forms of reflection can be match will 
not be possible due to the problem of computability. If two environments can be matched in this 
regard manually the GOAL language has to be changes accordingly and the HLM migration 
mechanism can be extended to perform the necessary adaptations. 

blocks 

Most object based languages employ a set of common control structures like conditions (if 
then else endif), multiple-conditions (switch case default endswitch), or loops 
(while do endwhile, repeat until, do while, or for to do endfor). Unconditional 
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jumps like goto with labels are not common but various forms of non local return are used that 
are used as well (see also page 208). 

Some languages like Smalltalk [GoR1983] extend the notion of objects to control structures and 
use the concept of blocks as a means to defer the evaluation of statements independent of their 
lexical scope. Blocks are not evaluated at their lexical position but only when they are sent an 
eval message. Blocks can therefore be used to construct arbitrary user defined control 
structures. 

The HLM migration mechanism uses a set of common control structures that is found in most 
object based as well as procedural languages. Blocks are deliberately not supported by the 
HLM migration mechanism as only few object-based language environment support the block 
concept. 

or alternatively appropriate conversions can be made through adaptive migration if a mapping 
can be found between the control structures of the source and the constructs of the destination 
environment prior to migration.  

Such a mapping can not be determined automatically due to the halting problem in the general 
case if for example blocks are used. Migration between language environments that support 
blocks and such that do not as well as vice versa will therefore not be possible in the general 
case. 

non-block => block 

A migration from an environment that does not offer blocks to an environment that supports 
blocks can be performed in the context of the HLM migration mechanism. The objects of the 
source do not use that feature and can be transferred without problem. The interface 
declarations of the supported interfaces of the destination do not include the relevant detail of 
method code and can therefore be used by the negotiation algorithm. 

block (>) non-block 

A migration from an environment that supports blocks to an environment that does not will not 
be possible without changes to the destination environment. Since blocks can not be 
constructed from any other language constructs an native implementation built into the 
destination environment as well as appropriate changes to the destination language will be 
necessary. 

block1 (>) block2 

Whether migration will be possible between environments that implement blocks differently will 
depend on the individual case. Whether two implementations of the blocks concept can be 
matched or not can not be determined programmatically due to the halting problem. If a match 
can be determined manually the GOAL language has to be changes accordingly and the 
necessary adaptations can be implemented the context of the HLM migration mechanism. 

exceptions 

Many object based languages use concepts that generalize the management of error conditions 
within the sequence of statements. A construct called an exception in conjunction with an 
exception-statement like for example try throw catch can be used in languages like C++ 
[Str1991] or Java [GJS1996] to surround a number of statements that is susceptible to errors. 
Other environments like LOOPS [SB+1983] provide a similar construct named Errorlevel.  

If an error occurs an exception is raised, the sequence of calls made so far is unwound up to 
the beginning of the exception-statement and the code handling of the exception, i.e. the 
exception-handler is executed as specified by the exception-statement. The flow of control 
usually continues after the exception-statement as the computations up to the occurrence of the 
error condition are aborted. For this reason exceptions are also called non local return control 
structures because throwing an exception does not return locally where it was thrown but 
execution continues after the exception-statement. 
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Exception statements can usually be nested and categorized by the kind of exception they 
handle. When exceptions are implemented as objects, they can be related by inheritance 
among their definitions. More general exceptions can be managed by default by outer 
exception-handlers while innermost exception expressions may be focused on particular 
problems like division-by-zero exceptions. 

If an inheritance hierarchy of exceptions is available, it can be exploited to manage 
specialization among exceptions and exception handlers. Some exception mechanisms include 
provisions for an automatic retry of the operations within the exception expression, but in the 
general case it is up to the designer to surround the exception statement with a loop that retries 
the overall operation. 

The GOAL language does not include an exception construct and the HLM migration 
mechanism does not support the use of exceptions as not all object based environments 
support exceptions. Non local return mechanism can not be recreated using other language 
constructs. 

non-exceptions => exceptions 

A migration from an environment that does not offer exceptions to an environment that 
implements exceptions can be performed in the context of the HLM migration mechanism as the 
objects to be migrated will not make use of the exception concept. The interface declaration 
used for the supported interfaces will not include the necessary detail.  

However the compilation of the transferred interface definitions within the destination 
environment may require that appropriate default exception declarations are added to the native 
implementations of the objects to be transferred. The generation of the native object 
implementations within the destination environment have to be changes accordingly. 

exceptions (>) non-exceptions 

A migration from an environment that supports exceptions to an environment that does not 
support exceptions will not be possible at all. Since a exception-statement can not be recreated 
by any other language construct an native implementation of the exception concept is required 
for the destination environment. 

exceptions1 (>) exceptions2 

Migration between environments that support different exception mechanisms will not be 
possible in the general case. Whether the exception mechanisms can be matched can not be 
determined programmatically due to the halting problem. If a match can be determined 
manually the GOAL language has to be changed accordingly and the HLM migration 
mechanism need to be extended to perform the necessary adaptations. 

pointers, garbage collection, finalization 

Object based language environment can roughly be subdivided into such that use explicit 
memory references, also called pointers, like C++ [Str1991] and such that do not. Pointer based 
language environments require a designer to explicitly allocate and deallocate memory for 
objects while environments that use implicit references for all objects implement automatic 
memory management as for example Smalltalk [GoR1983] or Java [GJS1996]. 

The term garbage collection denotes the reclamation of resources that are no longer needed 
within environments with automatic memory management. Various algorithms like "mark and 
sweep", "reference counting", or "generation scavenging" and defragmentation have been 
developed to optimize the overall task. 

Some object oriented environments augment the usual garbage collection mechanism through 
the concept of finalization. Finalization allows an object that is identified for reclamation to 
perform some housekeeping tasks before being collected. Alternatively the object can prevent 
its destruction within some environments. 

Garbage collection is more complex in multithreaded environments where several threads of 
activities create, manipulate and destroy objects as well as in environments with active objects 
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that may not be subject to collection at all despite not being referenced. Even more complex is 
the distributed case where references to remote objects have to be considered (see page 179). 

The GOAL language does not contain constructs for the explicit allocation or deallocation of 
objects and as a consequence the HLM migration mechanism assumes that automatic memory 
management is performed within the participating language environments. Language 
environments that offer pointers can only be used in the context of the HLM migration 
mechanism if features like pointer arithmetic are not used by the objects to be migrated. 

garbage collection (=>) pointer 

A migration from an environment with automatic memory management into an environment 
without such comfort will be impossible in the general case. Objects that would be collected at 
the source will not be deallocated explicitly at the destination and may outrun available 
resources.  

The determination of the "deletion of the last reference" within the interface definitions 
transferred is impossible due to the halting problem. The only alternative - to ignore the 
necessary deallocation of migrated objects will only be possible in special cases as it will lead to 
the effect of memory leaks at least in the long term. However, this alternative may be sufficient 
in most practical situations. 

pointer (=>) garbage collection 

A migration from an environment with explicit memory management into an environment with 
garbage collection can be performed in the context of the HLM migration mechanism, provided 
that the objects to be migrated does not use pointer arithmetic. The native code generation has 
to substitute the explicit allocation and deallocation operations with object creation and null 
statement respectively.  

Within the particular destination environments, modern garbage collection mechanisms should 
be able to cope with any dangling object structures that may result, especially cyclic ones. The 
use of pointer arithmetic on the other side can not be supported at all as matching operations of 
the destination environment can not be determined due to the problem of computability. 

pointer1 (>) pointer2 

Whether migration will be possible between environments that support different forms of pointer 
arithmetic depends on the individual case. A determination whether the pointer implementations 
of both environments can be matched will not be possible due to the problem of computability 
even in the case that both environments use pointers only in a type-safe fashion. 

non-finalization => finalization 

A migration from an environment that does not offer finalization to an environment that supports 
finalization can be performed in the context of the HLM migration mechanism. The objects to be 
migrated will not use finalization at all and the finalization methods of the objects of the 
destination environment do not have to be included in the interface declarations that are used to 
represent the supported interfaces. 

Finalization (>) non-finalization 

A migration form an environment that supports finalization to an environment that does not will 
not be possible in the general case. A determination of the “deletion of the last reference” that is 
necessary to insert the code of the finalization method into the non-finalized environment will 
not be possible due to the problem of computability. 

finalization1 (>) finalization2 

Whether a migration will be possible between environments that implement finalization in 
differently depends on the individual case. A determination whether two finalization mechanisms 
can be matched will not be possible programmatically due to the problem of computability. If a 
match can be found manually the GOAL language has to be changed accordingly and the HLM 
migration mechanism has to be extended to perform the necessary adaptations. 
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4.5 Object Migration among existing Language Environments 

Migration between object based language environments can be performed in the context of the 
HLM migration mechanism if only a defined subset of the concepts of object based systems is 
used for the design of the objects to be migrated. Additional concepts can be supported using 
advanced migration techniques like adaptive migration or informed migration. Only few 
concepts will require changes to the destination environments prior to migration. 

Migrateability is possible in most cases from an environment that does not support a certain 
concept to an environment that does. In such a case only a restricted subset of the functionality 
available at the destination can be used as supported interfaces for negotiation. For example 
parameterized types can not be used in negotiation but objects can be migrated from a non-
parameterized environment to a parameterized environment. 

Whether migration is possible form an environment that supports a certain concept to an 
environment that does not depends on the individual case. If restrictions are applied to the 
design of objects to be migrated the HLM migration mechanism will be able to perform 
migrations in most cases. In some cases simple enhancements of the HLM migration 
mechanism or the use adaptive or informed migration can enable migrateability. However, 
migration will not be possible in the general case if no restrictions to the design of objects are 
made. Table 4.b provides an overview of migrateability with regard to particular language 
concepts. 

Concept Concept
typed (>) (<) untyped

hybrid (=>) (<=) pure
parameterized types (=>) (<=) parameterless types

class based (=>) (<=) prototype based
single inheritance (=>) (<) multiple inheritance
single inheritance (=>) (<) delegation

multiple inheritance (>) (<) delegation
shared (>) (<=) not shared

protected (=>) <= unprotected
instanciation (=>) (<=) cloning
synchronous (=>) (<) asynchronous

single threaded (=>) (<) multi-threaded
reflective (>) (<=) non reflective

blocks (>) (<=) no blocks
exceptions (>) (<=) no exceptions

garbage collection (=>) (<=) no garbage collection
finalization (>) (<=) no finalization  

Table 4.b: The migrateability of objects with regard to particular language 
concepts (double arrows => indicate that an migration is possible 
using the HLM migration mechanism, parentheses around double 
arrows (=>) indicate that additional restrictions or enhancement are 
necessary, parentheses around an arrow-head (>) indicate that 
extensions to the HLM mechanism or to the participating 
environments are necessary. 

Whether an existing language environment can participate in migration in the context of the 
HLM migration mechanism is determined by the prerequisites of migration, namely the use of 
type annotations, the ability to add interfaces at runtime, the ability to create objects from newly 
added interfaces at runtime and the support of communication means (see chapter 3 page 74). 

The last precondition is met by almost all language environments either directly in the form of 
network transports or indirectly through the use of shared file system services. The first three 
preconditions are - surprisingly enough - only fulfilled by a small number of language 
environments. 
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Of twenty-six existing language environments that have been investigated in the context of the 
HLM migration mechanism only few fulfill all prerequisites and can participate in migrations. 
These language environments that can be called migration-capable differ in the set of concepts 
they support. Table 4.c provides a overview of the migration-capable languages and of the 
concepts they support and lists also a few prominent languages that can not participate. 
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type annotations - x (x) x x x x x x - x - -
dynamic loading (x) - x (x) - x - (x) - x - x x
dynamic object creation x - x - - x - (x) (x) x x x (x)
hybrid/pure p (p) h h (h) (h) h h (p) h h (p) p
parameterized - x - (x) x - (x) - x - x - -
shared structure - x x x x x x x x x (x) x x
shared state - (x) x x (x) x - x x x x x x
protected state - (x) - x x x - (x) x - x x (x)
class - x x x x x (x) x - x x (x) x
instantiation - x x x x x (x) x - x x - x
single inheritance - x x x x x (x) x - x x - x
multiple inheritance - - x x x - - - - x x - -
prototype x - - - - - - - x - - x -
cloning x - - - (x) - - - x - - x -
delegation x (x) - - - (x) - (x) - - - x -
reflective - (x) x (x) - (x) - - - - - x x
synchronous - x x x x x x x x x x x x
multithreaded (x) (x) (x) (x) - x x (x) - x (x) x x
asynchronous x - - - - - - - - - - - -
exceptions - x x x x x x - x x x (x) x
blocks - (x) (x) - - - - - x - (x) x x
pointer - x - x (x) - x - - - - - -
garbage collection - x x - (x) x x x x x x x x
finalization - - - - - x - - - x x - -  

Table 4.c: An overview of existing object-based languages in the context of the 
HLM migration mechanism. Languages that are migration-capable 
are shown in a bold font (an x or a lowercase letter indicates that a 
language supports a concept while parentheses around an x or a 
lowercase letter indicates that a concept is not fully supported or only 
optionally supported or that it is available only within some specific 
language implementations). 

Surprisingly, some well known languages are not able to participate in migration in the context 
of the HLM migration mechanism mainly because they do not support the indispensable 
prerequisites of the mechanism. The counter-examples that are listed in table 4.c are discussed 
in the following paragraphs in alphabetical order. 

Actors The “Actor language” is not really a language but rather a design 
of an object-based system consisting of active objects that can be 
implemented in many languages including procedural ones. Actors 
have been included here as the only well known example of 
asynchronous message passing at the language level. Actors 
implement a prototype-based object model and allow the dynamic 
creation of objects. Unfortunately, Actors as defined by Agha 
[AgJ1999] do not use type annotations and can therefore not 
participate in migrations in the context of the HLM migration 
mechanism. 
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Beta The Beta language [MMN1993] is one of the most flexible object-
based languages and offers the unique abstraction of patterns that 
effectively join objects, methods and even activation records into 
one seamless notion. Beta supports a form of delegation in 
addition to single inheritance as well as limited reflective and multi-
threading capabilities. Unfortunately only a single implementation 
of the language exists and no mention of dynamic loading of object 
definitions or the dynamic creation of objects could be found in the 
literature. 

C++ The C++ language [Str1998] is a very prominent if not the most 
well known object-based language, due to the fact that it is 
perceived as the object-oriented successor to the popular 
procedural language C. As a hybrid language C++ offers a number 
of features that are rooted in its procedural predecessor like 
pointer arithmetic and operator overloading. C++ also offers 
parameterized types in the form of templates and read-only 
reflective capabilities in the form of a runtime type system. A 
unique feature of C++ is the friend declaration for cross object 
access to state. The language can be extended to support multi-
threading. Unfortunately, the C++ language does not offer dynamic 
creation of objects despite the fact that some language 
implementations can be extended to support dynamic loading of 
object definitions [IBM1993]. 

Eiffel The Eiffel language [Mey1992] is one of the most intensively 
studied object-based languages, a fact that results from the 
software engineering approach that motivated the design of the 
language. Eiffel offers a number of unique features, one being the 
declaration of assertions that allows for the automatic check of pre- 
and postconditions for the execution of methods. Unfortunately, no 
mechanism for the dynamic loading of object definitions or for the 
dynamic creation of objects could be found in the literature. 

Modula 3 The Modula 3 language [BoW1995] is a hybrid language in the 
sense that it allows the definition of objects in addition to a 
procedural base-language. Modula 3 offers an extensive type-
system and language primitives for the management of parallel 
threads. Unfortunately, no mechanism for the dynamic loading of 
object definitions or for the dynamic creation of objects could be 
found in the literature. 

Omega The Omega language [Bla1994] is a not widely known prototype 
based language that offers strong typing and an inheritance like 
style of delegation. Omega offers parameterized types, an 
exceptions mechanism and blocks. Unfortunately only a single 
implementation exists that does not support dynamic loading of 
object definitions nor the dynamic creation of objects. 

Python The Python language [LoF1997] is an interpreted object-based 
language that appears to be a good candidate for object migration 
that offers even thread-management. Python supports multiple 
inheritance, exceptions and even finalization. Unfortunately, 
Python does not support type annotations and can therefore not 
participate in migrations in the context of the HLM migration 
mechanism. 

Sather The Sather language [StO1996] is a strongly typed object-based 
language that offers many unique features, for example block like 
control constructs called iterators. Sather supports parameterized 
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types as well as finalization and can be extended to support multi-
threading. Despite the fact that Sather supports dynamic object 
creation, no mentioning of the dynamic loading of object definitions 
could be found in the literature. 

Self The Self language [Sun1992] is a well known prototype-based 
language that offers multiple delegation relationships among 
prototypes. Self offers reflective capabilities, multithreading, a 
block concept that is also used for exceptions, and an abstractions 
called traits for sets of prototypes with common behavior that is 
used for optimizations. Self is able to dynamically load object 
definitions and to create objects dynamically but does not support 
type annotations. 

Smalltalk The Smalltalk language [GoR1983] is probably the best known 
example of an object-oriented language. Smalltalk supports 
reflective capabilities, exceptions, blocks and multithreading. 
Smalltalk is able to dynamic load object definitions and can also 
support dynamic object creation through its reflective capabilities. 
Unfortunately, Smalltalk does not support type annotations. 

More object-based languages have been investigated in the course of this work, for example 
Calico [BeL1993], Cecil [Cha1993], Dylan [SPM1992], Hybrid [Nie1987], Loops [SB+1983], 
Oberon 2 [Moe1993] and a number of others. These additional languages have not been 
included in this overview because not enough literature was available to decide whether these 
language fulfill the prerequisites of the HLM migration mechanism or not. 

Whether the languages that are not able to participate in migration can be extended through 
changes of their definitions or their environments to support the prerequisites of the HLM 
migration mechanism has not been investigated. Although more languages may be able to 
participate in migration, changes to language definitions or environments lie clearly beyond the 
scope of this work as the HLM migration mechanism that is supposed to be working with 
existing languages rather then requiring language changes. 

Migration-Capable Languages 

The languages that support the prerequisites can all participate in the heterogeneous object 
migration based on the HLM migration mechanism. Two of these language environments, i.e. 
CLOS and Java have been used for the prototypical implementation of the HLM migration 
mechanism.  

Since these languages support different sets of concepts migration of arbitrary objects is not 
possible among these environments. Only objects that have been restricted appropriately can 
be migrated in the context of the HLM migration mechanism. Support for additional language 
concepts can be added to the HLM migration mechanism but will be useful only for subsets of 
this collection of migration-capable languages.  

The following paragraphs discuss each migration-capable language in more detail in terms of 
the concepts each language implements, how the HLM migration mechanism can be 
implemented within the particular language environment and how additional language concepts 
can be supported in the context of the individual language.  

This overview is not intended as a list of facts about the migrateability of objects in the context 
of the individual language. This overview rather serves as a ranking of the probability of 
migration in the context of additional language concepts which have to be addressed 
individually by further research. 

CLOS The Common Lisp Object System (CLOS) [Ste1990] is a well know 
object-oriented programming environment based on the imperative 
programming language Lisp30 and is one of the few programming 

                                                 
30  Modern Lisp dialects combine procedural techniques with the functional core of the language. 
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languages that has been standardized. CLOS is a hybrid language 
that integrates some but not all types of the underlying Lisp 
language into an object-oriented type system. CLOS is 
dynamically typed and offers optional type annotations for class 
and method definitions. Generic functions are used to implement 
methods in CLOS, which are executed in the context of the unique 
concept of method combination as defined by a totally ordered 
multiple inheritance lattice. CLOS supports exceptions as well as 
blocks and assumes a memory management that offers garbage 
collection. CLOS also implements a Meta-Object Protocol (MOP) 
that offers advanced reflective capabilities. CLOS offers 
interpretation as well as compilation of classes and methods and is 
able to dynamically load object definitions and to dynamically 
create objects. Some CLOS environments also implement multi-
threading capabilities. 

 The prototypical implementation of the HLM migration mechanism 
within the CLOS language environment has to take the hybrid 
type-system in to account and generates the necessary conversion 
code. Type annotations have to be used by default and the 
generation of object definitions has to consider the limitations of 
generic functions, namely a consistent number of default 
arguments per generic function as well as the inability to use null 
values in message passing expression. The prototypical 
implementation of the HLM migration mechanism based on CLOS 
manages interface definitions as GOAL source files and uses the 
TCP/IP socket implementation of CLOS environments as a 
communication means. 

 Support for several additional language concepts offered by CLOS 
can be added to the HLM migration mechanism. The multiple 
inheritance lattice of CLOS has to be totally ordered, a condition 
that is checked by the CLOS compiler. CLOS therefore offers a 
good start for the extension of the HLM migration mechanism to 
support multiple inheritance. The strictness of CLOS in this regard 
can be used to value the multiple-inheritance lattice of other 
environments against it. The reflective capabilities of CLOS as 
defined by the Meta-Object Protocol [KRB1991] offers probably a 
superset of the reflective capabilities of other environments and 
can be used as basis for the experimental support for reflective 
capabilities by the HLM migration mechanism. The CLOS 
implementations of the concepts of exceptions as well as blocks 
are also flexible enough to define compatible subsets of their 
functionality that can be used for migrations with other 
environments. 

 A CLOS concept that can probably not be used in migration with 
any other environment is method combination. The definition of 
additional methods that are executed in a cascaded style before 
and after the main method that is defined by a message passing 
expression is unique to CLOS and to foreign for most other 
environments to be supported by an extension of the HLM 
migration mechanism. 

 The CLOS language flexible enough to be extended with additional 
language concepts. The concept of sharing and protection of state 
is partially supported by CLOS and depending on the 
implementation of garbage collection within the corresponding 
language environments, support for finalization can probably be 
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added too. CLOS is probably not a good candidate for support of 
the concepts of multi-threading or asynchronous message passing 
in the context of the HLM migration mechanism. Despite the fact 
that multi-threading is offered by some CLOS language 
environments the language does not offer any constructs to 
support it. Another concept that is not likely to be supported easily 
in CLOS are any sophisticated form of delegation, as the totally 
order multiple-inheritance lattice is the foundation of the CLOS 
language.  

Java The Java Language [GJS1996] is a well known object-oriented 
programming language that is widely used due to its foundation on 
a virtual-machine-definition that make Java programs hardware- 
and operating system independent. Java is a strong-typed class-
based language that supports single inheritance and a separate 
inheritance concept of interfaces31. Java offers optimized primitive 
types that effectively make Java a hybrid language. Java supports 
exceptions and implements a built-in multi-threading model that is 
integrated with the definitions of classes and methods. Java is 
based on garbage collection and offers finalization. Java is able to 
load object definitions dynamically at runtime and to create objects 
dynamically at runtime. The Java language environment offers 
reflective capabilities via libraries. 

 The prototypical implementation of the HLM migration mechanism 
in Java has to take the differences between primitive types and 
Java objects into account an generates the necessary conversion 
code. The generation of object definitions has to consider that 
Java can not differentiate methods that can only be distinguished 
by their result type. The prototypical implementation manages 
interface definitions on the basis of GOAL source files and uses 
the TCP/IP objects offered by the Java libraries to establish 
communications. 

 Support for several additional language concepts offered by Java 
can be added to the HLM migration mechanism. The exception 
mechanism of Java makes use of the single inheritance 
relationships and can probably be used as a good start for the 
extensions of the HLM migration mechanism with support for 
exceptions. The same holds for multi-threading as the 
implementation of multi-threading within the Java language offers 
a good foundation for further experimentation in this regard up to 
asynchronous message passing in the context of distribution. 
Support for sharing and protection is also available within Java and 
can be used for migrations with other environment that support 
similar concepts. 

 Java language concept that can not be supported in the context of 
the HLM migration mechanism are the direct inheritance of 
interfaces that is unique to Java and can for example not be 
matched with the totally ordered multiple inheritance lattice of 
CLOS. Another concept that can not be supported unless it is 
available within the destination environment is finalization. 

 The Java language definition has been fixed as any extension to 
the language would require updates to the existing virtual machine 
implementations that are widely deployed. Java is therefore not a 

                                                 
31  The interface keyword of Java should not be confused with the notion of interfaces in the context of the HLM migration 

mechanism. 
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good candidate for support of blocks, sophisticated delegation 
schemes or advanced reflective capabilities. Any concept that can 
not be supported on the basis of language libraries can not be 
used in migrations with the Java environment if extension are 
considered at all. 

Objective C The Objective C language is a known as a “former” candidate for 
the object-oriented successor to C. Objective C is an extension of 
the C language as it defines a hybrid, dynamically-typed class-
based language that offers optional static typing for optimization 
purposes. Although a descendant of the C family Objective C 
offers more dynamic concepts then its sibling C++. Besides single 
inheritance Objective C also offers a delegation like concept of 
categories and protocols that allow additions to class definitions as 
well as methods which are independent of classes. Objective C 
supports protection of instance variables but not sharing of state 
via class variables. Objective C does not provide a exception 
mechanism but uses messages to signal errors among objects. A 
unique concept of Objective C is the possibility to define message 
passing expression dynamically, i.e. the selector as well as the 
hidden parameters of the message can be assigned at runtime, 
including assignments to the pseudo-variable self. This concept 
can be used to manipulate messages and to forward messages to 
different objects. Another unique concept of Objective C is the use 
of factory objects for the creation of objects via message rather 
then a special language constructs like new. Objective C supports 
the dynamic loading of object definitions and the dynamic creation 
of objects. Objective C enables but does not rely on the use of 
garbage collection mechanisms and does not support finalization. 
Objective C offers language support for asynchronous messaging 
but does not implement it. However, corresponding language 
environments support multi-threading. 

 An implementation of HLM migration mechanism in Objective C 
has to consider its hybrid nature that builds upon the type system 
of the C language. The generation of object definitions has to 
consider the keyword style of methods and message passing 
expression that is similar to Smalltalk. The creation of new objects 
via factory objects is also unusual and has to be accounted for in 
an implementation of the HLM migration mechanism. The 
message based error handling of Objective C has to be considered 
as well. Due to the absence of reflective capabilities, object 
definitions have to be handled as GOAL source files and a TCP/IP 
implementation is available within language environments as well. 

 Support for additional concepts of the Objective C language can 
be added to the HLM migration mechanism. Despite the fact that 
Objective C supports only single inheritance, the concept of 
dynamic message composition can be used as a starting point for 
the extension of the HLM migration mechanism to support 
delegation. The concept of protocols can be useful to support a 
subset of generic functions in the context of the HLM migration 
mechanism. 

 Language concepts that can not be supported in the context of an 
implementation of the HLM migration mechanism in Objective C 
are sharing and protection of state, exceptions and blocks, that are 
not well supported or not available at all respectively. The 
reflective capabilities of Objective C are also to limited to match 
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any other implementation of reflection. The concept of finalization 
is also not available within Objective C or within its language 
environments that support garbage collection.  

 The Objective C is based on the portable language C and can be 
extended comparatively easily. One likely candidate for an 
language extensions is the support of asynchronous messages 
that is already prepared for within the language through the 
oneway parameter qualifier for example. Especially Objective C 
language environments that support multi-threading are likely 
candidates in this regard. 

This overview emphasizes the fact that has been proven by the prototypical implementation: the 
HLM migration mechanism is capable to migrate objects among existing object-based 
languages. Additionally a number of opportunities exist to support more language concepts in 
the context of the HLM migration mechanism. 

Unfortunately, the majority of language concepts that are not already supported by the HLM 
migration mechanism require changes to the definitions of the objects to be supported. Only few 
language concepts can be supported with minor enhancements of the HLM migration 
mechanism and some concepts even require changes to the participating language 
environments which are effectively prohibitive. 

Even if support for additional language concepts can be added to the HLM migration 
mechanism a partitioning of migrateability may result as not all participating environments are 
equally able to support additional language concepts even if the definitions of the objects to be 
migrated are changed through adaptive migration for example. 

Furthermore, migrations that are performed in the context of additional language through the 
use of adaptations may no longer be symmetric or transitive. The adaptive changes can inhibit 
the inverse migration of an object if the adaptations applied are not recorded and can be 
inverted when necessary. Adaptation of interface definitions may also inhibit successive 
migrations to different destinations as well as subsequent migrations of other objects from the 
same source environment. 

In hindsight, the status of migrateability is disillusionary at best. The lack of support for 
dynamism, i.e. applying changes to programs at runtime limits the use of object migration 
among existing language environments severely. The absence of type annotations is less 
severe as preprocessing tools can be used with most language environments to allow changes 
to source files that are filtered before native compilations but can be used for other purposes 
like the HLM migration mechanism. 

The vast majority of object-based languages would be able to participate in migration if the 
basic prerequisites of the HLM migration mechanism could be met. Despite the fact that the 
diversity of languages limits migrateability if additional language concepts are supported, 
dynamic changes of programs in general and heterogeneous object migration in particular are 
treated negligently. 

Besides the hint to language designer and implementers that dynamic features deserver more 
attention, the advantages of heterogeneous language migration and especially the benefits for 
the design of applications have to be emphasized more directly in order to change this 
detrimental situation persistently. 
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5 Applications of Heterogeneous Language Migration 

A number of applications can be identified for heterogeneous language migration despite the 
fact that the HLM migration mechanism is certainly not sufficiently developed for general use at 
this point. The following overview of potential applications emphasize the possible benefits of 
heterogeneous language migration and are also intended to motivate further research. 

Apart from technical issues that have been discussed in the previous chapter, a number of 
characteristics of the HLM migration mechanism influence its applicability and determine the 
benefits an application can achieve. The following sections offers a brief overview of the most 
influential characteristics of the HLM migration mechanism from an application standpoint. 

• Semantics 

The HLM migration mechanism offers the biggest benefit where the semantics of a solution 
of part of it have to be conveyed to a different location or another environment. Especially 
applications that capture the knowledge of their users with programmatic means like macro 
or scripting languages will be able to transport that knowledge to another place or into a 
different context using the HLM migration mechanism. 

• Heterogeneity 

Almost unnecessary to mention, the HLM migration mechanism will allow to exchange the 
status and the meaning of software artifacts among a broader range of applications as 
previously thought possible. The fact that all levels of heterogeneity can be addresses does 
not imply that all capabilities of the mechanism have to be applied for it to be useful. The 
HLM migration mechanism can be very beneficial among heterogeneous applications alone 
regardless of other levels of heterogeneity or homogeneity. 

• Spontaneity 

The transfer of objects between software-systems with the use of the HLM migration 
mechanism requires no initial setup or special knowledge among the participating 
environments. Provided that an implementation of the HLM migration mechanism exists 
within each participating environment, any application that conforms to the design 
constraints of the migration architecture can transfer objects without further preparation. 

• Independence 

A migration that is performed by the HLM migration mechanism leaves no dependencies 
between the participating environments. Furthermore, communication capabilities between 
the participating environments are only mandatory as long as the migration takes place. No 
permanent connection is required prior to or after a migration and the participating system 
may as well only communicate only for the course of a migration. 
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• Peer-to-Peer 

The whole architecture of the HLM migration mechanism is geared towards a cooperation 
of the participating environments rather then an exclusive control of either side. The 
migration algorithm is performed by the source environment but only with the cooperation of 
the destination environment. If full implementations of the HLM migration mechanisms 
exists on either side, migrations can be performed symmetrically any time. As a 
consequence the HLM migration mechanism can be characterized as a peer-to-peer 
system, as all participating environment have equal rights. Especially no central server that 
coordinates the activities is necessary. 

• Responsiveness 

The nature of the HLM migration mechanism allows for comparatively short-term reactions 
to a need to convey the status and meaning of a software artifact to another environment. 
Although the prototypical implementation of the HLM migration mechanism is not 
particularly optimized for performance, the overall task of transferring an object to another 
environment is performed quickly if compared to the otherwise necessary manual activity. 

In summary, the HLM migration mechanism provides the best benefit in situations where the 
semantics of software artifacts has to be exchanged between heterogeneous systems in a short 
timeframe that does not allow for extensive preparations neither of technical nor organizational 
nature. The characteristic of independence does not only allow for ad hoc operations of the 
HLM migration mechanism but also enables the support of mobile and wireless devices which 
can be used disconnectedly. 

In an opposite position, a number of factors are of less importance for the applicability of the 
HLM migration mechanism. The distance between the participating environments as well as the 
available bandwidth do only affect the use of the HLM migration mechanism neither does the 
synchronous or asynchronous nature of the communication medium. 

Although the overall performance will be increased if a higher bandwidth can be utilized, the 
applicability of the HLM migration mechanism does not depend on the available bandwidth. 
Migrations can be performed using high speed networks as well as with low bandwidth 
connections over for example wireless networks. 

Even synchronous connectivity is not strictly necessary for the operation of the HLM migration 
mechanism. An asynchronous communication medium will be sufficient as long as the delivery 
of messages between the participating environments can be guaranteed. For example message 
queuing services can be used by the HLM migration mechanism. 

The HLM migration mechanism is also largely independent of the application domain as well as 
of the complexity of the objects that have to be transferred. The purpose the HLM migration 
mechanism is used for, e.g. financial transactions, industrial engineering, educational 
knowledge-sharing does not affect the operations of the HLM migration mechanism. 

The complexity of the objects to be migrated does also not directly affect the applicability of the 
HLM migration mechanism. The number of objects and the complexity of their functionality as 
well as of their relationships has only an impact on the overall time it takes to process a 
migration but does not influence the question whether the HLM migration mechanism can be 
used for a particular task or not. 

Limiting Factors 

The applicability of the HLM migration mechanism is limited by the scope of the extensions that 
can be applied to the destination environments as well as indirectly by the overall timeframe 
within which the necessary changes have to be available. Both of these dimensions define 
upper as well as lower bounds for the applicability of the HLM migration mechanism. 

The migration of atomic objects among heterogeneous environments at the language level is 
the design goal of the HLM migration mechanism. The mechanism is therefore limited to the 
transfer of subsets of the collection of objects that define an application, or of partial 
functionality of underlying libraries. 
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On the other hand an implementation and use of the HLM migration mechanism makes only 
sense when the task of migrating objects appears comparatively often and has to be performed 
in a relatively short timeframe. If only predefined functionality has to be transferred and the 
available time is not a primary factor, a conventional approach like a porting effort of the 
necessary functionality will be more economic. The HLM migration mechanism is not a tool that 
aids in the transfer of whole applications or operating systems. 

Apart from being able to transfer semantics among heterogeneous environments the HLM 
migration mechanism is most beneficial in situations that require a comparatively short-term 
reaction to a need to transfer semantics among environments. Figure 5.a shows the correlation 
between the scope and available time of the changes necessary to perform a migration. 
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Figure 5.a: The use of the HLM migration mechanism makes sense when the 
rate of change that is reflected is the frequency of migrations is high 
and the scope of the changes can be handled by the mechanism. If 
more time is available or more fundamental functionality needs to be 
transferred a conventional approach like a porting and integration 
effort will probably be more economical. 

On the other hand, the HLM migration mechanism is not and will probably never be able to 
perform high volumes of migrations in a very short time. Sub-second migrations of huge 
numbers of objects are very unlikely, even if the same interface set is involved. Likewise the 
transfer of subparts of objects like the functionality of a single method lies out of the scope of 
applicability of the HLM migration mechanism (see also chapter 4 page 178). 

Heterogeneous object migration is in some sense competing with traditional software 
development techniques that can be applied if short term reaction and spontaneity of transfer do 
not have to be emphasized. However, the HLM migration mechanism can also be used in the 
context of software engineering, e.g. within software design tools to exchange independently 
developed software models (see also page 226). 

The following example try to illustrate the scope of applicability of the HLM migration 
mechanism in practice. The first example describes a scenario that combines several 
characteristics of the HLM migration mechanism to emphasizes the possible benefits for a new 
kind of application. 
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The subsequent examples describe other interesting areas of usage more briefly. The use of 
the HLM migration mechanism to convey dynamic content is discussed in the context of 
hypermedia authoring. A match of different software designs is described in an example of 
software engineering. The debugging of distributed system is used to illustrate the application of 
migration for software development. The technology of mobile agents can benefit from 
heterogeneous migration and administrative tasks like network management can take 
advantage as well. 

5.1 Distributed Collaboration 

Probably the biggest benefit of the HLM migration mechanism from an applications standpoint is 
the fact that it enables a new advanced form of collaboration. The transfer of semantics of 
objects opens the way to not only cut and paste static data like text and graphics but to capture, 
exchange, combine and evolve the dynamics of ideas and knowledge that could not be 
transported before. 

Previously, the inherent dynamics of real world phenomena could only be conveyed as static 
tables of measurements, as presentations graphics, reports, or books. Even if the changing 
nature of such phenomena can be captured in software models these models can not be 
communicated freely as they are restrained to the computer platforms they were developed for. 

Moreover, the thinking and creative work of humans has been oriented towards static tangible 
artifacts since the invention of typography or even script due to the fact that the dynamics of 
human ideas could not be conveyed through any medium. This situation is changing slowly 
since computers and the Internet are in wide-spread use.  

Today the dynamics of human ideas can be captured to some extent through software 
development, but their communication among humans is still limited through the new barriers of 
heterogeneity. The HLM migration mechanism provides a first step to alter that and to open up 
new ways to exchange and combine ideas and knowledge. 

Ideas and phenomena that have been captured as software objects can be exchanged freely 
using the HLM migration mechanism. In combination with object-based end-user scripting 
languages, independently developed objects can be integrated to higher order objects as the 
ideas they represent are combined and can be evolved to new knowledge. 

The HLM migration mechanism in its present state has a long way to go to be able to support 
such an advances usage. Three scenarios can illustrate the usage of the HLM migration 
mechanism in this context before the necessary enhancements to the mechanism as well as 
other details of its implementation are discussed. 

Research Scenario 

If for example a evolutionist develops a software model that describes the extinction of species 
in a statistical tool, he can migrate that model using the HLM migration mechanism to a the 
simulation tool of a biologist, who will be able to test it against current data from a particular 
endangered species. The biologist will also be able to modify and combine the model with some 
of his own work through scripting and to migrate the combined model to a mathematician who 
can validate it for soundness. 

Engineering Scenario 

In the light of ever shortening product development cycles, the changes to the construction of a 
car in a graphical design tool can be reflected more timely in the planning tool for the 
corresponding manufacturing plant if the designer of the automobile and the factory designer 
can exchange the model of the underlying construction seamlessly. Extensions to the model 
made on either side can be migrated using the HLM migration mechanism to the corresponding 
co-workers. 

Business Scenario 

A complex deal for the financing of a large construction project can be put together more easily 
if the different stakeholders can coordinate their divergent interests in a multidimensional “what 
if” model of the whole deal. Each participating financial institution can migrate its constraints as 
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an object to the leading institute or a clearinghouse that reconciles the various conflicts. Each 
stakeholder will be able to run his own analysis against the combined model if that is migrated 
back as a copy. Refinements of the individual contributions can be added and disseminated in 
the same way. 

Technical Background 

The sharing and reuse of ideas captured as objects should be a simple and seamless as 
possible for the end-user. Based on the graphical user interfaces of today a user should be able 
to open a window of an application that is running on a remote machine to drag and drop 
objects that are found there into his own local applications. 

The corresponding migrations including the necessary negotiation will be performed by the HLM 
migration mechanism in the background. After the migration the user should be able to 
manipulate and work with the migrated objects as if they were constructed natively within the 
local application in the first place. 

In order to integrate locally created and migrated objects a visual programming tool could be 
used in the ideal case to indicate simple message passing as well as the use of parameters 
among objects. The construction of more complex objects or integrations can be done with end-
user scripting tools that use all elements of the corresponding interfaces. 

Distributed Usage 

Due to the spontaneous nature of the HLM migration mechanism the collaboration of individuals 
as described above can be initiated across organizational boundaries without preliminary setups 
or configurations. The HLM migration mechanism enables a free flow of ideas that are captured 
as objects as well as the combination of their dynamic behavior.  

This exchange can be performed through any medium, via local area networks as well as via 
the Internet and even through wireless communication services. Due to the support for 
heterogeneity by the HLM migration mechanism potentially any computer hardware and object-
based software can be included in the exchange of objects. 

Mobility Support 

Since the HML migration mechanism creates no dependencies among the participating 
environments mobile devices can be supported as well. Notebooks, Personal Digital Assistants 
(PDA) and eventually even advanced mobile phones will be able to participate in the migration 
of objects and can operate disconnectedly on their own after objects have been migrated. 

In the context of collaboration, knowledge workers will be able to migrate objects onto their 
notebooks, change these objects at customer sites or during plane flights and migrate the 
objects to the workstations of coworkers. The HLM migration mechanism explicitly supports the 
disconnected use of the migrated objects, provided that these objects do not require 
themselves, for example a connection to the Internet. 

Collaboration can also be initiated ad hoc among virtual teams of knowledge workers that are 
assembled so solve specific problems within extremely tight schedules. The HLM migration 
mechanism does support collaboration via the Internet without the use of a central server and 
regardless of the form or location of the Internet connection used. 

Collaborative Applications 

In order to support the migration and combination of objects that represent ideas, collaborative 
applications have to be based on a language environment that can be employed by users to 
capture ideas as objects and that implements the HLM migration mechanism. The language 
environment will also expose the semantics of migrated objects and can be used to combine 
migrated objects with local ones to form new higher order objects. 

The HLM migration mechanism has to be enhanced in several ways in order to support the 
collaborative applications described above. Standard interfaces for graphical user interfaces 
have to be defined including support for drag and drop. The management of interface definitions 
has to be integrated with the language environment particular collaborative application as well. 
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Additional enhancements of the HLM migration mechanism can also simplify the usage of 
collaborative applications. For example a versioning mechanism for interface definitions will 
ease the evolutionary use of migrated objects as independent changes to existing interfaces 
can be managed. 

The security of the collaborative applications can be addressed through a check of migrated 
objects for malicious functionality. The opposite check, whether a destination environment may 
act maliciously against a migrated object is not relevant as the object is migrated completely 
into the control of the destination environment anyway. 

Probably the hardest problem with regard to collaborative applications will be support for 
secrecy by the HLM migration mechanism in order to solve for example copyright issues. As a 
migrated object may include intellectual property in the form of algorithms or data, neither 
source code representations nor a translation into the language of the destination environments 
are possible. The problems of security and secrecy provide opportunities for further research. 

Despite the pervasiveness of today’s applications that are oriented to static data some 
innovative work in the direction described above has already been done in the Openstep 
[Cra1996]; Penpoint [CaS1991], SOM [IBM1993] and Taligent [CoP1995] environments, which 
unfortunately did not prevail in the commercial marketplace. 

The use of migration for mobile devices has been proposed for the homogeneous case in the 
agent systems LIME [PMR1999], MASE [KRR1998], TACOMA Lite [Joh1998] and TNET 
[HCS1997]. Even the use of adaptation has been proposed to address the differences between 
stationary and mobile systems [Sat1998]. 

5.2 Hypermedia Authoring 

The term “hypertext” coined by Ted Nelson [Nel1987] denotes the interconnection of textual 
information with references that can be used to jump from the representation of one piece of 
text to a referenced piece of text. The best know example for such a system is the World Wide 
Web that presents pages formatted in the Hypertext Markup Language and allows the user to 
access a referenced page upon the click of a button via the Internet. 

Hypermedia systems extend the notion of hypertext to all kinds of media as well as to software 
artifacts. A hypermedia reference may not only point to a piece of text but for example to a 
sequence of frames of a motion picture or even to an event in a simulation. Simple multimedia 
extensions like graphics, animations, sound and video can be embedded in web-pages as well. 
But full hypermedia capabilities that are seamlessly integrated are only available within 
experimental and specifically designed systems like Intermedia [YS+1988] that are often 
implemented using object-technology. 

Java applets [Sun1999] can be used to extend the hypertext metaphor. The applet technology 
transfers the necessary functionality and some parameters to the requesting web-browser but is 
only able to create new objects locally within the browser. The content presented by applets in 
general is in most cases read-only although network connections can be established by applets 
within defined limitations. 

An integration of the HLM migration mechanism into web-browsers will allow existing objects to 
be migrated to web-browsers including their state and behavior. The migrated objects are fully 
functional and can also include an edit mode that lets the user change their contents or 
appearance. The modified objects can then be migrated back to their origin in order to make 
those changes persistent.  

Alternatively, the changed objects can be migrated to a different server-systems in order to 
implement for example a review workflow among a team of editors. Which alternative is chosen 
does only depend upon the initiation of the appropriate migration requests from within the web-
browser. 

Consequently, an interactive hypermedia authoring environment can be build on top of existing 
technology that can be extended to new media types with comparatively low effort. The HLM 
migration mechanism will have to be implemented within the participating server environments 
and web-browsers using existing scripting languages or embedded Java environments. 
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The multimedia objects to be used will have to be designed to be migrateable and appropriate 
standard interfaces have to be defined to access the display and interaction functionality 
provided by web-browsers. The user interfaces of the multimedia objects will allow read-only as 
well as editing access. The web-browsers will have to implement a menu command that can be 
used to migrate the changed objects back to the server. 

The hypermedia extension described represent the minimal extensions that have to be made to 
implement a web-browser based hypermedia system. Although a hypermedia system based 
solely on the HLM migration mechanism may be able to provide more functionality an 
integration based on existing Internet standards seems more appropriate. 

5.3 Mobile Agents 

Software entities that decide for themselves where to move to between nodes of a network are 
called mobile agents or autonomous agents32 [Wei1999]. Mobile agents are created within a 
source system for a specific purpose and released into a network of nodes that are able to host 
them.  

Mobile agents do not necessarily have to return to their point of origin but may perform their 
work continuously or exit silently when finished. Some systems are able to let agents cooperate 
in fulfilling their work because complex tasks can be performed through a suitable combination 
of comparatively simple agents [MB+1998]. 

Mobile agent technology is tightly related to object migration which can be used as a base 
technology for the implementation of mobile agents [Kna1996]. The design of agents systems 
has also let to the development of new migration techniques [BGP1997]. However, most 
existing agent systems are implemented in the context of homogeneous software environments. 

Many agent systems are based on virtual machine technology, especially the Java environment 
[GJS1996] as for example Voyager [Gla1998]. Only few agents system address heterogeneity 
independently of virtual machines , for example through the requirement of new language 
implementations instead like Ara [PeiS997]. 

Apart from being able to overcome the differences of the hardware, operating systems and 
languages used the HLM migration mechanism can be especially beneficial for the 
implementation of mobile agents as the migration mechanism works with existing language 
environments.  

The functionality of the agent system to be implemented for each participating platform in 
addition to the HLM migration mechanism can be minimized, as only the necessary functionality 
for an agent to execute will be added to a target environment. The developer of an agent 
system can concentrate on the agent functionality and has to consider the mobility aspect only 
as far as the migration architecture of the HLM migration mechanism is concerned. 

In order to support agent migration, the HLM migration mechanism has to be implemented for 
the participating environments. Additionally some specific standard interfaces will have to be 
defined for the interaction with the agent system that needs to be implemented by the 
participating environments as well.  

The agents themselves can be implemented as single objects or small groups of dependent 
objects. Unfortunately, agents usually self-initiate their migration using a go() statement or 
some similar mechanism. Such an initiation can not be used in the context of the HLM migration 
mechanism, as the objects to be migrated have to be inactive.  

An agent implemented on top of the HLM migration mechanism may however register a request 
to be migrated with a modified OM_Porter object which queues the request and services them 
one at a time. This restriction does not appear to be to limiting as agent systems tend to provide 
hundreds of agents and individual migration request will probably have to be queued anyway. 

The general pros and cons of agents are discussed by Chess et al. [CHK1996] and migration 
between heterogeneous agent environments has also been discussed [GSC2000]. The transfer 

                                                 
32  The term autonomous agent is also used for robot systems that are able to perform task without help.  
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of functionality has already been proposed [Pal1997] in the context of homogeneous systems 
including repository based solutions [AcS1996] to the problem. 

5.4 Team Development 

An almost nature application for the HLM migration mechanism seems to be the support of 
software development teams. As object-based software project are often complex and 
implemented by a team of software engineers, each engineer will have to develop some 
interfaces on his own and integrate his contribution into the overall solution later. 

The HLM migration mechanism can be used to test the independently developed interfaces 
whether they can be integrated or not. However, this would only make sense for applications 
that are already developed for the HLM migration mechanism as the overhead to provide 
migrateability for the object to be tested would be prohibitive. 

The HLM migration mechanism can nevertheless be beneficial in a different area of software 
development. An analysis and design tool can be implemented using the HLM migration 
mechanism in such a way that independently developed parts of a software design can be 
combined through migration of the objects that represent the corresponding formal 
specifications. 

If for example a design is based on diagrams of the Universal Modeling Language (UML) the 
objects that represent the various symbols of the UML diagram can be migrated between 
design tools of different vendors. The independently developed software designs can then be 
combined into a single UML diagram.  

As UML diagrams are standardized, a standard interfaces of the HLM migration mechanism will 
have to be defined for each element of an UML diagram. These standard interfaces can then be 
implemented through wrappers within the different design tools that also have to implement the 
HLM migration mechanism natively. 

A migration of an UML diagram between design tools of different vendors will then only transfer 
the state of the objects that define the diagram within the source environment as their 
dependent  interfaces will all be already supported by the destination, i.e. the design tool of 
another vendor natively. 

Alternatively a formalized textual representation of the elements of the UML diagrams can be 
used in place of the GOAL language and the negotiation algorithm can be used to match 
differences of UML diagrams directly. Unfortunately, such an approach would require an 
complete reimplementation of the migration mechanism, that would thus also be confined to the 
migration of UML diagrams. 

5.5 Distributed Debugging 

Software systems that are spread over a number of network nodes are difficult to debug. The 
nature of networks, especially the communication latency as well as the independence of the 
processing nodes imply a great range of possible problems. Object technology can simplify the 
design of distributed systems but does not eliminate their inherent problems. 

Difficult problems like sub-optimal performance can persist for semantically correct distributed 
software systems even if network management is enforced. Due to subtle race conditions 
among network components, performance tuning of distributed applications conducted while 
running the distributed program in question mighty not be successful, depending in the 
circumstances. 

Debugging applications over the network changes the pattern of network conditions these 
applications experience and may thus prevent the identification of certain problems for example 
network performance bottlenecks. While such a problem can not be diagnosed with debugging 
enabled it may still exist when the application is run without debugging. 

One solution to the problem of distributed debugging could be the use of debugging probes that 
can migrate from node to node isolating remaining problems that other debugging facilities have 
failed to identify. The debugging probes will be able to gather debugging information without 
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requiring network communication and with only minimal impact on local systems during 
debugging. 

The gathered information can be transferred to a central debugging console after a test phase 
has been conducted or direct action can be taken locally at the debugging site without the need 
to contact central administrators. Depending on the nature of the application to be debugged 
and of the debugging tools, the debugging probe may itself be able to migrate closer to the 
potential source of a problem. 

Besides overcoming the usual differences of hardware and operating systems that are the norm 
in distributed systems today, the use of the HLM migration mechanism to implement debugging 
probes will probably be able to significantly decrease the debugging time in situations like to 
one describe above.  

Being able to move debugging functionality to the location of potential problems will help to 
shorten the turn round cycle that is necessary for the effective debugging of the complex 
behavior of distributed systems. This is especially true for heterogeneous systems as the 
debugging functionality does not have to be ported manually to all participating environments. 

In order to use HM migration mechanism for distributed debugging purposes the concept of a 
callback mechanism needs to be supported through appropriate standard interfaces. The 
program to be debugged needs to be augmented with code instrumentation to send debugging 
information in the form of callback messages to a migrateable debugger object. 

The HLM migration mechanism will have to be implemented within the participating distributed 
environments. Depending on the specific problem encountered a universal debugging probe 
can be migrated to the suspicious systems that will just gather a log of events for later analysis. 
More specific functionality like a control of network parameters or the emission of a signal if 
certain thresholds are surpassed can be implemented individually. 

The use of HLM migration mechanism for distributed debugging will enable a more interactive 
style of debugging. If the debugging probes are implemented as a modular set of dependent 
objects modifications of the debugging functionality can be migrate e.g. in the form of additional 
analysis objects more frequently and will allow for a quicker isolation of problems within an 
distributed system. 

The presented notion of an autonomous mobile distributed debugger that represents a 
crossover of object migration and mobile agent technology has already been prototyped for the 
tcl based agent system AGNI [Ra+1998] in the context of homogeneous migration among 
procedural language environments.  

5.6 Network-Management 

In the age of the Internet computer networks are constructed from a multitude of devices 
supplied by different manufacturers. Stationary network routers, telecommunication equipment, 
satellites, wireless relay stations, and all kinds of mobile devices are some components of the 
increasingly complex spectrum of networking technology. 

The heterogeneous nature of the components that build today’s network makes it difficult to 
maintain the quality of service that is expected. At present networks are managed through the 
use of network management protocols that send a periodic flow of status information through a 
hierarchically structured lattice of managed devices to a central management console. 
Commands and configuration information is sent downstream in order to take action when 
problems arise. 

Using this common technique a network manager relies on the network itself to communicate 
management information. This widely used approach can be problematic in critical situations 
even if out of band communication channels are used. While inevitable if no separate 
communication links are available the added communication decreases the available network 
bandwidth and the probability that management commands get through decreases further if the 
network component to be managed is already near congestion. 
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Despite the fact that the design of today’s network management tools incorporate object 
technology to represent network devices, the technology of objects is not used to its full 
potential. With the help of the HLM migration mechanism a different approach to network 
management can be implemented. 

Rather then gathering network information centrally and sending commands that in critical 
situations may never arrive to remote network devices the devices themselves can be enabled 
to act. Management directives can be implemented as objects that are migrated to distributed 
network devices. The objects can manage these devices independently even in the presence of 
network failures. 

The management objects to be migrated and their encapsulated decision criteria can be 
implemented centrally and distributed among diverse devices using the HLM migration 
mechanism. Differences of hardware and operating-systems of the various devices involved can 
be overcome in the context of the HLM migration mechanism through a cross-compilation of the 
interface definition to suitable native code that is transferred directly to the devices during the 
transfer of semantics phase. 

The migration of objects with new directives from a central management systems to the 
distributed heterogeneous devices can be accomplished using cross-compilation of each of the 
different hardware and software platforms involved. The available functionality of a particular 
device will need to be determined using a modified version of the negotiation algorithm that also 
works with compiled executables. 

The migrated management objects will be able to manage their respective devices even if a 
central management facility can not be reached. Logically centralized changes of the directives 
can be distributed quickly among the diverse set of participating devices through the 
management of sets of devices with equal functionality. A cross-compilation will only be 
necessary once for each set not for each device and distributed compile servers can be used to 
provide the necessary language support. 

In a related approach the HLM migration mechanism can be used to distribute active network 
probes for the purpose of preventive maintenance of network devices. Objects that implement 
testing and upgrading routines can move from node to node within an network, gather quality of 
service statistics, report potential problems and perform maintenance tasks like software 
upgrades. 

Using the HLM migration mechanism in combination with cross-compilation network probes will 
be able to move between different network devices and perform configuration and maintenance 
work even in situations where for example management communication from the outside is no 
longer possible due to a device misconfiguration. A network probe object that resides at such a 
device while the misconfiguration happens will be able to determine the communication 
breakdown and reset the configuration of the device to the last known functional configuration. 

The use of both kinds of migratable network management objects will probably lower the 
number of cases where an on-site action of human personnel will be necessary significantly. 
Through preventive maintenance the need to actually visit a site for maintenance work can 
probably be limited to pure hardware related problems. 

The use of the HLM migration mechanism will allow the enforcement of a single standard for the 
management of the quality of service and the maintenance procedures across diverse devices. 
The negotiation mechanism can also be used to keep object based network operating and 
management software up to date among heterogeneous network equipment. 

The use of migration technology for network management has be analyzed quantitatively in the 
in the context of mobile agents [BaP1998] identifying several areas of potential benefits. In the 
context of homogeneous migration the use of object or agent migration has already been 
proposed for high speed ATM networks [HaB1998], for mobile network management 
[SaM1999], for UTMS networks [KüP1998] as well as for the deployment of network services in 
general [KrS1999]. 
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6 Summary and Perspective 

The work at hand addresses heterogeneous object migration among existing language 
environments. It provides a detailed analysis of existing migration systems that determines 
similarities as well as differences among the various implementations. A characterization of the 
possible levels of heterogeneity prepares the basis for a discussion of the existing as well as the 
potential approaches to overcome heterogeneity. 

The analysis of existing migration systems reveals that migration between heterogeneous 
environments is only insufficiently supported. Existing approaches to heterogeneous migration 
at the language level require significant changes to existing language environments or require 
new language implementations altogether. 

As the main contribution of this work a novel migration mechanism is designed that is able to 
migrate objects including their semantics between heterogeneous language environments 
without changes to the definitions of the migrated objects during migration or to the participating 
environments prior to migration. A prototypical implementation of the mechanism is developed 
and a sample application provides a proof of concept. 

The design of the mechanism called Heterogeneous Language Migration or HLM consists of a 
migration architecture that enables the determination of sets of dependent objects that have to 
be migrated collectively. The extraction of objects out of running applications is achieved 
through an appropriate design of the application objects while avoiding the need for support 
from language runtime environments. 

The HLM migration mechanism uses a negotiation algorithm that determines which part of the 
semantics the objects to be migrated depend upon is already supported by a particular 
destination environment and which part needs to be transferred to the destination environment. 
Source code abstractions are used for the transfer of the semantics and the state of objects. 

Based on a number of common language concepts the HLM migration mechanism is able to 
migrate objects that adhere to the migration architecture between existing heterogeneous 
language environments. The HLM migration mechanism is implementation prototypically for the 
Java and CLOS languages and it can also be ported to other environments effortlessly. 

In order to aid the developer in the design of applications of the HLM migration mechanism 
some guidelines for the construction of applications are given and development tools that check 
the preconditions of migration are proposed. A sample application is used to demonstrate the 
feasibility of the HLM migration mechanism as well as its benefits in practical situations. 

As the HLM migration mechanism is limited by some implementation constraints as well as by 
the objectives various augmentations of the mechanism can be proposed. An analysis of the 
characteristics of the HLM migration mechanism is provided as a basis for the discussion of 
possible augmentations. Enhancements that follow the design of the mechanism as well as 
extensions that overcome the constraints implied by the objectives are suggested.  
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Enhancements of the HLM migration mechanism are able to optimize consecutive migrations, 
add further standard interfaces, enlarge the applicability of the mechanism to objects that can 
be encapsulated and add support for location independence through the use of proxy objects. 
These enhancements illustrate the scope of the HLM migration mechanism. It is applicable in 
most practical cases although the design of applications has to be changed accordingly. 

Extensions to the HLM migration mechanism are proposed to challenge the limitations implied 
by the objectives. Adaptations of objects to particular destination environments and language 
concepts can be implemented if objects are allowed to be changed during migration. New forms 
of the negotiation and the migration algorithm used are discussed in the context of this 
technique. 

As changes to the participating language environment are considered, an extension to the HLM 
migration mechanism that supports the transfer of computations is described in detail. 
Additional language concepts can be supported through enhancements and extensions of the 
HLM migration as well although some will require prohibitively complex implementations. An 
analysis of existing languages reveals that only few comply with the prerequisites of migration in 
general while most could participate in migrations based on the HLM migration mechanism in 
principle. 

The scope of applicability of the HLM migration mechanism as well as potential benefits of its 
usage are discussed. A new kind of collaborative applications can be created through the use of 
the HLM migration mechanism and a number of other promising application areas have been 
identified as well. 

Future Research 

Due to the limitations of the HLM migration mechanism two main areas of further research can 
be identified. The prototypical implementation of the mechanism can be improved significantly 
as such changes will be necessary to gain broader experience with applications of 
heterogeneous language migration. 

Although a number of enhancements can be implemented in the context of the prototypical 
implementation, some fundamental extensions to the HLM migration mechanism will 
nevertheless require a reimplementation of the mechanism. A split into several code streams for 
the investigation of different extensions appears to be inevitable. 

In order to make the prototypical implementation of the HLM migration mechanism more 
practical and to achieve better performance, the language processing capabilities have to be 
improved and the support for additional standard interfaces, especially support for graphical 
user interface has to be added. 

Experiments with variations of the negotiation algorithm as well as with adaptive migration can 
be performed on the basis of the existing implementation. This includes structural interface 
equivalence and Informed migration. The prototypical implementation will have to be enhanced 
with the necessary analytical and adaptive capabilities though. 

A more challenging task will be the implementation of support for proxy objects that can be 
combined with fragmented migration and eventually support for a combination of migration and 
replication. These extensions of the HLM migration mechanism can still be investigated in the 
context of the prototypical implementation although additional language processing capabilities 
will be required to generate sovereign and proxy interfaces. 

Whether the support for heterogeneous computations in the context of the HLM migration 
mechanism will be investigated remains questionable as significant changes to participating 
language environments will be necessary. Such changes may be possible in the context of 
interpretive language environments though. 

Apart from these obvious research challenges a number of side-problems can be investigated 
as well. A versioning mechanism for interfaces can be combined with the HLM migration 
mechanism and will be beneficial for several application areas. Security and secrecy issues will 
also have to be investigated in order to be able to use an advanced version of the HLM 
migration mechanism in practice. 



 231 

  231 

Appendix 

The following additional information is available: 

A Syntax-Notation ................................................................................................................. 232 

B GOAL Syntax..................................................................................................................... 233 

C ORL Syntax........................................................................................................................ 235 

D Standard Interfaces ........................................................................................................... 236 

E Example ............................................................................................................................. 241 

F Literature ............................................................................................................................ 253 

 



 232 

  232 

A  Syntax-Notation 

The following notation is used to specify the syntax: 

( a ) grouping of syntactical rules 

a b c ... a sequence of syntactical elements 

a | b | c ... one of the given alternatives may apply 

{ a } an optional element 

{ a },* the element may occur zero or more times separated by the given 
separator, which in the example here is a comma , sign 

{ a };+ the element may occur one or more times separated by the given 
separator, which in the example here is a semicolon ; sign 

non-terminal non-terminals are shown in an italics font 

terminal terminal are shown in a bold fixed width font 
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B  GOAL Syntax 

The Generalized Object Abstraction Language (ORL) has the following syntax: 

interface_declaration interface interface_identifier { : interface_identifier } 
( { { component };* { signature_declaration };* }; | ; ) 

interface_definition interface interface_identifier { : interface_identifier } 
( { { component };* { signature };* }; | ; ) 

component component_interface component_identifier  

component_interface interface_identifier 

signature_declaration signature_interface signature_identifier  
( { parameter },* )  
{ { { variable };+ } } ; 

signature signature_interface signature_identifier  
( { parameter },* )  
{ { variable };* { statement };+ } ; 

signature_interface interface_identifier | void 

parameter parameter_interface parameter_identifier 

parameter_interface interface_identifier 

variable variable_interface variable_identifier 

variable_interface interface_identifier 

statement if | 
while |  
do |  
return | 
assignment |  
message_send | 
{ { statement };* } 

if if ( expression ) then statement { else statement } 

while while ( expression ) statement 

do do statement while ( expression )  

return return expression 

assignment assignee = expression 

assignee variable_identifier 

message_send recipient { message } * 

recipient this | 
parameter_identifier |  
variable_identifier 

message . signature_identifier ( { expression },* ) 

expression - sub_expression | 
! sub_expression | 
sub_expression + sub_expression | 
sub_expression - sub_expression | 
sub_expression * sub_expression | 
sub_expression / sub_expression | 
sub_expression & sub_expression | 
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sub_expression | sub_expression | 
sub_expression < sub_expression | 
sub_expression > sub_expression | 
sub_expression <= sub_expression | 
sub_expression => sub_expression | 
sub_expression == sub_expression | 
sub_expression != sub_expression | 
sub_expression 

sub_expression constant |  
instanciation | 
{ ( interface_identifier ) } access | 
{ ( interface_identifier ) } message_send | 
( expression ) 

access this | 
super | 
variable_identifier |  
parameter_identifier 

instanciation new interface_identifier () 

constant boolean_constant | 
integer_constant | 
float_constant | 
character_constant | 
string_constant | 
null 

interface_identifier identifier 

component_identifier identifier 

signature_identifier identifier  

parameter_identifier identifier 

identifier alpha { ( alpha_num | _ ) } * 

boolean_constant true | false 

integer_constant { - } { numeral }+  

float_constant { - } { numeral }+  
{ ( , | . ) { numeral }+ } 
{ ( e | E ) { + | - } { numeral }+ } 

character_constant ´ character ´ 

string_constant ” { character } * ” 

character numeral | alpha | special 

numeral 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 

alpha a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | 
v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | 
Q | R | S | T | U | V | W | X | Y | Z 

special ! | " | # | $ | % | & |’ | ( | ) | * | + | , | - | . | / |: | ; | < | = | > |? | ` 
| { | | | } | ~ 
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C  ORL Syntax 

The Object Representation Language (ORL) has the following syntax: 

representation rebuild | reinitialization 

rebuild { interface_identifier object_migration_identifier }* 

reinitalization { ( object_migration_identifier { component_representation }* ) }* 

component_representation relative_object_identity | 
boolean_representation | 
integer_representation | 
float_representation | 
char_representation | 
string_representation | 
representation_list | 
* 

relative_object_identity :object_migration_identifier 

representation_list ( {component_representation }+ ) 

object_migration_identifier { numeral }+ 

interface_identifier identifier 

identifier alpha { ( alpha_num | _ ) } * 

boolean_representation true | false 

integer_representation { - } { numeral }+ 

float_representation { - } { numeral }+  
{ ( , | . ) { numeral }+ } 
{ ( e | E ) { + | - } { numeral }+ } 

character_representation ´ character ´ 

string_representation ” { character } * ” 

character numeral | alpha | special 

numeral 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 

alpha a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | 
v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | 
Q | R | S | T | U | V | W | X | Y | Z 

special ! | " | # | $ | % | & |’ | ( | ) | * | + | , | - | . | / |: | ; | < | = | > |? | ` 
| { | | | } | ~ 
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D  Standard Interfaces 

The following standard Interfaces are defined for the HLM migration mechanism: 

Interface OM_Object { 
 OM_Boolean identical(OM_Object o); 
 OM_String interface_name(); 
 OM_Boolean isa_migrateable(); 
}; 

interface OM_Boolean { 
 OM_Boolean not(); 
 OM_Boolean and(OM_Boolean b); 
 OM_Boolean or(OM_Boolean b); 
 OM_Boolean xor(OM_Boolean b); 
}; 

interface OM_Integer { 
 OM_Boolean is_equal(OM_Integer i); 
 OM_Boolean is_less(OM_Integer i); 
 OM_Boolean is_less_equal(OM_Integer i); 
 OM_Boolean is_greater(OM_Integer i); 
 OM_Boolean is_greater_equal(OM_Integer i); 
 OM_Integer plus(OM_Integer i); 
 OM_Integer minus(OM_Integer i); 
 OM_Integer times(OM_Integer i); 
 OM_Float divide_by(OM_Integer i); 
 OM_Float toFloat(); 
}; 

interface OM_Float { 
 OM_Boolean is_equal(OM_Float f); 
 OM_Boolean is_less(OM_Float f); 
 OM_Boolean is_less_equal(OM_Float f); 
 OM_Boolean is_greater(OM_Float f); 
 OM_Boolean is_greater_equal(OM_Float f); 
 OM_Float plus(OM_Float f); 
 OM_Float minus(OM_Float f); 
 OM_Float times(OM_Float f); 
 OM_Float divide_by(OM_Float f); 
 OM_Integer toInteger(); 
}; 

interface OM_Character : OM_Object { 
 OM_Boolean set_this(OM_Character om_c); 
 OM_Character get_this(); 
 OM_Character set_eof(); 
 OM_Boolean is_equal(OM_Character om_c); 
 OM_Boolean is_less(OM_Character om_c); 
 OM_Boolean is_less_equal(OM_Character om_c); 
 OM_Boolean is_greater(OM_Character om_c); 
 OM_Boolean is_greater_equal(OM_Character om_c); 
 OM_Boolean is_printable(); 
 OM_Boolean is_nonprintable(); 
 OM_Boolean is_whitespace(); 
 OM_Boolean is_mumber(); 
 OM_Boolean is_alpha(); 
 OM_Boolean is_alpha_num(); 
 OM_Boolean is_id_char(); 
 OM_Boolean is_eof(); 
 OM_Boolean is_exponent(); 
 OM_Boolean eq_tab(); 
 OM_Boolean eq_lf(); 
 OM_Boolean eq_cr(); 
 OM_Boolean eq_blank(); 
 OM_Boolean eq_not(); 
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 OM_Boolean eq_quotes(); 
 OM_Boolean eq_data(); 
 OM_Boolean eq_dollar(); 
 OM_Boolean eq_percent(); 
 OM_Boolean eq_and(); 
 OM_Boolean eq_quote(); 
 OM_Boolean eq_lb(); 
 OM_Boolean eq_rb(); 
 OM_Boolean eq_times(); 
 OM_Boolean eq_plus(); 
 OM_Boolean eq_comma(); 
 OM_Boolean eq_minus(); 
 OM_Boolean eq_point(); 
 OM_Boolean eq_slash(); 
 OM_Boolean eq_colon(); 
 OM_Boolean eq_semicolon(); 
 OM_Boolean eq_lt(); 
 OM_Boolean eq_equal(); 
 OM_Boolean eq_gt(); 
 OM_Boolean eq_questionmark(); 
 OM_Boolean eq_at(); 
 OM_Boolean eq_lsb(); 
 OM_Boolean eq_backslash(); 
 OM_Boolean eq_rsb(); 
 OM_Boolean eq_caret(); 
 OM_Boolean eq_underscore(); 
 OM_Boolean eq_backquote(); 
 OM_Boolean eq_lrb(); 
 OM_Boolean eq_or(); 
 OM_Boolean eq_rrb(); 
 OM_Boolean eq_tilt(); 
 OM_Integer asInteger(); 
 OM_Boolean fromInteger(OM_Integer i); 
}; 

interface OM_String : OM_Object { 
 OM_Booleam set_this(OM_String om_s); 
 OM_String get_this(); 
 OM_Boolean is_empty(); 
 OM_Boolean is_equal(OM_String om_s); 
 OM_Boolean is_less(OM_Character om_c); 
 OM_Boolean is_less_equal(OM_Character om_c); 
 OM_Boolean is_greater(OM_Character om_c); 
 OM_Boolean is_greater_equal(OM_Character om_c); 
 OM_Boolean contains(OM_Character om_c); 
 OM_Boolean contains(OM_String om_s); 
 OM_Boolean starts_with(OM_String om_s); 
 OM_Boolean ends_with(OM_String om_s); 
 OM_Boolean start_of(OM_String om_s, OM_Integer om_i); 
 OM_Integer string_length(); 
 OM_Character at(OM_Integer i); 
 OM_Boolean string_append(OM_Character om_c); 
 OM_Boolean string_append(OM_String om_s); 
 OM_Boolean string_append(OM_Integer om_i); 
 OM_Boolean string_append(OM_Float om_f); 
 OM_Boolean string_append_newline(); 
 OM_Boolean string_append_tabs(OM_Integer om_i); 
 OM_String string_copy(); 
 OM_String nth_substring(OM_Integer om_i); 
 OM_String string_left(OM_String om_s); 
 OM_String string_right(OM_String om_s); 
 OM_Character asCharacter(); 
 OM_Boolean fromCharacter(OM_Character c); 
 OM_Integer asInteger(); 



238 0   

238 

 OM_Boolean fromInteger(OM_Integer i); 
 OM_Float asFloat(); 
 OM_Boolean fromFloat(OM_Float f); 
 OM_Boolean print_to(OM_Stream s); 
}; 

interface OM_Set : OM_Object { 
 OM_Set new_tail(); 
 OM_Boolean set_this(OM_Set om_s); 
 OM_Set get_this(); 
 OM_Boolean is_empty(); 
 OM_Boolean contains_object(OM_Object om_o); 
 OM_Object get_element(); 
 OM_Set get_next(); 
 OM_Boolean set_element(OM_Object om_o); 
 OM_Boolean set_next(OM_Set s); 
 OM_Boolean clear_next(); 
 OM_Boolean union_object(OM_Object om_o); 
 OM_Boolean remove_object(OM_Object om_o); 
 OM_Boolean union_set(OM_Set s); 
 OM_Boolean intersection_set(OM_Set s); 
 OM_Boolean difference_object(OM_Object om_o); 
 OM_Boolean difference_set(OM_Set s); 
 OM_Boolean print_to(OM_Stream s); 
}; 

interface OM_Stream : OM_Object { 
 OM_Boolean set_this(OM_Stream om_s); 
 OM_Boolean set_to_standard_input(); 
 OM_Boolean set_to_standard_output(); 
 OM_Stream get_this(); 
 OM_Boolean readable(); 
 OM_Boolean writeable(); 
 OM_Character stream_read(); 
 OM_String stream_read_line(); 
 OM_String stream_read_until(OM_Character om_c); 
 OM_String stream_read_unitl_eof(); 
 OM_Boolean stream_write(OM_Character om_c); 
 OM_Boolean stream_write(OM_Integer i); 
 OM_Boolean stream_write(OM_Float f); 
 OM_Boolean stream_write(OM_String om_s); 
 OM_Boolean stream_write_newline(); 
 OM_Boolean stream_write_tabs(OM_Integer n); 
 OM_Boolean stream_flush(); 
 OM_Boolean stream_close(); 
}; 

interface OM_File : OM_Object { 
 OM_Boolean set_this(OM_File om_f); 
 OM_File get_this(); 
 OM_Boolean readable(); 
 OM_Boolean writeable(); 
 OM_Stream file_stream(); 
 OM_Boolean set_filename(OM_String om_s); 
 OM_Boolean open_readable(); 
 OM_Boolean open_writeable(); 
 OM_Character file_read(); 
 OM_Boolean file_write(OM_Character om_c); 
 OM_Boolean file_close(); 
}; 

interface OM_Directory : OM_Object { 
 OM_Boolean set_this(OM_Directory om_d); 
 OM_Directory get_this(); 
 OM_Boolean is_empty(); 
 OM_String get_entry(); 
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 OM_Directory get_next(); 
 OM_Directory get_previous(); 
 OM_Boolean set_name(OM_String om_s); 
 OM_Boolean set_entry(OM_String om_s); 
 OM_Boolean set_next(OM_Directory om_d); 
 OM_Boolean set_previous(OM_Directory om_d); 
 OM_Boolean dir_open(); 
}; 

interface OM_Socket : OM_Object { 
 OM_Boolean set_this(OM_Socket om_s); 
 OM_Socket get_this(); 
 OM_Stream socket_stream(); 
 OM_Boolean socket_open(OM_String om_host, OM_Integer port); 
 OM_Character socket_read(); 
 OM_Boolean socket_write(OM_Character c); 
 OM_Boolean socket_close(); 
}; 

interface OM_ServerSocket : OM_Object { 
 OM_Boolean set_this(OM_ServerSocket om_s); 
 OM_ServerSocket get_this(); 
 OM_Stream socket_stream(); 
 OM_Boolean socket_listen_at_port(OM_Integer port); 
 OM_Character socket_read(); 
 OM_Boolean socket_write(OM_Character om_c); 
 OM_Boolean socket_close(); 
}; 

interface OM_Environment : OM_Object { 
 OM_Boolean environment_initialize(); 
 OM_Stream terminal_stream(); 
 OM_Boolean load_interface(OM_String in); 
 OM_Boolean generate_interface(OM_Interface i,  
      OM_String bd, OM_Integer l); 
 OM_Boolean implement_interface(OM_Interface i, OM_String om_s); 
 OM_Object instanciate(OM_String in); 
 OM_Integer random_integer(OM_Integer limit); 
}; 

interface OM_Porter : OM_Object { 
 OM_Boolean set_environment(OM_Environment e); 
 OM_Environment get_environment(); 
 OM_Boolean set_base_dir(OM_String bd); 
 OM_String get_base_dir(); 
 OM_MigrateableSet get_migrated(); 
 OM_Boolean set_owner(OM_Owner o); 
 OM_Owner get_owner(); 
 OM_Integer new_migration_id(); 
 OM_Boolean supported_interfaces(OM_String istr); 
 OM_Boolean process_migration(OM_InterfaceSet ip, 
      OM_InterfaceSet si, 
      OM_InterfaceSet im); 
 OM_Boolean process_interface(OM_Interface i, 
      OM_InterfaceSet ip, 
      OM_InterfaceSet si, 
      OM_InterfaceSet im); 
 OM_Boolean initialize_representation(OM_String r_str, 
      OM_MigrateableSet ms); 
 OM_Boolean collect_representations(OM_String r_str, 
      OM_MigrateableSet ms); 
 OM_Interface resolve_interface_name(OM_String in); 
 OM_Migrateable lookup_by_relative_identity(OM_Integer i); 
 OM_Boolean implement(OM_String s); 
 OM_Boolean represent(OM_String s, OM_MigrateableSet); 
 OM_Boolean base_interface(OM_String om_s); 
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 OM_Boolean migrate_local(OM_Migrateable m, OM_Owner lo, 
      OM_Owner ro); 
 OM_Boolean migrate_via_network(OM_Migrateable m, 
      OM_Owner o, 
      OM_String host, 
      OM_Integer port,); 
 OM_Boolean handle_migration_via_network(OM_Owner o, 
      OM_Integer port); 
 OM_Boolean migrate_via_filesystem(OM_Migrateable m, 
      OM_Owner o, 
      OM_String dir); 
 OM_Boolean handle_migration_via_filesystem(OM_Owner o, 
      OM_String dir); 
 OM_Boolean write_control_file(OM_String filename); 
 OM_Boolean wait_for_control_file(OM_String directory, 
      OM_String filename); 
 OM_Boolean porter_commit_migration(); 
 OM_Boolean porter_abort_migration(); 
}; 

interface OM_Owner : OM_Object {  
 OM_Boolean set_porter(OM_Porter p); 
 OM_Porter get_porter(); 
 OM_Boolean register_migrateable(OM_Migrateable m); 
 OM_Boolean ready_to_let_component_migrate(OM_Integer mid, 
      OM_Migrateable m); 
 OM_Boolean deactivate(OM_Migrateable m); 
 OM_Boolean activate(OM_Migrateable m); 
 OM_Boolean reactivate(OM_Migrateable m); 
}; 

interface OM_Migrateable : OM_Owner { 
 OM_Boolean set_relative_identity(OM_Integer i); 
 OM_Integer relative_identity(); 
 OM_Boolean register_owner(OM_Owner m); 
 OM_Boolean unregister_owner(OM_Owner m); 
 OM_Boolean ready_to_migrate(OM_Integer mid,  
      OM_Owner o, OM_MigrateableSet ms); 
 OM_Boolean ready_to_let_owner_migrate(OM_Integer mid,  
      OM_Owner o); 
 OM_Boolean collect_interfaces(OM_Porter p, OM_InterfaceSet ip); 
 OM_Boolean collect_migrateables(OM_MigrateableSet mm); 
 OM_Boolean representation(OM_String r_str,  
      OM_MigrateableSet ms); 
 OM_Boolean rebuild(GOAL_Token tl, OM_Porter p); 
 OM_Boolean initialize_after_migration(OM_Porter p, OM_Owner o); 
 OM_Boolean deactivate(OM_Porter p); 
 OM_Boolean abort_migration(OM_Porter p); 
 OM_Boolean activate(OM_Porter p); 
 OM_Boolean reactivate(OM_Porter p); 
 OM_Boolean release(OM_Porter p) 
}; 

The following additional interfaces (in alphabetical order) are used to implement the HLM 
migration mechanism but are not listed here for reasons of space: 

OM_Access , OM_Assignment , OM_Component , OM_ComponentSet , OM_Do , OM_Error , 
OM_Expression , OM_If , OM_Index , OM_IndexExpression , OM_IndexExpressionSet 
, OM_IndexSet , OM_Instantiation , OM_Interface , OM_InterfaceSet , OM_Message 
, OM_MessageSend , OM_MessageSet , OM_MigrateableSet , OM_OwnerSet , 
OM_Parameter , OM_ParameterExpressionSet , OM_ParameterSet , OM_Return , 
OM_Scanner , OM_Signature , OM_SignatureSet , OM_Statement , OM_StatementSet , 
OM_SubExpression , OM_SyntaxElement , OM_SyntaxElementSet , OM_Token , 
OM_Variable , OM_VariableSet , OM_While , GOAL_Token 



 241 

  241 

E  Example 

The following source code listing represents the interface definition of the OM_Derivative 
interface used in the example of chapter 3 on page 125. The OM_Derivative interface is 
dependent on the OM_DerivativeSet and the OM_DerivativeShell interfaces that are not 
shown here for reasons of space. The OM_DerivativeSet interface provides normal set 
operations for OM_Derivative objects. The OM_Derivative Shell provides the command 
line user interface and acts as an owner object of OM_Derivative objects. 

//************************************************************************ 
// OM_Derivative.goal 
// (C) 2000 Michael P. Wagner 
 
//*********************************************************************** 
interface OM_Derivative : OM_Migrateable { 
 OM_String name; 
 OM_String underlying_name; 
 OM_Integer premium_price; 
 OM_Integer execution_price; 
 OM_Integer cap_price; 
 OM_String expiration_date; 
 OM_Derivative owner; 
 OM_DerivativeSet sub_derivatives; 
 OM_DerivativeShell dshell; 
 
 //***************************************************************** 
 OM_Boolean derivative_init(OM_DerivativeShell ds) 
 { 
  dshell = ds; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_Boolean set_dshell(OM_DerivativeShell s) 
 { 
  dshell = s; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_Boolean set_name(OM_String s) 
 { 
  name = s; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_String get_name() 
 { 
  return name; 
 }; 
 
 //***************************************************************** 
 OM_Boolean set_underlying_name(OM_String s) 
 { 
  underlying_name = s; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_String get_underlying_name() 
 { 
  return underlying_name; 
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 }; 
 
 //***************************************************************** 
 OM_Boolean set_premium_price(OM_Integer p) 
 { 
  premium_price = p; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_Integer get_premium_price() 
 { 
  return premium_price; 
 }; 
 
 //***************************************************************** 
 OM_Boolean set_execution_price(OM_Integer ep) 
 { 
  execution_price = ep; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_Integer get_execution_price() 
 { 
  return execution_price; 
 }; 
 
 //***************************************************************** 
 OM_Boolean set_cap_price(OM_Integer cp) 
 { 
  cap_price = cp; 
  return true; 
 }; 
 
 //***************************************************************** 
 OM_Integer get_cap_price() 
 { 
  return cap_price; 
 }; 
 
 //***************************************************************** 
 // compute value based on purchase price 
 OM_Integer calc_value(OM_Integer pp) 
 { 
  OM_Integer v; 
  OM_Integer execution; 
  OM_Integer cap; 
  OM_Integer premium; 
  OM_Integer quote; 
  OM_Integer subv; 
  OM_Boolean subflag ; 
 
  execution = this.get_execution_price(); 
  cap = this.get_cap_price(); 
  premium = this.get_premium_price(); 
  if (underlying_name != null) { 
   quote = dshell.get_quote(underlying_name); 
  } else { 
   quote = 0; 
  }; 
 
  subflag = false; 
  v = 0; 
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  if (sub_derivatives != null) { 
   if (sub_derivatives.is_empty () == false) { 
    subv = sub_derivatives.calc_value(pp); 
    if (pp > 0) { 
     v = subv - pp; 
    } else { 
     v = subv; 
    }; 
    subflag = true; 
   }; 
  }; 
  if (subflag != true) { 
   if (cap > execution) { 
    // Call 
    if (quote < cap) { 
     if (quote > execution) { 
      // in the money 
      v = quote - execution - premium - pp; 
     } else { 
      // at or out of the money 
      v = - pp; 
     }; 
    } else { 
     // execution pending 
     v = cap - execution - premium - pp; 
    }; 
   } else { 
    // Put 
    if (quote > cap) { 
     if (quote < execution) { 
      // in the money 
      v = execution - quote - premium - pp; 
     } else { 
      // at or out of the money 
      v = -pp; 
     }; 
    } else { 
     // execution pending 
     v = execution - cap - premium - pp; 
    }; 
   }; 
  }; 
  return v; 
 }; 
 
 //***************************************************************** 
 // list derivatives to a string 
 OM_String derivative_list(OM_String ps, OM_Integer p, OM_Integer pp) 
 { 
  OM_String rs; 
  OM_String subps; 
  OM_String subrs; 
  OM_Integer value; 
  OM_Integer execution; 
  OM_Integer cap; 
  OM_Integer premium; 
  OM_Integer quote; 
 
  execution = this.get_execution_price(); 
  cap = this.get_cap_price(); 
  premium = this.get_premium_price(); 
  if (underlying_name != null) { 
   quote = dshell.get_quote(underlying_name); 
  } else { 
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   quote = 0; 
  }; 
  value = this.calc_value(pp); 
 
  rs = new OM_String(); 
  if (ps != null) { 
   if (ps.is_empty() == false) { 
    rs.string_append(ps); 
    rs.string_append("."); 
   }; 
  }; 
  rs.string_append(p); 
  rs.string_append_tabs(1); 
  rs.string_append(name); 
  rs.string_append_tabs(1); 
  rs.string_append(underlying_name); 
  rs.string_append_tabs(1); 
  rs.string_append(execution); 
  rs.string_append_tabs(1); 
  rs.string_append(premium); 
  rs.string_append_tabs(1); 
  rs.string_append(cap); 
  rs.string_append_tabs(1); 
  rs.string_append(pp); 
  rs.string_append_tabs(1); 
  rs.string_append(quote); 
  rs.string_append_tabs(1); 
  rs.string_append(value); 
  /* 
  rs.string_append_tabs(1); 
  if (value > 0) { 
   rs.string_append("in"); 
  }; 
  if (value == 0) { 
   rs.string_append("at"); 
  }; 
  if (value < 0) { 
   rs.string_append("out"); 
  }; 
  */ 
  rs.string_append_tabs(1); 
  rs.string_append(this.interface_name()); 
  rs.string_append_newline(); 
  if (sub_derivatives != null) { 
   if (sub_derivatives.is_empty () == false) { 
    subps = new OM_String(); 
    if (ps != null) { 
     if (ps.is_empty() == false) { 
      subps.string_append(ps); 
      subps.string_append("."); 
     }; 
    }; 
    subps.string_append(p); 
    subrs = sub_derivatives.derivatives_list(subps); 
    rs.string_append(subrs); 
   }; 
  }; 
  return rs; 
 }; 
 
 //***************************************************************** 
 // ask for a manual quote 
 OM_Boolean update_quote_manually() 
 { 
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  OM_Integer quote; 
  OM_Boolean ok; 
 
  ok = true; 
  quote = dshell.get_quote_manually(underlying_name); 
  if (sub_derivatives != null) { 
   ok = sub_derivatives.update_quote_manually(); 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // subsume a derivative 
 OM_Boolean subsume(OM_Derivative subd) 
 { 
  OM_Boolean ok; 
 
  ok = false; 
  if (subd != null) 
  { 
   if (sub_derivatives == null) { 
    sub_derivatives = new OM_DerivativeSet(); 
   }; 
   ok = subd.register_owner((OM_Owner)this); // register as 
owner 
   if (ok == true ) { 
    ok = sub_derivatives.union_object(subd); 
   }; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // checks whether this is ready to migrate 
 OM_Boolean ready_to_migrate(OM_Integer mid, OM_Owner o,  
      OM_MigrateableSet ms) 
 { 
  OM_Migrateable m; 
  OM_Boolean more; 
  OM_Integer i; 
  OM_DerivativeSet dse; 
  OM_Derivative d; 
  OM_OwnerSet ows; 
  OM_Owner ow; 
  OM_Boolean ok; 
 
  ok = true; 
  // object already visited ? 
  if (current_migration_id == mid) { 
   // may be handled different for each owner 
   return true; 
  }; 
  current_migration_id = mid; 
  // is object alive ? 
  if (stack_flag == true) 
  { 
   return false; 
  }; 
  // check whether owners agree 
  if (owners != null) { 
   // may be handled different for each owner 
   ows = owners; 
   while ((ows != null) & (ok == true)) 
   { 
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    ow = (OM_Owner)ows.get_element(); 
    if ((ow != null) & (ow != o)) { 
     ok =ow.ready_to_let_component_migrate(mid,this); 
    }; 
    if (ok == true) 
    { 
     ows = (OM_OwnerSet)ows.get_next(); 
    }; 
   }; 
   if (ok != true) 
   { 
    return false; 
   }; 
  }; 
  // are there components ? 
  if (sub_derivatives != null) { 
   //migrateable components 
   dse = sub_derivatives; 
   while ((dse != null) & (ok == true)) 
   { 
    d = (OM_Derivative)dse.get_element(); 
    if (d != null) { 
     ok = d.ready_to_migrate(mid,this,ms); 
    }; 
    if (ok == true) 
    { 
     dse = (OM_DerivativeSet)dse.get_next(); 
    }; 
   }; 
   if (ok != true) 
   { 
    return false; 
   }; 
  }; 
  // add to migrationset 
  if (ms != null) { 
   ms.union_object(this); 
  } else { 
   // ms not initialized 
   return false; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // check if component can be migrated 
 OM_Boolean ready_to_let_component_migrate(OM_Integer mid,  
        OM_Migrateable m) 
 { 
  OM_Boolean ok; 
 
  // check mid ? 
  ok = true; 
  if (sub_derivatives != null) 
  { 
   ok = sub_derivatives.contains_object(m); 
  } else { 
   return false; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // add interface of object to set 
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 OM_Boolean collect_interfaces(OM_Porter p, OM_InterfaceSet ip) 
 { 
  OM_String in; 
  OM_Interface i; 
  OM_Boolean ok; 
 
  ok = true; 
  in = this.interface_name(); 
  if (in != null) { 
   i = p.resolve_interface_name(in); 
   if (i != null) { 
    ip.union_object(i); 
   } else { 
    // interface could not be resolved 
    return false; 
   }; 
  } else { 
   // interface name could not be retrieved 
   return false; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // representation() 
 // writes a representation of this to the given string 
 OM_Boolean representation( 
  OM_String r_str,   // representation string 
  OM_MigrateableSet ms 
  ) 
 { 
  OM_Boolean ok; 
  OM_Boolean more; 
  OM_Integer i; 
  OM_DerivativeSet dse; 
  OM_Derivative d; 
  OM_Integer rid; 
 
  ok = true; 
  r_str.string_append(relative_identity); 
  r_str.string_append(" "); 
  r_str.string_append("("); 
  // atomic components 
  r_str.string_append(name); 
  r_str.string_append(" "); 
  r_str.string_append(underlying_name); 
  r_str.string_append(" "); 
  r_str.string_append(premium_price); 
  r_str.string_append(" "); 
  r_str.string_append(execution_price); 
  r_str.string_append(" "); 
  r_str.string_append(cap_price); 
  r_str.string_append(" "); 
  //migrateable components 
  if (sub_derivatives != null) { 
   dse = sub_derivatives; 
   while ((dse != null) & (ok == true)) 
   { 
    d = (OM_Derivative)dse.get_element(); 
    if (d != null) { 
     rid = d.relative_identity(); 
     r_str.string_append(":"); 
     r_str.string_append(rid); 
     r_str.string_append(" "); 
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     dse = (OM_DerivativeSet)dse.get_next(); 
    }; 
   }; 
  }; 
  // end of representation 
  r_str.string_append(") "); 
  return ok; 
 }; 
 
 //***************************************************************** 
 // rebuild() 
 // reconstructs the object structure from the token-list 
 OM_Boolean rebuild( 
  GOAL_Token tl, 
  OM_Porter p 
  ) 
 { 
  OM_Error err; 
  OM_Boolean ok; 
  GOAL_Token gt; 
  GOAL_Token nt; 
  OM_String in; 
  OM_String i_str; 
  OM_Integer i; 
  OM_Boolean more; 
  OM_Migrateable m; 
  OM_Derivative d; 
 
  ok = true; 
  // parse 
  if (tl == null) { 
   return false; 
  }; 
  gt = tl; 
  if ((gt != null) & gt.eq_lb()) { 
   gt = gt.next_token(); 
   // atomic components 
   // read own representation 
   if ((gt != null) & gt.eq_identifier()) { 
    i_str = gt.get_content(); 
    name = i_str; 
    gt = gt.next_token(); 
   } else { 
    // integer expected 
    return false; 
   }; 
   if ((gt != null) & gt.eq_identifier()) { 
    i_str = gt.get_content(); 
    underlying_name = i_str; 
    gt = gt.next_token(); 
   } else { 
    // integer expected 
    return false; 
   }; 
   if ((gt != null) & gt.eq_integer_constant()) { 
    i_str = gt.get_content(); 
    i = i_str.asInteger(); 
    premium_price = i; 
    gt = gt.next_token(); 
   } else { 
    // integer expected 
    return false; 
   }; 
   if ((gt != null) & gt.eq_integer_constant()) { 
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    i_str = gt.get_content(); 
    i = i_str.asInteger(); 
    execution_price = i; 
    gt = gt.next_token(); 
   } else { 
    // integer expected 
    return false; 
   }; 
   if ((gt != null) & gt.eq_integer_constant()) { 
    i_str = gt.get_content(); 
    i = i_str.asInteger(); 
    cap_price = i; 
    gt = gt.next_token(); 
   } else { 
    // integer expected 
    return false; 
   }; 
   // non-atomic components 
   if ((gt != null) & gt.eq_colon()) { 
    more = true; 
    while ((more == true) & (ok == true)) { 
     if ((gt != null) & gt.eq_colon()) { 
      gt = gt.next_token(); 
      if ((gt != null) &  
       gt.eq_integer_constant()) { 
       i_str = gt.get_content(); 
       i = i_str.asInteger(); 
       // set component c 
       m =p.lookup_by_relative_identity(i); 
       if (m != null) { 
        d = (OM_Derivative)m; 
        if (sub_derivatives == null) { 
         sub_derivatives =  
         new OM_DerivativeSet(); 
        }; 
        ok =  
       sub_derivatives.union_object(d); 
        gt = gt.next_token(); 
       } else { 
        ok = false; 
       }; 
      } else { 
       ok = false; 
      }; 
     } else { 
      more = false; 
     }; 
    }; 
   }; 
   // finish 
   if ((gt != null) & gt.eq_rb()) { 
    nt = gt.next_token(); 
    if (nt == null) { 
     tl.clear_parse_at(); 
    } else { 
     tl.set_parse_at(nt); 
    }; 
    return true; 
   } else{ 
    // ) expected 
    return false; 
   }; 
  } else { 
   // ( expected 
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   return false; 
  }; 
 }; 
 
 //***************************************************************** 
 // is send to the migrated root-object after reconstruction 
 // initializes the object-structure recursivly 
 OM_Boolean initialize_after_migration(OM_Porter p, OM_Owner o) 
 { 
  OM_Boolean ok; 
  OM_DerivativeSet dse; 
  OM_Derivative d; 
  OM_Integer i; 
  OM_Boolean more; 
 
  ok = true; 
  if (o == null) { 
   return false; 
  }; 
  dshell = (OM_DerivativeShell)o; 
  if (sub_derivatives != null) { 
   dse = sub_derivatives; 
   while ((dse != null) & (ok == true)) { 
    d = (OM_Derivative)dse.get_element(); 
    if (d != null) { 
     ok =  
   d.initialize_with_owner_and_dshell(p,this,dshell); 
     dse = (OM_DerivativeSet)dse.get_next(); 
    } else { 
     ok = false; 
    }; 
   }; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // is send to the migrated root-object after reconstruction 
 // initializes the object-structure recursivly 
 OM_Boolean initialize_with_owner_and_dshell(OM_Porter p, OM_Owner o,  
         OM_DerivativeShell ds) 
 { 
  OM_Boolean ok; 
  OM_DerivativeSet dse; 
  OM_Derivative d; 
  OM_Integer i; 
  OM_Boolean more; 
 
  ok = true; 
  if (o != null) { 
   ok = this.register_owner(o); 
   if ((ok == true) & (ds != null)) { 
    dshell = ds; 
    if (sub_derivatives != null) { 
     dse = sub_derivatives; 
     while ((dse != null) & (ok == true)) { 
      d = (OM_Derivative)dse.get_element(); 
      if (d != null) { 
       ok = 
     d.initialize_with_owner_and_dshell(p,this,ds); 
       dse =  
       (OM_DerivativeSet)dse.get_next(); 
      } else { 
       ok = false; 
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      }; 
     }; 
    }; 
   }; 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // is send to each local object that was migrated 
 // connections should be cut by owners 
 OM_Boolean deactivate(OM_Porter p) 
 { 
  OM_Boolean ok; 
 
  ok = true; 
  // deactivate local 
  // deactivate owners 
  if (dshell != null) { 
   dshell.deactivate_component(this); 
  }; 
  return ok; 
 }; 
 
 //***************************************************************** 
 // is send to each migrated object when migration is aborted 
 // cuts all connections 
 OM_Boolean abort_migration(OM_Porter p) 
 { 
  // release local 
  // release owners 
  owners = null; 
  return true; 
 }; 
 
 //***************************************************************** 
 // is send to the migrated root object to resume normal operation 
 // connections from owners to migrated objects are established 
 OM_Boolean activate(OM_Porter p) 
 { 
  OM_Boolean flag; 
 
  flag = true; 
  // activate local 
  // activate owners 
  if (dshell != null) { 
   dshell.activate_component(this); 
  }; 
  return flag; 
 }; 
 
 //***************************************************************** 
 // send to local object when activation of migrated objects fails 
 // reestablishes connections from owners to objects and 
 // resumes normal operation 
 OM_Boolean reactivate(OM_Porter p) 
 { 
  OM_Boolean flag; 
 
  flag = true; 
  // reactivate local 
  // activate owners 
  if (dshell != null) { 
   dshell.reactivate_component(this); 
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  }; 
  return flag; 
 }; 
 
 //***************************************************************** 
 // is send to local objects when 
 OM_Boolean release(OM_Porter p) 
 { 
  // release local 
  // release owners 
  dshell = null; 
  // clean up 
  return true; 
 }; 
 
}; 
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