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Summary
Bayesian networks have become a popular probabilistic model for coping with uncertainty.
Structural learning in Bayesian networks is an NP-hard problem, which suggests the use of
heuristic strategies for finding close-to-optimum solutions. The constraint-based approach
has proven to be very efficient in many experiments [23, 24, 142]. However, it is only well-
understood under certain conditions, typically when infinite data sets are provided.

This thesis focuses on the constraint-based approach for those cases where only afinite amount
of data is available, as typical in practical applications. The usual assumptions underlying the
constraint-based approach are thus dropped, and we look at the constraint-based approach as
a particular search strategy towards the optimal Bayesian network structure, with respect to a
given scoring function. This point of view is independent of the choice of scoring function:
various Bayesian and non-Bayesian scoring functions can be used. We introduce so-called
relative scoring functions and derive their main properties. They help in understanding the
constraint-based approach for finite data.

We propose an extension of the constraint-based approach, which can essentially be divided
into two parts. The first one is concerned with the presence of edges, and hence employs an
undirected graph, while the second step determines the orientations of the edges. Regarding the
first step, we derive the so-callednecessary path condition from properties of optimal Bayesian
network structures. While its use does not notably increase computation time, it entails consid-
erable improvements in the quality of the induced network structures.Model uncertainty is an
important aspect in learning of Bayesian networks from finite data. In particular, uncertainty
regarding the presence of edges can be discovered by this extension: instead of a single net-
work structure, as typical for state-of-the-art constraint-based approaches, it can find several
graphs. Of course, this is only possible up to a degree, as the exact learning problem is NP-
hard. The induced graphs usually have many common edges and differ only in the presence of
a few edges. All the different structures can hence be visualized by means of asingle graph,
thus easing the interpretation [144].

Next, we present an extension of the second part of the algorithm, namely an operator which
determines the orientations of the edges, based on a scoring function [143]. This operator
proved quite robust when given finite data sets in our experiments, while standard schemes,
which rely on the induced conditional independences, are known to be rather unstable [142].

We argue that the Bayesian network structures found by constraint-based approaches generally
tend to contain fewer edges than optimal structures. Hence, a post-processing step is necessary
if one aims at finding, possibly different, local optima. In case that the assumptions underlying
state-of-the-art constraint-based approaches hold, the proposed extensions yield the correct
Bayesian network structure. The proposed extensions of the constraint-based algorithm were
evaluated on artificial and real-world data.

Our extended constraint-based approach has in parts entered theEsprit project calledPRONEL
[120] where it has become the core learning algorithm. A demo version is available fromHugin
Expert A/S via http://www.hugin.com/pronel/index.html.
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Key to Important Symbols
This list depicts the most important symbols and abbreviations used throughout this thesis, and
it gives a pointer to the section where the notation is introduced.

Variables
a; b; v; xi ; ::: variables cf. Section 2.1
S; ::: set of variables cf. Section 2.1
jSj number of variables inS, also calledorder of the setS cf. Section 2.2.2
V set ofall variables in a domain cf. Section 2.2
n number of variables in a domain, i.e.n = jVj cf. Section 3.3.2
I(a) set of all states of variablea cf. Section 2.1
I(S) set of all joint states of the variables inS cf. Section 2.1
i; j; ::: 2 I(S) a joint state of the variables inS cf. Section 2.1
jI(S)j number of joint states of the variables inS cf. Section 3.1.4

Bayesian Networks, Graphs and Parameters
� parameters of a Bayesian network cf. Section 2.2.2
m directed acyclic graph (DAG), or cf. Section 2.2.1

partially directed acyclic graph (PDAG) cf. Section 6.1.1
~m skeleton, i.e. undirected graph associated with a DAG cf. Section 2.2.1
M set of all DAGs cf. Section 3.1.2
a � b (undirected) edge between the variablesa andb cf. Section 2.2.1
a! b, b a directed edge from variablea to variableb, or cf. Section 2.2.1

edge with a ”proposed” direction cf. Section 6.1.3
a) b, b( a edge with a ”fixed” orientation cf. Section 6.1.3
a$ b edge oriented in ”both” directions cf. Section 6.1.3
pam(a), pa(a) parents of a variablea 2 V in a DAGm cf. Section 2.2.1
an(a) ancestors of a variablea 2 V in a DAG cf. Section 2.2.1
ne(a) neighbors of a variablea 2 V in a graph cf. Section 2.2.1
a?b j S d-separation ofa andb givenS in a DAG cf. Section 2.2.1
a 6?b j S d-connection ofa andb givenS in a DAG cf. Section 2.2.1



Probabilities and Independences cf. Section 2.1
p(a) (marginal) probability distribution for variablea
p(a; b), p(S) joint probability distribution for several variables
p(a j S) conditional probability distribution fora givenS
a??b marginal independence of the variablesa andb
a 6??b marginal dependence of the variablesa andb
a??b j S conditional independence ofa andb givenS
a 6??b j S conditional dependence ofa andb givenS
CIDs conditional independences and dependences

Scoring Functions cf. Section 3.1
N sample size, i.e. number of cases in the data set
N(�) cell counts or frequencies in a contingency table
N 0 equivalent sample size
F absolute scoring function (strictly positive)
f logarithmic absolute scoring function, i.e.f = log F
G relative scoring function (strictly positive)
g(�; �; �), g(�; �) logarithmic relative scoring function, i.e.g = logG
gcol(�; �; � jmint) relative scoring function concerning collider can- cf. Section 6.1.1

didates in the PDAGmint

� significance level

 threshold value concerning relative scores
df degrees of freedom
d(�) deviance (difference)
AIC Akaike Information Criterion
BIC Bayesian Information Criterion

Rules and other Symbols in Algorithms
X;Y; [a; b]; ::: pair of variables, e.g.X = [a; b] = [b; a], cf. Section 4.3.1

it can correspond to an edge, si-path or sc-path
X;Y; ::: set of pairs of variables cf. Section 4.3.1
SIi([a; b];X) si-path (i enumerates the variants) cf. Section 4.3.1
SCi([a; b];X) sc-path (i enumerates the variants) cf. Section 4.3.1
E condition set regarding edges cf. Section 5.1
C condition set regarding sc-paths cf. Section 5.1
I condition set regarding si-paths cf. Section 5.1
IR(X;E; I) i-rule concerning the edgeX cf. Section 5.1
CR(X;E;C; I) c-rule concerning the edgeX cf. Section 5.1
< set of rules cf. Section 5.1
<A subset of<, corresponds to an ambiguous region cf. Section 5.3.2
<Ac a copy of<A cf. Section 5.3.2
PA(X) parents ofX in the condition graph cf. Section 5.2.2
AN(X) ancestors ofX in the condition graph cf. Section 5.2.2



1
Introduction
Uncertainty is present in many areas of life, prevailing for various reasons. For instance, in
medicine it is sometimes difficult to determine the disease of a person on the basis of the
observed symptoms. This is because a disease often entails a particular symptom only with
some probability, but not with certainty. Moreover, some symptoms can only be specified
loosely, e.g. ”high fever” does not exactly begin at a particular temperature. Furthermore, the
disease inferred might be based on incomplete knowledge, because a doctor might not know,
for instance, about the patient’s visit to a certain country, increasing chances of an infection
with a particular kind of bacteria. In many areas of science and engineering, when an exact
description of a large system is too involved, one often resorts to a tractable model which is a
good approximation to the actual system. This is another source of uncertainty. For instance,
in artificial intelligence the analysis of texts is often based on a probabilistic treatment, where
the text is considered as a ”bag of words”, i.e. without a syntax. Texts are then characterized
by the probabilities that certain words or combinations thereof are present.

Building intelligent systems for reasoning under uncertainty is one of the main challenges in the
field of artificial intelligence (AI). Various frameworks for dealing with uncertainty have been
used in AI, like fuzzy logic [154] or the Dempster-Schafer theory [42,136]. Over the past one
or two decades, probability theory has gained influence in the AI community, as it is a sound
theory for dealing with uncertainty. Probability theory has been applied in statistics in order to
induce information from data. This is typically done by means of so-called hypothesis tests,
where a hypothesis like ”Does smoking have an impact on lung cancer?” is falsified or not. For
a long time, statistical analysis has been restricted to only asmall number of variables. This
had two reasons. First, statistical analysis of complex hypotheses involving alarge number of
variables had not been well understood from a theoretical point of view. Second, the analysis
of complicated hypotheses was intractable until powerful computers became available.

Bayesian networks have become the standard model for coping with uncertainty in AI. They
were developed by the AI community to build probabilistic expert systems for reasoning un-
der uncertainty [116]. One of their main advantages is their sound theoretical basis in the
framework of statistics and probability theory. A Bayesian network is aprobabilistic model
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which describes themultivariate probability distribution for a set of variables. In particular, it
is designed for domains with alarge number of variables. The basic idea is to display the as-
sociations among the variables, namely the(conditional) independences and dependences, by
means of a graph. For this reason, Bayesian networks belong to the class ofgraphical models.

Figure 1.1 shows a simplistic Bayesian network structure, where the edges represent a de-
pendence between the (binary) variables ”electricity failure?” and ”light failure?” as well as
between the former and ”computer failure?”. The absence of the edge between ”light fail-
ure?” and ”computer failure?” indicates that these two variables are independent conditional
on ”electricity failure?”. This means that ”light failure?” isirrelevant to ”computer failure?”,
and vice versa, once the state of ”electricity failure?” is known. For instance, if one knows that
there is no electricity failure, the light-bulb and the computer fail independently of each other,
as each of which can break by chance. However, when the state of ”electricity failure?” is un-
known then ”light failure?” and ”computer failure?” depend on each other, as they both depend
on ”electricity failure?” in Figure 1.1. This is also intuitively clear, as an electricity failure
entails both light and computer failures. It is hence crucial to distinguish between ”direct” and
”indirect” associations between variables.

  light 
failure ?

computer
 failure ?

electricity
 failure ?

Figure 1.1: A simplistic Bayesian network structure illustrating direct and indirect associations
among the three variables.

The graph in Figure 1.1 can also be understood intuitively when interpreted in a causal man-
ner, namely ”electricity failure?” can be considered as a common cause of ”light failure?” and
”computer failure?”. This implies that the occurrence of ”light failure?” and ”computer fail-
ure?” can be related when nothing is known about ”electricity failure?”. Conversely, when the
state of the common cause is known, ”light failure?” and ”computer failure?” can become inde-
pendent. When Bayesian networks are used in a causal setting, they are also namedcausal net-
works. Their use as causal networks has been very appealing to the AI community [116, 142],
since knowledge on causal relations renders well-understood interventions possible [117], and
hence enables one to control the behavior of complex systems. The causal interpretation of
a Bayesian network structure is, however, only appropriate under certain conditions. For an
overview of this area of current research the reader is referred to [70,82,102,116–118,142,148].

Besides the visualization of conditional independences and dependences, a Bayesian network
model can also describe the joint probability distribution for a set of variables in aquantitative
manner, as a Bayesian network comprises also parameters besides its graphical structure. It is
beneficial that this description is quite modular so that complex systems can be characterized
by combining smaller units. When the values of some variables are known, a Bayesian network
can be used for predicting the states of the other variables. This process is calledinference (for
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an overview, see e.g. [21]). The result is not a particular state, but aprobability distribution
over the states of the variables to be predicted, i.e. a Bayesian network describesprobabilistic
associations among the variables in a domain. Since the reader might be familiar with neural
networks, let us mention that, for instance in feed-forward neural-networks, the state of an
output-variable dependsdeterministically on the inputs, rather than probabilistically.

There are basically two ways for constructing a Bayesian network. First, a system which is
well-understood can be modeled by having a Bayesian network built manually by experts. A
causal interpretation of the edges and their orientations is often useful in this situation. So-
calledobject oriented Bayesian networks were developed to aid the construction of large mod-
els [96, 119]. Major fields of application were systems for medical diagnosis and for trou-
bleshooting.

Alternatively, Bayesian networks can belearned from given data. This means that a learning
algorithm can induce the structure as well as the parameters of a Bayesian network from data.
Of course, also a combination of both approaches is possible, where the expert knowledge
can serve as prior knowledge incorporated into a learning algorithm. In structural learning
in Bayesian networks, all variables in a domain are treated equally, i.e. there is no distinct
class-variable. This is typical forunsupervised learning. Since an induced Bayesian network
structure visualizes the associations among the various variables in a domain, structural learn-
ing can provide new insights which help understand the associations among the variables. The
extraction of new knowledge from data is calleddata mining. Automatic learning procedures
can hence supplement a statistician’s analysis of data. Estimating the parameters of a Bayesian
network is typically a subproblem of learning its structure. Once a Bayesian network, includ-
ing its parameters, has been learned, it can be used for quantitative predictions. Collaborative
filtering is a recent application where Bayesian networks have proven to yield very accurate
results [15]. This is employed, for instance, in online book-stores where Bayesian networks
are trained on the data collected from customers, and subsequently used to recommend those
books which have a high probability of being interesting to a customer. The World Wide Web
will certainly be a main playground for data mining, as it allows to access an enormous amount
of data, while the costs of collecting data are tremendously reduced at the same time. Biotech-
nology and genetics are another field where data mining techniques can help in understanding
the processes underlying the data.

1.1 Structural Learning in Bayesian Networks

There have evolved two main approaches to structural learning. Both employ heuristics, as
the exact problem is NP-hard [14, 27, 84]. The one approach uses a scoring function which is
optimized by means of a heuristics search strategy. The use of Bayesian scoring functions is
suggested, besides ”classical” ones like the Akaike Information Criterion, because Bayesian
network structures aredirected graphs without cycles so that Equation 3.1.26 can be applied
in a natural way (cf. Section 3.1.4). Local search is a very popular, general-purpose search
strategy [90]. The main problem of this sort of approach are local maxima of the scoring
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function, at which heuristic search-strategies can get stuck.

The other approach is constraint-based, relying on the conditional independences and depen-
dences (CIDs) induced from the data. This method is, however, only well-understood when
certain assumptions hold (cf. Section 1.2 for more details). Unfortunately, when the CIDS
are inferred from finite data by means ofstatistical tests, as typical in practical applications,
this approach can merely be considered as a heuristics (see also Section 1.2). An advantage
of this approach is that it does not suffer from local optima, as a scoring function applying to
the entire Bayesian network structure is not used. Because this method makes use of a par-
ticular property of Bayesian networks, namely the CIDs, it is very efficient in inducing sparse
Bayesian network structures, as it generally requires a reasonably small number of indepen-
dence tests only [23, 142]. This approach can, however, be quite inefficient when the induced
graph is dense, since a large number of tests have to be carried out in this case. Regarding
domains which require a dense graph, however, Bayesian networks might not be the most ap-
propriate kind of model, since only very limited insight in the associations among the variables
is typically gained by interpreting a dense Bayesian network structure. Furthermore, when a
Bayesian network model is used for quantitative predictions, e.g. in a probabilistic expert sys-
tem, inference is typically very time-consuming or even intractable in dense graphs. Thus, one
might only be interested in the induction of a Bayesian network in domains where the resulting
graph is sparse.

1.2 The Constraint-Based Approach applied to Finite Data
Sets

The efficiency of the constraint-based approach when inducing sparse Bayesian network struc-
tures is very appealing [23, 24, 142], as other heuristic learning algorithms can be quite time-
consuming, particularly in domains with a large number of variables. Unlike other learning
algorithms, the constraint-based approach requires two additional assumptions about the prob-
ability distribution implied by the data. Let us just mention them here, as they are discussed in
detail in the Sections 2.2.4, 3.3.2 and 4.1:

� the probability distribution is perfectly known, i.e. without error, and

� the probability distribution fulfills the so-calledfaithfulness assumption.

If these assumptions hold, the constraint-based approach can be shown to yield thecorrect
Bayesian network structure [140,148], the so-called perfect map. Note that this is not guaran-
teed for the other approaches aimed at optimizing a scoring function, as they can get stuck at
local optima.

In practice, however, these assumptions need not hold. In fact, they can only be expected to
hold in the asymptotic limit, i.e. when an infinite amount of data is available. This is because
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sampling noise is typically present infinite data sets, causing the probability distribution im-
plied by the data to differ from thetrue distribution (from which the data had been sampled).
This implies that the constraint-based approach generally yields ”almost correct” Bayesian net-
work structures given sufficientlylarge data sets, as confirmed by many experiments reported
in the literature [23, 24, 142]. Except for these experiments, not much attention has been paid
to the behavior of the constraint-based approach when givenfinite data sets. Finite rather than
infinite data sets are, however, typical for practical applications. Givenfinite sample sizes, the
two assumptions above are not guaranteed to hold. This is particularly apparent regarding the
first assumption, as it is well-known in statistics that an independence test can fail, i.e. a depen-
dence can erroneously be induced instead of an independence, and vice versa. This is called
a Type I and a Type II error, respectively. The results ofseveral tests are combined by the
constraint-based approach in order to construct the Bayesian network structure. Since some of
the test results might be incorrect and since the various test results might depend on each other
in some unknown manner, the error of the induced Bayesian network structure is not under
control. In statistics, this is a well-known problem in the area of multiple testing.

This thesis is concerned with the constraint-based approach applied tofinite data. Section 4.1
provides a more specific motivation of the approach taken in this thesis, as various terms intro-
duced in the following two chapters are required. Nevertheless, let us mention the basic idea
in the following: the above assumptions underlying constraint-based algorithms are dropped.
Instead, we prefer the point of view that the constraint-based approach is aimed at finding the
optimal Bayesian network structure with respect to a scoring function. The use of a scoring
function is similar to the alternative approach to structural learning mentioned in Section 1.1.
This point of view is motivated by the fact that the use of a scoring function is well-understood,
and the optimal Bayesian network structure is well-defined also in those cases wherefinite data
sets are given.

In order to understand the constraint-based approach in the framework of optimizing a scoring
function, the notion ofrelative scoring functions is introduced. They are concerned with the
differences of the scores rather than with the scores themselves. This allows us to use scoring
functions like the Bayesian Information Criterion or the posterior probability in this approach,
instead of the�2-test commonly employed by constraint-based algorithms. Our point of view
reveals that the network structures induced by the constraint-based approach from finite data
sets tend to contain too few edges, compared to the optimal graph. Moreover, the performance
of the constraint-based approach can considerably be improved by employing the so-callednec-
essary path condition which we derive from properties of optimal Bayesian network structures.
Moreover,model uncertainty can be discovered when using this extension. Of course, it can
only be explored up to some degree, as an exact treatment of model uncertainty is intractable
except for domains with a rather small number of variables. Model uncertainty generally pre-
vails when small data sets are given. Because data sets, even when considered as ”large”, might
often be small compared to the number of joint states of the variables in a large domain, model
uncertainty may better not be ignored in many applications. Accounting for model uncertainty
can improve predictive accuracy, e.g. by model averaging, as well as help avoid incorrect
conclusions drawn from the induced structures. Concerning the latter issue, we show that the
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multiple solutions induced by means of the necessary path condition can be visualized in a sin-
gle graph. This is because the various graphs have usually many edges in common and differ
only regarding the presence of a few edges. Such a graph can typically be interpreted much
more easily than a list of the various solutions.

The necessary path condition can efficiently be implemented in terms of rules. The presence
of edges is induced by simplifying the set of rules. This renders a systematic construction of
all the multiple solutions possible which can be induced by means of the necessary path condi-
tion. Furthermore, this scheme can take advantage of the fact that the various Bayesian network
structures typically have many edges in common. For this reason, the computational cost of
inducing possibly many graphs is only slightly increased compared to established constraint-
based approaches, which induce only a single graph by definition. The constraint-based ap-
proach is also appropriate for parallel computation which we have realized in a simple master
and slave scheme.

In case that the probability distribution implied by the data fulfills the assumptions required
by state-of-the-art constraint-based approaches, the necessary path condition yields the same
graph as the other constraint-based approaches do, and it is hence asymptotically correct. Given
finite data, however, the necessary path condition is an important extension of the constraint-
based approach.

Besides the necessary path condition, concerning the presence of edges, also an operator for
inducing the orientations of edges is proposed in this thesis. This operator is aimed at optimiz-
ing a scoring function, which renders it quite robust when given finite data in our experiments,
in contrast to typical constraint-based schemes relying on the induced independences and de-
pendences.

We also argue that the edges induced to be present by the constraint-based approach are con-
tained in a (locally) optimal Bayesian network structure with a high degree of certainty. This
indicates the necessity of a learning step subsequent to the constraint-based approach if one
aims at inducing (locally) optimal Bayesian network structures.

1.3 Thesis Overview

In the next chapter, we give a brief overview of Bayesian networks and their properties impor-
tant to learning. Chapter 3 reviews the main approaches to structural learning in Bayesian net-
works, namely the constraint-based approach and the one aimed at optimizing a scoring func-
tion. A main part of this chapter is spend on introducing so-called relative scoring functions,
and on deriving some of their properties. The main benefit is that both kinds of approaches to
learning can be based on relative scoring functions.

In Chapter 4, the constraint-based approach is viewed as a particular search strategy aimed
at inducing the optimal Bayesian network structure, with respect to a scoring function initially
specified. Having discussed this point of view, the main result of this, rather theoretical, chapter
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is derived, namely the so-called necessary path condition and its variants. This leads imme-
diately to an extension of the constraint-based approach applied to finite data. Moreover, we
discuss properties of the graphs induced by constraint-based approaches from finite data.

The constraint-based approach can typically be split into two parts. The first one is concerned
with inducing the presence of edges, thus employing an undirected graph. The second part
eventually yields the Bayesian network structure by finding the orientations of the edges. In
Chapter 5, we describe the details of the algorithm which induces thepresence of edges, based
on the necessary path condition. The latter is transformed into a set of rules which can then
efficiently be simplified. The reduced set of rules can indicate model uncertainty regarding the
presence of edge – of course, only to a limited degree. As a consequence, possibly several
undirected graphs are obtained. The so-called summary graph with its ambiguous regions is
introduced, a single graph visualizing the different structures of the induced undirected graphs.
Moreover, we are concerned with the efficiency of such an extended constraint-based algo-
rithm. Various experiments are carried out in order to compare the extended algorithm with
other popular learning algorithms. Finally, the incorporation of prior knowledge is described,
as well as how missing data can be handled.

Chapter 6 presents a greedy operator aimed at finding the optimalorientations with respect to
a scoring function. It is not based on induced conditional independences and dependences, like
typical schemes in constraint-based algorithms, which are quite unstable when given finite data
sets. An advantage of this operator is its robustness when given finite data sets, as confirmed in
our experiments. Moreover, a third learning step is added to the constraint-based algorithm in
order to induce (locally) optimal network structures. This is necessary because our theoretical
considerations yield that the constraint-based approach tends to induce graphs with too few
edges compared to optimal Bayesian network structures. The resulting algorithm is compared
to established learning algorithms using both artificial and real-world data.

In the Conclusions, the main results of this thesis are summarized and an outlook to future
work is given.
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2
Bayesian Networks
This chapter gives a brief introduction to Bayesian networks. After defining a Bayesian net-
work model, we focus on properties important to structural learning. An overview of the var-
ious aspects of Bayesian networks is provided in [21, 35, 47, 79, 116]. For a first exposure to
Bayesian networks, the reader is referred to [89], whereas a comprehensive treatment from a
theoretical point of view can be found in [101].

2.1 Conditional Independence and Dependence

A Bayesian network is a probabilistic model based on the notion ofconditional independences
and dependences (CIDs). Let us hence introduce some notation from probability theory.

The probability distribution for a random variablea is denoted asp(a), and thejoint probability
for several variables, e.g. forS = fa; b; cg, readsp(a; b; c) or p(S). It describes the probability
for eachjoint state or configuration of the variables in the setS. Let the set of all configurations
of the variables in a setS be designated asI(S), and the configurations asi; j; k; ::: 2 I(S).
The above probabilities are also calledmarginal probabilities, as opposed toconditional proba-
bilities. The probability of a variablea conditional on a set of variables, e.g.S = fb; cg, is des-
ignated asp(ajb; c) or p(ajS), and it is defined asp(ajb; c) = p(a; b; c)=p(b; c) for p(b; c) > 0.

Two random variablesa andb are said to bemarginally independent when their joint probabil-
ity p(a; b) factors likep(a; b) = p(a)p(b). Such an independence is denoted asa?? b [39]. It
means that the state ofa is irrelevant to the state ofb, and vice versa. Similarly, two variables
a andb are independent conditional on some other variables contained in the setS if the con-
ditional probability factors likep(a; bjS) = p(ajS)p(bjS) givenp(S) > 0. This is equivalent
to p(ajb;S) = p(ajS) or p(bja;S) = p(bjS) provided thatp(a;S); p(b;S); p(S) > 0. This
means thatb is irrelevant toa if the joint state of the variables in the setS is known. Let such
a conditional independence be denoted asa??b j S [39].

If two variables are not independent then they are said to bedependent. Again, one can dis-
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tinguish between a marginal dependence of two variablesa andb, designated asa 6?? b, and a
dependence conditional on a setS, denoted asa 6??b j S.

2.2 Bayesian Networks and their Properties

Throughout this thesis, let the set ofall the variables in a domain be denoted asV, and the
variables asa; b; ::: 2 V. Theconditional independences and dependences (CIDs) underlying a
multivariate probability distribution for the variables inV are reflected by thegraphical struc-
ture of a Bayesian network, the so-calleddirected acyclic graph (DAG). It is described in the
next section. The other component of a Bayesian network is a set ofparameters, rendering a
quantitative description of probability distributions possible (cf. Section 2.2.2).

2.2.1 Directed Acyclic Graph (DAG)

Let us first be concerned with the directed acyclic graph (DAG)m, i.e. the Bayesian network
structure. It is related to probability distributions in such a way that the random variables
correspond to the nodes or vertices in the DAG. Let us hence usevariables, nodes andvertices
interchangeably in this thesis. Besides the variables,directed edges or arcs are present in a
DAG. No undirected edges are allowed. A directed edge which is oriented from variablea to b
is denoted asa ! b or b  a. When the orientations of the edges are ignored, an undirected
graph is obtained, named theskeleton of the DAGm. Let the skeleton be designated as~m. An
undirected edge between two variablesa; b 2 V is denoted asa � b.

A path between two variablesa; b 2 V is a sequence of edgesa = x0 � x1 � � � � � xr = b
irrespective of their orientations, and adirected path from a to b is a sequence of edgesa =
x0 ! x1 ! � � � ! xr = b such thatxi�1 ! xi for all i = 1; :::r. It is crucial that the Bayesian
network structure – hence the notion of a directedacyclic graph – doesnot containdirected
cycles, i.e. a directed path which begins and ends at the same variable. This is illustrated in the
simplistic DAG shown in Figure 2.1, where no directed cycle occurs although the variablesb,
d, g ande are involved in aloop, i.e. the corresponding skeleton contains a closed path.

The following notation is inspired by a family tree. Theparents pam(a) of a variablea in the
DAG m is the set of variablesv 2 V such that there exists a directed edgev ! a. The variable
a is called achild of v. If the orientations are disregarded, the notion ofneighbors of a variable
a 2 V is useful, denoted asne(a). The setne(a) contains all the variables adjacent toa. When
several ”generations” are considered, a variablev 2 V belongs to theancestors of a, denoted
asan(a), if there exists a directed path fromv to a. Conversely, a directed path exists from a
variablea to each of itsdescendants. In Figure 2.1, for instance, the variabled has the parents
a andb, i.e. pam(d) = fa; bg, and the childrenf andg. The neighbors ofd comprisea, b, f
andg in the skeleton~m. Furthermore, the variablea has the descendentsc, d, f andg, while
the ancestors ofg are given byan(g) = fa; b; d; eg.

Due to its acyclicity, a DAG entails anancestral ordering on the variables. This is atotal
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Figure 2.1: A simplistic DAGm, its skeleton~m, and the pattern of the equivalence class.

ordering relation�, i.e. for all a; b; c 2 V it has to hold that (1)a � b _ b � a, (2)
a � b ^ b � a impliesa = b, (3) a 6� a, and (4)a � b ^ b � c impliesa � c. Typically, a
DAG does not determine a unique total ordering. It only defines apartial ordering. In Figure
2.1, two valid ancestral orderings – among others – area � b � c � d � e � f � g or
b � a � d � f � e � g � c.

There are essentially two alternatives of how to relate the graphical structure of a Bayesian
network model to the conditional independences and dependences underlying probability dis-
tributions, namely theMarkov assumptions and thed-separation criterion. Regarding the for-
mer, three variants have to be distinguished, namely the directed pairwise, directed local and
directed global Markov properties (see e.g. [101]). If the probability distribution is strictly
positive, all three Markov properties can be shown to be equivalent, as one might desire. The
Markov assumption is made in many areas of research in order to approximate problems which
are too involved otherwise. The Markov approximation says essentially that the state of a vari-
able depends only on the state taken by the variables in its vicinity, i.e. the latter shield this
variable from the influence of the other variables in the domain. For instance, in the analysis of
time-series it is often assumed that only the current state of the world has an impact on the state
of the world in the next time-step, independent of the past. Another example is pattern recog-
nition, where it is often assumed that only the values of neighboring pixels depend directly on
each other.

Let us now focus on the second criterion, i.e. the d-separation criterion [116], as it will be ap-
plicable more easily later in this thesis. As desired for reasons of consistency, the d-separation
criterion can be shown to be equivalent to the directed global Markov property of Bayesian
networks [103], and hence also to the other Markov properties provided that the probability
distribution is strictly positive.

Definition 2.1 (D-Separation [116]) In a DAG, two disjoint sets of variables A and B are d-
separatedby a third set S � V n (A[B), denoted as A?B jS, if and only if along every path
between a variable inA and a variable in B there is a variable s satisfying one of the following
two conditions:

� s has converging edges and none of s or its descendants are in S, or

� s does not have converging edges and s 2 S.
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A variables 2 V has converging edges, ”! s  ”, when the preceding and the successive
variable along the path are both parents ofs. Not only the presence of edges but also their
orientations are thus crucial in order to render variables d-separated. This definition implies
that a path between two variables isblocked when one of the above two conditions is fulfilled,
andactivated otherwise. Hence, two variablesa; b 2 V are d-separated by a setS, when all
paths between them are blocked. It is important to note thata? b j S does not implya? b j S0

for otherS0 6= S. This holds even ifS0 � S, since a blocked path can become activated by
an additional variables0 2 S 0, s0 62 S due to the first condition in Definition 2.1. This is an
important difference to Markov networks (cf. also Section 2.3). In the DAG shown in Figure
2.1, for instance, the variablesd and e are d-separated givenb, but they are not d-separated
given bothb andg. If two disjoint setsA andB are not d-separated by a setS then they are
also said to bed-connected, designated asA6?B j S.

Let us now relate the structure of a Bayesian network to the set of probability distributions it
describes by means of the d-separation criterion. Namely, a d-separationa ? b j S read off
the DAGm entails the conditional independencea?? b j S in the probability distributions de-
scribed. In other words, all the probability distributions exhibit the conditional independences
implied by the DAGm, but might differ from each other due to different values of the pa-
rameters� chosen in the Bayesian network. Particular choices of the parameters can entail
probability distributions which imply additional independencesnot represented in the DAG.
However, it can be shown thatalmost all probability distributions described by Bayesian net-
works (in a measure-theoretic sense) imply a conditional independence if and only if the DAG
represents the corresponding d-separation [111] (cf. also the Sections 2.2.4 and 4.1).

2.2.2 Recursive Factorization of the Probability Distribution

The d-separation criterion and the Markov properties are equivalent to yet another characteristic
of Bayesian networks, namely to the decomposability of its probability distribution when the
latter is strictly positive. The proof of the equivalence is essentially based on [74]. A Bayesian
network model with the DAGm describes a probability distribution for a set of variablesV
which factorizes recursively like

p(V) =
Y
v2V

p(v j pam(v)): (2.2.1)

The multivariate probability distribution forV hence decomposes intounivariate probability
distributions, rendering the Bayesian network model to be quite modular. The set of parame-
ters� of a Bayesian network model is the set of conditional probabilitiesp(v jpam(v)), where
pam(v) denotes the parents of a variablev in the DAGm. This sort of factorization has two
consequences regarding learning Bayesian networks. First, since each of the conditional prob-
abilities typically involves only a small number of variables, i.e.jpam(v)j � jVj for all v 2 V,
the parameters of a Bayesian network can be estimated from finite data with increased reliabil-
ity. Second, the parameters of a Bayesian network, since they are conditional probabilities, can
directly be calculated from the probability distribution implied by the data. In contrast, param-
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eter estimation in other graphical models generally requires iterative procedures, e.g. iterative
proportional scaling in Markov networks [37] (cf. also Section 2.3).

2.2.3 Markov Equivalence

A DAG determines a unique set of probability distributions which exhibit conditional indepen-
dences according to the d-separation criterion. The opposite situation is encountered in struc-
tural learning, where the question arises whether the conditional independences and depen-
dences implied by a probability distribution determine a unique DAG. In general, the answer is
negative. For instance, the DAGsm0,m1 andm2 in Figure 2.2 display the same d-separations
and d-connections. Hence, they describe the same set of probability distributions. This can
also be seen from the factorization of the probability distribution (cf. Equation 2.2.1), as it is
equivalent to the d-separation criterion given strictly positive distributions. The following three
factorizations are entailed by the DAGsm0,m1 andm2 in Figure 2.2:

p(a; b; c) = p(ajc) p(cjb) p(b)| {z }
m0

= p(ajc) p(bjc) p(c)| {z }
m1

= p(cja) p(bjc) p(a)| {z }
m2

(2.2.2)

The identity of the different factorizations is apparent, as the second product follows from the
first one due to the general lawp(cjb) p(b) = p(b; c) = p(bjc) p(c), and similarly the third
one from the second one, assumingp(�) > 0. Although the DAGm3 contains the same edges
as the previous three DAGs, it represents different d-separations and d-connections. This is
because the DAGm3 has acollider at variablec. A collider, or v-structure, is an ordered triple
of variablesa; c; b 2 V such that the edge betweena andb is absent anda! c b.

m1m0 m2

c

ba

m3

c

ba

c

ba

c

ba

a    b 
a    b   {c} a    b   {c}

a    b 

Figure 2.2: The DAGsm0, m1 andm2 belong to the same equivalence class, whereasm3 is
contained in a different one.

It is obvious that the d-separations and d-connections establish a reflexive, symmetric and
transitive relation among DAGs, which is calledMarkov equivalence relation. This allows to
partition the space of DAGs intoequivalence classes, where each equivalence class contains
all the DAGs which are Markov equivalent to each other. It can be shown that two DAGs
are equivalent if and only if they have the same skeleton and the same colliders [148]. This
means that all the edges not involved in a collider can be oriented arbitrarily as long as an
additional collider does not occur. The edges can hence be divided into ones with a reversible
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orientation and others with an irreversible one. Edges with an irreversible orientation are also
calledcompelled edges [26]. An equivalence class is often visualized by means of a so-called
pattern [148], where edges with a reversible orientation are displayed without directions so that
only irreversible orientations are shown. This is illustrated in Figure 2.1.

The existence of equivalence classes has three consequences regarding structural learning in
Bayesian networks. First and most important, only the equivalence class rather than a particu-
lar DAG can generally be induced from the probability distribution implied by the data. Only
if statistical learning algorithms are supplemented with additional knowledge, e.g. about the
orientations of edges, a particular DAG can be determined. Second, the undirected edges in the
induced pattern of the equivalence class clearly cannot be interpreted as an association between
a cause and a consequence if no additional knowledge is available which implies certain ori-
entations. Third, structural learning in the search space of DAGs suffers from some disadvan-
tages, which can be overcome in the search space of equivalence classes [28, 107]. Learning
algorithms operating in the space of equivalence classes are, however, computationally very
involved [28, 107]. The constraint-based approach is an efficient way to directly induce the
pattern of an equivalence class, which was used extensively in [142] (cf. also Section 3.3.2).

If one likes to explore the various DAGs contained in the same equivalence class, the notion
of a covered edge is useful [26]. A directed edge between two variablesa; b 2 V is said to be
covered in a DAGm if it holds thatpam(a) n fbg = pam(b) n fag, i.e. when disregarding the
edge betweena andb they have the same parents. The orientation of a covered edge can be
reversed in order to obtain another equivalent DAG [26]. This has important consequences for
the properties of scoring functions derived in Section 3.1.3. Moreover, this notion will also be
used in the discussion of the experiments in the Sections 5.6 and 6.3.

2.2.4 Perfect Map and Faithfulness

Structural learning is aimed at inducing DAGs which describe a given probability distribution
implied by the data. This section thus addresses the question whether a Bayesian network
structure is capable of describing all the conditional independences and dependences (CIDs)
implied by an arbitrary data set. For instance, assume that a probability distribution for the three
variablesa; b andc implies the conditional independencesa??c j fbg andb??c j fag, while the
other associations are dependences. Obviously, the CIDs cannot all be represented in a single
DAG (cf. also Figure 2.3). This suggests to represent either all the (conditional) independences
or all the (conditional) dependences in a DAG. This leads to the notion of I-maps and D-maps
(see e.g. [116]).

Definition 2.2 (Independence Map (I-Map)) A DAG is an independence map of a probability
distribution for a set of variables V if and only if a ? b j S ) a ?? b j S, or equivalently
a 6??b j S ) a 6?b j S (for all a; b 2 V, S � V n fa; bg).

This means that every d-separation displayed in an I-map entails a (conditional) independence
in the probability distribution. However, the probability distribution might imply additional
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Figure 2.3: A DAG might not be capable of representing all the CIDs implied by an arbitrary
probability distribution.

independences not represented in an I-map. Apparently, the complete graph, i.e. the one
where all edges are present, is a trivial I-map of any probability distribution. More interesting
are minimal I-maps, which are minimal in the sense that no edge can be removed without
destroying the property of being an I-map. In general, there can exist several minimal I-maps
which are not Markov equivalent. This is illustrated in Figure 2.3, depicting two minimal
I-maps containing different edges.

Definition 2.3 (Dependence Map (D-map)) A DAG is a dependence map of a probability
distribution for a set of variables V if and only if a 6? b j S ) a 6?? b j S, or equivalently
a??b j S ) a?b j S (for all a; b 2 V, S � V n fa; bg).

A D-map hence represents all the conditional independences underlying the probability dis-
tribution, but additional independences can possibly be read off a D-map. Equivalently, all
dependences implied by a D-map are present in the probability distribution. Thus, the empty
graph is a trivial D-map, as it does not represent any dependences. A DAG is a maximal D-map
if no edge can be included into the graph without losing the property of being a D-map. Like
I-maps, there can generally be several D-maps which are not equivalent to each other.

Since D-maps represent fewer dependences, they typically contain a smaller number of edges
than I-maps. In the special case that a probability distribution is such that a DAG can simul-
taneously be a minimal I-map and a maximal D-map of the distribution, this DAG is called a
perfect map, and the probability distribution is called faithful.
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Definition 2.4 (Perfect Map and Faithfulness) A DAG is a perfect map of a probability dis-
tribution for a set of variables V if and only if a ?? b j S , a ? b j S (for all a; b 2 V,
S � V n fa; bg). A probability distribution is faithful if and only if it has a perfect map.

If a probability distribution is faithful then the perfect map is uniquely determined (up to
Markov equivalence, of course), unlike I-maps and D-maps. The constraint-based approach
to structural learning in Bayesian networks typically requires the assumption that the probabil-
ity distribution implied by the data be faithful. This is discussed in the Sections 3.3.2 and 4.1,
as this assumption may not hold for probability distributions implied by finite data.

2.3 Graphical Models

Graphical models can be traced back to the beginning of the twentieth century, where they
were first used in statistical physics [68]. Independently, they have evolved in genetics and
statistics [7, 153]. In statistics, so-called log-linear models have long been a popular approach
to modeling multivariate probability distributions for discrete variables. For a comprehensive
account, the reader is referred to [11]. Graphical models can be considered as a special case of
so-called hierarchical log-linear models. Important papers which laid the modern foundations
of graphical models include [36, 104, 105, 149–151]. The class of graphical models comprises
not only Bayesian networks but also Markov networks and chain graphs. While the latter two
models are widely used in statistics, Bayesian networks have attracted a lot of attention in the
AI community over the past one or two decades. In contrast to Bayesian networks, Markov
networks contain solely undirected edges.1 Since chain graphs allow for both directed and
undirected edges, Bayesian networks and Markov networks might be viewed as special cases
of chain graphs.

The common characteristic of the various graphical models is the graphical visualization of
conditional independences and dependences (CIDs) by means of Markov properties. Regarding
a Markov network, a conditional independence a?? b j S corresponds to a separation of a and
b in the undirected graph such that every path between a and b contains a variable in S. This
entails again a factorization of the joint probability distribution, similar to Bayesian networks.
However, it cannot be expressed in terms of (conditional) probabilities in general. This renders
parameter estimation in Markov networks quite involved, as those factors of the probability
distribution, the so-called clique potentials, cannot be calculated directly from the data, but
usually require some iterative schemes like iterative proportional scaling [37].

Figure 2.4 depicts the classes of probability distributions – in terms of CIDs – which can be
captured by Bayesian networks and Markov networks [116]. It is obvious that certain CIDs
can only be represented by DAGs while others can only be reflected by the undirected graph
of a Markov network. An example for each of which is depicted in Figure 2.5. Moreover,

1Although the undirected graph of a Markov network looks like the skeleton of a DAG, they may not be con-
fused.
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Figure 2.4: Correspondence among graphical models (their graphs are put into brackets).

there is also an overlap between both models, indicating that certain probability distributions
can be described by both a Bayesian network and a Markov network [149]. Many structural
learning algorithms focus on inducing these so-called decomposable models, as they have some
properties which ease their induction from data. The structure of decomposable models is
typically visualized by an (undirected) chordal graph. An undirected graph is called chordal,
or triangulated, if every closed path (loop) of length four or more has at least one chord, i.e.
an edge between two variables along the loop which is not contained in the loop. This yields
that the undirected graph in Figure 2.5 is not chordal. Equivalently to an (undirected) chordal
graph, the structure can also be represented by a DAG without colliders.2 This indicates that
the probability distribution described by a decomposable model factorizes into a product of
conditional probabilities – which is similar to Bayesian networks – while its graph can be
displayed using undirected edges – corresponding to a Markov network.

c

ba ba

dc
a    b 

b    c   {a,d}
a    d   {b,c}

Figure 2.5: The CIDs represented by the DAG (left) cannot all be displayed in the undirected
graph of a Markov network. Conversely, there is no DAG which can represent all the CIDs
shown by the Markov network structure (right).

Finally, let us note that the probability distributions described by graphical models belong to
the exponential family (see e.g. [6, 64–66]). In detail, graphical models with hidden variables,
i.e. variables which are unobserved, belong to the so-called stratified exponential family [64–
66]. In the absence of hidden variables, Bayesian networks are curved exponential families,
while Markov networks are linear exponential families [64–66]. Some consequences regarding
structural learning are mentioned in Section 5.9.

2.4 Some Related Tools for Data Analysis

There are various approaches to data analysis. Let us depict two of them which are closely
related to Bayesian networks. Association rules are a popular technique in data mining. Asso-

2Note that converging arrows a ! b  c are not forbidden if also the edge between a and c is present in the
DAG.
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ciation rules are aimed at measuring the strength of statistical associations between variables.
In the domain depicted in Figure 1.1, the variables ” light failure?” and ”computer failure?” are
only indirectly related to each other. Since association rules cannot account for such condi-
tional independences, they yield, a possibly strong, statistical association between ” light fail-
ure?” and ”computer failure?” . One can imagine that, in domains with many variables, a few
direct associations entail a large number of indirect associations. In order to gain insight into
such a domain it is thus desirable to distinguish between direct and indirect associations, as the
former entail the latter. For this reason, association rules might provide less insight into the
interrelations of the various variables in a domain than Bayesian networks, or graphical models
in general, do.

x 1 x 2 x 3 x 4 x n.......

hidden variable

Figure 2.6: A naı̈ve Bayesian network can be used for clustering.

Let us also mention clustering, another popular approach to data analysis, which is very closely
related to a particular kind of Bayesian networks, namely the so-called naı̈ve Bayesian network.
Clustering is aimed at grouping similar configurations contained in the data set into the same
cluster. The data can be considered as a set of cases, each of which representing a configu-
ration. The similarity of configurations can be measured by a metric defined in the space of
configurations. The latter is typically called feature space in the context of clustering. The fea-
ture space is hence partitioned into disjoint subspaces, where each subspace is called a cluster
or a scenario. Typically, each configuration belongs to a certain cluster, and the data set can
hence be understood in terms of (a few) scenarios, capturing the main effects underlying the
data. If the data set is such that the scenarios are not well-separated from each other, one might
prefer soft clustering, where a case is fractionally assigned to multiple clusters. Besides other
methods, this can be achieved by means of a naı̈ve Bayesian network. It contains a hidden,
discrete variable whose states correspond to the different clusters or scenarios. Moreover, the
different variables (or features) of the domain, V = fxi : i = 1; :::; ng, are assumed to be
independent conditional on the hidden variable. This is sketched in Figure 2.6. The fraction
with which a configuration belongs to a particular cluster is measured in terms of probability.
For this reason, this approach to clustering has a sound theoretical basis. When a configura-
tion is entered as evidence into the naı̈ve Bayesian network, carrying out inference yields the
probabilities with which this configuration belongs to the various clusters, i.e. states of the
hidden variable. Since all the information is contained in the parameter values (rather than in
the structure) of the Bayesian network, visualization of the various clusters or scenarios can
be difficult. Various approaches are applicable for learning the parameters in the presence of a
hidden variable (cf. also Section 5.9).



3
Structural Learning
Structural learning, or model selection, is concerned with determining a Bayesian network
which describes the probability distribution implied by the data to some degree. This degree
is usually measured by means of a so-called scoring function. The latter maps the, possibly
high-dimensional, space of Bayesian networks to a one-dimensional one, typically to the real
numbers. The properties of Bayesian networks outlined in the previous chapter suggest certain
features of scoring functions. Throughout the remainder of this thesis, it is important to keep in
mind the notion of relative scoring functions introduced in this chapter. Additionally, interrela-
tions among the different relative scores are derived in the following. As will become clear, the
main consequences are that certain combinations of induced conditional independences cannot
coincide, and that a speed-up of the computations can be achieved.

Many learning algorithms try to find the (global) optimum of the scoring function. Un-
fortunately, the task of actually finding the optimal Bayesian network is an NP-hard prob-
lem [14, 27, 84]. For this reason, one has to resort to a heuristic search strategy which can
efficiently determine a Bayesian network close to optimum. In Section 3.3, an overview of
popular learning algorithms is given. As reviewed in Section 3.2, it can be beneficial to allow
for model uncertainty, instead of learning a single Bayesian network.

3.1 Scoring Functions

Scoring functions assign a score to a Bayesian network structure in the light of data. A data set
is a collection of cases, and a case contains an instantiation, i.e. a value, for each variable in
the domain. It is typically assumed that the data set comprises independently and identically
distributed cases, i.e. all cases are drawn from the same probability distribution, and this is
done for each case independently of the others. Let a scoring function be denoted as F and
the score of a DAG m as F (m). It is assumed that F is strictly positive. One can hence use
the logarithmic scoring function f(�) = log F (�), which helps avoid numerical problems. For
brevity, also f(m) is simply called scoring function (without ” logarithmic” ) when this is clear
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from the context.

3.1.1 Decomposability

A main property of the probability distribution described by a Bayesian network is its recursive
factorization, or decomposability (cf. Equation 2.2.1). Hence, one might desire that also the
scoring function F shows this property,

F (m) =
Y
v2V

Fv(vjpa(v)); (3.1.1)

where each term Fv(vjpa(v)) involves only a variable v 2 V and its parents pa(v). Here, we
have explicitely distinguished among the different functions Fv, v 2 V. This is, however, often
skipped for concise notation in the remainder of this thesis. The decomposability of the scoring
function F holds for all the commonly used scoring functions (cf. also Section 3.1.4) in the
case of complete data and in the absence of hidden variables. The issue of incomplete data is
addressed in Section 5.9. The logarithmic scoring function reads analogously

f(m) =
X
v2V

fv(vjpa(v)): (3.1.2)

3.1.2 Relative Scoring Functions

The scoring function F assigns a score F (m) to the entire graph m. Hence, the evaluation of
the score F (m) can be computationally tedious, in particular in domains with a large number
of variables v 2 V. Popular search strategies explore the search space of all DAGs m 2M by
proceeding from one intermediate graph mi to some other mi+1, where successive graphs are
typically very similar to each other. The score F (mi+1) can hence be computed efficiently by
reusing many terms Fv(vjpa(v)) already evaluated for the score F (mi) (cf. Equation 3.1.1).
Alternatively, a relative scoring function may be employed, as described in the following.
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Figure 3.1: The DAGs m+ and m� are distinct regarding the presence of exactly one edge,
namely a b. � = pam�(a) depicts the parents of a in the DAG m�, and the dots symbolize
the remaining network structure assumed to be identical in both DAGs.

Instead of an absolute scoring function F concerning an entire graph, a relative scoring func-
tion is concerned with the difference in the scores of two graphs. In particular, let us consider
two DAGs m+ and m� which differ in exactly one edge, namely let the edge a b be present
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in m+ while it is absent in m� (a; b 2 V). This as illustrated in Figure 3.1. The relative scor-
ing function, designated as G, is given by the following ratio involving the absolute scoring
function F ,

G(m+;m�) =
F (m+)

F (m�)

=
Fa(ajpam+(a))

Fa(ajpam�(a))

Y
v2Vnfag

Fv(vjpam+(v))

Fv(vjpam�(v))

=
Fa(ajpam�(a) [ fbg)

Fa(ajpam�(a))
(3.1.3)

=
Fa(ajpam+(a))

Fa(ajpam+(a) n fbg)

= G(a; b; pam�(a) n fbg);

where we again assume that F (m) > 0 for all DAGs m 2 M. The second line in Equation
3.1.3 shows that the decomposability of F entails a considerable simplification of G. Because
the DAGs m+ and m� differ only in the parents of the variable a, i.e. pam+(a) n fbg =
pam�(a), all the other ratios Fv(vjpam+(v))=Fv(vjpam�(v)), v 2 V n fag, are equal to one.
Consequently, the relative score G(m+;m�) depends only on the variables a, b and pam�(a)n
fbg, where m� is a short-hand notation for the DAGs m+ and m�. Note the importance of the
parents of the variable to which the edge a  b points, while the parents of the other variable
are irrelevant. It is crucial that G is independent of all the other variables and hence of the
Bayesian network structure involving the remaining variables. In other words, the relative score
G(a; b;pam�(a) n fbg) is determined once the parents of the variable a are known. Instead of
considering the entire graph, relative scoring functions are hence concerned with single edges
given the parents of the corresponding variable.

If the relative score G(a; b;pam�(a) n fbg) is larger than one then the absolute score F (m+)
is larger than F (m�). Regarding the edge a  b, this means that its presence is favored
more than its absence given the parents pam�(a) n fbg. Similarly, if the relative score
G(a; b;pam�(a) n fbg) < 1 then the absence of the edge a b is preferred given the parents
pam�(a) n fbg. The logarithm of the relative scoring function is given by

g(m+;m�) = logG(a; b;pam�(a))

= fa(ajpam�(a) [ fbg) � fa(ajpam�(a)) (3.1.4)

= g(a; b; pam�(a) n fbg):

For brevity, we often use g(a; b) := g(a; b; ;) in the remainder of this thesis.

Let us now be concerned with the difference in the scores of two DAGs m1 and m2 which
are distinct from each other with respect to several edges. The difference in the scores,
�(m2;m1) := f(m2) � f(m1), can be expressed in terms of the relative scoring function
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Figure 3.2: A cycle in the space of DAGs. � depicts the parents of a in m0, and the dots
symbolize the remaining network structure assumed to be identical in these DAGs.

g as follows. The DAG m1 can be viewed as the beginning of a sequence of DAGs where suc-
cessive DAGs differ from each other by the presence or absence of exactly one edge, and the
DAG m2 is at the end of that sequence. The sum over the relative scores regarding successive
DAGs results in the overall difference �(m2;m1). It is obvious that such a sequence of DAGs
exists. Moreover, any sequence of DAGs between m1 and m2 can be used for calculating this
difference. This is because the absolute scores f(m1) and f(m2) depend only on the graphs
m1 and m2. In physics, this is a typical property of so-called potentials.

In the following, let us focus on a particular sequence of DAGs, namely the one which begins
and ends at the same DAG (cf. Figure 3.2). This sequence is hence a cycle. Let us begin to
proceed along this cycle at the DAG m0. First, two edges are subsequently included and then
removed in the reversed order. Since f is a potential, the sum of the involved relative scores
along the cycle has to vanish,1

0 = g(a; b; �) + g(a; c; � [ fbg) � g(a; b; � [ fcg) � g(a; c; �);

or equivalently

g(a; b; � [ fcg)� g(a; c; � [ fbg) = g(a; b; �) � g(a; c; �); (3.1.5)

where � = pam0
(a). All four relative scores in Equation 3.1.5 have the same variable in their

first argument, namely a. In contrast, the variable in the second argument can change. Since
this relation among relative scores has to hold for all a; b; c 2 V and for all � � V n fa; b; cg,

1In physics, a well-known consequence is the fact that perpetual motion cannot exist.
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it follows immediately for all S � V which contain at least three variables that

g(a; b;S n fa; bg) � g(a; c;S n fa; cg) = g(a; b;S n fa; b; cg) � g(a; c;S n fa; b; cg):
(3.1.6)

This equation shows that relative scores cannot all be independent of each other, since three
relative scores determine the value of the fourth one in Equation 3.1.6. Hence, only certain
combinations of relative scores can coincide, namely the ones in accordance with the con-
straints implied by Equation 3.1.6. This means, however, that the other combinations of val-
ues are forbidden. For instance, given that the edge a  b is favored to be absent due to
g(a; b; ;) < 0 while the presence of the edge a c is supported by g(a; c; ;) > 0, the relative
scores g(a; c; fbg) < 0 and g(a; b; fcg) > 0 cannot be found simultaneously. When negative
values of the relative scoring function are interpreted as induced (conditional) independences,
Equation 3.1.6 thus forbids the simultaneous occurrence of various combinations of induced
(conditional) independences.

Moreover, regarding the third argument of the relative scores in Equation 3.1.6, the sets on the
left hand side comprise one additional variable compared to one on the right hand side. This
can be exploited to speed up the computations of scores, as discussed in Section 5.4.2.

In this section, we have defined the relative scoring function g by means of the absolute scoring
function f . Conversely, f can also be expressed in terms of g. This is, however, not of practical
use concerning efficient computation. Starting out from the empty graph, a sequence of DAGs
can be obtained by successively including edges (in some arbitrary order) until one arrives at
the DAG m of concern. Each time an edge v  w is included, the relative scoring function is
evaluated on the basis of the current DAG mint. This eventually results in

f(m) = f(mempty) +
X
v2V

X
w2pam(v)

g(v; w; pamint
(v)); (3.1.7)

where the sums are only carried out over the variables v 2 V with pam(v) 6= ;. The score
f(mempty) of the empty graph is often a meaningless constant, which might hence be set to zero
for simplicity. The only exception occurs when a (posterior) probability is used as a scoring
function (cf. Section 3.1.4). In this case, f(mempty) 6= 0 accounts for the normalization of the
(posterior) probability distribution. Up to a constant, absolute and relative scoring functions
can thus be used as equivalent alternatives.

3.1.3 Score Equivalence

An important property of Bayesian network structures is Markov equivalence, as outlined in
Section 2.2.3. Consequently, one can only aim at determining the equivalence class rather than
a particular DAG on the basis of the probability distribution implied by the data. Only in a
causal discovery setting or in the case of prior knowledge about the orientations of some edges,
it might be reasonable to distinguish among equivalent DAGs. In many cases, however, there is
no reason for favoring a particular DAG more than another equivalent one. Consequently, it is
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Figure 3.3: The equivalent DAGs m+
1 and m+

2 are assumed to be identical except for the
orientation of the edge between a and b, which is covered because pa(a)nfbg = pa(b)nfag =
S n fa; bg.

often desirable that an (absolute) scoring function assigns the same score to equivalent DAGs.
This is called score equivalence. This section is concerned with the properties of absolute and
relative score-equivalent scoring-functions.

In Figure 3.3, the DAGs m+
1 and m+

2 are equivalent, since they differ only in the orientation
of the edge between a and b, which is a covered edge (cf. Section 2.2.3). Hence, the scores
f(m+

1 ) and f(m+
2 ) have to be identical, and it follows immediately for a score-equivalent

relative scoring-function g that

g(a; b;S n fa; bg) = g(b; a;S n fa; bg) (3.1.8)

for all S � V which contain at least two variables, and for all a; b 2 S. This implies that there
are more interdependencies among score-equivalent relative scores than there are among non-
score-equivalent relative scoring-functions. Whereas the first variable in each of the scores has
to be the same in Equation 3.1.6, Equation 3.1.8 allows the first and the second variables to be
swapped. Regarding score-equivalent scoring-functions, there is hence also a relation between
the relative scores g(a; b;S nfa; bg) and g(c; d;S nfc; dg) where all the a; b; c; d 2 S � V can
be pairwise different. For all S � V which comprise at least four variables this is given by

g(a; b;S n fa; bg) � g(c; d;S n fc; dg)

= g(a; b;S n fa; b; cg) � g(a; c;S n fa; b; cg)

+g(a; c;S n fa; c; dg) � g(c; d;S n fa; c; dg)

= g(a; b;S n fa; b; cg) � g(b; c;S n fa; b; cg)

+g(b; c;S n fb; c; dg) � g(c; d;S n fb; c; dg) (3.1.9)

= g(a; b;S n fa; b; dg) � g(a; d;S n fa; b; dg)

+g(a; d;S n fa; c; dg) � g(c; d;S n fa; c; dg)

= g(a; b;S n fa; b; dg) � g(b; d;S n fa; b; dg)

+g(b; d;S n fb; c; dg) � g(c; d;S n fb; c; dg):

Like in Equation 3.1.6, the third arguments of the relative scores in the first line contain one
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variable more than the ones in the remaining lines in Equation 3.1.9. This can be exploited in
order to achieve computations of score-equivalent scoring-functions which are more efficient
than the ones of non-score-equivalent scoring-functions (cf. Section 5.4.2), particularly when
the scores are evaluated in ascending order of the set S.

Concerning absolute scoring functions f which are decomposable and score-equivalent, it is
apparent from the equivalence of the DAGs m+

1 and m+
2 in Figure 3.3 that

fa(ajS n fag) + fb(bjS n fa; bg) = fa(ajS n fa; bg) + fb(bjS n fbg) (3.1.10)

or equivalently

fa(ajS n fag) � fb(bjS n fbg) = fa(ajS n fa; bg) � fb(bjS n fa; bg) (3.1.11)

for all S � V with at least two variables and for all a; b 2 S. Like in the case of relative
scoring functions, score-equivalence entails additional interrelations among absolute scoring
functions. Moreover, the terms on the left hand side in Equation 3.1.11 contain one variable
more than the ones on the right hand side. This can be exploited for efficient computations of
absolute scores in a similar manner as for relative scores (cf. Section 5.4.2).

3.1.4 Popular Scoring Functions

The most popular Bayesian networks contain solely discrete random variables with a multi-
nomial distribution. Alternatively, domains may contain solely continuous variables with a
multivariate Gaussian distribution (e.g. [63]) or a combination of discrete and continuous vari-
ables. In the so-called conditional Gaussian distribution [80, 105], the discrete variables have
a multinomial distribution and the continuous ones a multivariate Gaussian distribution condi-
tional on the discrete variables. Note that a Gaussian distribution implies a linear association
among the variables. Continuous variables with non-linear associations can be modeled by
various approaches [60, 85, 86, 113]. Since the main purpose of this work is the development
of a new search strategy rather than the extension of the scoring function to some particular
distribution, we focus on discrete variables with a multinomial distribution for simplicity when
becoming more specific in the following. Nevertheless, many parts of this section also hold in
general.

Maximum Likelihood

A common measure of goodness of fit of a Bayesian network model with the DAG m is the
maximum (log-)likelihood l(�̂m) = logL(�̂m) := log p(Djm; �̂m), where �̂m is the maximum
likelihood estimate of the parameters of the model, and D represents the data. Since the like-
lihood decomposes as L(�̂m) =

Q
v2V Lv(�̂vjpam(v)) given complete data and in the absence

of hidden variables, each ” local” likelihood Lv can be maximized separately. The parameters
of a Bayesian network are the conditional probabilities of a variable given its parents in the
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DAG (cf. Section 2.2.2). In the domain of discrete variables with a multinomial distribution,
the maximum-likelihood estimate of the parameters is given by

�̂vjpa(v)(i; k) =
Nv;pa(v)(i; k)

Npa(v)(k)
; (3.1.12)

which one might have guessed right away, as it is the maximum-likelihood estimate of the con-
ditional probability that the variable v is in state i 2 I(v) given that its parents pa(v) are in the
(joint) state k 2 I(pa(v)). The frequencies or (cell) counts N(�) of the various configurations
are sufficient statistics in this domain. The maximum (log-)likelihood of a Bayesian network
with the DAG m and the parameters �̂m reads

l(�̂m) =
X
v2V

X
i2I(v);

k2I(pa(v))

Nv;pa(v)(i; k) log
Nv;pa(v)(i; k)

Npa(v)(k)
; (3.1.13)

where the first sum ranges over all the variables v 2 V in the domain, and the second one
over the various configurations I(�). Note that all graphical models do not allow maximum-
likelihood estimates to be calculated in closed form from the cell counts. In fact, this is a
particular property of Bayesian networks. For instance, Markov networks require iterative
schemes, like iterative proportional scaling [41], in order to calculate maximum-likelihood
estimates approximately. A concise description of maximum-likelihood estimation in graphical
models with discrete variables is provided in [100].

Regarding two nested models2 with the DAGs m+ and m� it can be shown that the inequality
l(�̂m+) � l(�̂m�) holds (cf. e.g. [55]). It is thus not advisable to use the maximum likelihood
by itself for structural learning, since the maximum likelihood of the complete graph is larger
than the one of any other graph. Some practical problems related to a saturated model3 are the
intractability of inference in the model and the possibly large demand for computer memory in
order to store all the parameters. Although a saturated model usually performs very well on the
training data, i.e. the data which was provided for learning, its predictions are in general very
poor on new data, i.e. data which was not used for learning. This is an important issue, called
over-fitting. It was noticed in classification problems long ago [17]. Ever since researchers
have paid attention to avoid over-fitting in order to achieve improved predictions. A popular
way of approximately assessing the quality of the predictions of a model in the light of new data
is cross validation [145]. It is briefly described in Appendix A, and we applied this technique
in our experiments with real-world data in Section 6.3.2. Prequential validation [40] is a more
recent approach addressing the problem of over-fitting, too. However, it has been used less
commonly so far.

Maximum likelihood is, however, not useless in structural learning as long as it is combined
with a term penalizing model complexity, since the optimal model with respect to such a scor-
ing function is not necessarily the saturated one. Hence, this helps avoid over-fitting. A trade-
off between model complexity and the goodness of fit of a model is thus essential for scoring

2Two Bayesian networks are said to be nested if it holds for their DAGs m+ and m� that pam+(v) � pam�(v)
for all v 2 V , i.e. the one is a submodel of the other.

3A Bayesian network model is called saturated when its DAG is complete, i.e. no edge is missing.



3.1 SCORING FUNCTIONS 27

functions. When the goodness of fit is measured in terms of maximum likelihood, very popular
scoring functions are the Akaike Information Criterion (AIC) [1,2] and the Bayesian Informa-
tion Criterion (BIC), also called (Jeffreys-)Schwarz Criterion [132]:

AIC : fAIC(m) = l(�̂m)� j�̂mj (3.1.14)

BIC : fBIC(m) = l(�̂m)�
1

2
j�̂mj logN (3.1.15)

In both criteria,4 the term penalizing model complexity is measured in terms of the number of
independent parameters which is given by

j�̂mj =
X
v2V

(jI(v)j � 1) � jI(pa(v))j; (3.1.16)

where jI(v)j denotes the number of states of the discrete variable v 2 V, and

jI(S)j =
Y
s2S

jI(s)j (3.1.17)

is the number of (joint) states of a set of variables S � V.5 Note that the number of independent
parameters is (jI(v)j � 1) rather than jI(v)j conditional on each configuration of the parents,
since the parameters in the Bayesian network model are normalized, as they are (conditional)
probabilities. The main difference between the two penalty terms in the AIC and BIC is that
the latter depends also on the number of casesN in the data set. Thus, the BIC generally favors
less complex models than the AIC does (when logN > 2). In fact, it was shown that the AIC
tends to yield too complex models, even in the asymptotic limit [95, 137]. The value of the
constant factor in the penalty term of the AIC is more or less arbitrary, as it is a consequence
of AIC ’s optimality with respect to the Kullback-Leibler divergence in the asymptotic limit.
Other distance measures lead to different values [106]. In contrast, the BIC is asymptotically
equivalent to the log-likelihood in prequential validation [40]. This is, however, only proven
to hold for Bayesian networks without hidden variables [64–66, 78] (cf. also Section 5.9).
Another popular measure is the Minimum Description Length (MDL) [125, 127, 128], which
stems from information theory. Although it has a completely different origin than the BIC,
both measures are essentially identical. Variants of the MDLmetric can, for instance, be found
in [13, 75, 99, 126].

In the case of complete data and in the absence of hidden variables, both the maximum log-
likelihood and the term penalizing model complexity decompose into terms such that each of
which involves only a variable and its parents. Hence, AIC as well as BIC can be used as
relative scoring functions g (cf. Section 3.1.2):

AIC : gAIC(a; b;S) = d(a??b j S) � df ; (3.1.18)

BIC : gBIC(a; b;S) = d(a??b j S) �
1

2
df logN; (3.1.19)

4Regarding both AIC and BIC, we have omitted a factor of 2 which is often present.
5In case that S = ;: jI(;)j = 1.
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where a; b 2 V and S � V n fa; bg. As discussed in Section 3.1.2, these relative scoring
functions are independent of the other variables Vn(S[fa; bg) in the domain. In the Equations
3.1.18 and 3.1.19, the logarithm of the likelihood ratio is written in terms of the deviance
difference,6

d(a??b j S) := l(�̂m+)� l(�̂m�)

= log
L(�̂m+)

L(�̂m�)
= log

La(�̂ajS[fbg)

La(�̂ajS)

=
X

i2I(a);
j2I(b);
k2I(S)

Na;b;S(i; j; k) log
Na;b;S(i; j; k)NS(k)

Na;S(i; k)Nb;S(j; k)
: (3.1.20)

The deviance difference depends only on a, b and S, and so do the degrees of freedom obtained
from Equation 3.1.16,

df := j�̂m+ j � j�̂m� j = (jI(a)j � 1) � (jI(b)j � 1) � jI(S)j; (3.1.21)

where jI(S)j is given in Equation 3.1.17. Instead of Equation 3.1.21, one might also use
adjusted degrees of freedom [5, 11], in particular when the contingency table contains a large
number of zero cell-counts.

Many constraint-based approaches to structural learning employ the �2-independence-test (cf.
Section 3.3.2). Let us note that it can essentially be rewritten such that it resembles a relative
scoring function, namely like

g�2(a; b;S) = d(a??b j S) �
1

2
�21��(df ); (3.1.22)

where the quantile �21��(df) plays the role of the term penalizing model complexity. The
quantile depends on the significance level �, e.g. 5%, as well as on the degrees of freedom df .
Since it is a non-linear function of the latter, there cannot exist an absolute scoring function,
though. Being aware of this fact, we nevertheless apply this ” relative scoring function” and
compare it to other relative scoring functions in our experiments (cf. the Sections 5.6.2 and
6.3.2). A positive sign of g�2(a; b;S) corresponds to rejecting the conditional independence
a??b j S, while the latter may be accepted for negative values.

Marginal Likelihood and Posterior Probability

Bayesian statistics is an alternative to the classical (frequentist) approach.7 In many respects,
the Bayesian approach can be considered as diametrally opposite to the frequentist one. A

6Again, the factor of 2 is omitted.
7The expressions Bayesian statistics and Bayesian networks may not be confused. While the former specifies

the kind of statistical approach (Bayesian versus frequentist), taken to structural learning here, the latter is the name
of the model under consideration here (as opposed to ,e.g., Markov networks, chain graphs, neural networks, etc.).
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comprehensive account of Baysian statistics is provided in [10]. The Bayesian approach treats
the parameters of a Bayesian network model as random variables with some distribution, like
the other random variables v 2 V in the domain. The marginal likelihood of a DAG m in the
light of the data D is given by

p(D jm) =

Z
d�m p(D j �m;m) p(�m jm); (3.1.23)

where p(�m jm) is the a priori probability for the parameters �m. Since the marginal likelihood
can depend on the particular choice of the prior p(�m jm), a careful analysis of data usually
requires a sensitivity analysis where the influence of the prior on the final result is examined.

Unlike AIC and BIC, described in the previous section, the marginal likelihood in Equation
3.1.23 does not exhibit a term explicitely penalizing model complexity. Nevertheless, such a
penalty term is inherent in p(D jm), as can be understood in various ways. First, integrating
out the parameters in Equation 3.1.23 penalizes more complex models, i.e. models with a larger
number of independent parameters, because these models can a priori describe a larger range of
distributions. Second, the data D can be treated in a sequential manner, i.e. one case after the
other is taken into account. Let the entire data set D comprise the cases Ci (i = 1; :::; N ), and
let Di denote the cases C1; :::; Ci�1. When the marginal likelihood is rewritten by the chain
rule of probability theory as

p(D jm) =
NY
i=1

p(Ci jDi;m); (3.1.24)

it becomes apparent that the prediction of the case Ci is based on the previous cases
C1; :::; Ci�1 [40]. This mechanism is kind of similar to cross validation (cf. also Appendix A).
Third, the penalty regarding model complexity becomes explicitely visible (to some approxi-
mate degree) when the logarithm of the marginal likelihood is asymptotically approximated by
the BIC (cf. Equations 3.1.28 and 3.1.15).

The posterior probability of a DAG m is related to its marginal likelihood by means of Bayes’
theorem,

p(m jD) =
p(m)

p(D)
p(D jm); (3.1.25)

where p(m) is the a priori probability for the DAG m and p(D) is the probability for the
data D. It is apparent that the Bayesian approach allows the incorporation of prior knowledge
regarding the parameters as well as concerning the Bayesian network structure. According to
Equation 3.1.25, the learning task can be viewed as updating one’s prior belief on the basis of
the data, as the latter has an impact on the marginal likelihood, i.e.

Posterior / Likelihood � Prior: (3.1.26)

The proportionality is due to the probability for the data p(D) being unknown in general.
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Instead of the posterior probability, one might use p(m;D), like in [81], since it involves
only p(m) and p(D jm). An alternative to this absolute scoring function is a relative scoring
function regarding two DAGs m+ and m�. A popular choice is the posterior ratio,

p(m+ jD)

p(m� jD)
=

p(D jm+)

p(D jm�)

p(m+)

p(m�)
; (3.1.27)

which is the product of the prior ratio p(m+)=p(m�) and the Bayes factor B(m+;m�) =
p(D jm+)=p(D jm�) [88]. A particular choice of the DAGs m+ and m� is depicted in Figure
3.1. Before being concerned with this, let us first consider the marginal likelihood in more
detail.

Marginal Likelihood

From a practical point of view, the main problem of the Bayesian approach is the calculation
of the marginal likelihood, because it involves the evaluation of the integral in Equation 3.1.23
which is very complicated in general. This problem can be tackled by methods like importance
sampling [25,115,122], Markov chain Monte Carlo, in particular the Metropolis-Hastings algo-
rithm [77, 112] and the Gibbs sampler [67], or by variational approximations (for an overview,
see e.g. [93] and the references therein). In the following, the asymptotic approximation by
means of the Bayesian Information Criterion (BIC) is described, as well as the use of conju-
gate priors, the latter rendering an exact analytical evaluation of the integral in Equation 3.1.23
possible.

The BIC appears in the asymptotic approximation to the log marginal likelihood by Laplace’s
method [132],

log p(D jm) � fBIC(m): (3.1.28)

This is a valid approximation for Bayesian networks without hidden variables, as their probabil-
ity distribution belongs the curved exponential family [78]. In contrast, Bayesian networks with
hidden variables describe a larger class of distributions, the so-called stratified exponential fam-
ily, where the BIC may not be a valid approximation to the log marginal likelihood [64–66].
Only terms which are relevant in the asymptotic limit are retained in the BIC. When it is ap-
plied to finite data, this approximation may be improved by including terms with finite values,
like 1=2j�̂mj log(2�), as examined in [46]. Additional terms are present in Kashyap’s crite-
rion [92]. An overview of the various approximations to the marginal likelihood can be found
in [30, 31, 93, 106, 133].

An advantage of this approximation is that it can easily be evaluated, like the maximum log
likelihood. Moreover, the BIC avoids the explicit introduction of priors. However, the BIC
is only a rough approximation to the log marginal likelihood. This is apparent from the fact
that exp(gBIC)=B 6! 1 occurs for at least some priors in the asymptotic limit (B is the Bayes
factor, and gBIC is given in Equation 3.1.19). Nevertheless, (logB� gBIC )= logB ! 0 holds
in the asymptotic limit (see e.g. [94]). The relative error is generally of the order of O(1). For
some particular choices of the prior, e.g. the unit information prior, this error is only of the
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order O(N�1=2), where N is the sample size [93, 94, 123]. The BIC is hence conveniently
used in many learning algorithms, e.g. [22].

A Bayesian scoring function based on conjugate priors was first applied to structural learning
in Bayesian networks in [33, 34], which was later extended in [79]. The idea behind conjugate
priors is to choose the prior distribution for the parameters such that the prior belongs to the
same family as the posterior distribution. Equation 3.1.26 illustrates that the posterior can then
easily be used as a prior when learning from subsequent cases. Such a choice does not necessar-
ily exactly reflect one’s prior knowledge, but it allows the evaluation of the integral in Equation
3.1.23 in closed form. In order to calculate the marginal likelihood of a DAG analytically,
a few assumptions are necessary, like complete data, (global and local) parameter indepen-
dence [139] and parameter modularity [81]. With these assumptions, Bayesian networks are
particularly suitable for developing a Bayesian scoring function like the marginal likelihood
or the posterior probability of a DAG. Regarding discrete variables with a multinomial dis-
tribution, the conjugate prior belongs to the Dirichlet distribution. Other distributions for the
variables require, of course, different prior distributions for the parameters (see e.g. [10]). For
instance, the marginal likelihood of Bayesian networks containing continuous variables with a
Gaussian distribution is calculated in [63]. Based on these assumptions, the marginal likelihood
of a DAG m with discrete variables v 2 V can be written as

p(D jm) =
Y
v2V


(fvg [ pam(v))


(pam(v))
(3.1.29)

where D is the data and pam(v) are the parents of the variable v 2 V in the DAG m, and


(S) =
Y

j2I(S)

�(NS(j) +N 0S)

�(N 0S)
: (3.1.30)

The function 
(�) maps the cell counts NS(j) of the various configurations j 2 I(S) of a
subset S � V to the real number 
(S) by means of the Gamma function �(�). Although this
notation differs slightly from the original one in [34, 81], it is equivalent to it. This notation is
used to illustrate the different factors more clearly. The parameters N0S arise from the Dirichlet
prior. When they are chosen as N0S = N 0S(j) = N 0 p(j) with a constant N0 then the marginal
likelihood in Equation 3.1.29 results in a score-equivalent scoring-function [81]. Conversely,
it can be shown that the assumption of score equivalence entails the prior distribution to be
Dirichlet with N0S = N 0 p(j) [81].

The prior probabilities p(j) of the various configurations j 2 I(S) can, for instance, be deter-
mined by a Bayesian network specified a priori [81]. Often, such prior knowledge might not
be available so that one might prefer the uninformative assignment

N 0S =
N 0

jI(S)j
; (3.1.31)

where jI(S)j denotes the number of all joint states of the variables in S [19]. A similar as-
signment was chosen in [34]. However, the latter does not obey the normalization condition
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N 0 =
P

j2I(S)N
0
S = jI(S)jN 0S for all S � V, as required by a score-equivalent scoring-

function.

Posterior Probability

Let us now be concerned with the particular DAGs m+ and m� shown in Figure 3.1. Since the
marginal likelihood in Equation 3.1.29 is clearly decomposable, the relative scoring function
based on the posterior ratios (cf. Equation 3.1.27) reads

Gpost(m
+;m�) =

p(m+ jD)

p(m� jD)
=

p(m+)

p(m�)

p(D jm+)

p(D jm�)

=
p(m+)

p(m�)


(S [ fa; bg) 
(S)


(S [ fag) 
(S [ fbg)
(3.1.32)

= Gpost(a; b;S);

where the function 
(�) is given by Equation 3.1.30. Again, many terms have canceled out,
and G depends only on a; b;2 V and S � V n fa; bg, as typical for relative scoring functions
(cf. Section 3.1.2). Various ways for assigning priors to the different network structures are
discussed in [81]. A score-equivalent scoring-function is obtained when the same prior prob-
ability is assigned to equivalent DAGs, which is called prior equivalence. A simple choice,
which also leads to decomposable priors, is the assignment

p(m) = e� jE(m)j+�; (3.1.33)

where jE(m)j denotes the number of edges in the DAG m, and � is the normalization constant.
The factor � can be chosen to penalize or favor DAGs a priori according to their number of
edges. The assignment � = 0 leads to a uniform prior for the network structures. It is apparent
that Equation 3.1.33 fulfills prior equivalence, since this prior is independent of the orientations
of edges.

According to the Equations 3.1.32 and 3.1.33, the logarithmic relative score reads

gpost(a; b;S) = logGpost(a; b;S)

= � + log

(S [ fa; bg) 
(S)


(S [ fag) 
(S [ fbg)
(3.1.34)

for the variables a; b 2 V and the subset S � V n fa; bg. When the relative score g(a; b;S)
is positive then the presence of the edge a  b is favored given S, whereas its absence is
supported by g(a; b;S) < 0 (cf. Section 3.1.2).8 In greedy algorithms, the relative score
g(a; b;S) is often compared to a threshold value 
 which might differ from zero. A positive
value of 
 is often chosen in order to induce an edge a b to be present given the set S only if

8For simplicity, we assume that g(a; b;S) 6= 0, i.e. the presence and the absence of an edge are not equally
likely.
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it is so to some notable degree (cf. also Table 5.5). A positive value of 
 can also be viewed as
an additional prior which penalizes DAGs with an increased number of edges, like the prior in
Equation 3.1.33. Similar statements apply to negative threshold values. Thus, Equation 3.1.34
can alternatively be written like �new := ��
, implying the use of a vanishing threshold value

new = 0.

In the Bayesian approach, the parameters of a Bayesian network are usually estimated by aver-
aging over the posterior distribution for the parameters, which are treated as random variables.
In the approach taken above [34, 81], the estimate of the parameter concerning the variable
v 2 V in state i 2 I(v) and the parents pa(v) with the configuration k 2 I(pa(v)) is given by

��vjpa(v)(i; k) =
Nv;pa(v)(i; k) +N 0v;pa(v)
Npa(v)(k) +N 0pa(v)

; (3.1.35)

where N 0pa(v) and N 0v;pa(v) = N 0fvg[pa(v) are given by Equation 3.1.31. This expression is very
similar to Equation 3.1.12 concerning maximum likelihood estimation. The only difference is
that N 0pa(v) and N 0v;pa(v) act like pseudo observations in Equation 3.1.35. This fact entails a
clear interpretation of these parameters which origin from the Dirichlet prior: the constant N0

(cf. Equation 3.1.31) is thus called equivalent sample size [81].

3.2 Model Uncertainty and Model Averaging

In general, there may not exist a single true model which describes the probability distribution
implied by the data, while all the other models are useless. When given finite data, sampling
noise or lack of enough data can entail that several Bayesian networks might describe the
implied probability distribution about equally well. This is called model uncertainty. In order
to allow for model uncertainty in structural learning, the learning algorithm has thus to be
capable of finding possibly several DAGs rather than a single one. Accounting for model
uncertainty has several benefits. First, when the various induced Bayesian network structures
are considered, misleading interpretations can be avoided by taking into account the confidence
in a certain structure. Second, when the induced Bayesian networks are used for predictions,
the predictive accuracy can be improved by using an average of the predictions of several
models, instead of relying on the prediction of a single one. When a single model is used for
predictions then uncertainty might be underestimated [46].

There are various approaches to model averaging. The Bayesian approach is theoretically
well-understood, and the posterior probability of a model can be interpreted as the probability
of this model being the true one on the basis of the given data D. When accounting for model
uncertainty, the prediction of a quantity of interest x, e.g. the value of some variables or the
presence of a certain structure in the DAGs, is given by

p(xjD) =
X
m2M

p(xjm;D)p(mjD); (3.2.1)
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where the average is taken over all models. Apparently, this is a weighted average, and the
posterior probabilities p(mjD) play the role of the weights. Regarding the logarithmic scoring-
rule [71], the following inequality shows the benefits of model averaging [108]:

hlog p(xjD)ip(xjD) = hlog
X
m2M

p(xjm;D)p(mjD)ip(xjD) (3.2.2)

� hlog(p(xjmo;D)ip(xjD); (3.2.3)

where h�ip(�) denotes the average with respect to p(�). This inequality indicates that averaging
over all models improves the predictive accuracy compared to using a single mo 2M.

The number of all DAGs, however, is much too large in many applications (cf. Equation
3.3.1). Hence, one has to resort to averaging over a feasible number of models, typically
about 10 or 20. Although the above inequality is not guaranteed to hold in this case, model
averaging based on a small number of models appeared to improve the predictive accuracy
in many experiments, e.g. [4, 18, 108]. Various strategies for selecting a tractable number of
models have been proposed. For instance, one might choose only the high-scoring models, i.e.
the ones whose posterior probability is larger than a certain threshold value. It is also popular
to apply Occam’s razor, which disregards those complex models which contain a submodel
with a larger score. The latter two schemes can also be combined, which results in the so-
called Occam’s window [108]. Furthermore, coherence rules [62] are often employed in order
to render learning algorithms more efficient when allowing for model uncertainty [48,49,108].
In the Bayesian approach, it is also popular to explore the posterior probability distribution for
the model space by Markov chain Monte Carlo simulation [69,72,109,110]. A recent variant is
Markov chain Monte Carlo simulation applied to the ancestral ordering on the variables [59].

Although Bayesian model averaging theoretically leads to optimal predictive accuracy, it did
not lead to a considerable improvement when combining several Bayesian networks in the
experiment reported in [81]. In [44], it is argued that Bayesian model averaging does not
overcome the problem of over-fitting, as the posterior probability depends exponentially on the
cell counts implied by the data. The posterior probability can thus depend very sensitively on
the sampling noise present in finite data. For this reason, a single model might be assigned
a large posterior probability by chance, and the Bayesian model-average is dominated by the
single model.

Model uncertainty can also be explored by the bootstrap [50], which was applied to learning
Bayesian networks in [57, 58]. In this approach, a certain number l of replicate samples is
generated by drawing N cases with replacement from a given data set of size N . From each of
the l samples, a model is learned. The differences among the l models reflect model uncertainty.
Although this scheme is simple in its nature, it is typically very time-consuming in practice, as
the number l of bootstrap samples has usually to be chosen quite large in order to obtain reliable
results. The l models can also be combined in order to improve predictive accuracy. In the
scheme called bagging [16], the l models are combined with uniform weights. Similar schemes
are stacking [152] and boosting [53]. Although these schemes are more or less heuristics, they
led to less over-fitting than Bayesian model averaging in the experiments reported in [44].
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3.3 Algorithms for Structural Learning

In structural learning in Bayesian networks, all variables are typically treated equally, i.e. there
is no distinct variable such as the class variable, as opposed to the attribute variables in super-
vised learning. In the following, we are hence concerned with unsupervised learning, as the aim
of structural learning in Bayesian networks is to approximate the joint probability distribution
for all the variables in the domain, as implied by the data. All the scoring functions depicted in
Section 3.1 are applicable. A scoring function used in structural learning in Bayesian networks
is typically score-equivalent. Since it is impossible to distinguish among Markov-equivalent
DAGs in this case (cf. Section 3.1.3), one can only aim at inducing the equivalence class rather
than a particular DAG. Since learning algorithms applied to the search space of equivalence
classes are, however, computationally rather inefficient [28, 107], one is typically concerned
with the search space of DAGs.

Structural learning in Bayesian networks is computationally very involved. One reason is the
extremely large search space of DAGs m 2 M. The number u of DAGs containing n variables
can be calculated recursively according to [129]

u(n) =
nX
i=1

(�1)i+1
�
n

i

�
2i(n�i) u(n � i); (3.3.1)

where u(0) = 1. Since an explicit expression for u(n) is unknown, one can get an idea of the
behavior of u(�) from the inequality

2(
n

2) < u(n) < 3(
n

2): (3.3.2)

The (loose) lower bound follows immediately from the fact that a DAG with n variables can
contain at most

�n
2

�
edges, and each edge can either be present or absent when disregarding

orientations. There are thus at least two alternatives for each edge. The upper bound follows in
a similar fashion, as an edge can be absent, oriented in the one direction or in the other. This
amounts to at most three alternatives for each edge. Since the acyclicity of DAGs imposes an
additional restriction on the directions of edges, this can only be a loose upper bound, though.
It is hence obvious that the number of DAGs rises super-exponentially with the number of
variables (and exponentially with the number of edges). Moreover, it could be shown that
finding the optimal DAG with respect to a scoring function is an NP-hard problem [14,27,84].

Due to the complexity of structural learning in Bayesian networks one has to resort to approxi-
mate learning algorithms which can find close-to-optimum solutions in a reasonable amount of
time. During the last decade, two main approaches to structural learning in Bayesian networks
have evolved. The one aims at maximizing a scoring function by means of a heuristic search
strategy, while the constraint-based approach recovers the structure of a Bayesian network on
the basis of the conditional independences and dependences induced from the data. Besides
these two main approaches, there are also various other algorithms. Some of them are men-
tioned in the Sections 3.2 and 5.9. Recent reviews on structural learning in Bayesian networks
are given in [20, 35, 131].
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At first glance, it seems that the two main approaches might induce different DAGs from the
same data. However, it can be shown that, when the data has been sampled from a faithful
probability distribution and when the used scoring function obeys certain properties, both ap-
proaches determine the same DAG in the asymptotic limit, namely the perfect map [14]. Given
finite data, however, it is not guaranteed that both approaches yield the same result.

3.3.1 Optimizing the Scoring Function

K2 Algorithm

The K2 algorithm [33, 34] has evolved from the Kutató algorithm [83]. It is the first algorithm
employing a Bayesian scoring function in structural learning in Bayesian networks (cf. also
Section 3.1.4). The aim of the K2 algorithm is to determine the DAG with the largest posterior
probability, i.e. the optimum with respect to this scoring function.

Besides a data set and an upper bound on the number of parents of a variable in the induced
DAG, the K2 algorithm requires also a correct (total) ordering, i.e. an ancestral ordering, on
the variables as input. Since a DAG imposes only a partial ordering on the variables v 2 V,
there typically exist many total orderings (cf. also Section 2.2.1). When given as input, a total
ordering entails several advantages. First, the task of optimizing the scoring function is greatly
simplified. This is because the optimal DAG with respect to the decomposable (absolute) scor-
ing function f(�) =

P
v2V fv(vjpa(v)) (cf. Equation 3.1.2) can be induced by optimizing

each term fv(vjpa(v)) independently of the others. The optimal DAG is then determined by
the optimal parents pa(v) of each variable v 2 V. Second, the total ordering ensures auto-
matically that no directed cycles can occur in the induced DAG. Third, a correct ordering on
the variables can also be expected to be beneficial regarding the quality of the induced DAGs,
as it is additional knowledge given to the learning algorithm. This was indeed found in the
experiments reported in [33, 34], where the induced DAG was very close to the original one,
although the K2 algorithm uses a very simple search strategy to optimize the scoring function.
Namely, starting out from the empty graph, that variable x is included into the current parent
set pa(v) of a variable v which is an ancestor of v according to the specified ordering and
which increase the absolute score by most. In terms of the relative scoring function, the edge
v  x with the largest score g(v; x;pa(v)) > 
 is included into the DAG (
 is a threshold
value, cf. Section 5.4.5). Due to the greedy nature of this search strategy, the K2 algorithm
tends to include slightly more edges than optimal, as found in experiments [33, 34].

This search strategy is called forward inclusion. In contrast, the scheme named backward
elimination starts out with the complete graph, and successively removes edges. The latter
approach is, however, not applicable to Bayesian networks, as the complete graph entails such
a large model complexity that the learning process becomes intractable.

The results of the K2 algorithm can depend sensitively on the ordering initially specified [81].
Since such an ordering is usually unknown in real-world applications, the K2 algorithm can
usually be applied only in experiments with artificial data where a correct ordering is known.
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When a correct ordering is given to the K2 algorithm, it can find better DAGs than other more
sophisticated search strategies like greedy local search or local search combined with simulated
annealing, regarding structural differences between the induced DAG and the original Bayesian
network structure [81].

Local Search

Local search is a general-purpose search strategy [90]. Starting out from a DAG initially spec-
ified, this scheme proceeds through the search space of DAGsM in a sequence of neighboring
DAGs m 2 M. There are two apparent definitions of a neighborhood of a DAG. First, a DAG
m belongs to the neighborhood of a DAG mo if m and mo are identical except for the presence
or absence of a single edge. An increased neighborhood of a DAG mo contains all those DAGs
which differ from mo concerning the presence, absence or orientation of a single edge. Accord-
ing to either definition, there exists obviously a sequence of neighboring DAGs between any
two DAGs m1;m2 2 M. This ensures that local search can reach any DAG within the search
space. In practice, the latter definition of a neighborhood appeared to yield better results, in
particular when employed in a greedy scheme.

Given the current DAG mo in the search process, there are many neighboring DAGs which can
become the next intermediate graph m0o. The difference in their scores, � := f(m0o)� f(mo),
can be expressed in terms of the relative scoring function. If an edge a  b is included in
the transition from mo to m0o then � = g(a; b;pa(a) n fbg). Conversely, the removal of an
edge a b entails � = �g(a; b; pa(a) n fbg), and the reversal of an orientation (from a b
to a ! b) results in � = g(b; a; pa(b) n fag) � g(a; b; pa(a) n fbg). Of course, it has to
be ensured that no directed cycles occur, i.e. that the next graph is indeed a DAG. In greedy
hill climbing, that DAG m0o becomes the next intermediate graph which entails the largest
improvement � > 
 compared to the current DAG mo (
 is a threshold value, cf. Section
5.4.5).

The main problem of local search is that it can get stuck at local optima of the (absolute) scoring
function. A DAG mo is a local optimum when all its neighboring DAGs m are assigned a
smaller score, i.e. f(m)�f(mo) � 0. There are various approaches to overcome this problem,
e.g. [97,108]. Let us focus on simulated annealing [112], as it was applied to structural learning
in Bayesian networks in [81]. As implied by its name, the idea stems from cooling down
a physical system, and the aim is to reach the global minimum of the potential governing
this system. In our case, the negative of the scoring function, �f(�), plays the role of such a
potential. An ensemble of classical particles which is subject to this potential has a Boltzmann
distribution p(�) / exp(f(�)=T ), where T denotes the temperature of the system. It is apparent,
that the number of particles at a small values of �f(�) is larger than at high values of �f(�).
Moreover, as expected from common sense, the number of particles at small values of the
potential �f(�) increases as the temperature T drops.

The procedure of simulated annealing starts out with a quite large temperature To which is
then gradually decreased down to a final temperature Tf � 0. At an intermediate temperature
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T (To > T > Tf), this method picks randomly a neighboring DAG m0o of the current graph
mo. This is called a proposed change. The transition to m0o is made with the probability
p(�) = minf1; exp(�=T )g. Hence, a change improving the score is always carried out,
whereas a decrease in the score is accepted or rejected with a finite probability. This procedure
is repeated several times at a given temperature T . In the experiments in Section 6.3.2, we
chose to stay at the same temperature until 600 transition to neighboring DAGs were proposed
or 200 transitions were accepted, whatever occurred first. After that, the temperature T was
decreased to T 0 according to T 0 = ! � T , ! < 1, and the above steps were repeated at the new
temperature. It can be shown that, when a sufficiently small cooling rate ! < 1, i.e. ! � 1, is
chosen, simulated annealing eventually arrives with probability one at the global minimum of
the potential, �f(�), and hence at the global optimum of the scoring function f(�). Despite this
theoretical result simulated annealing is, however, not guaranteed to find the global optimum in
practical applications, since computation time is limited. This procedure is indeed quite time-
consuming. Nevertheless, it usually finds DAGs with a higher score than greedy hill-climbing.
Note that the latter can be viewed as special case of simulated annealing where the temperature
is chosen to be zero.

3.3.2 Constraint-Based Approach

The constraint-based approach was originally used in a causal discovery setting, e.g. [140–
142]. In contrast to local search, the constraint-based approach makes use of a particular prop-
erty of graphical models, namely the conditional independences and dependences (CIDs) rep-
resented by the graph. For this approach to work, it is essential that the CIDs can be induced
without any error from the probability distribution implied by the data. Moreover, it is assumed
that this probability distribution is faithful (cf. Section 2.2.4). If these assumptions hold, the
constraint-based approach has been proven to recover the correct DAG, namely the perfect map
(up to equivalence, of course) [140, 148]. The constraint-based approach does not suffer from
getting stuck at local optima, unlike the search strategies aimed at optimizing a scoring func-
tion. For the same reason, equivalent DAGs are not a particular problem for constraint-based
algorithms.

This approach appeared to be very efficient when recovering sparse graphs, since only a rea-
sonably small number of tests had to be carried out in order to find the relevant indepen-
dences [142]. In the worst case, i.e. when the induced graph is very dense, the complexity of
this approach is, of course, exponential in the number of variables (cf. [142] and the Sections
5.5 and 5.4.2). Domains which require the induced DAG to be dense, however, might better
not be modeled by Bayesian networks, as neither learning nor inference are tractable, and the
interpretation of dense Bayesian network structures is difficult, too. This was discussed in Sec-
tion 1.1. Since statistical tests carried out on finite data sets can entail Type I and Type II errors,
it is clear that the assumptions underlying the constraint based approach cannot be expected
to hold in this case. For this reason, when the constraint-based approach combines the results
of the various independence tests in order to construct the DAG, the overall error, i.e. the one
concerning the entire graph, is not under control. The reason is that the various independence
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tests may not be independent of each other. This is a major problem in the area of multiple
testing. The remaining chapters are concerned with this issue, and propose extensions to the
constraint-based approach when applied to finite data sets.

SGS Algorithm
input: data D regarding the set of variables V.
output: the pattern of the induced equivalence class.

(1) compute the CIDs given the data D,

(2) induce the presence of the edges on the basis of the CIDs:

(i) begin with the complete skeleton (undirected graph),

(ii) for each pair of variables a and b, if there exists a set

S � V n fa; bg such that a ?? b j S then remove the edge a � b
from the current skeleton.

(3) induce the orientations of the edges given the current graph

and the CIDs:

(i) find the colliders in the current graph:

for each triple of vertices a, b and c such that the edges

a � b and b � c are present while the edge between a and c is

absent (a 6� c), orient a � b � c as a ! b  c iff a 6?? b j S for

all subsets S � V n fa; cg with b 2 S,

(ii) orient the remaining edges in the current graph:

repeat until no more edges can be oriented:

� if a! b � c and a 6� c then orient b � c as b! c,

� if a � b and there exists a directed path a ! � � � ! b
then orient a � b as a! b.

Algorithm 3.1: The SGS algorithm [141] clearly illustrates the basic scheme underlying all
constraint-based approaches, as it is the simplest constraint-based algorithm.

Let us now review popular constraint-based algorithms. When the above assumptions hold,
the constraint-based approach can be split up into successive steps. The first one is concerned
with determining the CIDs from the given data, while the second one constructs the DAG on
the basis of those CIDs. This is most apparent in the SGS algorithm [141], see Algorithm 3.1.
Having induced the CIDs from the data, e.g. by means of a relative scoring function and a
threshold value, the perfect map is constructed in two steps. The first step is concerned with
the presence of edges, and utilizes the fact that a conditional independence a ?? b j S in the
probability distribution entails the d-separation a? b j S in the perfect map (cf. Section 2.2.4).
Since this step disregards the orientations, an undirected graph, i.e. the so-called skeleton of a
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DAG, is used. Having recovered the skeleton, the orientations of the edges are determined in
the final step, which is again subdivided. First, the colliders are found, which determines the
equivalence class of the perfect map (cf. Section 2.2.3). Figure 2.2 illustrates that a collider can
be distinguished from non-colliders by means of CIDs, since conditioning on a collision node
entails a d-connection, whereas conditioning on a non-collision-node can entail a d-separation
(cf. also Section 2.2.1). After that, the remaining edges are oriented with the aim to avoid
additional colliders. In order to avoid directed cycles in this step, the last edge before a cycle
is completed is simply oriented in the contrary direction. The output of the SGS algorithm is a
pattern of the equivalence class (cf. Section 2.2.3 and Figure 2.1).

It is apparent that the SGS algorithm is very inefficient in domains with a large number of
variables n = jVj, as the number of different subsets S � V n fa; bg grows exponentially with
n for each pair of variables a and b. The PC algorithm [142] is an algorithm which can reduce
this complexity tremendously. It is one of the most popular constraint-based approaches, and
it is available in the TETRAD software-package [147]. The increased efficiency of the PC
algorithm is achieved by carrying out the steps (1) and (2) of the SGS algorithm simultane-
ously: if a conditional independence is induced then the corresponding edge is immediately
removed from the current skeleton. The current skeleton is then used for determining the next
conditional independences to be tested. This is done by restricting the subset S � V n fa; bg
such that it is a subset of the neighbors of a or b in the current graph, i.e. S � ne(a) n fbg
or S � ne(b) n fag. The possible choices in the subsets S are thus greatly reduced, and so is
the number of independence tests which have to be carried out. It can be shown that the PC
algorithm induces the same DAG as the SGS algorithm provided that the assumptions essential
for the constraint-based approach hold [140]. However, if these assumptions are violated then
the results might differ. A disadvantage of the PC algorithm is in this case that its result can
depend on the sequence in which it proceeds through the variables in V, as the current structure
of the graph has an impact on the subsets S to be considered next.

In the PC algorithm, the independence tests are carried out in ascending order of the set S.
This increases its reliability, since tests of lower orders are generally more reliable than tests
of higher orders. Moreover, the number of possible subsets S � V n fa; bg (a; b 2 V) is
considerably smaller at small orders than at high orders of S, and hence leads to an additional
speed-up in the computations.

The various constraint-based approaches mainly differ regarding the heuristics applied to re-
duce the number of independence tests carried out. Furthermore, various kinds of statistical
independence-tests can be employed (see e.g. [47, 151]). An early version of the PC algorithm
restricted the variables of the subset S to be not only among the neighbors of a or b but also
to lie on undirected paths between the two variables [140]. Not much attention has been paid
to this scheme, as it was found to be intractable in practical applications, except for domains
with a very small number of variables. Furthermore, it was regarded to be less robust than the
PC algorithm in practice, because the Type I and Type II errors of independence tests increased
chances that an edge which was ”erroneously” removed at an early stage of the learning process
entailed other edges to be ”erroneously” present [142].
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An algorithm somewhat similar to the PC algorithm was proposed independently in [61]. The
tree algorithm of Chow and Liu [32] is the basis of a very efficient constraint-based algo-
rithm [23, 24], and a so-called branch-and-bound technique employing the minimum descrip-
tion length principle was developed in [146].

Also hybrid algorithms were proposed, combining the two main approaches to structural learn-
ing in Bayesian networks. For instance, the PC algorithm can be employed to induced an
ancestral ordering on the variables which is subsequently used by the K2 algorithm when in-
ducing a Bayesian network structure [138].
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4
Properties of Optimal Structures
In the previous chapters, Baysian networks and various approaches to structural learning were
introduced. We pointed out that the search space grows super-exponentially with the number of
variables (cf. Section 3.3), and that finding the optimal DAG with respect to a scoring function
is an NP-hard problem [14, 27, 84]. The tractability of structural learning algorithms has thus
to be of major concern in practice. The constraint-based approach was reported to be very
efficient in many experiments [23,24,142]. It is well-understood only when certain assumptions
are fulfilled. In many applications, however, these assumptions can only be expected to hold
in the asymptotic limit, i.e. when an infinite amount of data is available. Nevertheless, the
experimental results obtained from finite data sets are very promising [23, 24, 142].

Based on the various scoring functions outlined in Section 3.1, in this chapter the constraint-
based approach is viewed as a particular search strategy aimed at optimizing such a scor-
ing function. This point of view reveals important properties of the graphs induced by the
constraint-based approach. In particular, this chapter is concerned with the presence or absence
of edges in optimal DAGs and their skeletons, while the orientations of edges are considered in
Chapter 6. The theoretical considerations lead to an extension of the constraint-based approach
which can considerably improve the results obtained from finite data sets. This extension is
based on the so-called necessary path condition (cf. Section 4.3.1, in particular Proposition
4.12). It applies to various kinds of ”paths” , among which four variants are presented:

� the si-1-path, involving the sc-1-path (cf. the Definitions 4.11 and 4.9),

� the si-2-path, involving the sc-2-path (cf. the Definitions 4.14 and 4.13),

� the si-3-path (cf. Definition 4.15), and

� the si-4-path (cf. Definition 4.16).

These variants differ in their strictness, e.g. the si-2-path requires the most edges and paths to be
present, while the si-4-path accounts for the fewest paths among the alternatives presented. This
chapter lays the foundations of the structural learning algorithm (and its variants) described in
the next chapter.
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4.1 Motivation

In Section 3.3.2, it was discussed that constraint-based algorithms can essentially be divided
into two steps, namely where

(i) the conditional independences and dependences (CIDs) are induced from the probability
distribution implied by the data, and where

(ii) the DAG (perfect map) is determined on the basis of the induced CIDs.

In the following, we are concerned with the two assumptions important to the constraint-based
approach to work. First, the CIDs have to be perfectly known, i.e. without any error. This
ensures that the true CIDs are induced in step (i). Second, the probability distribution has to be
faithful, i.e. all the (true) CIDs can be represented in a single DAG, the perfect map. Hence,
if both assumptions hold then the induced CIDs can be represented in the perfect map. This
simplifies the learning task greatly, since an independence of two variables a and b conditional
on some set S entails the absence of the edge between a and b in the perfect map. The absence
of the edge between a and b thus depends on the set S only, and it is independent of the
remaining network structure. This means that the absence of an edge is only affected by a
certain vicinity of that edge in the perfect map, i.e. the variables in S (cf. Figure 4.1). Since
the remaining variables outside such a vicinity can be disregarded, the learning task has hence
become local. The presence or absence of each edge can thus be determined on the basis
of its vicinity, independently of the other variables and edges in the graph. For this reason,
the assumption of faithfulness renders the constraint-based approach to be computationally
efficient, as confirmed in many experiments [23, 24, 142].

a b
S

.

. .
.

.
.

.

..
..

..
.

Figure 4.1: The edge absent between a and b, and its vicinity comprising only the variables in
S. The dots symbolize the remaining network structure.

However, if the assumption of faithfulness does not hold, the presence of an edge (and its
orientation, of course) can depend on the exact structure of the entire DAG. This non-locality
causes structural learning to be very involved in general.

Regarding faithfulness, an interesting result was derived in [111]. Roughly speaking, it says
that almost all probability distributions described by Bayesian networks are faithful. This is
meant in a measure-theoretic sense, namely that, in the space of all probability distributions
which can be described by a Bayesian network, the subspace of unfaithful probability distribu-
tions has a vanishing Lebesgue measure. This result suggests that the assumption of faithful-
ness might not impose a severe restriction on the constraint-based approach. However, note that
this claim refers only to probability distributions which can actually be described by Bayesian
networks.
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Having mentioned this result concerning faithfulness, let us now consider the other assumption,
saying that the CIDs are perfectly known, i.e. that they can be induced without any error.
In typical applications, one can expect this assumption to hold only in the asymptotic limit
when the data has been sampled from a faithful probability distribution. Given finite data,
however, this assumption may not be reasonable. The reason is that, given a finite sample,
CIDs have to be induced by means of some statistical tests. In (classical) statistics, it is well
known that statistical tests entail Type I and Type II errors. An alternative point of view is as
follows. A conditional independence a ?? b j S is typically derived by means of the relative
score g(a; b;S) < 0 (cf. Section 3.1). In classical statistics as well as in Baysian statistics,
such relative scoring functions contain a term penalizing model complexity. This is essential
in order to induce the results with some significance or to avoid over-fitting, whatever point
of view one may prefer. Hence, it can occur that a ”weak” dependence between two variables
in the probability distribution is disregarded by such a decision mechanism solely due to the
penalty term in the scoring function dominating over the ”weak” dependence. As a result, a
conditional independence is induced. This shows that, even when the CIDs are derived from
a faithful probability distribution, the number of induced independences can be larger than the
number of true independences. As a consequence, there might not exist a perfect map of the
induced CIDs, even if there is a perfect map of the true CIDs. This may occur already when the
probability distribution implied by a finite data set is nearly unfaithful (for instance, measured
by the Kullback-Leibler divergence). It is intuitively clear that, in the space of all probability
distributions which can be described by Bayesian networks, the subspace of nearly unfaithful
probability distributions cannot be expected to have a vanishing Lebesgue measure. Hence,
chances can be quite high that there is no perfect map corresponding to the CIDs induced
from a finite sample. Consequently, there does not exist a perfect map of the induced CIDs in
general, and learning from finite samples becomes a non-local problem. The locality entailed
by the faithfulness assumption can hence only be considered as an approximation to the exact
learning task, as the latter is indeed non-local.

A typical example we encountered quite often in our experiments (cf. Section 5.6) is depicted
in Figure 4.2. Due to the rather small sample size, the relative scores of increased orders –
involving an increased penalty for model complexity – tend to become negative, and hence
imply conditional independences. The DAG m0 is induced by the constraint-based approach
assuming the existence of a perfect map. As it removes each edge for which a conditional
independence was found, only the edge between a and b is left in the graph. It is apparent that
the DAG m0 is not the perfect map of the induced CIDs, as the graph implies the marginal in-
dependences a??c and b??c, although these variables are induced to be marginally dependent,
i.e. a 6?? c and b 6?? c. The induced DAG m0 is a D-map of the induced CIDs in this example,1

since every induced conditional independence entails the absence of the corresponding edge.

If there does not exist a perfect map, a reasonable aim in structural learning is to find those
DAGs which are optimal with respect to the used (absolute) scoring function f . Note that the
latter can also be expressed in terms of the relative scoring function g (cf. Equation 3.1.7). It is

1This does not hold in general. For instance, when a DAG is induced from the CIDs represented by the Markov
network in Figure 2.5 the acyclicity of the DAG entails an additional conditional dependence.
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Figure 4.2: In this example, the induced conditional independences and dependences (CIDs)
cannot be represented by a perfect map.

apparent that the highest scores are assigned to the DAGs m1 and m2 in Figure 4.2, which are
hence local optima. Compared to the DAG m0, each of the local optima apparently contains
an additional edge. Moreover, there are two local optima rather than a single perfect map,
indicating some model uncertainty regarding the structure of Bayesian networks. Furthermore,
the DAGs m1 and m2 are minimal I-maps rather than D-maps, i.e. all the induced (conditional)
dependences are represented in the graph, whereas some of the found independences cannot be
read off these DAGs (cf. also Section 2.2.4).

The coincidence of optimal DAGs and minimal I-maps is not completely unexpected in this
example. Roughly speaking, it can be shown that minimal I-maps m are given higher scores
f(m) than non-minimal-I-maps in the asymptotic limit if no perfect map exists [14]. This
indicates that, if no perfect map exists, the DAGs induced from finite samples by established
constraint-based approaches are usually not very close to optimal DAGs, as maximal D-maps
typically contain fewer edges than minimal I-maps. Only in the case where the maximal D-
map coincides with the minimal I-map the constraint-based approach induces the optimal DAG,
which coincides with the perfect map.

This motivates to extend the constraint-based approach to finite data with the following aims:
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� drop the assumption of faithfulness,

� aim at inducing (locally) optimal DAGs, i.e. with respect to a scoring function,

� employ relative scoring functions (other than the one in the �2-test),

� induce additional edges compared to state-of-the-art constraint-based approaches,

� model uncertainty: allow for possibly several graphs to be induced, instead of a single
DAG assumed to be the perfect map.

The concepts of relative and absolute scoring functions were introduced in Section 3.1. We
noted that the �2-test – which is commonly applied by constraint-based approaches – can be
denoted in a similar fashion as relative scoring functions. However, there does not exist a
corresponding absolute scoring function. For this reason, we prefer relative scoring functions
derived from an absolute one, like for instance the Akaike Information Criterion, the Bayesian
Information Criterion or the posterior probability (cf. Section 3.1). While scoring functions
are related to step (i) of the constraint-based approach, step (ii) has to be concerned with the
other four issues stated above. The second step is typically further subdivided, namely into two
parts, where the first one is concerned with determining the presence of edges (in skeletons),
while the second one finds the orientations of the edges. In this thesis, we mainly focus on
the first part dealing with skeletons (cf. the Chapters 4 and 5). The remainder of this chapter
develops the notion of the necessary path condition and focuses on the properties of the graphs
induced by the constraint-based approach.

4.2 Properties of Optimal DAGs

In this section, we derive a property of optimal Bayesian network structures concerned with
the presence of edges and paths. Note that the assumption of faithfulness is not used in the
following. The main result of this section is Proposition 4.8. The starting point of its derivation
is the following fact about the presence of an edge in a DAG being a (local) optimum with
respect to a scoring function.

Proposition 4.1 Let g be a relative scoring function, and let m be a (locally) optimal Bayesian
network structure. A (directed) edge a b, a; b 2 V, is present in m if and only if

(i) g(a; b;pam(a) n fbg) > 0,2 and

(ii) m contains no directed path a ! x1 ! � � � ! xr�1 ! b, xi 2 V n fa; bg, from a to b,
and

(iii) g(a; b;pam(a) n fbg) > g(b; a; pam(b) n fag) or a directed path from b to a is present.

2For simplicity, we assume that 8a; b 2 V ;8S � V n fa; bg : g(a; b;S) 6= 0, as the scoring function would
favor neither the presence nor the absence of the edge a  b in the case g(a; b;S) = 0. For simplicity, we do not
consider this source of uncertainty regarding the presence of edges.
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Again, V denotes the set of variables in a domain, and pam(a) are the parents of a variable
a 2 V in the DAG m.

Proof. The neighboring DAGs of a local optimum differ from the latter concerning a single
directed edge being either added, removed or reversed. In (i), it is stated that the presence of
the edge a  b is favored more than its absence. Statement (ii) ensures that the graph does
not contain a directed cycle when the edge a  b is present, as required in a DAG. Statement
(iii) is concerned with the optimality of the orientation of the edge, as it ensures that the edge
with the contrary orientation, i.e. the edge a ! b, is favored less than the orientation a  b.
This is given when a larger score is assigned to the latter, or when the edge cannot be oriented
like a! b, since a directed cycle has to be avoided. �

In the following, we are mainly interested in the presence of an edge as opposed to its absence,
while its orientation is of minor interest. Let us hence denote an edge between two variables
a; b 2 V by a � b when we are concerned with its presence independent of its orientation in
the DAG. An edge a � b is called present in the DAG if either the edge a ! b or a  b is
present. Conversely, when we say that the edge a � b is absent from the DAG, it means that
neither one of the edges a ! b and a  b is present. Naturally, this notation is symmetrical
with respect to a and b, and it is identical with the one concerning skeletons.

As a special case of Proposition 4.1, let us first consider edges whose inclusion into any DAG
m leads to an improvement in the (absolute) scoring function f . It is clear that the presence
of such edges is a necessary requirement for a DAG to be a local optimum. Let us hence call
them certainly-present edges. Of course, there might also be edges whose elimination from
any DAG m leads to an increase in the score f(m). As such edges have to be absent from a
local optimum, and we call them certainly-absent edges. Proposition 4.1 yields immediately:

Proposition 4.2 (Certainly-Present or Certainly-Absent Edges) An edge a � b is certainly
present in an optimal DAG m or in its skeleton ~m if 8S � V n fa; bg : g(a; b;S) > 0 ^
g(b; a;S) > 0. Conversely, an edge a � b is certainly absent in an optimal DAG m if 8S �
V n fa; bg : g(a; b;S) < 0 ^ g(b; a;S) < 0.3

Proof. We only note that the acyclicity of a DAG does not prevent a certainly-present edge
a � b from being indeed present in any DAG. This is because the presence of a b or a! b
could only be be forbidden when both the directed paths a! � � � ! b and b! � � � ! a were
simultaneously present. This is, however, forbidden by the acyclicity of DAGs. �

Certainly-present edges are typically the only ones found by those constraint-based approaches
which take into account all relative scores, e.g. the SGS algorithm [142]. In practice, however,
it is usually infeasible to compute all the scores, and the graphs are determined on the basis of
a limited number of scores, e.g. like in the PC algorithm [142]. Since the number of computed
scores is (heuristically) reduced, additional edges can be present in the induced graphs.

3When the scoring function is score-equivalent, as it is often the case, then g(a; b;S) = g(b; a;S) (cf. Section
3.1.3), leading to a great simplification.
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Besides certainly-present or certainly-absent edges, there are generally also other sorts of edges
in an optimal DAG. In fact, these additional edges can play a crucial role in optimal DAGs. For
such an edge a � b (a; b 2 V) holds that

� g(a; b;S) < 0 or g(b; a;S) < 0 given some sets S � V n fa; bg, and

� g(a; b;S 0) > 0 or g(b; a;S 0) > 0 given some other sets S0 6= S, S 0 � V n fa; bg.

Because some scores are positive while others are negative, it is not clear at first glance if such
an edge is present or absent in an optimal DAG. Let us hence focus on this kind of edges in the
remainder of this section. Concerning their presence, Proposition 4.1 yields immediately:

Proposition 4.3 Let g be a relative scoring function, and let m be a (locally) optimal DAG.
The edge a � b, i.e. a b or a! b, is present in m if and only if

(i) g(a; b;pam(a) n fbg) > 0, and

(ii) there is no directed path from a to b in m, and

(iii) g(a; b;pam(a) n fbg) > g(b; a; pam(b) n fag) or a directed path from b to a is present,

or 4

(iv) g(b; a; pam(b) n fag) > 0, and

(v) there is no directed path from b to a in m, and

(vi) g(a; b;pam(a) n fbg) < g(b; a; pam(b) n fag) or a directed path from a to b is present.

This proposition only restates Proposition 4.1 for both the orientations a  b and b  a.
Since constraint-based algorithms focus on the absence of edges rather than on their presence,
let us derive a proposition concerning the absence of edges. This can be achieved by negating
Proposition 4.3, leading to the following

Proposition 4.4 Let g be a relative scoring function, and let m be a (locally) optimal Bayesian
network structure. The edge a � b, a; b 2 V, is absent in m if and only if

(i) g(a; b;pam(a) n fbg) < 0 and g(b; a; pam(b) n fag) < 0,5 or

(ii) g(a; b;pam(a) n fbg) < 0 and m contains a directed path b! x1 ! � � � ! xr�1 ! a,
xi 2 V n fa; bg, from b to a, or

(iii) g(b; a;pam(b) n fag) < 0 and m contains a directed path a! x1 ! � � � ! xr�1 ! b,
xi 2 V n fa; bg, from a to b.

4This notation means ((i) ^ (ii)^ (iii)) _ ((iv)^ (v) ^ (vi)).
5While the identities pam(a) n fbg = pam(a) and pam(b) n fag = pam(b) hold in a DAG m without the edge

a � b, the inequalities pam(a) n fbg 6= pam(a) and pam(b) n fag 6= pam(b) are important in Proposition 4.3.
The longer expressions are thus used for clarity.
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a b a ba b

(ii) (iii)(i)

Figure 4.3: If the edge a � b is absent then one of the three structures (i), (ii) or (iii) has to
be present in an optimal DAG according to Proposition 4.4.

Proof. Let the indices without a prime refer to the ones in Proposition 4.3, and the ones with a
prime to this proposition. Moreover, let us denote the negation of a statement (i) as (i), and so
on. The negation of Proposition 4.3 can then be simplified according to the laws of De Morgan,

((i) ^ (ii) ^ (iii)) _ ((iv) ^ (v) ^ (vi))

= ((i) _ (ii) _ (iii)) ^ ((iv) _ (v) _ (vi))

= ((i) ^ (iv))| {z }
(i)0

_ ((i) ^ (v))| {z }
(ii)0

_ ((i) ^ (vi))| {z }
(A)

_ ((ii) ^ (iv))| {z }
(iii)0

_ ((ii) ^ (v))| {z }
(B)

_ ((ii) ^ (vi))| {z }
(C)

_ ((iii) ^ (iv))| {z }
( ~A)

_ ((iii) ^ (v))| {z }
( ~C)

_ ((iii) ^ (vi))| {z }
(D)

= (i)0 _ (ii)0 _ (iii)0:

The various simplification steps are in detail:

� Expression (A) can be omitted, as it is stricter than (i)0, and hence (A) _ (i)0 = (i)0.
The reason is that, in (A), g(a; b; pam(a) n fbg) < 0 ^ g(a; b; pam(a) n fbg) >
g(b; a;pam(b) n fag) implies g(a; b;pam(a) n fbg) < 0 ^ g(b; a;pam(b) n fag) < 0.
The latter is equivalent to statement (i)0.

� For the same reason, also expression ( ~A) can be dropped, as it is stricter than (i)0, too.

� Statement (B) can be eliminated, since it cannot be fulfilled, as a directed cycle a !
� � � ! b! � � � ! a cannot occur in a DAG.

� The statements (C) and ( ~C) are always false, since a path cannot be present and absent
at the same time. Hence, also (C) and ( ~C) can be omitted.

� Also statement (D) can be dropped, because it forbids the existence of a directed path,
and hence also of an edge, in either direction between a and b.

�

The conditions (i), (ii) and (iii) in Proposition 4.4 are illustrated in Figure 4.3. The statements
(ii) and (iii) are identical, except for the two variables a and b being swapped. In contrast,
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statement (i) does not require a (directed) path being present, but it requires a negative score
regarding both the variables a and b.

As a short remark, let us reconsider Proposition 4.3, because it can be rewritten in a less compli-
cated fashion due to the simplifications which led to Proposition 4.4. The following proposition
is equivalent to Proposition 4.3:

Proposition 4.5 Let g be a relative scoring function, and let m be a (locally) optimal DAG.
The edge a � b, i.e. the edge a b or the edge a! b, a; b 2 V, is present in m if and only if

(i) g(a; b;pam(a) n fbg) > 0, and

(ii) m does not contain a directed path a ! x1 ! � � � ! xr�1 ! b, xi 2 V n fa; bg, from
a to b,

or

(iii) g(b; a;pam(b) n fag) > 0, and

(iv) m does not contain a directed path b! x1 ! � � � ! xr�1 ! a, xi 2 V n fa; bg, from b
to a.

Proof. The negation of this proposition is identical to Proposition 4.4, because

((i) ^ (ii)) _ ((iii) ^ (iv))

= ((i) _ (ii)) ^ ((iii) _ (iv))

= ((i) ^ (iii))| {z }
(i)0

_ ((i) ^ (iv))| {z }
(ii)0

_ ((ii) ^ (iii))| {z }
(iii)0

_ ((ii) ^ (iv))| {z }
(iv)0

= (i)0 _ (ii)0 _ (iii)0;

where the indices (i), (ii), (iii), (iv) refer to this proposition, while the ones with a prime
correspond to Proposition 4.4. Again, the negation of (i) is denoted as (i), and so on. Note
that statement (iv)0 can never be fulfilled in a DAG since there cannot be a directed cycle
a ! � � � ! b ! � � � ! a involving any two variables a; b 2 V. Since the negations of
both the Propositions 4.3 and 4.5 are identical, namely to Proposition 4.4, also the propositions
themselves have to be equivalent. �

Although the Propositions 4.3 and 4.5 are equivalent, the latter might be understood more
easily. The reason is that, in Proposition 4.5, the neighborhood of a DAG comprises only those
graphs which differ in the presence or absence of an edge, whereas DAGs differing in the
orientation of an edge are not among these neighbors. This is in contrast to Proposition 4.3,
where neighboring DAGs can differ in the presence, absence or orientation of an edge. It is
interesting that the definition of the vicinity of a DAG has no impact on the presence or absence
of an edge a � b when its orientation is disregarded.
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Recursive Complete Path in a DAG

In condition (ii) of Proposition 4.4, it is clear that the variable xr�1 along the directed path from
b to a has to be among the parents of a. This has two consequences. First, the set pam(a) n fbg
cannot be empty. Second, since the edges between a and each of its parents have to be present
by the definition of a DAG, one can replace the required path b ! x1 ! � � � ! xr�1 ! a
by the shorter one b ! x1 ! � � � ! xr�1, where xr�1 2 pam(a) n fbg. The same holds
analogously for the path in (iii) of Proposition 4.4. This suggests the following recursive
definition of a ”path” :

Definition 4.6 (Recursive Complete Path in a DAG) Let g be a relative scoring function. We
define a recursive complete path, or c-path, from a to b (a; b 2 V) in a DAG m to have the
following properties:

(i) the edge a! b is present, or

(ii) the edge a ! b is absent, g(b; a;pam(b) n fag) < 0 with pam(b) n fag 6= ;, and there
is an x 2 pam(b) n fag such that a c-path is present from a to x.

Let the length of a c-path be measured in terms of the number of edges along it.

It is obvious from this definition that a c-path is qualitatively different from a ”usual” path in
a DAG, as the c-path is not only concerned with the presence of edges, but also with relative
scores. Hence, a ”usual” path is not necessarily related to a c-path in a DAG. In an optimal
DAG, however, the following coincidence is given:

Proposition 4.7 In an optimal DAG m, a directed path a! x1 ! � � � ! xr�1 ! b (a; b; xi 2
V) is present if and only if there is a c-path from a to b.

Proof. The fact g(b; a;pam(b) n fag) < 0 implies that, for all y 2 pam(b) n fag, the edge
y ! b has to be present by the definition of a DAG. Hence, if there is a c-path from a to b
in an optimal DAG then there is a directed path from a to b. Conversely, if there is a directed
path from a to b in an optimal DAG, then there exists a shortest directed path a = x0 !
x1 ! � � � ! xr�1 ! xr = b. For all xi; xj (j = 2; :::; r; i � j � 2) the edge xi ! xj has
thus to be absent. Since the DAG is optimal and does not contain cycles, it has to hold that
g(xj ; xi; pam(xj) n fxig) < 0. Moreover, pam(xj) n fxig 6= ; since xj�1 2 pam(xj) n fxig.
Now, the existence of the c-path from a to b follows immediately by complete induction on its
length. This completes the proof. �

The advantage of having defined a c-path is that Proposition 4.4 can be restated in a simpler
fashion:
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Proposition 4.8 Let g be a relative scoring function, and let m be a (locally) optimal DAG.
The edge a � b (a; b 2 V) is absent in m if and only if

(i) g(a; b;pam(a) n fbg) < 0 and g(b; a; pam(b) n fag) < 0, or

(ii) there is a c-path of length l � 2 from b to a, or

(iii) there is a c-path of length l � 2 from a to b.

Proposition 4.8 can be used for making the decision whether a given DAG is a (local) optimum
or not. The so-called necessary path condition, concerning skeletons, is derived from this
proposition in the following section.

4.3 Necessary Conditions concerning Skeletons

As structural learning in Bayesian networks is very involved (cf. also Section 3.3), there is
demand for approximations such that DAGs close to optimum can be induced efficiently from
given data. We thus divide the problem of inducing optimal DAGs into two parts, as typically
done in the constraint-based approach. In the first step, we largely ignore the directions of
edges, and we hence utilize skeletons. Skeletons are undirected graphs obtained by dropping
the directions of the edges in a DAG (cf. Section 2.2.1). For brevity, we call the skeleton of
a (locally) optimal DAG a (locally) optimal skeleton. The induction of optimal skeletons is
naturally concerned with learning about the presence or absence of edges. The directions of
edges are mainly ignored, which leads to a considerable simplification of the learning task.
The second step is then concerned with inducing the directions of edges on the basis of the
skeletons induced in the first step. Details on the latter part are provided in Chapter 6.

Of course, it is an approximation to divide the learning task into these two steps. In general,
the presence of edges can depend on the orientations, and vice versa. Hence, the presence of an
edge (and also its orientation, of course) is subject to the exact structure of the entire DAG in
general. One source of this non-locality is the orientation of edges, as the required acyclicity
can entail some constraints on the presence as well as on the orientations, concerning even
such edges which are ” far away” from each other in the DAG. As a consequence, when the
orientations are ignored in the first step of the approximation, one focuses essentially on the
vicinity of an edge within the graph. This vicinity contains not only variables, like the vicinity
due to the faithfulness assumption, but also edges and paths, as will become clear shortly.
The exact non-local learning task is hence again approximated by a local one. Like before,
this local approach becomes asymptotically correct if the data was sampled from a faithful
probability distribution [142]. Due to the extended vicinity, however, this local approximation
can be expected to work quite well given finite data sets, if the latter are not too small.

Due to this local approximation, the learning task splits up into several independent ones, where
each of which is concerned with an edge and its vicinity. The size of an edge’s vicinity, i.e.
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the number of edges involved, may vary. The edges in the vicinity are, of course, not known
at the beginning of the learning process and have to be induced as well. As we will see in the
remainder of this chapter, the vicinity of an absent edge comprises edges as well as some sort
of paths required to be present in an optimal graph. This is a consequence of Proposition 4.8,
as will become clear later.

A benefit of dividing up the actually non-local learning task into independent local ones is that a
considerable speed-up of the computations can be expected. In fact, the required computations
are not much more time-consuming than the ones entailed by the PC algorithm, which has
proven to be very efficient in many applications [142]. This is typical for virtually all constraint-
based approaches, as outlined in Section 3.3.2.

Proposition 4.8, a necessary and sufficient condition for the absence of an edge in an optimal
DAG, is not immediately applicable when the skeletons are induced in the first step of the
approximation. As a matter of fact, when dealing with skeletons, one has to resort to necessary
conditions. This means that, if an edge is absent in a skeleton, the latter can only be a (local)
optimum when certain edges and paths are present. However, the contrary need not hold, i.e.
the skeleton need not be a (local) optimum even if for each edge the required edges and paths
are present. Nevertheless, such necessary conditions can help to efficiently find those skeletons
which are candidates for being an optimum. The properties of these skeletons are further
discussed in Section 4.3.4. Let us now be concerned with the vicinity of an edge in detail.

4.3.1 Necessary Path Condition

In this section, we derive a necessary condition applying to optimal skeletons. It is based on
Definition 4.6 and Proposition 4.8 concerning DAGs. Let us first define a recursive complete
path in a skeleton, or sc-path, which is present whenever there is a c-path in the corresponding
DAG. An sc-path (in a skeleton) is hence a necessary condition for the existence of a c-path (in
a locally optimal DAG). A proper definition of an sc-path in a skeleton, unfortunately, is more
involved than the definition of a c-path. In particular, two facts have to be considered.

First, the neighbors of a node a 2 V cannot be divided into its parents and its children in a
skeleton, as the edges are not oriented. Thus, one has to resort to the fact that the parents
pam(a) of a node a 2 V in a DAG m are a subset S � ne~m(a) of the neighbors of a in
the skeleton ~m. The variables in such a subset S can hence serve as candidates for being the
parents of a in the corresponding DAG. Furthermore, let us explicitely state that an edge has to
be present between a node and each parent-candidate s 2 S in the following propositions and
definitions.

Second, a DAG provides an ancestral ordering on the variables in V, ensuring the c-paths to be
well-defined in Definition 4.6: when an edge a! b is absent then a c-path is required between
a and an x 2 pam(b) n fag, i.e. the variables along this c-path are ancestors of b. In each
recursion step according to Definition 4.6, the number of ancestors which can be along the
current c-path decreases, and eventually the recursion terminates. In contrast, a skeleton does
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not provide such an ancestral ordering. As a consequence, one has to explicitely ensure that an
sc-path in a skeleton is well-defined. Like the number of ancestors in a DAG decreases at each
recursion step, the number of edges allowed to be along the current sc-path at each recursion
step has to be reduced explicitely. The simplest solution to this problem is as follows: when
an edge a � b is absent and when there is a subset S � ne(b) such that g(b; a;S) < 0 then
the sc-path required between a and an s 2 S is not allowed to include an sc-path between a
and b. This is a simple consequence of the ancestral ordering in DAGs. Due to this restriction,
the number of allowed sc-paths decreases at each recursion step, ensuring that the recursion
will terminate. After these considerations, we can now give a proper definition of a recursive
complete path in a skeleton, or sc-path. Since we will present different variants of sc-paths in
the following, we enumerate them as sc-1-path, sc-2-path, and so on.

Definition 4.9 (Recursive Complete Path in a Skeleton: SC-1-Path) Let g be a relative
scoring function. Let [a; b] be a pair of variables (a; b 2 V),6 and let X be a set of pairs of
variables such that [a; b] 62 X. We define a recursive complete path, or sc-1-path, between two
variables a; b 2 V in a skeleton ~m to be a tuple SC1([a; b];X) with the following properties:

(i) the edge a � b is present, or

(ii) the edge a � b is absent and 9S � V n fa; bg, S 6= ;, such that

(a) g(a; b;S) < 0, and

(b) 8s 2 S the edge s � a is present, and

(c) there is an s0 2 S such that [b; s0] 62 X and there exists an sc-1-path
SC1([b; s0];X [ f[a; b]g) between b and s0,

or 7

(d) g(b; a;S) < 0, and

(e) 8s 2 S the edge s � b is present, and

(f) there is an s0 2 S such that [a; s0] 62 X and there exists an sc-1-path
SC1([a; s

0];X [ f[a; b]g) between a and s0.

For brevity, the setX may not explicitely be stated later. Then it is understood thatX = ;. Let
the length of an sc-1-path be measured in terms of the number of its edges.

In this definition, the set X can be interpreted to contain those sc-paths which are not allowed
to be part of the sc-1-path SC1([a; b];X) between a and b. As discussed above, such a set X
is necessary due to the absence of orientations in a skeleton, rendering the definition of an sc-
path more complex than the one of a c-path in a DAG. Let us illustrate that the given sc-1-path
is well-defined by considering parts of the example depicted in Figure 4.4: in the DAG m0,

6A pair of variables a; b 2 V is symmetrical regarding a and b, i.e. [a; b] = [b; a], like a set with two elements.
7This notation means explicitely: (i) _ f[(ii; a) ^ (ii; b) ^ (ii; c)] _ [(ii; d) ^ (ii; e) ^ (ii; f)]g.
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there is obviously no c-path present between a and c (cf. Definition 4.6), because all the edges
between c and the other variables are absent. Let us now focus on the corresponding skeleton
~m0. After one recursion step according to Definition 4.9, an sc-1-path is present between a
and c, i.e. SC1([a; c]; ;) if an sc-1-path SC1([c; b]; f[a; c]g) exists between b and c. This is
a consequence of the absence of the edge a � c, of the presence of the edge a � b and of
the score g(a; c; fbg) < 0. Concerning the sc-1-path SC1([c; b]; f[a; c]g), another recursion
step may be taken according to Definition 4.9, since the edge b � c is absent: due to the
score g(b; c; fag) < 0 and the presence of the edge a � b, an sc-path between b and c can
only be present if there is an sc-1-path between a and c. Since X = [a; c] in the sc-1-path
SC1([c; b]; f[a; c]g), however, it is forbidden that this sc-1-path between b and c contains an sc-
1-path between a and c. Hence, the recursion terminates with the result that no sc-1-path exists
between a and c. Note that, without employing the setX in the above definition, the recursion
would not have terminated in this example. The set X is hence necessary for a well-defined
si-path, as it accounts for the ancestral ordering on the variables to some, limited, degree.

One might also consider other definitions of an sc-path, e.g. a stricter one absorbing more
properties implied by the ancestral ordering in a DAG. However, this might increase the com-
putational effort. As previously mentioned, the given definition is quite simple, but neverthe-
less ensures that the sc-path is well-defined. Once an sc-path is defined, a necessary condition
regarding skeletons can immediately be obtained from Proposition 4.8:

Proposition 4.10 (Necessary Path Condition) Let g be a relative scoring function, and let ~m
be a (locally) optimal skeleton. For all pairs of variables a; b 2 V, it has to hold that if the
edge a � b is absent then

(i) 9S1;S2 � V n fa; bg such that

(a) g(a; b;S1) < 0 and g(b; a;S2) < 0, and

(b) 8x 2 S1 the edge a � x is present, and

(c) 8y 2 S2 the edge b � y is present,

or

(ii) there exists an sc-path of length l � 2 between a and b.

The conditions (ii) and (iii) of Proposition 4.8 reduce to a single condition in the necessary
path condition due to the absence of orientations in a skeleton. The presence of the edges
between a variable and its parent-candidates S1 and S2 is explicitely stated in condition (i) of
Proposition 4.10. A skeleton can only be optimal if it fulfills this condition. Conversely, not
every skeleton which obeys this condition is indeed optimal. Proposition 4.10 is thus only a
necessary condition. Note that a sufficient condition can only be obtained when the orientations
are not disregarded, unlike it is done here in order to obtain an efficient algorithm. It is apparent
that the necessary path condition requires certain edges and paths to be present in the vicinity
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of an absent edge. The size of such a vicinity can be different for each absent edge. Its ” size”
depends on the number of edges as well as on the lengths of the paths required by the necessary
path condition. The former is determined by the order of the induced relative scores, i.e. the
number of variables in the set S involved in the score g(a; b;S), while the latter depends on
the structure of the induced skeleton. The necessary path condition serves as the basis for our
structural learning algorithm described in the next chapter, as it can be used for finding graphs
which are candidates for being an optimum.

Recursive Incomplete Path in a Skeleton

The notation of the necessary path condition (cf. Proposition 4.10) can be simplified after defin-
ing the recursive incomplete path. Moreover, this also renders an extension of the necessary
path condition possible, as described in Section 4.3.2.

Definition 4.11 (Recursive Incomplete Path in a Skeleton: SI-1-Path) Let g be a relative
scoring function. We define a recursive incomplete path , or si-1-path, between two variables
a; b 2 V in a skeleton ~m to have the following properties:

(i) an sc-1-path is present between a and b , or

(ii) the edge a � b is absent and 9S1;S2 � V n fa; bg such that

(a) g(a; b;S1) < 0 and g(b; a;S2) < 0, and

(b) 8x 2 S1 the edge a � x is present, and

(c) 8y 2 S2 the edge b � y is present.

The si-1-path contains both the conditions (i) and (ii) of Proposition 4.10. The only difference
of Definition 4.11 to Proposition 4.10 is that the sc-1-path can be of any length, i.e. also of
length 1. An si-1-path of unit length means that the corresponding edge is present, while other
edges or paths are not required to be present in its vicinity. Because the condition (ii) in the
definition of the si-1-path, like the condition (i) in Proposition 4.10, does not require a path to
be present, we call the si-1-path a recursive incomplete path. With this definition, the necessary
path condition 4.10 can be rewritten,

Proposition 4.12 (Necessary SI-Path Condition) If a skeleton is a (local) optimum then there
has to be an si-path between every pair of variables a; b 2 V. Conversely, if there is a pair of
variables a; b 2 V such that no si-path is between them then the skeleton cannot be a (local)
optimum.

This necessary path condition holds for the si-path in general, i.e. for all the variants of si-paths.
So far, only the si-1-path has been presented. In the remainder of this chapter, we discuss
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some additional variants of si-paths which can alternatively be employed by this necessary
path condition. Hence, there are various variants of the necessary path condition, each of
which employing a different si-path. In order to specify the particular variant of necessary path
condition, we often refer to the variant of the si-path only, and it is implicitly understood that
it is used in the necessary si-path condition (cf. Proposition 4.12). The different si-paths are
enumerated as si-1-path, si-2-path and so on, like the sc-paths.

Discussion and Examples

Let us consider a simplistic example (cf. Figure 4.4) to get a better idea of what kind of
skeletons comply with the necessary path condition. Because of the positive relative scores
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Figure 4.4: The necessary path condition can prevent from removing too many edges in the
induced skeleton. Here, the minimal and the optimal skeletons are identical.
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Figure 4.5: Model uncertainty: the necessary path condition can help in finding different local
optima.

g(a; b) > 0 and g(a; b; fcg) > 0, the edge a � b is certainly present in an optimal skeleton,
according to Proposition 4.2. The edge b � c is certainly absent, since g(b; c) < 0 and
g(b; c; fag) < 0. In contrast, the presence of the edge a � c is not apparent at first glance,
as there are both negative and positive scores. This means that this edge is neither certainly
present nor certainly absent. Let us first consider the skeleton ~m0, where the latter two edges
are absent. It is apparent that this skeleton does not fulfill the necessary si-path condition (cf.
Proposition 4.12). This is because an si-1-path between a and c is only present if the edge a � c
itself is present or when the edge b � c is present (cf. the Definitions 4.9 and 4.11). The latter
is due to the score g(a; c; fbg) < 0. In contrast, the skeleton ~m1 complies with the necessary
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path condition, as the presence of the edge a � c implies the presence of an si-path between a
and c. Also the skeleton ~m2 obeys the necessary si-path condition: here, the edge a � c can
be absent because there exists an sc-path between a and c via b. Obviously, also all skeletons
which contain one of the skeletons ~m1 or ~m2 comply with the necessary si-path condition. In
this simplistic example, this is solely the complete graph ~m3. Although the complete graph
always fulfills the necessary si-path condition, it might not be the most interesting one. Thus,
it is intuitively clear that the most informative skeletons are those from which no edge can be
removed without violating the necessary path condition. If these graphs also do not contain a
certainly-absent edge (cf. Proposition 4.2) then let us designate them as minimal skeletons. In
our example, a close look at the skeletons ~m1 and ~m2 reveals that – although both fulfill the
necessary path condition – the latter contains the certainly-absent edge b � c. Hence, this graph
is not minimal, and it cannot be a (local) optimum. In contrast, the skeleton ~m1 is minimal, and
it happens to coincide with the optimum. Minimal skeletons are often identical with optimal
skeletons in the examples used in this chapter. However, this does not hold in general, as will
become clear in Section 4.3.4.

A slightly different example is shown in Figure 4.5. In fact, only the score g(b; c) > 0 is
different compared to the previous example. However, the consequences are considerable, as
the edge c � b is not certainly absent in this example. Thus, skeleton ~m2 is minimal, like
skeleton ~m1. This is because they both fulfill the necessary si-path condition, and they do
not contain a certainly-absent edge (cf. Proposition 4.2). In this example, there are hence
two different minimal skeletons. It occurs that each of the minimal skeletons corresponds to
a different local optimum, as becomes clear from considering the scores of the DAGs. This
means that model uncertainty can be discovered by means of the necessary si-path condition.
In general, this is only possible up to a degree, of course. The exact problem would be NP-
complete, anyway. For concise representation, we display this kind of model uncertainty in a
single undirected graph where dashed lines indicate that these edges might be present in some
of the minimal skeletons (cf. Figure 4.5). Although the meaning of such a graph is intuitively
clear, its exact definition has to be postponed to Section 5.3.

Another interesting consequence of the necessary path condition is that an edge a � b can only
be absent due to a score g(a; b;S) < 0 with S 6= ; when other edges and paths are present in
the skeleton. Hence, the necessary path condition entails some balance between the presence
and absence of the various edges. For instance, in the two minimal skeletons depicted in Figure
4.5, either one of the edges a � c and b � c has to be present. Both edges cannot be absent
simultaneously without violating the necessary si-path condition. The necessary path condition
hence yields interdependencies among the various edges. Of course, this also implies that such
a condition typically yields skeletons which contain more edges than the ones induced without
a necessary condition.

4.3.2 Extended Necessary Path Condition

As mentioned at the beginning of Section 4.3, the necessary path condition can be viewed as a
local approximation to the learning task, since it is concerned with the edges and path present in



4.3 NECESSARY CONDITIONS CONCERNING SKELETONS 61

a b a b a b

(I) (II) (III)

Figure 4.6: In the local approximation, the vicinity of an absent edge a � b can be expanded
to contain additional si-paths (short-dashed lines) in each of the three cases (I), (II) and (III).
The edges between a node and its parent-candidates are sketched as solid lines, and a required
sc-path is depicted as a long-dashed line.

the vicinity of an absent edge. Hence, it can naturally be improved by considering an expanded
vicinity of each absent edge. The necessary si-1-path condition yields immediately such an
extension: because an si-path has to be present between every pair of variables, an si-path has
to be present, in particular, between the following variables if the edge a � b is absent:

� If there is no sc-path between a and b (cf. also Figure 4.6, (I)) then an si-path has to be
present

– between a and the parent-candidates of b, and

– between b and the parent-candidates of a, and

– among the parent-candidates of a and b.

� If there is an sc-path between a and b (cf. also Figures 4.6, (II) and (III)) then an si-path
has to be present

– between b and each parent-candidate of a, and

– among the parent-candidates of a,

or

– between a and each parent-candidate of b, and

– among the parent-candidates of b.

These additional si-paths extend the vicinity of an absent edge compared to the vicinity ac-
counted for by the si-1-path. This suggests the following definitions of an si-2-path and of an
sc-2-path:
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Definition 4.13 (Extended Recursive Complete Path in a Skeleton: SC-2-Path) Let g be a
relative scoring function. Let [a; b] be a pair of variables (a; b 2 V), and letX be a set of pairs
of variables such that [a; b] 62 X. We define an extended recursive complete path, or sc-2-path,
between two variables a; b 2 V in a skeleton ~m to be a tuple SC2([a; b];X) with the following
properties:

(i) the edge a � b is present, or

(ii) the edge a � b is absent, and 9S � V n fa; bg, S 6= ;, such that

(a) g(a; b;S) < 0, and

(b) 8x 2 S the edge a � x is present, and

(c) 9x 2 S: [b; x] 62 X and there is an sc-2-path SC2([b; x];X [ f[a; b]g) between b
and x, and

(d) 8 z 2 S: [b; z] 62 X and there is an si-2-path SI2([b; z];X [ f[a; b]g) between b
and z, and

(e) 8w; z 2 S, w 6= z: [w; z] 62 X and there is an si-2-path SI2([w; z];X [ f[a; b]g)
between w and z,

or

(f) g(b; a;S) < 0, and

(g) 8x 2 S the edge b � x is present, and

(h) 9x 2 S such that [a; x] 62 X and an sc-2-path SC2([a; x];X[f[a; b]g) is between
a and x, and

(i) 8 z 2 S: [a; z] 62 X and there is an si-2-path SI2([a; z];X [ f[a; b]g) between a
and z, and

(j) 8w; z 2 S, w 6= z: [w; z] 62 X and there is an si-2-path SI2([w; z];X [ f[a; b]g)
between w and z.

If the setX is not explicitely stated later then it is understood that X = ;.

The sc-2-path is illustrated in Figure 4.6, (II) and (III). The conditions (d), (e), (i) and (j) rep-
resent the si-paths additionally required compared to the Definition 4.9 of an sc-1-path. Like
before, the setX is necessary because it accounts for the ancestral ordering in the correspond-
ing DAG to a degree which is (small but) sufficient to ensure the sc-2-path to be well-defined.
Due to this extension, the definitions of the sc-2-path and the si-2-path depend on each other,
unlike the definition of an sc-1-path (cf. Definition 4.9).
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Definition 4.14 (Extended Recursive Incomplete Path in a Skeleton: SI-2-Path) Let g be
a relative scoring function. Let [a; b] be a pair of variables (a; b 2 V), and let X be a set
of pairs of variables such that [a; b] 62 X. We define an extended recursive incomplete path, or
si-2-path, between two variables a; b 2 V in a skeleton ~m to be a tuple SI2([a; b];X) with the
following properties:

(i) there is an sc-2-path SC2([a; b];X) between a and b, or

(ii) the edge a � b is absent, and 9S1;S2 � V n fa; bg such that 8

(a) g(a; b;S1) < 0 and g(b; a;S2) < 0, and

(b) 8x 2 S1 the edge a � x is present, and

(c) 8y 2 S2 the edge b � y is present, and

(d) 8s1; s2 2 S1 [ S2 [ fa; bg, s1 6= s2: [s1; s2] 62 X, and

(e) 8z 2 S1 there is an si-2-path SI2([b; z];X [ f[a; b]g) between b and z, and

(f) 8z 2 S2 there is an si-2-path SI2([a; z];X [ f[a; b]g) between a and z, and

(g) 8w; z 2 S1 [ S2, w 6= z, there is an si-2-path SI2([w; z];X [ f[a; b]g) between w
and z.

If the setX is not explicitely stated later then it is understood thatX = ;.

Condition (ii) of the si-2-path is illustrated in Figure 4.6, (I). The requirements (d), (e), (f)
and (g) are additional to the si-1-path (cf. Definition 4.11).

The simplistic example in Figure 4.7 illustrates the main difference between the si-1-path and
the si-2-path, namely that the latter accounts for an extended vicinity. The relative scores in
Figure 4.7 immediately imply that the edges a � d and b � c are certainly absent, while the
edges a � c and b � d are certainly present (cf. Proposition 4.2). Let us hence focus on the
edges a � b and c � d. The scores g(c; d; fag) < 0 and g(c; d; fbg) < 0 imply that, according
to the sc-1-path condition, the edge c � d is allowed to be absent if the edges a � c and b � d
are present. The edge a � b is not involved in the vicinity of the edge c � d. Consequently,
the minimal skeleton according to the necessary si-1-path condition contains only the edges
a � c and b � d (cf. skeleton ~m0 in Figure 4.7). In contrast, if the edge c � d is absent
then the extended vicinity of the si-2-path requires an si-path SI2([a; b]; f[c; d]g) to be present
between a and b. Such an si-path between a and b can, however, only be present if the edge
a � b by itself exists. Due to the symmetry regarding the edges a � b and c � d in this
example, it is apparent that the si-2-path condition yields that either one of the edges a � b
or c � d has to be present in a minimal skeleton (cf. the skeletons ~m1 and ~m2 in Figure
4.7). The resulting uncertainty regarding the presence of edges can again be summarized in a
single graph (cf. Figure 4.7). Summing up, the necessary si-2-path can yield additional edges

8If S1 or S2 are empty the corresponding edges or paths do not have to be present, of course.
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Figure 4.7: Comparison of the si-1-path and the si-2-path.

compared to the necessary si-1-path. Also, note that the edges contained in each of the minimal
skeletons obeying the si-2-path condition are also present in (locally) optimal DAGs.

The extended necessary path condition entails, of course, more involved computations. In
particular, if model uncertainty is discovered, a large number of edges might be involved. For
this reason, efficient computations often require additional approximations, as discussed in
Section 5.3.2.
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4.3.3 Simplified Necessary Path Conditions

This section is concerned with necessary path conditions which are less strict than the previous
ones. There are two ways for obtaining simplified conditions. First, the size of the vicinity
of an absent edge can be reduced by requiring the presence of fewer edges or paths. Second,
the strictness can be weakened be replacing, for instance, a necessarily present edge by a path.
Also, one might resort to paths in the vicinity of an absent edge which act as conditions less
strict than other kinds of paths. Hence, there are many options for replacing some of the
necessarily required edges, sc-paths or si-paths by less strict ones. Let us focus on the particular
case where only a single kind of paths is used rather than both the si-path and sc-path.

Definition 4.15 (Simplified Recursive Incomplete Path in a Skeleton: SI-3-Path) Let g be
a relative scoring function. Let [a; b] be a pair of variables (a; b 2 V), and let X be a set of
pairs of variables such that [a; b] 62 X. We define a simplified recursive incomplete path, or
si-3-path, between two variables a; b 2 V in a skeleton ~m to be a tuple SI3([a; b];X) with the
following properties:

(i) the edge a � b is present, or

(ii) the edge a � b is absent and 9S � V n fa; bg such that

(a) g(a; b;S) < 0, and

(b) 8s 2 S the edge a � s is present, and

(c) 8s 2 S: [b; s] 62 X and there exists an si-3-path SI3([b; s];X [ f[a; b]g) between
b and s,

or

(d) g(b; a;S) < 0, and

(e) 8s 2 S the edge b � s is present, and

(f) 8s 2 S: [a; s] 62 X and there exists an si-3-path SI3([a; s];X [ f[a; b]g) between
a and s.

If the setX is not explicitely stated later then it is understood thatX = ;.

The si-3-path requires fewer paths to be present than the si-2-path or the sc-2-path. Moreover,
no sc-path is involved. The si-3-path is hence less strict than the si-2-path or the sc-2-path. In
other words, whenever there is an si-2-path or an sc-2-path between two variables then there
exists also an si-3-path. As a consequence, the si-3-path might yield skeletons with a reduced
number of edges. The advantage of this simplification is, however, that only a single kind of
paths has to be considered, which eases the implementation of the corresponding algorithm.
Despite this simplification, the si-3-path is still capable of allowing for the asymmetry con-
cerning the variables a and b when a non-score-equivalent scoring-function is used, i.e. when
g(a; b;S) 6= g(b; a;S). This is because the si-3-path requires edges between each variable and
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its parent-candidates S, whereas si-paths have to be present between the parent-candidates S
and the other variable. Finally, let us comment on the simplest si-path. It is obtained from the
si-3-path by replacing the edges between each variable and its parent-candidates by si-paths.
This leads to the least strict necessary path condition in this thesis:

Definition 4.16 (Simplest Recursive Incomplete Path in a Skeleton: SI-4-Path) Let g be a
relative scoring function. Let [a; b] be a pair of variables (a; b 2 V), and let X be a set of
pairs of variables such that [a; b] 62 X. We define the simplest recursive incomplete path, or
si-4-path, between two variables a; b 2 V in a skeleton ~m to be a tuple SI4([a; b];X) with the
following properties:

(i) the edge a � b is present, or

(ii) the edge a � b is absent and 9S � V n fa; bg such that

(a) g(a; b;S) < 0 or g(b; a;S) < 0, and

(b) 8s 2 S: [b; s] 62 X and there exists an si-4-path SI4([b; s];X [ f[a; b]g) between
b and s, and

(c) 8s 2 S: [a; s] 62 X and there exists an si-4-path SI4([a; s];X [ f[a; b]g) between
a and s.

If the setX is not explicitely stated later then it is understood that X = ;.

Obviously, the si-4-path is symmetrical concerning the variables a and b. This is because it
requires si-paths between a and each s 2 S and between b and each s 2 S. For this reason,
the si-4-path is particularly appropriate when it is used in conjunction with score-equivalent
scoring-functions. Since g(a; b;S) = g(b; a;S) holds in this case, the condition (ii; a) sim-
plifies even further. The different variants of si-paths (and sc-paths) are further discussed in
Chapter 5, which is concerned with their implementations and their performance in our experi-
ments. We also compare them with popular constraint-based approaches, which do not employ
a necessary path condition.

4.3.4 Minimal Skeletons

This section summarizes the properties of minimal skeletons, which were first mentioned in
Section 4.3.1. Since many different skeletons generally comply with the necessary si-path
condition, most information is provided by those skeletons which define the border between
the graphs obeying the necessary path condition and the ones which do not. This divides the
search space of skeletons into two parts. We call the skeletons on this border minimal, when
they do not only comply with the necessary path condition but also contain no certainly-absent
edge (cf. Proposition 4.2). In other words, these skeletons contain a minimal number of edges
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in the sense that one cannot remove any edge without violating the necessary path condition.
Consequently, the set of all skeletons obeying the necessary path condition contains not only
the minimal skeletons but also the graphs obtained by adding arbitrary edges to a minimal
skeleton.

All the optimal skeletons are among the graphs fulfilling the necessary path condition, since
the necessary path condition is a necessary rather than a sufficient condition for a skeleton to be
optimal. Conversely, not every optimal skeleton has to be minimal. Hence, each of the minimal
skeletons is optimal or it is contained in an optimal skeleton. The latter is understood in the
sense that an optimal skeleton might comprise some edges additional to the minimal skeleton.
In other words, a minimal skeleton is a subgraph of an optimal skeleton. For this reason,
the necessary path condition can help determine edges which are present in (locally) optimal
DAGs. Moreover, the induced edges are present with some confidence. However, the degree of
confidence cannot be calculated by this approach. In order to compute confidence intervals, one
has to apply computationally more involved approaches, like for instance the bootstrap [50,57]
(cf. also Section 3.2). The constraint-based approach (applying the necessary path condition)
might hence be used as a computationally efficient, but limited, alternative to the bootstrap.

Since the minimal skeletons tend to contain less edges than the optimal ones, one can only ar-
rive at (locally) optimal skeletons if the ”missing” edges are included into the minimal skeletons
in a subsequent step. Since only necessary conditions are applicable in the space of skeletons,
the final step of such a learning procedure has to take place in the space of DAGs. Chapter 6 is
concerned with such a scheme, which is greedy for simplicity.

Another aspect of minimal skeletons is as follows. If an edge a � b is absent due to the score
g(a; b;S) < 0 then it is so because the subset S might be the parent set of a in the optimal
DAG m. However, it does not have to hold that pam(a) = S. Regarding an edge a � b
being absent from a minimal skeleton, it is hence implicitly assumed that g(a; b; pam(a)) < 0
if g(a; b;S) < 0. Since this is not guaranteed to hold in general, minimal skeletons tend to
contain less edges than optimal DAGs, implying the same conclusion as above.

Regarding multiple testing, let us consider a standard constraint-based algorithm, which re-
moves an edge a � b when a conditional independence a ?? b j S was found for some set
S � V n fa; bg. When a statistical test with a significance level �, e.g. 5%, is used, one might
expect at first glance that the fraction of edges erroneously found to be present is of the order
of 5%, like the Type I error in each of the tests. The experiments indicate that this number is,
however, much lower. A close look reveals that an edge is only present in the induced graph
when the tests on conditional independence reject the hypotheses a?? b j S for all the subsets
S under consideration. Hence, a test which erroneously yields a dependence (Type I error) has
no impact on the resulting graph as long as there is another test yielding the absence. Thus, an
edge is removed when a conditional independence is induced by at least one test. For instance,
in the PC algorithm [142], when tests at low orders of S yield erroneously a dependence then
tests of higher orders are carried out. The latter might yield a conditional independence, as tests
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of higher orders are generally less reliable. Summing up, chances that an edge is erroneously
present are much smaller than the significance level � used in each test, while chances that an
edge is erroneously absent is much larger than the (unknown) Type II error in each test. This
implies again that the graphs induced by the constraint-based approach contain only such edges
which are present with a high degree of certainty. Another conclusion is that too few edges are
found to be present, compared to the optimum.

4.3.5 Parsimony

The heuristics of parsimony is often used in machine learning. This is because parsimonious
models tend to exhibit less over-fitting than other, more complex models. This is particularly
important if the scoring function is only concerned with the fit of the model, and does not
take into account its complexity. In this case, the search strategy has to account for model
complexity in some sense, e.g. by preferring parsimonious models.

When learning in Bayesian networks, the usual scoring functions contain a penalty term for
model complexity (cf. Section 3.1.4). As a consequence, one can expect that the optimal
DAGs with respect to such a scoring function do not exhibit over-fitting. The employed search
strategies can thus aim at inducing the optima.

When the necessary path condition is used for determining minimal skeletons in our approach,
the scores of the skeletons, however, can not be calculated, as the orientations of the edges
are undetermined. When there is a large number of minimal skeletons, some of which might
correspond to a DAG with a higher score than others do. Since computing all those minimal
skeletons can often be computationally infeasible, we apply the heuristics of parsimony, i.e.
we prefer those skeletons which contain the fewest edges among all the minimal skeletons. For
illustration, let us consider the simplistic example in Figure 4.8: unlike in the previous exam-
ples, the two minimal skeletons contain a different number of edges here, namely three and four
edges, respectively. It is left to the reader to verify that the shown skeletons are indeed minimal.
Let us only note that the score g(a; d; fb; cg) < 0 versus both the scores g(b; d; fag) < 0 and
g(c; d; fag) < 0 plays a decisive role. The heuristics of parsimony prefers the skeleton with
three edges to the other one with four edges. Applying the heuristics of parsimony hence ex-
cludes some minimal skeletons from consideration. For this reason, the global optimum need
not be among the parsimonious skeletons or among the graphs obtained by adding some edges
to the parsimonious skeletons. This is a main difference between minimality, as described in
the previous section, and parsimony, as employed here. However, in most of our experiments
the heuristics of parsimony not only entailed more efficient computations but also selected
those minimal skeletons which were closer to the global optimum than the others (cf. Section
5.6.2). For these reasons, parsimony is often very useful in practice.
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Figure 4.8: Illustration of parsimony.
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4.4 Properties of the Perfect Map

Popular constraint-based learning algorithms, e.g. [142], assume that the probability distribu-
tion underlying the data is faithful (cf. also Section 2.2.4). Their aim is hence to recover
the perfect map given the induced conditional independences. When the conditional indepen-
dences and dependences (CIDs) are induced from finite data by means of statistical tests, one
cannot expect in general that there is a DAG which can represent all the induced CIDs, even if
the data was sampled from a faithful probability distribution. The reason is that a penalty con-
cerning model complexity is inherent in a statistical test or some other decision mechanism (cf.
also Section 4.1). Consequently, a test concerned with the independence of a and b conditional
on some set S might yield g(a; b;S) < 0, and hence imply a?? b j S, only because the data set
was small.

This suggests to represent all the induced conditional dependences, but not all the induced
conditional independences in the induced DAGs. Such DAGs are hence I-maps of the induced
CIDs (cf. Section 2.2.4). Moreover, these graphs might be viewed as candidates for being the
perfect map of the true probability distribution underlying the data. Apparently, there can be
several such I-maps. Most interesting are minimal I-maps because they represent a maximal
number of the induced conditional independences.

Like in the case of optimal DAGs, we focus on a necessary condition which has to be fulfilled
in a perfect map. This condition can then be employed by a learning algorithm to find graphs
which are candidates for being the skeleton of the perfect map. This kind of approach was
also described in [144]. Regarding the presence of an edge in a perfect map, the following
proposition can easily be derived.

Proposition 4.17 Let p be a faithful probability distribution for the variables in V, i.e. there
exists a perfect map m. If the edge a � b is absent in m then

(i) there is a set S � pam(a) n fbg in m such that a ?? b j S in p, and there is an x 2 S
such that there is a path x = x0 � x1 � � � � � xr = b without converging arrows, i.e.
xi�1 ! xi  xi+1 (i = 1; :::; r � 1), in m,

or

(ii) there is a set S � pam(b) n fag in m such that a ?? b j S in p, and there is an x 2 S
such that there is a path x = x0 � x1 � � � � � xr = a without converging arrows, i.e.
xi�1 ! xi  xi+1 (i = 1; :::; r � 1), in m.

Proof. This follows directly from the definition of a perfect map (cf. Definition 2.4) and the
d-separation criterion (cf. Definition 2.1). �

It is apparent that this condition is very similar to the ones applying to optimal graphs (cf.
Section 4.2). Like in the optimal DAG, there need not be a path without converging arrows
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between every s 2 S � pam(b) n fag and a in the perfect map. In fact, even if S 6= ; is
minimal, i.e. a ?? b j S and 8S0 � S : a 6?? b j S 0, it is only guaranteed that there is at least
one variable x 2 S such that there is a path without converging arrows between x and a.
This is illustrated in Figure 4.9, where the set S = fc; d; eg is minimal such that a and b are
d-separated by S, and hence a ?? b j S. It is obvious that there exists only one path without
converging arrows between an s 2 S and a, namely a ! c. Along the paths between a and
d 2 S or between a and e 2 S is a collider at variable c.

a bc

d

e

Figure 4.9: When given a ?? b j fc; d; eg, there need not exist more than one path without
converging arrows between a and b in a perfect map.

Proposition 4.17 leads immediately to a necessary path condition applying to the skeleton of
the perfect map:

Proposition 4.18 (Necessary SC-P-Path Condition) Let p be a faithful probability distribu-
tion for the variables in V, i.e. there exists a perfect map m. Between every pair of variables
a; b 2 V there has to be an sc-1-path in the skeleton ~m if the two variables are not marginally
independent.

The definition of an sc-1-path, which is originally concerned with optimal skeletons (cf. Def-
inition 4.9), applies also to the skeleton of the perfect map when g(a; b;S) < 0 is understood
as an induced conditional independence a??b j S.

Apparently, if two variables are marginally dependent, there has to be an sc-1-path in the skele-
ton of the perfect map. This is the main difference to the necessary si-path condition concerning
optimal skeletons (cf. Proposition 4.12), where an si-path rather than an sc-path is required be-
tween every pair of variables. Hence, an edge which is present in a minimal skeleton complying
with the necessary si-path condition (concerning optimal skeletons) is also present in the min-
imal skeleton fulfilling the necessary sc-p-path condition. However, the latter might contain
additional edges, as illustrated in Figure 4.10. Because the variables a and b are marginally
dependent due to the score g(a; b) > 0, the necessary sc-p-path condition requires an edge to
be present between the connected component involving a, c and d and the other one comprising
b, e and f . In contrast, such an edge is absent in the optimal DAG, and it is not required by the
necessary si-path condition applying to optimal skeletons (cf. Proposition 4.12).

Although the necessary sc-p-path condition is asymptotically correct if there exists a perfect
map, it can require edges to be present which are indeed absent in optimal DAGs when given
finite samples. Hence, this asymptotic result cannot simply be applied to finite data. The same
applies also to an early version of the PC algorithm, also called PC� algorithm, as the required
paths are derived from the perfect map [140, 142]. In order to induce only those edges which
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some skeletons which comply with the necessary sc-p-path condition:

optimal DAG: induced relative scores regarding a and b (g is score-equivalent):

g(a,b) > 0 

g(a,b,S’ ) < 0    for all the other sets S’

g(a,b,S) > 0     for the sets S={c}, S={d}, S={e}, S={f} 

Figure 4.10: If the variables a and b are marginally dependent, there has to be an sc-path (rather
than an si-path) present between them in the skeleton of the assumed perfect map.

are present in optimal DAGs, one thus has to use the necessary si-path condition derived from
properties of optimal DAGs.



5
Learning the Presence of Edges

After the necessary path condition was derived in the previous chapter, in this chapter we are
concerned with the structural learning algorithm aimed at finding the corresponding parsimo-
nious skeletons, based on the induced relative scores. We focus on how such an algorithm
works and what computational aspects have to be considered. The necessary si-path condition
(cf. Proposition 4.12) is represented by a set of rules, which can efficiently be simplified by
the learning algorithm. A skeleton complies with the necessary path condition if and only if
a rule is fulfilled for each absent edge. A main difference between the presented extension
and state-of-the-art constraint-based algorithms is that possibly several graphs can be found.
Moreover, the multiple solutions can be displayed in a single graph, easing the interpretation.
The basic ideas described in this chapter were published in [144]. In various experiments, the
proposed approach is compared to other popular learning algorithms.

5.1 Rules

Since the sc-paths and si-paths are defined recursively (cf. Chapter 4), we use two kinds of rules
for representing each of which, the c-rule and the i-rule. In the following, the most involved
variant of rules is described, namely the one corresponding to si-2-paths and sc-2-paths (cf. the
Definitions 4.14 and 4.13). The other variants of the learning algorithm, based on simpler paths
like the sc-1-path, si-1-path, si-3-path or si-4-path, can be obtained analogously. In particular,
the algorithms employing the si-3-path or si-4-path are considerably simpler than the variant
described here, because the former do not involve sc-paths.

A c-rule is a quadruple CR(X;E;C; I), and an i-rule is a triple IR(X;E; I), where X =
[a; b] = [b; a] is a pair of variables a; b 2 V, and E, C and I are sets of pairs of variables.
According to the necessary si-path condition and the definitions of the sc-paths and si-paths,
the following interpretation is suggested: X = [a; b] represents the edge a � b which is
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possibly absent. If it is absent then

� an edge has to be present between the variables x and y if [x; y] 2 E,

� an sc-path has to be present between the variables x and y if [x; y] 2 C, and

� an si-path has to be present between the variables x and y if [x; y] 2 I.

Hence, a pair of variables can be interpreted as an edge, an sc-path or an si-path depending on
the context. For brevity, we hence call the elements of E,C and I edges, sc-paths and si-paths,
respectively. The sets E, C and I represent the conditions under which the edge X can be
absent in a skeleton such that the necessary si-path condition is fulfilled. We say that a rule is
fulfilled when all the conditions represented by the sets E, C and I are met.

Once the relative scores have been computed, each of which is transformed into a rule. For
clarity, the details on how to (efficiently) compute the scores are postponed to Section 5.4. The
following scheme for generating the rules is a direct consequence of the definitions of the sc-2-
path and the si-2-path (cf. the Definitions 4.13 and 4.14): for each relative score g(a; b;S) < 0
with a; b 2 V, where the set S � V n fa; bg is not empty, a c-rule CR([a; b];E;C; I) is
generated with

� E = f[a; s] : s 2 Sg,

� C = f[b; s] : s 2 Sg,

� I = f[b; s] : s 2 Sg [ f[s1; s2] : s1; s2 2 S; s1 6= s2g.

While such c-rules correspond to sc-paths (cf. Definition 4.13), si-paths are accounted for by
i-rules as follows: regarding two variables a; b 2 V, an i-rule IR([a; b];E; I) is created if there
are two relative scores g(a; b;S) < 0 and g(b; a;S0) < 0 with disjoint and non-empty sets
S;S 0 � V n fa; bg. The condition sets E and I are given by

� E = f[a; s] : s 2 Sg [ f[b; s0] : s0 2 S 0g,

� I = f[b; s] : s 2 Sg [ f[a; s0] : s0 2 S 0g [ f[s1; s2] : s1; s2 2 S [ S
0; s1 6= s2g.

Note that, in this definition of an i-rule, we require S \ S0 = ;. In case that S \ S0 = T 6= ;,
both the edges a � t and b � t (t 2 T ) have to be present. Since this implies the existence of
an sc-path between a and b, there is already a c-rule accounting for this case. The restriction
S \ S 0 = ; hence helps avoid the creation of essentially identical rules. Apart from that, the
i-rule IR([a; b]; ;; ;) is generated for every a; b 2 V with g(a; b; ;) < 0. This is because the
edge a � b can be absent without requiring any edges or paths to be present. Positive scores,
i.e. g(a; b;S) > 0, do not entail the creation of a rule. When the used scoring function g
is score-equivalent, one may not forget to generate the rules corresponding to both the scores
g(b; a;S) < 0 and g(a; b;S) < 0.
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All the rules are collected in the set of rules <. In general, there can be several different sets S
for each edge a � b such that g(a; b;S) < 0 or g(b; a;S) < 0. This implies that there can be
many different rules concerning an edge a � b. Since only a negative relative score entails the
creation of a rule, it is clear that there is no rule in < corresponding to a certainly-present edge
a � b, for which holds that 8S � V n fa; bg : g(a; b;S) > 0 ^ g(b; a;S) > 0.

Since the definitions of the rules follow immediately from the sc-2-path and the si-2path, it is
clear that a skeleton complies with the necessary si-path condition (cf. Proposition 4.12) if a
rule is satisfied for each absent edge.

5.2 Simplifying the Rules

The minimal skeletons can be determined on the basis of the set of rules <, since the latter rep-
resents the necessary path condition in the algorithm. In general, it is not obvious which edges
are absent in the minimal skeletons. The only exceptions are certainly-present and certainly-
absent edges (cf. Proposition 4.2). The task is hence to find out about the presence or absence
of the remaining edges. This can be done by two equivalent, but in some sense opposite,
approaches. Let us first consider the more intuitive procedure. It is illustrated in Figure 5.1.

In this simplistic example, it may not be clear immediately whether the edges a � b and a � d
have to be present or absent in a minimal skeleton. Instead of considering a graph, let us focus
on the rules concerning the edge a � b, i.e. the rules (I) and (II). According to rule (II), if
the edge a � b is absent then the edge b � d and an sc-path between a and d have to be
present. While the edge b � d is certainly present, the existence of the sc-path between a and
d is not apparent. Due to the recursive definition of an sc-path, however, one can use rule (III)
regarding the edge or sc-path between a and d. When the c-rule (III) is inserted into rule (II),
as depicted in Figure 5.1, then the new rule (V), CR([a; b];E;C; I), is such that the condition
sets E, C and I contain solely edges which are certainly present. Hence, this rule is fulfilled
and the minimal skeleton does not contain the edge between a and b.

This example illustrates that the absence of the edge between a and b can be determined by
considering solely the set of rules <. A graph was not used in this process. Having simplified
the rules, the minimal skeleton(s) can immediately be specified.

5.2.1 Removing the Conditions Apparently Fulfilled

The computational disadvantage of the above procedure is that the number of rules as well as
their complexity increase, because new rules are generated. Let us hence turn to the alternative
procedure which is computationally more efficient. The idea is as follows: the condition sets of
the rules CR([a; b];E;C; I) or IR([a; b];E0 ; I0) often require such edges or paths to be present
which are indeed present, e.g. certainly-present edges. Since the presence of the latter edges
is guaranteed, they need not be stated explicitely in the condition sets. The rules can thus be
simplified by eliminating these edges from the condition sets E, C and I, as an edge is also an
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a b

c d
   ?

?

a b

c d
   

g(a,b)>0
g(a,b,{c})>0

g(a,d)>0

g(a,d,{c})<0
g(a,d,{b})>0

g(a,b,{d})<0
(g is score-equivalent)

rule (I):

rule (II):

rule (III):

rule (IV):

is translated into

is translated intog(a,d,{c})<0

g(a,b,{d})<0

rule (V):

 CR([a,b],{[b,d]},{[a,d]},{[a,d]})

 CR([a,b],{[a,d]},{[b,d]},{[b,d]})

                     - the scores concerning the edges a~b and a~d are as follows:

 CR([a,d],{[c,d]},{[a,c]},{[a,c]})

 CR([a,d],{[a,c]},{[c,d]},{[c,d]})

New rules are generated, e.g. a new rule can be obtained by inserting rule (III)  into rule (II):

Because all the edges in the condition sets of the rules (III) and (V) are certainly present,

In order to find out about  the presence / absence of the edges a~b and a~d,  

g(a,b,{c,d})>0 g(a,d,{b,c})>0

the negative scores are translated into rules:

                     - the edge b~c is certainly absent
Assume that  - the edges a~c, c~d and b~d are certainly present,

 CR([a,b],{[b,d],[c,d]},{[a,c]},{[a,c]})

a rule is fulfilled for both the edges a~d and a~b. These edges are hence absent in
the minimal skeleton, as is the certainly-absent edge b~c:

Figure 5.1: The absence of the edges a � b and a � d from the minimal skeleton can be
induced by inserting rules into one another.

sc-path and an si-path. Let us reconsider the example in Figure 5.1 for illustration. Since the
edges a � c, c � d and b � d are certainly present, they can be removed from the condition sets
E,C and I of each rule CR(X;E;C; I). This is depicted in Figure 5.2. After this elimination,
particularly simple rules of the kind CR([a; d]; ;; ;; ;) occur. This has two consequences.
First, such a rule states that the edge a � d is absent in all the minimal skeletons. The reason
is that all its condition sets are empty, and hence this rule is always fulfilled. This implies also
that the edges and paths required by the original rule are present in all the minimal skeletons.
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Hence, the minimal skeleton is:

but computationally more efficient way:

condition sets in each rule:

      an sc-path between a and d is definitely present
=> the edge a~d is definitely absent and

=> the edge a~b is definitely absent

The simplified rules (III’ ) and (IV’ ) can now be substituted into the rule (II’ ):

/ /

// /

// /

/

//
/

a b

c d
   

rule (II’’ ):

The rules, as depicted in the previous example, can be simplified in an equivalent,

Because the edges a~c, c~d and b~d are certainly present, they can be removed from the

rule (I’ ):

rule (II’ ):

rule (III’ ):

rule (IV’ ):

 CR([a,b],0,0,0)

 CR([a,d],0,0,0)

 CR([a,d],0,0,0)

 CR([a,b],{[a,d]},0,0)

 CR([a,b],0,{[a,d]},{[a,d]})

 CR([a,b],{[b,d]},{[a,d]},{[a,d]})

 CR([a,b],{[a,d]},{[b,d]},{[b,d]})rule (I):

rule (II):

rule (III):

rule (IV):

 CR([a,d],{[c,d]},{[a,c]},{[a,c]})

 CR([a,d],{[a,c]},{[c,d]},{[c,d]})

Figure 5.2: Simplifying the rules is an equivalent, but computationally more efficient alterna-
tive to generating new rules like in Figure 5.1.

The second consequence is hence that an sc-path is present between a and d, even if the edge
a � d is absent, because the simplified rule is a c-rule. This implies that c-rules of the kind
CR(X; ;; ;; ;) can be used for further simplifying those rules which contain X in one of their
condition setsC or I. This is achieved by removing also X from those sets. As more and more
rules of the kind CR(Y; ;; ;; ;) occur during the process of simplifying the rules, they can be
used for simplifying others. This is depicted in the second step in Figure 5.2, where the edge
a � b is found to be absent in minimal skeletons.

For brevity, we call an edge definitely absent or definitely present if it is absent or present
in all the minimal skeletons. In particular, every certainly-present or certainly-absent edge
is also definitely-present or definitely-absent. Conversely, a definitely-absent edge need not
be certainly absent. In Figure 5.2, for instance, the edges a � b and a � d are definitely
but not certainly absent. The notion of definitely-present (absent) edges is thus more general
than the one of certainly-present (absent) edges. The rules in < can be simplified to help find
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definitely-absent edges as follows:

(i) Every c-rule CR(X;E;C; I) with an Y 2 E such that

� Y is a certainly-present edge

can be changed to the simpler c-rule CR(X;E n fY g;C; I).

(ii) Every c-rule CR(X;E;C; I) with an Y 2 C such that

� Y is a certainly-present edge, or

� there is a c-rule CR(Y; ;; ;; ;)

can be replaced by the c-rule CR(X;E; ;; I).

(iii) Every c-rule CR(X;E;C; I) with an Y 2 I such that

� Y is a certainly-present edge, or

� there is a c-rule CR(Y; ;; ;; ;), or

� there is an i-rule IR(Y; ;; ;; ;)

can be altered into the c-rule CR(X;E;C; I n fY g).

(iv) Every i-rule IR(X;E; I) can be replaced by a simpler i-rule analogously to the proce-
dures (i) and (iii).

In procedure (ii), the set C simplifies to the empty set, because at least one sc-path has to be
present according to the Definition 4.13 of an sc-2-path. Consequently, once an sc-path Y 2 C
is determined to be present, all the alternative sc-paths in C need not be considered any more,
and can hence be removed. In (iii), a certainly-absent edge need not be mentioned explicitely,
unlike a certainly-present one. This is because a certainly-absent edge a � b is translated
into rules, particularly into the i-rule IR([a; b]; ;; ;; ;), while a certainly-present edge is not
reflected by a rule. In the Definitions 4.13 and 4.14 of an sc-2-path SC2([a; b];W) and of
an si-2-path SI2([a; b];W) between two variables a; b 2 V, it is not allowed that the pairs of
variables in the setW are present along any of the paths required by their recursive definitions.
This is automatically ensured by the above schemes applying to rules, because the simplifi-
cation process starts out with certainly-present and certainly-absent edges, and continues only
with definitely-absent edges. Thus, the above procedures comply with the necessary path con-
dition and the definitions of sc-paths and si-paths in the previous chapter. They can hence be
used for finding (some of the) definitely-absent edges.

In the remainder of this section, let us reconsider some of the previous examples in the light
of rules. First, in the simplistic example in Figure 4.4, the score g(a; c; fbg) < 0 entails the
rules CR([a; c]; f[a; b]g; f[b; c]g; f[b; c]g) and CR([a; c]; f[b; c]g; f[a; b]g; f[a; b]g). They can
be simplified, because the edge a � b is certainly present (cf. Proposition 4.2). The resulting
rules regarding the edge a � c are denoted in Table 5.1: neither one of these two rules simplifies
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simplified rules
CR([a; c]; ;; f[b; c]g; ;)
CR([a; c]; f[b; c]g; ;; ;)

Table 5.1: The rules regarding the edge a � c after their simplification. This continues the
example in Figure 4.4.

to CR([a; c]; ;; ;; ;). Both state that the edge a � c can only be absent if the edge b � c is
present. Since the latter is certainly absent, the rules yield that the edge a � c has to be present
in the minimal skeleton, which agrees with the result found previously.

The second example is slightly more involved, namely the one shown in Figure 4.5. The scores
g(a; c; fbg) < 0 and g(b; c; fag) < 0 transform into the rules denoted in Table 5.2. Only the
certainly-present edge a � b leads to a simplification of the condition sets (cf. Table 5.2).
Obviously, neither one of the edges a � c and b � c can be absent in all the minimal skeletons.
In fact, the simplified rules imply that the edge a � c can only be absent if b � c is present,
and vice versa. This is in accordance with the results in Figure 4.5.

Regarding the third example, the rules resulting from the scores in Figure 4.8 are given in Table
5.3. The certainly-present edges a � b and a � c entail a simplification of the rules. It follows
that the edges a � d, b � d and c � d are not definitely-absent. Furthermore, it is apparent
that a rule is fulfilled for each edge when the single edge a � d is present, or when both the
edges b � d and c � d are contained in the minimal skeleton. Again, this result agrees with
the one obtained in Figure 4.8.

These examples illustrate how the set of rules can be simplified greatly so that the structure of
the minimal skeletons can immediately be read off the rules. In general, however, it is not possi-
ble to induce all the definitely-absent edges by means of the above procedures. This is because
the given simplifications are merely simple schemes rather than a necessary and sufficient con-
dition for determining such edges. A further simplification of the rules can be achieved by the
more powerful procedure described in the next section. As it is computationally more involved
than the above procedures, the above procedures might be applied in a pre-processing step.
Since a necessary and sufficient condition can be very involved due to the recursive definition
of the paths, this is accounted for in the subsequent step described in Section 5.3.2.

rules generated according to the scores simplified rules
CR([a; c]; f[a; b]g; f[b; c]g; f[b; c]g) CR([a; c]; ;; f[b; c]g; f[b; c]g)
CR([a; c]; f[b; c]g; f[a; b]g; f[a; b]g) CR([a; c]; f[b; c]g; ;; ;)
CR([b; c]; f[a; b]g; f[a; c]g; f[a; c]g) CR([b; c]; ;; f[a; c]g; f[a; c]g)
CR([b; c]; f[a; c]g; f[a; b]g; f[a; b]g) CR([b; c]; f[a; c]g; ;; ;)

Table 5.2: The rules before and after their simplification. This continues the example depicted
in Figure 4.5.
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rules generated according to the scores simplified rules
CR([b; d]; f[a; b]g; f[a; d]g; f[a; d]g) CR([b; d]; ;; f[a; d]g; f[a; d]g)
CR([b; d]; f[a; d]g; f[a; b]g; f[a; b]g) CR([b; d]; f[a; d]g; ;; ;)
CR([c; d]; f[a; c]g; f[a; d]g; f[a; d]g) CR([c; d]; ;; f[a; d]g; f[a; d]g)
CR([c; d]; f[a; d]g; f[a; c]g; f[a; c]g) CR([c; d]; f[a; d]g; ;; ;)
CR([a; d]; f[a; b]; [a; c]g; f[b; d]; [c; d]g; CR([a; d]; ;; f[b; d]; [c; d]g; f[b; d]; [c; d]g)

f[b; d]; [c; d]; [b; c]g)
CR([a; d]; f[b; d]; [c; d]g; f[a; b]; [a; c]g; CR([a; d]; f[b; d]; [c; d]g; ;; ;)

f[a; b]; [a; c]; [b; c]g)

Table 5.3: These rules refer to the example in Figure 4.8. We omitted the rules concerning
certainly-absent edges.

5.2.2 Condition Graph

The rules can be further simplified by the procedures presented in this section. The relation-
ships among the rules have thus to be considered in more detail. This can be achieved by
employing a meta-graph, which we call a condition graph. Each pair of variables X = [a; b],
a; b 2 V, corresponds to a node in the condition graph. Hence, if a skeleton comprises n vari-
ables, the condition graph contains

�n
2

�
nodes. The condition graph is a directed graph. Like in

a DAG, we define the parents PA(X) of a node X in the condition graph to be the set of nodes
such that there is a directed arc from each parent to X.1 A condition graph is built according
to a set of rules < in such a way that the parents of a node X are given by

PA(X) = fY : CR(X;E;C; I) 2 <; Y 2 E [C [ Ig [ fY : IR(X;E; I) 2 <; Y 2 E [ Ig:

This means that, if a pair of variables Y is in one of the condition sets of a rule CR(X; �; �; �)
or IR((X; �; �) then there is a directed arc Y ! X in the condition graph. In contrast to DAGs,
directed cycles are allowed to be present in a condition graph. In fact, directed cycles are one of
the most interesting structures in such a graph. This is illustrated in Figure 5.3: in the condition
graph (I), the arc [b; c]! [a; c] indicates that the edge a � c can only be absent in the minimal
skeleton if the edge b � c is present. Since the later is certainly absent in the example shown
in Figure 4.4, the edge a � c has to be present according to the rules. In the condition graphs
(II) and (III) in Figure 5.3, the directed cycles indicate that the presence of the involved edges
depends on each other: in (II), either one of the edges a � c or b � c has to be present in the
minimal skeletons (cf. also Figure 4.5), whereas in (III) either the single edge a � b or both the
edges c � d and b � c have to be present (cf. also Figure 4.8). This shows that directed cycles
are related to uncertainty regarding the presence of edges in minimal skeletons (cf. Section
4.3.1).

1For clarity, we use ”variable” and ”edge” in skeletons, whereas ”node” and ”arc” refer to the condition graph.
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[a,b]

[c,d] [b,c]
[a,c] [b,c]

[a,c]

[b,c]

(II) (III)(I)

Figure 5.3: The condition graphs (I), (II) and (III) correspond to the simplified rules in the
Tables 5.1, 5.2 and 5.3, respectively. Only the relevant nodes are shown.

With this definition of the condition graph, we can now further simplify the set of rules <.
First, let us focus on the condition set I of a rule CR(X;E;C; I) or IR(X;E; I). The general
procedure is to cycle through the following three steps until no more simplification can be
achieved:

(i) build up the condition graph according to the current set of rules,

(ii) choose a rule CR(X;E;C; I) or IR(X;E; I) and a Y 2 I,

(iii) if the condition graph does not exhibit a directed cycle involving the edge Y ! X then
the rule chosen in (ii) can be simplified to CR(X;E;C; InfY g) or IR(X;E; InfY g),
respectively.

The idea is that the absence of a directed cycle involving the edge Y ! X indicates the
presence of an si-path SI(Y; fXg) in all the minimal skeletons. Besides the condition set I,
also the condition set C can be simplified. However, this is only possible under additional
restrictions, because the sc-path is more specific than the si-path. This can be achieved by
cycling through the following steps:

(i) build up the condition graph according to the current set of rules,

(ii) choose a rule CR(X;E;C; I) and a Y 2 C,

(iii) this rule can be simplified to CR(X;E; ;; I) if

� the condition graph does not exhibit a directed cycle involving the edge Y ! X,
and

� the rules regarding Y and all its ancestors AN(Y ) are all c-rules.

In a condition graph, let the ancestors AN(Y ) of a node Y be defined to contain all those
Z 2 AN(Y ) such that there is a directed path Z ! � � � ! Y . In this procedure, the additional
restriction on Y and AN(Y ) ensures that the paths between y and z (Y = [y; z]) are sc-paths
rather than si-paths in a minimal skeleton. The absence of a cycle involving Y ! X indicates,
like above, that there is an sc-path SC(Y; fXg), as required by Definition 4.13. The simpli-
fication of CR(X;E;C; I) to CR(X;E; ;; I) is a consequence of the fact that the presence
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Figure 5.4: The presence or absence of the edges a � b, c � d and c � e is not clear initially.

of at least one sc-path is required (cf. Definition 4.13). We note that chances to simplify the
condition set C are very limited in general. This is because i-rules are also contained in < in
general. The set of edges E can only be simplified if there is a Y = [y; z] 2 E corresponding
to a certainly-present edge y � z. Indeed, the set E is simplified this way by procedure (i) in
the previous section. Hence, the condition graph does not yield an additional simplification of
the set E. Therefore, one can expect that only the condition set I of a rule CR(X;E;C; I) or
IR(X;E; I) can be further simplified in many cases.

This is illustrated in the following example (cf. Figure 5.4). Assume that the edges a � c,
b � d and d � e are certainly present, whereas the edges a � d, a � e, b � c and b � e are
certainly absent. Moreover, let all the relative scores concerning the edges a � b, c � d and
c � e be positive, except for the scores g(a; b; fcg) < 0, g(a; b; fdg) < 0, g(c; d; feg) < 0
and g(c; e; fdg) < 0. The relative scoring function g is assumed to be score equivalent. Let us
focus on the presence or absence of the edges a � b, c � d and c � e in the following. First,
the scores are translated into the corresponding rules (cf. Section 5.1). Second, with the help
of the certainly-present and certainly-absent edges, the rules can be simplified as described in
the previous section. The results are shown in Table 5.4. It is obvious that the edges c � d
and c � e cannot be absent simultaneously in a minimal skeleton. However, it is not apparent

rules generated according to the scores simplified rules
CR([a; b]; f[a; c]g; f[b; c]g; f[b; c]g) CR([a; b]; ;; f[b; c]g; ;)
CR([a; b]; f[b; c]g; f[a; c]g; f[a; c]g) CR([a; b]; f[b; c]g; ;; ;)
CR([a; b]; f[b; d]g; f[a; d]g; f[a; d]g) CR([a; b]; ;; f[a; d]g; ;)
CR([a; b]; f[a; d]g; f[b; d]g; f[b; d]g) CR([a; b]; f[a; d]g; ;; ;)
IR([a; b]; f[a; c]; [b; d]g; f[a; d]; [b; c]; [c; d]g) IR([a; b]; ;; f[c; d]g)
IR([a; b]; f[a; d]; [b; c]g; f[a; c]; [b; d]; [c; d]g) IR([a; b]; f[a; d]; [b; c]g; f[c; d]g)

CR([c; d]; f[d; e]g; f[c; e]g; f[c; e]g) CR([c; d]; ;; f[c; e]g; f[c; e]g)
CR([c; d]; f[c; e]g; f[d; e]g; f[d; e]g) CR([c; d]; f[c; e]g; ;; ;)

CR([c; e]; f[d; e]g; f[c; d]g; f[c; d]g) CR([c; e]; ;; f[c; d]g; f[c; d]g)
CR([c; e]; f[c; d]g; f[d; e]g; f[d; e]g) CR([c; e]; f[c; d]g; ;; ;)

Table 5.4: The rules before and after their simplification. The rules of certainly-absent edges
are omitted.
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[c,d]

[a,b]

[c,e] [a,d] [b,c]

Figure 5.5: The condition graph built according to the simplified rules given in Table 5.4 (only
the relevant nodes are shown).

from the simplified rules whether the edge a � b has to be present. Let us hence consider
the condition graph corresponding to the simplified rules. As described above, the parents of
the nodes [a; b],[c; d] and [c; e] are given by PA([a; b]) = f[b; c]; [a; d]; [c; d]g, PA([c; d]) =
f[c; e]g and PA([c; e]) = f[c; d]g, respectively. The resulting condition graph is shown in
Figure 5.5. It exhibits a directed cycle involving the nodes [c; d] and [c; e]. In this example,
the directed cycle is due to the fact that either one of the edges c � d or c � e has to be
present in the minimal skeletons. In contrast, none of the arcs pointing towards [a; b] is involved
in a directed cycle. This implies that the si-paths SI([a; d]; f[a; b]g), SI([b; c]; f[a; b]g) and
SI([c; d]; f[a; b]g) have to be present in all the minimal skeletons. According to the definition
of an si-path (cf. Section 4.3), the three pairs [a; d], [b; c] and [c; d] can thus be removed from
the condition sets I of the rules regarding [a; b]. Since there is only [c; d] in these condition sets
I (cf. Table 5.4), [a; d] and [b; c] do not lead to a simplification. For this reason, only the rules
IR([a; b]; ;; f[c; d]g) and IR([a; b]; f[a; d]; [b; c]g; f[c; d]g) can be reduced to IR([a; b]; ;; ;)
and IR([a; b]; f[a; d]; [b; c]g; ;), respectively (cf. Table 5.4). This simplification corresponds to
the above procedure employing the condition graph. The simplified rule IR([a; b]; ;; ;) reveals
that the edge a � b is definitely absent, leading to the minimal skeletons and to the condition
graph shown in Figure 5.6.
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[c,e] [a,d] [b,c]

Figure 5.6: By means of the condition graph, it could be determined that the edge a � b
is definitely absent in the (two) minimal skeletons (left), which are summarized in the graph
shown in the center. The simplified condition graph, which splits into two disconnected parts,
is depicted on the right.
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5.2.3 Reducing the Number of Rules

Besides simplifying the condition sets, also the number of rules can be reduced. Since an
edge is absent from a minimal skeleton if at least one rule is fulfilled, a complex rule which
contains a simpler one can be removed from the set of rules <. This is because the simpler
rule is always fulfilled when the more complex one is satisfied. This leads immediately to the
following simplifications:

(i) if CR(X;E1 ; ;; I1), CR(X;E2;C2; I2) 2 < such that E1 � E2 and I1 � I2 then
remove the latter rule from <,

(ii) if CR(X;E1; ;; I1), IR(X;E2 ; I2) 2 < such that E1 � E2 and I1 � I2 then eliminate
the latter one from <,

(iii) if IR(X;E1 ; I1), IR(X;E2 ; I2) 2 < such that E1 � E2 and I1 � I2 then exclude the
latter one from <.

Regarding (i), it is important that the simpler rule has an empty set C of sc-paths, indicating
that the required sc-path has already been induced to be present. Hence, an additional sc-path
among the candidates in the possibly larger set C2 need not be found. In (ii), the empty set
C = ; implies again that an sc-path has already been found. Note also that the c-rule and
the i-rule cannot be interchanged in (ii), since the sc-path is more specific than the si-path.
Of course, these three procedures can be extended in various ways, as they are apparently
necessary conditions for finding minimal skeletons. It is obvious that the set of rules before
and after applying (i) through (iii) yields the same minimal skeletons.

For illustration, let us reconsider the simplistic example in the Figures 5.1 and 5.2. However,
let also the score g(a; d; fb; cg) be negative, besides g(a; d; fcg). Then the former entails the
rule CR([a; d]; f[a; b]; [a; c]g; f[b; d]; [c; d]g; f[b; c]; [b; d]; [c; d]g). Since the rule concerning
g(a; d; fcg) < 0 can be simplified to CR([a; d]; ;; ;; ;) the former rule obviously contains
the simplified one , and the more complex rule can hence be removed from the set of rules <
according to (i).

Note that, once a c-rule regarding an edge X has been completely simplified, i.e. it is of the
kind CR(X; ;; ;; ;), then all other rules, i.e. c-rules and i-rules, concerning this edge can
be removed. In contrast, solely the i-rules regarding an edge X can be eliminated from <
in general after the i-rule IR(X; ;; ;) has been induced, as an si-path is less specific than an
sc-path. This is, however, only relevant when X appears in the condition sets of other rules,
i.e. when arcs point away from the node X in the condition graph. This suggests a further
simplification: if there is an i-rule IR(X; ;; ;), and if the node X is purely endogenous, i.e. no
arcs point away from it, then all other rules concerning the edge X, including the c-rules, can
be removed from the set of rules <. In the example shown in Figure 5.6, the condition graph
simplifies to the one in Figure 5.7.
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[c,d]

[a,b]

[c,e] [a,d] [b,c]

Figure 5.7: Due to the i-rule IR([a; b]; ;; ;), all the arcs pointing to the purely endogenous
node [a; b] can be removed from the condition graph.

5.3 Ambiguous Regions and Summary Graph

The previous section was concerned with inducing (most of) the edges which are absent in all
the minimal skeletons, i.e. definitely-absent edges. In the following, we focus on the remain-
ing edges X, namely the ones for which the steps described so far did not yield a completely
simplified rule. The aim is to find out whether such an edge X is absent or present in a mini-
mal skeleton. The crucial difference between such an edge and a definitely-absent one is that
the former might be present in some of the minimal skeletons while absent in some others,
whereas the latter edges are absent in all the minimal skeletons. Let us designate such edges as
ambiguous edges. For example (cf. Figure 4.8), the edge b � c is definitely absent, whereas the
ambiguous edges a � d, b � d and c � d are present in either one of the minimal skeletons.

When there is more than one minimal skeleton complying with the necessary path condition (cf.
Proposition 4.12), the various graphs differ in the presence of some ambiguous edges. Hence,
ambiguous edges play a crucial role in model uncertainty regarding the presence of edges.
In order to get an overview of the possible structures of the different skeletons, the ambigu-
ous edges and the certainly-present ones can be depicted in a single graph. Let such a graph
be named summary graph, because it summarizes the possible structures of all the induced
skeletons. In a summary graph, solid lines indicate edges which are certainly present, while
ambiguous edges are denoted in different line styles. Missing edges correspond to definitely-
absent ones. All the induced skeletons contain the edges found to be certainly-present, while
they differ regarding the ambiguous edges. Summary graphs have already been used in the
Figures 4.5, 4.7 and 5.6, where their meaning was intuitively clear. We have first published this
concept of visualizing model uncertainty by means of a single graph in [144]. Subsequently, it
was also used in the PRONEL project [120] and in [85]. In the latter, uncertainty regarding the
presence of certain structures was calculated by Bayesian model-averaging. Although this is
straightforward from a theoretical point of view, it is computationally very involved in general.

In Figure 5.8 (II), a summary graph with 10 variables is shown. In this simplistic example,
we have essentially combined the Figures 4.4, 4.5 and 4.8 into one graph so that the reader is
already familiar with the individual parts. The condition graph looks like in Figure 5.9, and the
rules concerning the ambiguous edges are understood to be analogous to the previous examples.
The relations among the rules, as shown in the condition graph in Figure 5.9, reveal that the
presence of the ambiguous edges t � v and u � v can depend on each other. However, the
presence of the latter edges is independent of the presence of the ambiguous edges w � z, x �
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Figure 5.8: The summary graph of a simplistic domain with 10 variables at different stages of
simplification: (I) preliminary, (II) minimal, and (III) parsimonious summary graph.

z and y � z. This suggests to collect all the edges whose presence can depend on each other in
the same set, which we call an ambiguous region. Besides the cycles in the condition graph, the
connected components are hence very important. A connected component comprises all those
nodes which are connected with one another by an undirected path when the directions of the
edges are ignored. Hence, the presence of edges belonging to different ambiguous regions
is by definition independent of each other. Particularly in skeletons involving a reasonably
large number of variables, we found ambiguous regions to occur very often in our computer
experiments (cf. the Sections 5.6 and 6.3). Ambiguous edges belonging to the same ambiguous
region are shown in the same line-style in the summary graph. Figure 5.8 (II) depicts three
ambiguous regions, namely the first one contains the single edge a � c, the second region
comprises the edges t � v and u � v, and the third one is made up of the edges w � z, x � z
and y � z.

The independence of different ambiguous regions has two important consequences. First, a
summary graph can be understood more easily than a list of all the induced skeletons. This
is because the induced skeletons are identical regarding the definitely-present edges, and they
differ concerning the ambiguous edges only. Additionally, the independence of different am-
biguous regions helps in understanding the variability of the graph. However, the various struc-
tures present in each ambiguous region can not be read off a summary graph. For instance, the
summary graph in Figure 5.8 (II) does not indicate that the minimal structures in the rightmost
ambiguous region involve either the edge w � z or both the edges x � z and y � z. This
information can in parts be read off the condition graph, or it can be given, for instance, by enu-
merating the different minimal structures in each ambiguous region. In the PRONEL project,
this information could be explored interactively by the user [120]. Second, the independence
of different ambiguous regions reduces the computational effort considerably, as it allows to
search for the various structures separately in each ambiguous region. All the different min-
imal skeletons can eventually be obtained by combining the different structures found in the
various ambiguous regions. Summing up, even a large number of different minimal skeletons
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[t,v] [u,v]

[a,c]

[b,c] [x,z]

[w,z]

[y,z]

Figure 5.9: The condition graph shows the relations among the rules in the simplistic domain
depicted in Figure 5.8.

can efficiently be computed due to the independence of the ambiguous regions, and they can
all be visualized in a single summary graph.

5.3.1 Definitions

Having motivated the concept of ambiguous regions in the summary graph, let us now define
a preliminary ambiguous region. It is based on a set of rules < simplified by the procedures
described in the previous sections. A preliminary ambiguous region is the setA of all nodes X
which belong to the same connected component in the condition graph. Let two nodes belong
to the same connected component in a directed graph if there is a path between them in the
undirected version of that graph. Since different ambiguous regions are not connected in the
condition graph by definition, they are independent. The set of rules < can hence be divided
into subsets of rules <Ai where each of which corresponds to a different ambiguous region Ai.
Hence, only the presence of the edges involved in the same region can depend on each other.

According to this definition, a preliminary ambiguous region can contain also definitely-absent
edges, besides ambiguous ones. A preliminary ambiguous region thus comprises all the edges
whose presence might depend on each other in the minimal skeletons. In other words, it can
also comprise edges which are not present in any minimal skeleton. In Figure 5.9, for example,
the preliminary condition graph exhibits three preliminary ambiguous regions. The left one
contains the edges a � c and b � c according to the condition graph in Figure 5.9, although
the edge b � c is definitely absent, as sketched in Figure 4.8. The preliminary summary graph
is shown in Figure 5.8 (I).

A minimal ambiguous region comprises only those edges of a preliminary ambiguous region
which are actually present in at least one of the minimal skeletons. A summary graph is
minimal if it displays the minimal ambiguous regions. On the left hand side in Figure 5.8 (II),
the minimal ambiguous region does not involve the edge b � c, as it is definitely absent. It
solely contains the edge a � c. Since this edge is present in all the minimal skeletons, we also
call it a definitely-present edge.

When applying the heuristics of parsimony (cf. Section 4.3.5), an ambiguous region might be
reduced even further, leading to a parsimonious ambiguous region. Such an ambiguous region
solely comprises the edges present in parsimonious skeletons, as defined in Section 4.3.5. This
is illustrated in the ambiguous region on the right hand side in Figure 5.8 (III), where the
minimal skeletons contain either the single edge w � z or both the edges w � x and w � y
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(cf. also Figure 4.8). Only the edge w � z is, however, present in a parsimonious skeleton, and
is hence present in the parsimonious ambiguous region shown in Figure 5.8 (III). In general, a
parsimonious summary graph can be considerably simpler than a preliminary one. This is also
confirmed by the experiments in Section 5.6.2, in particular in the Figures 5.17 and 5.18. This
suggests to present the parsimonious summary graph to the user, rather than the preliminary
one, since the latter tends to contain larger ambiguous regions, rendering the interpretation
more difficult.

5.3.2 Search within each Ambiguous Region

After the different preliminary ambiguous regions have been determined, each of which can
be considered separately due to their mutual independence. As a consequence, the complexity
of determining the minimal skeletons is greatly reduced. In each of the ambiguous regions
Ai, the subset of rules <Ai determines the different structures present in minimal skeletons. In
general, it is too involved to read the structures of the minimal skeletons directly off the subset
of rules. The following exact and approximate search strategies can be applied to find the
different minimal or parsimonious structures also in the case of quite large ambiguous regions.

A minimal or parsimonious structure in an ambiguous region Ai is a set of present edges such
that for each absent edge X 2 Ai a rule is fulfilled in <Ai . Additionally, this set of edges has
to be minimal or parsimonious in the sense outlined in the Sections 4.3.4 and 4.3.5. Once these
structures are known, the minimal or parsimonious skeletons can be constructed immediately
by merging the minimal or parsimonious structures of the different ambiguous regions in all
possible combinations. The number of induced skeletons is hence given by the product of the
numbers of minimal or parsimonious structures found in each of the independent ambiguous
regions.

Exact Search for Parsimonious Structures

If an ambiguous region is reasonably small, it is feasible to search for all the minimal or
parsimonious structures. Since a preliminary ambiguous region corresponds to a connected
component in the condition graph, it can contain nodes X which are not part of a directed
cycle in the condition graph. This suggests a pre-processing step which further simplifies an
ambiguous region before the minimal or parsimonious structures are actually determined. This
can be achieved by repeatedly applying the following scheme until no further simplification is
possible.

If a purely exogenous node X = [x; y], i.e. a node from which all the arcs point away in the
condition graph, corresponds to a definitely-absent edge x � y in the skeleton then
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(i) remove all the rules CR(Y;E;C; I), IR(Y;C; I) where X 2 E or X 2 C from the set
of rules,

(ii) simplify the set of rules by the procedures described in Section 5.2, and

(iii) build a condition graph according to the new set of rules.

In step (i), this scheme removes those rules which cannot be satisfied in any case. This leads to
a simplified set of rules which might then be further reduced in step (ii). Since the removal of
rules from<A entails the elimination of edges from the condition graph, a previously connected
component might split up into different smaller connected components. One can look at each of
the smaller connected components as a new ambiguous region, and each of which can then be
simplified separately. This renders particularly efficient computations possible. When edges
are removed in step (i), it might turn out that all the rules CR(Y;E;C; I) and IR(Y;C; I)
corresponding to an edge Y have been removed. This implies that such an edge Y is present in
all the minimal skeletons, like a certainly-present edge. It is called a definitely-present edge. A
definitely-present edge induced in step (i) can imply the presence of some sc-paths and si-paths.
Subsequently, this can lead to considerable simplifications of the set of rules in step (ii).

This is illustrated in the connected component in Figure 5.10 (I), where it is assumed that the
nodes S and X correspond to definitely-absent edges in the minimal skeletons: step (i) of the
above scheme removes those rules which entail the elimination of the arcs S ! X and S ! T
in the condition graph. This splits the connected component into two smaller ones. Because
T is not related to a definitely-absent edge in the skeleton, all the rules CR(T;E;C; I) and
IR(T;C; I) can be removed in step (ii). This entails that the edge T has to be definitely
present in the skeleton. Moreover, the rules CR(U;E;C; I) and IR(U;C; I) regarding the
edge U can now be simplified, namely when T 2 E, T 2 C or T 2 I. This entails at least the
arc T ! U to be removed from the condition graph (cf. Figure 5.10 (II)). In the second cycle,
the above scheme can now be applied to the purely exogenous node X which is assumed to
correspond to a definitely-absent edge in this example. At least the arc X ! Y can thus be
eliminated from the condition graph. Finally, two ambiguous regions are obtained which are
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Figure 5.10: A simplistic example of a connected component which can be further simplified.
(I) depicts the original component, (II) and (III) sketch the simplifications achieved after one
and two cycles, respectively.
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considerably smaller than the original one (cf. Figure 5.10 (III)), and the edge T is found to be
definitely present.

After this simplification, the algorithm may carry out exhaustive search to find the various
minimal or parsimonious structures. In an ambiguous region involving r edges, there are 2r

different structures to be checked for their compliance with the subset of rules <A. For each
structure, this can, for instance, be checked by using a copy <Ac of the subset <A as follows:
the edges being present in this structure are considered to be definitely present, i.e. all the
c-rules and i-rules concerning these edges are removed from <Ac . The structure complies with
the rules if <Ac can be simplified by the procedures described in Section 5.2 such that, for each
absent edges Y , a rule can completely be reduced. Among all the structures complying with the
subset of rules <A, the minimal ones are then given by the ones which do not contain another
structure fulfilling the rules.

When the heuristics of parsimony is applied, the complexity of search strategies can be reduced.
The concept of parsimony was introduced in Section 4.3.5. All the possible structures can be
checked in ascending order k = 0; :::; r regarding the number of edges being present. Once
a structure containing kp edges is found to comply with the subset of rules <A, the structures
corresponding to higher orders k > kp need not be checked any more. The number of different
structures which have to be considered at each order k equals

�r
k

�
. Hence, the complexity of

finding all the parsimonious structures in an ambiguous region is bound by O(rkp), where kp
denotes the number of edges in a parsimonious structure fulfilling the rules. In particular, if
the number of edges kp is quite small, this procedure is tractable even for reasonably large
values of r. For instance, in our alarm network experiments in Section 5.6.2, we allowed for
preliminary ambiguous regions with up to r � 15 edges, as kp � 2 occurred to be very small.

Approximate Search for Parsimonious Structures

In the case of very large ambiguous regions where the above search strategies are infeasible, we
found the following approximations very effective. The aim is to simplify the subset of rules of
a large ambiguous region such that the latter is likely to split up into, possibly several, smaller
regions. Due to their mutual independence, the minimal structures can then be determined
separately in each of the smaller regions. This can considerably reduce the complexity of the
search. As an alternative to simplifying large ambiguous regions approximately, a less strict
variant of the necessary path condition might be applied. This tends to yield smaller ambiguous
regions, and exact search might be tractable (cf. the experiments in Section 5.6.2, in particular
Figure 5.25).

Let us describe two heuristics for approximately reducing a large connected component in the
condition graph. They are both applicable when a node X with a large number of parents is
present in a connected component. There are two disparate causes for such a large number of
parents.

First, the simplified rules CR(X;E;C; I) and IR(X;E; I) can have condition sets E,C and I
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with many different pairs of variables. The absence of the edge X can thus require many other
edges, sc-paths and si-paths to be present in the skeleton. On the other hand, all these edges and
paths need not be present if the edge X is present. Applying the heuristics of parsimony, one
might hence favor the presence of the single edge X. In other words, a complex rule is unlikely
to be fulfilled in a parsimonious skeleton. This suggests the heuristic approach of removing
involved rules from the set <A, while only the simpler rules concerning each edge X remain
in the set <A. Hence, if one of the simpler rules is fulfilled then the edge X is absent from the
induced skeleton. In case that all rules concerning an edge X have been removed due to their
complexity, the edge X becomes definitely-present in the induced skeletons. A consequence of
heuristically removing complex rules from <A is that the skeletons eventually induced might
contain a few edges additional to the (unknown) parsimonious skeletons complying with the
original set of rules. In the algorithm, a threshold value for the maximal number of elements in
the sets E, C and I has thus to be chosen carefully.

Note that a simplified rule comprising large condition sets can only origin from a relative score
g(x; z;S) < 0 with a large set S. Such a score is thus ignored when the corresponding rule
is removed by this heuristics. Since independence tests of high orders in S are usually quite
unreliable, this might be a reasonable approach. However, all rules stemming from a relative
score g(x; z;S) < 0 with a large set S may not be removed by this heuristics, as a complex
rule might simplify considerably.

Second, in the condition graph, a large number of parents of a node X can also be caused
by a large number of different rules CR(X;E;C; I) and IR(X;E; I). Unlike in the former
case, each of the condition sets might be quite small. When there is a large number of quite
simple rules concerning the same edge, it can be expected that one of which may be fulfilled
by chance. This suggests the heuristics of considering such an edge to be definitely absent
from the skeleton, and of removing the rules concerning the edge X from <A. Moreover, the
rules CR(X; ;; ;; ;) and IR(X; ;; ;) are inserted into <A so that the edge X is treated like
a definitely-absent one in the subsequent steps, i.e. the inserted rules imply that there is an
sc-path as well as an si-path assumed to be present. In the subsequent steps, a considerable
simplification of <A can hence be expected. It is obvious that this heuristics can eventually
lead to skeletons containing fewer edges than the (unknown) minimal or parsimonious ones
obeying the original set of rules <A. As noted in Section 4.3.4, minimal skeletons tend to
contain a smaller number of edges than optimal DAGs. For this reason, the qualitative property
of the induced skeletons is retained by this heuristics, namely that the found skeletons contain
fewer edges than the optimal ones.

Let us also look at these two heuristics from the point of inducing the perfect map. In the first
heuristics, if all the simplified rules concerning an edge X = [x; z] are quite complex, then
there have to exist many different paths between x and z, and each of which has to be blocked
in order to achieve a d-separation of the two variables. In contrast, if there is a large number of
simple rules regarding an edge X = [x; z], then there have to be long paths between x and z.
This is because many different variables can be chosen to block the paths such that d-separation
occurs. These considerations help choose reasonable threshold values in these heuristics.
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Finally, let us mention a third heuristics applying to definitely-absent edges involved in prelim-
inary ambiguous regions: when an i-rule regarding a definitely-absent edge X = [x; z] could
be reduced completely, none of the c-rules regarding such an edge need be completely sim-
plified. This suggests a heuristic simplification, namely to remove all c-rules CR(X;E;C; I)
once the i-rule IR(X; ;; ;) has been induced. Additionally, the completely reduced c-rule
CR(X; ;; ;; ;) might be inserted into the set of rules <A, like in the second heuristics. This
ensures that the resulting skeletons cannot contain more edges than the minimal ones comply-
ing with the original set of rules.

A variant of these heuristics is based on two necessary si-paths, a strict one and a less rigorous
one. Since the ambiguous regions due to a less rigorous necessary si-path condition can be
expected to be quite small, an exact search for the minimal structures is usually tractable. The
edges found to be present can then be used for searching in a, possibly large, ambiguous region
due to the stricter necessary si-path condition: in such an ambiguous region, those edges can
be considered as definitely present which were found to be present in a parsimonious skeleton
obeying the less strict necessary si-path condition. In the worst case, however, there can be
as many different choices for these edges as there are parsimonious skeletons according to
the less rigorous condition. Thus, this heuristics becomes infeasible when the less strict si-
path condition yields too many parsimonious skeletons. However, if it was tractable in our
experiments, it lead to better results than obtained by means of the other approximate search
strategies in this section.

5.4 Computing the Scores

This section focuses on computing the relative scores required by the above procedures for
constructing the skeletons. Computing the relative scores can be very time-consuming: par-
ticularly in the case of discrete variables, in many experiments [23, 24] more than 90% of
the overall computation time was necessary for computing the scores, whereas only a small
fraction of the time was required by the above scheme for computing the, possibly different,
skeletons (see also Section 5.5). Therefore, a great deal of computation time can be saved by
computing the scores efficiently as well as by skipping the evaluation of those scores which are
not required by the learning algorithm for determining the network structure.

5.4.1 Representation of the Data

Computations can be accelerated by choosing an appropriate representation of the sufficient
statistics implied by the data. In the case of a multinomial distribution for discrete variables, a
sufficient statistics is given by the cell counts of the different configurations in the contingency
table. Concerning domains with Gaussian-distributed variables, the correlation matrix provides
a sufficient statistics for calculating the scores. In domains involving a large number of dis-
crete variables, the contingency table with the cell counts of all the joint states is usually many
orders of magnitude lager than computers can currently fit into their memories. Consequently,
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a straightforward solution is to keep the cases of the data set itself in the memory. Hence,
the computation of a score entails to cycle through the cases of the data set and to count the
occurrences of the different configurations of the variables in the subset of interest. The com-
plexity of this procedure increases linearly in the number of cases in the data set. Of course,
more sophisticated representations can often be chosen. For instance, in the software pack-
age CoCo [5], the representation is chosen dependent on the number of variables in a domain.
Further techniques are described in [29].

5.4.2 Indirect Evaluation

When a score is calculated from given data, computing the cell counts is the most time-
consuming task in general. However, many relative scores need not be computed directly
from the data, because all the scores are not independent of each other. This was already men-
tioned in Section 3.1, in particular see the Equations 3.1.6 and 3.1.9. The former equation can
be applied to all relative scoring functions g, while the latter leads to an additional speed-up
when the used scoring function is score equivalent. When a score is computed from other
scores according to these equations, it is called an indirect evaluation of that score. Efficient
computation can be achieved by processing the relative scores in ascending order. The order
of a relative score g(a; b;S) is given by the number of variables in the set S � V n fa; bg,
denoted as jSj. This means that all the scores with S = ; are computed first, then all the scores
involving sets S with one variable, after that with two variables, and so on.

Without applying any of the two Equations 3.1.6 and 3.1.9, in a domain with n variables the
number of all relative scores is given by

nX
i=2

i(i� 1)

�
n

i

�
=

n�2X
i=0

n(n� 1)

�
n� 2
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�
= n(n� 1)2n�2 : (5.4.1)

This is because the relative score g(a; b;S) has three arguments, namely the two variables a and
b, which cannot be swapped in general, as well as a set S � V nfa; bg. This yields immediately
the expression in the center of Equation 5.4.1. The sum of binomial coefficients simplifies in
the well-known manner. The first expression in Equation 5.4.1 follows from first choosing a set
U � V with at least two elements and subsequently selecting the distinct variables a and b from
U so that S is determined by U nfa; bg. The interdependencies of the relative scores according
to Equation 3.1.6 reduce the number of independent scores, which have to be computed directly
from the data, to

nX
i=2

i

�
n

i

�
= n2n�1 � n: (5.4.2)

This holds both for score-equivalent as well as for non-score-equivalent scoring-functions.
Once a relative score g(a; b;U n fa; bg) has been computed, the score g(a; c;U n fa; cg) is
given by Equation 3.1.6 for all c 2 U n fag. A necessary requirement is, of course, that the
scores g(x; y;S) of the lower orders jSj < jU n fa; bgj are known. This is the case when the
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scores are evaluated in ascending order of S. Hence, regarding each subset U � V with at
least two variables, only jUj scores are independent of each other, and have to be computed
directly from the data. This leads to Equation 5.4.2. If the scoring function is score-equivalent,
Equation 3.1.9 entails an additional decrease in the number of independent scores: only

nX
i=2

�
n

i

�
= 2n � n� 1 (5.4.3)

different scores have to be computed directly form the data. This is because Equation 3.1.9
yields the relative scores g(a; b;U n fa; bg) for all a; b 2 U � V. The only requirement is the
knowledge of a single score g(x; y;U n fx; yg) for some x; y 2 U and of the scores of lower
orders.

In domains with discrete variables, the computational effort for the indirect evaluation of a
score is essentially negligible compared to the one required for computing the cell counts. The
Equations 5.4.1 and 5.4.2 indicate hence that the computation time can be reduced by a factor
of about n=2 when all the relative scores are evaluated. Regarding a score-equivalent scoring-
function, this factor is even larger, namely about n2=4 (cf. Equations 5.4.1 and 5.4.3). Since
the overall effort grows exponentially with n, the computation of all the scores is only feasible
in domains with a rather small number of variables. Domains with a large number of variables
require some (heuristic) simplifications: usually one resorts to the computation of scores of
low orders only [142]. Also in this case, the Equations 3.1.6 and 3.1.9 can be exploited when
the relative scores are evaluated in ascending order. When all scores g(a; b;S) of a given order
r = jSj are computed, the number of scores evaluated directly from the data can be reduced by
a factor of r+ 1 (cf. the terms within the sums in the Equation 5.4.1 and 5.4.2). This holds for
any relative scoring function. Moreover, if the scoring function is score-equivalent, this factor
amounts to (r+2)(r+1) (see the Equations 5.4.1 and 5.4.3). Hence, the computation time can
often be reduced by an order of magnitude. The storage of the computed scores of low orders
was not a problem in our computer experiments.

Finally, let us briefly consider the number of independent terms involved in a decomposable
absolute scoring function f . Its decomposability entails that for each variable v 2 V and its
parents pa(v) a term fv(v jpa(v)) has to be computed. The number of these terms, which have
to be computed directly from the data, is given by

n�1X
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If the scoring function is score equivalent, the number of independent terms is considerably
smaller than in Equation 5.4.4. Due to the relation specified in Equation 3.1.11, only a single
term fa(a j U n fag), a 2 U , has to be computed directly from the data for each subset U � V
with a least one variable. Then the terms fb(b j U n fbg) can be evaluated by means of Equation
3.1.11 for all b 2 U given the scores of lower orders. Hence, the number of independent terms



5.4 COMPUTING THE SCORES 95

is given by

nX
i=1

�
n

i

�
= 2n � 1: (5.4.5)

The Equations 5.4.4 and 5.4.5 correspond to the Equations 5.4.2 and 5.4.3 concerning relative
scoring functions. Apparently, n additional terms have to be computed for the absolute scoring
function. The reason is that the absolute scoring function involves an additional independent
term concerning each of the n variables in the Bayesian network. This gives rise to an addi-
tional absolute score, for instance the score of the empty DAG f(mempty) =

P
v2V fv(v j ;),

which is often a meaningless constant in Equation 3.1.7. Such a term does not occur in a
relative scoring function, as the latter is the difference of absolute scoring functions.

5.4.3 Reducing the Number of Computed Scores

Instead of first computing all the scores and then finding the skeletons, one can also alternate
between these two procedures. As a benefit, the number of the scores actually computed can
be reduced considerably when reasonable heuristics are employed. The idea is that the graph
induced at some intermediate stage of the learning process can help decide which scores are
worth being computed next. Typically, one chooses such scores which can be expected to have
an impact on the induced network structures. Popular heuristics require the relative scores to
be computed in ascending order. In the PC algorithm, the intermediate graph is updated each
time a conditional independence is found [142]. We propose to update such an intermediate
graph only at the end of each round, i.e. after the computation of the scores of a fixed order
is completed. As an advantage, the proposed scheme is independent of the sequence in which
the algorithm proceeds through the variables. A drawback is, however, that it might entail the
computation of a larger number of scores than the PC algorithm.

Typically, such heuristics only compute those scores g(a; b;S) which are related to an edge
a � b present in the intermediate graph [142]. Moreover, only these scores g(a; b;S) are
considered where S � ne(a) n fbg, with ne(a) denoting the neighbors of a in the intermediate
graph. This heuristics is motivated by the fact that S has to be (a subset of) the parents of a
(see also Section 3.1.2). This restriction on S results in a considerable reduction in the number
of scores which have to be computed, and hence saves a lot of computation time. In [23, 24],
another heuristics is used. It is based on the tree construction algorithm by Chow and Liu [32].

Because the summary graph (cf. Section 5.3) serves as the intermediate graph in our algorithm,
let us consider the evolution of such an intermediate graph in more detail. Two important issues
are pointed out in the following. The first one is illustrated in the example shown in Figure
5.11. Assume that, after the round of zeroth order, the summary graph looks like the left one in
Figure 5.11. In the round concerned with the scores of first order, let the following scores by
negative: g(a; b; feg), g(a; e; fxg), g(a; e; fyg), g(b; e; fcg), and g(b; e; fdg). This causes the
edges a � b, a � e and b � e to become ambiguous edges in the preliminary summary graph.
In the round of second order, assume the scores g(a; b; fc; dg) < 0 and g(a; b; fx; yg) < 0
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are found. As a consequence, the edge a � b becomes definitely absent in the intermediate
summary graph, and so do the edges a � e and b � e. This shows that it is important to keep
on computing scores regarding ambiguous edges, although scores favoring the absence of such
an edges have already been found in earlier rounds.
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Figure 5.11: In this simplistic example, the summary graphs based on the scores up to zeroth,
first and second order are shown from left to right.

The second important issue is that, although an edge is absent from the intermediate graph at
the current round, this edge might be present in the intermediate graph at a later round. This
is caused by ambiguous edges in the intermediate graph. Let us reconsider the example shown
in Figure 4.8. After the round concerned with scores of first order, the ambiguous edges b � d
and c � d are absent from the intermediate graph, as illustrated in Figure 5.12. Consequently,
no scores of second order are subsequently computed concerning the edges b � d and c � d.
However, these edges are present in the intermediate graph after the round of second order is
completed. Their presence indicates, however, that also scores of second (and higher) order
have to be taken into account when determining the skeletons. The learning algorithm has thus
to make up for scores whose computation was possibly skipped due to the temporary absence
of some edges from the intermediate graph.

ba

c d

ba

c d
   

Figure 5.12: This example rests on the one in Figure 4.8. The left summary graph is obtained
by taking into account the scores up to first order only, whereas the right one accounts for all
orders.

A drawback of this heuristics is that the skeletons induced from a reduced number of scores
can contain additional edges, compared to the graphs learned from the full record of scores.
Another consequence is that the number of induced skeletons might by decreased. The reason
is that the heuristics might prevent from computing some scores g(a; b;S) < 0 which possibly
imply the absence of an edge a � b. This situation arises when the set S has to contain
some variables which are not among the neighbors of a or b, because the required edges have
already been removed in a previous round due to other scores. Chances for this to happen can
be reduced, for instance, by using a ”window” for the threshold value 
 to which the scores
g(a; b;S) are compared: a quite large value of 
 tends to yield quite many ambiguous edges in
the summary graph, while a rather small value entails an increased number of definitely-present
edges. Combining the edges from both summary graphs reduces chances that relevant edges
are absent from the new intermediate graph.



5.4 COMPUTING THE SCORES 97

In our computer experiments, it occurred very rarely that an additional edge was mistakenly
present in the induced skeletons. This is usually caused by another effect: a variable a often
has more neighbors in the (undirected) intermediate graph than it would have parents in the
corresponding DAG. Hence, the intermediate graph entails the computation of scores of higher
orders than one would take into account when dealing with DAGs. Scores involving high orders
can, however, favor the absence of an edge mainly because the penalty for model complexity
dominates. In order to prevent the algorithm from considering scores of unreasonably high
orders, the following heuristics appeared useful in our experiments: a score g(a; b;S) is only
computed if the number of variables adjacent to a by a definitely-present edge, but not by an
ambiguous one, is at least as large as the order of S in the current round. The variables allowed
to be in S can then be adjacent to a by a definitely-present edges or an ambiguous one.

The heuristics which only consider such scores g(a; b;S) where S is among the neighbors of
a can be understood as a relaxed version of the necessary path condition (cf. Section 4.3.1),
as the latter also requires the variables in S to be adjacent to a. Hence, even without applying
the necessary path condition, this heuristics can be expected to lead to some improvements
regarding the induced skeleton, namely a reduction in the number of edges mistakenly absent.
This is supported by the experiments concerned with the PC and SGS algorithms [142].

5.4.4 Parallel Computing

As the scores can be computed independently of each other in each round of a given order,
this task is appropriate for parallel computing. We implemented a simple master-slave scheme,
which was very efficient in our computer experiments. The implementation was based on the
software package called Parallel Virtual Machine (PVM) [121]. The slave processes were dis-
tributed over the various computers in the local cluster. Usually, we used about ten computers.
The data was locally available in each slave process, which ensured efficient computations of
the scores. The master process was in charge of distributing the tasks from a shared queue con-
taining all the scores which had to be computed. The common queue served as a simple device
for dynamic load balancing, which was important as the local cluster was quite heterogeneous.
The results of the computations were returned to the master process upon completion. Having
computed all the scores of a fixed order, the master process had to update the intermediate
graph guiding the evaluation of the scores in the next round. As already mentioned, this task
is considerably less time consuming than computing the scores. For this reason, it was not a
bottle-neck in the master-slave scheme. Also, the time spent on message passing was rather
negligible compared to the time spent on computing the scores.

5.4.5 Positive Threshold Values

Relative scoring functions favor the presence of an edge if the score is positive, whereas its
absence is favored by a negative score. Consequently, the threshold value 
 = 0 was used
in the discussions so far. As already mentioned in Section 3.1.4, however, one may employ
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g(a; b;S) G(a; b;S) Evidence for the presence of edge a b
when S = pa(a) n fbg

0 � � � 1 1 � � � 3 not worth more than a bare mention
1 � � � 3 3 � � � 20 positive
3 � � � 5 20 � � � 150 strong
> 5 > 150 very strong

Table 5.5: Some positive threshold values and their interpretation (adapted from [93], originally
applying to the Bayes factor).

a threshold value 
 6= 0 in practice. In particular, a positive value is often used in order to
include an edge into the graph only if it leads to a notable improvement in the absolute score.

A larger threshold value typically entails a decreased number of edges being present in the
induced skeletons. This consequence is in some sense similar to the fact that the minimal
skeletons tend to contain a smaller number of edges than the optimal graphs. Hence, a positive
threshold value usually does not affect the latter property of the induced minimal or parsi-
monious skeletons, while it leads to an improved robustness of the algorithm. A threshold
value can be interpreted in terms of evidence, as depicted in Table 5.5. The effect of different
threshold values was examined in the experiments in Section 5.6.2.

Note that the ambiguous edges are qualitatively different from the edges additionally included
into the graph when the threshold value is decreased. This is because the necessary path con-
dition yields ambiguous edges independently of the exact values of the corresponding scores
(once they are smaller than the threshold value).

5.5 Efficiency of the Algorithm

As structural learning in Bayesian networks is an NP-hard problem [14, 27, 84], heuristic ap-
proaches are necessary. However, they can be quite time-consuming, as well. The constraint-
based approach has proven to be very efficient in many experiments, e.g. [23, 24, 142]. This
holds in particular when the induced graphs are rather sparse, as this allows to determine the
graph from a reasonably small number of scores.

The computation of each score depends linearly on the number N of cases if the record of cases
is stored in memory, as typically done in domains with a large number of discrete variables.
The heuristics for reducing the number of computed scores appeared to be very important for
decreasing the computational effort. As already mentioned in [142], the overall number n of
nodes in the graph as well as the maximal number of neighbors ndp of a node determine the
number of scores which have to be computed from the data. When a score-equivalent relative
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scoring-function is used, this number is bound by

ndpX
i=0

�
n

i+ 2

�
; (5.5.1)

as derived in Equation 5.4.3. It is assumed that, in the worst case, for each pair of variables
all the scores up to the order ndp have to be evaluated. The complexity of this scheme unfor-
tunately increases exponentially with ndp. This explains why it is particularly efficient when
the induced graphs are sparse, i.e. each node can be expected to have a few neighbors only. As
discussed in Section 1.1, a Bayesian network cannot be considered an appropriate model for
domains which require the induced DAG to be dense.

In the experiments described in the remainder of this chapter, computing the scores required
more than 90% of the overall computation time. The extension of the constraint-based ap-
proach by means of the necessary path condition, as presented in this thesis, hence entails a
rather negligible increase in computation time. Once the scores have been calculated, the par-
simonious skeletons could be induced by means of the set of rules within a few seconds. Of
course, this task depends crucially on the size of the induced ambiguous regions. For that rea-
son, the computation time required for simplifying the rules and for inducing the parsimonious
structures varied between 1 and 10 seconds. This duration occurred to be quite independent
of the strictness of the si-path employed by the necessary path condition. Of course, also this
part can be very involved in the worst case. An exact analysis of the complexity of the various
procedures is, however, very tedious. Fortunately, the worst case usually does not occur in prac-
tice. In order to keep the computation time at some acceptable duration, involved cases have
to be tackled by approximations, described in Section 5.3. This ensures that the computation
time is bound in practical applications. Nevertheless let us briefly consider some procedures in
more detail.

The set of rules is simplified by repeatedly cycling through all the rules (cf. Section 5.2). Let
the number of rules, and hence the maximal length of a cycle, be denoted by l. Let r be the
maximal length of a rule, i.e. the number of pairs of variables contained in the condition sets. In
each cycle, only a definitely-present edge or a definitely-absent one can entail a simplification
of the rules. In order to render a simplification in the subsequent cycle possible, at least one
definitely-present or definitely-absent edge has thus to be found in each cycle. Since a skeleton
with n variables contains at most k =

�n
2

�
edges, at most 2k cycles have thus to be carried. The

factor of 2 stems from the assumption that, in the worst case, first the i-rule and then the c-rule
regarding each edge reduces completely. The overall complexity of this scheme is thus of the
order of O(lkr) in the worst case.

The complexity of finding all the minimal or parsimonious structures in the largest ambiguous
region determines the complexity of inducing the different skeletons. This is because the pres-
ence of edges in different ambiguous regions is independent of each other. The complexity of
exhaustive search for the minimal structures grows obviously exponentially with the number
of edges contained in a preliminary ambiguous region (cf. Section 5.3.2). The parsimonious
structures in an ambiguous region can be determined with a reduced complexity, which grows
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exponentially with the number of edges actually found to be present in the parsimonious struc-
tures. Very large ambiguous regions can be tackled by the approximations described in Section
5.3 in order to keep the necessary computation time at some acceptable duration.

5.6 Experiments

In this section, various experiments are carried out with the presented learning algorithm aimed
at finding the parsimonious skeletons. The benefits of employing the necessary path condition
are examined given various sample sizes. Moreover, the different si-paths used in the necessary
path condition are compared to each other as well as to other approaches commonly used.
Since the induced graphs are skeletons rather than DAGs, we use artificial data sampled from
a Bayesian network, because this allows us to compare the induced structures with the original
one in a qualitative way. DAGs rather than skeletons are determined in the experiments in
Section 6.3, rendering a quantitative comparison possible. Also real-world data can hence be
used there.

5.6.1 A Simplistic Example

Our first experiment is concerned with a very small Bayesian network comprising only three
variables. The original network structure is depicted in Figure 5.13. This DAG might already
be familiar to the reader, as it appeared in several examples in the previous chapter (cf. the
Figures 4.4 and 4.5 as well as the Tables 5.1 and 5.2). In order to specify a quantitative model,
let the continuous random variables a, b and c depend on each other like b = "b, a = mabb+"a
and c = mcbb + "c with the parameters mab = 3:0 and mcb = 0:3, where "i (i 2 fa; b; cg) are
Gaussian distributed random variables with unit variance and zero mean. Hence, the variables
a and b are strongly correlated, whereas the correlation of c with a or b is relatively small.

ba
c

Figure 5.13: The original DAG.

From the probability distribution described by this Bayesian network, data sets of various sizes
are sampled, ranging from 10 up to 10; 000 cases. These data sets are then given to the learning
algorithm. In this example, the Bayesian Information Criterion2 (BIC) serves as a score-
equivalent scoring-function g, and the threshold value is chosen to be 
 = 0. The learning

2Since this domain comprises continuous variables with a Gaussian distribution, the BIC given in Equation
3.1.19 is based on d(a??b j S) = �N=2 � log(1 � %̂2ab:S), where a; b 2 V and S � V n fa; bg. Note that a factor
of 2 is again omitted, compared to the standard notation. The partial correlation can, for instance, be evaluated
recursively according to %̂ab:S[fcg = (%̂ab:S � %̂ac:S %̂bc:S) = (

p
1� %̂2ac:S

p
1� %̂2bc:S), where %̂ab:; := %̂ab is

the estimated correlation between a and b. The degrees of freedom equal df = 1.
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Figure 5.14: The induced skeletons depend on the sample size. The results of the algorithm
employing the necessary si-1-path condition are depicted in the left diagram, whereas the right
one shows the results of a typical constraint-based approach not using the necessary path con-
dition, e.g. the PC or SGS algorithm [142]. The BIC is used as the scoring function.
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Figure 5.15: This experiment is identical with the one in Figure 5.14, except that the �2-test
serves as sort of a relative scoring function.

algorithm is based on the necessary path condition employing the si-1-path (cf. Definition 4.11
and Proposition 4.12).

The skeletons learned from the various samples are shown in Figure 5.14: when given rather
large sample sizes, the skeleton of the original DAG can be recovered. As the sample size
decreases, model uncertainty arises. By means of the necessary path condition, two different
skeletons are induced from most of the samples containing between about 60 and 600 cases.
This was discussed in the example shown in Figure 4.5 and in Table 5.2. In this regime, some
dependence of c on the other two variables is implied by the data. However, the algorithm
cannot distinguish between the graphs containing either the edge a � c or b � c. If the size of
the data set is smaller than 60 cases, the skeleton with the single edge a � b is derived from
the data, representing the strong correlation between these two variables.
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negative scores regarding skeletons induced by means of
edge a � c edge b � c nec. path cond. (si-1-path) no cond.

(1) – – ba
c

ba
c

(2) g(a; c; fbg) – ba
c

ba
c

(3)
g(a; c; ;) – ba

c
ba

cg(a; c; fbg) g(b; c; fag)

(4) – g(b; c; fag) ba
c

ba
c

(5)
– g(b; c; ;) ba

c
ba

cg(a; c; fbg) g(b; c; fag)

(6) g(a; c; fbg) g(b; c; fag) ba
c

ba
c

ba
c

(7)
g(a; c; ;) g(b; c; ;) ba

c
ba

cg(a; c; fbg) g(b; c; fag)

Table 5.6: This table shows the correspondence between the scores and the induced skeletons,
with and without employing the necessary path condition. All the scores not denoted in this
table are understood to be positive.

This experiment was also carried out with an algorithm not employing a necessary path condi-
tion (see Figure 5.14), e.g. the SGS or PC algorithm [142] using the BIC. Such an algorithm
always induces a single skeleton and hence does not account for model uncertainty. This is
because the data is assumed to imply a faithful probability distribution so that a (unique) per-
fect map exists. However, this assumption does not necessarily hold for data sets of finite size.
This is apparent for most samples containing between 60 and 600 cases in this example (see
Figure 5.14), as the skeleton with the single edge a � b is induced from most of these samples.
This means that the variable c appears to be marginally independent of both the other vari-
ables, although this does not hold according to the induced scores. In contrast, the necessary
path condition yields those skeletons which represent the dependence of c on one of the other
variables (cf. the found uncertainty regarding the edges a � c and b � c).

Table 5.6 depicts the correspondence between the induced skeletons and the scores calculated
from the data sets. The edge a � b is always present, as implied by the scores g(a; b; ;) > 0
and g(a; b; fcg) > 0. In (3), (5) and (6), the necessary path condition yields skeletons with
more edges than there are found by established constraint-based approaches, not employing
such a condition (cf. also the Figures 4.4 and 4.5 as well as the Tables 5.1 and 5.2). Model
uncertainty regarding the presence of edges – as discovered by the necessary path condition –
occurs in case (6).

We note that the parsimonious skeletons induced with the help of the necessary path condition
and the si-1-path (cf. Section 4.3.1) coincide with the minimal skeletons as well as with the
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optimal ones in this simplistic experiment. This can be seen, for instance, in the approach
shown in the Figures 4.4 and 4.5 in Section 4.3.1. In (3) in Table 5.6, for example, the edge
a � c is certainly absent due to the scores g(a; c; ;) < 0 and g(a; c; fbg) < 0, whereas the
score g(b; c; ;) > 0 favors the presence of the edge b � c.

In a variant of the above experiment, let us also consider the SGS and PC algorithms [142]
employing the �2-test 3 rather than the BIC as sort of a relative scoring function (cf. also
Section 3.1.4). A significance level of � = 1% is used in the experiments shown in Figure 5.15.
Obviously, the results are very similar to the ones in Figure 5.14, as one might have expected.
The �2-test and the BIC are closely related in this experiment, as they yield identical scores
at the sample size no � 735, where their penalties regarding model complexity take on equal
values, namely log(no) = �21��=0:99(df = 1) � 6:6 (df denotes the degrees of freedom, see
also the first footnote in this section). This is because the penalty term in the BIC depends on
the sample size n, while the one in the �2-test does not. These two relative scoring functions
are identical concerning model fit, as both assess it in terms of maximum likelihood. At small
samples (n < no), the �2-test entails a larger penalty regarding model complexity than the
BIC, and the other way round for n > no. This explains why the range of sample sizes for
which more than one skeleton is induced extends to both slightly larger and slightly smaller
values in Figure 5.14 than it does in Figure 5.15.

5.6.2 The Alarm Network

The following experiments are carried out with various data sets sampled from the probability
distribution described by the alarm network [8], the most popular benchmark for assessing
structural learning algorithms. The alarm network is described in more detail in Appendix B.
Its structure is shown in Figure 5.16. The alarm network is made up of 37 variables, which
causes the search space to be extremely large, namely it contains more than 237�36=2 > 10200

DAGs (cf. Equation 3.3.2).

Preliminary versus Parsimonious Summary Graph

In many publications, data sets with 10; 000 cases were used in alarm-network experiments, and
the induced DAGs were very close to the original structure, see e.g. [23,24,33,34,79,81]. In the
following, we applied our learning algorithm to a data set with 3; 000 cases. In particular, the
variant employing the si-4-path in the necessary path condition was used (cf. Definition 4.16),
the least strict alternative among the four si-paths described in Section 4.3. Moreover, the
posterior probability with conjugate priors served as the relative scoring function (cf. Section
3.1.4). An equivalent sample size of N0 = 1 and a threshold value of 
 = 3 was chosen (cf.
Table 5.5). Also, we committed ourselves to a uniform prior for the DAGs, i.e. p(m) = const.

3In domains with continuous variables, the PC algorithm originally tests on vanishing partial correlations in
a slightly different way, while it applies the �2-test to discrete variables only. Here, we only like to use some
frequentist test which can easily be compared to the BIC.
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Figure 5.16: This graph displays the original alarm-network structure [8]. A key to the various
variables is given in Appendix B.

The preliminary summary graph induced from this sample is shown in Figure 5.17. Apparently,
a large number of edges is common to all the parsimonious skeletons, i.e. 34 edges are certainly
present. The parsimonious skeletons can only differ from each other regarding the presence of
the ambiguous edges involved in the 7 ambiguous regions. Because the ambiguous regions
(F ) 4 and (G) render the preliminary summary graph rather complex, the ambiguous edges are
also given in Table 5.7.

The different parsimonious structures in each of the ambiguous regions are given in Table 5.8.
Apparently, in each of the ambiguous regions (A) through (D), either one of the involved
ambiguous edges is present in a parsimonious skeleton. This is very similar to the example
discussed in Figure 4.5 and Table 5.2. The ambiguous region (E) comprises basically two
different structures, namely the one containing the single edge x22 � x34 and the other one
comprising both the edges x14 � x22 and x22 � x32. This is essentially identical with the
example shown in Figure 4.8. Only the first alternative is parsimonious. The second alternative
is thus disregarded in a parsimonious ambiguous region, as discussed in Section 4.3.5. In the
ambiguous regions (F ) and (G), it occurs only one parsimonious structure, similarly to (E).
Each of which contains two edges. Consequently, there is only one parsimonious structure
in each of the ambiguous regions (E), (F ) and (G). The edges which are not contained in
one of the parsimonious structures are definitely absent, and they can be excluded from the
ambiguous regions (E), (F ) and (G). This leads to the parsimonious ambiguous regions
and to the parsimonious summary graph sketched in Figure 5.18. The latter is considerably
simpler than the preliminary one (cf. the Figures 5.17 and 5.18). Hence, the structure of the
parsimonious summary graph might by much easier to interpret than the preliminary one.

4The ambiguous edge x6 � x9 (and the absence of the edge x6 � x8) in the ambiguous region (F ) en-
tails some asymmetry regarding the variables x8 and x9, which is unexpected. The explanation is that the sin-
gle score g(x8; x29; fx27; x9; x7g) < 
 regarding the edge x8 � x29 was induced, whereas both the scores
g(x9; x29; fx27; x8; x7g) < 
 and g(x9;x29; fx6; x7; x8g) < 
 concerning the edge x9 � x29 were derived.
As can be seen (cf. the variables denoted in bold face), the latter score causes the edge x6 � x9 to be ambigu-
ous, because the only induced scores regarding the edges x6 � x8 and x6 � x9 were g(x6; x8; fx29g) < 
 and
g(x6;x9; fx29g) < 
, respectively.
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Figure 5.17: This preliminary summary graph depicts the 34 certainly-present edges as well as
the 7 preliminary ambiguous regions found. At this stage, the different parsimonious structures
are not yet known.

3

261825

17

6

10 21

1127 34

15

22

23
13

16

3736

24

35

1 2

32

3120

19

4
5

29
28

7
8 9

30 1433

12

(A)

(B)

(F)

(E)

(G)

(C)

(D)

Figure 5.18: This parsimonious summary graph displays all the 16 parsimonious skeletons
induced from a sample of 3; 000 cases. It is considerably less involved than the preliminary
summary graph in Figure 5.17.

Table 5.8 shows that there are two parsimonious structures in each of the ambiguous regions
(A) through (D), and only one alternative in (E), (F ) and (G). Since different ambiguous
regions are independent of each other (cf. Section 5.3), the number of parsimonious skeletons
is given by 24 � 13 = 16. Each parsimonious skeleton contains 9 ambiguous edges besides the
34 definitely-present ones. This amounts to a total of 43 edges in each of the parsimonious
skeletons. In the skeletons which have the most edges in common with the original alarm-
network structure (cf. Figure 5.16) only 3 edges are missing, namely the edges x18 � x26,
x27 � x33 and either one of the ambiguous edges x15 � x22 or x22 � x35, whereas an edge
which is absent in the original DAG is not induced to be present. This supports that the edges
found to be present by the constraint-based approach are so with some certainty (cf. Section
4.3.4).
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preliminary number of
ambiguous involved ambiguous edges

regions edges

(A) 2 x11 � x12, x12 � x32
(B) 2 x4 � x19, x5 � x19
(C) 2 x15 � x23, x23 � x35
(D) 2 x15 � x22, x22 � x35
(E) 3 x14 � x22, x22 � x32, x22 � x34
(F) 8 x6 � x9, x7 � x8, x7 � x9, x8 � x9, x8 � x27,

x9 � x27, x8 � x29, x9 � x29
(G) 11 x13 � x14, x13 � x15, x13 � x32, x13 � x34, x13 � x35,

x14 � x15, x14 � x34, x14 � x35, x15 � x36, x34 � x36,
x35 � x36

Table 5.7: The induced preliminary ambiguous regions and their ambiguous edges.

parsimonious number of overall number
ambiguous parsimonious structures different of involved

regions structures edges

(A) � x11 � x12 2 2
� x12 � x32

(B) � x4 � x19 2 2
� x5 � x19

(C) � x15 � x23 2 2
� x23 � x35

(D) � x15 � x22 2 2
� x22 � x35

(E) � x22 � x34 1 1
(F) � x8 � x29, x9 � x29 1 2
(G) � x14 � x35, x35 � x36 1 2

Table 5.8: The different parsimonious structures in each of the ambiguous regions.
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Various Sample Sizes

The above experiment was also carried out when given different sample sizes, ranging from
1; 000 up to 50; 000 cases, where five different samples of each size were rendered. The induced
parsimonious skeletons were compared to the original alarm network structure. For brevity,
let us call an edge to be mistakenly present (absent) in the remainder of this chapter if it is
present (absent) in an induced skeleton, although it is absent (present) in the original alarm-
network structure. Note that this term applies only with respect to the original graph and not to
the optimum, with respect to the employed scoring function. In the experiments described in
Section 6.3.1, for instance, although the edge x15 � x22 is mistakenly absent (i.e. with respect
to the original DAG), its absence actually leads to a DAG with a score higher than the one of
the original DAG. Its absence might thus be considered ”correct” with respect to this optimal
graph.

Figure 5.19 shows that, over a large range of sample sizes, the overall number of induced edges
is very close to the number of 46 edges present in the original DAG. In contrast, the number
of definitely-present edges is much smaller and drops more quickly when the sample size de-
creases. Moreover, the number of definitely-present edges appears to approach the number of
46 edges quite slowly as the sample size increases, although it can be expected to reach the
correct number in the asymptotic limit [142]. We note that the definitely-present edges corre-
spond to the ones induced by the PC algorithm when the posterior probability is applied as the
relative scoring function instead of the original �2-tests. Obviously, the ambiguous edges play
an important role when recovering the original structure. The Figures 5.19 and 5.20 show that,
as the sample size diminishes, the number of ambiguous edges rises. In contrast, the number
of definitely-present edges decays, indicating a reduced confidence in the presence of several
edges.

Since only a necessary (rather than a sufficient) path condition can be applied, the induced
skeletons tend to contain a smaller number of edges than there are present in the optimal skele-
ton (cf. Section 4.3.4). In particular at relatively small sample sizes, this difference can be
considerable, as revealed by the rapid increase in the number of mistakenly-absent edges (cf.
Figure 5.20). Since different parsimonious skeletons contain a different number of mistakenly-
absent and mistakenly-present edges, we refer to the one having the most edges in common
with the original DAG. Figure 5.20 shows that the number of mistakenly-present edges is quite
small over the entire range of sample sizes, as expected from the considerations in the Sections
4.3.4 and 5.4.3.

The Figures 5.20 and 5.21 show that the number of ambiguous edges which are simultane-
ously present in an induced skeleton is approximately the same as the number of ambiguous
regions. Hence, the average number of ambiguous edges which are simultaneously present in a
parsimonious ambiguous region is about 1 for all sample sizes. This renders an efficient search
for the different parsimonious structures in these experiments possible, as described in Section
5.3.2.

The number of parsimonious skeletons as well as the number of ambiguous regions generally
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Figure 5.19: In the induced parsimonious
skeletons, the number of definitely-present
edges (triangles) is considerably smaller than
the overall number of edges (�), i.e. the edges
which are ambiguous or definitely present
(mean of 5 samples of each size).
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Figure 5.20: The number of ambiguous edges
(�) rises as the sample size decreases. Some
edges are mistakenly absent (�), and a few
are mistakenly present (�) in the parsimo-
nious skeletons closest to the original one
(mean of 5 samples of each size).

0 10 20 30 40 50
sample size (x 1,000)

0

100

200

300

# 
sk

el
et

on
s

0 10 20 30 40 50
sample size (x 1,000)

0

2

4

6

8

10

# 
am

bi
gu

ou
s 

re
gi

on
s

Figure 5.21: The number of parsimonious skeletons (left) and the number of ambiguous regions
(right) induced from various sample sizes (median of 5 samples of each size).

increase when the sample size drops (cf. Figure 5.21). This reflects an increase in model
uncertainty. Unlike the number of ambiguous regions, the number of skeletons rises quite
dramatically when given samples with fewer than 3; 000 cases. This is because the number
of induced skeletons is the product of the number of parsimonious structures in each of the
ambiguous regions (cf. Section 5.3). Roughly speaking, one can hence expect an exponential
dependence of the number of skeletons on the number of ambiguous regions.
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Different SI-Paths

In the following, let us consider the four variants of si-paths introduced in Section 4.3. They
entail different variants of the necessary si-path condition. In short, the si-paths can be de-
scribed as follows: given a score g(a; b;S) < 
 regarding the edge a � b, S � V n fa; bg,
where 
 denotes the threshold value,

� the si-4-path leads to the least strict necessary path condition, requiring si-paths between
a and each s 2 S as well as between b and each s 2 S,

� the si-3-path is more rigorous than the si-4-path, namely it calls for the presence of edges
rather than paths between a and each parent candidate s 2 S,

� the si-1-path involves sc-1-paths, and is thus even stricter,

� the si-2-path leads to the strictest necessary path condition, requiring si-paths among an
increased number of variables.

This leads to four variants of the learning algorithm based on the four variants of the necessary
path condition. Each variant is applied to the data sets sampled from the alarm network in the
same fashion as described above. The edges present in the induced skeletons are summarized
in the Figures 5.22 and 5.23. Apparently, the skeletons induced without applying a necessary
path condition contain a considerably smaller number of edges than the skeletons derived by
any one of the four variants using the necessary path condition. The differences among the
four variants occur to be rather small in this experiment. In detail, the skeletons induced by
means of the si-4-path (least strict) seem to be most different from the others: the si-4-path
yields a slightly smaller number of (ambiguous) edges than the other three si-paths when given
rather small sample sizes in Figure 5.22. Moreover, Figure 5.23 shows that the si-4-path yields
the smallest number of edges mistakenly present. The difference between the definition of the
si-4-path and the other three si-paths is that the latter require also the presence of edges rather
than the presence of paths only. This enables the three stricter si-paths to find a few additional
edges to be present. However, chances are relatively large that some of these additional edges
are mistakenly present (cf. Figure 5.23). The two most rigorous si-paths perform very similarly
regarding both the number of edges correctly present as well as the ones mistakenly present.
This might be expected, since also their definitions are very alike (cf. the Definitions 4.11 and
4.14).

The si-4-path (least strict) has the following desirable property regarding the computational
effort (cf. the Figures 5.24 and 5.25): as the sample size decreases, the number of preliminary
ambiguous regions rises, whereas the number of edges contained in the largest preliminary
ambiguous region stays approximately put. Since the complexity of finding the parsimonious
structures in the ambiguous regions depends critically on the size of the preliminary ambiguous
regions rather than on their number, the si-4-path allows an exact search for almost all the data
sets in this experiment, and only a few require an approximate search (see also Section 5.3.2).
In contrast, concerning the three strictest si-paths , the size of the largest preliminary ambiguous
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Figure 5.22: The number of the edges correctly present due to the si-4-path (�), si-3-path
(triangles), si-2-path (�), and si-1-path (�) used in the necessary path condition. In comparison
to that, the dashed line sketches the number of edges found without applying a necessary path
condition (mean of 5 samples of each size).
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Figure 5.23: The least strict si-4-path (�) yields the smallest number of edges mistakenly
present (mean of 5 samples of each size). Regarding the si-3-path (triangles), si-2-path (�),
and si-1-path (�), the strictness of the employed si-path does not seem to have a very decisive
impact on the number of edges erroneously present.

region is quite large and increases as the sample size drops, while the number of preliminary
ambiguous regions tends to grow only slightly. Hence, an approximate search is essential for
efficient computations in these cases. Since such an approximate search typically does not find
all the parsimonious structures, it is crucial to determine the ” important” ones which eventually
lead to (close to) optimal graphs. Moreover, the number of induced parsimonious skeletons
does not provide much insight, since it is strongly affected by the approximations. Only in
the case of the least strict si-4-path, where an approximate search usually is not necessary, this
number might provide some insight (cf. Figure 5.21).

Apart form the necessity of applying approximate search strategies in large preliminary am-
biguous regions, strict si-paths can often lead to summary graphs which are difficult to inter-
pret. For this reason, it might be favorable to display the summary graph induced by means of
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Figure 5.24: The number of preliminary ambiguous regions in the graphs determined on the
basis of the si-4-path (�), si-3-path (triangles), si-2-path (�), and si-1-path (�) (median of 5
samples of each size).
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Figure 5.25: The number of edges involved in the largest preliminary ambiguous region is
shown for the si-4-path (�), si-3-path (triangles), si-2-path (�), and si-1-path (�) (median of 5
samples of each size).

the least strict si-4-path to the user.

When a strict si-path is employed, the increase in the size of parsimonious ambiguous regions
is caused by two facts. First, a stricter si-path yields ambiguous regions of increased sizes.
These regions might then merge with each other. As a result, a particularly large ambiguous
region is created, while the number of preliminary ambiguous regions is decreased at the same
time. Second, the number of computed scores is subject to the heuristics which focus on
the neighbors of a variable in the intermediate graph (cf. Section 5.4.3). A stricter si-path
yields a denser intermediate graph, and hence a larger number of scores of increased orders
are evaluated. One can thus expect a larger number of scores to be smaller than the chosen
threshold value. This is depicted in Figure 5.26. Note that the number of scores of zeroth
and first order have to be identical for all si-paths because so is the intermediate graph up to
first order. The scores of high orders entail the creation of a larger number of rules as well as
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Figure 5.26: The number of scores g(a; b;S) < 
 found by the algorithm based on the (least
strict) si-4-path (white) and the (most rigorous) si-2-path (black) is shown as a function of the
order r = jSj (mean of 5 samples with 1,000 cases each).

of more complex ones. This can additionally increase the number of edges in an ambiguous
region.

An increased number of scores of high orders due to strict si-paths can sometimes yield a
reduced number of edges being present in the induced skeletons. This can occur because the
algorithm can only employ a necessary path condition. Moreover, also the approximate search
strategies applied to large ambiguous regions can yield the absence of an increased number
of edges. This explains why the si-1-path can happen to yield slightly more edges than the
(strictest) si-2-path, e.g. at sample size 1,000 in Figure 5.22.

Different Threshold Values

The number of edges present in the induced skeletons can depend on the threshold value 
. In
the following experiment, we used the least strict si-path, namely the si-4-path, in the necessary
path condition. The posterior probability with conjugate priors and the equivalent sample size
N 0 = 1 served as the scoring function, like before. Table 5.5 shows that the choice 
 = 0
entails an edge to be included into the induced skeletons if its presence is favored more than its
absence by the relative score. The value 
 = 3 yields its presence only if it is strongly favored,
and 
 = 10 corresponds to an extremely strong confidence in its presence. As expected,
the number of edges present in the induced skeletons generally decreases as the values of 

grows (cf. Table 5.9). Regarding large sample sizes, the difference in the induced skeletons
diminishes. This is not unexpected, as the relative scores approach �1 in the asymptotic limit.
Hence, the induced skeletons can be expected to become independent of a particular finite value
of 
 when the data set is sufficiently large. Conversely, the difference in the induced number of
edges becomes notable when given small sample sizes (cf. Table 5.9). Apparently, the impact
of a large value of 
 increases considerably when the sample size drops. As noted in Section
3.1.4, a positive threshold value 
 can also be understood as a priori penalizing graphs with
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sample overall number number of
size of present edges mistakenly-present edges


 = 0 
 = 3 
 = 10 
 = 0 
 = 3 
 = 10

1,000 40.0 37.2 31.4 0.6 0.4 0.8
1,500 41.6 40.8 37.4 0.4 0.6 0.6
2,000 43.4 42.8 40.4 0.8 1.0 0.4
3,000 43.8 43.8 42.4 0.8 0.8 0.8
4,000 44.4 43.6 42.6 0.8 0.8 1.0
6,000 44.6 45.0 44.2 0.6 1.0 1.0
8,000 45.0 45.0 45.0 1.0 1.0 1.0
10,000 44.8 44.8 45.0 0.2 0.2 0.6
20,000 45.2 45.2 45.2 0.2 0.2 0.2
30,000 45.0 45.0 45.0 0.0 0.0 0.0
40,000 45.0 45.0 45.0 0.0 0.0 0.0
50,000 45.0 45.0 45.0 0.0 0.0 0.0

Table 5.9: The induced skeletons can depend on the applied threshold value 
.

a large number of edges. The effect of 
 can hence be viewed as a consequence of the prior
probability having an increased impact on the posterior when the sample size drops.

The value of 
 does not seem to have a strong impact on the number of edges mistakenly
present (cf. Table 5.9). Moreover, a small non-negative value of 
 tends to yield slightly
fewer edges mistakenly present than does a larger value of 
 in Table 5.9. This might be
unexpected according to the previous remarks. A thorough examination reveals, however, that
this is caused by the heuristics reducing the number of computed scores (cf. Section 5.4.3):
a large value of 
 can cause that an increased number of edges is absent due to scores of low
orders. Hence, a smaller number of scores of increased orders is computed subsequently. This
can, however, leave an increased number of edges present in the graph, in particular those edges
whose absence can be determined solely on the basis of negative scores of high orders.

Various Scoring Functions

Besides the threshold value 
, also the scoring function itself can have an impact on the induced
skeletons. The skeletons entailed by the following scoring functions are compared to each other
in this section (cf. also Section 3.1.4):

� the posterior probability with conjugate priors and the equivalent sample size N0 = 1;
the threshold value is 
 = 3,

� the Bayesian Information Criterion (BIC) and 
 = 3,

� the Akaike Information Criterion (AIC) and 
 = 3,

� the popular �2-test, with the significance level � = 1%.
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Figure 5.27: The number of edges due to the
�2-test (�), AIC (�), BIC (+), and poste-
rior probability (�). The least strict necessary
path condition is used, and the mean of 5 sam-
ples of each size is shown.
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Figure 5.28: The K2 algorithm [34] is used
to induce the number of edges which is close
to optimum with respect to the �2-test (�),
AIC (�), BIC (+), and posterior probabil-
ity (�) (mean of 5 samples of each size).

In these experiments, the learning algorithm is based on the least strict necessary path condition
employing the si-4-path (cf. Definition 4.16). Figure 5.27 shows the number of edges present
in the induced skeletons according to the various scoring functions. As expected, the number
of edges generally drops when the sample size decreases. However, the number of edges varies
considerably with respect to the different scoring functions. Apparently, the �2-test yields the
most edges. In contrast, the BIC removes the most edges, given samples with fewer than
10; 000 cases. The skeletons due to the AIC comprise a slightly smaller number of edges than
the skeletons yielded by the �2-test, in particular when the samples are smaller than 10; 000
cases. The various behaviors can be understood when the different penalties regarding model
complexity are considered, since model fit is measured in the same manner by all three scoring
functions (except for the posterior probability), namely in terms of the maximum likelihood
ratio.

For illustration, assume that the degrees of freedom df , as given in Equation 3.1.21, range
between 2 and 10 for most of the relative scores. These are reasonable values because most
variables are binary, and only some have 3 or 4 states (cf. Table B.1). Moreover, most of the
relative scores are of zeroth or first order (cf. also Figure 5.26). The values of the various
penalty terms are shown in Table 5.10, where the effective penalty term is denoted, i.e. it
includes also the threshold value 
 acting as an additional penalty. Apparently, the AIC entails
slightly larger effective penalties than the �2-test. However, this is mainly because of the
threshold value 
 = 3. In the case of a vanishing threshold value, the AIC involves a slightly
smaller effective penalty than the �2-test. Since these penalties are approximately the same,
also the numbers of induced edges are nearly the same when given samples with fewer than
about 10; 000 cases. In contrast, the penalty term in the BIC takes on much larger values even
at the relatively small sample size of 1; 000 cases. Hence, a considerably smaller number of
edges is entailed to be present than it is done by the other scoring functions, given samples with
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effective penalties for
score penalty term df = 2 df = 10

BIC df log(N)=2 + 
 9:9 37:5
AIC df + 
 5:0 13:0
�2-test �21��=0:99(df)=2 4:6 11:6

Table 5.10: The effective penalties (penalty term + threshold value 
) involved in the different
relative scores, given a sample size of N = 1; 000 and the threshold value 
 = 3.

fewer than about 10; 000 cases. The number of edges in Figure 5.27 suggests that the penalty
term inherent in the posterior probability is somewhere between the ones of the AIC and the
BIC. Since the BIC is an asymptotic approximation to the posterior probability, the numbers
of edges induced by means of the two scoring functions approach each other at large sample
sizes.

Figure 5.27 suggests that the �2-test is the ”best” scoring function regarding samples with
6; 000 or fewer cases. This is meant in the sense that the number of induced edges is closest
to the number of 46 edges present in the original alarm-network structure. Furthermore, the
posterior probability seems to be worse than the AIC at small sample sizes. However, these
conclusions do not hold when Figure 5.28 is taken into account, which shows the numbers of
edges close to optimum, with respect to the various scoring functions.5 These numbers of edges
were found by the K2 algorithm [33,34], known for finding DAGs very close to optimum when
a correct ordering on the variables is given as input. This is supported by the alarm-network
experiments [33, 34, 81], where the K2 algorithm only tended to include an edge too many
compared to the optimal DAG. Let us also note that greedy local search, starting out from the
original network structure, led to numbers very similar to the ones in Figure 5.28. Obviously,
the original network structure does not necessarily coincide with the DAG being optimal with
respect to the different scoring functions. In particular, the ”optimum” with respect to the �2-
test contains considerably more edges than the original DAG, whereas the AIC yields only
slightly more edges than the original 46 edges (cf. Figure 5.28). The posterior probability
as well as the BIC yield a slightly smaller number than 46 edges when given small data
sets, but both seem to approach the correct number of 46 edges at large sample sizes. Hence,
the Figures 5.27 and 5.28 support that the skeletons found by the constraint-based approach,
possibly employing a necessary path condition, tend to contain a smaller number of edges than
the optimal DAGs, irrespective of the scoring function used (cf. Section 4.3.4).

Regarding the �2-test employed in the constraint-based approach, two counteracting effects are
apparent. On the one hand, the �2-test entails ”optimal” DAGs which contain (considerably)
more edges than the original one. On the other hand, the constraint-based approach tends to
yield skeletons with fewer edges than optimal. In the alarm-network experiments, these two

5There is no absolute scoring function corresponding to the �2-test applied like a ” relative” scoring function,
as mentioned in Section 3.1.4. Hence, the depicted numbers correspond to the DAGs which cannot be improved
significantly by including an additional edge.
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effects appear to balance in the sense that the induced skeletons contain neither considerably
fewer nor notably more edges than the original alarm-network structure for a large range of
sample sizes. However, this may not hold in general when given other data sets.

Reduced Number of Scores

Finally, let us take a look at the heuristics aimed at reducing the number of relative scores which
have to be computed. As described in Section 5.4.3, these heuristics focus on the neighbors of
each variable in the intermediate graph. The obtained results are shown in Figure 5.27, where
skeletons with more than 46 edges are found from samples containing over 10; 000 cases. In
contrast, Figure 5.29 sketches the results obtained without this heuristics. These skeletons
were determined on the basis of all relative scores up to third order. Calculating all the scores
of fourth or higher orders was computationally infeasible in the alarm-network experiment.
Without applying this heuristics a decreased number of edges is found, as expected, since the
induced skeletons are based on an increased number of scores in this case. These skeletons are
very close to the original graph, except for extremely small samples. Furthermore, the skeletons
obtained without this heuristics contain only a very small number of edges erroneously (cf.
Figure 5.29). Hence, when all the scores are taken into account, the constraint-based approach
and the �2-test seem to balance extremely well in this experiment, in the sense that the induced
skeletons are very close to the original structure over a large range of sample sizes.
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Figure 5.29: In the left diagram, the number of edges present in the induced skeletons is based
on all scores up to third order, i.e. without the heuristics reducing the number of scores. This
number approaches the correct value of 46 edges at sample size 50; 000. The skeletons are
induced by means of the least strict necessary path condition (�). For illustration, also the
number of certainly-present edges is shown (�), as it equals the number of edges found by the
SGS algorithm [142]. The right graph shows that only an extremely small number of edges
is erroneously present. The �2-test with significance level � = 1% served as the ” relative”
scoring function, and the mean of 5 samples of each size is shown.
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5.7 Discussion

When given finite sample sizes, the necessary path condition led to considerable improvements
in our computer experiments, in particular when the data set was of some ”medium” size, i.e.
not extremely small. One cannot expect to induce some reasonable structure from very small
samples, anyway. Our experiments support that all constraint-based approaches – whether they
employ a necessary path condition or not – induce the same graph, i.e. the perfect map, in
the asymptotic limit if the data was sampled from a faithful probability distribution (cf. also
Section 4.1).

In our experiments, the differences among the various variants of si-paths are rather negligible
compared to state-of-the-art constraint-based algorithms, which do not employ a necessary path
condition, because they assume a faithful probability distribution. The benefits of a necessary
path condition applied to finite data are twofold. First, the number of induced edges is con-
siderably increased in our experiments, and is hence closer to the optimal number. Moreover,
possibly several skeletons are found instead of a single graph. Model uncertainty regarding the
presence of edges can thus be discovered. Of course, this is only possible to a limited degree, as
the exact problem is intractable in large domains. The induced skeletons can be visualized in a
single graph, the so-called summary graph which utilizes the concept of ambiguous regions and
the fact that the various skeletons have many edges in common [144]. This so-called summary
graph is typically much easier to interpret than an enumeration of the various induced skele-
tons. In particular, it is often beneficial to consider the parsimonious summary graph rather
than the preliminary one, as shown in our experiments.

Moreover, the influence of the used threshold value 
 was found to be rather small in our
alarm-network experiments. We also compared the various scoring functions with each other,
including the popular �2-test. It was discussed that the ”optimal” DAG with respect to the �2-
test contains too many edges. As the constraint-based approach tends to yield too few edges,
these two effects seem to balance, and the resulting skeletons were very close to the original
DAG, in particular when the heuristics for reducing the number of computed scores was not
used. The optimal DAG with respect to the posterior probability appeared to be closest to
the original alarm-network structure. This suggests to use this scoring function also in the
constraint-based approach.

Not much attention has been paid to an early version of the PC algorithm which required cer-
tain undirected paths to be present [140]. This variant was also mentioned in [142], where it
was called PC� algorithm. It starts out with the complete skeleton, and removes an edge from
the current graph when a conditional independence is induced. A test on the independence of
the variables a and b conditional on the set S � V n fa; bg is only carried out when this set is a
subset of the neighbors of a or b, and when each s 2 S lies on an undirected path between a or b
in the current skeleton. This algorithm differs in several respects from the presented algorithm
employing the necessary path condition. The main difference between this scheme and the nec-
essary path condition is the kind of paths considered. Both the si-path and the sc-path are not
only concerned with the presence of certain edges but also with the induced independences and
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dependences. This reduces the number of ”paths” under consideration greatly. Moreover, the
si-path and the sc-path are derived from DAGs which are optimal with respect to the used scor-
ing function, while the undirected paths required by the PC� algorithm are a consequence of
the assumed perfect map. At finite data, the paths required by the latter can, however, entail too
many edges being present, compared to the optimal DAG. This was discussed – with a slightly
different focus – in Section 4.4, where it was shown that an undirected path is not necessarily
required to be present in an optimal DAG. Since the PC� algorithm starts out with a complete
skeleton, the number of undirected paths in the intermediate graph can be extremely large at
early stages of the learning process. In fact, it was found to be computationally infeasible,
except for domains containing a very small number of variables. In contrast, the scheme pro-
posed in this thesis was computationally efficient in our experiments. This has various reasons.
First, the number of si-paths and sc-path depends on the number of conditional independences
induced. Hence, our scheme does not have a bottleneck at the beginning of the learning pro-
cess, like the PC� algorithm. Second, the necessary path condition is represented in terms of
rules. As an advantage, the existence of a ”path” need not be determined from a graph. In
fact, after the rules have been simplified the graphs are immediately obtained. Moreover, our
algorithm is capable of inducing possibly several skeletons, which reflect model uncertainty (to
some limited degree, of course), whereas the PC� algorithm induces as single graph assumed
to be the perfect map.

5.8 Incorporating Prior Knowledge

The algorithm, as presented so far, is completely data-driven. In many practical situations,
some additional information might be at hand, particularly when the directed edges in the
DAG are interpreted in a causal manner. In these cases, the presence or absence of some edges
as well as their orientations might be known a priori. This knowledge can stem from common
sense or laws of nature, for instance. Temporal ordering on the variables, if known, can often
help determine the orientations of edges.

Prior knowledge can easily be included into the scoring function, especially in a Bayesian
setting when the posterior probability or an approximation to it is employed. An a priori belief
which favors a structure to some degree can, for instance, be accounted for by constructing
an a priori DAG, and by penalizing an induced DAG dependent on its structural difference to
it. This is described in [81], where also measures for structural differences are discussed. In
general, when such a measure of structural differences accounts for the orientations of edges,
the resulting prior probabilities of equivalent DAGs cannot be expected to be identical, i.e.
prior equivalent. Hence, such a scoring function is not score-equivalent in general. It is usually
desired that the measure for structural differences is such that the resulting (absolute) scoring
function stays decomposable, which allows relative scoring functions to be used. When score-
equivalence is not given, the relative scores g(a; b;S) and g(b; a;S) typically are not equal (cf.
Section 3.1.3).

The remainder of this section is concerned with prior knowledge where the expert is sure about
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Figure 5.30: Prior knowledge can prevent the elimination of the edge x � y.

some structure. This certainty can be incorporated in the scoring function in a similar fashion
as before. However, the corresponding scores approach plus or minus infinity in this case.
Alternatively, this knowledge can directly be applied to the rules. This allows the computation
of the relative scores without taking into account this knowledge. Let us hence consider the
creation of the rules according to the si-3-path, as the latter is the simplest si-path in Section
4.3 which is capable of accounting for non-score-equivalent scoring-functions. Of course, this
is only possible up to a degree, since the si-3-path applies to skeletons rather than DAGs.

Prior knowledge concerning the presence or absence of an edge can easily be incorporated into
the rules. If the presence of an edge is considered to be certain, no rules are generated by the
algorithm concerning this edge, like for certainly-present edges (cf. Section 5.1). In the other
case, where the absence of an edge a � b is taken for granted, the i-rule IR([a; b]; ;; ;) is
created, indicating that this edge is certainly absent. Note that the si-3-path does not involve
sc-paths.

Certainty regarding the orientations of edges can only be accounted for in a limited way by
means of rules. Nevertheless, it can be useful to incorporate this knowledge in the learning
algorithm already at this stage. When a score g(a; b;S) < 
 is transformed into a rule, the
knowledge about the orientations of edges can apply to the edge a � b or to some of the edges
a � s where s 2 S. Let us focus on the latter case, as this is the more interesting one. A
score g(a; b;S) < 
 is transformed into a rule IR([a; b]; f[a; s] : s 2 Sg; f[b; s] : s 2 Sg)
(according to the si-3-path) only if all the variables in S are allowed to be parents of variable
a. In other words, if S contains a variable s such that a! s is required by the prior knowledge
then no rule is created.

The effect of incorporating constraints on orientations is illustrated in the simplistic example
in Figure 5.30, where all edges are induced to be absent, except for x � y, x � z, y � w
and z � w. Let us now consider whether the induced score g(x; y; fzg) = g(y; x; fzg) < 

yields the absence of the edge x � y. Without prior knowledge, this edge would clearly be
absent, because z is adjacent to x and there is a path from z to y. However, when the prior
knowledge requires that the edge x � z is oriented like x! z then the score g(x; y; fzg) < 

has to be disregarded. Only the score g(y; x; fzg) < 
 is thus transformed into a rule, namely
into IR([y; x]; f[y; z]g; f[x; z]g). Since y and z are not adjacent in the graph, the edge x � y
cannot be absent. In comparison to that, the scheme applied by the PC algorithm [142] would
remove this edge because of the score g(y; x; fzg) < 
.6

6In the case where the edge z � y is removed at an early stage, the heuristics of focusing on neighbors entails
that the computation of the score g(y;x; fzg) is skipped, and thus the edge x � y is induced to be present by the
PC algorithm, too. However, if the edge z � y is absent because of the score g(z; y; fwg) < 
, it is possible that
the score g(y; x; fzg) is computed by the PC algorithm, and hence the edge x � y is removed.
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Since many scores are possibly disregarded due to constraints, the computational effort can be
reduced. For instance, no scores g(a; b;S) need be computed if they refer to edges a � b which
are a priori known to be present or absent. Also, when S contains a child of a, the evaluation
can be skipped. This was noted in [142] concerning the incorporation of prior knowledge in
the PC algorithm.

5.9 Incomplete Data

For simplicity, we assume throughout this thesis that the data is complete, i.e. a value is as-
signed to every random variable in every case contained in the given data set. In many practi-
cal situations, however, one faces the problem that the available data is incomplete. When the
values of some random variables are missing in some cases, parameter estimation as well as
structural learning become very complicated. An exact solution given incomplete data is often
infeasible so that one has to resort to approximations. For an overview, the reader is referred
to [35]. When data is missing, it is important to distinguish the situations where data is missing
in a systematic manner and the situation where data is missing at random (cf. [130]). In the
former case, it is essential to account for the specific data-censoring mechanism in order to at-
tain reasonable results. In the latter case, more general approximations are applicable, like e.g.
Monte Carlo methods or mean-field approximations (see also [73]). An overview of these two
methods can be found, for instance, in [91]. Various approximations concerning the Bayesian
approach are examined in [31]. When the data contains only discrete variables, also the scheme
called bound and collapse can be applied to structural learning [124]. A very popular approach,
given discrete variables, is the EM algorithm [43]. It is an iterative scheme which optimizes the
likelihood function. As the latter exhibits local optima [134], the EM algorithm does not nec-
essarily find the global optimum, though. The EM algorithm was applied to structural learning
in Bayesian networks in [54].

In the PRONEL project [120], a simple and efficient approach is taken. It might, however, be
regarded as a crude approximation. It is assumed that data is missing only occasionally, i.e. the
probability that a variable in a case is not instantiated is assumed to be small. Moreover, this
probability has to be independent of both the random variable itself and its value. Given these
assumptions, a relative score g(a; b;S) (a; b;2 V and S � V n fa; bg) is computed on the basis
of only those cases which are ”complete” regarding the involved variables a; b and S. The other
cases are simply ignored. When the probability for a value to be missing is reasonably small,
for example po = 5%, one can expect that quite a large fraction of the data set can be used for
computing the score g(a; b;S), particularly when it is of reasonably low order jSj. Low orders
are desired in hypothesis tests also because the results are more reliable in general.

For instance, a score of zeroth order involves the data concerning two variables. In this sit-
uation, a fraction of (1 � po)

2 � 90% of the cases in the data set can be expected to be
complete. Scores of third order involve 2 + 3 = 5 variables so that one can expect a fraction
of (1 � po)

5 � 77% cases to be complete regarding the five variables of interest. In contrast,
if the domain involves 37 variables, like in the alarm network, then only (1 � po)

37 � 15% of
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the cases can be expected to be complete. This illustrates that a large fraction of the data can
be used for computing scores, which are typically of low orders, even if only a rather small
fraction of the cases is actually complete.

Besides incomplete data, also hidden or latent variables might play an important role in prac-
tice. A variable is called hidden or latent if its values are never observed. When learning
in Bayesian networks with hidden variables, one has to be aware of two facts. First, the so-
called aliasing can entail problems [30,31]. Second, the probability distribution described by a
Bayesian network with hidden variables belongs to the so-called stratified exponential family,
whereas a Bayesian network without latent variables describes a distribution which belongs to
the curved exponential family [64–66]. An important implication of this fact is that the BIC is
a valid asymptotic approximation of the log marginal likelihood in the latter case [78], whereas
this might not hold in the presence of hidden variables. For details on exponential families,
the reader is referred to [6]. Moreover, let us mention that, in a causal discovery setting, the
existence of hidden variables can be induced in domains comprising continuous variables with
a Gaussian distribution, as described in [142].
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6
Inducing DAGs given Skeletons
The previous two chapters were concerned with determining skeletons. In order to arrive at
directed acyclic graphs (DAGs), this chapter focuses on an operator which orients the edges
present in a skeleton. Rather than relying on the induced conditional independences and de-
pendences, like state-of-the-art constraint-based algorithms do, this operator is aimed at induc-
ing the DAG with the highest score from among all the DAGs with the same skeleton. This
operator has proven to be quite robust in our experiments when given finite data. It was also
outlined – in a slightly different context – in [143].

Constraint-based algorithms tend to yield DAGs with too few edges, compared to the optimum
in the space of all DAGs (cf. Section 4.3.4). For this reason, a post-processing step to the
constraint-based approach is necessary if one aims at inducing local optima with respect to a
scoring function. A simple greedy scheme is presented. Finally, our approach is compared to
established learning algorithms using artificial and real-world data in our experiments.

6.1 Orienting the Edges

In the following, we describe an operator aimed at finding the optimal orientations, with respect
to a scoring function, given a skeleton. The search space is a subspace of the space of DAGs. It
contains all those DAGs whose skeleton is identical with the given graph. For practical reasons,
model uncertainty regarding the orientations of edges is ignored by this scheme, and exactly
one DAG is thus found when given a skeleton.

When structural learning is carried out with a score-equivalent scoring-function, one can typ-
ically only aim at inducing the equivalence class rather than a particular DAG (cf. Section
3.1.3). The fact that two DAGs are equivalent if their skeletons and their colliders are identi-
cal [148] suggests to orient the edges involved in colliders first and then the remaining edges,
as described in [142]. Such an approach requires that the colliders can be induced from the data
given the skeleton. Typically, constraint-based approaches achieve this by combining induced
conditional independences and dependences [142]. Since this approach is known to be quite
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unstable when given finite data sets [142], we present an operator which is based on scores
assigned to each of the colliders. This renders a greedy hill-climbing approach possible, i.e.
the colliders are oriented according to their scores, beginning with the largest one.

The operator employs a partially directed acyclic graph (PDAG), i.e. a graph which can contain
directed as well as undirected edges. At the beginning of the learning process, it contains
the same (undirected) edges as the given skeleton, while some edges might be oriented at an
intermediate stage. Eventually, all the edges in the PDAG are directed, representing the induced
DAG. In the PDAG, a structure which is a candidate for being a collider involves three nodes
a, b and c such that there is an edge between a and b as well as between b and c, and no edge
between a and c. Such a triple of variables is called a collider candidate in the following.

6.1.1 Scores of Collider Candidates

This section is concerned with assigning a score to a collider candidate involving the variables
a, b and c. Given an intermediate PDAG mint, the score gcol(a; b; c jmint) of a collider candi-
date is based on an idea very similar to the one in Section 3.1.2, which led to relative scoring
functions. Consequently, gcol can be viewed as a relative scoring function regarding colliders.
It is obtained by comparing such DAGs with each other which are identical except for the ori-
entations of the edges a � b and b � c involved in the collider candidate. In particular, the
variables a, b and c have the same parents as in the PDAG mint, namely pamint

(a), pamint
(b),

and pamint
(c), respectively. The DAG mcol containing the collider a ! b  c is depicted in

Figure 6.1, while the three alternative DAGs m , m! and m$ concerning the orientations of
the edges a � b and b � c are shown in Figure 6.2.
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Figure 6.1: The DAG mcol contains the collider a ! b  c. For brevity, the notation �a =
pamint

(a), �b = pamint
(b) n fa; cg, and �c = pamint

(c) is used. The dots represent the
remaining network structure which is identical with the ones in Figure 6.2.

Similarly to the relative scoring functions discussed in Section 3.1.2, we focus on the score of
the DAG mcol relative to each of the three alternative DAGs. This leads to the following three
relative scoring functions regarding collider candidates, where the absolute scoring function is
again assumed to be decomposable:
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Figure 6.2: The three DAGs showing the alternative orientations of the edges a � b and b � c
compared to the DAG mcol in Figure 6.1.

g (a; b; c jmint) = f(mcol)� f(m )

= g(b; a; �b [ fcg)� g(a; b; �a);

g!(a; b; c jmint) = f(mcol)� f(m!)

= g(b; c; �b [ fag)� g(c; b; �c)

= g (c; b; a jmint);

g$(a; b; c jmint) = f(mcol)� f(m$)

= g (a; b; cjmint) + g(b; c; �b)� g(c; b; �c)

= g!(a; b; cjmint) + g(b; a; �b)� g(a; b; �a);

where we have used the relative scoring function g (cf. Section 3.1.2).1 As before, the decom-
posability of the absolute scoring function leads to a considerable simplification. In each of the
three cases, the relative scoring function only depends on the three variables involved in the
collider candidate as well as on their parents, whereas the remaining variables have no impact.
A single score regarding a collider candidate can be obtained by the following definition:

gcol(a; b; c jmint) := minfg (a; b; c jmint);

g!(a; b; c jmint); g$(a; b; c jmint)g (6.1.1)

This means that the collider is compared to the best alternative. In other words, if
gcol(a; b; c jmint) > 0, this score is a lower bound for the increase in the absolute score, when
these edges are oriented like a collider compared to one of the alternative graphs without that
collider. If gcol(a; b; c jmint) < 0, it is a bound for the maximal decrease in the absolute score
when these edges are oriented like a collider compared to one of the alternative orientations.
This definition hence increases the robustness of the operator described in the following.

1Since the scoring function of collider candidates involves the differences in the relative scoring function g, the
�2-test is not applicable here, as there does not exist a corresponding absolute scoring function.
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6.1.2 Orienting the Colliders

Let us first introduce some notation. The operator presented in the following uses two kinds of
directed edges, a proposed orientation and a fixed one. The former is denoted by an arrow like
”!” , whereas the latter is sketched by a double-arrow, like ”)” . This distinction will become
clear in the next section. At the moment, only the fixed orientations (”)” ) are relevant.

In the first step, the operator determines the colliders. A collider candidate in the intermediate
PDAG mint has to be of the form a ,! b  - c where  -2 f�;(g and ,!2 f�;)g (” -”
and ” ,!” are dummy arrows). In particular, the edges are not allowed to be already oriented
like a collider a) b( c, or like a( b or b ) c. After the score gcol(a; b; c jmint) has been
calculated for each collider candidate (cf. Section 6.1.1), the collider candidate with the largest
score gcol(a; b; c jmint) > 
 is oriented like a ) b ( c, where 
 is the used threshold value
(cf. Table 5.5). For example (cf. Figure 6.4 (1)), assume that both the colliders a ! b  c
and b ! c  d are favored by the scores gcol(a; b; c jmint) > 
 and gcol(b; c; d jmint) >

. Apparently, both colliders cannot be present simultaneously. This might indicate model
uncertainty regarding the orientations of edges. Since the operator is greedy, this inconsistency
is resolved by choosing the collider with the largest score. In this example, this is assumed to
be the collider b! c d.

After a collider has been oriented, it has to be ensured that a directed cycle cannot occur in the
PDAG after an additional edge will be oriented. This is accounted for by orienting such edges
in the contrary direction such that the occurrence of a directed cycle is avoided. For simplicity,
the scoring function is disregarded at this step. After a collider or an edge have been oriented
in the PDAG mint, for some a; b; c 2 V the scores gcol(a; b; c jmint) have to be updated, taking
into account changes in the parents of some variables. The operator cycles through the above
steps as long as there are collider candidates with a score larger than the threshold value 
. As
a result, this scheme yields a PDAG where the colliders have been determined.

6.1.3 Orienting the Remaining Edges

After the colliders have been found, the algorithm orients the remaining undirected edges.
Guided by the heuristics of parsimony, the aim is to find the orientations of the remaining edges
such that a minimal number of additional colliders occurs. In the ideal case, where a perfect
map of the probability distribution for the variables exists, this is possible without introducing
an additional collider [142].

For simplicity, a greedy scheme is employed. It comprises two procedures, namely
ProposeOrientations (cf. Algorithm 6.1) and FixOrientations (cf. Algorithm 6.2). The
former proposes the orientations of edges by arrows of the kinds ”!” , ” ” and ”$” . These
directions are only temporarily valid, and might be changed by the latter procedure. The edges
oriented like ”)” and ”(” by FixOrientations are fixed in the sense that their orientations
cannot be altered in the remaining process.
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procedure ProposeOrientations
input: PDAG mint with edges �, ), (.

output: PDAG mint with edges �, ), (, !,  , $.

(1) 8a; b; c 2 V: if a ,! b  - c with ,!2 f);!;$g and

 -2 f�; g and no edge between a and c then substitute

either b � c by b! c or b c by b$ c.
(2) 8a; b 2 V: while 9 a  b and 9 a = x1; :::; xq = b (q > 2)
such that xi�1 ,! xi (i = 2; :::; q) with ,!2 f);!;$g then

substitute a b by a$ b.
(3) while edges can be oriented go to (1).

Algorithm 6.1: The procedure ProposeOrientations tries to orient the edges in such a way
that no additional colliders occur. If this is impossible then the involved edges are oriented in
”both” directions, indicated by ”$” .

procedure FixOrientations
input: PDAG mint, data D
output: PDAG mint

(1) call ProposeOrientations.
(2) substitute the edges a! b by a) b.
(3) among all structures of the form a $ b $ c without

an edge between a and c, orient the one with the highest

score gcol(a; b; cjmint) like a) b( c.
(4) if edges like $ are present, substitute them all by

� and go to (1).

each time an edge has been oriented like ) or (:

(�) 8a; b 2 V: while 9 a  - b with  -2 f�; ;!;$g and

9 a = x1; :::; xq = b (q > 2) such that xi�1 ) xi (i = 2; :::; q)
then orient a) b.

Algorithm 6.2: This procedure resolves inconsistencies regarding the orientations of edges
(indicated by ”$” ) by using the scoring function gcol.

The procedure ProposeOrientations (cf. Algorithm 6.1) aims at orienting the edges such that
an additional collider does not occur. In particular, step (1) is concerned with avoiding colliders.
If it is impossible to find an orientation of the edges without introducing an additional collider,
the involved edges are marked as ”$” . For illustration, Figure 6.3 (1) sketches a PDAG, in
which the induced colliders lead to inconsistencies when orienting the edges not yet directed.
This is because the collider a ) c ( b requires the edge between c and d to be oriented
like c ! d which then entails the orientation d ! e, and finally e ! f (see Figure 6.3 (2)).
This results, however, in an additional collider at variable f . In contrast, when the orientation
process had begun at the other collider, g ) f ( h, the occurrence of an additional collider
at f , e or d could only have been avoided by orienting the edges like e  f , d  e and
c  d (cf. Figure 6.3 (3)). This entails, however, an additional collider at c. Hence, the edges
cannot be oriented without introducing an additional collider in either one of the cases. Hence,
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Figure 6.3: This simplistic example shows how the procedure ProposeOrientations indicates
inconsistencies regarding the orientations of edges.

the procedure ProposeOrientations (cf. Algorithm 6.1) orients the involved edges in ”both”
directions, indicated by edges of the sort ”$” . This is depicted in Figure 6.3 (4).

Since directed cycles can occur at step (1) of Algorithm 6.1, the second step orients edges
involved in cycles in ”both” directions (”$” ). This is illustrated in Figure 6.4. The single
collider, b) c( d, causes step (1) to yield a directed cycle, namely d) c! g ! f ! e!
d. The involved edges are thus marked as ”$” in step (2).

The inconsistencies indicated as ”$” by ProposeOrientations (cf. Algorithm 6.1) can be
related to model uncertainty regarding the orientations of edges. Our operator resolves these
inconsistencies in a greedy way for simplicity so that a single DAG is eventually induced.
This is done by the procedure FixOrientations (cf. Algorithm 6.2). In step (2) of the
procedure FixOrientations, the orientations of those edges are fixed (by a double-arrow
”)” or ”(” ) which are not involved in an inconsistency. However, when the procedure
ProposeOrientations yields an edge of the type ”$” , an additional collider has to be in-
troduced. Such a collider is determined in step (3) of the procedure FixOrientations (cf.
Algorithm 6.2). This is done in a greedy way, namely by orienting that collider candidate
a $ b $ c as a collider which is assigned the highest score gcol(a; b; c jmint). Unlike when
determining colliders in Section 6.1.2, the scores concerning collider candidates are allowed to
be negative here. In case of a negative score, orienting the highest-scoring edges like a collider
corresponds to decreasing the absolute score by as little as possible.

Like the procedure ProposeOrientations, also FixOrientations has to ensure that a di-
rected cycle cannot occur when fixing the orientations. Hence, step (�) has to be carried out
each time an edge has been oriented like ”(” or ”)” by the procedure FixOrientations.
The step (�) focuses on possible cycles due to edges whose orientations are already fixed,
i.e. edges of the kind ”)” , whereas step (2) in ProposeOrientations (cf. Algorithm 6.1)
accounts also for proposed orientations (”!” ). In step (4) of FixOrientations, the edges
indicating inconsistencies are altered to undirected ones in the PDAG before the steps (1)
through (4) are repeated. The interplay between the two procedures ProposeOrientations
and FixOrientations is illustrated in Figure 6.4.

After FixOrientations has resolved all the inconsistencies, undirected edges might still be
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Figure 6.4: This example illustrates the interplay between the procedures ProposeOrientations
and FixOrientations when an inconsistency due to a directed cycle occurs. It is assumed that
b ) c ( d is the only collider induced according to Section 6.1.2, cf. PDAG (2). When the
remaining edges are oriented, ProposeOrientations indicates inconsistencies (”$” ) due to the
possibility of a directed cycle, cf. PDAG (3). Hence, an additional collider has to be introduced.
FixOrientations chooses the one with largest score. Assume that this is the collider at variable
f , cf. PDAG (4). In the subsequent steps, no inconsistencies occur, and the orientation of the
edge c � g can first be proposed in PDAG (5), and finally be fixed in PDAG (6). The edges
a � b and d � e can be oriented in either direction in equivalent DAGs.

present in the PDAG, e.g. the edges a � b and d � e in Figure 6.4 (6). These undirected edges
are oriented in a final step of the edge-orientation procedure by randomly picking one of those
edges and by assigning to it a random orientation. Since further inconsistencies might arise, the
procedure FixOrientations is called in order to orient the edges affected by this assignment.
This is repeated until all edges have been oriented so that a DAG is eventually obtained.

6.1.4 Experiments with the Operator

In the following experiments, some light is shed on the stability of the presented heuristic
operator orienting the edges. The operator is used together with simple strategies for including
and removing edges, resulting in a search strategy for finding DAGs. Let it be called the
skeleton search strategy in the remainder of this section. In order to pronounce the power
of the above operator, the skeleton search strategy is quite simple on purpose. It works as
follows: starting out with the empty DAG, the graph is optimized by in turn carrying out
rounds comprising the following three steps:

(i) apply the presented operator,

(ii) carry out one step of forward inclusion in the space of DAGs,

(iii) perform backward elimination in the space of DAGs.
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After the orientations of the edges have been optimized by the presented operator in step (i),
the second step includes the edge which improves the score by most. Of course, it has to be
ensured that no directed cycles occur in the resulting graph. In this scheme, at most one edge
is included in each round so that the presented operator can optimize the orientations before
the next edge is included. The third step allows the algorithm to remove edges. They might
have been included in previous rounds where the orientations of some edges might have been
different. It can occur that this simple search strategy oscillates among two or more DAGs at
the end of the search process, i.e. it may not converge to a unique DAG. This is because the
presented operator is non-local in the sense that it can simultaneously change the orientations
of more than one edge. For instance, it can occur that an edge is included into the graph
after optimizing the orientations in the one round, whereas in the successive round, the above
operator orients edges differently entailing the removal of that edge again, and so on. The
stopping criterion of the algorithm has to account for this. We thus keep track of the most
recent DAGs and eventually choose the one with the highest score. For simplicity, the aim of
this scheme is to induce a (local) optimum rather than to account for model uncertainty.

The time-evolution of a typical search process is depicted in Figure 6.5, where the data set was
sampled from the alarm network [8] (see also Appendix B). In this experiment, the posterior
probability with conjugate priors and the equivalent sample size N0 = 1 served again as the
scoring function, see e.g. [81] and Section 3.1.4. Also, we committed ourselves to a uniform
prior for the DAGs, i.e. p(m) = const, and imposed no constraints on the network structures.
The threshold value 
=2 = 3 was used in order to include only those edges into the graph
which lead to some notable increase in the score of the DAGs (cf. Table 5.5). Since at most
one edge is added in each round, the overall number of rounds cannot be smaller than the
number of edges in the induced DAG. As shown in Figure 6.5, the number of edges in the
intermediate graph increases rather quickly before the end of the search process is reached.
Since the information about a correct ordering on the variables is not given as input to our
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Figure 6.5: Time evolution of the number of edges during the learning process in one of our
experiments with the alarm network. A sample with 2; 000 cases is used. The solid line indi-
cates the overall number of edges present in the intermediate graph mint after each round; this
number is subdivided into the edges which are present in the original alarm network (dashed
line) and the ones which are not (dotted line).
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Figure 6.6: In our alarm-network experiments, the posterior probability of the DAG m induced
by the skeleton search strategy is compared to the DAG mK2 resulting from the K2 search
strategy. The geometric mean of 5 samples of each size is depicted.

algorithm, edges are ”erroneously” included into the graph during the search process. Towards
its end, after the orientations of the edges have been established, most of the edges erroneously
included are again removed in this example.

Since a (partial) ordering on the variables is known in this experiment, the K2 search strategy
[33, 34] is applicable, and can be used in comparison. Since the K2 algorithm requires an
initially specified ordering on the variables, one can expect this search strategy to be quite
stable, even when given rather small samples. This was confirmed in [81], where the DAGs
with the smallest structural differences to the original alarm-network structure were induced by
the K2 algorithm rather than by local search, although the latter was applied in a greedy scheme
as well as in combination with simulated annealing. In the experiment depicted in Figure 6.5,
the skeleton search strategy found a DAG with a higher score, i.e. posterior probability, than
the K2 search strategy did.2

In order to examine the stability of the presented operator when given different sample sizes, we
applied the skeleton search strategy to data sets of various sizes, sampled from the probability
distribution described by the alarm network [8]. In Figure 6.6, the skeleton search strategy is
compared to the K2 search strategy. Given only small samples (with fewer than 2; 000 cases),
our simple strategy gets stuck at a local optimum which is far from the global one. The prior
knowledge about a correct ordering on the variables seems to be beneficial to the K2 procedure
when given very small samples. When given samples with at least 2; 000 cases, however, our
search strategy finds DAGs with a higher score than the K2 search strategy does, although the
skeleton search strategy does not use any prior knowledge about the ordering on the variables.

Besides the artificial data sampled from the alarm network, we also used real-world data in
our experiments. The three data sets (BOS), (ENV) and (SEW) are described in Appendix B.

2When comparing the different search strategies in our experiments, we used the same scoring function in each
of which. Here, the K2 algorithm is thus used with a scoring function which is slightly different from the K2 metric
originally employed in [33, 34].
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data # variables 5-fold cross-validation:
set skeleton search local search

(BOS) 14 1:9 � 0:1 2:1 � 0:1
(ENV) 11 0:88 � 0:02 0:92 � 0:04
(SEW) 5 0:050 � 0:003 0:051 � 0:003

Table 6.1: Experiments with three real-world data sets, where the results are assessed by 5-fold
cross-validation. The mean and the standard deviation of the Kullback-Leibler divergence is
denoted. Small values indicate good learning results.

In these experiments, we chose the Bayesian Information Criterion (BIC) to be the scoring
function in structural learning. Given an induced DAG m, the parameters �m of the Bayesian
network were calculated in a Bayesian way according to Equation 3.1.35. Conjugate priors
and a small equivalent sample size N0 = 5 were used, like in [81]. We compared the skele-
ton search strategy to the greedy algorithm based on local search, cf. [81]. The K2 algorithm
cannot be applied in this case, as a correct ordering on the variables in the real-world data is
unknown. The Bayesian networks determined by the different search strategies are assessed
by 5-fold cross validation (see also Appendix A). The results are shown in Table 6.1. Ap-
parently, both search strategies performed very similarly. The skeleton search strategy yields
slightly better DAGs than local search does for each of the data sets. Regarding the data sets
(ENV) and (BOS), the differences in the two search strategies might be considered notable, be-
cause the means appear to be separated to a degree comparable with the value of the standard
deviation (cf. Table 6.1). This does not hold for the data set (SEW), where the differences con-
cerning cross validation appear to be negligible. However, the skeleton search strategy found
the global optimum with respect to the scoring function BIC in the experiment with this data
set,3 whereas greedy local search got stuck at a local optimum.

6.1.5 Discussion

The above operator is similar to the schemes used in the SGS and PC algorithms [142]. How-
ever, the presented operator employs a scoring function which assigns a score to each collider
candidate. This renders a greedy approach possible. In contrast, the SGS and PC algorithms
determine a collider on the basis of the induced conditional independences in a qualitative man-
ner. Moreover, possible inconsistencies regarding the orientations of edges are disregarded by
the SGS and PC algorithms, assuming the existence of a perfect map. If inconsistencies occur,
the order in which these algorithms proceed through the variables has a crucial impact on the
final DAG. Furthermore, the occurrence of directed cycles is not strictly prevented. Both issues
are noted in [38]. Thus, the SGS and PC algorithms are only correct if the probability distri-
bution is perfectly known and if there exists a perfect map [142]. When given finite data sets,

3Since the data set (SEW) contains only 5 variables, exhaustive search was feasible to determine the global
optimum.
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the edge-orientation schemes employed by the SGS and PC algorithms are, however, rather
unstable [142]. The above operator does not exhibit these weaknesses, and it can be expected
to be quite stable, as confirmed in our computer experiments in the previous section.

When evaluating the score, the presented operator accounts for the parents of the three variables
making up a collider candidate. Consequently, a variable with an extremely large number of
parents cannot appear in the final DAG, as this is prevented by the term penalizing model
complexity, inherent in the scoring function. In contrast, the SGS and PC algorithms do not
account for the parents of the collision node when determining colliders. This can lead to a very
large number of parents of that variable, giving rise to a Bayesian network with an extremely
high model complexity. A consequence is over-fitting, and in the most extreme case the number
of parameters can be so large in the Bayesian network that it does not fit into the main memory
of a computer.

A shortcoming of the above operator might be its greedy nature, both when determining the
colliders in the first step and when resolving the inconsistencies encountered in the subsequent
step. Moreover, directed cycles are avoided by a simple heuristics which does not take into
account the scoring function at all. This keeps the operator quite simple, but might also cause
this scheme to get stuck at a local optimum. Nevertheless, this greedy operator can serve as an
efficient way for finding close-to-optimum orientations, as confirmed in our experiments.

The inconsistencies, indicated as ”$” by ProposeOrientations (cf. Algorithm 6.1), are
related to uncertainty regarding the orientations of edges. Hence, graphs like the ones in
the Figures 6.3 (4) and 6.4 (3) can provide some additional insight in model uncertainty.
This kind of graph is obtained by determining the colliders and applying the procedure
ProposeOrientations. Moreover, one might be interested in displaying model uncertainty
regarding both the presence and the orientations of edges in a single graph, as it was done in the
PRONEL project [120]. In this project, given the preliminary summary graph (with the ambigu-
ous regions), the edges were oriented on the basis of the induced conditional independences
by an algorithm similar to the edge-orientation schemes in the PC or FCI algorithms [142]. In
many of our experiments, however, it appeared that almost every edge was oriented like ”$” .
On the one hand, this can be interpreted as a large uncertainty regarding the orientations of
edges. On the other hand, such a graph does not necessarily provide notably more information
about the orientations than a skeleton or a summary graph do. Hence, a scheme which can
resolve the inconsistencies regarding the orientations is essential for inducing the directions in
a local optimum, like for instance FixOrientations. Uncertainty regarding the orientations
might be explored by running the above operator repeatedly, each time starting out from the
given skeleton: in each run, the directions of the edges are fixed with a probability depending
on the corresponding scores, similar to simulated annealing. According to our experience, the
interpretation of the orientations may better be based on the k highest-scoring DAGs than on a
graph showing many edges oriented like ”$” .

Orienting the colliders can be viewed as a local approximation, which is similar to the ap-
proach concerned with the presence of edges in the previous chapters, leading to the necessary
path condition. Here, the colliders are determined on the basis of the three variables involved
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and of their parents, while the remaining network structure is disregarded. The procedure
ProposeOrientations accounts for the non-locality of the learning problem, as it tries to ori-
ent all edges without introducing additional colliders. Naturally, this can lead to inconsistencies
(cf. for instance the Figures 6.3 and 6.4), as it is based on the colliders previously oriented by a
local approximation. The occurrence of inconsistencies can hence be viewed as a consequence
of combining the orientations which have locally been determined in order to achieve a solution
regarding the entire graph.

We note that the edges oriented in ”both” directions (”$” ) by the procedure
ProposeOrientations may not be confused with a similar kind of edges, also oriented in
both direction. The latter kind of edges plays an important role in causal discovery settings, in-
dicating the presence of hidden variables whose existence can be determined in domains where
all variables are continuous with a Gaussian distribution, as described in [142].

6.2 Finding Optimal DAGs

The edges determined by the constraint-based approach, whether employing one of the variants
of the necessary path condition or not, are present with a high degree of certainty in optimal
DAGs. Conversely, all the edges present in an optimal DAG are not necessarily contained in the
parsimonious skeletons. This was discussed in the Sections 4.3.4 and 5.4.3. For this reason, the
constraint-based approach is not appropriate for directly finding optimal DAGs. Nevertheless,
if one aims at finding (locally) optimal DAGs, the edges determined by the constraint-based
approach can serve as a basis for other learning algorithms applied subsequently. In principle,
such schemes can operate in the space of skeletons or in the space of DAGs. However, only
a necessary rather than a sufficient condition for finding optimal DAGs can be applied in the
space of skeletons. This requires that the final step has to take place in the space of DAGs (or
equivalence classes). For simplicity, we focus on schemes applicable in the space of DAGs,
where the DAGs determined by the constraint-based approach serve as the starting graphs. For
instance, local search might be carried out. This can be done in a greedy way or combined
with simulated annealing, where a relatively small starting temperature might be desirable in
order to stay in the vicinity of the initial DAGs during the search process. A very simple search
strategy is used in the experiments carried out in the next section. It comprises four successive
steps:

(i) parsimonious skeletons are determined by means of the necessary path condition,

(ii) each parsimonious skeleton is transformed into a DAG by the edge-orientation operator
described above,

(iii) forward inclusion is carried out in each DAG,

(iv) backward elimination is performed in each DAG.
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Let the first two steps, described in this and the previous chapter, be called the first extension.
It yields DAGs containing the same edges as the parsimonious skeletons. Since the DAGs
induced by the first extension are expected to contain a (slightly) smaller number of edges than
the optimal ones, the forward inclusion step is necessary for finding (close to) optimal DAGs.
If an edge can be included in either direction with the same improvement in the score, its
orientation is chosen randomly. Often, the orientation is, however, determined by the required
acyclicity of the resulting graph. Since the orientations assigned in the steps (ii) and (iii) are
not altered at a later stage by this scheme, it is crucial that only a few edges are included or
eliminated. The last step comprising backward elimination accounts for the edges which have
”erroneously” been included due to the heuristics aimed at reducing the number of computed
scores (cf. Section 5.4.3). This number can, however, be expected to be rather small, and this
step is hence of minor importance.

Let us call the greedy scheme comprising all four steps the extended algorithm in the remainder
of this chapter. It determines DAGs having some edges added (or removed) compared to the
first extension. This simple scheme can be expected to work well if step (i) yields skeletons
which are close to optimum.

Since the steps (ii), (iii) and (iv) are carried out for each of the graphs found in step (i), a large
number of parsimonious skeletons is prohibitive in this simple scheme. Caching of the com-
puted scores can be used for speeding up computations considerably, as the different skeletons
are very similar to each other.

One might be concerned that different skeletons induced in the first step eventually lead to the
same DAG after adding and removing edges in the last two steps of the extended algorithm.
Indeed, this occurred in our experiments, but only in a small number of graphs (fewer than
10%). Hence, almost every DAG induced by the extended algorithm corresponds to a different
local optimum of the scoring function. Among those, the two DAGs with the highest score are
considered in the following experiments.

From a Bayesian point of view, one might be interested not only in the different local optima of
the posterior probability when used as the scoring function, but also in the ”width” of the scor-
ing function at each optimum. Local search might be a suitable search strategy for exploring
whether the scoring function exhibits a sharp peak at an optimum, i.e. the neighboring DAGs
have a considerably smaller posterior probability than the optimum, or whether the posterior
probability of an optimum is only slightly larger than the one of some DAGs in its vicinity.

6.3 Experiments

In the experiments in Chapter 5, the skeletons induced by the constraint-based approach em-
ploying the necessary path condition could be compared to the original alarm-network structure
in a qualitative way only. Now, the operator for orienting the edges, as described at the begin-
ning of this chapter, enables us to determine DAGs. The found DAGs can be compared to each
other in a quantitative way, for instance by means of the (absolute) scoring function or by cross
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validation (cf. Appendix A). For this reason, the learning accuracy of the different approaches
can be assessed also when applied to real-world data, besides artificial data sampled from a
known Bayesian network.

6.3.1 The Alarm Network

Continuing the experiments of the previous chapter, we compare the DAGs determined by the
extended algorithm (cf. Section 6.2) to the one found by the K2 algorithm [33, 34]. The latter
algorithm is chosen because of two reasons. First, a correct ordering on the variables is known
in this experiment, as required by the K2 algorithm. Second, the K2 algorithm performed ex-
tremely well in the alarm-network experiments regarding structural differences [34, 81]. Other
approaches like local search, possibly combined with simulated annealing, led to DAGs with
a larger structural difference than the one determined by the K2 algorithm [81]. This is not
unexpected, since the knowledge about a correct ordering on the variables was only given to
the K2 algorithm.

Like before, we assume uniform priors for the DAGs, and use the posterior probability with
conjugate priors and the equivalent sample size N0 = 1 as the scoring function. In order to
compare the different search strategies, this scoring function is also applied to the K2 search
strategy [34] (instead of the original K2 metric). Moreover, the threshold value takes the same
value as before, namely 
 = 3. In step (i) of the extended algorithm, the least strict si-path is
employed by the necessary path condition (cf. Definition 4.16).

In Figure 6.7, the DAG induced by the K2 search strategy is compared to the two highest-
scoring DAGs found by the extended algorithm. Apparently, the best DAG induced by the
extended algorithm is Markov-equivalent to the original alarm-network structure morig when
given large samples (� 30; 000 cases). Down to samples containing as few as 800 cases,
the extended algorithm induces DAGs with a higher posterior probability than assigned to the
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Figure 6.7: The result of the K2 algorithm (�) is compared to the best and second-best DAGs
found by the extended algorithm (�, �). morig is the original alarm-network structure, and the
geometric mean of 5 samples of each size is displayed.
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Figure 6.8: The K2 algorithm (�) tends to include one edge more than the extended algorithm
(best DAG, �). In comparison to that, also the number of edges found by the constraint-based
approach employing the least strict si-path is shown (�) (mean of 5 samples of each size).

original DAG morig.

Regarding the second-best DAG found by the extended algorithm, the posterior probability
increases and eventually exceeds the score of the original alarm-network structure, when the
sample size decreases from initially large values. This indicates that model uncertainty in-
creases as the sample size diminishes. When the posterior probabilities of the best and the
second-best DAGs approach each other, model averaging can lead to an improvement in the
predictive accuracy (cf. Section 3.2). However, even at small sample sizes, the difference in
the posteriors is still of some orders of magnitude (cf. Figure 6.7). For this reason, model av-
eraging might not lead to a notable improvement in the predictive accuracy in this experiment,
because the average is dominated by the best model (cf. also Section 3.2). A similar result was
also found in [81]. Since model uncertainty increases further when the sample size drops to
very small values, one might expect the posterior probability of the k-best induced DAGs to
rise even further. Instead, when given samples with fewer than about 600 cases, the extended
algorithm yields DAGs with posterior probabilities smaller than the one of the original DAG.
This indicates that, given very small data sets, the extended algorithm might not find networks
close to the global optimum. The reason is that, when the sample size is very small, the num-
ber of edges determined in step (i) of the extended algorithm is considerably smaller than the
optimal number. This was discussed in Section 5.6.2 (cf. Figure 5.19). In this case, simply
applying forward inclusion in the subsequent step does not necessarily lead to a solution close
to optimum (cf. also Figure 6.7).

The original alarm network contains 46 edges (cf. Figure 5.16). As shown in Figure 6.8, this
number is found by the extended algorithm only when given quite large sample sizes (� 30; 000
cases). This number decreases gradually as the sample size diminishes. Over a large range of
sample sizes, 45 edges are found to be present in the best DAG, obtaining a larger score than
the original network structure. In fact, the best DAG determined by the extended algorithm
is Markov-equivalent to the original one, except for the edge x22 ! x15 which is favored
to be absent by the scoring function (cf. the original DAG in Figure 5.16). This is because
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the penalty term regarding model complexity, inherent in the posterior probability, dominates
over the improved fit of the Bayesian network model containing the edge x22 ! x15. This
experiment shows that the original DAG is not necessarily the optimum, since a less complex
model is often favored at smaller sample sizes.

In comparison to that, the K2 algorithm yields DAGs with a notably smaller score than the
best or second-best DAGs determined by the extended algorithm at all sample sizes except for
rather small ones. The reason is that the K2 strategy tends to include an extra edge compared to
the original alarm-network structure. This is caused by the greedy nature of the K2 algorithm,
as noted in [34]. This additional edge can also be inferred from Figure 6.8, which shows that,
over a large range of sample sizes, the K2 algorithm yields one edge more than the extended
algorithm. As the sample size decreases, the penalty regarding the additional model complex-
ity (due to the extra edge) reduces so that the posterior probability increases. Eventually, it
exceeds the one of the original DAG, showing that the knowledge of the correct ordering on
the variables helps the K2 search-strategy greatly at small sample sizes.

The DAG mPC recovered by the PC algorithm (also using the posterior probability as the scor-
ing function, cf. Equation 3.1.34) is assigned the score p(mPC)

p(morig )
< 10�2000, and the best graph

m�rst induced by the first extension gets a score of p(m�rst)
p(morig )

� 2:3 �10�66 (geometric mean of 5
samples containing 2; 000 cases each). This shows that the necessary path condition leads to a
considerable improvement in the constraint-based approach. Nevertheless, the induced DAGs
are still far from the global optimum, as also the necessary path condition tends to yield graphs
with too few edges. A subsequent step of optimization – achieved by including additional edge
– is hence necessary.

6.3.2 Real-World Data

Besides the above experiments with artificial data, we also used the three real-world data sets
described in Appendix B. In the following experiments, we focus on the posterior probability
with conjugate priors serving as the scoring function. A uniform prior for the network struc-
tures and the threshold value 
 = 0 are used, because the latter value led to the best results in
the following experiments (cf. also Section 5.6.2). The scoring function itself can have quite
some influence on the induced graphs, as examined in Section 5.6.2. The equivalent sample
size N 0 is a free parameter in the Dirichlet prior inherent in the employed posterior probability.
For this reason, we calibrated the posterior probability by means of a sensitivity analysis. The
predictive accuracy of the induced Bayesian networks was assessed by cross validation (cf.
Appendix A).

Different variants of the presented learning algorithm are compared to each other and to estab-
lished schemes:
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� the original PC algorithm,

� a modified PC algorithm,

� the first extension (cf. Section 6.2), based on the strictest or on the least strict si-path,

� the extended algorithm (cf. Section 6.2) employing the most strict si-path in the neces-
sary path condition in step (i),

� local search (greedy hill-climbing), starting from the empty graph (cf. also Section
3.3.1),

� local search combined with simulated annealing, beginning at the empty graph (cf. also
Section 3.3.1),

� exhaustive search in the space of DAGs if tractable.

The PC algorithm is a typical constraint-based scheme, assuming the existence of a perfect
map, and hence not employing a necessary path condition. In the modified PC algorithm,
the �2-test is replaced by the the posterior probability (cf. Section 3.1.4). Besides that, the
presented edge-orientation operator (see Section 6.1) is used instead of the original procedure.
While the (modified) PC algorithm determines the certainly-present edges, the benefits of the
necessary path condition become apparent in the first extension, yielding ambiguous edges
besides the certainly-present ones. We also examined the difference between the least strict
si-path and the most rigorous one, i.e. the si-4-path and the si-2-path (cf. the Sections 4.3.3
and 4.3.2). In the extended algorithm, the post-processing step comprising forward inclusion
and backward elimination eventually leads to (local) optima. These DAGs are compared to two
popular variants of local search, examined in [81]. In domains with only a few variables, we
also apply exhaustive search. Although the K2 algorithm typically yields very good results, it
is not applicable to the real-world data sets, as a correct ordering on the variables is unknown.

Data on Environmental Influences

The data set on Environmental Influences on the Condition of Trees [51] is slightly modified
for the use in our experiments, as described in Appendix B. Table 6.2 shows the results of the
sensitivity analysis: the Bayesian networks entailed by an equivalent sample size of N0 � 40
appear to perform best concerning cross validation. In comparison to that, when the Akaike
Information Criterion (AIC) is used for structural learning, and when the parameters are sub-
sequently calculated in a Bayesian manner with N0 = 40 (cf. Equation 3.1.35), cross validation
yields 0:68 � 0:02 for the Kullback-Leibler divergence. This value is slightly worse than the
ones entailed by the posterior probability.

The value of N 0 = 40, as suggested by the sensitivity analysis, was used for determining the
graphs shown in Figure 6.10, except for the skeleton (A). The latter was recovered by the PC
algorithm employing the �2-test with a significance level of � = 5%. Graph (B) was found
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equivalent 5-fold cross validation:
sample size N 0 extended algo. local search (greedy)

10 0:66 � 0:05 0:67 � 0:05
20 0:64 � 0:02 0:64 � 0:02
40 0:61 � 0:02 0:62 � 0:02
80 0:62 � 0:02 0:64 � 0:02
160 0:65 � 0:03 0:66 � 0:02

Table 6.2: The sensitivity analysis is based on 5-fold cross validation. The mean and the
standard deviation of the Kullback-Leibler divergence is denoted.

by the modified PC algorithm, where the �2-test was replaced by the posterior probability. At
first glance, it looks counter-intuitive that the �2-test entailed a graph with fewer edges than the
posterior probability did, i.e. 11 versus 14 edges. According to the alarm-network experiments
in Section 5.6.2, one would have expected the �2-test to yield denser graphs than the posterior
probability does. This is also suggested by the fact that the �2-test involves a larger term
penalizing model complexity than the posterior probability does. A thorough examination
reveals, however, that this unexpected result is caused by the heuristics which focuses on the
neighbors of a variable in the intermediate graph, reducing the number of computed scores (cf.
Section 5.4.3). This is depicted in Figure 6.9. The large penalty term inherent in the posterior
probability entails a large number of edges being removed at low orders. Consequently, this
heuristics forbids the evaluation of many scores of high orders. In particular, graph (B) prevents
this heuristics from computing scores beyond third order, since each variable has at most four
neighbors. In contrast, the small penalty term in the �2-test does not lead to the removal of
a large number of edges at low orders, leaving the graph quite dense. Thus, the heuristics
allows the computation of many scores of high orders. In tests of high orders, however, the
term penalizing model complexity often dominates over the term accounting for model fit.
This leads to the elimination of a large number of edges due to tests of high orders in this
experiment (cf. Figure 6.9). As a result, when using the �2-test, the overall number of edges
removed from the graph is quite large in this experiment.

When the least strict si-path is used in the necessary path condition, no ambiguous edges are
found in this experiment, and hence the same graph is obtained as found by the modified PC
algorithm, namely graph (B) in Figure 6.10. In contrast, the strictest si-path entails many am-
biguous edges (cf. graph (C) in Figure 6.10). Since this graph is denser due to the ambiguous
edges, scores of higher orders are computed, similarly to the previous case concerning the
�2-test. Consequently, several edges which are certainly present in graph (B) are altered to
ambiguous edges in graph (C). Because a single and extremely large preliminary ambiguous
region (comprising 30 edges) is yielded by the strictest si-path, exhaustive search for the par-
simonious structures was intractable so that approximate search had to be applied (cf. Section
5.3.2). For this reason, some parsimonious skeletons may not be found. In fact, the approx-
imate search yields all the ambiguous edges in graph (C) to be definitely present, while all
the other ambiguous edges are determined to be definitely absent. Consequently, the summary
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Figure 6.9: The number of edges removed by the PC algorithm due to negative scores of
different orders: (black) the posterior probability with N0 = 40 is used, and (white) the �2-test
with a significance level of � = 5% is applied.

graph (C) displays a single skeleton containing 17 edges. After the edges have been oriented
by the operator proposed above, the posterior probability of the DAG resulting from graph (C)
is larger than the one of the DAG obtained from graph (B) (cf. Table 6.3). This is because
the strictest si-path yielded 3 additional edges compared to the least strict si-path. The benefits
of employing the strictest necessary path condition are also reflected by the results regarding
cross validation in Table 6.3.

All the edges determined by the constraint-based approaches (cf. the graphs (A) through (C)
in Figure 6.10) are also present in the graphs (F), (G) and (H), which are (local) optima found
by different search strategies. This confirms the claim in Section 4.3.4, saying that the edges
induced by the constraint-based approach are present in the optimal DAG with a high degree
of certainty.

The DAG (D) in Figure 6.10 is found by the first extension, i.e. by applying the proposed
edge-orientation operator to graph (C). Starting out from (D), graph (E) is obtained as an in-
termediate DAG during the process of forward inclusion, the third step of the extended algo-
rithm (cf. Section 6.2). The inclusion of the edge x6  x7 is favored by the relative score
g(x6; x7; fx4; x5; x9g) � 501:4, and subsequently the edge between x6 and x8 is added due to
the scores g(x6; x8; fx4; x5; x7; x9g) = g(x8; x6; fx4; x5; x7; x9g) � 142:5. The orientation
of the latter edge is chosen at random, since either direction leads to Markov-equivalent DAGs.

Local search combined with simulated annealing yields graph (H), which contains the edges
x2  x8, x2  x9, x3  x8 and x3  x9 in addition to the ones in the intermediate graph (E).
If the latter four edges are ignored in graph (H), the graphs (E) and (H) are Markov-equivalent,
since the orientations of the edges x5 � x6, x5 � x8, and x6 � x8 can be reversed (cf. Section
2.2.3).

When the greedy forward-inclusion procedure is continued beyond graph (E), the edges
x2  x5 and x3  x5 are added due to the scores g(x2; x5; fx1; x3g) � 3:8 and
g(x3; x5; fx1g) � 13:7, respectively. This is shown in graph (F), found by the extended
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entire data set: 5-fold

algorithm # edges # param. p(mjD)
p(mo jD) cross validation

extended algorithm: DAG mo 21 4; 982 1:0 0:61 � 0:02
1st extension, strictest si-path 17 1; 852 5:9 � 10�288 0:76 � 0:08
modified PC algo. 14 1; 630 1:3 � 10�383 1:00 � 0:06

local search (greedy) 20 4; 898 1:5 � 10�19 0:62 � 0:02
local search (sim. annealing) 23 5; 342 3:5 � 109 0:62 � 0:01

Table 6.3: Comparison of various learning algorithms: the number of edges, the model com-
plexity (number of independent parameters) and the posterior probability (N0 = 40) of the
Bayesian networks induced from the entire data set. Furthermore, the results of 5-fold cross
validation are shown, namely the mean and the standard deviation of the Kullback-Leibler
divergence.

algorithm, since the backward elimination step did not remove an edge. The difference in
the scores of the graphs (F) and (E) is hence given by 3:8 + 13:7 = 17:5. When edges
are added to graph (E), the inclusion of each edge additionally present in DAG (H) is pro-
hibited by the negative scores g(x2; x8; fx1; x3g) � �6:7, g(x2; x9; fx1; x3g) � �10:1,
g(x3; x8; fx1g) � �0:2 and g(x3; x9; fx1g) � �5:2. However, when both the edges
x2  x8 and x2  x9 are included, the absolute score is increased by g(x2; x8; fx1; x3g) +
g(x2; x9; fx1; x3; x8g) = g(x2; x9; fx1; x3g) + g(x2; x8; fx1; x3; x9g) � 8:8. Adding both
x3  x8 and x3  x9 leads to an improvement of g(x3; x8; fx1g) + g(x3; x9; fx1; x8g) =
g(x3; x9; fx1g) + g(x3; x8; fx1; x9g) � 30:7. Hence, simulated annealing leads to a graph
whose score is lager than the one obtained by the extended algorithm. The difference
is 8:8 + 30:7 � 17:5 = 22, which translates into the ratio of the posterior probabilities
p(m(H) jD)=p(m(F) jD) � e22 � 3:5 � 109, as denoted in Table 6.3. The difference between
(F) and (H) is apparently a consequence of the greedy nature of the forward inclusion step used
in the simple extended algorithm. Since only one edge is added at a time, the forward inclusion
procedure would be required to accept a decrease in the absolute score before the additional
improvement could be achieved. This is a typical situation showing the limitations of greedy
schemes. Hence, there is a lot of space for improvements in the post-processing step of the
extended algorithm, replacing the forward inclusion and backward elimination procedures by
more sophisticated ones. Nevertheless, the extended algorithm finds the highest-scoring DAGs
among all the greedy algorithms examined in these experiments, including greedy local search
(cf. Table 6.3). The graph found by the latter is depicted in Figure 6.10 (G). It contains one
edge fewer than graph (F), namely x2  x5, since a directed cycle via the variables x1 and x6
has to be avoided.

Concerning the results of cross validation (cf. Table 6.3), all the algorithms yielding (local) op-
tima, namely the extended algorithm and the two local search strategies, perform about equally
well. In this experiment, the number of independent parameters of the various Bayesian net-
work models increases with the number of edges.
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Figure 6.10: The graphs determined by various search strategies from the data on Environ-
mental influences on the Condition of trees [51]: (A) PC algorithm with the significance level
� = 5% used in the �2-tests, (B) modified PC algorithm employing the posterior probability
with N 0 = 40 (like in the other learning algorithms), (C) necessary path condition employing
the strictest si-path, (D) first extension, (E) intermediate graph during the forward inclusion
step of the extended algorithm, (F) final graph induced by the extended algorithm, (G) local
search (greedy), (H) local search combined with simulated annealing (the starting temperature
T0 = 3:0 yielded better results than T0 = 10 or 100 in this experiment, cooling rate 0:95, final
temperature Tf = 0:2, cf. also Section 3.3.1).
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The induced graphs represent the close associations among the variables x1, x2 and x3, as
they refer to needle loss (cf. Table B.2). While the orientations of the edges x1 ! x2 and
x1 ! x3 are uniquely determined, the edge x2 � x3 can be oriented in either direction in
equivalent DAGs, except for DAG (G). In most of the induced graphs, the variables referring
to needle loss do not have any other descendents. This might be expected according to a causal
interpretation of the induced graphs. However, such an interpretation may not be appropriate
in general, as the presence and the orientations of some other edges cannot be understood in
a causal setting, see e.g. the edge between x7 (soil) and x8 (wind direction). It is hence more
reasonable to view the induced Bayesian network simply as a statistical model. The variables
x6 (use of forest) and x4 (density of trees in forest) are parents of x1 (needle loss) in most of
the graphs. In some graphs, also the variables x5 (composition of forest), x8 (wind direction)
and x9 (elevation) are adjacent to the variables describing needle loss. A further analysis of the
graphs is left to the reader.

Boston Housing Data

The same kind of experiments as before were also carried out for the Boston Housing Data [12],
which was discretized for simplicity (cf. Appendix B). The sensitivity analysis depicted in
Table 6.4 yields the best results with respect to cross validation for the equivalent sample sizes
N 0 � 10:::20. We used the value N0 = 10 in the following experiments. In comparison to
that, when the AIC is employed as the scoring function in structural learning and when the
parameters are estimated in a Baysian manner (cf. Equation 3.1.35, with N0 = 10) then 5-fold
cross validation yields a Kullback-Leibler divergence of 2:0�0:2. This value is about the same
as the one obtained by means of the posterior probability (cf. Table 6.4). The performance of
the various learning algorithms on this data set is shown in Table 6.5. Regarding the posterior
probability as well as cross validation, the necessary path condition – whether based on the
least strict si-path or the strictest one – leads to notably better graphs than the modified PC
algorithm does. This shows the benefits of using the necessary path condition. The summary
graph entailed by the least strict si-path is depicted in Figure 6.11. It contains ambiguous edges,
indicating some model uncertainty. This might not be unexpected because of the rather small
sample containing 506 cases only. The ambiguous edges can be grouped into five ambiguous

equivalent 5-fold cross validation:
sample size N 0 extended algo. local search (greedy)

5 1:9 � 0:2 1:9 � 0:2
10 1:8 � 0:1 1:9 � 0:1
20 1:8 � 0:1 1:9 � 0:2
40 1:9 � 0:1 1:9 � 0:2
80 1:9 � 0:1 2:0 � 0:2

Table 6.4: The sensitivity analysis is again based on cross validation (mean and standard devi-
ation of the Kullback-Leibler divergence).



6.3 EXPERIMENTS 145

entire data set: 5-fold

algorithm # edges # param. p(mjD)
p(mo jD) cross val.

extended algorithm: best DAG mo 43 197 1:0 1:8� 0:1
extended algorithm: 2nd-best DAG 44 207 0:16 1:9� 0:3
1st ext., strictest si-path: best DAG 27 77 4:1 � 10�55 2:2� 0:1
1st ext., least strict si-path: best DAG 24 71 1:7 � 10�95 2:3� 0:1
modified PC algorithm 17 40 6:5 � 10�151 2:7� 0:2

local search (greedy) 42 233 2:0 � 10�14 1:9� 0:1
local search (simulated annealing) 43 197 346 1:9� 0:2

Table 6.5: This table sketches the properties of the Bayesian networks induced from the dis-
cretized Boston housing data by the various learning algorithms, all employing the posterior
probability with N0 = 10 as the scoring function.

regions, whose parsimonious structures are shown in Table 6.6. The least strict si-path yields
3 � 23 = 24 different parsimonious skeletons, and each of which contains 7 ambiguous edges,
besides the 17 edges being certainly present. The latter are also found by the modified PC
algorithm. The strictest si-path yields additional ambiguous edges (cf. Table 6.5), entailing a
further improvement in the posterior probability as well as in cross validation. The induced
summary graph is, however, so dense that it is hard to display in a clearly arranged way. For
this reason, this graph is not shown here, like the other DAGs containing more than 40 edges.

The extended algorithm as well as local search yield rather dense graphs, while the skeletons
found by the constraint-based algorithms contain considerably fewer edges. This situation
had also occurred in the alarm-network experiments in Section 5.6.2 when very small data
sets were given. This is hence a typical property of constraint-based algorithm when applied
to rather small data sets. In the tiny Boston housing data set, a large number of edges has
thus to be added in the post-processing step of the extended algorithm in order to arrive at a
local optimum. The backward elimination step removes 2 edges previously included by the
first extension. This indicates that, at rather small sample sizes, the number of ”erroneously”
present edges increases. This occurred also in the alarm-network experiments in Section 5.6.2.
When the sample size is very small, the edges induced to be present by the constraint-based
approach are thus present in the optimal DAG with a decreased degree of certainty. This is not
necessarily a shortcoming of the constraint-based approach in general, but rather a consequence
of the heuristics aimed at reducing the number of computed scores (cf. Section 5.4.3).

The posterior probabilities of the best and the second-best DAGs found by the extended algo-
rithm are quite close to each other (cf. Table 6.5). This might be understood as an additional
indication for quite large model uncertainty present in the small data set. The best DAG found
by the extended algorithm is very similar to the one found by local search combined with simu-
lated annealing (starting temperature T0 = 10, cooling rate 0:95, final temperature Tf = 0:2, cf.
also Section3.3.1): both Bayesian networks have the same number of edges as well as the same
complexity (cf. Table 6.5). Regarding the posterior probability, simulated annealing leads to a
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Figure 6.11: This summary graph is entailed by the least strict si-path used in the necessary
path condition. Solid lines represent edges which are certainly present, and the edges belonging
to the different ambiguous regions are depicted in different line styles. For details, see Table
6.6.

parsimonious overall number
ambiguous of involved ambiguous edges parsimonious structures

region edges

(A) 5 x1 � x7, x1 � x11, � x1 � x7, x1 � x11, x1 � x12
x1 � x12, x2 � x11, � x1 � x7, x1 � x11, x9 � x12
x9 � x12 � x1 � x7, x2 � x11, x1 � x12

(B) 2 x5 � x9, x8 � x9 � x5 � x9
� x8 � x9

(C) 2 x4 � x11, x4 � x14 � x4 � x11
� x4 � x14

(D) 1 x5 � x13 � x5 � x13
(E) 2 x10 � x13, x10 � x14 � x10 � x13

� x10 � x14

Table 6.6: The parsimonious structures in the 5 ambiguous regions of the summary graph in
Figure 6.11.

slightly better DAG than the greedy scheme of the extended algorithm does. In contrast, greedy
local search yields a DAG with a lower posterior probability than the best or second-best DAG
found by the extended algorithm. Although the Bayesian network found by greedy local search
contains only 42 edges, it is more complex than the other Bayesian networks. This is caused
by an increased number of colliders induced by greedy local search in this experiment. With
respect to cross validation, there is no notable difference among the various (locally) optimal
Bayesian networks.

The Boston housing data was originally analyzed by a least-squares regression-equation [76],
and later by a regression tree [9]. Both approaches were also briefly described in [17]. In these



6.3 EXPERIMENTS 147

two approaches, the variable x1 (median value of homes) was used as the dependent variable,
and the others as independent ones. In contrast, learning Bayesian networks aims at fitting a
model to the joint probability distribution for all the variables, i.e. variable x1 is not distinct
from the others. This is typical for unsupervised learning, whereas the former two approaches
correspond to supervised learning. Hence, the results of our experiments are hard to compare
with the ones in [17, 76]. The regression tree grown in [9] exhibits only four nodes which
appear in splits, namely x2, x7, x9 and x14. While the former three variables are also adjacent
to x1 in each of the parsimonious skeletons represented by the summary graph in Figure 6.11,
variable x14 is adjacent to x1 neither in Figure 6.11 nor in the denser DAGs induced by the
extended algorithm or local search (greedy and simulated annealing). A detailed comparison is
impossible also because we discretized the variables in the Boston housing data for the use in
our experiments. This was done for simplicity, since the main purpose of the experiments in this
thesis is to compare the performance of the different structural learning algorithms rather than
to examine various ways for modeling non-linear dependences among continuous variables, as
done in [60, 85, 86, 113]. The publications [85, 86] also report results on the Boston housing
data. The reported DAGs are quite sparse due to a large value of 25 penalizing the presence
of each edge (cf. also Table 5.5), because the aim was to ease the interpretation by means of a
sparse graph rather than to optimize the predictive accuracy of the induced Bayesian networks,
for instance, assessed by cross validation.

Data gathered by Sewell and Shah

The data set gathered by Sewell and Shah [135] (cf. also Appendix B) contains only 5 variables,
causing the search space of DAGs to be reasonably small (29; 281 DAGs). Exhaustive search in
the space of DAGs is thus tractable, allowing the computation of the posterior probability for all
the DAGs. Consequently, the global optimum can be determined. Exhaustive search is used in
the sensitivity analysis depicted in Table 6.7, where a value ofN0 � 200 leads to the best results
with respect to cross validation. In comparison to that, if the Akaike Information Criterion is
used as the scoring function and when the parameters are estimated in a Bayesian way with

equivalent 5-fold cross validation:
sample size N 0 exhaustive search

5 0:045 � 0:006
50 0:044 � 0:007
100 0:040 � 0:006
200 0:040 � 0:006
300 0:040 � 0:006
500 0:042 � 0:005

1; 000 0:047 � 0:005

Table 6.7: This sensitivity analysis suggests a value of N0 � 200. The mean and the standard
deviation of the Kullback-Leibler divergence are shown.
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entire data set: 5-fold

algorithm # edges # param. p(mjD)
p(mo jD) cross validation

extended algorithm: mo 7 68 1:0 0:040 � 0:006
1st extension, strictest si-path 7 68 1:0 0:040 � 0:006
modified PC algorithm 7 68 1:0 0:040 � 0:006

exhaustive search: best 7 68 1:0 0:040 � 0:006
exhaustive search: 2nd-best 8 73 0:044 0:040 � 0:006

local search (greedy) 8 71 0:034 0:040 � 0:006
local search (sim. annealing) 7 68 1:0 0:040 � 0:006

Table 6.8: The posterior probability with N0 = 200 serves as the scoring function in the various
learning algorithms. The necessary path condition does not yield any ambiguous edges.

N 0 = 200 (cf. Equation 3.1.35), cross validation yields a Kullback-Leibler-divergence of
0:040�0:007. This compares to the best values obtained when the posterior probability serves
as the scoring function.

When the posterior probability with the equivalent sample size N0 = 200 is used for structural
learning, the DAGs with the two largest scores have posterior probabilities of about 29:9%
and 1:3%, respectively (cf. Figure 6.12). Since x3 � x5 is a covered edge in the optimal
DAG (see also Section 2.2.3), there is exactly one more DAG equivalent to the optimal one.
Concerning the second-best DAG depicted in Figure 6.12, there are two additional Markov-
equivalent DAGs, differing from the shown one in the orientation of either one of the edges
x1 � x5 and x2 � x5.

Table 6.8 shows that the global optimum is found by exhaustive search, simulated annealing
as well as by each of the constraint-based algorithms. No ambiguous edge is yielded by the
necessary path condition. The induced skeleton – containing solely certainly-present edges
– comprises all the edges present in the optimal DAG. Given this skeleton, the optimal ori-
entations are found by the edge-orientation operator described in Section 6.1. In contrast, the
greedy scheme employing local search got stuck at a local optimum. It might not be unexpected
that the optimal DAG is induced by most of the learning algorithms under consideration, as the
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Figure 6.12: The best DAG (left) and the second-best DAG (right) with respect to the posterior
probability with N0 = 200 (determined by exhaustive search).
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Figure 6.13: When N0 = 5 is chosen in the posterior probability, the least strict si-path used in
the necessary path condition yields the summary graph (left), where either one of the ambigu-
ous edges is present in the parsimonious skeletons. The two DAGs on the right are obtained
by applying the proposed edge-orientation operator to the induced skeletons. As verified by
exhaustive search, the left DAG is the global optimum, and there is no other equivalent one.
The left DAG has a posterior probability of about 24% and the right one of about 10�16%.

sample size is quite large (10,318 cases), while the number of variables is small (5 variables).
This is similar to the results in the alarm-network experiments (cf. the Sections 5.6.2 and 6.3.1).

The data set gathered by Sewell and Shah was also analyzed by means of Bayesian networks
in [79], where an equivalent sample size of N0 = 5 was chosen in the posterior probability.
Additionally, constraints regarding the orientations of certain edges were applied, namely it
was forbidden that edges pointed towards x1 or x2 as well as that edges were oriented away
from x5. These constraints were motivated by a causal interpretation of the edges. The best
DAG complying with these constraints was found to be identical with the left DAG in Figure
6.12. Note that this DAG coincides with the global optimum in the space of all DAGs, i.e.
without constraints, when the equivalent sample size N0 = 200 is used.

However, when the value N0 = 5 is chosen, and when no constraints are imposed on the
network structure, the latter DAG has a posterior probability of about 2:4�10�27, and the global
optimum in the space of all DAGs, i.e. without constraints, is assigned a posterior probability
of about 24%, shown in Figure 6.13. The latter graph is not only found by exhaustive search,
but also by our extended algorithm: the summary graph depicted in Figure 6.13 is yielded by
the necessary path condition employing the least strict si-path. In the parsimonious skeletons,
either one of the two ambiguous edges is present. The two DAGs in Figure 6.13 are obtained
by applying the presented edge-orientation operator to the found skeletons (cf. Section 6.1).

The above constraints are obviously necessary – given the choice N0 = 5 – in order to induce a
DAG which can be interpreted in a causal manner. However, the same DAG can also be found
without using constraints, namely when a value of N0 � 200 is chosen, as suggested by the
sensitivity analysis in Table 6.7. Of course, without applying constraints the edge x3 � x5 can
be oriented in either direction in equivalent DAGs (cf. Figure 6.12), and a causal interpretation
of its orientation is hence impossible. Let us note that a causal interpretation of the best DAG
suggested by the sensitivity analysis may not be very reasonable in general, as it is merely a
coincidence concerning the data set gathered by Sewell and Shah.
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6.3.3 Summary

The constraint-based approach employing the necessary path condition and the edge-
orientation operator was compared to popular learning algorithms in our experiments. In the
alarm-network experiments, over a large range of sample sizes, the extended algorithm (cf.
Section 6.2) induced Bayesian networks with a higher posterior probability than the K2 algo-
rithm did, although a correct ordering on the variables was given to the latter as additional input.
Apart from that, when given large data sets, the extended algorithm induced a DAG equivalent
to the original alarm-network structure. Furthermore, over a large range of ”medium”-sized
samples, a larger posterior probability was assigned to the best DAG found by the extended
algorithm than to the original network structure. The limitations of the proposed algorithm
became apparent at small data sets, where the constraint-based scheme, although employing a
necessary path condition, yielded considerably fewer edges being present than there are in the
optimum.

Similar results were found in the experiments with real-world data. Again, the benefits of
extending the constraint-based approach by the necessary path condition were obvious. More-
over, the strictest si-path led to slightly higher-scoring graphs than the least strict si-path, be-
cause the former led to skeletons with slightly more edges. Only in the data set (SEW), the
global optimum could be induced by all the variants of si-paths employed in the necessary path
condition.

The sample size had an impact on the number of edges yielded by the necessary path condition,
both in the alarm-network experiments and in the experiments with real-world data, where the
three data sets (SEW), (ENV) and (BOS) (cf. Appendix B) contained 10; 318, 6; 168 and 506
cases, respectively. Also the number of ambiguous edges, indicating model uncertainty up
to a degree, was found to depend on the sample size in the various experiments. In all the
experiments, the extended algorithm yielded DAGs with a larger posterior probability than the
graphs found by greedy local search. Local search combined with simulated annealing led
to DAGs with higher posteriors when given the data sets (BOS) and (ENV), which showed
the limitations of the post-processing step of the extended algorithm due to its greedy nature.
Regarding cross validation, the difference between the extended algorithm and local search
(greedy or combined with simulated annealing) was rather negligible.
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In the recent years, two main approaches to structural learning in Bayesian networks have
evolved. The one is aimed at optimizing a scoring function by means of a heuristic search
strategy, while the constraint-based approach relies on the conditional independences and de-
pendences derived from the data. Since structural learning in Bayesian networks is an NP-hard
problem [14, 27, 84], there is demand for efficient heuristics. While the constraint-based ap-
proach has proven to be very efficient in many experiments [23, 24, 142], it is only understood
under certain assumptions, which can be expected to hold when an infinite amount of data
is given. For that reason, this thesis was concerned with understanding and improving the
constraint-based approach for those cases where only finite data sets are given, as typical in
practical applications.

Given a finite amount of data, we showed the benefits of viewing the constraint-based approach
as a particular search strategy aimed at optimizing a scoring function initially specified. While
the optimality of a directed acyclic graph (DAG) is well-defined with respect to a scoring
function, a perfect map of the probability distribution implied by a finite data set typically does
not exist. The latter is, however, assumed by established constraint-based approaches.

We used the property of decomposability of scoring functions, which holds when given com-
plete data and in the absence of hidden variables, to introduce relative scoring functions and to
derive important interrelations among different relative scores. A main advantage of relative
scoring functions is their applicability both to the constraint-based approach as well as to the
algorithms aimed at optimizing a scoring function. For this reason, relative scoring functions
allow one to understand the relationship between these two approaches.

One important insight is that the graphs recovered by the constraint-based approach tend to
contain fewer edges than optimal DAGs. More precisely, an edge found to be present by
this approach is also present in a local optimum. Only the heuristics aimed at reducing the
number of computed scores can entail a few edges to be present, although those edges are
actually absent in optimal DAGs. However, theoretical considerations as well as our computer
experiments show that the latter effect is rather negligible in many applications. Hence, the
edges determined by the constraint-based approach are present in (locally) optimal Bayesian
network structures with a high degree of certainty. Conversely, an optimal DAG might contain
additional edges besides the ones found by the constraint-based approach. Thus, if one aims
at finding local optima, a post-processing step is necessary. A greedy scheme for this task was
presented.
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Moreover, we have proposed various extensions of the constraint-based approach itself, which
led to considerable improvements in the induced graphs when given finite sample sizes. The
main part of this thesis was devoted to the first step of the constraint-based approach, concerned
with learning the presence of edges. While state-of-the-art constraint-based approaches look at
each edge more or less independently of the others, we propose to take into account a certain
vicinity of each edge when deciding about its absence or presence. This can be viewed as an
approximation to the exact learning problem, where the entity of a Bayesian network structure
is divided into several vicinities. This can be achieved by employing the necessary path condi-
tion we derived from properties of optimal DAGs. This condition allows an edge to be absent
only if certain other edges and some sort of paths are present in its vicinity. For instance, the
simplest case involves two edges where the absence of the one requires the presence of the
other edge, and vice versa. This means that the necessary path condition yields interdependen-
cies regarding the presence of various edges, i.e. it determines alternative structures, possibly
of various sizes. This provides considerably more insight than merely knowing about the pres-
ence of each edge independently of all the others. For computational efficiency, the derived
condition applies to undirected rather than directed graphs. This implies that it can only be a
necessary condition, i.e. the edges required to be present are necessary for the resulting DAG to
be optimal, but an optimal DAG might contain additional edges. The benefits of employing the
necessary path condition were illustrated in various examples and experiments in this thesis.

Compared to state-of-the-art constraint-based approaches, the utilization of a necessary path
condition can reduce the number of the edges ”erroneously” absent from the induced graphs.
This is because the necessary path condition can prevent from removing an edge, even when
a corresponding conditional independence has been induced. In other words, all the induced
independences do not necessarily entail the removal of the corresponding edges. This is a
main difference to state-of-the-art constraint-based approaches, not employing any necessary
condition of this kind.

Furthermore, model uncertainty regarding the presence of edges or certain structures in the
graph can be discovered by means of the necessary path condition. Of course, this is only
possible up to a certain degree. An exact treatment of model uncertainty would be NP-hard,
anyway. Model uncertainty discovered by an algorithm employing the necessary path condition
typically does not involve the entire graph. In fact, the induced graphs often have a large
number of edges in common, and they differ only concerning a few edges, called ambiguous
edges. Particularly in Bayesian networks with a large number of variables, the ambiguous
edges can usually be partitioned into different ambiguous regions such that the presence of
the edges in different ambiguous regions is independent of each other. This independence
renders an efficient computation of the different graphs possible, as the latter can be obtained
by combining the local results determined in each ambiguous region separately.

Apart from that, the discovered uncertainty can be displayed to the user in a single graph [144],
called summary graph. Unlike a list of the different structures, this kind of visualization can
considerably ease the interpretation of multiple solutions. Together with the necessary path
condition, this has entered the PRONEL project [120]. The utilization of a single graph was
later also adopted in [85], where uncertainty regarding the presence of certain structures was
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calculated by standard Bayesian model-averaging.

We have discussed four variants of the necessary path condition, differing in their strictness, i.e.
the number of edges and the sorts of paths required to be present in the vicinity of an absent
edge. In our experiments, all four variants led to considerable improvements compared to
established constraint-based schemes, which do not employ a necessary condition. Compared
to this enhancement, the four variants yielded very similar results. In principle, it is, of course,
possible to improve upon the presented necessary path conditions, e.g. by considering vicinities
of increased sizes. The above results suggest, however, that the quality of the induced graphs
can be improved only sightly by stricter conditions, while the computational costs may grow
considerably.

In the proposed algorithm, the necessary path condition is represented in terms of a set of rules,
rendering very efficient simplifications possible in order to find the various network structures.
The computational effort additionally required by this extension is rather negligible compared
to the, short, computation time consumed by other constraint-based approaches, as computing
the conditional independences is most tedious. Moreover, we pointed out that the presented
interdependencies among relative scores can be exploited to speed up computations addition-
ally. We found the constraint-based approach also very appropriate for parallel computing, in
particular for a master-and-slave scheme.

The second part of the algorithm is concerned with finding the orientations of edges, after the
skeletons have been determined in the first part. Like uncertainty regarding the presence of
edges or structures could occur in the first step of the constraint-based approach, uncertainty
concerning the orientations of edges might arise in the second part. In our experiments, we
found that the latter kind of uncertainty affects much more edges than the former does. This
is also clear from theoretical considerations, since the orientation of an edge can often depend
strongly on other edges far way in the graph, e.g. due to the acyclicity of the Bayesian network
structure. For this reason, typical edge-orientation schemes, relying on induced conditional in-
dependences and dependences, are quite unstable, even when given rather large data sets. We
thus proposed an operator which, given an undirected graph, is aimed at inducing the optimal
orientations with respect to a scoring function. For simplicity, this is done in a greedy way,
which is rendered possible due to the utilization of a scoring function. Uncertainty regard-
ing the orientations of edges is hence ignored. This algorithm has proven to be quite robust
in our computer experiments. Furthermore, while established constraint-based schemes can
yield Bayesian network structures where a variable has a very large number of parents, this is
prevented by the presented operator, employing a scoring function.

In our computer experiments, the benefits of the proposed extensions of the constraint-
based approach became apparent. When given real-world data, the presented extensions of
the constraint-based approach combined with a greedy post-processing step induced higher-
scoring Bayesian network structures than other greedy search strategies. Only local search
combined with simulated annealing, which is a quite time-consuming stochastic search strat-
egy, induced slightly higher-scoring DAGs. We also carried out various experiments with the
alarm network, a popular benchmark for structural learning in Bayesian networks. The best
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DAG induced by the presented extensions was equivalent to the original network structure
when given large samples. Moreover, given medium-sized data sets, a DAG with a score
higher than the one of the original network structure was found. To our knowledge, this has
not been reported about any other learning algorithm up to now. In particular, the proposed
extensions were capable of finding higher-scoring Bayesian network structures than the K2
algorithm [33, 34] did, except for rather small samples. Since the latter algorithm requires a
correct ordering on the variables as additional input, it typically finds graphs very close to the
original one [33, 34]. Considering structural differences, it performed even better than local
search combined with simulated annealing in the experiments reported in [81].

A particular property of the constraint-based approach is that it can be divided into several
successive steps, rendering improvements in many details possible, both to advance the quality
of the induced graphs beyond the progress achieved in this thesis as well as to further increase
the computational efficiency. Moreover, when the constraint-based approach is understood as a
strategy aimed at optimizing a scoring function, it may be combined with various other learning
strategies. Of course, the presented improvements concerning the constraint-based approach to
structural learning in Bayesian networks may also be transferred to other graphical models.

With the advent of the World Wide Web as well as with the progress made in the area of
biotechnology a lot of data has become available, waiting to be analyzed by automated algo-
rithms, as a manual analysis is often intractable. We are looking forward to seeing data mining
algorithms become more important in the future and provide better insight into the associations
important among the variables in a domain. Moreover, these algorithms can also serve as a ba-
sis for automatically building intelligent systems for reasoning under uncertainty. We believe
that structural learning in Bayesian networks is a promising tool in the fields where uncertainty
plays a prominent role. It has thus to be of major practical concern to have efficient learning
algorithms at hand, applicable in large domains.



A
Cross Validation
Cross validation can be used for assessing the predictive accuracy of a learned model. It is
crucial to distinguish between training data and test data in this procedure. After a model has
been learned from the training data, its predictive accuracy is assessed on the basis of the test
data. Since the latter samples are not used when learning the model, over-fitting is penalized
so that complex models do not necessarily perform better than simple ones.

The predictive accuracy of the model can be assessed by comparing the joint probability dis-
tribution q described by the learned model with the one implied by the test data, denoted as
p. This can be quantified, for instance, by means of the Kullback-Leibler divergence, or cross
entropy [98],

KL(p; q) =
X

i2I(V)

p(i) log
p(i)

q(i)
; (A.0.1)

where the sum ranges over all joint states i 2 I(V) of the variables in the set V. When the
probability distribution p is determined by the cell counts implied by the test data, the sum
extends only over the configurations actually present in the data. As most of the joint states
typically do not occur in the test data, this entails a tremendous reduction of the computational
effort. The probability q(i) predicted for a certain configuration i 2 I(V) by the induced
Bayesian network can easily be computed according to Equation 2.2.1. The Kullback-Leibler
divergence is non-negative and vanishes if and only if the two distributions p and q are identical.
Hence, small values of KL(p; q) indicate small prediction errors of the induced model.

A very popular variant is k-fold cross validation (often k = 5, 10), where a given data set is
split into k parts of roughly equal size. When the jth part of the data (j = 1; :::; k) serves as test
data, the other k � 1 parts are used as training data. Let qj denote the probability distribution
described by the model learned on the basis of these k�1 parts of the data, while pj designates
the distribution implied by the jth test data. Symmetry among the various parts of the data is
achieved when this procedure is carried out for all j = 1; :::; k, i.e. each part serves as test data
at one point. The result of this procedure is then given by the mean and the standard deviation
of the k values obtained for the Kullback-Leibler divergence.
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B
Data Sets
Besides the artificial data sampled from the Alarm Network [8], we also used three real-world
data-sets in our computer experiments,

� (SEW): the data gathered by Sewell and Shah [135],

� (ENV): the data set on Environmental Influences on the Condition of Trees [51],

� (BOS): the Boston Housing Data [12].

A brief description of the different data sets is provided in the following.

The Alarm Network

The Alarm Network was developed as a model for an emergency medical system [8]. This
Bayesian network has become the most popular benchmark for assessing structural learning
algorithms. It comprises 37 variables, each of which taking 2, 3 or 4 different discrete values.
They are described in Table B.1. The structure of the alarm network is shown in Figure 5.16.
Since it was built by experts, most of its 46 directed edges can be interpreted in a causal manner.
The parameters of the Bayesian network model, that is the conditional probabilities regarding
each variable and its parents, are taken from the alarm-network file on the Netica homepage [3].
We sampled data sets of various sizes from the joint probability distribution described by this
model. For this task, we used the routines provided by the Hugin software [87].
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variable number meaning
of states

1 3 central venous pressure
2 3 pulmonary capillary wedge pressure
3 2 history of left ventricular failure
4 3 total peripheral resistance
5 3 blood pressure
6 3 cardiac output
7 3 heart rate obtained from blood pressure monitor
8 3 heart rate obtained from electrocardiogram
9 3 heart rate obtained from oximeter

10 3 pulmonary artery pressure
11 3 arterial-blood oxygen saturation
12 2 fraction of O2 in inspired gas
13 4 ventilation pressure
14 4 CO2 content of expired gas
15 4 minute volume, measured
16 3 minute volume, calculated
17 2 hypovolemia
18 2 left-ventricular failure
19 2 anaphylaxis
20 2 insufficient anesthesia or analgesia
21 2 pulmonary embolus
22 3 intubation status
23 2 kinked ventilation tube
24 2 disconnected ventilation tube
25 3 left-ventricular end-diastolic volume
26 3 stroke volume
27 2 catecholamine level
28 2 error in heart rate reading due to low cardiac output
29 3 true heart rate
30 2 error in heart rate reading due to electrocautery device
31 2 shunt
32 3 pulmonary-artery oxygen saturation
33 3 arterial CO2 content
34 4 alveolar ventilation
35 4 pulmonary ventilation
36 4 ventilation measured at endotracheal tube
37 4 minute ventilation measured at the ventilator

Table B.1: Key to the variables in the Alarm Network [8] (adapted from [142]).
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The Data Set on Environmental Influences on the Condition of Trees (ENV)

The data set on Environmental Influences on the Condition of Trees (ENV) [51] comprises
11 variables and 6,168 cases. The variables are depicted in Table B.2. Two variables from
the original data set were omitted in the computer experiments, because the one is basically
an index and the other is not documented. Moreover, we reduced the number of states of
the variables x8 and x9 such that x8 (wind direction) took on four states (north, north-east;
east, south-east; south, south-west; west, north-west) as did x9 (�610; 610< ::: �660; 660<
::: �710; >710).

original modified
variable number number meaning

of states of states
(omitted) � 100 – cluster number

1 6 6 needle loss of conifers in six categories
2 3 3 needle loss of conifers in three categories
3 2 2 needle loss of conifers in two categories
4 5 5 density of trees in forest
5 4 4 composition of forest cover
6 3 3 use of forest
7 5 5 soil at location of trees

(omitted) 9 – not further documented
8 9 4 main wind-direction at location of trees
9 � 10 4 elevation (above sea level)

Table B.2: Key to the variables in the data set concerning Environmental Influences on the
Condition of Trees [51].

The Boston Housing Data (BOS)

The Boston Housing Data (BOS) is concerned with the housing values in the Boston metropoli-
tan area. It was first analyzed in [76] and later in [9]. We used the data set available from [12].
It contains 14 variables, discrete and continuous ones, and 506 cases. A key to the variables
is given in Table B.3. For the use in our computer experiments we discretized this data set
such that each variable became binary. For simplicity, only the univariate distribution for
each variable was considered, and it was aimed at achieving about even cell counts for the
two discrete states of a variable. More advanced schemes for discretizing data are described
in [45, 52, 56, 114].
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variable meaning
1 median value of homes
2 crime rate
3 percentage land zoned for lots
4 percentage non-retail business
5 on Charles River
6 NOx concentration
7 average number of rooms
8 percentage built before 1940
9 distance to employment centers

10 accessibility to radial highways
11 tax rate
12 pupil teacher ratio
13 percentage black
14 percentage lower-status population

Table B.3: Key to the variables in the Boston Housing Data [12]. We modified the variables
such that each one became binary.

The Data of Sewell and Shah (SEW)

Sewell and Shah [135] gathered 10,318 cases from Wisconsin high-school students in order
to investigate the influences which affect attending college later. It contains only 5 variables.
Their meaning is shown in Table B.4. We used the data reproduced in [79].

variable number meaning
of states

1 2 sex
2 4 socioeconomic status
3 4 intelligence quotient
4 2 parental encouragement
5 2 college plans

Table B.4: Key to the variables in the data set gathered by Sewell and Shah [135].
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