
Institut f�ur Informatik

der Technischen Universit�at M�unchen

Lehrstuhl f�ur Informatik VIII

Performance Analysis of Intermediate Systems

Serving Aggregated ON/OFF TraÆc

with Long-Range Dependent Properties

Hans-Peter Schwefel

Vollst�andiger Abdruck der von der Fakult�at f�ur Informatik der Technischen Universit�at M�unchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. T. Nipkow, Ph.D.

Pr�ufer der Dissertation:

1. Univ.-Prof. Dr. E. Jessen

2. Prof. L. Lipsky, Ph.D.

University of Connecticut, USA

Die Dissertation wurde am 19.9.2000 bei der Technischen Universit�at M�unchen eingereicht und
durch die Fakult�at f�ur Informatik am 09.11.2000 angenommen.





Performance Analysis of Intermediate Systems

Serving Aggregated ON/OFF TraÆc

with Long-Range Dependent Properties

Hans-Peter Schwefel

Institut f�ur Informatik
Lehrstuhl f�ur Rechnerkommunikation

Technische Universit�at M�unchen, Germany
schwefel@in.tum.de

Keywords

Telecommunication Networks, Network Planning, Quality of Service, ON/OFF-Models,

Self-Similarity, Long-Range Dependence, N -Burst Process, Power-Tail Distributions, Trun-

cated Power-Tails, Transient Analysis.

Abstract

Although it is now widely recognized that network traÆc frequently exhibits so-called Long-
Range Dependent (LRD) properties, the impact of such properties on performance is still not
well understood. This thesis presents a thorough discussion of a particular class of traÆc models,
namely the aggregation of ON/OFF traÆc sources, called N -Burst. A special family of Matrix-
Exponential (or Phase-Type) distributions { called Truncated Power-Tail distributions { is used
for the ON time distribution in order to mimic LRD properties, while still remaining tractable
for queueing analysis via Matrix-Analytic methods.

In order to make the model applicable to realistic scenarios, adequate procedures for parameter
estimation are developed, which are then applied to a set of actual data from measurements of
inter-cell times in an IP-over-ATM network.

The steady-state analysis of queueing models witch such LRD arrival processes reveals distinc-
tively di�erent behavior than for models without LRD properties: All performance parameters
show several so-called blow-ups at particular, well-de�ned points in the parameter space of the
model, at which performance deteriorates dramatically. The knowledge about the existence and
the location of these blow-up points is crucial for any network design task. Applicable engineering
rules for the purpose of performance oriented design are derived from the gained insights.

In many scenarios, the steady-state analysis of such LRD models does not provide a satisfactory
description of the performance behavior. Therefore, methods for transient analysis are devel-
oped and applied. The discussion of the transient results leads to new characterizations of the
uctuations in the performance behavior of such LRD models.

Finally, a variation of the basic analytic queueing model is discussed in which the arrival process
is throttled when congestion occurs in the network. The results of that analysis provide insights
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into the behavior of elastic traÆc, such as assumed by the Transmission Control Protocol (TCP)
in the Internet.

The contributions of the thesis are twofold: First, contributions to the methodology for perfor-
mance analysis using Matrix-Analytic models with Long-Range Dependent properties are made.
Second, the results from the performance analysis of the rather general N-Burst model class pro-
vide new insights for the network design task. Although the thesis is directed at modeling and
performance evaluation of telecommunication systems, the methodologies can easily be trans-
fered to related areas, such as storage systems and CPU job-times, both of which are known to
be subject to the impact of highly uctuating loads.
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German Abstract (condensed form)

Verkehr in modernen, paketvermittelten Telekommunikationsnetzen weist Charakteristika auf,
die in klassischen Verkehrsmodellen nicht ad�aquat ber�ucksichtigt werden: In Messungen wurden
sogenannte Langzeitabh�angigkeiten (auch Selbst�ahnlichkeit) des Paketstromes festgestellt, deren
Einu� auf die �Ubertragungsqualit�at aber noch diskutiert wird. Diese Dissertation entwickelt
eine realistische Klasse von Verkehrsmodellen, genannt N -Burst, die langzeitabh�angigen Verkehr
beschreiben kann. Aus der Diskussion einer Vielzahl station�arer und transienter Leistungspa-
rameter in analytischen Warteschlangenmodellen werden detaillierte Schlu�folgerungen �uber das
Leistungsverhalten solcher langzeitabh�angiger Verkehre gewonnen, die beispielhaft auf reale
Problemstellungen der Netzplanung angewendet werden. Dabei zeigt sich, da� in diesem Fall
herk�ommliche (station�are) Leistungsparameter das Verhalten der Warteschlangenmodelle nur
ungen�ugend beschreiben. Neue transiente Methoden werden deswegen eingef�uhrt und angewen-
det.
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Chapter 1

Overview and Background

1.1 Introduction

With emerging new applications, the requirements on modern telecommunication networks have
changed. One of the currently unsolved problems is the demand of the users or applications for
a certain transmission quality, often referred to as Quality of Service (QoS). Such QoS might be
provided by careful analysis and estimation of the traÆc in the system together with an e�ective
methodology to design the network and its resources. Another possibility is the development of
new transmission protocols, whose e�ectiveness has to be investigated.

In both cases, modern techniques in stochastic modeling are a necessity. In such models, the
description of the traÆc is a crucial part: It is now widely accepted that standard Poisson models
do not adequately describe network traÆc since they do not take into account its inherently
bursty nature. This is accentuated by a series of measurements in the last decade (one of the
earliest discussed by [Leland et al. 94]) that have shown that network traÆc often exhibits
so-called self-similar or Long-Range Dependent properties: It shows burstiness over a wide range
of time-scales.

According to several measurements of network traÆc, one such series done in [Gogl 00] at
the entrance of a national backbone, multiplexed ON/OFF traÆc with Long-Range Dependent
(LRD) properties appears to be a good match to actual real data traÆc. This thesis develops
techniques for and provides results from the analysis of queueing models with such traÆc as
input. Thereby, insights are gained into how QoS problems at single `bottleneck' switches in the
network occur and what remedies are possible.

The remainder of this chapter provides the necessary background and an overview of existing
work on traÆc modeling. Chapter 2 introduces a very exible class of ON/OFF models, called
N -Burst, whose analytic queueing models are nevertheless tractable for performance analysis
using matrix algebraic methods. The traÆc of the N -Burst model shows Long-Range Dependent
properties if a certain class of distributions, called Power-Tail (PT) distributions, are used for
the ON-times. Chapter 3 discusses such distributions in detail with particular emphasis on a
family of Phase-type distributions with PT characteristics.

For practical applications, it is necessary to estimate the parameters of the traÆc model from
a given set of measurements. In Chapter 4, a method for parameter estimation is developed
and applied to actual measurements of inter-cell times at the entrance point to an IP-over-ATM
backbone. The numerical examples that illustrate the performance behavior in the subsequent
chapters are all based on the model parameters that are derived from real data in Chapter 4.

The performance analysis at the bottleneck switches starts o� in Chapter 5 with an investigation
of the steady-state performance parametersmean Cell Delay (mCD), Cell Loss Probability (CLP),
and Bu�er Overow Probability (BOP). The analysis shows that QoS does not improve uniformly
with, for instance, increasing service rate. Instead, well-de�ned so-called blow-up points are
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observed at which the QoS parameters deteriorate dramatically. The location of the blow-up
points is derived, and it is shown later in Chapter 7 how that knowledge can be used in network
design.

The analysis of the steady-state behavior provides some fundamental insight into the peculiar
behavior of aggregated ON/OFF traÆc with LRD properties. However, the slowly decaying
correlation in the cell-arrival process, together with the �nite duration of the 4-8 busy hours in
the daily pro�le, could have the e�ect that steady-state behavior for the performance-critical
time period might never be observed in practice. The results of the transient analysis in Chapter 6
con�rm such doubts. Furthermore, for data-transmission, it is generally desirable that the steady-
state probability, BOP, of an overow event be very low, in the order of 10�5 or less. However, the
BOP does not express the correlated nature of overow events, which is especially accentuated in
systems with large bu�ers and by traÆc with LRD properties. Additional transient parameters
are discussed in Chapter 6 in order to provide a better description of the switch's behavior.

The results from the steady-state and transient performance analysis are used in Chapter 7
to discuss di�erent scenarios whose solutions contribute to the network design task. Simple
engineering rules are developed based on the asymptotic results of the analysis. Chapter 8
contains a summary of the results and their practical implications. Chapters 9 and 10 point out
future directions and open problems. An important part of that is the discussion of models for
so-called elastic traÆc: in that scenario the incoming traÆc adjusts to the congestion level in
the network, thus it is no longer independent of the network state. An important example is
the Internet traÆc via the Transmission Control Protocol (TCP). Chapter 9 presents a viable
approach for capturing the essential features of such a feedback between the network and the
incoming traÆc.

The body of the thesis concentrates on the model description and the discussion of the per-
formance results. The algorithmic details of how the results are obtained can be found in the
appendix. Note that the appendix is not just a compendium of previously known results, but
the actual computational techniques are further (or even newly) developed with respect to the
speci�c requirements of the analysis in this thesis.

1.2 Overview of Modeling Approaches

TraÆc modeling is not a new problem but it has attracted much attention recently due to
the rapid growth of the Internet and the increasing popularity of online access to distributed
information. However, it has a long history that started with the early models for telephony
traÆc: M/G/C//C queueing models were used to obtain the so-called call-blocking probability,
which is the probability that an incoming call has to be rejected since all C available channels are
being used. Since the original use of telephony was for voice-calls, whose statistical properties are
rather well-behaved and well-known, even the simpler M/M/C//C models with exponential call-
holding times can be appropriate (for the steady-state probabilities of the number of active calls,
the distribution of the call-holding times does not even matter in those models, see Appendix
D.3).

In traditional telephony traÆc, each call is assigned its own channel and that channel is used
exclusively during the whole duration of the call. Such a so-called circuit based approach was the
basis of the early telephony models of type M/G/C//C. Modern telecommunication networks
use a more exible technique which is based on the transmission of small data units, called packet
or cells, instead. The packets of di�erent connections can be transmitted on the same link and
therefore the available transmission capacity can be utilized much more eÆciently, in particular
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when the individual connections show time-intervals with very little or no data-transmission at
all. This is known as multiplex gain, which is one of the bene�ts of the packet-based approach.

The simplest packet based performance model for intermediate systems in telecommunication
models is an M/M/1 queue: packets arrive at a single server unit according to a Poisson process.
If the server is idle, the arriving packet obtains service for an exponentially distributed time
before it leaves the system. If the server is busy, the packet is stored in a bu�er with in�nite
capacity. Such simple M/M/1 models are in fact used in network planning tools for capacity
planning in order to meet some constraints on the delay, see e.g. [Cahn 98]. The advantage
of this model is its simplicity and the availability of explicit closed-form formulas for many of
its performance parameters, see Appendix A. The main impact of the use of M/M/1 models in
network design is that it predicts major performance problems when its utilization � approaches
100%. As a consequence, network components are designed to operate at utilization values
between 40% and 60%, as a rule of thumb. However, the assumption that the inter-arrival
times of the packets/cells can be adequately described by a Poisson process is questionable in
most cases, see [Paxson & Floyd 95]. Consequently, more sophisticated models had to be
developed.

One approach to describe the correlated, bursty behavior of packet traÆc is the use of ON/OFF
models, see also Sect. 2.1: packets or cells are generated at high rate during ON periods, while
nothing (or very little) is generated during the OFF periods. If both, ON and OFF times are
exponentially distributed, and the arrivals during the ON times can be described by a Poisson
process, such models have representations as Markov Modulated Poisson Processes (MMPPs),
see Sect. 2.2. [Heffes 80] is one of the earliest papers that discusses such models with ap-
plication to telecommunication traÆc. More general MMPPs with several levels but still ex-
ponential state-holding times are discussed in [Pancha et al. 97] and [Heyman 00b]. Other
approaches to describe the bursty nature of packet traÆc use the notion of bulk arrivals, see
[Chaudhry & Templeton 83] and [Lucantoni 93]. Furthermore, certain models were de-
signed with the goal of capturing the empiric correlation structure of measured traÆc data for
small lags (i.e. the short range correlation). The TES model (Transform and Expand Sample)
in [Melamed 91] belongs to that group, however it is almost exclusively used in simulation
models.

A series of measurements of network traÆc { one of the earliest discusses Ethernet traÆc in
[Leland et al. 94] { has indicated that burstiness by itself as it is described by MMPP models
might not be suÆcient. These measurements have revealed self-similar or Long-Range Dependent
properties: they showed burstiness over a wide range of time-scales. Such self-similar behavior
is illustrated in the left column of Fig. 1.1, see Chapter 3 for more details. The mathematical
theory of self-similar processes is described in-depth by [Samorodnitsky & Taqqu 94].

Those early measurements of network traÆc initiated a controversial and still ongoing discussion
about the impact of such LRD properties on the performance of telecommunication networks.
The detailed analysis in this thesis provides an answer to this discussion for the family of N -
Burst models that is developed in this thesis. The impatient reader has to remain impatient at
this time, because the answer is: it depends! The impact of the LRD properties on performance
can range from practically zero to devastating. Chapters 5 and 6 present the details.

There is evidence (see [Willinger et al. 95] and [Crovella & Bestavros 96]) that such
LRD properties are caused by high variance distributions of the size of the individual transfers.
Inspired by that fact, the use of so-called sub-exponential distributions has become popular
in queueing models of various types, e.g. [Heyman 00] and [Dumas & Simonian 00]. The
necessity to include such distributions in traÆc models is the second major di�erence of modern
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Figure 1.1: Illustration of Self-Similar Properties in the Counting Process: Even though the
interval size is increased by a factor of 104 from bottom to top, the number of cells per interval still shows
large uctuations for the LRD 1-Burst process in the left column. The Poisson process in the middle
and the ON/OFF model with exponential state-holding times in the right column become smooth more
quickly. The graphs are created in simulation experiments, see [Lipsky et al. 99b]. A plot of the count-
ing process for Ethernet measurements is shown in [Leland et al. 94]: the uctuations disappeared
only gradually as in the left column of this �gure.
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telecommunication models as compared to classical telephony models. The latter were only
concerned about voice-traÆc which shows rather well-behaved call-holding times. As a reminder,
the �rst major di�erence is the packet-switched approach in data networks as opposed to the
circuit-switched approach of classical telephony.

Although there are a large number of models for LRD traÆc in the literature, the main
examples are so-called Fractional Gaussian Noise (FGN) models, see e.g. [Norros 95] and
[Krishnan 96], the so-called M/G/1 model in e.g. [Guerin et al., 00], and uid-ow
ON/OFF models with sub-exponential ON periods in e.g. [Dumas & Simonian 00], it is very
diÆcult to obtain a complete set of performance results for analytic queueing models with such
traÆc. Frequently, the investigations are only based on simulation experiments, but as the analy-
sis in Chapter 6 shows, simulation results for such LRD traÆc can be subject to large uctuations
and therefore have to be interpreted very carefully. For analytic models, mostly only asymptotic
bounds or asymptotic approximations (e.g. from Large Deviation theory) have been obtained
for a small set of performance parameters.

This thesis provides a very detailed understanding of the performance behavior of queues for
a very general class of arrival processes, called N -Burst. The discussion includes the detailed
setup of the model, the introduction of LRD properties in the model, methods for parameter
estimation from real data, and �nally the detailed analysis of large set of performance parameters
in the analytic model, both by steady-state analysis and transient analysis. All the individual
parts are necessary to make the model applicable to real-world engineering problems.

The major bene�t of this thesis is that it provides a very thorough understanding of the per-
formance behavior of such N -Burst traÆc. In addition, several methods of analysis and some of
the most important results in this thesis were previously unknown. Those are:

� Systematic use of truncated Power-Tails in MMPP models:
This thesis uses a certain family of distributions that was developed by
[Greiner et al. 99] to include LRD properties in classical MMPP models, see
Chapter 3. This general approach is also taken by [Andersen & Nielsen 98] and
[Robert & Boudec 97], but with di�erent methods: [Andersen & Nielsen 98] use the
superposition of many two-state MMPPs and develops an algorithm to �t a certain correla-
tion structure of the packet counts with this aggregated model. [Robert & Boudec 97]
use an MMPP ON/OFF model with a rudimentary form of the distributions in
[Greiner et al. 99], but for the duration of the OFF times. Section 5.7 shows that
this has only minimal impact on the performance behavior of queueing models with that
arrival process.

The family of distributions in [Greiner et al. 99] was used in another Semi-Markov
model in [Lipsky et al. 97], [Fiorini 97] and [Schwefel 97]: the superposition of two
renewal processes. Such a model shows also LRD properties but did not match other
important properties of network traÆc. Also, rudimentary forms of the 1-Burst model are
analyzed to a very limited extent in that earlier work, which can be seen as predecessor of
this thesis.

In order to investigate the impact of the truncation of Power-Tails, which are in our case
embedded in more complicated arrival processes, the de�nition of a Power-Tail Range is
necessary, see Sect. 3.5. Only with that de�nition can conclusive results be obtained that
are independent of the speci�c algorithmic representation of the truncated Power-Tail
distributions.
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� Several results of the performance analysis of N -Burst/M/1 models were previously un-
known but turn out to have major impact: In particular the existence of so-called blow-up
points and the understanding of why those occur in such models is essential. Furthermore,
the impact of the truncation of Power-Tail distribution can be quanti�ed with the help of
the de�nition of a Power-Tail Range. Finally, the necessity to perform transient analysis
leads to the de�nition of new performance parameters (the transient overow probabili-
ties and the so-called conditional overow ratio). Those transient parameters also show
surprising behavior, which characterizes the kind of uctuations that can be observed in
performance models with such traÆc.

Finally, the in-depth analysis settles the question of when and how LRD properties matter,
however only for the model class that is discussed here. But it is a very general and { as we
believe and measurements show { in certain scenarios a very realistic model class.

1.3 De�nitions & Notation

This thesis deals solely with packet- or cell-based data networks (as opposed to circuit switched
networks). Although the terminology is chosen in correspondence to ATM networks (cells,
switches, etc.), the results can be transfered to any packet based transmission protocol, in-
cluding IP. However, at �rst we neglect the fact that packets can have varying size, and that the
size of subsequent packets can be correlated.

Hence, we assume that the incoming cell stream is completely described by the inter-arrival pro-
cess (Xi). The timeXi between arrival of cells i and i+1 is also called inter-cell time. If theXi are
independent and identically distributed, then the inter-arrival process is a renewal process. How-
ever, actual measurements of real network traÆc have shown that the inter-cell times are highly
correlated, see [Leland et al. 94, Schwefel et al. 97, Gogl 00, Paxson & Floyd 95].

The inter-arrival times Xi are positive random variables. Therefore, the Cumulative Probability
Distribution Function (CDF) is one-sided, and de�ned by:1

F (x) := IP fX � xg

with F (0�) = 0, and lim
x!1

F (x) = 1. The complementary distribution function, also called

Reliability Function, is de�ned as

R(x) := IP fX > xg = 1� F (x):

The probability density function (pdf) is given by (if it exists):

f(x) :=
dF (x)

dx
= �dR(x)

dx
�

The `th moment of the distribution (or the expectation of X`), is de�ned by:

IE
n
X`
o
:=

Z 1

0
x` � f(x) dx: (1.1)

The �rst two moments de�ne the variance:

Var(X) := �2 := IE
�
[X � IE fXg]2	 = IE

�
X2
	� [ IE fXg]2;

1` IP fUg' means `Probability that U is true'.
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and the dimensionless quantity, the coeÆcient of variation, is the ratio of the variance and the
square of the mean (�rst moment):

C2 :=
�2

[ IE fXg]2 =
IE
�
X2
	

[ IE fXg]2 � 1 : (1.2)

Later on, the so-called tail of a distribution, that is the behavior of R(x) for large x, will be of
special interest. In order to characterize the behavior of a function R(x) for large x, the following
notation is useful:

f(x) � g(x) :, lim
x!1

f(x)

g(x)
= c; where 0 < c <1:

The slightly more relaxed de�nition,

f(x)
�� g(x) :, lim inf

x!1

f(x)

g(x)
= c1 and lim sup

x!1

f(x)

g(x)
= c2; where 0 < c1 � c2 <1;

is necessary later on in Chapter 3. If the two limits are close, c1 � c2, f(x)
�� g(x) is practically

(but not mathematically!) equivalent to f(x) � g(x).

One of the peculiar properties of network-traÆc is that the inter-cell times are highly correlated.
Necessary for the de�nition of correlation is the Covariance of two random variables X and Y :

Cov(X;Y ) := IE f [X � IE fXg] [Y � IE fY g] g = IE fXY g � IE fXg IE fY g :

The Correlation CoeÆcient of X and Y is then de�ned as

r(X;Y ) :=
Cov(X;Y )

�X �Y
� (1.3)

From its de�nition, it can be shown that �1 � r(X;Y ) � 1. If r(X;Y ) = 0 then X and Y are
called uncorrelated. If X and Y are independent, then it follows that they are uncorrelated. On
the other hand, even if two variables are uncorrelated, they still may not be independent.

The autocorrelation coeÆcient lag-k for an inter-arrival process (Xi) is de�ned as

ri(k) := r(Xi;Xi+k):

For so-called covariance stationary processes, the value of ri(k) is the same for all indices i, so
we just use r(k). A positive r(k) means that if the value of one inter-cell time, Xi, is bigger than
the mean inter-cell time, Xi+k k steps later is more likely to be bigger than the mean as well.

Finally, the fundamental distribution for continuous time Markov processes is the exponential
distribution (with rate �). It has as its reliability function and density function:

R(x) = e�� x; f(x) = � e�� x: (1.4)

Let X be the exponentially distributed sojourn-time for a particular state with leaving rate �
of a Markov Chain. Then it follows:

IE fXg = 1

�
; Var(X) =

1

�2
) C2 = 1:
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One signi�cant property of the exponential distribution is that it memoryless. It does not mat-
ter at what time in the past the last event happened, the residual time is still exponentially
distributed with the same rate:

IP fX > x+ hjX > xg = IP fX > x+ hg
IP fX > xg =

e��(x+h)

e��x
= e��h = IP fX > hg for h � 0:

(1.5)

If there are two independent, exponentially distributed variables X1 and X2 with rates �1 and
�2, then the probability that the �rst one is smaller is

IP fX1 < X2g =
Z 1

0
RX2(x) fX1(x) dx =

Z 1

0
FX1(x) fX2(x) dx =

�1
�1 + �2

� (1.6)

The Counting Process: A less detailed, but in practice frequently used description of the traÆc
is the Counting Process (Ni(�)), for a given time-interval � > 0. Ni(�) is a random variable
whose value corresponds to the number of cell arrivals in the time-interval [(i � 1)�; i�[. Note
that even if the inter-cell times Xi stem from a renewal process, the counting process can be
correlated.

Queueing Models: Queues will be used in this work for two purposes:

1. As a model for the bottleneck switch in the network: Cells arrive at the switch as described
by the inter-cell time process (Xi). The switch needs some time to process the information
in the cell header and to transmit the cell over the outgoing link. This is called the service-
time. We almost always assume exponentially distributed service times with rate � in
this work. A discussion about the meaningfulness and the impact of that exponential
distribution is given in Chapter 2. If cells arrive more quickly than they can be served,
they will queue up in a bu�er. Both cases, �nite and in�nite bu�ers are discussed herein.

2. As a description of the number of active bursts: closed queueing systems with two queues
and �nite population are used for the modulating process that determines the cell-arrival
rate at the switch, see Chapter 2 for details. More general service-time distributions and
also multiple servers come into play for that purpose.

A general introduction in queueing theory is given in [Kleinrock 75]. Closed queueing systems
with �nite population are treated in [Lipsky 92], whose algebraic approach is the basis for the
evaluation techniques used in this thesis, see Appendix B.

The performance behavior of a queueing model is determined in large part by the queue-length
process, Qt. In case of the queue that models the network component, the queue length is
also referred to as bu�er-occupancy. In our terminology, the queue length always includes the
customers (here cells or bursts) that are currently in service. Frequently, the queue length at the

arrival-time of cell j, Q
(a)
j is of interest:

Q
(a)
j := QTj ; where Tj =

j�1X
i=0

Xi :

The transient analysis in Chapter 6 is in major parts concerned with the First Passage Time to
bu�er-level n, which is the following random variable:

�(n) := min
t�0

ft jQt � ng :
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Furthermore, the concepts of Busy Periods and Busy Cycles are important for the transient
analysis:

� Busy Period: A Busy Period of a queueing model starts when a customer enters an empty
queue. It ends when the queue is empty (all servers are idle) for the �rst time again.

� Busy Cycle: The de�nition of a Busy Cycle is limited to queueing models with an under-
lying Markovian structure of arrival and service processes (or more general: the existence
of a regenerative period in the model). The Busy Cycle starts when the queue is empty
and the arrival process is in a speci�c state. It ends when that particular combination,
empty queue and speci�c state of arrival process, is reached again for the �rst time. That
de�nition proves useful for theoretical derivations, since regenerative arguments can be
used, i.e. each Busy Cycle is stochastically identical.

For an M/G/1 queue, the Busy Cycle contains the Busy Period and the preceding idle
period, while in the case of a GI/M/1 queue, a Busy Cycle is a Busy Period and its
succeeding idle period.

In Chapter 9 the inter-cell times Xi are made dependent on the bu�er-occupancy (and other
parameters of the server) in order to model the feedback introduced by ow-control mechanisms
such as in TCP. However, in the main part of the thesis, the incoming traÆc is assumed to be
independent of the state of the queue.

Abbreviations

ATM Asynchronous Transfer Mode
BOP Bu�er-Overow Probability (steady-state) Sects. 2.6 & 5.2

(in�nite backup bu�er, N -Burst/M/1 queueing model)

BOR Bu�er-Overow Ratio (transient) Sect. 6.4
(in�nite backup bu�er, x/M/1 queueing model)

B-WiN `Breitband Wissenschaftsnetz' Sect. 4.1
CD Cell Delay Sect. 5.2
CLP Cell Loss Probability (steady-state) Sects. 2.6 & 5.5

(�nite-bu�er N -Burst/M/1/B queueing model)

CLR Cell Loss Ratio (transient) Sect. 6.4
(�nite-bu�er N -Burst/M/1/B queueing model)

FGN Fractional Gaussian Noise Sect. 2.7.5
FPT First Passage Time (transient) Sect. 6.2
iid independent, identically distributed
IP Internet Protocol
IS model Independent Source model Sect. 2.4
LAQT Linear Algebraic Queueing Theory App. B & [Lipsky 92]
LRD Long-Range Dependence Sect. 3.1
MBS Maximum Burst Size Sect. 3.5
mCD mean Cell Delay (steady-state or transient) Sects. 5.1 & 6.1
ME Matrix Exponential App. B.1 & [Lipsky 92]
mFPT mean First Passage Time (transient) Sect. 6.2.2
MMPP Markov Modulated Poisson Process Sect. 2.2
PRA Peak-Rate Allocation Sect. 5.1
PT Power-Tail: R(x)! c=x� Sect. 3.2
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QoS Quality of Service
SM Semi Markov App. C.1
SST Self-Similar TraÆc Sect. 3.1

(here often: asymptotic second order self-similarity)

TCP Transmission Control Protocol Chapt. 9
TPT Truncated Power-Tail Sect. 3.4

Notation

Bold-faced lower-case letters (e.g. �, p) represent row vectors while bold-face capital letters
represent matrices. u0 expresses the transposed of the row-vector u, analogously for matrices.
The unit-matrices are denoted as I or I (depending on the dimension). ei represents the vector
with all components equal to zero except for its ith component which is set to 1. �0 and "0 are
column vectors (of di�erent dimension) with all components set to 1.

N-Burst Parameters Sect. 2.4
N Maximum number of simultaneous bursts
np Mean number of cells per burst
� Average cell rate of all sources together
� Average cell rate per single source: � = �=N
�p Peak-rate within a single burst
b Burstiness: b = 1� �=�p
� Tail exponent of PT burst-length distribution

c
(1)
PT (�) Tail-constant of normalized PT distr.
MBS Maximum Burst Size

Queue Parameters Sect. 2.6
� Service rate
� Utilization: � = �=�
B Bu�er Size

Performance Analysis
i0 Number of blow-up region, i0 2 f1; :::; Ng Eq. (5.2)
i� location within blow-up region Eq. (5.3)
� Tail-exponent of over-saturation periods Eq. (5.4)
Rng (R(x)) Power-Tail Range of reliability function Sect. 3.5
qi0 PT Range of queue-length distribution Eq. (5.14)
qN largest PT Range of queue-length distribution Sect. 5.3
cxxx Tail-constant for Power-Law behavior of `xxx' Eq. (5.19)
�(n) First Passage Time to level n Sect. 6.2
(t0; B) Probability of overow in time t0 Eq. (6.4)
BORc(t0; B) conditional Bu�er Overow Ratio Sect. 6.4
CLRc(t0; B) conditional Cell Loss Ratio Sect. 6.4
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Chapter 2

TraÆc and Performance Models

In general, network traÆc is not smooth. It is very bursty and the inter-cell times are highly
correlated. Even worse, the correlation holds up over a large number of cells. That e�ect is
called Long Range Dependence (LRD) and can cause devastating performance e�ects in some
scenarios.

Yet, the impact of LRD is still not completely clear. A reasonable model has to have the ability of
reproducing that e�ect, if only to decide on the circumstances when its devastating performance
e�ects show up.

Moreover current and future heterogeneous networks have to serve as media for a wide range of
applications. Voice-, Video- and Data-traÆc have very di�erent properties. A traÆc-model thus
must be very exible and capable of capturing those application mixes.

For practical application, traÆc models should have as few parameters as possible, also known
as parsimonious models. Otherwise the problem of parameter estimation becomes very hard.
So it is allowed and even necessary to simplify models by leaving out properties that do not
appreciably a�ect performance. Furthermore, the more simpli�ed the models are, the higher are
the chances that the analytic models remain tractable. Of course, the hard part is to determine
which properties of real traÆc need to be captured and which are superuous due to their minor
impact on performance.

For reasons of extrapolation and forecasting, it is desirable that model parameters are opera-
tional, i.e. they have a measurable physical equivalence. Only then, scenarios such as an increase
in traÆc due to, e.g., a larger number of users can be considered appropriately in the model.

This chapter introduces a very exible class of models, called N -Burst. They are based on a
certain subset of ON/OFF models that are �tted into the tractable framework of MMPPs by the
use of Matrix-Exponential (often Phase-Type) distributions. The reader is advised to turn to the
appendix in order to obtain the necessary background about Matrix-Exponential distributions
(Appendix B.1) and LAQT representations of MMPPs (Appendix C.2). Also, closed queueing
systems with a �nite number of customers as discussed in Appendix D.1 play a major role in
the setup of the N -Burst models.

2.1 ON/OFF Models

The use of so-called ON/OFF models has become increasingly popular, since they reproduce
the bursty properties of network traÆc. In these models, traÆc is generated only during ON
periods (here also called active periods or bursts). The duration of the ON periods is described
by a random process (Ai). Each ON period is followed by an OFF period during which the
source is idle, so no data is transmitted. Let the duration of the OFF periods be described by
the stochastic process (Bi).
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In a cell/packet based model, the traÆc during the ON periods is best described by a point-
process model. The most important examples are:

� Poisson process: The inter-cell times during ON periods are iid, and their marginal distri-
bution is exponential.

� Deterministic inter-cell times: While the source is ON, cells are generated with a �xed
inter-cell time.

An alternative to point-process models are the so-called uid-ow models, in which the traÆc
is not measured in discrete units (cells) but instead by a real number, which is increased con-
tinuously at some rate during ON periods. Fluid-ow models can often be described as a limit
process in which traÆc is measured in in�nitely small units, see Sect. 2.7.3. Fluid-ow models
are frequently used for reasons of better tractability.

A second coarse classi�cation of an ON/OFF model can be derived from the ON/OFF process
itself, which can either be a discrete-time or a continuous-time process. In the former, a certain
time-step � is chosen and transitions from ON to OFF periods and vice versa can only occur
at time j�, j = 1; 2; :::.

Discrete time models with deterministic inter-cell times during bursts are frequently used for
ATM models. In contrast to that, we focus on continuous time ON/OFF models with Poisson
cell-arrivals within ON periods. However, we will see in Chapter 5 that the major cause of
occurring congestion in our performance models is not the Poisson variability during ON times
(which is arguable in ATM models), but instead the burstiness caused by a special ON/OFF
structure.

Extensions of the ON/OFF approach: A plain ON/OFF structure as introduced above is the
simplest possible case. Two, not necessarily di�erent ways for extensions of that simple ON/OFF
approach are listed in the following:

� Aggregation: Plain ON/OFF sources are often used to model the behavior of a single
user. A superposition of several ON/OFF sources is necessary to describe the collec-
tive behavior of several users together. The superposition can be done for independent
and identical ON/OFF models, or arbitrary complex scenarios can be created. Aggre-
gated uid-ow ON/OFF sources are treated for instance in [Dumas & Simonian 00].
A discrete model with deterministic inter-cell times during ON times is discussed in
[Fan & Georganas 96].

� Multiple Levels: The aggregation of cells from N identical ON/OFF models results in a
process in which cells are generated at N + 1 distinguished rates, also called levels. In
the simplest case, those rates are i�p, i = 0; 1; :::; N , where �p is the rate at which cells
are generated during the ON period of a single source. In general, a process is obtained
that generates cells at discrete but possibly in�nitely many rates. The simple two-level
ON/OFF concept is thus extended to a larger number of levels. A common example is the
so-called M/G/1 model, see Sect. 2.7.5 and [Guerin et al., 00], in which the number
of busy servers of an M/G/1 queue represents the level, hence controls the rate at which
cells (or uid) are generated.

Both concepts, the superposition of multiple ON/OFF sources and also more general multi-level
processes, are part of the N -Burst model that is developed in this chapter.
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2.2 Markov Modulated Poisson Processes

As already mentioned in the previous section, our focus here is on continuous time ON/OFF
models with Poisson cell transmissions during ON. Under certain restrictions { in the simplest
case, ON and OFF periods are independent and their duration is exponentially distributed {
such ON/OFF models can be expressed as Markov Modulated Poisson Processes (MMPPs).
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Figure 2.1: An MMPP as Arrival Process to a Queueing Model: A Markov Modulated Poisson
Process (MMPP) consists of a Markov chain (lower box) which describes the modulating process. A token
moves around in the box but never leaves it. The actual arrivals (of e.g. cells to a switch) are generated by
a Poisson process, whose rate is determined by the position of the token within the modulating process.

In an MMPP model, cells are always generated by a Poisson process, however its rate �i depends
on the state i of a Markov chain (called the modulating process). Figure 2.1 illustrates the
MMPPs in the context of a queueing model with an MMPP arrival process.

The advantage of the MMPP representation is that queueing models with such arrivals are
tractable and matrix-analytic methods can be used for their evaluation. See Appendix C.2 for
a description of the matrix representation that is used herein. Matrix analytic methods for
MMPP/M/1 queues are described in [Meier-Hellstern & Fischer 92] and in Appendix D.

The simplest case is a two state MMPP which is an ON/OFF model with exponential ON
and OFF duration. One can also allow for some positive Poisson cell rate during OFF. The
Poisson traÆc during OFF can be viewed as background Poisson traÆc. Such a model was
discussed with respect to network traÆc modeling 20 years ago in [Heffes 80]. This simple
ON/OFF model is in fact a special case of the 1-Burst model which is introduced in the next
Section. Recently, [Andersen & Nielsen 98] used the superposition of several di�erent two-
state MMPPs to achieve Long-Range Dependent (LRD) properties. TraÆc with such properties
can also be generated by the N -Burst models. However the approach is di�erent, since it is
achieved here by more complicated ON time distributions, see Chapter 3.

MMPPs belong to the larger class of Markovian Arrival Processes (MAPs), also called Semi-
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Markov Processes, see Appendix C.1. If one allows for bulk-arrivals the so-called B-MAP pro-
cesses are obtained, as discussed in detail in [Lucantoni 93].

The attractive feature of MMPP models for network traÆc models is that they allow the vari-
ability that is observed in the cell rates to be captured. However, one criticism is that the
restriction to exponential state-holding times in the modulating process is not acceptable. We
avoid that restriction in our N -Burst models, however for the price of a more complicated but
still Markovian modulating process.

Empiric MMPP models are frequently used for traÆc modeling: the number of states and
the Poisson cell rates �i are obtained by some heuristic approach (see e.g. [Heyman 00b])
and the transition rates/probabilities are determined from a set of measurements, see e.g.
[Pancha et al. 97]. However, [Rimkus 99] shows that some of the properties that are con-
nected with the LRD properties and were actually observed in actual measurements are not
reected by such empiric MMPP models. In particular, a slow convergence to steady-state is ob-
served in [Rimkus 99] for trace-driven simulations of queueing models with the measured data
as arrival process, while the performance parameters in simulations of a �tted empiric MMPP
model reached steady-state rather quickly.

Furthermore, such empiric MMPP models have no underlying structure in the modulating pro-
cess. Extrapolation problems such as how to model an increase in traÆc volume are diÆcult to
tackle in such models. Plain scaling of the cell-rates and the transition rates would be a viable
but very doubtful approach. The underlying physical structure of e.g. ON/OFF models allows
for di�erent physical scenarios of increasing the traÆc volume: For instance, the increase of the
ON duration or the decrease of the OFF duration are meaningful approaches if single ON/OFF
sources are used to model aggregated traÆc, as done in Sect. 4.3.

2.3 1-Burst Model
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Figure 2.2: The 1-Burst Model: traÆc is generated with Poisson rate (peak-rate) �p only during ON
periods, whose duration is described by a general Matrix-Exponential distribution. The duration of the
OFF periods is assumed to be exponentially distributed.

As base models we use single source ON/OFF models, called 1-Burst, as illustrated in Fig-
ure 2.2. During ON periods, also called bursts, cells are generated with Poisson rate �p. The
distribution of the duration of the ON periods is not necessarily exponential. It can be any
Matrix-Exponential distribution hp;Bi, see Appendix B. It is shown in Chapter 3, how LRD
properties can be included in the model by a particular choice of the ON time distribution,
which is con�rmed in many measurements of real traÆc. Furthermore, it is shown in Chapters 5
and 6 that the choice of the actual ON time distribution has a great impact on the performance
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behavior of queueing models. The OFF time distribution on the other hand is less critical, see
Sect. 5.7. We assume here that the OFF time distribution is always exponential with mean Z,
although it could easily be replaced by another ME distribution.

The use of ME distributions for the ON times in the 1-Burst model allows for more general
ON/OFF models than in [Heffes 80], yet the 1-Burst model still has an MMPP representation,
hence the queueing models remain tractable.

In addition to the cell-rate (peak-rate) �p during bursts, and the mean OFF time Z, we use the
following parameters:

Mean ON time: xp := pB�1"0

Mean number of cells per burst: np = �pxp

Average overall cell-rate: � =
np

Z + xp

� is the average cell-rate of the ON and OFF times together. The ratio �=�p can be used as a
measure of the burstiness of the source: De�ne the burstiness parameter

b := 1� �

�p
� (2.1)

Using the equation for �, the burstiness parameter b can also be computed by:

b =
Z

Z + xp
;

i.e. it is the fraction of time the source is OFF. It is easy to see, that for b = 0 and �xed �,
there is no ON/OFF structure any more (Z = 0), and the process reduces to pure Poisson.
At the other end when b ! 1, �p ! 1, so all cells in a burst are transmitted simultaneously.
See Section 2.7 for a more detailed discussion of these limits. For now, it is enough to mention
that the higher b, the more bursty the source appears, so that the name burstiness parameter is
justi�ed.

The ON/OFF structure of the modulating process of the 1-Burst model can also be described by
an M/ME/1//1 queueing system with �nite (here one customer) population. See [Lipsky 92]
or Appendix D for a discussion of such queueing systems with �nite population. The busy
period of the ME server in the M/ME/1//1 queueing system corresponds to an ON period. It
would appear that the description of the modulating process as a �nite queueing system with
one customer is a rather complicated, theoretical viewpoint of the 1-Burst model. However, its
usefulness for generalizations will become obvious when more complicated, aggregated models
are introduced.

In addition to the ON/OFF cell traÆc, the 1-Burst model also allows for smooth background
Poisson traÆc with rate �0. In the MMPP representation, that background traÆc just raises the
Poisson rates to �0 during OFF periods and to �p+ �0 during ON periods. The overall cell-rate
is then

� := �0 + � :

Physical Equivalences: Three di�erent real scenarios are natural matches for a single source
ON/OFF model:

1. Single User or single end-to-end connection.
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2. Multiple Sources (Users) but exclusive access: Whenever one user is transferring data, no
other bursts can become active. However, those blocked requests are just dropped (if they
wait, the result is an [IS/G/1/K] model which is introduced in the next section). If all
the sources have exponential OFF periods, the overall observable OFF period is again
exponentially distributed, but with smaller mean.

3. Aggregated TraÆc on a single link: Instead of assigning a burst to a single source at
the network endpoint, it is also a viable approach to model the traÆc on a link within
the network by an ON/OFF scheme regardless of the origin of the individual cells. Since
such a link may be the output of another intermediate system (switch/router), the cell
stream on that link can very well show ON/OFF behavior, where the ON periods are the
Busy Periods of the switch, see also Sect. 10.4. In the measurements that are discussed
in Chapter 4, such single-source ON/OFF behavior is found, although the traÆc is an
aggregation of cell-streams from a large number (several hundreds) of physical sources.

Thus, a burst can be initiated by a single source-destination pair (which is the viewpoint in
Chapter 9), or its de�nition can be related only to the observed traÆc on a single link, i.e.
independent of the origin and the destination of incoming cells, a burst just represents a number
of subsequent cells that can be adequately described by a Poisson process with rate �p. The
latter viewpoint is taken in most parts of this thesis except for Chapter 9.

The background Poisson rate �0 can be used to describe traÆc outside the ON/OFF pattern, e.g.
network management information that tends to show a smoother (sometimes periodic) behavior.
However, depending on the speci�c management task, such traÆc can also be very bursty with
larger chunks of data transmission, e.g. for updates of routing tables. In the latter case, that
traÆc should not be modeled via the Poisson rate �0, but rather by an additional ON/OFF
source.

2.4 Aggregated TraÆc: N-Burst Model

λ pλ p λ p

λ p λ pλ p
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Figure 2.3: The N-Burst Independent Source [IS] Model: Cells from N ON/OFF sources are
multiplexed together.

A natural way of aggregating the traÆc of N ON/OFF sources is shown in Fig. 2.3: Here the
sources are assumed to be independent and identical. The cells of up to N simultaneous bursts
are simply multiplexed together. The parameters for the description of the individual source
remain as in the previous section, with the only di�erence that the average cell rate � is now

� = N�+ �0 :

this model is called N -Burst Independent Source (IS) model hereafter.
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Figure 2.4:The IS/G/N//N model as modulating process of the N-Burst Independent Source
Model: The number of active servers in S1 corresponds to the number of active bursts. Subsystem S2
represents a delay-stage, that creates the exponentially distributed OFF times.

The aggregation of N sources in the N -Burst [IS] model results in a modulated Poisson process
with N + 1 levels, corresponding to the cell-rates i�p + �0, i = 0; 1; :::; N . The modulating
process of the N -Burst [IS] model can again be expressed as a closed queueing system of type
IS/ME/N//N with N customers, shown in Fig. 2.4. The number of active ME servers in S1
corresponds to the number of active bursts. The delay at the subsystem S2 corresponds to the
exponentially distributed idle time of the sources. The matrix representation of the resulting
MMPP model is described in Appendix E.

Since the OFF periods are assumed to be exponentially distributed, and there is no need to
distinguish between the N sources, the N -server delay stage in subsystem S2 in Fig. 2.4 can be
replaced by single-server queue with load-dependent exponential service-rate, as pictured in Fig.
2.5: if n sources are active, i.e. n customers are at S1, then N � n sources are idle, and the rate
of a burst-start is (N � n)=Z. This is discussed further in the next paragraph.

Load dependent burst-arrivals:

The formalization of the modulating process of the N -Burst [IS] Model as a closed queueing
system with load-dependent subsystem S2 allows for another generalization: We can allow any
load-dependent Mld/G/N//N queueing system as modulating process. We started o� with the
IS model, in which the burst-start rate �(n) for n active sources is given as:

�(n) =
N � n

Z
; n = 0; :::; N:

Another physically meaningful scenario is obtained when the burst-start rate is constant for
n < N :

�(n) � � for n = 0; :::; N � 1; and �(N) = 0:
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The resulting modulating process is an M/G/N//N queueing system with no load-dependence
in the arrival process. Thus, the burst-arrival process is a Poisson process with constant rate with
the only restriction that the burst-arrivals are blocked when N bursts are active. In reference to
that Poisson property, these models are called N -Burst [M] Model.

Physical Scenarios: Both, the [IS] model and the [M] model correspond to practically impor-
tant physical scenarios:

� N -Burst [IS] Model: The aggregation of the cell-streams of N sources corresponds to
the multiplexing of traÆc from di�erent links (each described by an ON/OFF source) at a
switch entrance. The assumption here is that individual bursts do not react to the presence
of others, i.e. no feedback or ow control mechanisms exists. The major parts of this thesis
deal with such a base model. However, Section 2.5 provides the framework to include such
a feedback, and Chapter 9 elaborates that approach and discusses a potential application
to the TCP ow control mechanism in IP traÆc.

� N -Burst [M] Model: Whenever a large number of independent sources generate bursts
according to some stochastic process, the aggregated burst-start process becomes
close to a Poisson process. A central limit theorem for stochastic processes (see
[Heyman & Sobel 82]) provides the theoretical justi�cation of that behavior. Conse-
quently, the [M] Model corresponds to the scenario that a large number of independent
sources can potentially become active. While being active they do not inuence each other,
except for the fact that new burst-starts are blocked when N sources are active. Note that
in contrast to the [IS] model, N in the [M] model is not the number of sources, but rather
the upper bound for the number of simultaneously active sources. The latter is normally
a consequence of the �nite network capacity.

More general scenarios, such as discouraged arrivals of bursts due to the reaction of users on
congestion, can be discussed by selecting any function �(n), n = 0; :::; N � 1 for the load-
dependent burst-arrival rate. Results for such models will not be discussed here, although the
numerical evaluation is already set-up in full generality. The same statement holds for the
following generalization:

Waiting Bursts:

For a �nal generalization of the process that describes the number of active bursts, we can allow
whole bursts to queue up until they can access the line. This leads to an Mld/G/N//K queueing
system as modulating process, where any K � N is meaningful. In case K > N , a queue at
Subsystem S1 is necessary, see Fig. 2.5. Such models will still be called N -Burst models, since
at most N bursts can be active simultaneously. The di�erence now is that up to K �N bursts
can be waiting for their turn to transmit cells. For an exact speci�cation of the model, we add
the type of the modulating process in brackets, e.g. the IS models are referred to as N -Burst
[IS/G/N//K] models. If K > N is not speci�ed explicitly, then the model without waiting
bursts (K = N) is assumed.

See Appendix E for the matrix representation of the N -Burst models.

We briey discuss the special case of the 1-Burst [M/G/1//K] Model, which is a variation of the
1-Burst [M] Model with up to K � 1 waiting bursts. In this model, the burst-arrival process is
a Poisson process with constant rate, unless the upper limit of waiting sources is reached. Since
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Figure 2.5: The Modulating Process of a General N-Burst [Mld/G/N//K] Model: The load-
dependent server in S2 provides a general representation that includes the [M] and the [IS] model as
special cases. For K > N , queueing in front of the N server unit in S1 can occur.

N = 1, access to the network line is exclusive, i.e. only one source can transmit cells at a time.
Sources that become active during the time that the line is used will be waiting until they get
access. However, there is an upper limit: only up to K � 1 sources will be waiting. If that limit
is reached, the burst-arrival process is blocked. As an alternative view to blocking, additional
burst-starts can be allowed to happen but they are just discarded. That viewpoint is really an
M/G/1/K loss system. However, due to the exponential distribution of the inter-arrival times,
the M/G/1/K and the M/G/1//K model are equivalent here { the number of customers in S1
is exactly the same stochastic process in both models.

Since one of the waiting bursts becomes active immediately when the current burst �nishes, two
or more ON periods can happen right after each other. The 1-Burst [M/G/1//K] is therefore
still a plain ON/OFF model, but the `new' ON time can be the convolution of several individual
burst-durations. Nevertheless, the [M/G/1//K] model on the cell level could be also expressed
as [M/G0/1//1] model, but with a much more complicated `new' ON time distribution G0, where
G0 is the Busy Period duration of the M/G/1//K system.

We have introduced a large, very exible class of N -Burst models in this section. The represen-
tation of these models as MMPPs with closed Mld/ME/N//K queueing systems as modulator
enables us to apply Matrix-Analytic methods to all these models. However, the performance
analysis here will mainly focus on the N -Burst [IS/G/N//N ] model, i.e. the model with N in-
dependent sources and no waiting bursts. For the rest of the thesis, if we use the term `N -Burst'
without further speci�cation of the modulating process, it refers to the [IS/G/N//N ] model.
When models with waiting bursts are considered, the parameter K > N is pointed out explicitly.
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2.5 Application Mixes & Dynamically Adjustable Cell-Rates

So far, we assumed all bursts in the N -Burst model to be described by an identical parameter set
(hp;Bi, np, �p) and to be independent of each other: their cell-rates simply add up. In particular,
the sources do not react to occurring congestion. For the performance analysis in the subsequent
chapters, we concentrate mainly on such a `base' model. However, the general formulation of the
N -Burst model allows for an incorporation of more complex source behavior. Such modi�cations
are described in this section together with their relevance for traÆc modeling. Performance
results for such more complex models are discussed briey in Sect. 5.8 for application mixes and
in Chapter 9 for more complex transmission protocols for so-called elastic traÆc.

2.5.1 Model of Interaction between Sources

In many scenarios, e.g. real-time or streaming applications, and also the transmission of IP pack-
ets via UDP, the assumption of independently transmitting sources that are not a�ected by any
occurring congestion holds. In contrast to such real-time applications, many data-transmissions
are not necessarily time-critical { except for the impatience of the human users. Such traÆc is
usually called elastic traÆc, and frequently there are so-called ow-control mechanisms imple-
mented in the transmission protocols that allow the sending rate of the elastic traÆc to adjust
in correspondence to the congestion level of the network. The most important example is the
TCP ow-control mechanism, which is discussed in more detail and modeled by variations of
the N -Burst model in Chapter 9. This section describes the fundamental general modi�cations
that are necessary to incorporate such feedback in the N -Burst models. In the end, we obtain
a very general, but still physically meaningful MMPP model where the modulating process is
a closed queueing system of type Mld/Gld/N//K. The load dependence of the general, Matrix-
Exponential server can model a `back-o� behavior' of the sources as described below. Arbitrary
complex notions of load dependence are possible, some of which are described in subsequent
sections.

The essential property of sources of elastic traÆc is that they try to share the available bandwidth
on a transmission path between all the active sources. Thus the rate �p of cell transmission
during an ON period has to depend on the number n of active bursts. That dependence is
captured by load-dependence factors �(n), n = 1; :::; N for the N -Burst model (or equivalently
n = 1; :::;K for the [Mld/G/N//K] model). Therefore, the individual cell-rate �p is replaced
by [�(n) � �p], with the scaling factors �(n) usually decreasing with higher n in most physically
relevant scenarios (it is not very likely that additional traÆc speeds up the active transfers).

However, the amount of data in a burst (i.e. the distribution of the number of cells per burst,
with mean np = �pxp) should remain unchanged by such a scaling of the intra-burst cell rate.
Therefore, a scaling of the cell-rate requires an adequate adjustment of the duration of the
ON time. In case of Phase-type distributed ON periods, an appropriate scaling of the Phase
transition rates (in B) with the same factor �(n) is possible, see Chapter 9 for more details
and for a discussion of the theoretical questions that arise in that situation. In terms of the
representation of the modulating process as a closed queueing system, such a scaling of the
Poisson rates requires the use of load-dependent servers in S1 in order to keep the number of
cells per burst the same. Thus, the result is a [Mld/Gld/N//K] model with load-dependent
burst-arrival rates (in S2) and load-dependent multiple servers in S1 for the ON time duration.
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2.5.2 TraÆc Mixes

So far, we assumed identical sources with ON/OFF characteristic. However, the traÆc on data-
networks is usually generated by a large number of di�erent applications (such as FTP, HTTP,
Video, Audio). TraÆc from di�erent applications also has di�erent properties: for instance, �le
sizes are known to be Power-Tail distributed (e.g. [Garg et al. 92]) thus FTP-data can be
expected to show the same distribution type for the ON periods. On the other hand, the frame-
sizes of a video transmission are closer to an Erlangian distribution, see e.g. [Gogl 00] for a
detailed investigation. It should be possible to characterize such application mixes and include
them in the traÆc model. This section demonstrates how the N -Burst model can be extended
in such a way. Section 5.8 then discusses the performance impact.

There are two fundamentally di�erent possibilities of how traÆc mixes can come up:

1. All N sources are identical, yet the individual source can produce di�erent types of bursts.
Let us assume that we want to model t di�erent traÆc classes corresponding to e.g. HTTP-
requests, FTP-transfers, voice-traÆc, etc. . However, the traÆc classes are not assigned
to individual sources, but every source generates the same mix of all the di�erent classes.
Each of the t classes is described by a separate burst-length distribution, hp(i); B(i)i, and
its peculiar cell-rate during bursts, �

(i)
p .

The model in this case is the usual N -Burst [IS] model but with a composite burst-length
distribution and/or di�erent peak cell-rates, see Appendix B.2.

2. The second possibility is a mixture of di�erent sources. Having ni sources that produce
traÆc of class i only (i = 1; :::; t), each of the classes has to be modeled separately by an
ni-Burst [IS] model with representation hQ(i); L(i)i and the individual classes have to be
merged explicitly which implies using the product space as a new state space:

Q =Q(1) �Q(2) � :::�Q(t); and L = L(1) �L(2) � :::�L(t):

Apart from the obviously di�erent physical scenarios, the main feature with di�erent implications
on performance is: When using identical sources as in Case (1), every source can generate cells

with any of the possible rates �
(i)
p , so there is a wider choice of possibilities for the resulting

Poisson rates than in Case (2). For example, the peak-rate in Case (1) is
�
tmax(�

(i)
p )
�
, while

it is
Pt

i=1 �
(i)
p and thus smaller in Case (2) (assuming ni = 1). Section 5.8 describes how this

property a�ects performance, namely the number of so-called blow-up points is di�erent in the
two scenarios.

When using traÆc mixes in the way described in Case (1), the di�erent types of bursts are
caused by di�erent applications which might belong to di�erent traÆc classes which normally
also show di�erent back-o� behavior in overload situations.. ATM for example o�ers real-time
VBR traÆc, that must not back o� to the same extent, as e.g. ABR-traÆc. Other protocols
o�er prioritized connections that do not have any or only moderate back-o� behavior.

The scaling-factors �(n) for the back-o� of the cell-rates during a burst as introduced in the
previous section do not allow for di�erent back-o� behavior yet. They have to be extended to
be di�erent for each type of traÆc, as shown in Fig. 2.6. When using an ME representation
of the ON times as described in Appendix B.2, a di�erent series of back-o� factors could be
assigned even to every phase of the ME representation. Since this modi�cation can lead to an
enormously large parameter-space for the model, the discussion of the performance behavior
does not investigate such models of traÆc mixes with di�erent back-o� factors.
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Figure 2.6: Burst-Length Distribution in the Scenario of TraÆc Mixes: di�erent traÆc classes
(e.g. rt-VBR, ABR) can have di�erent back-o� behavior. Therefore the scaling factors that determine
the load-dependent behavior of the individual bursts, have to be extended to allow for di�erent factors
for di�erent phases of the burst-length distribution.

2.5.3 Back-O� According to Life-Time of Burst

Another potentially relevant variant of the back-o� behavior is introduced in this section: dif-
ferent back-o� behavior according to the current life-time of the bursts. Again, the discussion of
the performance behavior of such models is beyond the scope of this thesis.

When the active bursts are distinguished according to the order that they started, i.e. the longest
active burst is assigned to Server 1 in S1, the second longest to Server 2, etc., it is also possible to
assign di�erent back-o� factors. For instance, in case of Power-Tailed burst-lengths it would be
a better strategy in terms of throughput of bursts to decrease the cell-rate of the �rst few (older)
bursts to spare more bandwidth for the newer bursts. The reason why that is more e�ective for
burst-length distributions with high variance is that if the bursts have been active for a long
time, the residual life-time will be very likely very long as well. If those long bursts are throttled,
the rare huge events do not block the line as much and let the frequent small bursts pass by
quicker.

The scaling factors �(i)(n) then have to be di�erent for each load-dependent server i, i = 1; :::; N ,
in S1 (see Figure 2.7). Consequently, the servers are not identical any more and have to be
distinguished in the state-space representation of the M=GldS=N==K-System. A reduced state
space representation as mentioned in Section E.2.1 cannot be used in this case.
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are necessary.
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Figure 2.8: N-Burst/M/1 Queue as a Model of an Output Port of an ATM-Switch

2.6 Performance Models

So far, we introduced the N -Burst model which describes in its various variants the network
traÆc at the entrance of a network component, here assumed to be an ATM switch. For the
model of the switch itself, we pick the simplest possible model: the output port of the ATM-
switch is modeled by an exponential server of rate � and some amount of FIFO bu�er space, i.e.
a queueing model of type N -Burst/M/1 as shown in Figure 2.8. Since ATM-cells have a �xed
size of 53 bytes and thus the service times in reality are close to deterministic, the assumption of
an exponential distribution for the service times represents an approximation. However, bu�er
sizes in ATM-switches are rather large (for instance 103 to 106 cells) and the time to drain a
bu�er of n cells is Erlangian-n distributed, which approximates the deterministic distribution
very well for large n. Therefore, the assumption of exponential service times should have little
impact on bu�er-overow in large-bu�er systems. See [Lipsky & Schwefel 00] for a more
detailed discussion of the impact of the service-time distribution.

In reality, physical bu�ers are always of �nite, but potentially large, size. However, it also makes
sense to investigate the behavior of models with in�nite bu�ers, as explained below. The two
di�erent bu�er-models are compared in the following:



2 TraÆc and Performance Models 31

� Finite Bu�er Models (Loss Systems): The ATM-switch can store a large, but �nite
number of at most B cells in its bu�er. Cells that arrive at a full bu�er are discarded
(queueing model of type N -Burst/M/1/B). The probability of such an event is called the
Cell Loss Probability (CLP). A discussion of performance results is given in Section 5.5.

� In�nite Bu�er Models (Secondary Bu�er Model): In most telecommunication net-
works, dropped cells at the ATM layer are retransmitted by higher layers of the network
protocols. So they still add to the load at the input link of the switch. Performance eval-
uation in that scenario can be approximated by using in�nite bu�er models: the �nite
primary bu�er with a capacity of B cells is complemented by an in�nitely large secondary
bu�er. Available bu�er space in the primary bu�er is instantaneously �lled up with cells
from the secondary bu�er (queueing model of type N -Burst/M/1). The probability of a
cell arriving at a full primary bu�er, and therefore having to be stored in the secondary
bu�er, is called Bu�er Overow Probability (BOP).

Performance Parameters: The above description of the two di�erent bu�er models already
listed two performance parameters, the BOP and the CLP, which describe essentially the same
steady-state probability for a bu�er-overow event, but for di�erent bu�er models. Another
performance parameter of interest here is the distribution of the per-cell delay, which is closely
related to the bu�er-occupancy or queue-length distribution. Chapter 5 discusses the behavior
of those performance parameters in steady-state, i.e. if the observation interval of the system
is long enough, such that an equilibrium value is observed. However, it turns out that steady-
state analysis might not be suÆcient, in particular for highly bursty traÆc models. Chapter 6
therefore also discusses the transient counterparts of those performance parameters for �nite
observation intervals.

Another transient performance parameter of interest is the time until the �rst overow (or
loss) occurs, called First Passage Time �(B). Its expected values, called mean First Passage
Time (mFPT), is of concern in major parts of Chapter 6. Note that in contrast to cell delay or
bu�er-occupancy, the First Passage Time is independent of the bu�er-model.

All these performance parameters can be computed numerically for the analytic N -
Burst/M/1[B] model with the Matrix-Analytic methods that are summarized and also partially
developed in Appendix F.

2.7 Approximating Performance Models

A large number of di�erent traÆc models are found in the literature of network performance
analysis (see Section 1.2). Quite a few of these models can be seen as approximations that are
obtained as a limit model of the N -Burst/M/1 queue when some parameter approaches a (phys-
ically unrealistic) limit. The advantage of the limiting models is that performance results are
often easier to obtain, in best case, closed-form analytic solutions exist (e.g. for most steady-
state performance parameters of the M/M/1 queue). The full N -Burst model then describes the
transition region between the di�erent limit models. First, that transition region is of interest
since it contains the most realistic model description. Second, the description of the approxima-
tion models as limits of N -Burst/M/1 queues provides an understanding of the comparability
or the diversity of the di�erent models. In the following, we list several well known performance
models and describe how they can be obtained as limits of the N -Burst model.
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2.7.1 M/M/1 Queue

A simple M/M/1 queue with Poisson arrival rate � = N� and service-rate � is obtained if for
�xed parameters N , �, np, and � of the N -Burst/M/1 queue, the burstiness parameter b and
with it the mean OFF time Z of the [IS] model is reduced to 0, which implies that �p reduces
and xp grows. In that limit, the ON periods are not separated by OFF periods any more, thus
the generated traÆc is purely Poisson. The actual distribution of the ON periods does not even
matter in that limit. See [Lipsky & Schwefel 00] for a more elaborate discussion.

Performance results for the M/M/1 queue are well known, and in many cases, even closed
form analytic expressions exist, see Appendix A. Although it is now widely accepted
that the M/M/1 model is not adequate for traÆc modeling in telecommunication systems
([Paxson & Floyd 95]), it is still widely used in practical design approaches.

2.7.2 Bulk Arrival Models

The limit b! 0 of the N -Burst [IS] model for �xed N , �, and np leads to pure Poisson traÆc.
At the other end, the limit b ! 1 for the same set of �xed parameters, the intra-burst cell
rate �p ! 1, and the duration of the ON periods becomes in�nitesimally small, so all cells
in a burst arrive simultaneously at the switch. Such a model is called a bulk arrival queue.
The resulting mean per-cell delay can be computed by the following closed-form expression (see
[Chaudhry & Templeton 83]):

IE fCDBulkg = g1 + g2
2 g1 � (1� �)

;

where g1 and g2 are the �rst and second moments of the bulk-size distribution, i.e. the distribu-
tion of the number of cells per burst in the N -Burst model, see Appendix C.4. Consequently, in
the limit �p !1, the mean Cell Delay only depends on the �rst two moments of the burst-length
distribution.

Since the time between two cells in a burst of the N -Burst model allows for some draining of
the queue, the CD and also the BOP in the N -Burst model are lower than in the corresponding
bulk-arrival system. Therefore, the performance parameters of the N -Burst model approach the
ones of the bulk-arrival system from below for �p !1. As such, the bulk-arrival model can be
used to derive worst case upper bounds of the performance parameters.

2.7.3 Fluid-Flow Models

A uid-ow limit of the N -Burst model is obtained if the number of cells per burst becomes
in�nitely large while at the same time, the server-speed and also the size of the bu�er grow at
the same speed. Then, the bursts consist of in�nitely small units, which is exactly the uid-ow
approach. To be able to express the limit formally (see also [Lipsky & Schwefel 00]), let

k := Cell-size divisor (each cell is divided into k parts);
np(k) := k � np = New average number of cells during a burst;
�p(k) := k � �p = New peak transmission rate during a burst;
�(k) := k � � = New overall arrival rate;
�(k) := k � � = New mean cell service rate of switch ;
B(k) := k �B = New bu�er-size of switch ;
�(k) := �(k)=�(k) = �=� (remains unchanged).
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For k ! 1, the uid-ow version of the N -Burst model is obtained. See
[Lipsky & Schwefel 00] for the performance behavior in that case. Also, a discussion of the
practical implications with respect to cell-sizes can be found at that reference.

2.7.4 Performance Models on Burst-Level: M/G/1 Queues

The N -Burst model works on cell-level, i.e. the arrival of each individual cell is modeled and
its delay and other performance measures are investigated. A less detailed but therefore much
easier computable model results, if cell-level is avoided completely and only whole bursts are
considered. The service time of a whole burst (with �rst two moments b1 and b2) is then closely
related to the burst-size distribution. The so-called PK formula, see [Kleinrock 75], allows to
compute the expected value of the burst-delay, BD:

IE
�
BDM=G=1

	
=

2 b1
2 � 2 b1

2 �+ b2 �

2 b1 � 2 b1 �
= b1 +

1

2

b2
b1

�

1� �
�

The PK formula holds for all non-preemptive service strategies that do not make use of the
actual service-times. However, Processor Sharing as it is proposed in Sect. 10.6 does not belong
to that group. Except for single sections in Chapter 10, we restrict ourselves to queues with
FIFO (First In First Out) service strategy. Note that the M/G/1 FIFO queue allows single large
bursts to block the server. On the other hand, the N -Burst/M/1 queue intermixes the cells of
simultaneously active bursts which results in shorter queues in most scenarios.

The BD of the M/G/1 model can be seen as a user-oriented performance measure in the limit
b ! 1 (the bulk-arrival model). BD measures the time it takes to complete a single transfer.
Again, [Lipsky & Schwefel 00] provides a more detailed discussion of that model.

2.7.5 Limits for N !1: M/G/1 Model, FGN, �-stable Levy Motion

Several other popular classes of traÆc models can be obtained from the N -Burst model with
the limit N !1. Three main limits are of particular interest:

� M/G/1 Model: The easiest case results when using the N -Burst [M] model. The limit
N ! 1 can be taken without any additional scaling of the process. It converges to a
model in which bursts arrive according to a Poisson process with no upper limit on the
number of active bursts (as in the case of �nite N). Such models are used as a modulating
process for the arrival rate to a queueing model for instance in [Guerin et al., 00].

� Fractional Gaussian Noise Models: If we start o� with the N -Burst [IS] model, it is nec-
essary to do some form of scaling when increasing the number of sources N , otherwise
the total cell-arrival rate grows unboundedly with N . The details are omitted here, see
[Lipsky & Schwefel 00] for reference. One particular way of scaling for the counting
process1 of N -Burst models results in the limit N !1 in a (Fractional) Gaussian Noise
Model, i.e. the counting process shows a purely Gaussian marginal distribution, but retains
the asymptotic correlation structure of the single-source model. In case of Long-Range De-
pendent ON/OFF models (see Chapter 3), a so-called Fractional Gaussian Noise Model
results. See [Norros 95] and [Krishnan 96] for performance results for that model class.

1See Sect. 1.3 for its de�nition.
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� �-stable Levy Motion: A di�erent way of scaling leads to a di�erent limit model
for N ! 1 of the N -Burst [IS] Model, called �-stable Levy Motion. Again, see
[Lipsky & Schwefel 00] for more information.

2.8 Summary

A class of performance models for telecommunications was introduced in this chapter. The traÆc
model, called N -Burst, is based on the superposition of ON/OFF models with Poisson cell-traÆc
during ON. Very general Matrix-Exponential distributions are thereby allowed for the duration
of the ON periods. An upper limit N is imposed on the number of simultaneously active ON
periods (active bursts). The formulation of this model in the framework of modulated Poisson
processes with closed queueing system as modulating process has several advantages:

� Generality: Load dependent stages in the modulator allow di�erent physical scenarios to
be represented. Two important ones in terms of the burst-arrival process are the Inde-
pendent Source Model [IS], and the [M] model with Poisson arrivals of bursts. By in-
troducing load-dependent intra-burst cell rates and corresponding load-dependence in the
ON-time distribution, back-o� behavior, as for example seen in protocols with ow-control
mechanisms, can be captured. An important issue for modeling of source level in modern
telecommunication networks is also the potential to allow for mixes of traÆc with di�erent
properties. It was shown how such traÆc mixes can be incorporated in the model in two
di�erent ways.

� Tractability: The use of Matrix-Exponential distributions for the ON periods results in
an MMPP representation of the N -Burst model. Analytic MMPP/M/1 models can be
evaluated numerically, see [Meier-Hellstern & Fischer 92] and Appendix F.

� Operationality: The advantage of using the N -Burst model as opposed to a general (em-
piric) MMPP model is the underlying structure of the model. Its basic ON/OFF building
blocks can be adjusted to real physical scenarios via operational (i.e. measurable) param-
eters. Also, that underlying structure allows for reasonable extrapolation of the model
parameters, for instance in order to investigate the performance behavior for increased
traÆc volume.

This chapter introduced the model family without confusing the reader with the details about
the MMPP representation. Those can be found in Appendix E. Furthermore, algorithms to
compute performance parameters of the models are described and partially developed further
in Appendix F. One of the problems with the numerical computation is the growing size of
the state-space for more complicated model. Specially designed algorithms are discussed in the
appendix to be able to deal with that problem, at least to some extent. A comparison of the
eÆciency of various algorithms is also given in Appendix F.
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Chapter 3

Self-Similarity, Long-Range
Dependence, and Truncated Power-Tail
Distributions

One major motivation of this thesis is to investigate the signi�cance of Long-Range Dependent
properties of network traÆc for performance. We introduced a class of very exible traÆc models,
N -Burst, in the previous chapter without mentioning such properties so far. TheN -Burst models
belong to the broader class of MMPP models and it is known that due to the inherent exponential
properties of MMPPs, no true Long-Range Dependence as in its mathematical de�nition can
be reproduced1. However, on �nite time-scales { and relevant time-scales for telecommunication
networks are always �nite, see the reasoning in Sect. 3.4 { Long-Range Dependent properties
can very well be reproduced by MMPP models.

One such approach to mimick LRD properties by MMPP models is used by
[Andersen & Nielsen 98], who use the superposition of several exponential ON/OFF mod-
els with di�erent mean ON times to achieve such LRD properties. Our approach is di�erent:
an individual ON/OFF source can show LRD properties when the ON time distribution is
appropriately chosen. A family of distributions, called Truncated Power-Tail (TPT) distribu-
tions, is utilized for that purpose. Furthermore, there is a considerable physical evidence (e.g.,
[Crovella & Bestavros 96], [Willinger et al. 95]) that such distributions should be in-
cluded in models for network traÆc, see also Sect. 3.2.

Power-Tail distributions are also occasionally proposed for the duration of the OFF periods.
Later on in Section 5.7, it will be shown that the shape of the OFF time distribution is less
critical for the performance behavior than the ON time distribution, so that the assumption of
exponential OFF-times is acceptable, regardless of what the actual distribution turns out to be.

3.1 Self-Similarity and Long-Range Dependence

The notion of self-similarity has already been illustrated in Fig. 1.1 in the Introduction. Intu-
itively, self-similar network traÆc means that regardless of the time-scale (e.g. the interval size
� of the counting process, see Sect. 1.3), the traÆc looks the `same' when properly scaled. Of
course, there is a more precise mathematical de�nition of the concept of self-similarity:

When self-similarity is used in the context of network traÆc, it usually refers to the counting
process (Ni(�)), i.e. the number of cell arrivals in the i-th interval of length �:

1The same is true for the broader class of Semi-Markov processes, see Appendix C.1.
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De�nition 3.1.1 The counting process (Ni(�))i=1;2;::: is called self-similar with Hurst pa-
rameter H, if for all s > 0, all �nite dimensional distributions of the rescaled process�
s�HNj(s�)

�
j=1;2;:::

are the same as for the original process (Ni(�))i=1;2;:::.

A related concept is second order self-similarity whose de�nition relies on a similar property, but
now only for the correlation structure. Let (Xi) be a covariance stationary

2 stochastic process.

De�nition 3.1.2 The process (Xi) is called second order self-similar, if the autocorrelation
structure r(m)(k) of the (averaged) aggregated process,

X
(m)
j :=

1

m

mX
k=1

Xjm+k;

is indistinguishable from the autocorrelation structure of the original process (Xi):

r(m)(k) � r(k); for all m; k = 1; 2; ::: :

Frequently (see e.g. [Leland et al. 94]) the above notion of second order self-similarity is also
called exact second order self-similarity to make a clear distinction to asymptotically second
order self-similar processes:

De�nition 3.1.3 The process (Xi) is called asymptotically second order self-similar, if

lim
k!1

r(m)(k)

r(k)
= 1 for all m;

i.e. the autocorrelation structure of the aggregated process
�
X

(m)
j

�
is identical to the autocorre-

lation structure of the original process (Xi) in the limit of large k.

For network traÆc, Xi could be the inter-cell times or alternatively the counting process for
some interval �. Frequently in the literature, (asymptotic) second order self-similarity is used
with respect to the counting process. Later in this chapter, we introduce a version of the N -Burst
model that shows asymptotic second order self-similar properties3 in both, the counting process
and the inter-cell times.

For the models that are discussed in this thesis, it is suÆcient to restrict ourselves to processes
with non-negative autocorrelation function, r(k) � 0. The following de�nitions can also be
modi�ed for general r(k) functions, but the technical details become more laborious in that
case.

With the restriction to non-negative autocorrelation functions, the class of asymptotically second
order self-similar processes is a subclass of the so-called Long-Range Dependent (LRD) processes
([Daley 00]):

De�nition 3.1.4 A covariance stationary process (Xi) is called Long-Range Dependent when
its autocorrelation function r(k) decays so slowly, that its sum diverges:

lim
n!1

nX
k=1

r(k) =1:

2i.e., the autocorrelation function r(k) = r (Xi; Xi+k) exists and depends only on k.
3we show later what we mean by that: we never work with processes that satisfy the de�nitions on all time-

scales. But as we discuss later, the actual mathematical limits are not meaningful for the practical application
towards network traÆc modeling.



3 Self-Similarity, Long-Range Dependence, and Truncated Power-Tail Distributions 37

A suÆcient condition for LRD to occur is that the autocorrelation function drops o� with a
Power-Law with small enough exponent:

r(k) � 1

k��1
; 1 < � < 2 (3.1)

The smaller the value of �, the more slowly does the autocorrelation decay, thus � can be
used as a measure of the degree of Long-Range Dependence for such processes. Whenever we
talk about LRD processes in the following, we refer to processes with the property (3.1). Such
LRD processes, whose autocorrelation function decays as a Power-Law, can be shown to be
asymptotically second order self-similar ([Daley 00]).

Other manifestations of second-order self-similarity are described in Sect. 3.7, in which they are
used to estimate the exponent �.

There is one particular self-similar process that is widely used. It is called Fractional Brownian
Motion, and its increment process is called Fractional Gaussian Noise (FGN). The marginal
distribution of the increments is always Gaussian { hence the name. Its Hurst parameter can
be in the range 0:5 < H < 1. FGN is also exactly second order self-similar and LRD with
an exponent � = 3 � 2H. Although the Hurst parameter is strictly speaking reserved for self-
similar processes according to De�nition 3.1.1, LRD processes show similar scaling properties
with an equivalent `Hurst-Parameter' H = (3��)=2. In the R/S statistics in Section 3.7.2, that
`Hurst-Parameter' for LRD processes shows up.

3.2 Power-Tail Distributions

Long-Range Dependent properties have been found in a large number of measurements of net-
work traÆc, one of the earliest is described in [Leland et al. 94]. However, the discussion
about the impact of the LRD property on the performance behavior is not yet settled at this
time. One major motivation for this thesis is to include LRD properties in the N -Burst model
in order to �nd out about its impact on performance behavior.

Traditional ON/OFF models with exponentially distributed ON and OFF durations (as in
[Heffes 80]) show a correlation structure { both for inter-cell times and counts { that drops
o� exponentially. LRD e�ects can be achieved when so-called Power-Tail (PT) distributions are
introduced either for the duration of the ON or the OFF periods, or both. Such PT distribu-
tions are characterized by a complementary distribution function (reliability function) R(x) that
drops o� very slowly, namely by a Power-Law with exponent � > 0:

R(x) � 1

x�
: (3.2)

Due to the slow decay, the probability that huge events will occur is never negligible. Also, all
moments IE

�
X`
	
for ` > � are in�nite. Thus, if � � 1 the distribution has in�nite mean, and if

� � 2 then the variance is in�nite. Such in�nite variance distributions can be the cause of LRD
properties in ON/OFF models, see Sect. 3.6.

The constant

cPT := lim
x!1

x�R(x) ; (3.3)

is called the tail-constant of the PT distribution R(x). The tail-exponent � together with the
tail-constant fully characterizes the tail of a PT distribution.
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There is also further encouragement for the use of such PT distributions from measurements of
distributions of �le-sizes in both standard �le-systems and WWW-servers. [Garg et al. 92]
found Power-Tail behavior in the sizes of all individual �les of a UNIX �le-system. This is con-
�rmed in [Gribble et al. 98] who measured the distribution of the size of requested �les and
found a Power-Tail with � = 1:48. [Crovella & Bestavros 96] found Power-Tail distribu-
tions for the �le-sizes at a WWW-Server. Therefore, at least for FTP-traÆc and WWW-traÆc,
PT distributions need to be included in the traÆc-model. Also, the analysis of Ethernet traÆc
between speci�c source-destination pairs in [Willinger et al. 95] showed ON/OFF behavior
with Power-Tailed properties.

One type of a PT distribution is the following Pareto Distribution:

R(x) =
1�

x
(��1) �x + 1

�� for x > 0; � > 1 � (3.4)

When � > 1, this distribution has the expected value IE fXg = �x. See Sect. I.1 for a table with
the tail-constants of the Pareto distribution for di�erent values of �.

Although the Pareto function (3.4) has a simple analytic closed-form expression, it is hard
to come up with tractable analytic models that make use of this distribution. Consequently,
simulation models are often used instead of analytic models. The generation of random variables
from Power-Tail distributions is simple, however the analysis of the simulation results can be
very tricky, see [Lipsky et al. 99b] and also parts of Chapter 6.

The interesting question now is: can we integrate PT distributions in the N -Burst models? In
Chapter 2, the N -Burst models were introduced as the aggregation (in various ways) of several
ON/OFF models with ME distributed ON times. Unfortunately, Power-Tail distributions do
not have a �nite-dimensional ME representation. As a consequence, another step is possible,
which is the introduction of truncated Power-Tails in Sect. 3.4. There, further arguments, other
than tractability, are given as to why truncated tails are also more reasonable for the practical
application in network traÆc modeling.

3.3 Properties of Power-Tail Distributions

Before we truncate the Power-Tails that we just introduced, we discuss a few properties of
untruncated Power-Tail distributions. Later on, PT distributions will be used for the ON periods
of the N -Burst model. During the performance analysis, three particular random variables that
are derived from the PT distributed burst duration, A, with exponent � will be of particular
interest:

1. Distribution of Overshoot for threshold x0:
Knowing the fact that the burst duration has already lasted for time x0, the probability
that it will last for another time period of at least length x1 behaves asymptotically for
large x0 as:

Pr (A > x0 + x1 jA > x0) �
�

x0
x0 + x1

��
Note that the probability grows with increasing threshold x0, thus the longer the burst
has already been active, the larger the probability that it will remain active for another
period of at least length x1. This is a peculiar property of PT distributions. For an expo-
nentially distributed burst duration, the probability would be independent of x0 due to its
memoryless property.
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The expected value of the `overshoot', ~A(x0) = (A� x0 jA > x0), in excess of the threshold
x0 turns out to be

IE
n
~A(x0)

o
=

Z 1

x1=0
x1 IP fA > x0 + x1 jA > x0g dx1 � x0

�� 1
for � > 1 :

The expected value of the overshoot also grows with the threshold x0. The growth is
asymptotically linear for large x0. When the PT exponent � is close to 1, the expected
overshoot grows rapidly.

2. Distribution of the Residual Time Ares:
If it is not known how long the currently active burst has already been active (i.e. in the
viewpoint of a random observer), the density function of the residual time Ares can be
shown to be the renormalized reliability function of the original random variable A, see
[Kleinrock 75]:

fres(x) =
1

�x
R(x) ; (3.5)

Eq. (3.5) is only meaningful if �x = IE fAg is �nite.
If the original burst duration is Power-Tailed with tail-exponent � > 1 and tail-constant
cPT, then it follows from Eq. (3.5) that the residual time Ares is also Power-Tailed, but
with smaller exponent ��1. Thus, the reliability function of the residual time decays even
more slowly than for the original burst duration. The tail-constant of the Power-Tailed
residual time follows as

cPT(Ares) =
cPT

(�� 1) �x
for � > 1�

3. Simultaneous Power-Tail distributions:
In models with an aggregation of several simultaneous bursts, it turns out in the analysis
of Chapter 5 that the distribution of the duration of i simultaneously active bursts is of
critical importance (for some special i, see Chapter 5). If we assume that a burst with
Power-Tailed duration, R(x) � 1=x�, starts while another independent burst of the same
kind is already active, the time-period that both of them are active has a duration that is
distributed as

R2(x) = Rres(x)R(x) � 1

x��1
� 1

x�
=

1

x2��1
� (3.6)

That time period ends if either the �rst burst ends, as described by the residual time
Rres(x), or independently, the second burst ends, whose reliability function is R(x).

If another, third independent burst starts while both of the other sources are active, the
same argument leads to

R3(x) = R2;res(x)R(x) � 1

x3��2
;

and by induction it follows for the duration of a time period with the i long-term active
bursts:

Ri(x) � 1

xi��i+1
� (3.7)

In summary, the distribution of the time-period with i independent bursts simultaneously
active is also Power-Tail distributed, but with smaller exponent i�� (i� 1).

An analog derivation can be made for the tail-constants.



40 Dissertation

3.4 Matrix Exponential Representations and Truncated Tails

We mentioned in Sect. 3.2 that Power-Tail distributions do not have a �nite-dimensional ME
representation. However, for the purpose of network traÆc modeling, the question is, how `real'
are in�nite Power-Tails? There are physical limits on e.g. �le sizes, even though these limits
tend to grow with developing technology. Therefore, we would expect that the PT behavior
R(x) � x�� of the ON time distributions is cut o� at some point. Furthermore, the utilization
of computer networks shows a very regular uctuation during the course of a day: normally, there
exist the so-called busy hours, during which the network is heavily utilized. Those 4{8 busy hours
are of particular interest for performance modeling, because that is the time when performance
problems could be expected. If we want to avoid the use of time-varying model parameters {
which we do here { there is only hope to describe the network traÆc realistically during those
busy hours, after which no problems are expected in any case. Therefore, any traÆc model would
not have to worry about Power-Tailed distributed ON periods with a duration longer than those
busy hours. Thus the use of truncated tails is more reasonable, if not to say necessary, for a
realistic traÆc model.
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Tail Distributions with T Phases: The TPT reliability function shows a Power-Law behavior {
appearing linear with negative slope � { for some range of x, before it drops o� exponentially. The
PT-range (marked by dotted lines) can be extended arbitrarily by using more phases.

In this thesis, we use a family of Hyper-exponential distributions that was originally introduced
by [Greiner et al. 99]:

RYT (x) =
1� �

1� �T

T�1X
i=0

�i exp

�
��T
i

x

�
; (3.8)

That family of distributions, called Truncated Power-tails (TPT), provides a systematic way to
obtain PT behavior over a controllable range. With growing number of phases, these distributions
asymptotically approach a Power-Tail distribution in the `weak de�nition':

RY1(x)
�� 1

x�

See Sect. 1.3 for the de�nition of `
��'.
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In order to show the Power-Law behavior (3.2) with the tail-exponent �, and in order to have
mean �x, the constants in (3.8) have to be:

0 < � < 1;

 =

�
1

�

�1=�

;

�T =
1� �

1� �T
1� (�)T

1� �

1

�x
:

Figure 3.1 demonstrates that the reliability functions of the TPT distributions clearly show a
Power-Law behavior (appearing linear on log-log scale) for some range of x before they drop o�
exponentially. A characterization of the so-called Power-Tail Range is given in the next section.
The larger the number of phases, T , the later the exponential drop-o� occurs. Together with
the a priori set parameter � (here usually set to � = 0:5), that is a measure of how dense the
individual TPT phases �ll in the tail, the number of phases can be arbitrarily extended to provide
TPTs with arbitrarily large PT Range. This is the critical advantage of using that systematic
approach of the family of TPT distributions as opposed to curve �tting techniques, which are
for example used in [Feldman & Whitt 98] to obtain an approximation of PT distributions.

Since the TPT distributions are just a special family of Hyper-exponential distributions, their
ME representation follows easily from Eq. 3.8. The matrices are also listed in Appendix B.2.
The tail-constants cPT of the TPT distributions are also listed in Appendix I.1.

General characterization of truncated tails: For the models in this thesis, it is suÆcient to
restrict ourselves to TPT distributions, whose truncation is caused by an exponential drop-o�.
More general concepts are possible, but the speci�c shape of the drop-o� is of minor impact
for the performance behavior of the models in this thesis. We can classify the values of a TPT
distributed random variable in three di�erent regimes.

� The body of the distribution:
The reliability function R(x) for values x up to the order of several times the expected
value of the random variable is called the body of the distribution. In this thesis, the
distribution body is not the major focus, since the goal is to discuss the impact of the
distribution tail instead. However, note that (3.8) can be modi�ed to �t the body of any
distribution arbitrarily closely.

In contrast to the distribution body, the tail of the distribution refers to R(x) with x �
IE fXg. The tail of a TPT distribution consists of the following two parts:

� The Power-Tailed region of the tail:
The Power-Tailed part of the tail is speci�ed by the PT exponent � and the tail constant
cPT:

R(x) � cPT
x�

�
It comprises values of x � IE fXg up to the value, at which the tail is truncated, x <
Rng (X), see the next section.

� The exponential tail:
At some point the reliability function starts to drop o� exponentially. That exponential
tail can be described by its decay rate � and another tail-constant, dTPT:

R(x) � dTPT e
��x :
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The inverse of the decay rate is called Power-Tail Range xT in the next section, since it
determines approximately, for what x the regime of the exponential tail is reached.

If the transition from the Power-Tailed region to the exponential tail was sharply at xT , the
additional exponential tail-constant would be dTPT = cPT=xT

�. However, that is normally
not the case in practice since there is a gradual transition between the di�erent tail-regions.
In particular, the separate tail constants are necessary for the family of TPT distributions
that is used herein.

3.5 Power-Tail Range and Maximum Burst Size

To be able to discuss the impact of truncated Power-Tails, we need to introduce a notion for
the location of the truncation. We restrict our investigations to the class of distributions that
eventually drop o� exponentially (or geometrically in the discrete case). For those distributions,
we de�ne the Power-Tail Range as the mean of the exponential tail or equivalently the inverse
of its decay rate:

R(x) � exp(��x) =) Rng (R(x)) :=
1

�
: (3.9)

The motivation for that de�nition becomes obvious in particular for the case of Hyper-
Exponential distributions: Rng (R(x)) is the mean of the largest exponential phase. That
largest phase is mainly responsible for the drop-o� of the Reliability function. The de�nition as
Rng (R(x)) = 1=� is somewhat arbitrary: any de�nition as a=� with a not too large (e.g. a = 2)
would also be a reasonable choice. However, it is important to pick one de�nition and use it
consistently. Note that the exponential decay rate is the same in the Reliability Function R(x)
as it is in the density function f(x) = �dR(x)=dx.
It can be easily derived that the PT Range of such distributions can also be obtained by the
following limit:

Rng (R(x)) = lim
x!1

R(x)

f(x)
= lim

x!1

R(x)

�dR(x)=dx ; (3.10)

where R(x) is the reliability function and f(x) is the density function of the distribution. The
main purpose of Eq. (3.10) is to distinguish exponential tails from Power-Tails, and also to locate
the exponential tails. For Power-Tail distributions with in�nite tails on the other hand, the limit
R(x)=f(x) grows unboundedly:

RPT (x)

fPT (x)
=

x��

�x�(�+1)
=

x

�
�!1:

Appendix (B.3) shows how to evaluate the range for an arbitrary Matrix-Exponential distribu-
tion. However, note that such a computation for distributions of Erlangian type can be misleading
since the derived PT Range is smaller than its mean, see also right graph of Fig. 3.2.

Note that the existence of Rng (R(x)) does not guarantee that actual PT behavior of R(x) can
be observed for x < x0, but it rather locates the start of the exponential tail at x0.

Although the Power-Tail Range has a clear intuitive meaning, there are several possible mean-
ingful quantitative de�nitions. One possibility, (3.9), is used in this thesis and it turned out to be
successful. However, that de�nition is restricted to distributions with exponential (or geometric)
drop-o�. That restriction is suÆcient for the models in this thesis. Also, the actual shape of the
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Figure 3.2: Power-Tail Range of various Distribution Functions: The ratio R(x)=f(x) for TPT
distributions with di�erent number of phases is shown in the left graph. It converges monotonically to
the PT Range as computed from the ME representation, see App. B.3. The PT range of an Erlangian
distribution is smaller than its mean, see dashed line in the right graph. When computing R(x)=f(x) for a
mixture of two TPT distributions, the PT Ranges of both distributions appear as plateaus of R(x)=f(x).

drop-o� is of little practical impact, since the Power-Tailed region causes the performance criti-
cal behavior. Therefore, any other shape of the drop-o� can be approximated by an exponential
drop-o�, without a�ecting the practical relevance of the results.

A second possible de�nition of the PT Range would be the following:

Rng0(R(x)) :=
1

cPT

Z 1

0
x�R(x) dx :

Asymptotically for large PT Range, this de�nition agrees with (3.9) for the TPT distributions of
Sect. 3.4. Its disadvantage is that � and cPT must be known to apply this de�nition. Therefore,
we do not investigate this de�nition any further, but we exclusively use (3.9) in the following.

Due to the simple Hyper-exponential form of the TPT distributions in Sect. 3.4, their PT Range
follows easily as

Rng (RYT ) =
T�1

�T
=: xT : (3.11)

Figure 3.2 plots the behavior of R(x)=f(x) for several TPT distributions in the left graph. Also
shown in the right graph is an Erlangian-10 distribution and a mixture of two TPT distributions
with di�erent exponents and di�erent PT Ranges. Note that the individual PT Ranges of both
TPT distributions in the mixture can be observed as plateaus in the R=f curve.

Discrete Distributions: An equivalent de�nition of a Power-Tail Range for discrete distribu-
tions is possible. Instead of an exponential decay, we now talk about a geometric decay:

pk � ak = e�(� ln a)k for 0 < a < 1:
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distribution of the number of cells. Asymptotically, the PT Range of �n is given by the expected number
of cells in a burst whose duration is the PT Range of the ON time.

The de�nition of the PT Range for the discrete case is then analogue to the continuous case
(3.9):

pk � ak =) Rng (pk) :=
1

� lna
� (3.12)

Appendix B.3 shows how to compute the PT Range for more general Matrix-Geometric Distribu-
tions. Such distributions appear in various places in this thesis, for example for the queue-length
distribution of MMPP/M/1 queues or for the distribution of the number of cells per burst, which
we consider in the following.

Maximum Burst Size: The ME distribution hp;Bi of the duration of the ON periods in the
N -Burst model is of course directly related to the distribution of the number of cells during such
a burst. The cells during ON periods are generated according to a Poisson process with rate �p
Appendix C.4 shows that the distribution of the number of cells is Matrix-Geometric:

�n = p �np (B+ �pI)
�(n+1)B�0 :

Note that there is a positive probability �0 > 0

�0 = p (B+ �pI)
�1B�0 :

that an empty burst occurs. At �rst, such empty bursts seem to be an anomaly. However, if the
mean number of cells per burst, np, is not too small, the probability �0 is rather small. Secondly,
the calibration methods that are presented in Chapter 4 take the probability �0 into account, so
although the empty bursts are possible in the model, they just look like extended OFF periods,
but the data is still matched. Empty bursts can be avoided by more complicated SM models
that are outside the MMPP class. However, this is beyond the scope of this thesis.
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Figure 3.3 shows in its left graph a log-log plot of the distribution �n of the number of cells per
burst for TPT distributed ON duration. The plots show that the distribution of the number of
cells also shows a truncated Power-Tail. Its PT Range is shown in Appendix B.3 to be

Rng (�n) =
1

ln [1 + 1=(�p Rng (B))]
;

which converges to Rng (�n) � �pRng (B) for large Rng (B). The right graph of Figure 3.3
shows that convergence occurs rather quickly. We de�ne the Maximum Burst Size (MBS) as the
approximate PT Range of the distribution of the number of cells

MBS := �p � Rng (BT ) : (3.13)

Thus bursts with more than MBS cells only happen with very small (geometrically decaying)
probability.

3.6 Autocorrelation Structure of N-Burst Models

It is proven in various papers, e.g. [Greiner et al. 99b], that Power-Tail distributed ON
periods have the consequence that the traÆc from ON/OFF models (both inter-cell times and
counts) is Long-Range Dependent.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

lag k

C
oe

ffi
ci

en
t o

f A
ut

oc
or

re
la

tio
n

1−Burst: b=0.8, κ=1, n
p
=10, α=1.4, MBS=1.2⋅108 (T=36)

Counts: ∆=1         
Counts: ∆=10        
Counts: ∆=100       
Interarrival Times       

Power−Law: c/kα−1

Figure 3.4: Autocorrelation of Inter-Cell Times and Counts for a 1-Burst model: truncated
Power-Laws with exponent �� 1 can be observed for both processes.

For the N -Burst model with TPT distributed ON times, we can compute the auto-correlation
numerically in the MMPP representation, see Appendix C.3. Figure 3.4 shows the results for
the inter-cell times and the counting process for various interval lengths �: All curves show a
(truncated) Power-Tail with exponent � � 1 in the limit for large T . The truncated ON time
in turn causes a truncation of the autocorrelation functions. For the counting process, it can be
observed that the larger the interval � is, the earlier does the exponential drop-o� occur.
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3.7 Statistical Methods

We briey describe a number of statistical tests for Power-Tail distributions and for Long-Range
Dependence. Such tests normally provide an estimate of the Power-Tail exponent � which will
be necessary in Chapter 4 as part of the parameter estimation procedure for the N -Burst model.
However, the list of statistical methods that is given here is in no way complete. See [Beran 94]
and [Adler et al. 98] for more information and a more thorough statistical analysis of such
estimation procedures.

3.7.1 Test for Power-Tail Distributions

There are several methods to test whether samples (Xi) are generated by a PT distribution,
and to estimate the tail-exponent �. We mention two of them here:

Hill Estimator

The Hill-estimator is derived from properties of the order statistics of samples from Power-Tail
distributions, We omit the background and just state the estimator here, see [Hill 75] for more
details:

�̂(k) =

"
1

k

k�1X
i=0

(logX[n�i] � logX[n�k])

#�1
; (3.14)

where X[n�i] is the ith largest element of the total of n samples. Thus the estimator �̂(k) is
based on the k largest samples of the given data-set. For growing values of k, the estimator
should eventually stabilize at values close to �.

Mean Excess Function

In Section 3.3, we pointed out that a peculiar property of Power-Tail distributions is that the
expected `overshoot' X � x0 in excess of some threshold x0 grows with increasing value of the
threshold as

IE fX � x0 jX � x0g � 1

�� 1
x0 : (3.15)

This property can be used in an estimate of the expected overshoot of the samples for several
threshold values. If the estimate grows roughly linearly, a PT distribution can be expected to
be involved and the tail-exponent � can be estimated by linear regression and Eq. (3.15).

This method was used in [Leland & Ott 86] to point out one of the �rst signi�cant occurrences
of PT distributions in computer systems: they found that the execution times of programs show
Power-Tailed durations.

3.7.2 Estimators for LRD Properties

LRD manifests itself in a number of ways that can be used for an estimation of the exponent
�. All methods described here �t a Power-Law to some data (x; y), which is done by linear
regression on (log x; log y). The problem in practice is that LRD is an asymptotic property,
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so the linear regression has to be done for some suÆciently large set of x. For simplicity, we
determine that range of values by inspection { but the resulting estimates can depend quite a
bit on the chosen range. No good automatic approaches are known for this problem, and it is
not the goal of this thesis to develop those.

In the following, three di�erent estimators for the PT exponent � that is involved in the de�nition
(3.1.4) of LRD are described. The estimators can be applied to either inter-cell times or counts.
Here, we exemplarily apply them to inter-cell times that are generated by simulation of N -Burst
models.
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Figure 3.5: Comparison of an Estimate of the Autocorrelation curve from Simulated 1-Burst
Samples with the Exact Numerical Results from the Analytic Model: the simulation uses
n = 7:8 � 105 samples, which is comparable to the size of several measurements of ATM inter-cell times
in Appendix I.2.

The �rst method is based on the de�nition of LRD:

r(k) � k1�� :

Consequently, the estimated autocorrelation function, r̂(kj), at lags kj from the samplesXi of the
inter-cell times can provide an estimate for � by linear regression on the points (log kj; log r̂(kj)).
Figure 3.5 shows such an estimate for the correlation function for a sample set of n = 7:8 � 105
inter-cell times. This is approximately the sample-size of the smaller measurements that are
used in Chapter 4. For large values of k, the estimated correlation function becomes rather
noisy, compared to the straight line that is obtained from the analytic model. Nevertheless,
linear regression can be applied to estimate the slope in the log-log plot.

R/S Statistics

The rescaled adjusted range or R/S statistics is de�ned as the ratio R(n)=S(n) for a subset of n
samples where

R(n) := max(0;W1; : : : ;Wn�1)�min(0;W1; : : : ;Wn�1) ; (3.16)



48 Dissertation

with Wk :=
kX
i=1

(Xi � �X(n)); �X(n) :=
1

n

nX
i=1

Xi:

Wk with k < n sums up the di�erences between the �rst k samples of the block from the sample
mean of all the n samples in the block. The denominator

S(n) =

vuut 1

n

nX
i=1

(Xi � �X(n))2 ;

is just an estimate for the standard deviation of the n samples in the block.

It can be shown (see e.g. [Beran 94]) that for an increasing block-size n, the R/S statistics
show the following asymptotic behavior:

R(n)

S(n)
� nh;

where h = H is the Hurst-parameter for a self-similar process. For a Long-Range Dependent
process whose autocorrelation function behaves as r(k) � 1=k��1 with 1 < � < 2, the ratio
R(n)=S(n) grows asymptotically as a Power-Law with exponent h = (3 � �)=2. For any well-
behaved process (short-range dependent), an exponent h = 0:5 is observed in the asymptotic
growth of the R/S statistics.
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Figure 3.6: R/S-statistics of 10-Burst Simulations: The upper curve uses PT-distributed burst-
lengths with tail-exponent � = 1:5, while the lower curve uses exponentially distributed burst-lengths.
For the latter, the resulting �̂ is close to 2 which is a sign of lacking Long-Range Dependence.

Figure 3.6 shows the resulting graphs for a simulation of the 10-Burst process. The resulting
estimate �̂ = 1:55 is slightly higher than the true model parameter � = 1:5. The exponentially
distributed burst-lengths result in �̂ of 1.92, thus close to the expected value 2.

The single value of R(n)=S(n) only uses n samples. Therefore the whole sample-space of 7:8 �105
samples is partitioned in up to 30 equally sized blocks, and the average of the 30 individual
values of R(n)=S(n) for the individual blocks is plotted in Figure 3.6. The number of partitions
gets less with increasing n since only non-overlapping partitions are used.
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Variance-Time Plot

The last method, called Variance-Time Plot, uses the aggregated data stream X
(m)
j :

X
(m)
j :=

1

m

jmX
i=(j�1)m+1

Xi; j = 1; :::;
j n
m

k
:

The variance of the aggregated stream then shows the following behavior (see e.g. [Beran 94]:

Var(X(m))

Var(X)
� m1�� for LRD processes.

If the method is applied to a data stream with short-range or no correlation at all, the variance
of the aggregated stream decays more quickly as m�1 { for the latter case of a renewal process
Var(X(m)) = 1=m2 �m �Var(X) = m�1 �Var(X). Therefore, estimates of � close to 2 are a sign
of the absence of LRD properties.
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Figure 3.7: Variance-Time Plots for Simulations of 10-Burst Processes: The upper curve shows
the results for PT-distributed (� = 1:5) burst-lengths. It clearly indicates LRD properties, since the
variance decays rather slowly. The other simulation uses exponential burst-lengths, therefore the variance-
time plot yielded an estimate of � close to 2.

In Figure 3.7, the variance-time plot for simulated samples from a 10-Burst process with Power-
Tailed (� = 1:5) and exponential ON durations is shown. Aggregation levels of m = 2i, and
m = 3 � 2i, i = 0; 1; :: are used in that plot. The aggregation is stopped when the aggregated
stream had less than 20 samples (which is already a very thin basis for estimating Var(X(m)) ).
The plot for the LRD model clearly shows a slower decay of the variance than in the exponential
model. Note that the estimate �̂ is slightly too high. However, since the upper curve in Fig. 3.7
is slightly bent, the actual numerical value of the estimate for � changes slightly with the range
of aggregation levels m that is used for the linear regression.
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Chapter 4

Measurements and Model Calibration

The best traÆc model is useless without a feasible (and reliable) method for parameter es-
timation. Such a method is developed in this chapter for the 1-Burst model. The method is
then applied to a set of actual measured data from [Gogl 00]. The performance analysis of
N -Burst/M/1 queues in the subsequent parameters is put in a context of a `real' scenario by
using a parameter-set which is close to the estimates in this chapter.

4.1 Description of Measurements

Figure 4.1: The topology of the backbone of the German Scienti�c Network (B-WiN) at the
time when the measurements were taken (source: DFN Verein): the point of measurement was
at the entrance to the backbone in Munich, see next Figure.

Herein we use a set of measurements of inter-cell times that were obtained in [Gogl 00] at the
entrance point to the IP-over-ATM backbone of the German Scienti�c Network (B-WiN) at the
end of 1997. Figure 4.1 shows the topology of the backbone at that time. The data was taken
at the access point in Munich, where the traÆc from three large universities and several smaller
institutions entered the backbone. Figure 4.2 shows the detailed structure of the part of the
network at the measurement point. More technical details about the network con�guration and
about the measurement procedure can be found in [Gogl 00]. Also, a lot more analysis of the
measured data can be found there. This thesis concentrates purely on the parameter estimation
for the N -Burst model.
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Figure 4.2: The Point of Measurement: Inter-cell times of ATM cells were captured at the transition
from the access network in Munich to the backbone. See [Gogl 00] for more technical details.

4.2 Daily Pro�les

In addition to the high-resolution measurements of individual inter-cell times, long-term mea-
surements of the counting process for time-intervals � = 2s and more were performed in
[Gogl 00]. Those long-term measurements clearly show that a regularly changing utilization
pro�le can be observed during the course of a single day. Network traÆc is not stationary over
the course of the day, but the utilization is noticeably higher during the busy hours, which can
be identi�ed as the hours between 10am and 4pm on work days in the B-WiN measurements.

With respect to QoS, those busy hours are of particular interest. The performance analysis, and
thus also the parameter estimation procedure, normally concentrates on this time period. The
signi�cance of this daily pro�le is that any stationary description of network traÆc can only
be valid for that limited time period. Therefore, steady-state performance analysis as presented
in Chapter 5 has to be questioned for its practical relevance, if the time it takes for some
performance parameter to converge to its steady-state value is of the order or larger than those
busy hours. The latter analysis is done in the course of the transient analysis in Chapter 6.
Furthermore, it would be meaningless to include features in the model that only become e�ective
if the (stationary) lifetime of the network was much longer than those 6-8 daily busy hours. This
argumentation also justi�es the use of truncated tails for the burst duration: any burst longer
than 8 hours cannot develop its full performance impact in any case, since it will partially fall
outside the stationary time-period with high-load.

However, one has to keep in mind that eventually traÆc from other parts of the world might
travel through the networks, in which case the daily pro�le can be smoothed out somewhat.
Yet at present, this cannot be expected within the next few years due to political and economic
reasons.
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4.3 1-Burst Calibration

The N -Burst process is fundamentally a more general approach for modeling self-similar traÆc.
So why bother with the calibration of the 1-Burst model? First, there are more robust methods
for the parameter estimation of the 1-Burst process, and the results of the 1-Burst calibration
can be a starting point for the general N -Burst process. Secondly, the measurements at the
B-WiN entrance were done behind the Customer Service Switch (see Fig. 4.2) and therefore all
the outgoing (or incoming) data was already sequentialized in a single stream, see also Sect.
10.4. It is de�nitely worth testing whether this stream can be adequately modeled by a 1-Burst
process.

Unfortunately, it is not possible to recognize ON and OFF periods purely from the inter-cell
times Xi with suÆciently high success rate. Using a threshold approach and assuming that an
ON period is given as long as the inter-cell time does not exceed a certain threshold, results in
a method that is highly dependent on the value for the threshold and even if a `good' threshold
value was chosen, short inter-burst times could be wrongly identi�ed as inter-cell times within
a burst or vice versa. Consequently, there is no hope do derive ON time durations from the
measured Xi, but the calibration has to rely on more subtle approaches.

Hereafter, we present a calibration method that uses thresholds to �lter out inter-cell times
within a burst and also inter-burst OFF times, yet only likely candidates for both classes con-
tribute to the estimators, such that it becomes statistically signi�cant for large enough sample-
sizes and proper choices of the thresholds (see Sects. 4.3.2 and 4.3.3). Having determined esti-
mates for the cell-rates, the mean ON time is thereafter derived from known formulas for the
1-Burst model.

4.3.1 Marginal Distribution of Inter-Cell Times

The time Xi between two subsequent cells in the 1-Burst model can be assigned two one of the
following three categories, each having a di�erent marginal distribution:

1. Xi Completely contained in a one ON period: Both cells are generated during the
same ON period. The cells are generated by a Poisson process with rate �p + �0, with
the condition that the ON period does not end beforehand. When assuming the duration
of the ON period as exponentially distributed with rate 1=xp, the distribution of such an
inter-cell time U has the reliability function:

RU (t) = exp (��t) ; with � := �p + �0 +
1

xp
�

The expected value follows as:

IE fUg = 1

�
�

2. Xi Started during OFF-Period: The �rst cell is generated during an OFF period,
which is of course only possible if �0 > 0. The subsequent cell can either be generated in
the same OFF period, in the next ON period, or there could be an arbitrary number of ON
periods with zero cells in between. The distribution of such an inter-cell time, W , in case
of exponentially distributed ON periods is expressed by the following ME distribution:

pW = [1; 0]; BW =

� 1
Z + �0 � 1

Z
� 1
xp

1
xp

+ �p + �0

�
=

� 1
Z + �0 � 1

Z
� 1
xp

�

�
:
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Since the �rst cell is generated during the OFF period, at the beginning of the time-span
W , the 1-Burst model is still in the OFF state, in BW represented by the �rst state, thus
pW = [1; 0]. From there, the next cell can be generated with rate �0 or a transition to
the ON state with rate 1=Z can occur. Such an ON period can either end with rate 1=xp
without generating any cell, or the second cell is generated with rate �p + �0, which ends
the time-span W .

The expected value follows as

IE fWg = pW (BW )�1 �0 =
1 + Z �

(1 + �0Z) �� 1=xp
� (4.1)

3. Xi Started by Last Cell of ON-Period: The �rst cell is generated during an ON
period, which ends before the second cell is generated. Such an inter-cell time V is the
sum of the residual time of the burst-length and the time W as discussed above:

pV = [1; 0; 0]; BV =

24 � �� 0
0 1

Z + �0 � 1
Z

0 � 1
xp

�

35 :
The 2 � 2 sub-matrix on the bottom right is actually the matrix BW of case 2. Since V
is the sum of the residual ON-period duration and the random variable W , the expected
value is simply:

IE fV g = IE fUg+ IE fWg = 1

�
+

1 + Z �

(1 + �0Z) �� 1=xp
� (4.2)

If �p � �0 and �p � 1=Z (i.e. the cell-rate during ON dominates), then the inter-cell times U
of type 1 generate most of the short inter-cell times, while V and W are mostly inuenced by
�0 or 1=Z, which means they are more likely large.

Note that the assumption here is that ON periods as well as OFF periods have an exponentially
distributed duration, which is of course in general not the case for the ON periods. However,
since the calibration methods are based on expected values, the exponential assumption yields a
reasonable approximation (see the left graphs in Figs. 4.3 and 4.4). An analysis which is based on
the exact distribution of the ON periods would be very complicated, and that exact distribution
would be hard to determine in practice.

All three types of inter-cell times collectively have the expected value

IE fXg = 1

�
=

Z + xp
xp�� 1 + �0Z

�

The overall fraction of cells during OFF periods is

pW =
Z

Z + xp
� �0
�

=
�0 Z

�xp � 1 + �0 Z
�

The fraction of cells that are generated right before the end of an ON time corresponds to the
number of non-empty bursts divided by the overall number of cells in some large time-period t0
(which cancels out)

pV =
1

� (Z + xp)

�xp � 1

�xp
=

1� 1
�xp

�xp � 1 + �0 Z
�
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All the remaining inter-cell times belong to class 1, thus

pU = 1� pV � pW =
xp�� 2 + 1=(�xp)

� (Z + xp)
=

(�xp � 1)2

�xp (�xp � 1 + �0 Z)
�

The fractions pW , pV , and pU also represent the probabilities that an arbitrarily picked inter-
cell time Xi is of type W , V , and U , respectively. For validation, the weighted average of the
expected values of the three classes of inter-cell times has to be the expected value of all inter-cell
times:

pV IE fV g+ pW IE fWg+ pU IE fUg = IE fXg = 1

�
:

4.3.2 Threshold Estimate for the Intra-Burst Rate, �p

We saw in the last section that the inter-cell times fall into one of three classes with marginal
distribution either fU , or fV , or fW . In the usual case of �p � �0 and �p � 1=Z, short inter-
cell times are most likely generated by the intra-burst class with density fU(t) = exp(��t)=�.
The calibration method makes use of that fact by selecting only the short inter-cell times via a
threshold T0:

(U�j ) = fXijXi < T0g :
The probability that a sample of type U is generated below threshold T0 is:

FU (T0) = 1� exp (��T0) = �T0 +O(T 2
0 );

where g(x) = O(f(x)) is the notation for limx!0 g(x)=f(x) = c with jcj > 0 and jcj < 1, i.e.
`g(x) decays as fast as f(x) for x! 0'.

Since the inter-cell times V that are created by the last cell of a burst, are in a broader sense
of an Erlangian type (the sum of an exponential r.v. and another r.v.), the probability FU (T0)
decays more quickly for small T0:

FU (t0) = o(T0) for T0 ! 0:

The notation g(x) = o(f(x)) is equivalent to limx!0 g(x)=f(x) = 0, i.e. `g(x) decays faster than
f(x) for x! 0'.

Consequently, for a small enough threshold T0, the fraction of inter-cell types of Class `V ' in
(U�j ) will vanish more quickly than the samples of Class `U '.

Unfortunately, the same does not hold for samples of Class `W ' if �0 > 0 (if �0 = 0, no such
samples exist). Those inter-cell times can be generated `instantaneously' by the exponential
distribution with rate �0 � �p. Consequently,

lim
T0!0

FW (T0)

FU (T0)
=
�0
�
;

which is small but still not 0. However, since their proportion in the number of samples in (U�j )
converges to the (in case �p � �0) even smaller value

�0 pW
� pU

=
Z�20xp

(�xp � 1)2
;

we neglect the samples of Class `W ' in (U�j ) in the following. With that assumption, for a small
enough threshold T0, (Uj)

� almost surely contains only intra-burst times. The distribution of
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U�(T0) is then the exponential distribution with rate � which is cut o� at the value of the
threshold T0:

FU�(T0)(x) = IP fU�(T0) � xg = 1� exp(��x)
1� exp(��T0) for 0 � x � T0 :

The mean of U�(T0) then comes out as

IE fU�(T0)g = T0 � T0
1� exp(��T0) +

1

�
=

1

�
� T0

1

exp(�T0)� 1
=: gU (�; T0) � (4.3)

Note that lim�!0 gU (�; T0) = T0=2 and lim�!1 gU (�; T0) = 0. Furthermore, gU (�; T0) is mono-
tonically decreasing with �.

The measured inter-arrival times Xi < T0 yield an estimate c�U from the data. Equation (4.3)
can then be solved numerically for an estimate b�.
� = �0+ �p+1=xp still contains two unknown model parameters, �p and xp, even if we assume
the background rate �0 to be known in advance. Thus, we have to continue the analysis before
we can actually derive the �rst model parameter. In that sense, the headline of this section is
promising too much at this time.
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Figure 4.3: Threshold estimate of � (here � = �p + 1=xp) for di�erent simulations of the
1-Burst process with n = 106 samples: If T0 is too small, then the number of samples below the
threshold is too low and the estimator is not reliable. On the other hand, if T0 is too large, the danger of
taking inter-burst times into account increases. For higher T0 the curve actually drops down (not shown
here). The left graph shows the estimators for Power-Tailed burst-length distributions, while the other
experiment uses exponential burst-lengths.

Choice of the threshold T0: The threshold T0 should be as small as possible in order to exclude
all inter-burst times. However, if T0 is too small, then the number of samples Uj becomes too
small and the estimate of c�U becomes unreliable. A practical solution would be to computec�2(T0) for a range of thresholds minfXjg < T0 < medianfXjg, plot the graph, and look for the
value of T0 where the curve shows a horizontal plateau for the �rst time. Figure 4.3 shows such
graphs for simulations of the 1-Burst process. The graph in Fig. 4.3 mainly concentrates on the
area for small T0. For larger values of T0 the curve indeed drops down because more and more
inter-burst times inuence the estimator.
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If the burst-length distribution is not exponential the distribution of U is much more complicated.
However, since we only work with expected values for the estimator, the exponential case can
be used as an approximation. In fact, Eq. (4.3) is used successfully in Fig. 4.3 although the
burst-length distribution in the simulation is TPT distributed.

In Fig. 4.3, there is no background Poisson rate, so the estimator for � is unbiased for T0 ! 0.
There can be some distortion through the samples of class `W ', if �0=�p is not close to zero any
more.

4.3.3 Threshold Estimate for Intra-Burst Time Z

A similar threshold approach is used to estimate the intra-burst time Z. This time, a lower
bound T1 is used to �lter out the inter-cell times within a burst, leaving the samples

(V �
j ) = fXijXi > T1g :

For large T1 and �p � �0 and �p � 1=Z, the samples in (V �
j ) will be exclusively of type `W '

and `V ', i.e. the fraction of intra-burst times in (V �
j ) goes to zero.

Both V and W are ME distributions, but not purely exponential. The expected value of V � can
of course be computed exactly, but no simple formulas for the calibration method result. Thus,
as an approximation, we assume IE fV �(T1)� T1g = IE fWg ; as if those there exponential with
mean IE fWg. Hence, we use the relationship

IE fV �(T1)g � T1 +
xp + xpZ�

(xp + xp�0Z) �� 1
� (4.4)

Again, the sample mean of all inter-arrival times Xi > T1 yields an estimate c�V (T1) for the
expected value of V �.

A third equation is still necessary to compute the three unknown parameters �p, Z, and xp.
The expected value of all inter-arrival times IE fXg with the sample mean c�X as an estimator
provides the missing equation:

IE fXg = Z + xp
�pxp + �0 (xp + Z)

=
Z + xp

xp�� 1 + �0Z
� (4.5)

For the threshold T1 there is the upside down situation as for T0. T1 should be as high as possible
since the higher T1 the smaller the probability of having intra-burst times in the samples (V �

j ).
On the other hand, the higher T1 the smaller gets the number of samples for the estimate ofc�V (T1). As a conclusion, the same procedure as for the � estimate should be applied: draw the
curve c�V (T1)� T1 for median fXjg � T1 < max fXjg and look for the last, stable plateau.

The actual estimators for the 1-Burst parameters bZ and cxp are derived by solving Eqs. (4.4)

and (4.5) which leads to the following quadratic equation for bZ,bZ2 b� (1� �0c�X) [�0 (c�V � T1)� 1] +

+ bZ hb� (c�V � T1)� c�X (b�� �0)� 1
i
+ c�V � T1 � �x = 0; (4.6)

whose positive solution provides the estimate bZ. Thereafter, cxp and c�p are computed as:

cxp = bZ + c�X �1� �0 bZ�c�Xb�� 1
and c�p = b�� �0 � 1cxp � (4.7)
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Figure 4.4: Estimator c�V �T1 for the Samples of 1-Burst Simulations: The dashed line shows the
value of the approximation in Eq. (4.4). For the exponentially distributed burst-lengths in the right graph,
the estimator is in agreement with the true value IE fWg. However, for PT distributed burst-lengths (left
graph), the estimator is slightly too high.

4.3.4 Determining the Background Poisson Rate �0

So far, we assumed that we know the value of the parameter �0 beforehand. In practice, this is {
of course { rarely the case. There are two fundamentally di�erent approaches, how the parameter
�0 can be estimated:

� Additional information about the measured traÆc can be obtained: For example, the cells
can be assigned to certain applications or network management information, which are
known to be adequately described by Poisson traÆc. In that case, the background Poisson
rate �0 is determined beforehand by a separate analysis of cells of such classes only.

� Additional properties of the inter-cell times Xi are used to determine an estimator c�0.
Figure 4.5 shows two potential candidates. As we see in the left graph, the coeÆcients of
correlation of 1-Burst processes that are calibrated to simulation runs reduce when the
apriori background Poisson rate �0 is increased. The estimate c�0 is then obtained from
the intersection with the estimated coeÆcient of variation of the data. However, for the
individual replications, the estimate c�0 shows a range starting at about 0:05 up to 0:13.
In Replication 1, the desired value of C2(X) = 9 is not even reached at all.

The short-range correlation, r(1), provides a more stable estimator for c�0: As the right
graph of Fig. 4.5 shows, a larger �0 increases the short-range correlation substantially.
The intersection with the estimate r̂(1) from the samples Xi occurs very close to the true
model parameter �0 = 0:1 of the simulation.

In summary, either additional information beyond the pure inter-cell times Xi need to be ob-
tained for the calibration of the back-ground Poisson rate �0 before the remaining parameters
are determined. If this is not possible, the estimators bZ(�0), cxp(�0), c�p(�0) are computed for
a range of �0 with 0 � �0 < �. The short-range autocorrelation, r(1), is then computed for
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Figure 4.5: The CoeÆcient of Autocorrelation and the Short-Range Correlation for di�erent
Background Rates: Note that b�, cxp, and bZ are �xed. With varying �0 all other N -Burst parameters
change according to (4.6) and (4.7).

the analytic 1-Burst model with those parameter-sets. The closest �t of r(1) to the estimated

correlation from the samples Xi then yields the estimator c�0.
However, note that the short-range correlation depends strongly on the `body' of the burst-length
distribution. With the estimators for the LRD properties in the next section, the tail-exponent
of the burst-length distribution is determined { in case it turns out to show LRD properties.
However, we always assume the TPT distribution as the underlying Power-Tail distribution,
which in practice could be di�erent. Since the duration of the individual ON periods cannot be
easily obtained from the inter-cell times Xi, histogram methods cannot be applied to obtain a
description of the body of the burst-length distributions.

4.3.5 Application to Measurement Data

Figure 4.6 shows the resulting curves of the estimators b� and c�V �T1 for two real measurements
while varying the thresholds T0 and T1. Two di�erent sets of measurements are discussed in this
section: TX3 captures the inter-cell times of traÆc that was sent into the backbone at the access
node in Munich. RX3 on the other hand presents a measurement of ATM cells going the opposite
direction, i.e. coming from the backbone into the Munich network. The measured inter-cell times
Xi had the following properties:

Measurement #samples max(Xi) IE fXg = ��1 C2(X) r(1)

TX3 784 652 27 ms 61.4 �s 13.7 0.129

RX3 784 650 7:2 ms 51.6 �s 22.3 0.0684

The estimators �̂(T0) and �̂V (T1)�T1 clearly show plateaus in Figure 4.6 for both measurements.
Therefore the estimates �̂ and �̂V can be determined. From �tting the short-range autocorrela-
tion r(1), the following values for the 1-Burst parameters were obtained:
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Figure 4.6: The Threshold Estimates for Measurements TX3 and RX3: The thresholds that are
used for the calibration are T0 = 44�s and T1 = 840�s.

Measurement �p [cells/ms] �0 [cells/ms] xp [�s] Z [�s] np = �pxp b = 1� �=�p

TX3 132 0.444 82.0 600 10.8 0.88

RX3 135 0.142 118 706 15.9 0.86

Note that the intra-burst cell-rate �p is almost a factor of 300 (respectively 950) larger than
the background Poisson rate �0. Also the peak cell-rate is almost the same for the `Transmit'
and `Receive' direction. Finally, the burstiness parameter b is very high, which is somewhat
surprising since the traÆc in the measurements is highly aggregated (in the order of 100 to 300
simultaneous IP connections contribute their ATM cells), and one normally expects that higher
aggregation reduces the burstiness. Very likely, the burstiness of the aggregated traÆc is smaller
than for individual source destination pairs, but an analysis on that level is not performed here.
Some information about the traÆc on application level can be found in [Gogl 00].

See Appendix I.2.2 for a table with results for additional measurements of the same kind.

4.4 Long-Range Dependence and the Tail-Exponent �

So far we have introduced a method to estimate the parameters �p, xp, Z, and �0 for a 1-Burst
model from measurements of inter-cell times Xi. The parameters np = �pxp, � = np=(xp + Z),
and b = 1 � �=�p = Z=(Z + xp) can be derived from the former set of estimated parameters.
Still missing is the actual distribution of the ON and OFF times (in addition to their expected
values xp and Z). We show in Section 5.7 that the actual distribution of the OFF times is not
so critical for performance { by far less critical than the ON time distribution at least. So we
just assume the OFF time to be exponential and do not have to worry about it further { the
OFF distribution is completely described by its mean Z.

The situation for the distribution of the ON periods is quite di�erent: we will see later that
its impact on performance can be large, in particular when PT distributions are involved. The
distribution of the ON periods in the 1-Burst model also has a large impact on the correlation
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structure of the resulting inter-cell time process: as we showed in Section 3.6, Power-Tail dis-
tributed ON times with tail-exponent � cause a slow Power-Law decay of the autocorrelation
function, in fact with exponent � � 1. If � is small enough, 1 < � < 2, LRD properties are
caused in both inter-cell times and counts. As a consequence, the tests for LRD properties that
are briey described in Section 3.7.2 can be used to �nd out whether PT (or TPT) distributed
ON periods need to be used for the ON periods, and to estimate the tail-exponent �.

In addition to the tail-exponent �, the description of the Power-Tail also requires a tail-constant
cPT. For simplicity, we exclusively use the TPT distributions that are described in Section
3.4. Although those TPT distributions could easily be modi�ed to mimic any tail-constant, in
the basic version used here, the tail-constant of the TPT distribution is �xed for given �, see
Appendix I.1 for a table with numerical values. Thus we do not attempt to match the tail-
constant of the ON time distribution in the data.

For truncated tails, additional methods to obtain the parameter MBS (or equivalently the PT-
Range xT of the ON time distribution) would have to be developed. We omit the parameter
estimation for MBS here completely. Instead, we discuss the scenarios of how a changing value
of MBS a�ects performance. From the truncated behavior of e.g. the correlation function of the
measured inter-cell times, the order of magnitude of the MBS in the data can be estimated.
However, this estimation requires a huge amount of measured data if that truncation is far out
in the tail.

Note that the straightforward approach of applying statistical tests (e.g. for Power-Tails as in
Sect. 3.7.1) on the individual ON durations is not possible here: in our scenario, there is no
feasible approach to detect the individual ON periods from the measured inter-cell times Xi. As
mentioned earlier, any kind of threshold approach to distinguish ON and OFF periods is too
unreliable, since the results depend strongly on the actual value of the threshold.

In the following, we apply the methods for LRD estimation of Section 3.7.2 on the measurements
TX3 and RX3. Furthermore, the results are compared with a trace of measured Ethernet-data that
was already object of several papers (e.g. [Leland et al. 94] and [Willinger et al. 95]) and
is therefore well known.
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Figure 4.7: Log-Log Plot of the Autocorrelation in Measurement TX3: LRD properties can be
observed in the left graph. The �tted line has a slope of �0:46, i.e. �̂ = 1:46. The right-hand graph shows
the r(k)-curve for the scrambled data-set, i.e. the correlation is destroyed; what is left is all noise.
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As pointed out in Section 3.7.2, the �rst estimate for the PT exponent � can be obtained
from the autocorrelation of the inter-cell times. Figure 4.7 shows the resulting r(k)-curve for
measurement TX3. The line-�t resulted in an estimated tail-exponent �̂ = 1:46 for the plotted
curve (the value of log k were not quite regularly spaced, therefore the larger k attract the line
slightly stronger). The results for RX3 and the Ethernet data are given in the table at the end
of this section.

In other measurements of the same type, the autocorrelation function was disturbed by the exis-
tence of periodic video traÆc that was superimposed on the normal (IP over ATM) data traÆc
on a separate ATM VC, see Fig. 4.2. The resulting autocorrelation function of the measured
inter-cell times in this case is shown and discussed in [Schwefel et al. 97]. We just want to
mention here that such superimposed traÆc of periodic nature introduced an oscillating behav-
ior of the autocorrelation. The test for LRD via the autocorrelation function cannot be used in
this case due to the negative parts of the autocorrelation function. Furthermore, the following
LRD tests seemingly showed no LRD properties. However, if the video traÆc was �ltered out,
LRD properties comparable to TX3 were clearly indicated by the same tests for the remaining
traÆc. Thus, superimposed traÆc, in particular if it has periodic nature, can lead to misleading
conclusions, since it can obscure existing LRD properties of the non-periodic traÆc. For the
purpose of demonstrating the impact of such periodic traÆc, we use one sample-set TX1 that
includes such video traÆc. Otherwise we only consider measurements that were taken during
time-periods when no such video traÆc was present.
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data and therefore results in a higher estimate for �.

The results of the application of the R/S statistics (see Sect. 3.7.2) on the measurements TX3
and TX1 are shown in Figure 4.8. The R/S statistics for TX3 clearly appear linearly on log-
log scale with a slope that is noticeably larger than 0:5, i.e. LRD properties are indicated in
that measurement. The estimate �̂ = 1:46 is in good agreement with the estimated � from the
correlation method.
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For the measurement TX1 that includes the periodic video-traÆc, the R/S statistics generate
a somewhat bent curve, and the resulting estimate for � is close to the non-LRD case � = 2.
Without the cells from the video traÆc, the result of the R/S statistics are comparable in looks
and numerical value of �̂ with the TX3 measurement.

After destroying the autocorrelation of the measured inter-cell time by scrambling, the R/S
statistics provide the value �̂ = 1:98 for TX3. So clearly, the strong growth of R(n)=S(n) for the
unscrambled measurement is due to the order of the inter-cell times.
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Figure 4.9: Variance-time Plots for Measurements TX1 (left) and TX3 (right): in both graphs,
the curves are shown for the original inter-cell time stream and the scrambled stream. The scrambled
stream exhibits a straight line with slope close to �1, i.e. no Long-Range Dependent properties.

Finally, Figure 4.9 shows the results of the application of the last LRD test of Section 3.7.2, the
Variance-Time plot. The Variance of the aggregated inter-cell times decreases more slowly with
increasing aggregation level than it would be expected in traditional, non LRD data, e.g. as for
the scrambled measurements. Again, the periodic video traÆc in TX1 causes larger values for
the � estimate.

Summary of Results

The following table summarizes the results of the di�erent estimators for � for three sets of
measurements (all without periodic video traÆc):

TX3 RX3 Ethernet

�̂ by r(k) 1.37 1.54 1.46
�̂ by R/S 1.46 1.51 1.31

�̂ by Var(X(m)) 1.58 1.76 1.42

The results for TX3 and RX3 as well as the Ethernet data clearly indicate an � < 2, i.e. in�nite
variance PT distributions need to be used for the ON periods in the N -Burst model. Other
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measurements on application level, e.g. �le sizes ([Gribble et al. 98]) or sizes of http transfers
[Crovella & Bestavros 96] indicate Power-Tail distributions with comparable exponents.

Note that the linear regression to the logarithmic autocorrelation function can also detect Power-
Tails with exponents � > 2. Since such larger tail-exponents do not cause LRD properties, the
other methods cannot distinguish such PTs with high exponents from plain exponential or other
well-behaved tails.

4.5 Remarks on N-Burst Calibration
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Figure 4.10: The failure of the 1-Burst calibration method for the Ethernet data: The estimate
�̂(T0) does not show a clear plateau in the left graph. Also, the coeÆcient of variation of the inter-cell
times of the calibrated 1-Burst models is far too high compared to the measured data. That coeÆcient
of variation cannot be matched by an increase of the background Poisson rate �0.

In principle, any data can be used to calibrate a 1-Burst model with the method that is developed
in Sect. 4.3. It is desirable to have some indication, whether the 1-Burst model is really the right
type of model for the given data set. In fact such indicators for a mismatch of the model type can
be obtained during the calibration procedure. Figure 4.10 shows two of them for the Ethernet
data of [Leland et al. 94]:

� The coeÆcient of variation in the data is by far lower than the one that can be achieved
with the 1-Burst calibration, even if a background Poisson rate �0 > 0 is taken into account
(right graph of Figure 4.10).

� The estimator b�(T0) does not show any clear plateaus, but instead it decays rapidly (some-
times stepwise as in the left graph of Figure 4.10).

Consequently, it seems that the 1-Burst model is the wrong model type for the Ethernet data.

In such cases, an N -Burst model with N > 1 could be more appropriate. For higher N , the
calibration becomes much harder: First, it has to be determined what kind of burst-start process
is appropriate, e.g. the Independent Source model or the [M/G/N//N ] model that describes the
traÆc for a huge (� N) number of sources, see Chapter 2. Secondly, the threshold approaches
that worked for the 1-Burst model cannot be applied any more. A di�erent methodology for
parameter estimation has to be developed.
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All the measurements of ATM cells at the B-WiN entrance could be described well by cali-
brated 1-Burst models. Also, the development of robust N -Burst calibration methods would
be beyond the scope of this thesis. Thus, no N -Burst calibration methods are discussed here.
However, a very heuristic approach for the [M/G/N//N ] model with large N is described in
[Schwefel et al. 97]: That method uses the variance of cell-rates in sliding sample-windows
of some size to determine the average number of simultaneously active bursts. Afterwards, the
mean and the variance of the whole measured cell-stream is used to determine the N -Burst
parameters np and �p. See [Schwefel et al. 97] for details (however note, that the parameter
names are di�erent there!).

Another possibility would be to assign the single cells to the corresponding source-level transfer,
e.g. mark all the ATM-cells of one speci�c FTP data transfer. By doing that the cell-stream is
separated at the source-level at which a 1-Burst calibration can be tried.

4.6 Summary

A method for estimating the parameters of the 1-Burst model from measured inter-cell times
was developed in this chapter. Thresholds are used to separate the measured inter-cell times in
three subsets: Small, intermediate, and large inter-cell times. In principle, the small inter-cell
times are used to estimate the intra-burst cell-rate �p, while the large ones provide an estimate
for the mean duration Z of the OFF periods. However, inter-cell times from the 1-Burst model
can be partitioned in three classes, each of them with di�erent marginal distributions. A closer
look at those marginal distributions showed that the 1-Burst parameters �p, Z, and xp cannot
be obtained separately, but a more complicated procedure is necessary, which is described in
Section 4.3.

That calibration method is successfully applied to several measurements of ATM inter-cell times
taken at the entrance to a backbone that connects the German Universities and other research
institutes. As part of the calibration procedure, it is necessary to �nd out the type of distribution
that describes the duration of the ON periods in the 1-Burst model. Three di�erent tests for
LRD properties indicate that such properties are present in the measured data, and thus the
conclusion is that Power-Tail distributions are a more appropriate choice for the duration of the
ON periods. Estimates for the tail-exponent � that are obtained from the statistical tests fall
in the range 1:4 � � � 1:6.
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Chapter 5

Steady-State Performance Analysis

In Chapter 2 we set up the N -Burst models and then discussed in Chapter 3 how to include
LRD properties in such models. We now start to investigate their performance behavior. This
chapter discusses a set of steady-state performance parameters for N -Burst/M/1[/B] queues:
the expected value mCD and higher moments of the cell-delay distribution, the Bu�er-Overow
Probability BOP(B) for a primary bu�er of B cells in the in�nite-bu�er N -Burst/M/1 model,
and �nally the Cell-Loss Probability CLP(B) in the �nite bu�er N -Burst/M/1/B loss model.
These performance parameters are derived from the steady-state queue-length distribution at
cell-arrival times IP

�
Q(a) = k

	
.

Telecommunications systems have a �nite lifetime. Not only is the physical system subject to
changes after a few months, e.g. in order to adjust to a higher bandwidth demand, or to include
new technology in the network. Even more, a stationary traÆc model can only be considered to
be realistic during the daily1 busy hours of the network utilization pro�le, see Sect. 4.2. Thus,
the actual `stationary lifetime' is limited to a few hours.

Steady-state performance analysis on the other hand assumes that the observation period is long
enough, so that the observed distribution of some performance parameter (here queue-length or
per-cell delay) has converged to an equilibriumdistribution. As we will see later, such convergence
within the limited daily busy hours can be doubtful for network traÆc with LRD properties.
Such criticism of steady-state analysis is the major motivation to perform transient analysis, see
Chapter 6. Nevertheless, steady-state analysis provides a �rst understanding of the performance
behavior, and its results can be used as basis for comparison of the transient performance results.
Furthermore, in the particular case of N -Burst/M/1 models with LRD properties, it turns out
that one of the most important qualitative results, the existence of so-called blow-up points (see
Sect. 5.1), is a phenomenon common to both steady-state and transient performance analysis.

The steady-state analysis in this chapter starts o� by discussing the blow-up e�ects and deriving
their location in the parameter-space of the N -Burst/M/1 queue in Sect. 5.1. The investigation
of the queue-length distribution at cell-arrivals in Sect. 5.2 provides a full understanding of why
those blow-ups occur: except for rather uninteresting cases (called Peak-Rate Allocation), the
queue-length distribution turns out to be Power-Tailed, but its tail-exponent changes discon-
tinuously at the blow-up points. The impact of truncated Power-Tail distributions with �nite
PT Range is discussed in Sect. 5.3: Truncated tails in the burst-length distributions cause a
truncation of the PTs of the queue-length distribution. Formulas for the PT-Range of the latter
are obtained.

Section 5.4 discusses some practical consequences of the (truncated) Power-Tailed queue-length
distribution, one of them is the behavior of BOP(B). Several model variations are discussed in
the remaining sections of this chapter: the �nite-bu�er loss-model in Sect. 5.5; the relation of
M/M/1, bulk-arrival, and uid-ow model to the N -Burst model in Sect. 5.6; N -Burst/M/1

1There certainly exist other stationary time-intervals (e.g. during certain night hours), but due to the lower
utilization, they are less relevant for network planning than the busy hours.
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models with LRD properties caused by PT distributed OFF periods in Sect. 5.7; and �nally,
N -Burst models with di�erent types of bursts as introduced in Sect. 2.5.2.

The numerical illustrations in this chapter use N -Burst [IS] models whose individual source
parameters (b, np, �) are chosen close to the results of the 1-Burst calibration in Sect. 4.3:
b = 0:9, np = 10. For better readability, the average cell-rate is (almost) always normalized to
� = 1. It follows for the 2-Burst model with b = 0:9, np = 10, � = 1, which is frequently used
for illustration purposes in this chapter: � = 0:5, �p = 5, and Z = 18.

5.1 Blow-up Points

Our �rst approach to the steady-state analysis of N -Burst/M/1 queues is a one-factor analysis
of a very relevant scenario: what happens to the traÆc at the bottleneck component if the
utilization � = �=� is varied by experimenting with the service-rate2 �?
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Figure 5.1: Blow-up Regions in the Parameter Space of the 2-Burst/M/1 Queue: The QoS
dramatically decays when the service-rate, �, becomes smaller than the blow-up points, �i. In the left
graph, the mean cell-delay (or packet delay, depending on the protocol) of a 2-Burst/M/1 queue normalized
with respect to the mean delay, 1=(���), of an M/M/1 queue is shown. The graph on the right shows the
Bu�er-Overow Probability for a bu�er of B = 104 cells. Note that the blow-up points occur at relatively
low utilization values, here �1 = �=�1 = 18:2% and �2 = �=�2 = 10%, see text.

The performance as measured by mean Cell Delay mCD or Bu�er-Overow Probabilities BOP
becomes worse as utilization increases. For the M/M/1 queue, the mCD increases as �=(1 � �),
and the BOP increases as �B with increasing utilization �. As Figure 5.1 shows in its left graph,
although the mCD of a 2-Burst model with exponential burst-lengths (T = 1) shows somewhat
higher delay values than the M/M/1 queues, the qualitative behavior for increasing � (decreasing
�) is not very surprising: the mCD becomes gradually worse.

That observation does not hold any more if LRD properties are introduced into the traÆc by the
use of TPT distributions. In that LRD scenario for larger T in Fig. 5.1, both the mCD and the

2In practice, such a variation is done virtually during the network design phase. In Virtual Private Networks,
it can also happen during the operation of the network through the assignment of more physical capacity to the
virtual network.
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BOP do not increase uniformly with decreasing service-rate any more. Instead, peculiar jumps,
called blow-ups, can be observed.

The reason for that peculiar behavior is that (even truncated) Power-Tail distributions allow for
very long bursts with non-negligible probability. If i of the N sources are in such a `long-term'
active period, then only (N � i) sources are left with ON/OFF behavior during that time-
period. Therefore, the model behaves temporarily as an N 0-Burst where N 0 = N � i but with
increased background Poisson rate, �00 = �0 + i�p. As a consequence, the average cell arrival
rate is temporarily raised to

�i := �0 + i � �p + (N � i) � � = �+ i
b

1� b
�; i = 1; :::; N: (5.1)

When � < �i, the i long-term active sources lead to an over-saturation period of the switch,
i.e. temporarily the mean cell arrival rate exceeds the service rate (�0 > 1 in the transient
N 0-Burst/M/1 queue). Clearly, substantial growth of the queue-length can result if the over-
saturation period is long enough. Hence a potential for overow situations is also given, even for
large bu�ers.

In the following we assume that the Poisson background cell rate of the N -Burst model is
�0 = 0. A positive �0 > 0 can be subtracted from the service rate, � ! � � �0, for the following
discussion.

Since the number of active sources is in the set i 2 f1; 2; :::; Ng, it follows that there are N
blow-up points that are located by the condition � = �i. The region of the parameter-space for
which

�i0�1 < � < �i0 =) i0 =

�
N � 1� �

�
� 1� b

b

�
for �0 = 0 ; (5.2)

is called blow-up region i0, i0 2 f1; :::; Ng. Within such a blow-up region, i0 long-term active
sources together with the remaining (N�i0) sources in average behavior are suÆcient to produce
an over-saturation period, while i0 � 1 long-term active sources do not over-saturate the server.
Furthermore, the parameter i� is introduced,

i� := i0 �N � 1� �

�
� 1� b

b
; (5.3)

which has a range 0 � i� < 1. The larger i� the closer does the queueing model operate to the
blow-up region i0 � 1, where performance is worse.

The blow-up e�ects at the so-called blow-up points, where � = �i, are peculiar to the LRD
variant of the N -Burst model3 Traditional exponential burst-length distributions do not show
comparable e�ects, see Fig. 5.1. Consequently, the number of the blow-up region i0 is very critical
for both delay and overow probabilities in N -Burst/M/1 queues with Power-tailed burst-length
distributions. The next section provides more understanding of the impact of i0 on steady-state
performance.

Beyond the last blow-up point, � > �N = N�p, or equivalently in the [IS] model, � < 1 � b,
over-saturation of the switch becomes highly improbable. The mCD is rather small and the
actual burst-length distribution does not have visible impact, i.e. LRD by Power-Tailed ON-
times does not lead to very di�erent QoS than standard exponential burst-lengths. That region
of the parameter space is referred to as Peak-Rate Allocation (PRA) herein.

3The blow-up e�ects itself can also be observed for other burst-length distributions with high variance, see Sect.
5.8. However, the properties that are discussed in the subsequent sections only hold for PT (or TPT) distributed
burst-lengths.
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Figure 5.2:Di�erent Behavior of the Mean Cell Delay in the Blow-Up Regions:With increasing
MBS, the mCD grows as a Power-Law (appearing linearly on log-log scale), but the exponent (slope)
changes from one blow-up region to the other. See also Sect. 5.3.2.

Although Eq. (5.1) is quite plausible, our arguments for the location of the blow-up points are
not rigorous. Another seemingly plausible location for the blow-up points would be �̂(i;N), the
mean cell-arrival rate while at least i bursts are simultaneously active. �i and �̂(i;N) are not
identical for most values of i and N .

In Fig. 5.1, the exact location of the �rst blow-up point (where � = �1) is arguable. �̂(i;N) =
5:26 is obtained for the model of Fig. 5.1, and there is no way to reject such a choice of the blow-
up points purely from the results of mCD(�) and BOP(�) that are shown in that �gure. However,
a closer look at the behavior for increasing MBS for service rates � close to the blow-up points
in Fig. 5.2 reveals the exact location of the blow-up. Although the in-depth understanding
of the behavior in Fig. 5.2 is provided only in Sect. 5.3, at this time it is enough to observe
the behavioral change that occurs at � = �1 = 5:5 in Fig. 5.2. We have made many other
calculations of the type shown in Fig. 5.2 for di�erent values of N and i0 and have found that
the blow-up points for large MBS are sharply de�ned, and invariably occur very near the �i of
(5.1). Furthermore, the discussion in the following section provides additional clari�cation that
the behavior of the N -Burst/M/1 queueing model changes at � = �i. Burstiness alone does
not account for the observed behavior, but the existence of exceptionally long ON-times is a
necessary feature.

Figure 5.1 shows that a dramatic increase of both mean Cell Delay and Bu�er Overow Prob-
ability occurs at a transition from blow-up region i0 to i0 � 1, which happens when the model
parameters are changed such that i0 � 1 simultaneous long-term active bursts can oversaturate
the switch. One possibility for this blow-up to occur, a decrease in � (which causes an increased
utilization �), is shown in Figure 5.1. Another important scenario for blow-ups to occur follows
from the rightmost expression in Eq. (5.2): for constant service-rate � and constant average ar-
rival rate �, the blow-up can be achieved by an increase of the burstiness b, i.e. the same amount
of data is transmitted in shorter ON periods while the OFF periods are stretched accordingly.
Such a scenario is discussed in more detail in Sect. 5.6.
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For N -Burst models other than the [IS] model, qualitatively the same blow-up e�ects can be
observed. However, Eq. (5.1) has to be replaced by

�i = �0;

where �0 is the average over-all cell-rate of an N 0{Burst model of the same type with parameters

N 0 = N � i; K 0 = K � i; �00 = i�p + �0;

and �0(n) = �(n+ i); n = 0; 1; :::; N 0 ;

while the other parameters �0p = �p and np
0 = np remain. See Sect. 2.4 for the description of

such more general models. The right-hand side of Eq. (5.2) must also be replaced by a more
complicated expression { the parameter b is only meaningful for the [IS] model in any case.

After this brief excursion towards more general models, we restrict ourselves for the rest of the
thesis to the [IS] model. The next section reveals that although a change of behavior of the
queue-length distribution can be observed at all N blow-up points, the impact on the mean
of the delay distribution depends strongly on a particular range for the PT exponent � of the
burst-length distribution.

5.2 Power-Tailed Queue-Length Distribution

Obviously, Power-Tail distributed burst-lengths can cause very long over-saturation periods in
the N -Burst/M/1 queue. Those over-saturation periods are caused by i0 (or more) simulta-
neously long-term active sources and they have a major impact on the performance behavior.
Consequently, we need to investigate the distribution of the duration of those over-saturation
periods.
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Figure 5.3: Queue-Length Distribution of 2-Burst/M/1 Queues: Except for Peak-Rate Allocation
(where N�p < �), the queue-length distribution at cell-arrival times shows a Power-Tail, whose exponent
� depends on the blow-up region i0 as well as on the tail-exponent � of the burst-length distribution.

Only in the �rst blow-up region, i0 = 1, does the single long burst correspond to an over-
saturation period, whose reliability function R1(x) = R(x) therefore shows a Power-Tail with
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the same exponent � as the burst-length distribution. The scenarios of having an over-saturation
period which is caused by several simultaneously active sources lead to di�erent tail-exponents,
�, with � > �.

It was shown in the Sect. 3.3 that the probability, Ri(x), that none of i simultaneously long-
term active bursts ends before time x has a Power-Tail with exponent i�� (i� 1). Within such
an over-saturation period, the queue-length grows with average rate �i � �, which { by the
de�nition (5.2) of i0 { is positive for i � i0. If we assume an empty queue at the beginning of
the over-saturation period, the probability that queue-length q is reached within that period is
approximately

pi(q) := Ri

�
q

�i � �

�
�
�
�i � �

q

�i(��1)+1
�

The assumption of an empty queue at the start of the over-saturation period is reasonable when
the utilization, �, is not too close to 1. After all, the server is idle for the fraction 1 � � of the
time.

It follows that
pi0+k(q)

pi0(q)
� 1

qk (��1)
; for k = 1; :::; (N � i0) ;

i.e. the probability that a long queue-length q is caused by an over-saturation period with i0+k
long-term active bursts becomes negligible compared to the over-saturation periods with only
i0 long-term active bursts. Thus, large queue-lengths q � 0 are most likely caused by an over-
saturation period with only i0 long-term active bursts. In other words, the duration of the
over-saturation periods with i0 long-term active sources dominates for large q since it has the
`heaviest' tail with exponent

� := �(i0; �) := i0(�� 1) + 1; for � > 1: (5.4)

Therefore, it is not the PT exponent � of the individual ON-period, but rather the tail expo-
nent � of the duration of the over-saturation period, that determines the queueing behavior.
Consequently, the often used `Hurst-parameter', H = (3� �)=2, which characterizes the degree
of Long-Range Dependence of the traÆc, is by itself not suÆcient to derive statements about
the performance behavior of N -Burst/M/1 queues. Depending on the blow-up region i0, the
performance impact of the LRD properties can range from practically none (in the region of
PRA) up to devastatingly high at the other extreme when i0 = 1.

Previous work with uid ON/OFF models, in particular [Jelenkovic & Lazar 99], showed
that if the service-rate is equal to the cell-rate during ON, the reliability function of the queue-
length distribution has a Power-Tail with exponent �� 1. Their scenario corresponds to i0 = 1,
since an individual burst uses up all service capacity.

Compared to the uid ON/OFF models, the N -Burst/M/1 queue adds further variability by
its exponential service times and by the exponential inter-cell times within a burst. However,
when considering long queue-lengths caused by long lasting over-saturation periods, uid-ow
and exponentially distributed service times4 do not show fundamentally di�erent behavior, since
the convolution of q exponential random variables (i.e. the Erlangian-q distribution) decreases
rapidly as 1=q in coeÆcient of variation. Consequently, the assumption of Poisson arrivals within

4The same argument holds for the process that describes the inter-cell times during a burst. They are assumed
to be Poisson in the N -Burst model, but deterministic or continuous uid-ow arrivals during ON periods can be
interchangeably used without substantially a�ecting the behavior during over-saturation periods. See also Sect.
6.5.
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a burst and of exponentially distributed service times does not have an impact on the tail of the
queue-length distribution, if that tail is caused by Power-Tailed over-saturation periods.

Clearly, the N -Burst/M/1 queue is more general than the uid-ow model of
[Jelenkovic & Lazar 99], since the single burst might not use up all switch capacity, i.e.
i0 > 1 is possible. On the other hand, the process by which long queue-lengths are generated
in the N -Burst/M/1 queue has the same underlying principle: potentially long over-saturation
periods of Power-Tailed duration with i0 permanently active sources. As a consequence, the
tail-behavior as shown by [Jelenkovic & Lazar 99] still applies, but the tail-exponent � of
the over-saturation periods replaces �:

IP
n
Q(a) = k

o
� 1

k�
; and BOP(B) := IP

n
Q(a) � B

o
� 1

B��1
� (5.5)

Q(a) denotes the queue-length at cell-arrival times, but it can be shown that the asymptotic
behavior of the distribution of Q(a) in an N -Burst/M/1 queue is the same as the asymptotic
behavior of the queue-length as experienced by a random observer:

IP
n
Q(a) = k

o
=

1

�
IP fQ = k + 1g :

Within the worst blow-up region i0 = 1, Eq. (5.5) is equivalent to the tail-behavior as derived
by [Jelenkovic & Lazar 99], since �(i0 = 1; �) = �.

Note that a steady-state distribution for Q(a) exists whenever � < 1. However, since the queue-
length distribution has a Power-Tail it can have in�nite moments (unless it is truncated, see
Sect. 5.3). In particular, its mean is in�nite when

� � 2
(5:4)() 1 < � � 1 +

1

i0
� (5.6)

Since we assume a FCFS (First Come First Serve) service strategy, the cell delay in turn is closely

related to the queue-length, Q(a), at cell-arrival: a cell that arrives at a queue with q
(a)
1 cells

in front of it, experiences an Erlangian-
�
q
(a)
1 + 1

�
distributed delay with mean

�
q
(a)
1 + 1

�
=�,

which approaches a deterministic distribution for large q
(a)
1 . Thus, the cell-delay (CD) has the

same tail-behavior,

IP fCD > tg � IP
n
Q(a) > t �

o
� 1

t��1
� (5.7)

The �rst two moments of the cell-delay distribution can be calculated from the moments of Q(a):

IE fCDg = IE
�
Q(a)

	
+ 1

�
; IE

�
CD2

	
=

IE
n�
Q(a)

�2o
+ 3 IE

�
Q(a)

	
+ 2

�2
�

In particular, the mean queue-length at cell-arrivals, IE
�
Q(a)

	
, has a linear relationship to the

mean cell-delay, mCD = IE fCDg. Consequently, the mCD becomes in�nitely large under the
same condition (5.6) as for the mean queue-length. Figure 5.4 illustrates such a divergence of
the mCD for growing MBS in case � < 1 + 1=i0.

The arguments given above do not establish a rigorous mathematical proof of the tail behavior
for the delay distribution. A rigorous proof for a uid-ow ON/OFF model was developed by
[Dumas & Simonian 00], who provide asymptotic bounds for the tail-behavior of the queue-
length distribution, see also below. However, the reasoning in this thesis is con�rmed by the
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Figure 5.4: Mean Cell Delay while Increasing the MBS: Unbounded growth of the mean delay
only occurs for � � 1+ 1=i0. The set of curves shown in the left graph are calculated for a 2-Burst/M/1
queue operating in blow-up region i0 = 1 (� = 25%). The curves on the right show the same model yet
i0 = 2 (� � 18%), hence � = 1:5 is the critical value. Note that within each graph, the utilization is
constant.

parametric studies of the analytic N -Burst/M/1 models, as shown in Fig. 5.3. The numerical
computations of the slopes of the linear parts of the queue-length distribution in the left graph
of Fig. 5.5 correspond to the exponent � as derived in (5.4). Shown there is the function

�̂(ki) := �
logPr

�
Q(a) = ki+1

�� logPr
�
Q(a) = ki

�
log ki+1 � log ki

;

which is the exponent of a �tted Power-Law for the queue-lengths ki and ki+1.

Even more important, the results displayed in Fig. 5.3 and other parametric studies show that
the tail-behavior can already be observed for queue-lengths as short as 102 cells. Since bu�er-
sizes in the order of 105 cells are realistic, these e�ects are expected to have an impact on real
systems as well. Analytic arguments about the asymptotic behavior of comparable models are
very valuable by itself, but in practice it is necessary to know where the range of applicability
begins.

Tail-constants

The knowledge of the tail-exponent � of the queue-length distribution is already suÆcient for
many qualitative performance results, such as for the explanation of the blow-up e�ects. For
quantitative results however, the tail-constant of the Power-Tail is also necessary. Figure 5.5
shows in its right graph the estimates for the tail-constants of the queue-length distribution that
are derived from the numerically computed tail-probabilities.

At present, exact formulas for the direct computation of the tail-constant of the queue-length
distribution of the N -Burst/M/1 model are unknown. However, formulas and bounds for related
scenarios are known that can be used as approximations for the true values of the tail-constant.
See [Jelenkovic & Lazar 99] and [Dumas & Simonian 00] for the mathematical details.
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Figure 5.5: Power-Law behavior of Queue-length Distribution in Blow-up Regions: The left
graph plots an estimate for the PT-exponent � as measured along the curve of the queue-length distri-
bution. The convergence towards the theoretically derived value � = i0(�� 1) + 1 becomes obvious. The
right graph shows the resulting tail-constants in comparison to the values that are obtained from the
approximation formulas (dashed-dotted respectively dotted horizontal lines). Except for the case � = 5:7,
the approximation formula works very well.

A lower bound for the tail-constant of the Bu�er-Overow Probability

BOP(B) = Pr
�
Q(a) � B

�
� cBOPB

1��;

can be derived from results in [Dumas & Simonian 00]:

cBOP � 1

�
�
�
(1� b)

�� 1
(b i� np)

��1 c
(1)
PT(�)

�i0
; (5.8)

where c
(1)
PT(�) is the tail-constant of the reliability function of the burst-length distribution when

scaled to have mean xp = 1. For the TPT distributions used herein, that constant was determined
for � = 1:4 in [Klinger 97] to be

c
(1)
TPT (� = 1:4) � 0:2138 :

A table with tail-constants c
(1)
TPT (�) for various values of � is given in Appendix I.1.

For an approximation of cBOP, the following extension of the lower bound (5.8) can be used:

cBOP � b� (1� b)i0�1

1� �

"
(i� np)

��1

�� 1
c
(1)
PT(�)

#i0
: (5.9)

Note that the approximation in (5.9) depends on the parameter N (via i0 and i�), b, np, � and
�, but not on �. In this parameter-set, � is a pure scaling parameter.

Numerical experiments with N -Burst/M/1 queues showed that (5.9) can be considered exact in
blow-up region i0 = 1, where the formula simpli�es to:

cBOP � b�

1� �

(i� np)
��1

�� 1
c
(1)
PT(�); for i0 = 1: (5.10)
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In blow-up region i0 = 2, numerical experiments for � = 1:3 and � = 1:4 suggest that the
right-hand side of (5.9) has to be multiplied by another factor (1 � i�)

�0:5, otherwise (5.9)
underestimates cBOP. However, the exact formula for cBOP for i0 > 1 is unknown at this time,
even for uid-ow models.

The right graph in Fig. 5.5 compares the observed tail-constants from the numerical computa-
tion, dcQa(k) := IP

n
Q(a) = k

o
� k� ;

with the results from the approximation formula (5.10) when i0 = 1, respectively with the
extended version of (5.9):

cBOP � b� (1� b)

(1� �)
p
1� i�

"
(i� np)

��1

�� 1
c
(1)
PT(�)

#2
for i0 = 2: (5.11)

Note that the tail-constants cBOP and cQa are related by cQa = (� � 1) cBOP. The comparison
of the numerical results in Fig. 5.5 shows that the approximation formulas work very well, with
some restrictions in the case � = 5:7, which is close to the actual blow-up point (i� = 0:96 for
� = 5:7). In general, the results of the approximation formulas can deviate from the observed
tail-constants when the model operates very close to the blow-up points itself (i� close to 0 or
close to 1). At the blow-up points themselves, the behavior is di�erent in any case, so they need
to be treated separately. However, since the blow-up points are only singular points, we focus
on the behavior in the blow-up regions here.

5.3 Impact of Truncated Tails

In this section, we take a closer look at the impact of the truncations in the tail, regardless
of whether they are imposed as part of traÆc policing, or they occur due to bounded physical
resources, or due to the �nite duration of the busy hours.

5.3.1 Truncation of the Queue-Length Distribution

If truncated Power-Tails are used for the burst-length distribution in the N -Burst model, the
queue-length distribution still shows Power-Tail properties with exponent �, but at some point
the tail is truncated, see Fig. 5.6.

Having introduced the PT Range xT { or equivalently the MBS (see Sect. 3.5) { to characterize
the truncated Power Tails of the burst-length distribution, we are now able to discuss the impact
on the queue-length distribution in N -Burst/M/1 queues. However, as pointed out in Sect. 5.2,
the individual burst does not matter in terms of performance when i0 > 1, but rather the
over-saturation period. The PT Range of the duration of an over-saturation period with i � i0
long-term active sources follows from Eqs. (B.10) and (B.8):

xT [i] := Rng
�
B�iT

�
=
xT
i
� (5.12)

The matrix B�i
T { the Kronecker-Sum with i summands BT { is the rate matrix of the ME

representation for the duration of the periods with i active bursts, see Appendix B.3.
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Figure 5.6: Truncated Power-Law behavior of Queue-length Distribution in Blow-up Regions:
Power-Law behavior of the queue-length distribution with exponent � can still be observed, but such
behavior is now truncated at queue-lengths around k = 106 or k = 107. Note that the measured tail-
exponents in the right graph are slightly higher than the theoretically expected �(i0 = 1) = 1:4 and
�(i0 = 2) = 1:8.

During the long over-saturation periods, cells accumulate in the queue with rate (�i � �) > 0.
Consequently, we would expect the queue-length distribution to have a PT Range of

q[i] := (�i � �) � xT [i] =
�
i (�p � �) + �

�
1� 1

�

��
� xT
i

= MBS � b
i
�
�
i�N

1� b

b

1� �

�

�
:

(5.13)

From Eq. 5.13, it follows that q[i + 1] > q[i]. Although according to Sect. 5.2, over-saturation
periods with i > i0 long-term active sources contribute only lighter tails with exponent �(i) >
�(i0) to the queue-length distribution, they show a bigger PT range q[i] > q[i0]. Consequently,
the impact of such i-active over-saturation periods is dominated by the i0 active over-saturation
periods for queue-lengths up to q[i0] only, where

q[i0] = b � i� � MBS

i0
� (5.14)

For larger queue-lengths q[i0] < k < q[i], the Power-Tails with larger exponents �(i) > �(i0) = �,
i > i0, can show their impact.

Figure 5.7 shows the function R=f (which converges to the PT Range, see Eq. (3.10)) for the
queue-length distribution of a 2-Burst/M/1 queue in blow-up regions i0 = 1 and i0 = 2. In the
case of i0 = N = 2, there exist only over-saturation periods with i0 = 2 long-term active sources.
As a consequence, the fraction R=f converges smoothly to the PT Range q[i0]. If i0 = 1 on the
other hand, the fraction R=f in Fig. 5.7 shows a plateau at q[1], before it converges to q[2].
It indeed shows a similar behavior to a mixture of di�erent TPTs as shown in the right graph
of Fig. 3.2. Note that the PT Range q[N ] of the queue-length distribution is closely related to
the so-called caudal characteristic (see [Neuts 86]), which is the largest eigenvalue of the Rate
Matrix R of the Matrix-Geometric solution for the queue-length probabilities, see Appendix
D.7.
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For long tails of the burst-length distribution (large xT ) however, the PT Range q[i0] of the
queue-length distribution for the smallest PT exponent � becomes large as well. As a conse-
quence, the probabilities in the Power-Tails with larger exponents �(i) = i(�� 1) + 1, that are
caused by over-saturation periods with i > i0 long-term active bursts, have decayed to small
values for queue-lengths q > q[i0]. Therefore, although the Power-Tails with larger exponents
show a larger PT Range, the probabilities that they contribute can be practically negligible for
large q > q[i0]� 0.

5.3.2 Impact of Truncated Power-Tails on Mean Delay

The behavior of the mean delay in N -Burst/M/1 queues with TPT distributed burst-lengths
follows from the queue-length distribution. Obviously, a truncation mainly matters for the sce-
narios where in�nite delay moments result from full Power-tails. According to Eq. (5.6), the
mean delay becomes in�nite when the model operates in blow-up region i0 and � � 1 + 1=i0.
For simplicity, we exclude the boundary value � = 1 + 1=i0 in the following discussion and
assume that � < 1+1=i0. It follows that the mean queue-length and the mean delay are mainly
determined by the (truncated) Power-tails of their distributions. Asymptotically, we can neglect
the body of the function and only look at the Power-tail regime from some value h > 0 on:

IE fCDg =
IE
�
Q(a)

	
+ 1

�
� 1

�

Z q[i0]

h
t
1

t�
dt

� 1

� (2� �)
(q[i0])

2�� � MBS1�i0(��1) if � < 1 +
1

i0
� (5.15)

Thus, we expect the mean delay to grow asymptotically by a Power-Law with exponent (2��) =
1� i0(��1) when increasing the MBS, but only if � < 1+1=i0. The derivation of (5.15) uses the
tail-behavior (5.5) of the queue-length distribution up to the PT-Range q[i0] as in Eq. (5.14).
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Figure 5.8: Mean Cell Delay while Increasing the MBS: Except for Peak-Rate Allocation (PRA,
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only depends on � and i0.

Note that if � = 1+1=i0, the tail-exponent of the over-saturation period is � = 2, and thus the
integral is taken over 1=t and thus grows logarithmically with the upper integration boundary
(as observed in Fig. 5.4).

The tail-constant in Eq. (5.15) can be bounded from above asymptotically for large MBS:

mCD � 1

�

Z qi0

0
cBOPB

1�� dB <
�

�

cBOP
2� �

[qi0 ]
2�� =

� cBOP
� (2� �)

�
b i�
i0

�2��
MBS2�� for � < 2

(5.16)

The Power-Laws as well as the speci�c exponents are con�rmed by the results that are computed
for the analytic 2-Burst/M/1 model, shown in Fig. 5.8. Since the plotted graphs are exact results
that already show the Power-Law behavior (appearing linear) for a realistic range of values for
the MBS, the asymptotic result (5.15) is not just a mathematical limit, but it is applicable in
realistic scenarios.

An analogous derivation for the `-th moment of the Cell Delay distribution leads to the more
general relationship:

IE
n
CD`

o
� MBS`+1�� = MBS`�i0 (��1) if � < 1 +

`

i0
(5.17)

5.4 Consequences of (Truncated) Power-Tails

So far in this chapter, the steady-state performance analysis ofN -Burst/M/1 queues with in�nite
bu�ers has revealed a very peculiar behavior when LRD properties are present in the N -Burst
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traÆc. In the following, we summarize the �ndings of the last three sections and point out their
practical implications:

1. Power-Tailed Queue-length Distribution:

In blow-up region i0, the queue-length distribution of an N -Burst/M/1 queue is Power-
Tailed with exponent �� 1 = i0(�� 1), see Eq. (5.4). The tail-exponent � changes discon-
tinuously at the N blow-up points, which are characterized by � = �i, i = 1; :::; N , see Eq.
(5.1). Consequently, � depends on network parameters as well as on traÆc parameters.
Hence, the careful design of a network and careful traÆc management can alleviate the
negative performance impacts of LRD, see also Chapter 7.

Note that the blow-up points for bursty sources (high b) can occur at very low utilization
values,

�i =
�

�i
=

1

1 + i
N

b
1�b

; i = 1; :::; N :

In the measurements of Chapter 4, we observed burstiness parameters of the order b � 0:9.
Therefore, the blow-up at the transition from PRA (� > N�p) to blow-up region i0 = N
always occurs at �N = 1 � b = 10%. When multiplexing for instance N = 5 such sources
at a switch, the additional four blow-ups occur at utilization �4 = 12:2%, �3 = 15:6%,
�2 = 21:7%, and �1 = 35:7%.

2. In�nite Moments:

As a consequence of the Power-Tailed queue-length distribution (5.5), the k-th moment of
the queue-length distribution becomes in�nite when

� � 1 � k
(5:4)() 1 < � � 1 +

k

i0
� (5.18)

In particular, the mean queue-length and thus the mean delay become in�nite, if � �
1+1=i0. Therefore, the borderline between in�nite and �nite mean delay is only at � = 2,
when i0 = 1, see Fig. 5.4.

On the other hand, for given 1 < � � 2, the mean delay is in�nite only in blow-up regions
i0 � 1=(� � 1). When using truncated tails, the mean delay is always �nite. However,
the blow-up e�ects for mean delay are especially pronounced in the blow-up regions with
i0 � 1=(�� 1), because there, the tail of the delay distribution has a much greater impact
on the mean.

3. Bu�er-IneÆciency:
The Bu�er-Overow Probability (BOP) follows directly from the queue-length distribution,

BOP(B) := Pr
�
Q(a) � B

�
:

Consequently, the knowledge of the Power-Tail behavior Eq. (5.5) for the queue-length
distribution immediately implies a Power-Law behavior for the BOP:

BOP(B) � cBOP=B
��1 = cBOPB

i0(1��) : (5.19)

The practical implication is that additional bu�er-space only reduces the BOP very slowly,
called Bu�er-IneÆciency. Such a slow Power-Law decay for LRD ON/OFF traÆc does
not occur for exponential burst-lengths, where the BOP decreases exponentially fast with
increasing bu�er-size.
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Note that the Bu�er IneÆciency occurs for any value of �, including � > 2 (as opposed
to the behavior of mean Cell Delay, which requires � < 2 to be large). Nevertheless, large
values of � alleviate the e�ects, since the Power-Law drop-o� (5.19) is more rapidly.

4. Truncated Tails:

If the maximum size of the ON periods is restricted, i.e. the Power-Tail of the ON time
distribution is truncated at some point, the queue-length distribution also shows a trun-
cated Power-Tail. Formulas for the PT Range q[i], i � i0 of the queue-length distribution
could be derived. It follows that q[i] < MBS holds for any i � i0. Hence, if the bu�er is at
least of size MBS, bu�er-overow events become very unlikely, because the switch model
operates in the region of the exponential drop-o� of the BOP and not in the Power-Law
regime.

As mentioned before, in the scenario of � < 2 or equivalently � < 1 + 1=i0, the mCD is
in�nite for full PTs with exponent � for the ON time distribution. If the tails are truncated
to MBS cells, the mCD shows a Power-Law relationship

mCD(MBS) � MBS2��:

The four points enumerated above present qualitative results. In order to obtain quantitative
results, the exact numerical evaluation of the N -Burst/M/1 model can be used. The much
simpler asymptotic behavior for large bu�ers provide an alternative, but then, the tail-constants
of the Power-Law behavior are required in addition to the tail-exponent. Approximations for the
tail-constants are provided in Sect. 5.2. Chapter 7 uses both approaches, the exact numerical
computation and the approximated asymptotic behavior, for realistic scenarios of the network
planning process.

5.5 Finite Bu�er Systems

As the left graph of Figure 5.9 shows, the Cell Loss Probability (CLP) in a �nite-bu�er queue
also shows a Power-Law behavior with the same exponent � � 1 as the BOP, but with smaller
tail-constant cCLP < cBOP:

CLP(B) � cCLPB
1�� : (5.20)

Thus the conclusions that can be drawn from this Power-Law behavior, in particular the Bu�er-
IneÆciency, are the same as in the discussion of the BOP.

Results from the transient analysis in Chapter 6 lead to a relationship between the two tail-
constants cBOP and cCLP:

(1� �) i�
1� i�
i0 � i�

cBOP � cCLP � (1� �)
i�
i0

cBOP: (5.21)

The upper and lower bound are identical for i0 = 1, thus

cCLP � (1� �) i� cBOP for i0 = 1: (5.22)

The right graph in Figure 5.9 plots the exact values of CLP(B) in comparison to the Power-Laws
cCLPB

1��. In this experiment, the tail-behavior of the CLP is close to the upper bound of (5.21),
i.e.

cCLP � (1� �)
i�
i0

cBOP;
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Figure 5.9: Queue-Length Distribution in Case of Finite Bu�ers: A Power-Law decay with same
exponent ��1 as for the BOP can be observed for the CLP in a �nite bu�er loss model. Approximations
and bounds can be given for the tail-constant cCLP which provide a good approximation when i0 = 1.
For i0 = 2 the tail-constant cCLP that is seen in the exact numerical CLP values (solid line) is close to
the upper bound for cCLP (which is used to compute the dashed-dotted line). The lower-bound for cCLP
(which is used to compute the dashed lines) can be substantially smaller when operating close to the
blow-up point (as in the case of � = 5:7).

where cBOP is derived from Eq. (5.11) for i0 = 2.

Note that in simpler queueing models such as the M/M/1[/B] queue or the M/G/1[/B] queue,
the ratio of CLP and BOP approaches

CLP(B)

BOP(B)
�! (1� �) for large B:

For the N -Burst/M/1[/B] queue with PT distributed burst-lengths that ratio can be arbitrarily
small for �xed �. In blow-up region i0 = 1,

CLP(B)

BOP(B)
�! cCLP

cBOP
= (1� �)i� ;

with 0 < i� < 1. Therefore, in N -Burst/M/1 queues with LRD properties, the assumption
of a �nite-bu�er scenario can have a much greater quantitative impact than in simple M/G/1
models.

Delay in �nite bu�er systems

In the in�nite-bu�er model, one conclusion is that although the delay distribution is well de�ned
for � < 1, it can have an in�nite mean for � < 1 + 1=i0. This of course changes in the �nite-
bu�er N -Burst/M/1/B model. The maximal delay is Erlangian-B distributed in this scenario
and hence the mean delay is limited by the bu�er-size. Figure 5.10 illustrates that limiting
impact for a bu�er of B = 104 cells. �rst, the mCD grows as MBS2�� as in the in�nite bu�er
model (Fig. 5.8). But at some point (when the MBS is in the order of the bu�er-size B), the
mCD(MBS) starts to converge to a horizontal asymptote.
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Figure 5.10: Mean Delay in Finite-Bu�er Model: The Power-Law growth that is observed in the
in�nite bu�er model in Fig. 5.8 is now only observed for an intermediate range of MBS values, before the
upper limit from the bu�er-size shows its restricting impact. Here a �nite bu�er of B = 104 cells is used.

5.6 Approximation Models

We have demonstrated the blow-up e�ects in Section 5.1 in the scenario of a �xed traÆc descrip-
tion (�xed N -Burst parameters N , �, b, np) but a varying utilization of the queueing model,
� = N�=�, due to a change of the service-rate �. Since the blow-up e�ects happen at a transition
from one blow-up region i0 to the next region, and

i0 =

�
N

1� �

�

1� b

b

�
=

���
�
�N

� 1� b

b

�
;

a change in any of the base parameters N , �, b (but not np) of the N -Burst model can cause
such a blow-up e�ect. Remember that we assume �0 = 0 in our discussion, since a positive �0
can be deducted from the service-rate for our purposes.

A variation of the burstiness parameter b while keeping the other N -Burst parameters constant
is of particular practical and theoretical interest. Figure 5.11 shows the behavior of the mCD

and the BOP in such a scenario. The practical signi�cance of that scenario is that a reduction
of b corresponds to a reduced peak-rate �p of the individual sources while keeping the overall
amount of traÆc the same. Such a procedure is commonly called traÆc shaping, and Figure
5.11 demonstrates clearly that a substantial improvement in QoS can be achieved, if the shaping
causes a transition to a better (higher i0) blow-up region. From the condition � = �i for the
blow-up points and Eq. (5.1), it follows that such transitions occur at

bi =
1

1 + i
N

�
1��

; i = 1; 2; :::; N:

Note that bN = 1� � < bN�1 < b1 < 1.
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Figure 5.11: Blow-up E�ects from Varying the Burstiness: A change of traÆc parameters, here
the burstiness b, can also result in the blow-up e�ects. For b = 0 a limiting M/M/1 queue is obtained,
while at the other extreme, b = 1, the N -Burst model approaches a bulk-arrival model.

The theoretical (and thus after more elaboration also another practical) signi�cance of Fig. 5.11
appears at the two extremal values of b. As already described in Sect. 2.7, the N -Burst/M/1
model reduces to a simple M/M/1 model for b ! 0. At the other end b = 1, one obtains a
bulk-arrival model. Explicit formulas exist for the mCD of both limiting models:

mCD(b = 0) =
1

�(1� �)
(5.23)

mCD(b = 1) =
1

�(1� �)
D (5.24)

with D =

�
IE fL(L+ 1)g

2 IE fLg
�
: (5.25)

Here, L is the random variable that expresses the number of cells per burst, see Sect. 3.5 and
Appendix C.4 for the distribution of L in the N -Burst model.

Since performance becomes monotonically worse from b = 0 to b = 1, the two limit models
provide a lower and upper bound for performance. For the intermediate region that contains
the blow-up points bi, the full N -Burst model is necessary. See [Lipsky & Schwefel 00] for a
more detailed discussion.

Bulk-arrival models as well as M/G/1 queues are used in [Schwefel99a] to compare the sce-
nario of deterministic service-times of limiting N -Burst/D/1 models with the usual exponential
service-time assumption. For TPT distributed burst-lengths with large PT Range, determinis-
tic and exponential service times resulted in practically identical values for the mCD (relative
deviation of 10�6).

Fluid-Flow limit

Section 2.7.3 showed how a uid-ow ON/OFF model can be obtained in the limit as k ! 1
of N -Burst models. k is the `cell-size' divisor, i.e. each cell is replaced by k smaller units.
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Figure 5.12: Impact of TPT distributions in ON and OFF times:Only when the TPT distributions
are used for the ON periods (solid lines in left graph), are the characteristic blow-up e�ects observed that
lead to huge mean queue-lengths. TPT distributed OFF periods (dashed lines in left graph) on the other
hand show little impact. The impact on the queue-length distribution for �xed � = 0:3 is shown in the
right graph.

See [Lipsky & Schwefel 00] for a more detailed discussion of that limit. We just state the
performance behavior for the two boundaries b = 0 and b = 1:

mCD(b = 0; k) =
1=(k�)

1� �
=

1

k
�mCD(b = 0) (5.26)

mCD(b = 1; k) = mCD(b = 1)� 1=�

1� �

�
1

2
� 1

2k

�
(5.27)

By de�nition, mCD(b; k = 1) = mCD(b). It also follows that the quantity, �(1��)�mCD(b = 1; k)
is independent of � and � for all k. Since mCD(b = 1) grows unboundedly with the MBS when
TPT distributions with � < 2 are used (see (5.24)), and since the second term of (5.27) is
independent of the MBS, the actual value of k is practically irrelevant for mCD(b; k = 1) for
TPT distributed burst-lengths with large MBS and � < 2. The di�erence between the uid-ow
bulk arrival limit (k ! 1) and the point-process bulk arrival model (k = 1) is given by the
limit, 1=[2(� � �)], of the second term of (5.27).

5.7 Impact of OFF-Time Distribution

So far, we always assumed the OFF times of the ON/OFF sources to be exponentially dis-
tributed. It was mentioned in Section 2.3 that the distribution of the OFF time is less critical
in terms of performance. We illustrate this claim with numerical results for a 1-Burst model
in Fig. 5.12. When TPT distributions are used in the ON periods, the characteristic blow-up
e�ects at � = 1 � b can be observed. Within the blow-up regions, huge mean queue-lengths of
the 1-Burst/M/1 queue are obtained, see left graph of Fig. 5.12. In contrast to that, the use of
TPTs only in the OFF periods increases the mean queue-length only marginally and no blow-up
e�ects happen.
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The impact on the queue-length distribution is shown in the right graph of Fig. 5.12: Only when
TPT distributions are used in the ON periods, does the Power-Law behavior of the queue-length
distribution show up. In that case, the OFF time distribution has very little impact. When the
ON-time is exponential, the impact of a TPT OFF-time is at least visible, but the queue-length
distribution nevertheless shows a quick exponential drop-o�.

Note that a 1-Burst model with exponential ON times and �0 = 0 is a renewal process, even
if the OFF periods are PT (or TPT) distributed. Therefore, the inter-cell times show no LRD
properties. The counting process on the other hand shows LRD properties for TPT distributed
OFF periods. Consequently, this process is an example of an ON/OFF model in which the
long-range correlation in the counts causes hardly any performance impact for any value of �
that is not too close to 1. We have not investigated the scenarios of � ! 1, since they are of
little practical relevance. However, known results from the discussion of TPT/M/1 models might
be transferable to 1-Burst/M/1 queues with TPT distributed OFF times and exponential ON
times: [Greiner et al. 99] showed that the use of TPT distributions in GI/M/1 models shows
a strong impact on performance (compared to the M/M/1 model) for � ! 1. More research
about N -Burst/M/1 queues with utilization �! 1 is necessary, but such scenarios are more of
theoretical interest (networks are not designed to work at � close to 1), and therefore they are
not investigated further here.

5.8 Blow-up Points for Inhomogeneous Bursts

So far, we investigated the steady-state performance behavior of N -Burst/M/1 queues for the
Independent Source [IS] model, in which allN ON/OFF sources are identical and in addition only
one value of the cell-rate during bursts (�p) occurs. In this section, we present preliminary results
of how the performance results extend to traÆc mixes with heterogeneous sources. Two di�erent
representations of traÆc mixes in the N -Burst model were introduced in Section 2.5.2: Each of
the N sources could be di�erent, i.e. it generates traÆc with di�erent parameters (distribution
of ON periods, peak-rates etc.). Alternatively, all N sources can be identical, and each source
generates the same traÆc mix. We will now briey look at the steady-state performance behavior
of both types of models. We restrict our investigations to the location of the blow-up points.
The blow-up e�ects happen when long-lasting over-saturation periods can occur at the switch
and they are a consequence of the fact that a discrete number i0 of sources has to be in a long
ON phase in order to create such an over-saturation period.

Mixture of TPT and exponential sources

The �rst interesting scenario is the case of a mixture of NTPT sources with (truncated) Power-
Tailed ON periods and NEXP sources with exponential (or other well-behaved) ON periods.
That model is a heterogeneous (NTPT +NEXP )-Burst. What behavior can we expect in terms
of the blow-up points for this model?

Since only the NTPT Power-Tailed sources can be in long ON periods, only they can contribute
to long over-saturation periods. The other NEXP sources always contribute their average rate �.
Consequently, that heterogeneous (NTPT +NEXP )-Burst model behaves in terms of the location
of the blow-up points like an NTPT -Burst with increased background Poisson rate �0+� �NEXP .
Hence only NTPT blow-up points exist and their location is obtained through the condition
� = �i, with

�i = �0 + � �NEXP + (NTPT � i) �+ i�p; i = 1; :::; NTPT :
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The fact that exponential ON/OFF sources only contribute their mean rate � to the
performance behavior is proven for the uid-ow ON/OFF model class with i0 = 1 in
[Jelenkovic & Lazar 97].

TPT bursts with di�erent peak-rates

Now we consider N -Burst models that allow for di�erent peak-rates during the bursts by either
of the two approaches mentioned above and described in more detail in Sect. 2.5.2. According
to the discussion in the previous paragraph, we only have to take bursts into account that can
show very long durations (e.g. when their duration is TPT distributed).

However, TPT distributed burst-lengths are only one possibility to obtain the blow-up e�ects.
Much simpler distributions can be used instead, as long as they allow for very long bursts to
occur. In the following, we use HYP-2 distributions with large variance, in fact we �t their �rst
three moments to a TPT distribution with large PT Range. An N -Burst model with such HYP-2
distributed burst-lengths shows the blow-up e�ects at exactly the same location as the model
with TPT burst-lengths, since the location only depends on Eq. (5.1). However, all the other
`nice' properties, such as LRD, Power-Tailed queue-length distribution with changing exponent,
and the Power-Law growth of mCD with MBS do not hold for HYP-2 distributed burst-lengths.
But we are not interested in those properties in this section.
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Figure 5.13:Blow-up Points for Two Identical Sources with Inhomogeneous Bursts: each source

generates a traÆc mixes with bursts of three di�erent traÆc classes (with di�erent cell-rates, �
(i)
p ). The

BOP shows blow-up points at various places, �
(j)
i . However, not all possible combinations of cell-rates {

such as the third marker from the left { lead to blow-up e�ects, see text.

Figure 5.13 and Figure 5.14 show calculations of the BOP for both scenarios of heterogeneous
bursts respectively sources. The blow-up regions can be clearly observed, yet the number of
blow-up points has increased in comparison to the standard case with bursts of only one type.
This is not surprising: the radically changing performance behavior is again due to the over-
saturation by a number of long-term active bursts. However, due to the increasing possibilities
for the intra-burst rates, there is now more than one cell-rate (used to be called �i) which results
from a certain number, i, of long-term active bursts. Without going into too much detail in the
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Figure 5.14: BLow-up Points for Scenarios with Di�erent Sources: the performance shows the
same behavior as in Figure 5.13, yet the number of possible combinations of cell-rates decreases. As
before, not all the potential cell-rates lead to blow-up e�ects, see text.

following, these critical cell-rates will now be called

�
(j)
i := Di�erent possibilities for Cell-Rate with i long-term active sources;

where the superscript j = 1; 2; ::: expresses the di�erent possibilities due to the di�erent
burst/source types.

According to Figure 5.13 and Figure 5.14 and a set of further calculations, the following obser-
vation seems to hold:

� Potential candidates for blow-up points are described by the condition � = �
(j)
i .

� Out of those, blow-ups do not happen at �
(j)
i+1 unless

�
(j)
i+1 > �

(k)
i for all k;

i.e. the transition to blow-up region i + 1 for a particular combination of cell-rates only
shows up with blow-up e�ects, when the system is already in blow-up region i for all other
possible combinations of cell-rates.

These two observations locate the blow-up points. Already that location can be used for network
design, see Chapter 7. However, a deeper understanding of the impact of traÆc mixes requires
that all investigations of the previous chapters be redone using heterogeneous bursts. Also,
additional questions, such as the impact of the proportions of the individual burst-types and the
implications of Power-Tailed bursts with di�erent tail-exponent, �, need to be investigated. The
intention of this section is to provide some preliminary results for traÆc mixes. The in-depth
discussion is left open for future research.



5 Steady-State Performance Analysis 87

5.9 Summary

In contrast to standard bursty models (with exponentially decaying probability of large bursts),
N -Burst models with LRD properties through TPT distributed burst-lengths show a number
of so-called blow-up regions with dramatic changes in performance (as measured by mCD, BOP,
and CLP) at their boundaries, called blow-up points.

Those blow-up points are located by Eq. (5.1), and already the knowledge about their location
can be useful for network design purposes.

The reason for the blow-up e�ects is that N -Burst models with TPT distributed burst-lengths
can generate long over-saturation periods during which the mean cell-rate is temporarily higher
than the service rate. In blow-up region i0 (see Eq. (5.2)), i0 long-term active sources are required
to create such a long over-saturation period. It is shown in Sect. 5.2 that such over-saturation
periods have a Power-Tailed duration with exponent � = i0(� � 1) + 1, where � is the PT
exponent of the burst-length distribution.

The most important result of this chapter is that it is the exponent � that matters for perfor-
mance, and not solely �, which determines the degree of LRD of the traÆc. Consequently, the
performance impact of such LRD traÆc can be alleviated by network parameters.

The queue-length distribution of N -Burst/M/1 queues turns out to be Power-Tailed with expo-
nent � � 1. The fact that the exponent � changes discontinuously at the blow-up points is the
cause of the blow-up e�ects.

In addition to the knowledge about the tail-exponent ��1, approximations for the tail-constant
of the queue-length distributions are discussed in Sect. 5.2. In comparison with the exact nu-
merical performance results for N -Burst/M/1 queues, those approximations turned out to be
useful to obtain quantitative results for the performance parameters in large-bu�er systems from
simple, closed-form formulas (without matrix computations as necessary for the exact numerical
results).

The use of truncated tails, or equivalently a Maximum Burst Size (MBS), results in a truncation
of the queue-length distribution. A formula for the PT-Range of the queue-length distribution
is obtained in Sect. 5.3. In the scenario � < 2, when the expected value of the Cell Delay is
in�nite for full PTs, a Power-Law relationship between mCD and MBS is obtained:

mCD(MBS) � MBS2�� ; when � < 2:

The numerically computed values for mCD show that such Power-Laws can be observed for a
realistic range of MBS values.

As a consequence of the Power-Tailed queue-length distribution, the BOP drops o� slowly as
BOP(B) � B��1 with increasing bu�er-size B. Thus, additional bu�er-space is an ine�ective
method to reduce high overow probabilities { even for � > 2. The CLP in a �nite-bu�er
model shows a Power-Law behavior with the same exponent, thus the same conclusions hold. A
relationship between the tail-constants cBOP and cCLP is given in Sect. 5.5, but the derivation of
this relationship requires results of the transient analysis, therefore it is delayed until Chapter
6.

It is shown in Sect. 5.6 that the M/M/1 queue and a bulk-arrival queue can be seen as limit
models of N -Burst queues with b ! 0 respectively b ! 1. The simple closed-form expressions
for various performance parameters of these limit models can thus be used as boundaries for
N -Burst/M/1 performance. A short discussion of the uid-ow limit is presented as well, more
details can be found in [Lipsky & Schwefel 00].
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Finally, the claim that the distribution of the OFF period is not critical for performance is
con�rmed in Sect. 5.7, and preliminary results about the location of the blow-up points for
inhomogeneous bursts are presented in Sect. 5.8.

To conclude the steady-state analysis, we summarize the practical consequences for the network
design process in the scenario of LRD ON/OFF traÆc in the following:

Only in case of Peak-Rate Allocation, when the service rate of the switch is higher than the peak-
rates of all sources together, can the bad e�ects of such traÆc be avoided. However, Peak-Rate
Allocation usually leads to an unnecessary waste of network capacity, since for badly behaved
sources the network would have to be run at utterly low utilization, e.g. less than 10%, which is
usually hardly justi�able to the �nancial departments, since capacity costs money.

However, adding more capacity is only one of four possibilities to alleviate the negative e�ects
of the Power-Tailed distributed bursts. Summarizing the results of this chapter, the remedies
are:

1. Limit the Maximum Burst Sizes: The LRD properties are thereby truncated, and the
PT Range of the bu�er-occupancy distribution can be controlled via 5.14. See Section 5.3
for details.

2. Add Switch Capacity, �: If enough capacity is added, a better blow-up region (higher
i0) can be achieved, and the PT exponent � that determines the performance behavior is
increased, see Eq. 5.4.

3. Higher Degree of Multiplexing: If the traÆc of a larger number of sources is mul-
tiplexed while keeping the utilization � constant, it follows from Eq. (5.2) that a better
blow-up region can be the result. Again, the PT exponent � of the queue-length distri-
bution is increased thereby. However, this requires that the service-rate � is increased
proportionally to N .

4. TraÆc Shaping: By decreasing the peak-rate �p during bursts as done in Sect. 5.6, the
location of the blow-up points �i is shifted, and eventually a better blow-up region is the
result. However, note that there can arise performance problems (Loss, Delay) at the traÆc
shaper itself5

These remedies improve QoS already for standard, non LRD traÆc. However, since they can
achieve a better blow-up region for LRD N -Burst traÆc, the improvements can be very drastic
for such traÆc. On the other hand, neglecting the results of this chapter can be fatal, since very
small changes in the network (e.g. adding another source) can totally mess up the network's
performance when such changes lead to a transition to a worse blow-up region than before.

Also, an important practical result of this section is that the utilization by itself is not suÆcient
for QoS oriented network planning, since the blow-up e�ects can occur for very low utilization
values: a properly designed network can run at � = 0:8 and show a better performance as a
poorly planned network that runs at utilization � = 0:2, if the latter is operating in the worst
blow-up region, i0 = 1.

5If the traÆc is described by a 1-Burst model, the shaper can be modeled by a 1-Burst/M/1 queue that
necessarily operates in i0 = 1, since its purpose is to reduce the peak cell-rate of the traÆc stream, i.e. �(shaper) <
�p.
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Chapter 6

Transient Performance Analysis

In the previous chapter, the impact of ON/OFF traÆc with LRD properties on the steady
state-values for the QoS parameters mean Cell Delay (mCD) , Cell Loss Probability (CLP),
and Bu�er Overow Probability (BOP) was investigated. The analysis showed that QoS does
not reduce uniformly with, for instance, decreasing service rate. Instead, well-de�ned so-called
blow-up points have been observed at which the QoS parameters deteriorate dramatically.

The analysis in Chapter 5 was based on steady-state values for the QoS parameters. Steady
state is the limit of the distribution of some parameter when the inuence of the initial state
has disappeared.1 An actual measured system reects exactly one possible state at a particular
instant in time, and as such the real system itself can never be in steady-state. However, when the
number of samples is increased, a collection of observations is expected to converge stochastically
to the steady-state distribution, provided that it exists. Therefore, the system never reaches
steady-state, but rather does the growing collection of samples eventually represent the steady-
state distribution closely enough. Note that we only deal with ergodic systems in this thesis,
and the investigations in this chapter implicitly assume ergodicity, even when put in a general
context.

The question arises, how large does the observation period have to be to yield a reasonable
representation of steady-state behavior? In most practical applications of stochastic models,
such a question is not asked and steady-state results are applied without further reasoning. As
we will see later, this is problematic for our LRD network traÆc models: the large variability in
the traÆc together with the long-range correlations signi�cantly reduce the speed of convergence
towards steady-state. Since the critical high-utilization periods for telecommunication networks
are typically limited to 5-8 hours per day, some QoS parameters might never come close to
their steady-state values within that time-interval. In such cases, steady-state analysis is not
suÆcient, but it has to be complemented or even replaced by transient analysis.

For individual data-connections or high-resolution measurements, smaller time-scales in the
range of minutes or seconds are of interest. Clearly, the steady-state values of the QoS pa-
rameters will not be observed in such short time intervals. In fact, the results of the individual
measurements will uctuate greatly. A network engineer has to be aware of those uctuations to
be able to interpret his measurement results correctly. Such insight can only be obtained from
transient analysis.

One of the striking results in the steady-state analysis is that N -Burst/M/1 queues with in�nite
PT Range of their burst-length distribution show an in�nite mean cell delay in blow-up region i0
when � < 1 + 1=i0. An in�nite mean delay can never be observed during the �nite (stationary)
life-time of a telecommunication systems. Therefore, the transient analysis in this chapter starts
o� in Sect. 6.1 by an investigation of the mean cell delay in �nite observation intervals. The

1In some models, the steady-state limit can depend on the initial state. However, this is not the case for the
models that we investigate.
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analysis in Sect. 6.1 is based on simulation models as well as on approximating M/G/1 queues,
as introduced in Sect. 2.7.4.

One particular property of both delay and overow-events in our queueing models is that the
individual events are highly correlated. Once the bu�er has �lled up, a substantial number of
subsequent cells experiences high delay or causes losses/overows. This is true for any queueing
model but it is accentuated greatly by the LRD properties in the cell-arrival process. Therefore,
it is very relevant to investigate the time until the bu�er �lls up for the �rst time, called First
Passage Time (FPT), which is discussed in detail in Section 6.2. Due to the correlated nature
of overow events, scenarios are possible in which many observation intervals show no overow
events at all, while a large fraction of cells cause overows in the few remaining observation
intervals that have at least one overow. The probability (t0; B) that there is at least one
overow in an observation period of duration t0 can be derived from the FPT distribution,
see Sect. 6.3 for a discussion. The fraction of cells, called conditional Bu�er-Overow Ratio
(conditional Cell-Loss Ratio), that causes overows (losses) in the intervals with at least one
such event is investigated in Sect. 6.4. The LRD properties in the N -Burst traÆc cause a
very peculiar behavior of those conditional, transient performance parameters, namely they
grow asymptotically with increasing bu�er-size. The transient overow probability, , together
with the conditional transient overow/loss ratios provide a much better description of the
performance behavior than a steady-state BOP or CLP, since the transient parameter pair is
able to express the uctuations that occur in di�erent observation intervals.

Frequently, an important part of the transient analysis is the analysis of the so-called Busy
Period, i.e. the time interval that starts when a customer enters an empty queue, and ends as
soon as the switch becomes idle again for the �rst time. Since the practical application of results
from the Busy-Period analysis requires a careful interpretation (the Busy Periods are correlated
due to the memory { the number of active bursts { in the N -Burst arrival process), we do not
present a discussion of the Busy Period analysis in this thesis. See [Schwefel 99e] for some
preliminary results, and Chapter 10 for a discussion of the relevance of future research in this
area.

Investigating the transient behavior by simulations can be very costly. In addition, the uctu-
ations in the simulation results can be large when LRD arrival processes are involved. On the
other hand, the transient analysis of the analytic models (see Appendix F.3 and Appendix H
for algorithms) might be costly in terms of computing time as well, but the results are exact
and no uctuations have to be dealt with. Therefore, much more insight can be expected when
using both methods together.

Although the transient analysis of even simple systems such as the M/M/1 queues is still a
current research topic (see e.g. [Leguesdron et al. 93] and [Coevering 95]), the growing
interest in the application of analytic models to telecommunications systems has produced the
need for more complicated models: [Ren & Kobayashi 95] looked at the transient queue-length
probabilities in a uid ow model with N exponential ON/OFF sources. [Tanaka et al. 95]
and [Sericola 98] also use uid queues, but with more general, Markov modulated arrival rates.
Finally, [Kulkarni & Li 98] investigate the transient behavior of queues with a particular
MMPP arrival process, but still restricted to exponential state-times. So far, little work was
done with respect to the transient behavior for arrival processes with LRD properties.

Most examples in this chapter use N -Burst [IS] models with the individual source param-
eters chosen in correspondence to an early parameter estimation for measurement TX3 in
[Schwefel et al. 97]:

� = 16:3 cells/ms; np = 9:1; b = 0:88 :
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The improved calibration method in Section 4.3 leads to slightly di�erent results, but the dif-
ferences are of negligible magnitude. From these parameters, a peak-rate �p = 140 cells/ms and
a mean OFF time of Z = 0:49ms follow. The background Poisson rate is always assumed to be
�0 = 0. This parameter set is referred to as TX3 source in this and the two following chapters,
although it slightly deviates from the TX3 parameter set of Section 4.3.

During a busy hours period of t0 = 5h, such a TX3 source generates on average about 3 �108 cells
or about 16GigaBytes (GB) of data. Medium time-scales such as t0 = 5min, as for example for
longer individual connections, correspond to about 5 million cells (� 270MB) per TX3 source.
Finally, on time-scales of short connections, such as t0 = 5 s, about 80 000 cells (� 4:5MB) are
generated on average by one such source.

6.1 Transient Mean Delay

As a �rst approach to the transient analysis, we investigate the mean cell delay that is observed
in a �nite observation period of duration t0. The scenario in which the steady-state mCD is
in�nite is of special interest here since, obviously, that steady-state value can never be observed.
First, we use a simulation model to illustrate how problematic the interpretation of individual
measured traces can be. Thereafter, we discuss the transient mean queue-length { as a related
performance measure to mean delay { in approximating M/TPT/1 models.

6.1.1 Simulation Experiments
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Figure 6.1: Simulated Mean Cell Delay in [0; t0]: Large uctuations can be observed in the individual
simulation runs, �ve of them plotted as thin lines in the left graph, which uses the LRD 1-Burst model in
blow-up region i0 = 1. Although both graphs are generated from simulation experiments of 1-Burst/M/1
Queues with � = 0:5, the exponential burst-lengths that are used for the right graph cause much smoother
behavior. Note that the region with delay values below 0:3msec is suppressed in the right graph. See text
for a detailed discussion of the graphs.

Figure 6.1 presents the results of two simulation experiments illustrating clearly that although
the use of steady-state results can be very reasonable for traditional traÆc models, this is not
necessarily true for traÆc from the LRD version of the N -Burst models. Both graphs show the
mean cell delay mCD(t) averaged over all cells that left the switch up to time t. The arrival
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process is in both graphs a 1-Burst model with parameters according to measurement TX3, but
exponential ON periods are used in the right graph as opposed to PT distributed ON periods in
the left graph. The steady-state utilization of the 1-Burst/M/1 queues is in both cases � = 0:5.

The steady-state value of the mCD for the exponential 1-Burst model is in fact meaningful in
the �nite observation intervals, since the range of observed mCD(t) values in 500 replications
converges rather quickly towards the steady-state value. For the average and the median of the
500 replications, convergence is even quicker.

The observations are totally di�erent for the 1-Burst model with LRD properties in the left graph
of Fig. 6.1: Although about 80000 cells contribute to mCD(t) after 5 seconds, the observed value
uctuates greatly from one replication to the other. Within an individual replication, huge jumps
of the mean delay occur, which implies that a large number of subsequent cells experience huge
delay values. Even when averaging over all 500 replications, no stability is observed and the
resulting con�dence intervals for the true mean are huge.
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Figure 6.2: Simulated mean Delay for 1-Burst/M/1 Queue, Medium and Large Time-Scales:
Even after 5 hours of simulated time in the right graph, large uctuations can be observed. The mean of
20 replications seems to converge in the right graph. However, this is only due to the limited number of
replications: as a consequence of the in�nite steady-state mCD, the true transient mean delay mCD((t)
grows unboundedly with t.

Even when we move to larger time-scales of t0 = 5min and t0 = 5h no stability is observed in
the delay values for the LRD 1-Burst model, see Fig. 6.2. Sharp increases of mCD(t) are still
observed in the individual replications after a few hours of simulation time, although several
hundred million cells contribute their individual delay value to that plotted average. Of course,
the mCD in blow-up region i0 for � < 1 + 1=i0 is a particular bad parameter to observe, since
its steady-state value is in�nite. Other parameters of the delay-distribution, such as the median,
behave better.

In summary, measurements of transient performance parameters are very well behaved only for
N -Burst/M/1 queues whose traÆc does not have LRD properties, or for the scenario of Peak-
rate Allocation (� > N�p). In such systems, uctuations diminish after a few seconds for the
transient mean delay and other transient performance parameters. Consequently, steady-state
behavior can be observed very quickly.

In contrast to the exponential case, the observations are totally di�erent for LRD traÆc as well
as for actual measured traces (see [Schwefel 99e]). Fluctuations in individual replications are
huge and they do not disappear in the mCD(t) estimators, even when taking into account the
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whole busy period of 5 hours. Even worse, the uctuations do not disappear when averaging
over a large number of replications. Con�dence intervals for the true expected value over all
replications are rather large and thus the estimated values have to be interpreted with great
care.

6.1.2 Analytic Approximating Models

Due to the large uctuations in the observed performance parameters, simulation experiments
are not really a very suitable method to obtain reliable values. Their main purpose in the previous
section is to illustrate those uctuations rather than to obtain actual numbers. Numerical results
from analytic models are not subject to such uctuations. Instead of analyzing the transient mean
cell delay, we look at the transient queue-length distribution in this section.

It is possible to compute the distribution of the queue-length Qt at time t for an N -Burst/M/1
queue (see (24) in [Lucantoni 93]), yet it involves inverting a Laplace transform and a z-
transform of a function containing matrix expressions. Therefore, it is rather complicated and
computationally demanding.

Instead, we analyze the approximating M/TPT/1 queue as described in Sect. 2.7.4. Note, that
the M/G/1 model approximates the N -Burst/M/1 queue at burst-level. Therefore, the cell-
arrivals are not spread out over time, which is an approximation of the N -Burst/M/1 queue
with b! 1, i.e. automatically i0 = 1. Thus, the steady-state mean queue-length of the M=G=1
queue is in�nite for full Power-Tails with � � 2.

Herein, we focus on the expected value, IE fQtg, of the queue-length at time t, given that the
queue was empty at time 0. Note that this does not involve averaging over the observation period
as for the cell delay in the simulation model of the previous section. We look at time-averages
later on in this section.

The Laplace Transform of the mean queue-length of the M/G/1 queue with arrival rate � and
mean service time, x, is given in [Cohen, 82], Equation (4.52):

f̂(s) =

Z 1

0
e�st IE fQtjQ0 = 0g dt = �

s2
� 1� �(s; 1)

s [1 + s=�� �(s; 1)]
� �(s)

1� �(s)
; Re(s) > 0;

where �(s; 1) is the root z of

z � � [s+ �(1� z)] = 0; (6.1)

with smallest absolute value. �(s) is the Laplace Transform of the service-time distribution. If
that distribution has an ME representation hp;Bi (see Appendix B.1), its Laplace Transform
can be computed by �(s) = pB(sI + B)�1"0, see [Lipsky 92]. The roots of Eq. (6.1) can be
determined numerically in a number of ways. We used a variation of Newton's algorithm in the
following. The numerical inversion of the Laplace transform is described in Appendix H.5.

Figure 6.3 shows the curves of the expected queue-lengths of an M/TPT/1 queue that has
features similar to the 1-Burst/M/1 model, whose arrival process is calibrated on measurement
TX3, and whose utilization is � = 0:5. Curves are plotted for di�erent values of the truncation,
T . The steady-state mean queue-length and the time to reach 90% of that value are marked by
dotted lines for each T . The truncations correspond to Maximum Burst-Sizes and Power-Tail
Ranges of the service-times of the M/TPT/1 queue as follows:

Truncation T 1 5 10 15 20 30 37

MBS [cells] 9.1 36.5 326 3:5 � 103 4:1 � 104 5:6 � 106 1:8 � 108
PT-Range (ST) 0.28 ms 1.1 ms 10 ms 0.11 s 1.2 s 173 s 1.5 h
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Figure 6.3:Mean Queue-Length at Time t of an Approximating M/TPT/1 Queue: The dotted
horizontal lines show the steady-state value of the mean queue-length for the corresponding truncation
T . The dotted vertical lines mark the time, at which the mean queue-length has reached 90% of its
steady-state value. For large T , IE fQtg appears linear on log-log scale for some range. The slope of the
linear part turns out to be 0:6 = 2� �.

The higher the value of T , the larger the steady-state mean queue-length becomes, but it also
takes a longer time to converge to the steady-state value, see the values in Figure 6.3. For T = 37
it takes approximately a period of t0 = 5h (about the whole stationary, daily high-load period)
to come close to the steady-state value.

For large T , the curves show a linear appearing segment before they come close to their steady
state-value. Measurements of the slope on log-log scale yield a value of 2 � �. If this is true in
genera;, then it follows for the behavior of the mean queue-length:

IE fQtg � t2�� for � < 2:

Another very important conclusion can be drawn from the observation of IE fQtg in Fig. 6.3:
In a limited time-horizon, t0, there is some upper limit on the truncation value (equivalently
the MBS) of the burst-length distribution, beyond which practically no further impact on the
expected value, IE fQtg, of the queue-length distribution can be observed until time t0. In other
words, IE fQt0g (MBS) converges, and the smaller t0 is, the earlier does the convergence occur.

Note that the individual customers in the approximating M/TPT/1 queue represent whole bursts
rather than single cells. Nevertheless, similar observations can be expected for the queue-length
of the full N -Burst/M/1 model.

Time average of queue-length

In practice, performance evaluation by measurements or simulations very frequently does not
look at the queue-length at a speci�c time t, but more often at the time-average,

�Qt =
1

t

Z t

0
Qt0 dt

0:
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Figure 6.4: Ratio to Steady-State Value of Mean Queue-Length: The expected time-average of
the queue-length (dashed lines) approaches its steady-state value slower than the solid lines of IE fQtg.
The wiggly lines in the upper right corner are due to numerical instabilities.

The expected value of the time-average can be calculated analytically by switching the order of
the integrals { which is allowed under very loose mathematical conditions:

IE
�
�Qt

	
= IE

�
1

t

Z t

0
Qt0 dt

0

�
=

1

t

Z t

0
IE fQt0g dt0:

Therefore, the time average of the queue-length is subject to the same Power-Law behavior

IE
�
�Qt

	 � t2�� for � < 2;

but as Figure 6.4 shows, it converges slower to the steady-state mean queue-length than IE fQtg.
The convergence towards a �nite steady-state value is due to the truncation of the Power-Tails.
On those time-scales, the classical theory for Markovian Processes can be applied. As it is stated
e.g. in [Lipsky 92], transient state probabilities approach their steady-state value exponentially
fast as e�t=R (R is called Relaxation Time), while time averages approach the steady-state value
only as 1=t, which is much slower. In the light of those results, the shift of the time average
curves in Fig. 6.4 is not surprising.

The important conclusion for measurements is that the commonly done averaging process over
sequential samples of a measurement requires a much longer measurement period to become
stable. For the M/G/1 approximation with T = 30 in Fig. 6.4, the measurement time would
have to cover 41 minutes instead of 10 minutes, to reach 90% of the expected steady-state value.

6.2 First Passage Process

So far in this chapter, we investigated the transient mean queue-length, which is closely related
to the transient mean delay. Long delay times are caused by long queue-lengths, and since
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long queues only drain gradually, it is obvious that the cell delay of subsequent cells is highly
correlated. This is even more obvious for Bu�er-Overow events: once the bu�er has �lled up
beyond the level B, a number of subsequent cells overow. In order to avoid overows completely,
the very �rst overow event is of critical importance. The random variable that expresses the
time until that �rst overow occurs is called First Passage Time and it is discussed in detail in
this section.

6.2.1 Motivation & De�nition
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Figure 6.5: Simulated Fraction of Overowed Cells, BOR(t; B), for an 8-Burst/M/1 Queue
with i0 = 2 and B = 5000: Also shown is the average of all the 100 independent replications (thick
line), and the fraction of replications that showed at least one overow by time t (dashed line).

A simulation similar to that performed for the transient mean cell delay in Sect. 6.1.1 is shown
for the Bu�er-Overow Probability in Fig. 6.5: an 8-Burst/M/1 model is simulated for a �nite
time t0, starting with an initially empty queue and the beginning of the �rst ON-period at t = 0.
During the simulation run, the fraction of overowed cells is observed, called Bu�er Overow
Ratio:

BOR(t; B) :=
number of overowed cells in [0,t]

number of arriving cells in [0,t]
�

Each run terminates after t0 = 5minutes during which { on average { about 40 million cells
arrive. The curves for the individual simulation runs show that the overow events are highly
correlated: About 64% of the 100 simulation runs did not show any overows at all, but if
overows occurred, then a large number of cells overowed. For � < 1, the BOR converges
stochastically to the steady-state BOP for long observation periods, t0:

BOR(t0; B)
t0!1�! BOP(B):

However, even though about 40 million arrivals were simulated in each replication in Fig. 6.5,
the random variable BOR(t0; B) still shows large variance, with the values ranging from 0 to
about 35%.

Later in Sects. 6.3 and 6.4 we introduce transient performance parameters that are able to
describe such uctuating behavior. Those parameters are based on an investigation of the very
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�rst overow event. The time at which the bu�er occupancy reaches level n for the �rst time is
expressed by the random variable

�n := min
t>0

ftjQt = ng : (6.2)

�n is called First Passage Time (FPT). Here we always assume an initially empty queue. Note
that the FPT is independent of the bu�er-model, i.e. there is no di�erence between the �nite-
bu�er loss model and the in�nite backup bu�er model, as long as n � B.

6.2.2 Mean First Passage Times

The FPT is a random variable with some underlying distribution. Before we look more closely
at the actual distribution in the next section, we �rst investigate its expected value, called mean
First Passage Time (mFPT):

mFPT(B) := IE f�Bg :
A Matrix-Analytic algorithm to compute mFPT(B) for MMPP/M/1 queues is presented in
Appendix F.3. An alternative method for the computation of mFPT(B) can be obtained
via the use of martingales. A summary of that method is presented in Appendix H, see
[Asmussen et al. 00a] for the detailed derivation.
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The most important result of the steady-state analysis of N -Burst/M/1 queues in the previous
chapter is the existence of N blow-up regions, i0 = 1; :::; N (plus one PRA region), in which the
performance behavior is radically di�erent: the steady-state queue-length distribution shows a
Power-Tail with exponent � = i0(�� 1) + 1, and � changes at the transition from one blow-up
region to the other, see Sect. 5.2.

The computation of mFPT(B) for N -Burst models in di�erent blow-up regions and in the PRA
region in Fig. 6.6 reveals that the blow-up regions are also of critical impact for the behavior of
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mFPT(B). Within the blow-up regions i0 = 1; :::; N , a Power-Law growth

mFPT(B) � cmFPTB
� ; (6.3)

of mFPT(B) is observed with the same exponent � that we obtained in the steady-state analysis,
see Eq. (5.4). As opposed to the blow-up regions, geometric growth of mFPT(B) occurs in the
PRA region, i.e. when N�p < �.

Note that the slower Power-Law growth of the mFPT(B) in the blow-up regions is another
manifestation of the Bu�er-IneÆciency that is discussed in Sect. 5.4, but now with respect to a
transient performance parameter: additional bu�er-space is a very ine�ective method to increase
the mFPT in order to delay the �rst overow-event beyond the time-scales of interest. In the
PRA region, as with traditional traÆc models without LRD properties, the faster geometric
growth of mFPT(B) leads to much better improvement from the use of bigger bu�ers.

Later on in Section 6.4, the Power-Law behavior (6.3) is `proven' (although not rigorously),
and a relation for the tail-constant cmFPT is obtained. That derivation is based on the Power-
Law behavior (5.19) and (5.20) of the steady-state BOP(B) and CLP(B), and on the asymptotic
behavior of another transient performance parameter, which is introduced and discussed in Sect.
6.4.
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As already observed and discussed in the steady-state analysis of the queue-length distribution in
Sect. 5.3, the use of truncated PTs for the ON-time distribution also limits the Power-Law behav-
ior (6.3) to a certain range of bu�er-sizes, after which the mFPT(B) starts to grow geometrically,
shown in Figure 6.7. Since we introduced the Power-Tail Range in Sect. 3.5 for complementary
distribution functions (which are monotonically decaying), that PT-Range de�nition cannot be
applied without modi�cations to the function mFPT(B). In Sect. 6.3, we introduce a transient
overow-probability that is amenable to an analysis of its PT-Range. A brief discussion of the
PT-Range is provided in that section.

Figure 6.7 also illustrates the impact of the initial condition on the behavior of mFPT(B). It is
always assumed that the bu�er-occupancy of the N -Burst/M/1 queue is zero at the beginning
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distribution. For a comparison with the M/M/1 queue, see the left graph of Figure A.2 in Appendix A.2.

of the observation interval. However, the initial state of the N -Burst arrival process2 also a�ects
the observed behavior. See [Schwefel 99e] for a more detailed discussion.

6.2.3 Distribution of First Passage Times

So far, we have investigated the behavior of the expected value of the FPT. In order to ob-
tain transient overow probabilities, as they are introduced and discussed in the next sec-
tion, we need to know the whole distribution of the FPT, �n. The method that is developed
in [Asmussen et al. 00a] and summarized in Appendix H allows the Laplace transform of the
distribution of the FPT to be computed. Via numerical inversion of the Laplace Transform (see
Appendix H.5), exact values for the density f�n(t) can be obtained.

Figure 6.8 shows the log-log plots of computed densities f�n(t) for 1-Burst/M/1 queues, both
with exponential burst-lengths (right graph) and with TPT distributed burst-lengths (left
graph). Except for small t, the density functions are very close to an exponential distribu-
tion with same mean mFPT(n). Therefore, an exponential distribution with mean mFPT(n) can
be used as an approximation for the true f�n(t). The asymptotic theory that is discussed in
[Asmussen et al. 00a] con�rms the suitability of the exponential approximation and provides
rigorous conditions for the convergence of the exact First Passage Probabilities towards the
probability that is derived from the exponential approximation. Also, other asymptotic approx-
imations are obtained in [Asmussen et al. 00a]. Appendix H.3 contains an overview.

A noticeable di�erence in the density functions for the 1-Burst model with TPT distributed ON
periods is the pronounced peak that occurs close to time n=(�p � �) (= n=8 in the scenario of
Figure 6.8), which is the mean time it takes the queue to reach bu�er-level n given that the
arrival process started with a very long ON period (with duration longer than n=(�p � �)). For

2The initial state in Fig. 6.7 is the OFF state for the solid curves, and the largest TPT phase of the ON period
for the dashed curves.
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large n � 100, no such peak at all occurs for the exponential 1-Burst model. More research is
necessary to gain a full understanding of the shape (width and height) of that peak. However,
since it can be expected that the shape of the peak depends critically on speci�c model details
(the assumption of Poisson arrivals during ON times), this thesis does not investigate this further.

6.3 Transient Bu�er Overow Probabilities
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high load period (e.g. t0 = 5h), the number of days in a year during which overow events occur are
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From the knowledge of the distribution of �n, the transient overow probability

(t0; B) := IP fAt Least One Overow in [0; t0]g = Pr (�B+1 � t0) : (6.4)

can be derived. As pointed out in the previous section, an exponential approximation can be
used for that transient overow probability in case of large bu�ers B:

(t0; B) � IP fFPT(B) � t0g � 1� exp

�
� t0
mFPT(B)

�
� (6.5)

Figure 6.9 shows in its left graph simulation estimates for (t0; B = 1000) in comparison to the
computed exponential approximation from (6.5) for a 1-Burst/M/1 model. For short observation
intervals t0 < B= (�i0 � �), the exponential approximation over-estimates the true probability
(t0; B).

The practical relevance of a certain value of e.g.  = 1% for t0 as large as the daily busy hours
is shown in the right graph of Fig. 6.9: the number of days within a year (assuming the year
contains 250 work days), on which at least one overow-event can be observed, is distributed
binomially with parameter . In the right graph of Fig. 6.9, the binomial distribution is plotted
when assuming  = 1%. In that case, with probability 8:1%, no overow-days at all can be
observed during the cause of a year, while the probability of exactly one overow-day is 20:5%.

More eÆcient methods for simulation estimates of small probabilities (t0; B) are discussed
in [Asmussen et al. 00b]. In that paper, Importance Sampling is used to obtain estimators
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Figure 6.10: Transient Overow Probabilities for 1-Burst/M/1 Queue, i0 = 1: For the TPT
distributed burst-lengths in the left graph, the overow probabilities drop o� slowly by a Power-Law.
In contrast to that, the overow probability drops o� exponentially for exponential burst-lengths in the
right graph. Mind the di�erent scale of the y-axis in the two graphs!

with small variance. The numerical computation of exact probabilities (to; B) can also be
obtained by the algorithms in Appendix H, since the Laplace transformation of the cumulative
distribution function of �n follows easily from the Laplace Transformation of the density function,
see Appendix H.5.

If the ratio t0=mFPT(B) is very small, the exponential function in Eq. (6.5) can be approximated
by the linear term of its Taylor series:

(t0; B) � t0
mFPT(B)

for
B

�i0 � �
� t0 � mFPT(B) : (6.6)

Using the asymptotic behavior (6.3) of the mFPT, it follows that

(t0; B) � t0
cmFPT

B��; for 0� B

�i0 � �
� t0 � mFPT(B) : (6.7)

If B=(�i0 � �) approaches or exceeds t0, the exponential approximation (6.5) becomes invalid.
On the other hand B must be large enough for two reasons: �rst, B needs to be in the range
of bu�er-size for which Power-Law behavior (6.3) of mFPT(B) can be observed. Secondly, B
needs to be large enough such that t0=mFPT(B) is small in order to be able to use the linear
Taylor approximation 1 � exp(�x) � x for the exponential function. As a consequence of the
restrictions on B, in a mathematically rigorous derivation, two simultaneous limits B !1 and
t0 !1 have to be used in a way that

lim
B!1

t0(B)

B
=1 and lim

B!1

t0(B)

B�
= 0 :

We do not investigate such an asymptotic theory here, but instead we compare the approximation
(6.7) with the exact numerical results that we obtain from the algorithms in Appendix H.

Figure 6.10 shows the exact values for the overow-probability (t0; B) in comparison to the
exponential approximation (6.5) for 1-Burst models with di�erent burst-length distributions. The
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Power-Law behavior (6.7) of the transient overow probability can be observed in the left graph,
where MBS = 107 is used. The exponential approximation provides almost indistinguishable
results. Only for larger bu�er-sizes B > 500, a small deviation from the exact values can be
observed for the Power-Tailed model.

The Power-Law behavior (6.7) does not hold for arbitrary large bu�ers. Eventually, a quick
drop-o� of (t0; B) will occur, which can be due to two reasons, whichever occurs �rst:

� Truncated Tails: If TPT distributions with a certain MBS are used for the burst-lengths
in the N -Burst model, the PT Range of the queue-lengths that are reached during an
over-saturation period are limited to q[i0] = bi�MBS=i0, see (5.14). Thus, the transient
probability (t0; B) is also expected to drop o� for bu�er sizes B > q[i0].

� Limited by time-interval t0: If the bu�er becomes so large that a long over-saturation
period cannot �ll it up in time t0 even if it starts right away, the overow-probability
(t0; B) decays rapidly. This happens approximately for bu�er-sizes beyond

Bt0 := t0 (�i0 � �) =
b

1� b
i� t0� :

In the left graph of Fig. 6.10, the drop-o� due to the truncation of the burst-length distribution
would occur for bu�ers beyond q[i0] = 4:7 � 106 for the case � = 0:2, and q[i0] = 7:4 � 106 for
� = 0:5. A quick decay of (t0; B) due to the �nite observation interval would be observed
already much earlier, since Bt0 = 104 when � = 0:2 respectively Bt0 = 1:6 � 104 when � = 0:5.

6.4 Conditional Bu�er Overow Ratio

The transient overow probabilities (t0; B) separates the `good' observation intervals with no
overows or losses form the `bad' intervals, during which some overows occur. Although for
low values of , the number of `bad' overow intervals is very low, Fig. 6.5 points out that the
behavior in those few bad intervals might be extremely bad. To investigate such behavior, we
introduce another transient performance parameter, the conditional Bu�er-Overow Ratio:

BORc(t0; B) := IE fBOR(t0; B) jBOR(t0; B) > 0g :

Note that BOR(t0; B) is a random variable (see Sect. 6.2.1), while BORc(t0; B) is de�ned here
as an expected value.

The transient overow-probability (t0; B) is independent of the bu�er-model: it does not matter
whether cells are discarded or stored in the in�nite secondary bu�er since only the �rst overow
or loss event matters. On the other hand, the fraction of lost cells is smaller in the �nite-
bu�er loss model than the fraction of overowed cells in the in�nite-bu�er model. Hence, an
analogous de�nition for the conditional Cell-Loss Ratio in the �nite N -Burst/M/1/B loss model
is necessary:

CLRc(t0; B) := IE fCLR(t0; B) jCLR(t0; B) > 0g :

The two transient performance parameters express the expected fraction of overowed or lost
cells, conditioned on at least one observed overow/loss in a time-interval with length t0. Stan-
dard stochastic de�nitions provide a relation between BORc and :

BORc(t0; B) = IE fBOR(t0; B) j BOR(t0; B) > 0g =
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=

Z 1

x=0+
x � IP fBOR(t0; B) = xg

(t0; B)
dx =

IE fBOR(t0; B)g
(t0; B)

:

Thus, BORc(t0; B) can be substantially larger than IE fBOR(t0; B)g when an overow event
occurs only with small probability (t0; B) within [0; t0]. Therefore, the conditional overow
ratio is mainly interesting for reliable networks with low . However, a low  can also be the
case when looking at short time-scales of e.g. short connection lengths. The analog arguments
hold for the CLRc.

6.4.1 Asymptotic Behavior of BORc for Large Bu�ers

Since it is hard to compute IE fBOR(t0; B)g in the analytic model, we compute

BOPc(t0; B) :=
BOP(B)

(t0; B)

instead of BORc. However, it turns out that IE fBOR(t0; B)g �! BOP(B) rather quickly (when
t0 > B=(�i0 � �)), so that BOPc(t0; B) � BORc(t0; B), if B is not too large with respect to t0,
see Sect. 6.4.4. Figure 6.11 shows in its left graph the computation of an analytic 1-Burst/M/1
model in i0 = 1: shown are the steady-state BOP(B), the transient probability (t0; B) (by Eq.
(6.5)), and �nally BOPc(t0; B) as the ratio of the two others. We observe that �rst BOPc � BOP,
before at about B = 3000, (t0; B) starts to drop o�, which causes BOPc to grow. For large
B, the BOPc curve looks like a straight line with slope 1 on log-log scale, i.e. it grows linearly.
The right graph of Fig. 6.11 makes clear that such a linear growth of the BOPc is peculiar to
the N -Burst/M/1 queue with Power-tailed ON periods, since early truncations of the ON-time
distribution lead to a converging BOPc.
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It is shown in Appendix G.2 that the conditional overow ratio, BORc(B) in an N -Burst/M/1
model grows asymptotically linearly with increasing bu�er-size B,

1

�� 1
� 1
i�
� 1

1� �
� B

� t0
� BORc(t0; B) � 1

i0 (�� 1)
�

N 1�b
b

1
�

i� (1� i�)
� B

� t0
; (6.8)

when the model operates in blow-up region i0 and the burst-length distribution shows suÆciently
long Power-Tails. Formula (6.8) is derived by estimating the number of overow-events that are
caused by a single, long over-saturation period of duration X 0, where X 0 is larger than the time,
x0 = B=(�i0 � �), which is necessary to �ll up the bu�er, see Appendix G.2. After the over-
saturation period ends, the queue needs another time period of duration T(dr) to drain until the
queue-length is back at level B, after which no further overow events are caused.

The two asymptotic bounds in (6.8) are identical for i0 = 1:

BORc(t0; B) � 1

�� 1
� 1
i�
� 1

1� �
� B

� t0
for i0 = 1 (6.9)

The fact that there are best case and worst case assumptions for the rate of draining in the
in�nite bu�er model leads to the two bounds for the asymptotic behavior, see Appendix G.2.
The derivation of the asymptotic behavior of the CLRc in the �nite-bu�er loss model is actually
simpler, since there is no drain period involved. Appendix G.1 shows that we obtain for the
asymptotic behavior

CLRc(B; t0) � 1

i0 (�� 1)
� B

� t0
� (6.10)

Eq. (6.10) is not quite mathematically rigorous. A simultaneous limit B ! 1 and t0 ! 1
would have to be considered, see the remark in Appendix G.1 for further explanation.

Truncated Tails

For exponentially truncated Power-tails in the burst-length distribution, the asymptotic behavior
of BORc(t0; B) and CLRc(t0; B) is derived in Appendix G.3:

b

1� �
� MBS

� t0
� BOR(TPT )

c (t0; B) � N

i0
� 1� b

� (1� i�)
� MBS

� t0
� (6.11)

The two bounds are again identical in i0 = 1. The larger the MBS is, the tighter the bounds
turn out to be, see the horizontal dotted lines in the right graph of Fig. 6.11.

As before, since there is no drain-period involved in the �nite-bu�er model, a single expression
results for the CLRc:

CLR(TPT )
c (t0; B) � b i�

i0
� MBS

� t0
; (6.12)

Note that in contrast to the scenario with in�nite PTs, the formulas in Eqs. (6.11) and (6.12)
do not depend on the bu�er-size.

Conclusion: Additional bu�er space decreases the number of `bad' days, while it increases the
conditional Overow Ratio for LRD ON/OFF traÆc from the N -Burst model. For traditional,
exponential burst-lengths the conditional Overow Ratio converges. However, note that larger
bu�ers do of course prevent some overows, but they on the other hand even increase the
observed uctuations in daily overow-ratios: Either no overows at all, or a huge number of
overows.
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Example

Let us consider a 2-Burst model where each of the sources is described by the TX3 calibration,
as described in the beginning of this chapter, at utilization � = 15% =) i0 = 2; i� = 0:5088.
Then, the asymptotic behavior of the BORc for full PTs is bounded by

5:78 � B

� t0
� BORc(t0; B) � 8:77 � B

� t0
;

and in case of truncated tails

1:04 � MBS

� t0
� BOR(TPT )c (t0; B) � 1:57 � MBS

� t0
�

The following table computes the asymptotic values together with the BOP, mFPT, and BOPc
for t0 = 5min:

B 1000 5000 104 5 � 104
upper bound: BOR

(PT )
c 9:0 � 10�4 4:5 � 10�3 9:0 � 10�3 4:5%

lower bound: BOR
(PT )
c 5:9 � 10�4 3:0 � 10�3 5:9 � 10�3 3:0%

BOP(B) 5:6 � 10�4 1:4 � 10�4 7:6 � 10�5 1:6 � 10�5
mFPT(B) 7:7min 2:4 h 8:3 h 7:0 d
(t0; B) 48% 3:5% 1:0% 5:0 � 10�4
BOP= 1:2 � 10�3 4:1 � 10�3 7:6 � 10�3 3:3%

Thereby, the values for the BOP, mFPT are computed exactly for T = 30 which corresponds to
MBS = 5:6 � 106. (t0; B) is computed by the exponential approximation (6.5).

6.4.2 Asymptotic Behavior of the Mean First Passage Time

The knowledge of the asymptotic behavior of the BORc can be used to derive several corollaries:
one of them is a con�rmation of the observed asymptotic behavior of the mFPT in Sect. 6.2.2.

Since the behavior of the steady-state BOP is known from Sect. 5.2 to be BOP(B) � cBOP �B1�� ,
and we now found the asymptotic behavior of BORc(B) to be linearly increasing with B, we can
derive the asymptotic behavior of the mFPT. By using the exponential approximation (6.5) for
(t0; B) and the approximation 1� exp(�x) � x for small x, we obtain:

BORc(t0; B) � BOP(B)

(t0; B)
� BOP(B)

1� exp(�t0=mFPT(B))
� BOP(B) � mFPT(B)

t0
:

Since BOR
(PT )
c (B) � B, we get for the mean First Passage Time:

mFPT(B) � t0 � BOR(PT )
c (t0; B)

BOP(B)
� B

B1��
= B�:

Therefore, for ON/OFF traÆc with Power-tailed ON periods with exponent �, the mFPT grows
asymptotically by a Power-Law with exponent � = i0 (� � 1) + 1. Computations of mFPTs for
N -Burst models in Sect. 6.2.2 con�rm such an asymptotic behavior.

The constant in the asymptotic behavior of mFPT(B) can be derived as follows:

BOR(PT )c (t0; B) � cBOPB
1�� � cmFPTB

�

t0
=)
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1

cBOP
� 1
�
� 1

(1� �) (� � 1) i�
� cmFPT � 1

cBOP
� 1
�
� N (1� b)

i0 � (�� 1) b i� (1� i�)
: (6.13)

Again, the two bounds are identical when i0 = 1:

cmFPT =
1

cBOP
� 1
�
� 1

(1� �) (�� 1) i�
; for i0 = 1: (6.14)

Thereby, a relationship between the constants in the asymptotic behavior of the steady-state
parameter BOP and the transient mFPT is established. Since it is generally harder to com-
pute mFPT(B) for large B due to the iterative algorithm (see Appendix F.3), the established
relationship is very useful.

Furthermore, a similar relationship between the constant in the tail-behavior of the �nite-bu�er
CLP (see Sect. 5.5) and the mFPT can be derived from Eq. (6.10):

cCLP =
1

cmFPT � i0 (�� 1)
� (6.15)

Consequently, the combinations of the formulas for cmFPT with Eq. (6.15) yield an upper and
lower bound for cCLP:

� b i� (1� i�)

N (1� b)
cBOP � cCLP � (1� �)

i�
i0

cBOP : (6.16)

As usual the two bounds are identical when i0 = 1:

cCLP = (1� �) i� cBOP for i0 = 1: (6.17)

Equation (6.17) was discovered empirically in [Schwefel & Lipsky 99b]. The relationship
between cBOP and cCLP is already mentioned in Section 5.5, but the derivation required the
results of the transient analysis in this chapter.

Finally, the approximation Eq. (5.10) for the tail-constant cBOP that was discussed in the pre-
vious chapter can be used to obtain an explicit formula for cmFPT:

cmFPT � np
(b i� np)

� �
1

c
(1)
PT(�)

� 1
�
; when i0 = 1: (6.18)

6.4.3 Minimum of BORc(B)

We can observe in Fig 6.11 that BORc(B) �rst follows BOP(B), since (t0; B) � 1 for small
bu�ers B. Therefore, BORc(B) decreases �rst, before it grows asymptotically linearly as in (6.8).
Consequently, there is some bu�er-size Bmin for which a minimum of the BORc is achieved. To
derive the location of the minimum, let us start with

BORc(t0; B) � BOP(B)

1� exp [�t0=mFPT(B)]
:

At the minimum, the �rst derivative is zero:

dBORc(t0; B)

dB
= 0 ()

dBOP(B)

dB
�
�
1� exp

�
� t0
mFPT(B)

��
+
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+BOP(B) � exp
�
� t0
mFPT(B)

�
� t0
mFPT(B)2

� dmFPT(B)

dB
= 0 :

Using the asymptotic behavior (5.19) of BOP(B) and (6.3) of mFPT(B), we get the equation for
Bmin:

exp

�
� t0
cmFPT

B��
min

�
�
�
1 +

1

cmFPT

�

� � 1
t0B

��
min

�
= 1:

Substituting

z0 :=
t0

cmFPT
B��
min ;

the equation

exp(�z0) = 1

1 + �
��1 z0

(6.19)

can be solved numerically for its root z0(�). A table for numerically computed values of z0(�)
for di�erent � is provided in Appendix I.3 .

Having obtained z0(�) numerically,

Bmin =
�

s
t0

cmFPT z0(�)
; (6.20)

is the asymptotic location of the minimal BORc { asymptotic in the sense that it is a valid
approximation if the value of Bmin is not too small. Note that cmFPT depends on N , �, �, np,
b, and �, thus it depends also on � = i0(� � 1) + 1. However, cmFPT is independent of t0.
Consequently, Bmin grows proportional to �

p
t0.

In the �rst blow-up region, i0 = 1, Eq. (6.18) can be used:

Bmin(i0 = 1) � b i� np
�

s
c
(1)
PT(�)

np z0(�)
� t0 :

Example: For the 2-Burst TX3 model with � = 0:15 (i0 = 2 and � = 1:8), where cBOP = 0:15
and cmFPT = 1:5ms, the BORc(t0; B) shows minima at the following bu�er-sizes:

t0 5s 5min 1h 5h 8h

Bmin 74 717 2851 6971 9051

(t0; Bmin) 100% 70% 9:3% 1:9% 1:2%
BOPc(t0; Bmin) 5:4 � 10�3 1:1 � 10�3 2:5 � 10�3 5:5 � 10�3 7:0 � 10�3

However, the value Bmin(5 s) = 74 might not locate the actual minimum well. Its value is so
small that the underlying assumptions of the asymptotic Power-Law behaviors in the derivation
of (6.20) are questionable.

6.4.4 Validation via Simulation

Finally, we validate the derived asymptotes for the BORc in several simulation experiments.

Both graphs in Figure 6.12 show that the simulation estimates for IE fBORg,  and BORc
correspond well with the computation of the BOP,  and BOPc in the analytic N -Burst model.
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Figure 6.12: Validation of the Behavior of the Conditional Overow Ratio for 2-Burst/M/1
Models via Simulation: Several thousand simulation runs of t0 = 5min simulated time with on
average almost 10 million arriving cells per replication were simulated and the expected overow ra-
tio IE fBOR(t0; B)g (marked by `�'), the probability (t0; B) ('+'), and the conditional overow ratio
BORc(t0; B) (bullets) were estimated from the simulation results. The analytic computation (solid lines)
of the BOP, the approximation for  via the mFPT, and the resulting BOPc turned out to be well within
the 95% con�dence intervals of the estimators (marked by triangles). The asymptotic approximations
Eqs. (6.8) and (6.11) are also plotted by the dashed and dotted lines.
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Note that it is the steady-state BOP that is compared to the simulation estimate for IE fBORg.
However, since the observation interval t0 is suÆciently long, those two values are close. For a
counter-example, see below.

The di�erence between the upper and lower graph in Fig. 6.12 is that the impact of the trun-
cation can be observed in the lower graph for the plotted range of bu�er-sizes. For T = 20,
the truncation has a visible impact, while T = 30 in the upper graph does not: In the latter
case, IE fBORg and  decay as Power-Laws and BORc grows approximately linearly with the
asymptote from (6.8). The following values of q[i0] indicate that only for bu�er-size bigger than
106 does the truncation T = 30 in the upper graph show its impact:

Upper Graph: T = 30; MBS = 5:6 � 106, q[i0] = 1:3 � 106
Lower Graph: T = 20; MBS = 4:06 � 104; q[i0] = 9:2 � 103

The Power-Laws, both for IE fBORg and  turn into a quick exponential drop-o� for B � 104

in the lower graph, and the BORc converges approximately to the horizontal asymptote which is
predicted by (6.11). Interestingly, the BORc curve for T = 20 is inuenced by both asymptotes: at
�rst, the BORc grows when B > 800, but later the impact of the truncation causes convergence.
Thus, the knowledge of both asymptotes provides a good picture of how BORc(t0; B) evolves
with the bu�er-size. Since the computation of the asymptotes is straightforward without any
complicated matrix manipulations, they can well be used in practical design problems.
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Figure 6.13: Simulation Results for the BORc for large bu�ers and short t0: Although the
exponential approximation for (t0; B) works reasonably well for the whole range of B, the time t0 is so
short that IE fBOR(t0; B)g is noticeable smaller then the steady-state BOP(B).

In Figure 6.12, the observation interval t0 was long enough such that IE fBOR(t0; B)g � BOP(B).
Fig. 6.13 shows the result of another simulation experiment, in which t0 is so small, that it
causes IE fBOR(t0; B)g � BOP(B) for the large bu�er-sizes in the plotted range. Note that the
computed value of  still matches the simulation results, but the BORc does not grow linearly.
Instead it converges to some value around 30%. The predicted asymptote reaches 100% at
B = 1:4 � 104 (marked by second dotted vertical line), therefore it is clear that it is invalid for
bu�er-sizes beyond that point, due to the observation interval t0 which is too short.
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Figure 6.14: Transient Behavior During Over-saturation Periods: A 2-Burst/M/1 queue in blow-
up region i0 = 1 behaves like an unstable 1-Burst/M/1 queue with increased background rate during an
over-saturation period.

6.5 Transient Analysis of Over-Saturation Periods

In various locations during the steady-state and the transient analysis, we have pointed out
the relevance of very long over-saturation periods that occur in the N -Burst model with PT
distributed burst-lengths. The analysis that is presented in Sect. 5.3 relies on the argument that
during an over-saturation period with i0 long-term active bursts, the queue-length grows with
average rate �i0 � �. With the help of the transient analysis that has been developed in this
chapter, we can now look more closely at the behavior during the over-saturation periods.

First, let us consider the somewhat simpler case i0 = N . The behavior of an N -Burst model
during an over-saturation period with N permanently active sources is equivalent to an unstable
M/M/1 queue with arrival rate �N = �0+N�p > �. The First Passage Time to some bu�er-level
n is approximately Gamma distributed with parameters

mFPT(n) � n

�N � �
; C2 [�n] � �N + �

�N � �

1

n

for large n, see [Asmussen et al. 00a]. Graphs of the FPT distribution for the M/M/1 queue
are shown in Appendix A.2. The assumption of an average growth with rate �N � � is therefore
reasonable.

When we look at blow-up regions, 1 � i0 < N , the situation becomes more complicated. During
an over-saturation period with i0 permanently active sources, the N -Burst/M/1 model behaves
as an unstable N 0-Burst/M/1 model with N 0 = N � i0 and �

0
0 = �0+ i0�p while �

0
p = �p, b

0 = b
and np

0 = np remain unchanged.

The behavior of mFPT(n) for such an unstable N 0-Burst/M/1 queue is shown in the left graph of
Figure 6.14. Three models are thereby compared: the M/M/1 queue, the N 0-Burst/M/1 queue
with exponential burst-length, and �nally the N 0-Burst/M/1 queue with TPT distributed burst-
lengths with large PT Range. In the lower set of curves (� = 4), all three models result in
practically identical curves for mFPT(n). However, if we look at an N -Burst/M/1 model, which
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operates close to the blow-up point, the utilization of the resulting N 0-Burst/M/1 queue that
reects the behavior during the over-saturation periods is close to 1 (but necessarily still above
1). In that case, the LRD version of the N 0-Burst/M/1 queue shows slightly larger values for
mFPT(n) in the left graph of Figure 6.14.

When we look at the whole distribution of FPT(n) for a certain n in the right graph of Fig.
6.14, the di�erence in the models becomes obvious: although the less critical case with �0 = 1:38
well above 1 is shown there, the distributions �rst show di�erent variance, and secondly, the
peculiar peak just below t = 200 appears in the LRD model. For large enough n, the asymptotic
theory in [Asmussen et al. 00a] states that the FPT distribution converges towards a normal
distribution for all three models. However, the convergence for the LRD model appears to be
much slower.

As a conclusion, although it is true that the queue-length on average grows with rate �i0 � �,
large uctuations in that average growth-rate are possible for the LRD model even for very long
over-saturation periods.

6.6 Summary

The steady-state analysis in Chapter 5 provides quite a few insights into the behavior of N -
Burst/M/1 queues with LRD properties. In traditional models of telecommunication systems, as
for example for the N -Burst/M/1 queue with exponential burst-lengths, steady-state behavior is
observed rather quickly. However, in a �nite observation period, the behavior of the performance
model with LRD traÆc can be quite di�erent from the steady-state results. Therefore, transient
performance parameters can provide a much better description of the system's behavior.

Large cell delays as well as overow or loss events are not independent events: Since they are
both due to full bu�ers, subsequent cells experience large delays or cause bu�er overows. This
is true in any queueing model, but it is particularly accentuated in models with LRD arrival
processes. In order to investigate whether such scenarios with large bu�er-occupancy occur in
an observation interval, the analysis of the First Passage Time (FPT) is very useful.

It turns out that although for given bu�er-size B the actual distribution of FPT(B) is rather
well-behaved (close to exponential, see Sect. 6.2.3), the Power-Tailed burst-length distributions
have a strong impact on the behavior of its expected value, mFPT(B): Within the blow-up region
i0 the asymptotic Power-Law relationship (6.3)

mFPT(B) � cmFPTB
� with � = i0(�� 1) + 1;

is observed, whose exponent � is already familiar from the steady-state analysis in Sect. 5.2.
One of the straightforward consequences is that the blow-up e�ects also occur for transient
parameters (in particular mFPT and (t0; B)).

With the help of the FPT distribution, the probability 1 � (t0; B) that no overow/loss event
occurs during an observation interval of duration t0 can be obtained. This transient overow
probability is highly relevant in practice, e.g. for connection admission purposes, see 7.4. Using
the approximately exponential distribution of the FPT, an approximation

(t0; B) � t0
mFPT(B)

is obtained for large bu�ers, see Sect. 6.3. Together with the asymptotic Power-Law formFPT(B),
another Power-Law relationship follows for the transient overow probability .
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The transient overow probability  already describes part of the uctuations that are observed
in the fraction of lost (or overowed) cells in �nite observation intervals: Approximately a fraction
1�  of the observation intervals show no overow events at all. However, in the intervals with
at least one overow event, a large number of cells might cause overow events. The expected
fraction of overowed (lost) cells in the intervals with at least one such event is described by
the conditional Bu�er Overow Ratio, BORc, (conditional Cell Loss Ratio, CLRc), see Sect. 6.4.
By an analysis of the number of overowed cells during and immediately after a long over-
saturation period, the asymptotic behavior of those conditional transient performance measures
is derived, see Appendix G. At �rst surprisingly, those conditional performance measures increase
with larger bu�ers, although the absolute number of overows is of course reduced. This result
describes nicely that the observed uctuations { either no overow, but if any then a large number
{ even increase with larger bu�ers for N -Burst traÆc with LRD properties. The parameter pair
h(t0; B); BORc(t0; B)i is therefore recommended as transient replacement of the steady-state
BOP.

The knowledge of the asymptotic behavior of the conditional performance measures allows to
derive a relationship between the tail-constants in the Power-Law behavior of the mFPT and in
the steady-state BOP respectively the CLP, see 6.4.2. Also, it is possible to derive a formula to
compute an optimal bu�er-size Bmin(t0), at which the BORc shows a minimum. However, the
practical relevance of this optimal bu�er-size is not fully understood at this time.
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Chapter 7

Applications

The results of the steady-state and transient analysis of N -Burst/M/1 queues in the previous
chapters are highly relevant for the network planning task. In particular the asymptotic results
are, due to their simplicity, well suited for estimates of required resources or limitations on the
incoming traÆc for intermediate systems with large bu�ers.

The integration of such solutions for local design problems (i.e. only with respect to a single
bottleneck node) in the global network planning process is beyond the scope of this thesis.
See Chapter 10 for a discussion of such a step. However, note that the commonly used M/M/1
approach in such global planning tools leads to performance results that are by far too optimistic.
In particular in large bu�er-systems, the M/M/1 analysis yields overow or loss probabilities
that are practically zero (in the order of �B) unless the utilization, �, is extremely close to 1.
Since we are mainly concerned with large-bu�er (B > 100) systems at average utilization �
substantially smaller than 1, a comparison with the M/M/1 queue is only included for the mean
delay in Sect. 7.6.

Since all the examples in the previous two sections use realistic values for the parameters of the
N -Burst model, the individual illustrations can be seen as applications of the N -Burst model
to practical questions of network design, e.g. capacity planning in Fig. 5.1. Most of those il-
lustrations use the exact analytic N -Burst model to obtain the performance results. Of course,
the exact analytic model could be used in general for practical network design tasks. However,
such computations are rather complex and time-consuming. Instead, the derived asymptotic re-
lationships, together with the approximations for the tail-constants, provide a more feasible way
of providing numerical values for several QoS parameters quickly. The inaccuracy of those ap-
proaches is in most cases negligible in comparison to the inaccuracy in measuring and forecasting
the parameters of the traÆc that is expected in the planned network.

7.1 Summary of Formulas

At network components with large bu�ers that experience ON/OFF traÆc with LRD properties,
the QoS behavior in terms of delay and cell losses or overows is mainly determined by the tail
of the queue-length distribution. Consequently, asymptotic results can well be used for practical
design problems. This section summarizes all the important formulas for both, steady-state and
transient performance parameters. Although all those formulas are derived in Chapters 5 and
6, new equation numbers are assigned here in order to make this chapter self-contained.
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N -Burst Parameters N; �; np; b; �; c
(1)
PT(�); MBS

� =
�

N
; �p =

�

1� b

Switch Parameters B; �; � =
�

�

Blow-up Region i0 =

�
N � 1� �

�
� 1� b

b

�
for � > 1� b (7.1)

i� = i0 �N � 1� �

�
� 1� b

b
(7.2)

� = i0 (�� 1) + 1 [e�ective PT exponent] (7.3)

Steady-State Behavior:

Bu�er Overow Prob.: BOP(B) � cBOPB
1�� (7.4)

Cell Loss Prob.: CLP(B) � cCLPB
1�� (7.5)

mean Delay (full tail): mCD =1 , � � 2 , � � 1 +
1

i0
(7.6)

Truncated Tails:

qi0 = b
i�
i0

MBS [PT-Range for exponent �] (7.7)

qN = MBS

�
1� 1� b

�

�
[PT-Range for all exponents]

(7.8)

mCD(MBS) � cmCD(MBS)2�� for � < 2 (7.9)

Transient Behavior:

Time to �rst Loss: mFPT(B) � cmFPTB
� (7.10)

Prob. of Loss: (t0; B) � 1� exp

�
� t0
mFPT(B)

�
(7.11)

� 1� exp

�
� t0
cmFPT

B��

�
(7.12)

The background Poisson rate �0 does not appear in the list of the N -Burst parameters. All the
formulas here assume that �0 = 0. If we want to compute the asymptotic behavior of N -Burst
models with positive �0, we can use an N -Burst model without background Poisson rate instead,
but reduce the service-rate �, � ! � � �0, of the N -Burst/M/1 queue.

The Power-Law behavior of the performance parameters, BOP(B), CLP(B), mFPT(B) (and also
for (B), see (6.6)) of the N -Burst model is peculiar only for Power-Tailed ON periods and
within the blow-up regions i0 = 1; :::; N . The slow Power-Law decay (respectively increase for
mFPT) has the e�ect that additional bu�er-space is a very ine�ective means for improving QoS.
On the other hand, in traditional ON/OFF models with exponential (or other well-behaved)
burst-length distributions, all overow and loss probabilities drop o� exponentially.

In addition to the knowledge of the Power-Law behavior and its PT exponent, approximations
and bounds for the tail-constants were derived. Since the formulas for the worst blow-up region,
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i0 = 1, are less complicated, let us begin there:

i0 = 1 , � = � , N

N + b
1�b

< � < 1 :

Tail Constants:

cBOP � 1

1� �

(i� b np)
�

i� np

c
(1)
PT(�)

�� 1
(7.13)

cCLP � (i� b np)
�

np

c
(1)
PT(�)

�� 1
(7.14)

cmFPT � 1

�

np
(i� b np)

�
1

c
(1)
PT(�)

(7.15)

cmCD <
1

�

�

1� �
� i� b2 np

��1

2� �

c
(1)
PT(�)

�� 1
; � < 2 (7.16)

(t0; B) � 1� exp

�
�(i� b np)

�

np
c
(1)
PT(�)

�t0
B�

�
(7.17)

BORc(t0; B) � 1

�� 1

1

(1� �) i�
� B

� t0
(7.18)

CLRc(t0; B) � 1

�� 1
� B

� t0
(7.19)

Bmin � i� b np
�

s
c
(1)
PT(�)

np
� �t0
x0(�)

(7.20)

Truncated Tails:

BOR(TPT )c (t0; B) � b

1� �
� MBS

� t0
(7.21)

CLR(TPT )
c (t0; B) � i� b

MBS

� t0
(7.22)

In the general case,

i0 > 1 , 1� b < � <
N

N + b
1�b

;
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there exist the following approximations and bounds:

cBOP : cBOP � 1

1� �

(i� bnp)
�

i� np

1� bp
1� i�

"
c
(1)
PT(�)

�� 1

#2
; for i0 = 2

(7.23)

cBOP � 1

1� �

(i� bnp)
�

i� np
(1� b)i0�1

"
c
(1)
PT(�)

�� 1

#i0
; for i0 > 2

(7.24)

cCLP :
� b i� (1� i�)

N (1� b)
cBOP � cCLP

cCLP � (1� �)
i�
i0

cBOP (7.25)

cmFPT :
1

cBOP
� 1
�
� 1

(1� �) (�� 1) i�
� cmFPT (7.26)

cmFPT � 1

cBOP
� 1
�
� N (1� b)

i0 � (�� 1) b i� (1� i�)

cmCD : cmCD <
� cBOP
� (2� �)

�
b i�
i0

�2��
(7.27)

BORc :
1

�� 1

1

(1� �) i�

B

� t0
< BORc(t0; B)

BORc(t0; B) <
1

� � 1
� 1

(1� �) i�
� i0 � i�
1� i�

B

� t0
(7.28)

CLRc : CLRc(t0; B) � 1

� � 1
� B

� t0
(7.29)

Truncated Tails:

BOR(TPT )c :
b

1� �

MBS

� t0
< BOR(TPT )c (t0; B)

BOR(TPT )
c (t0; B) <

b

1� �
� i0 � i�
i0 (1� i�)

MBS

� t0
(7.30)

CLR(TPT )
c : CLR(TPT )

c (t0; B) � b i�
i0

� MBS

� t0
(7.31)

When the asymptotic approximations are used in the network planning process, usually the
upper bounds (7.25) and (7.28) for the tail-constants cCLP and for the asymptotic behavior
of BORc are used, since they represent the worst case. In case of the mFPT, the worst-case is
determined by the lower bound (7.26).

7.2 Validation of the Asymptotic Results

Figure 7.1 compares the formulas listed in the previous section for the asymptotic behavior of
the BOP and CLP with exact numerical results for a 3-Burst/M/1 model with truncated tails
and a bu�er-size B = 104. For the whole range of � and for all three blow-up regions, Eqs. (7.4)
together with (7.13), (7.23) and (7.24), provide an excellent approximation for the true BOP.
The true values for the BOP that are computed from the analytic 3-Burst/M/1 model with
MBS = 1:3 � 107 cells are marked by `+' in Fig. 7.1. Only very close to the actual blow-up points
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Figure 7.1: Comparison of the asymptotic approximations with exact results for a 3-
Burst(TX3)/M/1 Model: The exact values of the BOP and CLP were computed for a truncated
burst-length distribution with MBS = 1:3 � 107 cells (T = 12 and � = 0:15). Both graphs show the same
curves, but the right graph enlarges the interesting blow-up regions i0 = 3 and i0 = 2. The blow-up
points are at �1 = 28:3%, �2 = 16:5%, and �3 = 1 � b = 11:6%. When i0 > 1, the upper and lower
bound for the asymptotic behavior of the CLP are shown by the dashed-dotted lines. The exact CLP
of the 3-Burst/M/1/104 model turns out to be close to the upper bound of the CLP except for a close
neighborhood around the blow-up point.

(when i� ! 0 or i� ! 1) does the approximation deviate from the exact results. However,
note that in a small neighborhood around the blow-up points, the truncation of the burst-length
distribution can show its impact.

The true values for the CLP (marked by `�') in Fig. 7.1 are reasonably close to their asymptotic
approximation, Eqs. (7.5) and (7.14), in the rightmost blow-up region i0 = 1. For i0 > 1, we
have only been able to �nd an upper and lower bound for cCLP, but the true values fall into that
range. Those two bounds diverge considerably in the area close to the transition to the next
lower blow-up region, when i� ! 1.

In summary, the knowledge of the asymptotic Power-Laws together with the approximations for
the tail-constants turns out to be useful as long as the model does not operate too close to the
blow-up points themselves (i� > 5% and i� < 95%). For the mFPT and the transient overow
probability , the results of the comparison are not shown here, but the same conclusions hold.

7.3 Engineering Rules for Network Design

The asymptotic results of the previous sections for the N -Burst/M/1 queue can be used for
the solution of practical problems in network design: for instance, for given traÆc parameters,
what choice of the switch parameters (� and B) is adequate? Alternatively, if the resources
bandwidth and bu�er-size at the switch are already given, what requirements have to be put
on the incoming traÆc, such that target values for the performance parameters (here i0, mCD,
CLP, BOP, ) are achieved?

As the title of this section indicates, the numerical results of this section's formulas provide a
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good guideline for a QoS-oriented choice of the model parameters. However, they should not be
seen as a means of providing guaranteed QoS.

Within the set of the parameters that describe the traÆc and the resources at the switch, the
following parameters can be inuenced at the network design stage (1, 2, and 3 in the list below)
or by means of traÆc policing (4 and 5):

1. The output bandwidth � of the switch:
With increasing �, the utilization � = �=� decreases and the switch could be made to
operate in a better blow-up region (i.e. larger i0).

2. The number N of multiplexed ON/OFF cell streams:
Multiplexing N 0 > N traÆc streams at the input port of a switch can also lead to a better
blow-up region at the same utilization �. Note that this requires to increase the service-rate
� proportionally to N .

3. The bu�er-size B at the switch:
Bu�er overow or cell losses can also be reduced by increasing the bu�er-size. However,
the results in Chapters 5 and 6 show that in a `bad' blow-up region (small i0) with small
e�ective PT exponent �, bu�er-space is an ineÆcient means of improving QoS.

4. The peak-rate �p of the cell streams:
So-called traÆc-shapers reduce the peak-rate of the individual ON/OFF streams, thereby
also reducing their burstiness, b.

5. The Maximum Burst Size, MBS:
It is possible to impose an MBS on the incoming traÆc stream as part of traÆc policing.
Cells within bursts that do not comply with the restriction will be discarded. A violation of
the MBS restriction can usually be detected by some variation of a leaky bucket algorithm.

The remaining traÆc parameters, the mean rate � of the individual incoming link, the mean
number of cells per burst np, the Power-Tail exponent � of the burst-length distribution, and

the tail-constant c
(1)
PT(�) of the burst-length distribution cannot be changed easily in practice.

LRD ON/OFF traÆc shows di�erent blow-up regions. Frequently, if no exact target-values are
speci�ed for performance parameters, then operating in a suÆciently good (large i0) blow-up
region should provide satisfactory performance. In particular, blow-up region i has to be avoided
(i0 > i), where

i =

8><>:
j

1
��1

k
for bounded mean Delay(� > 2):j

2
��1

k
for bounded variance of the Delay distribution(� > 3):

Truncated Tails: When the burst-length distribution is truncated at MBS cells, the impact of
any Power-Tails (with exponent �(i), i = i0; :::;) on the queue-length distribution has the PT
Range

qN =
�� (1� b)

�
MBS :

Note that qN is only meaningful in the blow-up regions, i.e. when � > 1 � b (equivalently,
N�p > �), since otherwise, the queue-length distribution decays geometrically. In the blow-up
regions, 0 < qN < MBS holds due to the conditions � > 1� b and 0 < b < 1.
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The queue-length distribution and thus also the overow probabilities drop o� exponentially
for B > qN . An additional `safety'-factor, s > 1 (e.g. s = 10), is advisable to ensure that the
exponential drop-o� has decayed far enough. Thus, a design goal could be

s � qN < B;

in which case the impact of the PT distribution only marginally a�ects bu�er-overow proba-
bilities:

s � qN < B =) CLP(B) < BOP(B)� exp(�s): (7.32)

Capacity Planning

In this scenario, the task is to determine an adequate � (through an appropriate choice of �) for
given traÆc parameters at the bottleneck switch.

Peak Rate Allocation: � < 1� b

Avoid blow-up region i : � <
N

N � (N � i) b
(1� b)

Target BOP : iterative algorithm using (7.4) and (7.13), (7.23), (7.24)

Target CLP : iterative algorithm using (7.5) and (7.14), (7.25)

Target  : iterative algorithm using (7.12) and (7.15), (7.26)

Target mCD : iterative algorithm using (7.9) and (7.16), (7.27)

If a truncation MBS of the Power-Tail distribution of the number of cells per burst exists, the
utilization can also be kept low enough such that the BOP and CLP are in the region of their
exponential drop-o� (see Sect. 5.3) for the given bu�er-size B:

Restrict PT Impact, s � qN < B : � <
1� b

1� B
s�MBS

; if B < s �MBS

If B > s � MBS, the PT impact on the queue-length distribution is restricted to queue-lengths
smaller than B for any �.

The asymptotic relationships for the BOP, CLP,  and mCD do not present a continuous function
of � due to the blow-up regions i0. Therefore no closed-form expression can be given for the
allowed utilization �, but instead an iterative algorithm has to be used, which for instance
computes the asymptotic target performance parameter in the `middle', of each blow-up region,
i.e. for i� = 0:5, which corresponds to the following utilization values:

~�i =

�
1 +

i� 0:5

N

b

1� b

��1
for i = 1; :::; N :

At this point, the algorithm could just stop and use the largest ~�i at which the computed
approximated performance parameter is below (better than) the target value. Such an approach
is based on the argument that within the same blow-up region, performance does not change
dramatically, so it is enough to pick the `right' blow-up region in the planning algorithm.

Alternatively, another search for a slightly higher � value within the blow-up regions can be
performed afterwards. Note that such a search algorithm should exclude the region close to the
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blow-up points itself, since the asymptotic approximations are not very accurate there, or the
upper bound can be too pessimistic, especially when i� is small. Therefore, the search-algorithm
should be restricted to 0:05 < i� < 0:95, or even a smaller sub-interval.

Variations of this algorithm apply in most other scenarios below, except for the bu�er-size
planning.

Aggregation Level

Multiplexing a larger number N of traÆc streams at the switch while keeping the utilization
constant can result in great improvement of QoS due to a transition to a lower blow-up region.
Note that a higher switch capacity is necessary with increasingN to keep the utilization constant.

Peak Rate Allocation: only if � < 1� b regardless of N

Avoid blow-up region i : N > i
�

1� �

b

1� b

Target BOP;CLP; ;mCD : iterative algorithm as above

Restrict PT Impact, s � qi0 < B :
N

i0(N)
>

�
1� B

s bMBS

�
�

1� �

b

1� b
iteratively

Since the the largest PT Range qN does not depend on N , the PT-range qi0 of the smallest,
worst exponent � is restricted instead in this scenario.

Bu�er-Size Dimensioning

Explicit asymptotic formulas exist if all parameters except for the bu�er-size B are given, since
the model operates in a �xed blow-up region i0. Here, it is assumed that the switch does not
operate in Peak Rate Allocation, � > 1 � b (equivalently, nu < N�p). First, use (7.1), (7.2),
and (7.3) to compute the blow-up region i0, the value of i�, and the e�ective PT exponent �.
Thereafter, (7.13), (7.23), or (7.24) provide an approximation for the tail-constant cBOP. (7.14),
(7.25), (7.15), and (7.26) provide approximations (i0 = 1) or upper bounds (i0 > 1) for the
tail-constants cCLP and cmFPT.

Then the bu�er-size B can be computed from the target performance parameters and the asymp-
totic relationships (7.4), (7.5), and (7.12):

Target BOP : B >
�cBOP
BOP

� 1
��1

(7.33)

Target CLP : B >
�cCLP
CLP

� 1
��1

(7.34)

Target (t0) : B >

 
t0

cmFPT ln 1
1�(t0)

! 1
�

(7.35)

For full Power-Tails in the burst-length distribution, Eqs. (7.33) to (7.35) have to be used. In case
of truncated tails, the bu�er-size can be chosen larger than the PT Range of the queue-length
distribution:

Restrict PT Impact: B > s � qN = s �MBS
�� (1� b)

�
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Since Equations (7.33) to (7.35) are applicable within the PT Range qi0 < qN also for truncated
tails, the resulting B of those formulas is the appropriate choice, if it is smaller than s � qN .

Shaping

Reducing the peak-rate �p of the bursts can result in a better blow-up region and thus in
substantial performance gain. There exist devices { called traÆc shapers { that perform such a
task. However, one should be aware that there might be performance problems (delay and loss)
that are caused by the shaper.

Since traÆc shaping does not change the mean rate � of the cell stream, a reduction of �p can
be expressed in terms of the burstiness b = 1� �=�p.

Peak Rate Allocation: b < 1� �

Avoid blow-up region i : b <
N

N � (N � i) �
(1� �)

Target BOP;CLP; ;mCD : iterative algorithm as before

Restrict PT Impact, s � qN < B : b < 1� �

�
1� B

s �MBS

�
; if B < s �MBS

TraÆc Policing via Maximum Burst Sizes

Finally, an MBS can be used to restrict the time-scales of the self-similar property of the net-
work traÆc. Thereby, the Power-Law behavior of several performance parameters is truncated.
The goal in this scenario must be that the truncation occurs early enough, so that the target
performance parameter is achieved. First, compute i0, i�, and � by Eqs. (7.1), (7.2), (7.3), re-
spectively. Then, an approximation for an upper bound of the tail-constant cmCD is obtained as
in (7.27):

cmCD � 1

�
� �

1� �
� i�

i2��0

� np��1 b2 (1� b)i0�1 �

h
c
(1)
PT(�)

ii0
(2� �) (� � 1)i0

Then, a given mean delay can be achieved by an appropriate choice of the MBS:

Target mCD : MBS <

�
mCD

cmCD

� 1
2��

; if � < 2

Alternatively, low BOP or CLP can be achieved by ensuring that the PT Range of the queue-
length distribution (qi0 for the PT exponent �, and qN for the largest PT exponent �N =
N [�� 1] + 1) is smaller than the bu�er-size:

Restrict PT Impact, s � qN < B : MBS <
�

�+ b� 1
� B
s

s � qi0 < B : MBS <
i0
b i�

B

s
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There is no explicit target BOP in the formulas. However, as mentioned before, the `safety'-factor
s > 1 implies the following upper bound:

s � qN < B =) CLP(B) < BOP(B)� exp(�s):

Note that all the formulas hold asymptotically for network components with large bu�ers, so at
least B > 100. Also, i0 should be reasonably low (i0 � 50), otherwise limiting models for highly
multiplexed traÆc might be more appropriate, see Sect. 10.2. Note that the latter restriction
does not put bounds on the number of incoming links, N . For very bursty traÆc (b close to 1),
N can be very large but i0 is still small, see Eq. (7.1).

7.4 Connection Admission Control

One of the major practical applications of stochastic modeling of network traÆc is in the area
of Connection Admission Control (CAC). The latter is necessary as soon as more sophisticated
protocol mechanisms are developed which are based on a resource reservation approach, see also
Sect. 10.7. Each connection announces its traÆc parameters and its QoS requirements (e.g. upper
bounds for delay or BOP) before it starts transmitting. Based on this knowledge, every switch
along the data transmission path has to decide whether it has enough resources to handle that
connection. If the answer is no, a di�erent transmission path has to be found or the connections
has to be rejected.

Current algorithms for CAC are frequently based on the e�ective bandwidth approach, see Sect.
7.7, or on experimentally derived tables that classify the scenarios in which connections have to
be rejected.

Better suited algorithms { at least for connections that show ON/OFF behavior, e.g. persistent
HTTP connections { can be developed from the results of the performance analysis of N -
Burst/M/1 models in this thesis. Each connection has to specify its parameters �, b, np, � and
MBS (more parameters are necessary if we allow for more general distributions than the TPT
distributions of Sect. 3.4). In addition to its traÆc parameters, the connection speci�es its QoS
requirements, here any combination of mCD, BOP (CLP), , and BORc (CLRc).

Since the connection duration is �nite, the transient parameter  and the conditional overow
(loss) ratio BORc (CLRc) are more appropriate, but hardly used in practice. In this section, we
exemplarily discuss a CAC scenario with the target parameter , and we demonstrate that the
wrong assumption of independent overow events with probability BOP would lead to totally
wrong results { in this case the results would be too pessimistic by far!

We discuss exemplarily the following scenario: An ATM-Switch with �1 = 155 Mbit/sec has 2
incoming links each described by TX3-sources (� = 16:28 cells/ms, b = 0:884, np = 9:1, � = 1:4).
Those two incoming links cause a utilization, � = 8:9%, of the switch.

Now, another Constant Bit Rate (CBR) connection with a large bandwidth requirement of
~� = 50Mbits/sec starts to use the switch, whose bu�er is assumed to be empty at the start
of the connection. The latter is reasonable, since the switch was not operating in any blow-up
regions before the start of the connection. The duration of the connection is time t0, and no
priority queueing is used. During the duration of the connection, the utilization of the switch is
raised to 41%.

We compute the probability that the connection is loss free, �rst using the steady-state BOP(B)
and then compare that result with the transient probability (t0; B).



7 Applications 123

Since the connection has a constant bandwidth requirement, the number of cells in the bu�er
can be described by an approximating 2-Burst(TX3)/M/1 queue with reduced service-rate1 � =
�1 � ~�, although physically, not only cells from the incoming TX3-links are bu�ered, but also
cells from the CBR connection. That 2-Burst/M/1 queue operates in blow-up region i0 = 2
with i� = 0:258. The approximation (7.23) provides a numerical value for the tail-constant,
cBOP = 7:25%. Let the number of cells in the connection be n(t0). We will not look speci�cally
at the cells of the CBR connection but we assume that if any overows at all happen, cells of
the CBR connection are also a�ected.

When making the (wrong) assumption that each cell independently experiences the same prob-
ability that it causes an overow-event, the probability of having no overows for all cells of the
connection is:

p0(t0; B) =

�
1� �

�+ ~�
BOP(B)

�n(t0)
where n(t0) = ~� � t0 :

Since BOP(B) is computed from the 2-Burst model with reduced service-rate �, which has on
average �t0 arrivals in time t0, it does not take into account the additional ~�t0 cells in the CBR
connection. As a consequence, the computed value of BOP has to be scaled down by the factor
�=(�+ ~�) to deliver an overow probability for all cells.

p0(t0; B) is the probability that no cells of the connection overow; consequently, with proba-
bility 1� p0(t0; B), at least one overow occurs during the connection. p0 uses the steady-state
probability BOP, which does not take into consideration the correlation within overow-events.
Also, p0 does not make use of the fact, that the bu�er is empty at the start of the connection {
which is of minor inuence here, at least when t0 is not very small.

On the other hand, the transient performance parameter (t0; B) captures both, the correlation
of overow events and the initially empty bu�er. The following table computes the steady-state
approximation 1� p0(t0; B) and (t0; B) for several values of t0 and various bu�er-sizes B:

1Instead of deducting the bandwidth ~� from the service-rate, we could use a 2-Burst model with background
Poisson rate �0 = ~�. The asymptotic approximations are the same for both scenarios.
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B 1000 5000 104 5 � 104 105

BOP 2:9 � 10�4 8:0 � 10�5 4:6 � 10�5 1:3 � 10�5 7:2 � 10�6
�

�+~� BOP 6:2 � 10�5 1:7 � 10�5 9:9 � 10�6 2:7 � 10�6 1:6 � 10�6
t0 = 10 s

1� p0(t0; B) 1 1 1 96:01% 84:27%
(t0) 0:87% 4:8 � 10�4 1:4 � 10�4 7:6 � 10�6 2:2 � 10�6

BOPc(t0) 3:3% 17% 33% > 1 > 1

t0 = 1min

1� p0(t0; B) 1 1 1 1 1
(t0) 5:1% 0:29% 8:3 � 10�4 4:6 � 10�5 1:3 � 10�5

BOPc(t0) 0:57% 2:8% 5:5% 28% 55%

t0 = 5min

1� p0(t0; B) 1 1 1 1 1
(t0) 23% 1:4% 0:41% 2:3 � 10�4 6:6 � 10�5

BOPc(t0) 0:13% 0:56% 1:1% 5:5% 11%

t0 = 2h

1� p0(t0; B) 1 1 1 1 1
(t0) 99:8% 29% 9:5% 0:55% 0:16%

BORc(t0) 2:9 � 10�4 2:7 � 10�4 4:8 � 10�4 0:23% 0:46%

The computation of BOP uses the asymptotic behavior (7.4), where cBOP = 7:25% is determined
from the approximation (7.23).  is computed by the exponential approximation (7.12). The
lower bound in (7.26) is used as worst-case approximation for cmFPT, cmFPT = 4:6ms.

Obviously, the steady-state approach is of little value here, since it over-estimates the probability
 by far. If used for bu�er sizing, the steady-state approximation leads to a large over-provision
of bu�er-space. For instance, for a target probability of 99% for an overow-free connection of
duration t0, the necessary bu�er-size can be computed by (7.33) and (7.35):

Connection length t0 10 s 1min 5min 2 h

B for p0 = 99% 6:8 � 107 6:4 � 108 4:8 � 109 2:5 � 1011
B for 1�  = 99% 923 2:5 � 103 6:1 � 103 3:6 � 104

Finally, we compute the bu�er-size Bmin(t0) for which a minimal BORc results via Eq. (6.20):

Connection length t0 10 s 1min 5min 2 h

Bmin(t0) 58 158 386 2:3 � 103
BOPc(Bmin; t0) 0:37% 0:17% 8:1 � 10�4 2:0 � 10�4

Note that

(Bmin(t0); t0) � 1� exp

 
t0

cmFPT [Bmin(t0)]
�

!
= 1� exp (z0(�))

is constant (here 76:5%) for given � when (6.20) is used for the computation of the minimum.
However, for smaller bu�er-sizes, as obtained here for shorter t0, the asymptotic approximations
that are used here can fail.
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7.5 Bu�er Dimensioning

In this section, we discuss two speci�c scenarios in which optimal bu�er-sizes are determined
according to some QoS requirements. As in the last section, we compare the steady-state QoS
parameter BOP with its transient counter-parts (t0; B) and BORc(t0; B) for a whole busy-hour
period of t0 = 5h. We assume full Power-Tails for the ON time distribution, thus no truncation
impact is discussed.

The bu�er-size planning is done via the asymptotic relationships as described in Eqs. (7.33) and
(7.35) in Section 7.3. The necessary tail-constants are computed via the worst-case approxima-
tions in Sect. 7.1.

TraÆc Shaper (1-Burst)

First, we discuss an application of the 1-Burst/M/1 model. Since there is no multiplexing in-
volved, such a model corresponds either to a traÆc shaper or to a hub whose bandwidth on the
outgoing link is smaller than on the incoming link. Here, we assume a shaper that reduces the
peak-rate �p of a TX3 source by a factor of 4.3, such that the outgoing peak-rate is � = 2�. At
utilization � = 0:5, the shaper operates in blow-up region i0 = 1:

N �, b, np, � � i0 i�

1 TX3 0:5 1 0:869

The tail-constants cBOP and cmFPT of the asymptotic behavior of the BOP and mFPT can be
determined either by Eqs. (7.13) and (7.15) or by direct numerical evaluation of the analytic
1-Burst/M/1 model with large truncation:

cBOP cmFPT

2:057 0:172ms

The necessary bu�er-sizes that are obtained via (7.33) and (7.35) for di�erent target values of
the BOP and  are listed in the following table:

Target BOP (5 h) min(BORc)

10�6 10�9 10�12 10% 1% 10�4

B 6:1 � 1015 1:9 � 1023 6:1 � 1030 2:7 � 106 1:4 � 107 3:9 � 108 3:1 � 105
mFPT 6:8 � 1010 y 2:2 � 1021 y 6:8 � 1031 y 47:5 h 20:7 d 5:7 y 2:3 h
(5 h) 8:4 � 10�15 2:7 � 10�25 8:4 � 10�36 10% 1% 10�4 88:21%
BORc > 1 > 1 > 1 5:53% 28:24% > 1 1:48%

Obviously, already a target BOP of 10�6 requires an unrealistically large bu�er-size. Note that
bu�ers larger than Bt0 = t0(�p � �) = 1:9 � 109 would not overow during the busy hours,
even if an over-saturation period lasts for the whole duration of the busy hours. For bu�er-sizes
B = 3:9 � 108 and larger, the time interval of duration t0 = 5h is not long enough to be able
to observe the steady-state BOP, i.e. IE fBORg (t0) is substantially smaller than the BOP. This
is indicated by the values of the computed approximation for BORc that are larger than 1. See
Sect. 6.4.4 for a comparable scenario.
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Multiplex Gain:

Next, we look at a switch in the network, whose N = 8 input ports are described by TX3 sources.
The switch capacity was chosen to yield the same utilization � = 0:5 as in the previous section.

N �, b, np, � � i0 i� cBOP cmFPT

8 TX3 0:5 2 0:950 1:34 3:02ms

Here cBOP is computed with the approximation in formula (7.23). As usual, the lower bound of
Eq. (7.26) is used as worst-case approximation of the cmFPT.

Target BOP (5 h) min(BORc)

10�6 10�9 10�12 10% 1% 10�4

B 4:5 � 107 2:6 � 1011 1:4 � 1015 2:6 � 105 9:7 � 105 1:3 � 107 6:1 � 104
BOP 1:0 � 10�6 1:0 � 10�9 1:0 � 10�12 6:2 � 10�5 2:2 � 10�5 2:8 � 10�6 2:0 � 10�4

mFPT 58 y 3:3 � 108 y 1:8 � 1015 y 47:5 h 20:7 d 5:7 y 3:4 h
 9:8 � 10�6 1:7 � 10�12 3:1 � 10�19 10% 1:0% 1:0 � 10�4 76:5%

BORc 10% > 1 > 1 6:2 � 10�4 0:22% 2:8% 2:6 � 10�4

Note that a multiplex gain is obvious: the necessary bu�er-sizes are much smaller than for the
single source model at the same utilization, see previous table. Such an enormous multiplex-gain
(B smaller by a factor of at least 108 for the same target BOP values) is mainly a consequence
of the better blow-up region i0 = 2.

7.6 Steady-State and Transient Delay

The transient probability (t0; B) has a straightforward interpretation with respect to overow-
events. However, it can also be used to explain the uctuations that are observed in measure-
ments of per-cell delay in �nite observation intervals: Large delay values are caused by long
queue-lengths, and the probability that long queue-lengths n occur in an individual observation
interval is again the transient probability (t0; n) (here, n is smaller than the bu�er-size but still
large). In the following, we illustrate the relationship between  and transient per-cell delay by
means of a practical example.

We look at the mean delay for a switch whose input is described by the aggregation of two TX3

sources:

N �, b, np, � � i0 i� cBOP cmFPT

2 TX3 0:15 2 0:509 15% 1:5ms

As usual, the approximation for cBOP is obtained by Eq. (7.23). However, this time we do not
use the worst-case lower bound for cmFPT, but an intermediate approximation between the two
bounds (1:15 � cmFPT � 1:75). The deviation of the two bounds is not large, so any other value
in that range does not change the obtained numerical results greatly: as already mentioned in
the beginning of this chapter, the uncertainties in traÆc forecasting outweigh the inaccuracy of
the used approximations by far.
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Note that the steady-state mean delay for our scenario is in�nite when assuming in�nite bu�ers,
since � < 1+1=i0 = 1:5. In any �nite observation interval however, only a �nite range of queue-
lengths is observed, which corresponds to �nite mean delay values for truncated tails. With the
help of the transient parameter , we discuss in the following how to relate steady-state mean
delay values for truncated tails to observed mean delays in �nite observation intervals.

If we truncate the burst-length distribution at MBS cells, the Power-Tail Range of the queue-
length distribution is limited to

qi0(MBS) = b � i�
i0
�MBS = 0:227MBS;

see Sect. 5.3. So even in an in�nite-bu�er system, only queue-lengths up to

qi0(�pt0) = 5:7 � 108 cells

would occur with non-negligible probability, if bursts longer than the busy-hour period, t0 = 5h,
are neglected.

The following table computes amongst others the steady-state mCD of the 2-Burst model for
di�erent truncations T . Only the values in the column for (t0 = 5h) are computed by the
asymptotic behavior (7.12) using cmFPT = 1:5ms. All the other computed delay values are
results from the exact Matrix-Analytic computation of 2-Burst/M/1 queues:

Truncation MBS qi0(MBS) (5 h; qi0) mCD CD90% CD99% CD1�10�5

T = 42 2:1 � 109 4:8 � 108 2:9 � 10�9 127:9�s 35:0�s 186:3�s 723:1ms

T = 40 8:0 � 108 1:8 � 108 1:6 � 10�8 107�s 35:0�s 186�s 695ms

T = 35 6:7 � 107 1:5 � 107 1:4 � 10�6 69:0�s 35:0�s 186�s 575ms

T = 20 4:1 � 104 9:3 � 103 58% 23:8�s 34:8�s 169�s 41:4ms

As a comparison, note that the steady-state mCD in an M/M/1 model with same values of �
and � is mCDMM1 = 5:4�s.

Since � = 1:4 and i0 = 2, the queue-length distribution at cell-arrivals is Power-Tailed with
tail-exponent � = 1:8 in its density function, see Eq. (7.3). Consequently, its steady-state mean
is in�nite when full PTs are used, and the asymptotic behavior of mCD(MBS) is given by Eq.
(7.9):

mCD(MBS) � cmCDMBS2�� :

For this model, the Matrix-Analytic computation of the analytic 2-Burst model with truncation
T = 42 provides a tail-constant of

cmCD =
mCD(T = 42)

(MBST=42)
0:2 = 1:75�s :

Note that Eq. (7.27) provides an upper bound of 2:57�s, which is reasonably close to the
computed value above.

The steady-state mean delay can be made arbitrary large by increasing the MBS. A better
measure for the delay are the p%-quantiles, CDp%, i.e. the delay value such that only 1 � p%
of all cells experience a larger delay. The cell delay quantiles converge for any p, since the
steady-state cell delay distribution is well de�ned for any T { also for T =1.

If one insists on the mCD as the performance parameter, the question is, what truncation is the
right one to use with respect to the �nite duration t0 of the observation interval? Clearly, only
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Figure 7.2: Log-Log Plot of simulated mean per Cell Delay of 2-Burst/M/1 Model: Plotted
are 10 of the 100 independent replications (thin lines) together with the mean of all replications and a
99% con�dence interval for the estimated mean. Within each replication the average per cell delay of all
the cells that were served until time t is plotted.

burst up to length t0 { or equivalently up to MBS = �pt0 = 2:5 �109 cells { have to be considered
in any case. The �rst row of the previous table where T = 42 corresponds to that worst case.

However, the simulation experiment that is shown in Fig. 7.2 suggests much lower values for the
mean delay: 100 independent replication with each on average about 2 � 109 cells resulted in the
estimate, dmCD = (36� 7:7)�s at 99% con�dence level;

which is far below the 128�s of the steady-state mCD for T = 42. So where is the catch?

A truncation of T = 42 a�ects bu�er-sizes of up to qi0(MBST=42) = 4:8 � 108 cells. However, the
probability that the tail up to that size can show its impact in a single run is very low, namely
(t0; qi0) � 3 � 10�9. Consequently, a simulation experiment would have to cover more than 108

replications to have a good chance to also include a few potentially very bad runs that have a
very strong impact on the mean delay.

Within the 100 runs, there is a high probability, that bu�er-sizes `only' up to a several 105 cells
are actually used.

Via Eq. (7.7), such bu�er-sizes correspond to MBS values for truncations between T = 23 and
T = 28, computed in the next table:

Target (5h) � 10% 1% 10�3 minimal BORc

B 3:0 � 104 1:1 � 105 4:0 � 105 3:0 � 103
T with qi0(MBST ) close to B 23 26 28 18

MBS(T ) 1:8 � 105 7:8 � 105 2:1 � 106 1:5 � 104
(t0; qi0(MBST )) 6:0% 0:43% 7:2 � 10�4

mCD 28:3�s 34:4�s 39:6�s 21:5�s
99%-quantile 177�s 181�s 183�s 162�s

(1� 10�5)-quantile 96:6ms 193ms 277ms 21:9ms
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The table shows that the models with a truncation in that range deliver steady-state values
close to the observed delay in the simulation experiment.

In summary, the transient probability  turns out to be of great value for understanding transient
mean delay as well. Only with very small, but non-negligible probability, very bad delay values
occur within a single observation period of length t0. Unless a huge number of independent repli-
cations is performed, such bad runs are usually not obtained and mean delay is underestimated.
However, the potential for such large delay is there. Thus simulation experiments have to be
interpreted with care.

7.7 E�ective Bandwidths

The concept of e�ective bandwidths is frequently used in practice for Connection-Admission
Control (CAC), see [Kesidis et al. 93]. The underlying idea is that each individual

connection, which announces its mean cell-rate, �, and peak cell-rate, �p, at connection setup-
time, is assigned a so-called e�ective bandwidth, k, where � � k � �p. If the sum of the
e�ective bandwidths of all the incoming ows does not exceed the available bandwidth, the new
connection is accepted.

The value of k depends on the required QoS-level. For k = �p (called peak-rate reservation), no
QoS problems are to be expected, but on the other hand, no multiplexing gain can be achieved.
At the other end of the possible range for k, at k = � (mean-rate reservation), highest possible
multiplex-gain will be achieved, but the provision of QoS will be diÆcult, since essentially the
network is allowed to operate at � = 1 then.
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Figure 7.3: E�ective Bandwidth Reservation: For each of th N sources in the N -Burst [IS] model
an e�ective bandwidth k is reserved, i.e. the service-rate is guaranteed to be � = N k. The solid lines
show the reserved bandwidth for a growing number of sources, N , for di�erent choices of � � k � �p.
The dashed lines that are marked by �i indicate the amount of bandwidth that is necessary to obtain a
blow-up region i0 > i.

Figure 7.3 investigates the impact of the e�ective-bandwidth reservation scheme on the blow-up
regions in an N -Burst/M/1 model. The dashed lines indicate the amount of bandwidth that is
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necessary to avoid (i0 > i) a certain blow-up region i. To avoid any impact of Power-Tails in
the LRD model, � > �N = N�p is necessary, i.e. PRA with the drawback of no multiplex gain.

As Figure 7.3 and Equation (5.1) clearly show, the separation lines between the blow-up regions
is proportional to the number of sources, N :

�i = i(�p � �) +N�:

Thus, the amount of reserved bandwidth that is necessary to avoid a certain blow-up region i
grows increases linearly with slope � in Fig. 7.3.

The e�ective bandwidth method with k > � leads to better blow-up regions (higher i0) with
growing number of sources, since the reserved bandwidth shows slope k, thus larger than �. So
any choice of k > � eventually leads to a large i0 when enough of these sources are multiplexed.
Therefore, asymptotically (for large enough N), the e�ective bandwidth approach works for
LRD N -Burst traÆc. However, it is not really the most suitable approach for a low number of
connections/sources. A CAC algorithm that is based on asymptotic results for N -Burst/M/1
queues, as in Sect. 7.4 is de�nitely superior in such scenarios.

For given � = 1:4, such as estimated for the Ethernet data of [Leland et al. 94], i0 > 5 is
suÆcient to avoid the unbounded growth of both, the mean and the variance of the Cell-Delay
distribution. So multiplexing more than 10 sources of Figure 7.3 with k = (�+ �p)=2 would be
suÆcient to avoid most negative e�ects of such LRD traÆc in terms of the �rst two moments of
Cell Delay (for Cell Loss Probabilities, the impact of the Power-Tails only vanishes for � > N�p,
but increasing i0 still helps since it increases the e�ective tail-exponent �).
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Chapter 8

Summary of Results

This chapter presents a brief summary of the major results of the performance analysis together
with a discussion of the practical relevance of those results. It is addressed to the network
engineer and as such it only summarizes results that have a straightforward impact on the
network planning or management task. Other discussions in Chapters 2 { 7 are left out, if they
are of more theoretical interest or if they have not yet obtained a matureness that allows their
straightforward practical application. Hence, this chapter only summarizes a subset of Chapters
2 { 7.

8.1 Motivation

Stochastic modeling and queueing theory have �nally found a broad �eld of application: design,
analysis, and management of telecommunication systems. However, performance models for
packet or cell-switched data networks are far from trivial. So far, the simple M/M/1 model is
one of the few models that is being used in algorithms for planning tools. However, it is now
widely accepted that standard Poisson models do not adequately describe network traÆc since
they do not take into account its inherently bursty nature. This is accentuated by a series of
measurements in the last decade (one of the earliest discussed by [Leland et al. 94]) that have
shown that network traÆc often exhibits a so-called self-similar property: It shows burstiness
over a wide range of time-scales.

According to several measurements of network traÆc, one such series done in [Gogl 98] at the
entrance of the B-WiN network, multiplexed ON/OFF traÆc with LRD properties appears to
be a good model for real data traÆc. This thesis develops techniques for and provides results
from the analysis of queueing models with such traÆc as input. Thereby, insights are gained
into how QoS problems at single `bottleneck' switches in the network occur and what remedies
are possible.

The performance analysis at the bottleneck switches starts o� with an investigation of the
steady-state performance parameters mean Cell Delay (mCD), Cell Loss Probability (CLP), and
Bu�er Overow Probability (BOP), see Chapter 5. The analysis showed that QoS does not
reduce uniformly with, for instance, decreasing service rate. Instead, well-de�ned so-called blow-
up points have been observed at which the QoS parameters deteriorate dramatically. The blow-
up points were located and it is shown in Chapter 7 how their location can be used in network
design.

The analysis of the steady-state behavior provides some fundamental insight into the peculiarities
of multiplexed ON/OFF traÆc with LRD properties. However, the long lasting correlation in the
cell-arrival process, together with the �nite duration of the 4-8 busy hours in the daily pro�le,
could have the e�ect that steady-state behavior for the performance-critical time period might
never be observed in practice. The results of the transient analysis in Chapter 6 con�rm such
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doubts. Furthermore, the steady-state BOP does not express the correlated nature of overow
events, which is especially accentuated in systems with large bu�ers and by traÆc with LRD
properties. Additional transient parameters are discussed in Chapter 6 in order to provide a
better description of the switch's behavior.

The models in this thesis are discussed within the context and with the terminology (e.g. cells,
switches) of ATM networks. However, the results are transferable to other packet based network
technologies, including IP, as long as there is no feedback between the network behavior and the
traÆc sources. The latter requirement excludes protocols with ow-control mechanisms, such as
TCP/IP. However, Chapter 9 discusses an approach to include such feedbacks.

8.2 Performance Model

8.2.1 N-Burst Arrival Process

The development of a realistic and exible description for data traÆc in modern telecommuni-
cation networks is the focus of Chapter 2. A brief summary of the N -Burst Independent Source
model is given here, since most parts of the analysis are based on that particular model, although
the results can be generalized to more general N -Burst models as well, see e.g. Section 5.1.

λ pλ p λ p

λ p λ pλ p

Source 1

Source N

......

OFF-time
exponential

ON-period
Power-Tailed

Mean: ZMean: n  cells
p

Figure 8.1: The N-Burst Arrival Process: Cells from N ON/OFF sources are multiplexed together.

The N-Burst arrival process is a superposition of traÆc streams from N independent, identical
sources of ON/OFF type, as shown in Fig. 8.1: each source emits cells at a Poisson-rate �p
(peak-rate) during its ON-time (a burst), and then transmits nothing during its OFF-time. Let
� be the mean rate of the individual source (the average for the ON- and OFF-times together),
then the N sources collectively generate cells at the mean rate � = N�. In Chapter 2, this
arrival process is called an N -Burst Independent Source model, or more precisely, the N -Burst
[IS/G/N//N ] model. Herein, we will refer to it simply as the `N -Burst model' even though that
name describes a more general class of models.

The `degree of burstiness' of the individual sources can be expressed by the parameter

b := 1� �

�p
� (8.1)

Consequently, 0 < b < 1, and the higher b, the more bursty the traÆc of the single source is.
At the boundary value b = 0, the traÆc has no ON/OFF structure and reduces to pure Poisson
traÆc, while at the other end, b ! 1, the peak-rate �p approaches in�nity which results in a
so-called bulk-arrival model, see Sect. 5.6.
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Queueing Model

The output port of the bottleneck ATM-switch is modeled as an exponential server with rate
�. In many scenarios we look at bu�er-overow events for a primary bu�er of size B and an
in�nite secondary bu�er, i.e. the queueing model is of type N -Burst/M/1 where overow-events
are recognized by the threshold B in the in�nite bu�er.

Since in many cases, lost cells are retransmitted by higher protocol layers, the assumption of
in�nite back-up bu�ers is practically meaningful. However, note that some of the parameters
used later on, in particular the First Passage Times and the Probability of at least One Overow
do not change when assuming a �nite-bu�er system.

Even when an in�nite back-up bu�er is assumed, the N -Burst/M/1 queue is stable as long as
� = �=� < 1. A well-de�ned steady-state queue-length distribution exists in the stable case,
although its moments could well be in�nite. In this chapter, we only consider queues with � < 1,
or equivalently � > �.

8.2.2 Truncated Power-Tail Distributions

The ON/OFF behavior of the individual sources causes bursty traÆc at the cell-level. However,
it should be emphasized that ON/OFF behavior by itself is not suÆcient to produce LRD
properties. The distribution of the duration of the ON periods is critical.

Measurements of �les in large �le-systems as well as measurements of �les that were transfered
over the Internet by the http protocol (see [Crovella & Bestavros 96]) both suggest that
the size of such �les is more adequately described by so-called Power-Tail (PT) distributions,
which have the following asymptotic form of their reliability function R(x):

R(x) := IP fX > xg � 1

x�
for large x: (8.2)

� is called the Power-Tail (PT) exponent. Thereby, f(x) � g(x) is a short-hand notation for
limx!1 f(x)=g(x) = cPT with 0 < cPT < 1. The log-log plot of such a function R(x) looks
linear with slope ��, since log(x�) = � � log(x).
In contrast to the widely used exponential distributions, the probability of very large events
does not vanish quickly in PT distributions. One of the consequences is that such distributions
can have in�nite moments, in particular, their mean is in�nite if � � 1, and their variance is
in�nite if � � 2. If Power-Tails with in�nite variance are used for the ON-time distribution in
the N -Burst model, asymptotically second order self-similarity in the inter-arrival process and
in the counting process is the result, see Sect. 3.1.

Even if in�nite Power-Tails in the burst-length distribution are real, for the analysis of the
transient behavior, the tail matters at most up to the duration of the observation period. So
naturally, truncated tails come into play, when �nite time-intervals are considered. In our N -
Burst model, we use truncated PT (TPT) distributions as introduced by [Greiner et al. 99]:
their reliability function, RT (x), is a sum of T exponential distributions with geometrically in-
creasing mean, weighted by geometrically decreasing factors (see Appendix B.2). RT (x) shows
Power-Law behavior for a limited range of x until some xT and drops o� exponentially there-
after as shown in Fig. 8.2, left. That exponential drop-o� is called truncation and physically
corresponds to a Maximum Burst Size (MBS) in the N -Burst model. See Section 3.5 for a more
rigorous de�nition of the Power-Tail Range, xT , which locates the exponential drop-o�.
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Figure 8.2: Log-Log Plot of the Reliability Function, RT (x) = IP fX > xg, for Truncated Power-
Tail (TPT) Distributions with T Phases (Left) and the Resulting Autocorrelation Structure
of a 2-Burst Model: Both the TPT reliability function and the N -Burst autocorrelation function show
a Power-Law behavior { appearing linear with negative slope � and [�� 1] respectively { for some range
of x or k, before dropping o� exponentially. The Power-Tail Range, xT , (dotted lines in left graph) can
be extended arbitrarily by using more phases.

Using the TPT distribution for the burst-length distribution in the N -Burst model, the au-
tocorrelation function r(k) = Cov (X;X+k) =�

2 of the inter-cell times also shows a truncated
Power-Law behavior, see Fig. 8.2, right. Due to the �nite PT-Range of the autocorrelation func-
tion, strictly speaking, the traÆc is not LRD according to the mathematical de�nition in Sect.
3.1. Therefore, we talk of traÆc with LRD properties instead.

8.2.3 Model Calibration

It is goal of this thesis to study the performance impact of the LRD properties in realistic
settings. Therefore, methods for parameter estimation of a 1-Burst model were developed in
Chapter 4 and applied to a set of measurements that is described in more detail in [Gogl 00].
Most parametric studies in this thesis use N -Burst processes that are calibrated on real measured
network traÆc: a particular measurement, called TX3, of IP over ATM traÆc that was sent into
the B-WiN backbone at the access point in Munich was basis for this calibration. Measurement
TX3 had the following statistical properties,

Measurement TX3

Number of cells: 784 652
Duration: 48:2 s
Mean inter-cell time: �X = 61:43�s
Variation of inter-cell times: C2(X) = 13:67

where C2(X) is the coeÆcient of variation, see Sect. 1.3. The analysis of the measurement
TX3 leads to the following parameters for a single-source 1-Burst model, see Sect. 4.3 and
[Schwefel et al. 97]:
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1-Burst Calibration TX3

Average cell rate: � = 16:3 cells/ms = 6:90Mbit/s
Cell-rate during burst: �p = 140 cells/ms = 59:4Mbit/s
Mean number of cells per burst: np = 9:1
Mean duration of OFF time: Z = 494�s
Burstiness: b = 1� �=�p = 88:37%

This parameter set is the result of an earlier calibration method in [Schwefel et al. 97].
However, the parameters are close enough to the `correct' parameter set that is obtained by the
improved method in Sect. 4.3. Therefore, we refer to it as TX3 although this is not quite consistent
with Sect. 4.3. The 1-Burst calibration for other measurements in Appendix I.2 resulted in
comparable parameter sets, in particular the burstiness parameter showed a range of 0:84 <
b < 0:93. In that sense, TX3 can be seen as representative. However, we neglect the smooth
background Poisson rate �0 here, since it contributes only a very small proportion of the overall
traÆc, see Sect. I.2.2. The formulas in this chapter assume �0 = 0, but any positive �0 > 0 can
be deducted from the service-rate �, when the asymptotic behavior of N -Burst/M/1 models in
the blow-up regions is investigated.

The exponent of the reliability function of the burst-length distribution is set at � = 1:4 (which
corresponds to a Hurst parameter H = 0:8). Note that the cell-rate, �p, during a burst is more
than eight times bigger than the average cell-rate, � although the traÆc at the measurement
point is highly aggregated: in the order of 100 to 300 simultaneous IP connections contribute
their ATM cells to the aggregated cell stream. Nevertheless, several properties of the measured
data indicate that such an aggregated cell-stream in this scenario can be modeled by a single
ON/OFF source.

8.3 Performance Impact

8.3.1 Steady-State Results

This section summarizes the performance results that were derived from the steady-state
analysis of N -Burst/M/1 queues. See Chapter 5 and the publications [Lipsky et al. 99a],
[Schwefel & Lipsky 99b], [Schwefel & Lipsky 99c], and [Schwefel & Lipsky 99d] for
the details and additional discussions.

The analysis of the steady-state queue-length distribution of N -Burst/M/1 queues in Chapter 5
shows that the mean queue-length and thus the mean delay exhibit peculiar jumps (blow-ups)
at N distinct utilization values �i, i = 1; :::; N , called blow-up points. It turns out that the
blow-ups of the mean delay occur, when the service-rate, �, equals the average rate �i when i of
the N sources are simultaneously in a long-term ON period, while the remaining (N � i) sources
show average behavior, each with cell-rate �:

�i := i � �p + (N � i) � � = �+ i (�p � �) = � �
�
N + i

b

1� b

�
; i = 0; :::; N ; (8.3)

Therefore, the blow-ups i = 1; :::; N occur at utilization:

�i =
�

�i
=

1

1 + i
N � b

1�b

: (8.4)

The larger the PT Range of the burst-length distribution is, the more pronounced are those
blow-up e�ects, reproduced in the left graph of Fig. 8.3.
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Figure 8.3: Blow-up Regions in the Parameter Space of the 2-Burst/M/1 Queue: For exponen-
tial burst-lengths, the mean delay of the 2-Burst/M/1 queue relatively to the delay of an M/M/1 queue
with same � increases gradually with �. For TPTs, the relative mean delay blows up for two particular
values of �, see left graph. The cause of this behavior is shown in the right graph: the queue-length
distribution is Power-Tailed if N�p > �, but the PT exponent changes at the blow-up points.

The cause of the blow-up e�ects is discussed in Sect. 5.2, here illustrated again in the right graph
of Fig. 8.3: Let

i0 := min fi j �i > �g [=) �i0�1 � � < �i0 ] (8.5)

be the minimum number of sources that are suÆcient to over-saturate the server if they are
in a long-lasting ON period. In that scenario, the queue-length distribution turns out to be
Power-Tailed with the exponent

� := �(i0; �) = i0(�� 1) + 1 ; (8.6)

in its distribution function (hence exponent � � 1 in its reliability function). The important
property is that the exponent � changes at the blow-up points. The reason for such behavior
is that the long queue-lengths are mainly due to long over-saturation periods, which require at
least i0 sources to be permanently active, see Sect. 5.1. The duration of such over-saturation
periods is shown in Section 3.3 to be Power-Tailed with the exponent � as in (8.6).

The equivalent e�ect of changing PT-exponents � is proven for uid-ow ON/OFF models in
[Dumas & Simonian 00].

When � > N�p or equivalently � < 1 � b, over-saturation of the server cannot happen even
if all sources are active simultaneously. We call that region of the parameter space Peak-Rate
Allocation (PRA). However, we focus on the more interesting blow-up regions herein, numbered
by i0 = 1; :::; N where

i0 =

�
N � 1� �

�
� 1� b

b

�
; (8.7)

which follows from (8.5) and (8.3). Furthermore, we introduce the parameter i�:

i� = i0 �N � 1� �

�
� 1� b

b
; (8.8)
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which has a range 0 � i� < 1. The larger i� the closer does the queueing model operate to the
blow-up region i0 � 1, where performance is worse.

If the product within the ceiling operator in Eq. (8.7) is larger than N , the model operates in
Peak-Rate Allocation. Also, if that product is an integer (i� = 0), the model operates exactly
at one of the blow-up points, see Sect. 10.1. Both cases will be excluded from the following
discussion, i.e. the N -Burst/M/1 queue is assumed to operate in one of the blow-up regions
i0 = 1; :::; N but not exactly at one of the N blow-up points itself. The blow-up points itself
represent singularities that have to be treated separately.

As a consequence of the Power-Tailed queue-length distribution with exponent � = i0(��1)+1,
the steady-state Bu�er-Overow Probability

BOP(B) = IP fat least B bu�er slots are occupied at cell arrivalg ;

decays very slowly with increasing bu�er-size, namely by a Power-Law with exponent � � 1:

BOP(B) � cBOPB
1��; (8.9)

The tail-constant cBOP can be approximated in the �rst blow-up region,

cBOP � b�

1� �

(i� np)
��1

�� 1
c
(1)
PT(�); for i0 = 1; (8.10)

which follows from results of [Jelenkovic & Lazar 99] for uid-ow models. Thereby, c
(1)
PT(�)

is the tail-constant of the reliability function of the burst-length distribution when normalized
to have mean 1. See Appendix I.1 for numerical values.

In all other blow-up regions i0 > 1, only the following approximation is obtained for the tail-
constant cBOP:

cBOP � b� (1� b)i0�1

1� �

"
(i� np)

��1

�� 1
c
(1)
PT(�)

#i0
: (8.11)

Numerical experiments and comparisons to computed tail-constants for the analytic N -
Burst/M/1 model indicate that an additional factor 1=

p
1� i� should be included when i0 = 2,

otherwise Eq. (8.11) underestimates the true value of cBOP. Even with that correction factor,
the approximation (8.11) is not as accurate for i0 > 1 as (8.11) is in the �rst blow-up region.
But the numerical values are still suÆcient for practical applications.

The Cell Loss Probability (CLP) in a �nite-bu�er queue shows the same tail-behavior as the
BOP, yet with smaller tail-constant:

CLP(B) � cCLPB
1�� : (8.12)

Results from the transient analysis in Chapter 6 allow to come up with a relationship between
the tail-constants cBOP > cCLP:

(1� �) i�
1� i�
i0 � i�

cBOP � cCLP � (1� �)
i�
i0

cBOP: (8.13)

The upper and lower bound are identical for i0 = 1, thus

cCLP = (1� �) i� cBOP for i0 = 1: (8.14)
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Truncated Tails:

For truncated tails, the Power-Laws for the queue-length distribution and consequently also for
the BOP or the CLP are truncated as well. It turns out that the Power-Law of exponent � in
blow-up region i0 only holds for queue-lengths up to

qi0 =
MBS

�p i0
� (�i0 � �) =

b i�
i0

MBS : (8.15)

However, qi0 is the PT Range of the Power-Law with exponent � in the queue-length distribution.
Other Power-Laws with larger exponents �(i) = i (� � 1) + 1, i = i0 + 1; :::; N come into e�ect
for longer queues. Thus, a geometric drop-o� of the BOP is only observed for bu�er-sizes larger
than

qN =
MBS

�pN
� (�N � �) = MBS

�
1� 1� b

�

�
: (8.16)

Note that qi0 < qN < MBS when i0 < N .

Finally, an asymptotic Power-Law behavior is derived for the mean Cell Delay (mCD), see Sect.
5.3.2:

mCD(MBS) � cmCD (MBS)2�� ; for � < 2 : (8.17)

Consequently, the mCD for full Power-Tails is in�nite, if and only if

� � 2 , � � 1 +
1

i0
� (8.18)

The tail-constant in Eq. (8.17) can be bounded from above asymptotically for large MBS:

mCD <
� cBOP
� (2� �)

�
b i�
i0

�2��
MBS2�� for � < 2 (8.19)

Together with the approximation (8.11), an upper bound is obtained for � < 2:

cmCD <
1

�
� �

1� �
� i�

i2��0

� np��1 b2 (1� b)i0�1 �

h
c
(1)
PT(�)

ii0
(2� �) (� � 1)i0

� (8.20)

Note however, that the additional factor 1=
p
1� i� that is required in Eq. (8.11) when i0 = 2

should also be included in this bound for cmCD.

8.3.2 Transient Behavior

The steady-state results are useful to understand the behavior of N -Burst/M/1 queues with LRD
properties in the arrival process. Engineering rules for network dimensioning can be derived
from those results. As it is shown in Sect. 6.1, steady-state behavior can be observed within
rather short time intervals for traditional models without LRD properties. However, LRD models
can behave di�erently: �rst, steady-state values might well be in�nite, especially if parameters
like mean delay are considered. Furthermore, large uctuations of the QoS parameters can be
observed even when averaging over long observation periods.
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Cell losses or bu�er overows1 on the other hand turn out to be highly correlated. As a conse-
quence, the steady-state Loss or Overow Probabilities might be misleading: It is possible that
no losses at all are observed on many days, but on the few `bad' days, a larger proportion of the
cells is lost. To be able to describe such behavior, the analysis of First Passage Times (FPT)
turns out to be very fruitful. The FPT is the random variable that expresses the time until the
bu�er becomes fully occupied for the �rst time when some initial condition is given2. Again, a
Power-Law relationship can be observed for the mean First Passage Time (mFPT), see Chapter
6:

mFPT(B) � cmFPTB
� : (8.21)

Since (8.21) contains a Power-Law with exponent �, and � depends on the blow-up region, it
follows that the blow-up e�ects also show up in the transient performance parameter mFPT (and
also in the behavior of , see below).

The probability that no cell loss at all will be observed in a certain time-interval can be derived
from the FPT distribution:

1� (t0; B) := IP f\no overow during time t0 "g = IP fFPT(B) > t0g : (8.22)

Furthermore, the simulation experiments in Chapter 6 show that the distribution of FPT(B)
can be approximated for large bu�er-sizes B by an exponential distribution, provided that t0 is
not too small:

(t0; B) = IP fFPT(B) � t0g � 1� exp

�
� t0
mFPT(B)

�
for t0 � B

�i0 � �
� (8.23)

Such an exponential approximation follows also from the asymptotic theory that is discussed in
[Asmussen et al. 00a].

If the ratio t0=mFPT(B) is very small, the exponential function in Eq. (8.23) can be approximated
by the linear term of its Taylor series:

(t0; B) � t0
mFPT(B)

for
B

�i0 � �
� t0 � mFPT(B) : (8.24)

Using the asymptotic behavior (8.21) of the mFPT, another Power-Law relationship is obtained
for the transient overow probability:

(t0; B) � t0
cmFPT

B��; for 0� B

�i0 � �
� t0 � mFPT(B) : (8.25)

In order to account for the potentially huge uctuations in the fraction of overowed cells in the
individual observation intervals, the conditional Bu�er-Overow Ratio, BORc(t0; B), is de�ned
in Sect. 6.4 as the expected fraction of overowed cells conditioned on at least one occurring
overow event in the observation interval. For PT distributed burst-lengths, it can be shown
that the BORc(t0; B) for large bu�ers grows asymptotically linearly as:

1

�� 1

1

(1� �) i�
� B

� t0
� BORc(t0; B) � 1

� � 1

1

(1� �) i�
� i0 � i�
1� i�

� B

� t0
(8.26)

1Cell losses happen in a �nite-bu�er loss model, while we talk about bu�er-overows when an in�nite secondary
bu�er exists, see also Sect. 2.6.

2In the experiments, an empty bu�er at time t = 0 is assumed. However, for large bu�ers B, an initial bu�er
occupation of only a few cells shows practically no impact.
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The two bounds are identical in the worst blow-up region i0 = 1.

The asymptotic Power-Law growth Eq. (8.21) of the mFPT(B) follows from the asymptotic
behavior of BORc(t0; B) and the knowledge of the Power-Law (8.9) for the steady-state BOP(B).
Furthermore, the respective tail-constants have the following relationship:

1

cBOP
� 1
�
� 1

�� 1
� 1

(1 � �) i�
� cmFPT � 1

cBOP
� 1
�
� 1

� � 1
� 1

(1� �) i�
� i0 � i�
1� i�

� (8.27)

Section 6.4.3 shows that the BORc has a minimum close to

Bmin = �

s
t0

cmFPT z0(�)
; (8.28)

where z0(�) is the solution of the non-linear equation

exp(�z0) = 1

1 + �
��1 z0

� (8.29)

Numerical values for z0(�) can be found in Appendix I.3.

Analogous arguments lead to the asymptotic behavior of the �nite-bu�er conditional Cell-Loss
Ratio, CLRc(t0; B):

CLRc(t0; B) � 1

� � 1
� B

� t0
� (8.30)

As a corollary, it follows for the tail-constant of the steady-state CLP:

cCLP =
1

� � 1
� 1

� cmFPT
� (8.31)

Truncated Tails: For exponentially truncated Power-tails in the burst-length distribution, the
BORc(t0; B) converges with the following asymptotic bounds (for large MBS and even larger B):

b

1� �
� MBS

� t0
� BOR(TPT )c (t0; B) � b

1� �
� i0 � i�
1� i�

� 1
i0
� MBS

� t0
� (8.32)

Analogously, in the �nite-bu�er loss system:

CLR(TPT )
c (t0; B) �! b i�

i0
� MBS

� t0
� (8.33)

Consequence of the asymptotic growth of BORc for LRD N -Burst traÆc: With increasing
bu�er-space the overall fraction (� BOP) of bu�er-overows is reduced while the overow-events
become more and more unevenly distributed over the individual observation periods (which could
be for instance the typically 4-7 busy hours in the daily pro�le of the network utilization). As
a consequence, the number of intervals with at least one overow decreases with increasing
bu�er-space, but the expected fraction of overowed cells during those overow intervals even
becomes larger. Thus, additional bu�er-space seemingly increases the uctuations of the number
of bu�er-overow events in a number of observation intervals.
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8.4 Engineering Rules for Network Planning

A collection of the most important relationships that are summarized in the previous two sections
can be found in Section 7.1. In Section 7.3 of the same chapter, a number of scenarios are
discussed and methods are presented how various network or traÆc parameters can be computed
when certain QoS requirements are proposed. The following table provides an overview on the
parameters and the references to the corresponding part of Section 7.3:

Parameters N b � np � c
(1)
PT MBS � B

Controllable...

... at design phase
p p p

... via traÆc policing
p p

Impact on i0
p p p p

Impact on q[i0]
p p p p p

Impact on q[N ]
p p p p p

Choice discussed on p. 120 p. 121 p. 121 p. 119 p. 120

8.5 Avoiding the Negative Impact of LRD

The negative performance behavior due to the LRD properties of ON/OFF traÆc can be avoided
or at least diminished by appropriate network design or by additional restrictions on the incoming
traÆc. In addition, the insights about how congestion occurs for such traÆc can be used in the
future network protocols. The following list summarizes all the practical remedies against poor
QoS caused by ON/OFF traÆc with LRD properties:

� Since an outstanding feature of the behavior of the performance parameters is the existence
of blow-up points, at which performance deteriorates dramatically, one of the major goals
must be to make the switch operate in a suÆciently well behaved blow-up region (where
the e�ective PT exponent � is suÆciently large). In the extreme case of PRA (� < 1 � b
or equivalently, � > N�p), no Power-Law behavior at all exists.

There are practically three possibilities:

1. Run at lower Utilization: Add capacity �.

2. TraÆc shaping: Reduce the burstiness b.

3. Use higher Degree of Multiplexing: Increase N at same utilization �.

� TraÆc Policing: Restrict the time-scales of the LRD properties by introducing a Maximum
Burst Size for the incoming traÆc. Cells of bursts that violate the imposed restriction will
be discarded. That way the network is protected from `bad' congestion, but additional
responsibility may be imposed on the applications/user.

� Throttle the cell-rate of large bursts: In some scenarios, e.g. at http or ftp servers, the
size of a requested transfer is known in advance. Since it is shown here, that the poor
performance for LRD ON/OFF models is caused by the large bursts, the negative e�ects
can be alleviated by reducing the cell-rate in those large bursts.

� Throttle the cell-rate during time-intervals with more than i0 long-term active bursts: The
problem here is the prediction of how long a cell stream is going to send at its peak-rate,
when such information is not provided by the sources. Transmission protocols would have
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to be extended by dynamic ow-control mechanisms, that use probabilistic arguments
to decide whether the incoming traÆc produces a long-lasting over-saturation period, in
which case the individual cell-rates have to be throttled.

On the other hand, additional bu�er-space does not lead to a substantial reduction of the
probabilities BOP, CLP, and , in the blow-up regions. However, if there exists a �nite MBS,
enough bu�er-space could be added, such that the Power-Tail Range qi0 (or even qN ) of the
queue-length distribution is exceeded. Only then, overow probabilities are reduced strongly.

Note that for very bursty traÆc (b close to 1), the blow-ups can occur at relatively low utilization
�, see Eq. (8.7). Hence it can be dangerous to design a network only based on utilization values
while neglecting to look at the resulting blow-up regions.

8.6 Conclusion

It is becoming increasingly clear that more accurate traÆc models have to be developed in order
to be able to obtain any realistic evaluation of QoS provision in telecommunication networks. As
recent (and also not so recent) measurements show, multiplexed ON/OFF models can describe
the bursty nature of network traÆc quite well, and thus they reproduce one of the most impor-
tant properties of such traÆc. However, burstiness by itself is not suÆcient, since additionally
so-called Long-Range Dependent properties of network traÆc became evident for traÆc from
several applications and also in di�erent transmission protocols. One major cause of the LRD
properties is the occasional occurrence of very large transmissions, called bursts herein. Clas-
sical ON/OFF models with exponentially distributed ON times do not show such properties.
Power-Tail distributions have to be used instead for the ON times. Other measurements of e.g.
�le-sizes con�rm the necessity of such distributions in realistic traÆc models.

This thesis has investigated the impact of the LRD properties of multiplexed ON/OFF traÆc on
the performance behavior of network components with large bu�ers. The steady-state analysis
as well as the transient analysis showed a very peculiar behavior: With increasing utilization of
the switch, both steady-state and transient performance parameters do not worsen uniformly,
but at several well-identi�ed utilization values (called blow-up points), performance deteriorates
rapidly. The awareness of those blow-up e�ects and the location of the blow-up points is one of
the main results of the thesis, which has straightforward impact on network design procedures.
For such traÆc, the design of a network solely based on utilization values can be a fatal mistake
with respect to QoS.

For large bu�ers, the asymptotic behavior of several performance parameters could be derived:
In many scenarios, the performance is mainly determined by the tail of the queue-length distri-
bution, whose exponent and tail-constant could be derived. That knowledge can be successfully
applied to practical problems of network design, see Chapter 7.

Equally important to the derivation of asymptotic formulas for the performance parameters is
the insight into how congestion for such traÆc can occur even when the overall utilization of
the switch is low: Large delay and overow events are mainly due to multiple, simultaneous long
bursts which cause a long-lasting over-saturation period for the switch. The probability of such
an event is negligible for models without Power-Tail distributed burst-lengths. However, when
the traÆc has LRD properties due to Power-Tail distributions, that probability is small, but
never negligible.

Furthermore, the choice of performance parameters is critical: cell delay and also overow events
are highly correlated for such models with LRD ON/OFF traÆc. As a consequence, steady state
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performance parameters can be misleading and transient analysis has to be applied, see Chapter
6.

It is a big advantage to be able to obtain numerical values for many of the performance pa-
rameters. However, in our opinion it is much more the method of analysis, the choice of the
performance parameters, the fundamental principles for QoS oriented network design in Sect.
8.5, and �nally the understanding of the behavior of such traÆc in queueing models that must
be added to the engineer's set of tools. In that context, the key �ndings with respect to LRD
network traÆc (as described by the N -Burst model) are:

� Existence of potential `discontinuities':
Changing one network parameter (e.g. the switch capacity, �) does not necessarily a�ect
performance uniformly. Instead, so-called blow-up points do exist, at which the perfor-
mance changes radically.

� Cause of poor performance:
Assuming large bu�ers, overow events as well as large delays are mainly caused by (si-
multaneous) long ON periods of the sources. Such behavior is not rare when Power-Tail
distributions are involved, which is known to be the case at least for �le transmissions and
http transfers.

� Potential for in�nite mean delay:
Although the actual distribution of per-cell delay is well-de�ned, its mean can be in�nite
(since it is Power-Tailed in most scenarios). Measurements of such mean delay would be
very erratic even for a large number of samples. Properties of the distribution other than
the mean should be considered instead, e.g. Quantiles.

� Knowledge of the behavior of performance parameters:
A very important conclusion is that bu�er-space might be of little help in reducing overow
probabilities. This is due to the Power-Law behavior Eq. (8.9) of BOP(B). Traditional
models with exponential or other well-behaved ON times behave di�erently in that respect.

� Choice of Performance Parameters:
Bu�er Overow or Cell Loss Probabilities cannot be considered to be independent for
each cell in the traÆc, but such events are highly correlated. The substitution of the single
parameter, Bu�er-Overow Probability, by the parameter-pair h(t0; B);BORc(t0; B)i is
recommended.

� Fluctuations between observation intervals:
Increasing bu�er-space reduces the overall number of overow-events. However, for N -
Burst traÆc with LRD properties, it even increases the uctuations between the individual
observation intervals. Many intervals might not show any overows at all, but if there
are any, then a huge fraction of the cells is lost. This discrepancy between individual
observation periods increases for larger bu�ers when LRD properties of the traÆc are
present.

Carried a few steps further, the understanding and the validation of poor performance behavior
of networks forms the basis for evaluating the e�ectiveness of more advanced mechanisms for
QoS provisioning, see Sect. 10.7. The individual numerical results are useful, but only a more
comprehensive understanding of the underlying performance problems can contribute to an
objective debate about future QoS developments in Telecommunication Systems.



144 Dissertation

Chapter 9

Extension: Investigation of Elastic
TraÆc

In this chapter we develop a modi�ed version of the N -Burst model for so-called elastic traÆc,
i.e. traÆc whose transmission rates adjust in reaction to some condition outside of the source {
here the congestion level of the network. Such a model can be used to investigate the behavior
of the Transmission Control Protocol (TCP) which is used to transmit most of today's Internet
traÆc. TCP in turn uses services of the Internet Protocol (IP), whose fundamental data-units for
transmission are called packets. Hence, we change our terminology for the models in this chapter:
what used to be (ATM) cells are now called (IP) packets, and switches turn into routers. Again,
the model is not exclusively applicable for TCP ow-control, but it can be used for any packet
based transmission protocol whose ow-control mechanisms reacts to congestion by throttling
the packet-rates at the sources.

9.1 Motivation

As we have seen in the previous chapters of this thesis, traÆc modeling for data networks is
already diÆcult even if the incoming traÆc is assumed to be independent of the events that
happen in the network, see also [Paxson & Floyd 95]. However, most of today's Internet
traÆc is transmitted using TCP (Transmission Control Protocol), whose built-in ow-control
mechanism introduces a dependence between the network status (its congestion level) and the
o�ered packet traÆc, see [Arvidson & Karlsson 99]. As a consequence, large delays and high
bu�er-overow probabilities in the network components themselves can be avoided, but at the
cost of slowed down transmission rates at the sources.

This chapter introduces and discusses an analytic queueing model that captures the essence
of the TCP ow-control mechanism while still remaining tractable. Preliminary performance
results for this model and their practical implications are discussed. In particular, the use of
truncated Power-Tail distributions for the ON periods leads to conclusions about the behavior
of Long-Range Dependent traÆc under the inuence of the TCP ow-control mechanism.

Frequently, the behavior of TCP traÆc is investigated in the scenario of TCP connections with
in�nite amount of data to transmit. For instance, [Padhye et al. 98] derive an estimate for
the throughput for such an ever-lasting TCP connection, if its packets are subject to some loss
probability p along their transmission path.

[Heyman et al. 97] introduce and discuss a model that includes some kind of ON/OFF behav-
ior of the users. Their model works on ow-level, i.e. individual packets are not considered. One
of the consequences of that model is that the throughput is insensitive to the actual distribution
of the size of the connections; only its expected value matters. The model in this chapter is an
extension of the N -Burst Independent Source model that is based on the same idea as the model
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of [Heyman et al. 97], but it is packet-based, which allows to include a queueing model and
a more realistic feedback mechanism. One of the implications is that the insensitivity towards
the distribution of the connection size does not hold any more, if some bu�er-space is available
in the bottleneck router, see Sect. 9.4.2.

9.2 A Model for Dynamic TCP TraÆc

In this chapter, the interest is particularly in dynamic TCP connections, i.e. connections start
and end as described by some stochastic process. When neglecting the ow control mechanism,
those dynamics can be captured by the model that we were focusing on so far, the N -Burst. The
N -Burst model is used as a base model and it is shown in the remaining part of this section,
how it can be modi�ed to account for the ow-control mechanism of TCP.

9.2.1 Modi�cation 1: Shared Bottleneck Bandwidth

The assumption of ON/OFF traÆc with constant Poisson rate �p during the ON periods is
reasonable for many real-time applications and for protocols without ow-control mechanisms.
However, TCP works di�erently. After a certain number of packets (the so-called congestion
window) is sent out, the sender awaits acknowledgment packets from the receiver. The size of
the congestion window is dynamically adjusted when congestion is detected. We omit the details
here, since they will not show up in the model in any case. Also, they depend on the actual TCP
implementation. The interested reader be referred to [Stevens 94]. The important feature of
the ow-control mechanism is that through the adjustment of the size of the congestion window,
the e�ective sending rate of packets can be throttled from its maximum �p (which is determined
by the speed of the access line) to a suÆciently low rate such that congestion is (hopefully)
avoided.

The �rst modi�cation of the N -Burst model is made along those lines of throttling the packet-
rate of each individual source, if the bottleneck router in the transmission path cannot handle all
the active connections any more. If we assume that the output bandwidth of the bottleneck router
corresponds to a packet-rate �, and i sources (connections) are active, the maximal sending rate
�p is only used if i�p < �, i.e. when no overload situation at the bottleneck is created. If i�p > �,
all sources equally throttle down their packet-rate by a factor �i. One approach is to throttle
the sources by a factor �=(i�p); so that the i active sources share the bandwidth of the router.
See [Schwefel 00b] for results in that case. When the active sources share exactly the output
bandwidth, congestion would be avoided while still keeping the router fully utilized. In practice
however, the ow-control mechanism of TCP cannot be expected to achieve that optimal high
utilization. Instead, the regulation mechanism throttles the active sources slightly stronger, so
that they collectively use slightly less than the bandwidth �. [Heyman et al. 97] derive a
formula that allows to quantify such an `over-reaction' of the TCP ow-control. In general, such
a formula depends on several TCP parameters. Here, we assume for simplicity, that while being
throttled, the sources only use 80% of the bottleneck router's bandwidth �, i.e. the individual
packet-rate �p is throttled by the factor

�i :=
0:8 �

i�p
;

when i sources are active and i�p > �. We call the resulting aggregated ON/OFF model the
SHARED model.
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Since the actual number of packets in the connection must not be changed, a throttling of the
packet-rate also requires a change in the duration of the connection: In the unthrottled N -Burst
model with exponential ON time distribution, the rate of a transition to the (i � 1) active
state is i=xp. This rate is changed in the SHARED model to �i i=xp, i.e. the state holding time
is extended. See Appendix E.1.3 for the general case of Matrix-Exponential ON times. This
modi�cation is also mentioned in Sect. 2.5.1.

The rates for transitions that correspond to starting connections remain unchanged however,
since idle sources are not a�ected by the throttling. The modi�cation of the MMPP to obtain the
SHARED model from the N -Burst model are far from trivial. It has to be investigated whether
the distribution of the number of packets per connection is not changed by that modi�cation.
While an individual source is active, the throttling that is caused by other active sources only
leads to a di�erent scaling of the clock for this and all the other active sources. When additional
sources become active, or active sources �nish, that scaling of the clock for the remaining active
sources is changed. However, the phase transitions within the individual ON time remain in
the same order, and also the number of packets that are generated while in a certain phase is
not a�ected. Hence, the distribution of the number of packets in an ON period is not changed.
Numerical computations of the distribution of the number of packets in the SHARED model
con�rm that there is no impact of the throttling.

Note that the extension of the ON periods is not made up for by a reduction of the length of
the subsequent OFF period of the same source. Therefore, the throttling not only decreases the
observed packet rates during the connection, but also the long-term average packet rate of the
individual source.

9.2.2 Modi�cation 2: React to Existing Congestion

In contrast to the assumptions in the SHARED model, the individual real TCP source does
not have the knowledge about any other, newly starting TCP connections, but it only reacts to
existing congestion situations. In that sense, the control mechanism of the SHARED model is
too good, since it adjusts the sending rates of the sources instantaneously when new connections
become active.

A second modi�cation of the traÆc model accounts for that behavior: As long as no congestion
is present, each source generates packets during ON-periods with Poisson rate �p as in the basic
N -Burst model. Whenever the bu�er-occupancy at the bottleneck router reaches B1 or more
packets, TCP is assumed to recognize the congestion situation, and the arrival process switches
to the SHARED model. As an approximation, the bu�er itself is assumed to be in�nite, so that
we do not have to worry about retransmissions of lost packets (they are stored in the `backup'
bu�er-space beyond level B1 instead). This model will be called TCPB1 . It is easy to see that
the N -Burst/M/1 queue is the limit B1 ! 1, where the throttling of packet-rates is never
performed. At the other end, SHARED is the other limiting model for B1 = 0.

The computational methods to solve for the steady-state solution of the TCPB1 queueing model
are described in Appendix F.2. They follow in spirit the model of [Krieger & Naumov 99].

The remainder of this chapter discusses the impact of the throttling on the packet-stream of the
individual source as well as on the performance behavior of the TCPB1 model.
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9.3 Impact on Packet Flows

The numerical examples in this chapter look at the scenario that N fast (10Mb/s) LANs are
connected via the bottleneck router to a slow (1Mb/s) access line. Each LAN is assumed to
be used by only one ON/OFF source. If we assume an average packet-size of 1kB and an
average connection size of 50kB, the parameters for the TCPB1 model follow as: np = 50packets,
�p = 1250 packets/s, � = 125 packets/s, xp = 40ms in the unthrottled N -Burst. Furthermore,
we assume that the exponentially distributed OFF periods have mean Z = 5 s. Consequently, the
average packet rate in the unthrottledN -Burst comes out to be � = 9:92 packets/s and somewhat
lower when B1 < 1, see next section. Whenever the truncated Power-Tail distributions of
Section 3.4 are used for the ON-periods, the tail-exponent � = 1:4 is used. Note that since
�p > �, even a single TCP connection by itself gets throttled as soon as the bu�er-occupancy
reaches B1 packets.

Before we investigate the performance of the TCPB1 model, we look at some properties of the
traÆc of an individual source that is subject to the impact of the throttling in the SHARED
model.
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Figure 9.1: The complementary distribution function of the duration of the ON periods in
the N-Burst and SHARED model: Power-Tail behavior (appearing as straight line) is observed for
both models when MBS = 1:4 � 107.

Connection Duration: As already mentioned in the previous section, the distribution of the
number of packets per connection is identical in the N -Burst and in the SHARED model.
However, since the packet-rate is at times (in our scenario always) reduced in the SHARED
model, the duration of the connection is prolonged. The distribution of the connection duration
in the SHARED model is a complicated Matrix-Exponential distribution even when the original
ON-time distribution in the N -Burst model is exponential. Figure 9.1 plots the numerical values
of the tail-probabilities of the connection duration in the N -Burst model and the SHARED
model. The throttling does not a�ect the shape of the tails, exponential remains exponential,
and so do Power-Tails. For the given parameters and N = 4 ON/OFF sources, the throttling
reduces the utilization of the bottleneck router from 31:75% in the N -Burst model to 28:27% in
the SHARED model .

Autocorrelation: Since Long-Range Dependent (LRD) properties of network traÆc are dis-
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9.4.1 Bu�er-Occupancy
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Figure 9.3: The Queue-Length Distribution of the N-Burst and SHAREDModel: the throttling
in the SHARED model (dashed lines) reduces the probabilities of very long queues even in the LRD case.

It is shown in Sect. 5.2 that the queue-length probabilities for an unthrottled N -Burst model
with Power-Tailed ON periods also show a Power-Tail, whose exponent depends on the original
tail-exponent � and the number i0 of sources that are suÆcient to over-saturate the router when
they are simultaneously in a long ON period. In our scenario, �p > �, a single source already
creates an over-saturation period for the router, and the queue-length distribution of the N -
Burst/M/1 model decays with a Power-Law with exponent �, see Fig. 9.3 and Sect. 5.2. If we
now turn to the SHARED model, then the arrival rate never exceeds the service-rate due to
the throttling. What used to be an over-saturation period (temporarily � > 1) in the N -Burst
model, is now only a stretched period of relatively high utilization, temporarily �t = 80% in our
case. Within this time-period of length �, the behavior of the SHARED/M/1 queue corresponds
to a transient M/M/1 queue with same service-rate � and utilization �t. From the results of the
First Passage Time analysis for M/M/1 queues in Appendix A.2 it follows that the queue grows
approximately to length1

q� =
log �

� (1��)2

log �

in this time-interval (mFPT(q�) � �). In the original N -Burst model, the queue grows ap-
proximately to length (�i0 � �)� during an over-saturation period of duration � with av-
erage arrival rate �i0 > �. Therefore, the throttling leads to much slower queue-growth,
as demonstrated by the dashed lines in Fig. 9.3. This corresponds to the observations of
[Arvidson & Karlsson 99] that overow-probabilities in simulation experiments of TCP traf-
�c are not nearly as dramatic for large bu�ers, as conventional ON/OFF models without ow-
control predict.

Let us now turn to the more realistic TCPB1 model, which takes into account the bu�er-space at

1If the active sources share exactly the bandwidth �, �i = �=(i�p), a transient M/M/1 queue with �t = 1
describes the model behavior during the over-saturation periods. In that case, the queue-length grows to val-
ues of approximately

p
2�� in time �, yet still much slower than in the original over-saturation period. See

[Schwefel 00b].
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Figure 9.4: The Queue-Length Distribution of the TCPB1
Model for N = 2 Sources and Long

Power-Tails: Below the peak at k = B1, the distributions is close to the N -Burst model. After the peak,
the queue-length of the TCPB1

model approaches the distribution of the SHARED model.

the router. Figure 9.4 illustrates, that the queue-length distributions of the two limiting models,
N -Burst and SHARED, provide an excellent description of the behavior of the more complicated
TCPB1 model: For bu�er-occupancies below the threshold B1, the unthrottled N -Burst arrival
process is predominant, and the queue-length probabilities in the TCPB1 model follow the ones
of the N -Burst model. The analog observation holds for bu�er-occupancies above B1, when the
SHARED model takes over. The probability-mass that is taken away from the N -Burst curve
for large bu�ers is now mainly concentrated in a peak around the bu�er threshold B1. Thus,
Fig. 9.4 illustrates nicely the e�ectiveness of the ow-control mechanism.

9.4.2 Average Packet-Rate

The results in the previous section showed, that the ow-control mechanism prevents the built-
up of huge queues. After all this is not too surprising, since that is its goal in the �rst place.
However, there is of course a price to be payed for the improvement of the performance at
the bottleneck router: The packet-rates during the connections are reduced, so packets are held
back at the source instead of at the router. This additional delay must not be neglected in a fair
discussion of the e�ectiveness of TCP ow control.

The steady-state solution for the TCPB1 queueing model in Appendix F.2 allows to determine an
average packet-rate �p(B1) that each connection achieves. Obviously, in the limit B1 !1, the
N -Burst model is obtained, so �p(B1) converges monotonically from below to �p. The numerical
computations in Fig. 9.5 show clearly that at the other end B1 = 0, the average packet-rate
in the connection is independent of the actual type of the burst-length distribution. This is in
principle the insensitivity result that was already pointed out in [Heyman et al. 97] for their
ow-level model.

However, Fig. 9.5 also shows that the insensitivity is abolished, as soon as bu�er-space B1 > 0
is available. Exponential connection sizes are better o� in those scenarios, because most of the
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Figure 9.5: The Average Packet-rate during Connections of the TCPB1
Model for N = 2

Sources: An increased bu�er-size B1 also leads to less throttling. However, the gain is less pronounced
for Power-Tailed connection sizes (with large T ). The uppermost solid curve belongs to the exponential
TCPB1

model with T = 1. The other solid curves are labeled according to the order in that is used in
the legend.

time, the bu�er can absorb a large part of the connection without throttling the source. In case
of Power-tails on the other hand, the occasional huge connections increase the probability of
throttling taking place.

Finally, we investigate the impact of adding additional sources (LANs) at the access of the
router, see Fig. 9.6. With increasing number of sources N , the overall utilization of the TCPB1

model increases, shown by the ratio of the throughput (dashed lines) to the constant service
rate � (dotted line). Note that due to the throttling, the TCPB1 queueing model always remains
stable (� < 1), yet the overall throughput shows a horizontal asymptote for N � 15. The
average-packet rate �p(B1) during the connections bene�ts most from larger bu�er-space, when
the utilization is low (small N). For very high utilization (N � 13), the bu�er is almost always
�lled up to level B1 regardless of the actual value of B1. Therefore, the connections are almost
always throttled. The curves in Fig. 9.6 show the scenario of exponential connection sizes. If we
use Power-Tails instead, the curve for the SHARED model is not a�ected at all (insensitivity!),
while the bene�t of �p(B1) for small utilization values becomes less pronounced.

Note that the overall throughput for the SHARED model in Fig. 9.6 only approaches 80% of
the service-rate � for a large number of sources N > 15, since any arrival rate larger than
that is throttled immediately. As soon as some small amount of bu�er-space B1 > 0 is present,
the utilization can approach 100%, since the throttling is restricted to time-periods where the
queue-length is equal to or exceeds B1.

In conclusion: For bottlenecks with high overall utilization, bu�er-space and also the actual
distribution of the connection sizes has little impact. But in lowly utilized routers (e.g. � < 0:5),
bu�er-space can lead to substantial improvement of the packet-rates during the connections.
However, then there is a strong impact of the actual distribution of the connection sizes.
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Figure 9.6: The decay of the average packet-rate during connections due to throttling for
an increasing number of sources N : For N > 12 sources, the router is almost saturated, so that
bu�er-size B1 is almost always exceeded and throttling is hardly ever turned o�. Again, the labeling of
the solid curves corresponds to the order that is used in the legend: the uppermost solid curve belongs
to the TCPB1

model with largest bu�er B1 = 100, while the lowest solid curve describes the results of
the SHARED model where B1 = 0.

9.5 Conclusions

When modeling performance for TCP traÆc it is important to capture the feedback between
the network and the o�ered input traÆc. However, the dynamics of newly starting or ending
TCP connections should not be neglected, i.e. the fundamental ON/OFF source behavior is
important.

The model that is introduced in this chapter presents an extension of the N -Burst/M/1 queue
that is investigated in Chapters 2 { 8 of this thesis. The extension captures the essential features
of TCP ow control. These are:

� The sending rate of packets is adjusted in order to avoid congestion. Optimally, all active
connections share the output bandwidth of a bottleneck router. This is implemented in
the SHARED model.

� Rather than keeping track of the bandwidth requirements of the active connections, TCP
only reacts to an existing congestion situation. Therefore, its ow-control mechanism does
not come into play, before actual congestion has occurred. Model TCPB1 takes this feature
into account by conditioning the throttling of the individual packet rates not only on the
number of active sources but also on bu�er-occupancy of the bottleneck switch.

The developed TCPB1 model still remains tractable, so it provides exact numerical results for
several performance parameters. Here, we investigate the bu�er-occupancy at the bottleneck
router and the average packet-rate that a single connection can achieve. The results from the
analysis of the model are the following:

� The autocorrelation of inter-packet times is increased by the throttling, yet no LRD like
behavior could be observed that is caused purely by the throttling mechanism. Further-
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more, the dominating part of the autocorrelation function of the inter-packet times is
contributed by non-exponential ON period distributions rather than by the shaping due
to the ow control. The autocorrelation function of the counting process is more strongly
a�ected.

� The throttling prevents the build-up of large queues at the router. However, the prize is
that the packets are delayed already at the sources. The numerical results for the average
packet rate during a TCP connection illustrate that the delay shifts from the router to the
source.

� In lowly utilized router, additional bu�er-space can dramatically improve the packet-rates
during connections, and thus it reduces the time that is necessary to send out a certain
number of packets. The improvement is most pronounced if the distribution of the con-
nection size is well-behaved (exponential). If Power-Tail distributions are involved, the
improvements are still observed but only to a smaller extent.

The results in this chapter provide quite a few insights about the behavior of such regulated
traÆc in networks. However, it also raises a number of questions which have to be considered in
future work

� Theoretical Issues: It is mentioned in Sect. 9.2.1 that the distribution of the number of
packets in a connection is not a�ected by the way, the throttling is implemented. This is
intuitively reasonable and was validated numerically for several di�erent parameter sets.
However, a rigorous mathematical proof is still missing.

� Queueing Delay: The investigation of average packet rates during connections can be used
to derive conclusion about the time, it takes to send out the packets of a connection.
However, when B1 > 0, the last packet of the connection can still be stuck in the bu�er.
That particular queueing delay of the last packet of a connection is of interest for more
detailed performance evaluation.

� Model modi�cation: The TCPB1 is still only an approximation of the true TCP behavior
in the following features:

{ Delayed Reaction to Congestion: TCP needs at least a round-trip time or a timeout
interval to recognize a packet loss and react to it. In the TCPB1 model, a bu�er-
occupancy of at least B1 results in instantaneous action (replacement of the N -Burst
arrival process by the SHARED process).

{ Slow-Start: Current TCP implementations start o� with a congestion window of
size 1 which is only gradually increased. As a consequence, short connections only
achieve a packet-rate which is lower than �p even when no congestion arises during
the connection. That feature is currently not implemented in the model.

The question is of course, in which scenarios do the current model simpli�cations mat-
ter? A feeling for what the answer probably looks like can be derived by simulation.
However, the experiments have to be evaluated carefully, since recent investigations in
[Veres & Boda 00] have shown that generalizations from TCP simulation results can be
questionable.

Simulation experiments in [Heyman et al. 97] showed that their model (which is a ow-
based model of the SHARED model) provided a good match to the TCP behavior in
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their simulated scenario. Therefore, there is hope that the TCPB1 model is able to de-
scribe the TCP behavior at bu�ered bottleneck routers, even though the actual simulation
experiments need to be conducted yet.

� Applicability of steady-state analysis: It is known that steady-state analysis for Long-
Range Dependent traÆc can be misleading, since the performance parameters rarely reect
the large uctuations that will be observed in practice for such traÆc. Transient analysis
as performed for the N -Burst model in Chapter 6 provides a better description of such
behavior. In this chapter, we only present steady-state analysis. It has to be investigated,
whether transient analysis provides additional insight into the ow-control mechanisms as
well.
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Chapter 10

Open Problems and Future Directions

In this thesis, a very exible class of realistic traÆc models, called N -Burst, is developed. By
an extensive analysis of analytic queueing models with N -Burst traÆc with LRD properties, a
detailed understanding is obtained how congestion can occur for such traÆc even at overall lowly
utilized bottleneck switches. Due to the exibility of the model, not every possible aspect of the
performance behavior could be covered in detail for every possible model variation. Instead, the
thesis concentrates on the problems that seem to be essential for the network planning task.

However, quite a few questions of interest had to be left out or could only be touched briey.
Some of them are straightforward extensions of the investigations of Chapters 5, 6, and 9. Other
problems are directed at future applications and require more elaboration and probably also
new approaches. Own sections are dedicated to those more complex problems below. However,
we start with a list of immediate continuations of this research:

� Inhomogeneous Bursts:
The performance analysis in this thesis is mostly focused on the N -Burst Independent
Source model, which assumes all the sources to be identical. This represents the base
case, but in reality, scenarios with traÆc mixes from di�erent applications can occur. Such
scenarios can be easily modeled by modi�cations of the N -Burst model, see Section 2.5.2.
Preliminary results of the performance analysis are also discussed in Sect. 5.8: the existence

of the blow-up points in the case of bursts with di�erent cell-rates �
(j)
p is discussed and their

location �
(j)
i is derived. However, an in-depth discussion of the performance behavior (e.g.

Power-Laws and Tail-constants for BOP, CLP and ) is still missing for those scenarios.

� Tail-Constants:
In order to use the asymptotic Power-Laws of BOP, CLP and mFPT for quantitative anal-
ysis, the values of the tail-constants cBOP, cCLP, and cmFPT are necessary. In Chapters 5
and 6, approximations and bounds for these tail-constants as well as bounds for the be-
havior of BORc are discussed. Although the comparison with the exact numerical results
for N -Burst/M/1 queues in Sect. 7.2 shows that those approximations and bounds are
useful, there is still room for improvement. In particular in the region close to the blow-up
points, tighter bounds for cCLP and cmFPT would be useful. Alternatively, the discussion
of the model behavior at the blow-up points might be useful, see Sect. 10.1.

� Waiting Bursts and Di�erent Burst-Start Processes:
The performance analysis in Chapters 5 and 6 is almost exclusively based on the N -
Burst Independent Source model. However, the N -Burst model class is more general, and
allows for additional, physically meaningful burst-start processes, see Sects. 2.4 and 2.5.
The qualitative behavior of performance models with such more general N -Burst processes
with LRD properties can be expected to be comparable, since the major cause of congestion
{ the over-saturation periods of Power-tailed duration { still occur. However, the location
of the blow-up points changes and also the tail-constants for the behavior of BOP, CLP,
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and mFPT will be di�erent. See Sect. 5.1 for remarks on the location of the blow-up points
for such models.

� Parameter Extrapolation for Higher Load:
In Chapter 4, 1-Burst models are used successfully to describe the measured traÆc on a
single incoming link of a switch. That traÆc is in fact an aggregation of several hundreds
of individual end-to-end connections. The 1-Burst parameters �, �p, np, Z, and �0 can
be estimated from actual measured inter-cell times by the method that is developed in
Sect. 4.3. For the purpose of network planning however, these parameters have to be
extrapolated to some extent to the future, since traÆc volumes tend to grow rapidly in
today's networks (by a yearly factor between 2 and 3 in the B-WiN). The immediate
question arises, in what way the traÆc parameters have to be modi�ed to account for
the expected increase in traÆc volume. Reasonable scenarios are a decrease of Z, or an
increase of np or a combination of both.

If the N -Burst model is used at source-level (as in Chapter 9) the seemingly obvious way
of extrapolation is an increase in the number of sources N . However, adequate techniques
of forecasting for this model class are still an open research �eld.

� Performance Models for TCP/IP:
Much of today's Internet traÆc is transmitted via TCP/IP, in which case the o�ered
traÆc from the source depends on the congestion level along the transmission path via
TCP's sliding window ow-control mechanism. Chapter 9 introduces a model that captures
the essence of the TCP ow-control mechanism { the back-o� behavior of the sources.
However, that model abstracts from many implementation details of TCP: for instance,
the traÆc that results from the acknowledgment packets is not modeled explicitly. Also,
the connection set-up phase with its three-way handshake as well as its initial slow-start
is not considered. Much more research can be done in this area. See also Sect. 9.5.

Furthermore, the packet-size in IP is variable, and the sizes of subsequent packets in
the same connection are very likely highly correlated. Also, the packet headers introduce
overhead which needs to be taken into account when discussing packet sizes. Preliminary
results for such a discussion can be found in [Lipsky & Schwefel 00], but more research
is necessary.

10.1 Behavior at Blow-up Points

The performance analysis in this thesis concentrates on N -Burst/M/1 queues that operate in
one of the blow-up regions i0 = 1; :::; N but not at the blow-up points itself (where i� = 0). In
order to understand the behavior in the transition region close to the blow-up points better, it
is necessary to discuss the behavior at those singular points.

Within blow-up region i0, over-saturation periods are created by a minimum of i0 long-term
active bursts. During those over-saturation periods, the average arrival rate �i0 = i0�p+(N�i0)�
temporarily exceeds the service-rate of the switch, �i0 > �, and the queue grows on average
with rate �i0 � �. The transient analysis of such models during the over-saturation period
in Sect. 6.5 provides a more exact description and it con�rms the growth with average rate
�i0��. Note that since the argumentation uses an average excess rate, the speci�c details of the
arrival process during the ON periods are not important: Whether those arrivals are described
by a Poisson process as in our N -Burst model, or by a continuous uid ow process as in
[Dumas & Simonian 00], does not have an impact on the average growth rate.
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Such an `insensitivity' to speci�c model details cannot be expected at the blow-up points them-
selves when i� = 0. In that case, the average arrival rate during a period with i0 long-term active
bursts is exactly equal to the service rate, �i0 = �. Thus, transient models with � = 1 have to be
investigated to describe the behavior during `over-saturation' periods with i0 long-term active
bursts for N -Burst/M/1 models that operate at blow-up point i0 (i� = 0).

At the transition from the last blow-up region i0 = N to PRA, the behavior of an N -Burst/M/1
queue during an over-saturation period of length � is identical to an M/M/1 queue with � = 1.
From results of the transient analysis of M/M/1 queues (see Appendix A.2), it is known that the
queue-length of an M/M/1 queue with utilization � = 1 grows to values of approximately

p
2��

in time �. Within the blow-up region i0 = N , the queue grows much faster, as (�N � �)�,
during an over-saturation period of length �. Consequently, although long queue-lengths can
still be observed, the speed of growth is much slower at the blow-up points itself, and di�erent
exponents in the Power-Law behavior of the queue-length distribution can be expected. When
changing the assumptions for the arrival process during ON periods and for the service process
to a uid-ow model, no accumulation of workload in the uid queue occurs at all when the
arrival and service rates are equal. Thus, at the blow-up points themselves, those speci�c model
details show a major impact. The latter statement reduces the practical value of the models in
those scenarios, since a lot of e�ort would have to be spent in order to use the `correct' process
for the inter-cell times during bursts.

10.2 Highly Multiplexed TraÆc

The blow-up e�ects are particularly pronounced when a relatively small number of sources can
lead to over-saturation periods, i.e. i0 is relatively small (say i0 < 10). Large values of i0 can
result from scenarios with a large number of sources that are not too bursty (b not close to 1),
since

i0 =

�
N

1� b

b

1� �

�

�
�

An example for such a scenario would be the entrance point of a backbone at which hundreds
of slow (1Mbit/sec) links merge into a thick trunk (155 Mbit/sec). This is di�erent from the
scenario in Chapter 4, where the access networks were almost as fast as the backbone links.

If i0 is large, the e�ective Power-Tail exponents, � = i0(��1)+1, of the over-saturation periods
with i0 long-term active sources becomes rather large. As a consequence, the probability that the
same i0 sources cause a long over-saturation period becomes so small that it is not the dominant
cause of congestion any more. This conjecture is supported by the performance analysis of
limiting Fractional Gaussian Noise (FGN) models, see [Norros 95] and [Krishnan 96]. As
pointed out in Sect. 2.7.5, the N -Burst model converges to such FGN models for large N and
for appropriate scaling. Since essentially always i0 =1 in the limiting FGN model , no blow-up
e�ects of the performance parameters are observed.

In addition to the obvious theoretical relevance of understanding that limit process for large N ,
there is also a practical relevance: It is necessary to know how large i0 (and thus N > i0) has to
be, such that FGN models provide an adequate traÆc description. Also, the parameters of the
individual sources have to be linked to the parameters of the FGN model. However, note that
for very bursty sources (b close to 1), a high multiplex degree N does not automatically imply
a high i0: it is i0 and not N that determines whether the results in this thesis are applicable.
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10.3 Calibration Methods & Measurement Based Recon�guration

The analysis of measurement data is not the focus of this thesis. Nevertheless, the parameter
estimation from real data is necessary for the practical application of the model and also to
judge the practical relevance of the obtained performance results. Hence, Chapter 4 develops
a viable approach for the 1-Burst calibration. However, the attitude in that chapter is more
an engineering approach than a mathematically rigorous derivation. The calibration method
satis�es the purpose for this thesis: it works. A rigorous statistical analysis still needs to be
performed. Furthermore, a more feasible approach to calibrate N -Burst models with N > 1
than the very laborious and heuristic method presented in [Schwefel et al. 97] is necessary.
Therefore, calibration methods for N -Burst models are still waiting to be developed further.

Furthermore, the calibration method in Chapter 4 is based on the inter-arrival times of cells.
Especially, if continuous online measurements of traÆc at various locations in the network are
desired, it is in practice not very feasible to collect all individual inter-cell times since this creates
an immense amount of data { which has to be collected somewhere and therefore its transmission
adds substantial load on the network as well. Therefore, calibration methods are necessary that
rely on the number of cells in some time-interval (i.e. the counting process). In order to reduce
the amount of measurement data that has to be transmitted through the network, the length of
those time-intervals cannot be arbitrarily small (in practice, about 1 second as lower bound).

If such a calibration method was developed, it would be possible to use continuous on-line mea-
surements to recompute the traÆc parameters dynamically and thereby adjust to uctuations
in the load that are caused by unpredictable events (such as the sudden appearances of very
popular documents on the Web that are accessed by many users). Based on the measured traf-
�c parameters, congestion could be predicted and avoided by dynamic recon�guration of the
network, e.g. through the update of routing tables, or by more elaborate concepts as they are
brought up in the context of active or self-sizing networks.

10.4 Output Process Study

The analysis in this thesis concentrates on a single switch in the network. Frequently, single
bottlenecks can be identi�ed in a network, therefore the performance results that are obtained
in this thesis can be very useful for design decisions at those bottleneck switches. However,
measurements have to be performed at the incoming links in order to parameterize the traÆc
at the switch entrance. Whenever the topology (or the routing table) of the network is changed,
the traÆc parameters at the individual switches can be a�ected and new measurements are
necessary. A more exible approach can be obtained if the traÆc at the entrance points of
the network is characterized by a parameterization of 1-Burst (or N -Burst) models, and and a
method is developed to derive an approximation for the output traÆc at each node.

If the traÆc on each of the N incoming links is described by 1-Burst processes with a peak rate
that is comparable or higher than the service-rate �, or if the switch is highly utilized, then the
output process of the switch can be expected to look like a 1-Burst process, whose ON periods
are the Busy Periods of the switch. The Busy Period analysis of the N -Burst/M/1 model can
then be used to obtain the parameters of that output 1-Burst process. Preliminary results of
the Busy-Period analysis are discussed in [Schwefel 99e]. The scenario of the measurements
of ATM cells at the B-WiN entrance in Sect. 4.1 falls into that category { which is the reason,
why the 1-Burst model can be �tted successfully to the measured data, although the traÆc is
highly aggregated at the measurement point.
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If the peak-rates on the incoming links are much smaller than the service-rate � and the switch
works at low utilization, then the 1-Burst model cannot be expected to provide an adequate
approximation for the output process, but the N -Burst model may be more appropriate. The
detailed parameters and the type of burst-start process (the load dependence factors in the
burst-start rate) cannot be predicted without an in-depth investigation of such switch models.
The Busy-Period analysis is again helpful to obtain the distribution of the time-intervals, during
which the switch-output generates cells at maximal rate �. However, the individual Busy Periods
can be correlated in this scenario, since the N -Burst process that describes the switch input is
not memoryless. That is in contrast to the above scenario with high peak-rates on the incoming
links: if the Busy Period ends, all incoming links are very likely in the OFF state, which is the
only memoryless state of the N -Burst input process.

10.5 Integration in Global Network Planning Process

Once the step of the previous section is accomplished, i.e. a function is developed that computes
the N -Burst parameters of the approximate output process of a switch from the input N -Burst
processes, the results of the performance analysis of this thesis can be integrated in network
topology planning tools, such as described in [Fischer 00]. At this time, current planning tools
use either no QoS constraints at all, or only simple M/M/1 models. At best, a topology is
designed, and later on it is veri�ed whether it meets certain QoS constraints.

The input to such sophisticated QoS oriented topology planning tools would then have to be
a more detailed description of the incoming traÆc at each access node than the currently used
traÆc matrices. As a consequence, the traÆc forecasting becomes more complicated as well. This
is very likely one of the major obstacles for the application of our more realistic N -Burst models
in the global network planning process: there do not exist any satisfying methods for forecasting
a simple traÆc matrix, but expert intuition together with some heuristics are commonly used
instead. Therefore chances are very small that such forecasting methods are developed quickly
for the higher dimensional traÆc matrices that are necessary for the more realistic N -Burst
models. Nevertheless, the integration of better traÆc models in the network planning process is
a worthwhile long-term research goal.

10.6 Impact of Di�erent Service Strategies

The models in this thesis use bu�ers with the FIFO (First In First Out) strategy. One of the
consequence is that it is possible that a large number of cells from a single burst occupy the
bu�er and delay all other incoming bursts. However, other service strategies are possible and
also partially implemented in modern switches. Certain priority levels can be assigned to cells
of the di�erent sources or even to cells of individual bursts. Cells of a lower priority level have
to wait until all cells of higher levels have left the queue. In order to prevent starvation of the
lower priority levels, more sophisticated service strategies, such as weighted fair queueing, can
be implemented.

Such methods can be especially e�ective for Power-Tail distributed burst-lengths, since the
occasional huge bursts cause the performance problems in that case. Already the approximation
of the N -Burst/M/1 model by an M/G/1 queue demonstrates clearly that intelligent service
strategies can alleviate performance problems greatly for Power-Tail distributed burst-lengths:
In the M/G/1 queue with FIFO service strategy, the P-K formula (D.1) states that the mean
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queue-length becomes in�nite for service time distributions with in�nite variance, which is the
case for Power-Tailed distributed burst-lengths with � < 2. If the service discipline in the M/G/1
queue is changed to processor sharing, which corresponds approximately to a round-robin service
discipline for the cells in di�erent bursts, the mean queue-length is �nite.

The insight into the impact of di�erent service strategies on the performance behavior of N -
Burst/M/1 queues is in particular important for an evaluation of QoS oriented protocol mech-
anisms as they are discussed in the next section.

10.7 QoS-Oriented Protocol Mechanisms

The technology of telecommunication system has to take into account the growing demand of
the users for a certain transmission quality (QoS), in particular for real-time application like
voice or video traÆc. One method to satisfy those QoS requirements is an over-provisioning of
resources: links and switches or routers are designed overly `large' so that any potential upcoming
QoS requirement can be met without special treatment of the critical connections. How much
over-provisioning is necessary in that case? The answer requires obviously a forecasting of the
future traÆc and an estimation of the QoS demands that future applications request. Thereafter
the network has to be designed appropriately, see Sect. 10.5.

Another option is the implementation of protocol mechanisms that either prioritize the QoS
critical traÆc or alternatively reserve the necessary resources at the beginning of each of the
critical connections. Both approaches are currently being discussed as possible improvements of
the current Internet protocols (e.g. Di�Serv and MPLS, respectively RSVP). However, in order
to evaluate the e�ectiveness of such protocol mechanisms and also to obtain a good parameter-
ization of the methods, performance evaluation with the help of stochastic models is necessary.
Furthermore, any reservation based protocol mechanism requires Connection Admission Control
(CAC), which is a straightforward application of the results of this thesis, see Sect. 7.4.
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Appendix A

M/M/1 Queue

Although it is known that network traÆc is not adequately described by a Poisson process,
nevertheless the simple M/M/1 model is often used as a performance model in practical capacity
design problems, see e.g. [Cahn 98]. The reason for that is twofold: First, a set of only two
parameters, the service-rate � and the utilization � (alternatively, the arrival rate �), are suÆcient
to describe the M/M/1 model. Secondly, closed-form analytic expressions exist for many of its
performance parameters.

Even though the M/M/1 model is not really realistic, it can be used as a base model for
comparison purposes. Also, the transient M/M/1 queue with � > 1 describes the behavior of
N -Burst/M/1 queues in some scenarios, in particular during over-saturation periods with N
active sources. Therefore, we summarize some performance results for M/M/1 models in this
chapter.

A.1 Steady-State Behavior

The M/M/1 queue can be represented as simple Birth-Death Markov Process, see e.g.
[Kleinrock 75]. The steady-state queue-length probabilities follow as

�i =
�i

1� �
when � < 1�

By evaluation of the in�nite sum
P

i i�i the mean queue-length is obtained, and the mean delay
follows from Little's law:

IE fQg = �

1� �
; mCD =

IE fQg
�

=
1

� � �
�

The queue-length probabilities of �nite M/M/1/B queues also show a geometric decay with the
factor �:

�
(B)
i = �

(B)
0 �i; with �

(B)
0 =

1� �

1� �B+1
�

A.2 Transient Behavior

The behavior of the transient M/M/1 queue with � < 1 is interesting as a base model for the
comparison with the transient behavior of N -Burst/M/1 queues. In addition, the unstable cases
� = 1 and � > 1 are interesting as well: the case � > 1 corresponds to the temporary behavior
of N -Burst/M/1 queues in the blow-up regions i0 = N during over-saturation periods with N
long-term active bursts. The case � = 1 corresponds to the behavior of the N -Burst/M/1 model
right at the last blow-up point when �N = �, see Sect. 10.1.
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Figure A.1: Expected Value and CoeÆcient of Variation of the First Passage Time �n for
M/M/1 Queues: The solid lines correspond to � < 1, while the dashed ones show the results for � > 1.

First Passage Process

Asymptotically for large n, the mean First Passage Time of an M/M/1 queue grows geometrically
when � < 1, but only linearly when � > 1, see also the left graph of Fig. A.1:

IE f�n g =
1

� � �

�
1� �n

�n (1� �)
� n

�
�

(
1

� (1��)2 �
�n when � < 1

1
��� n when � > 1

It is shown in [Asmussen et al. 00a] that the coeÆcient of variation of the FPT �n behaves
asymptotically as:

C2[�n] =
IE
�
�2n
	

( IE f�ng)2
� 1 �

(
1 when � < 1

�+�
��� n

�1 when � > 1

The right graph of Figure A.1 illustrates that asymptotic behavior: In the unstable case � > 1,
the coeÆcient of variation converges to zero, which implies that the distribution of �n appears
more and more deterministic, the larger the bu�er-size n is.

At the border-line case � = 1, the mean First Passage Time grows quadratically, see e.g.
[Lipsky 92]:

IE f�ng = n (n+ 1)

2�
; for � = 1:

The distribution of the FPT is shown in Figure A.2. For large n and � < 1, the density function
is very close to an exponential density with same mean. However, the exponential density over-
estimates the true First-Passage Time distribution for very small value of t. In the unstable case
� > 1, the asymptotic First-Passage Time density converges to a Gamma or Normal distribution.
See [Asmussen et al. 00a] for a mathematically rigorous discussion of the asymptotic theory.

Busy Period Analysis

The Busy Period is de�ned as the time-interval that starts with an arrival at the idle server and
ends, when the server becomes idle again for the �rst time. Let B be the duration of the busy
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Figure A.2: The distribution of the First Passage Time �n of M/M/1 queues: The left graph
shows curve on log-log scale for the stable case � < 1 in comparison to an exponential distribution. The
right graph illustrates the unstable case � > 1. Fitted Gamma and Normal distributions can be used as
an asymptotic approximation in the latter case.

period. It can be shown (see e.g. [Lipsky 92]) that:

IE fBg = 1

� � �
for � < 1�

A Busy Cycle of the M/M/1 queue can be de�ned by the Busy Period and the preceding
(alternatively, the succeeding) idle period. For � < 1, the duration of the Busy Cycle has the
expected value

IE fCg = 1

�
+

1

� � �
;

and the probability that the queue length reaches level n during the Busy Cycle is:

fn = IP(�n � C) =
1� �

1� �n
�n�1:
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Appendix B

Matrix-Exponential Distributions

The fundamental modeling approach in this thesis uses modulated Poisson processes for the
traÆc description. With the concept of Matrix Exponential distributions (see Sect. B.1), the
source models reduce to Markov Modulated Poisson Processes (MMPPs), whose queueing be-
havior can be analyzed analytically by Matrix-Analytic methods. This and the next chapter
contain a fundamental introduction into such a modeling approach.

B.1 De�nition

Tractable analytic models are frequently based on Markov Processes/Chains. A stochastic pro-
cess is called Markovian if its behavior only depends on its current state. For continuous time
Markov Chains that property can only be achieved if the distribution of the state-holding times
is memoryless, i.e. exponential.

When modeling network traÆc, exponential state times (e.g. holding times) have turned out to
be inadequate, see Chapter 3. Therefore an extension of the pure Markovian concept is necessary.

To get rid of the restrictions of exponential state times, so-called Matrix-Exponential (ME) dis-
tributions are used1. When replacing a single exponential state by a box that contains a network
of states (called phases) with exponentially distributed state-times within the box, any distri-
bution for the state time can be approximated arbitrarily closely. Figure B.1 demonstrates that
process. This approach was �rst brought up as Phase-type distributions by Neuts in 1975 (see
[Neuts 81]), and is generalized to ME distributions by [Lipsky 92]. The following paragraph
contains a brief introduction and mentions the necessary formulas in reference to the latter.

The distribution of the time between a single customer entering a subsystem (the box) such as
in Figure B.1 and leaving it again can be determined elegantly by using matrix algebra. Let
P = (Pij) be the matrix of the transition probabilities within the subsystem. It is sub-stochastic
(row sums � 1), since the probabilities of leaving the box do not show up in this matrix.

Next we de�ne the completion rate matrix M, which is a diagonal matrix of the single state
leaving rates �k. Furthermore, let � be a vector whose components �i are the mean times to
leave the system, given that the customer started at phase i. Then the following equation holds:

��� 0 =M�1"0 +P��� 0:

The �rst summand represents the mean time at the current phase, while the second summand
is the mean time in the subsystem after the next transition. Solving for ��� gives:

��� 0 = [M(I�P)]�1 "0 =: V"0:
1Related concepts are Coxian Servers, Kendall Distributions, and Phase Distributions.
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Figure B.1: Generalization of Markov Processes by Matrix-Exponential State Times: The
exponential state times are generalized by replacing the single state (here #4 in the upper Markov-
Process) by a bigger box, containing a network of phases. The structure of the replacement box is
described by its entry vector p = [p1; p2; :::] and the rate-matrix B :=M(I�P). M is a diagonal matrix
of the leaving rates of the individual states within the box, and P = (Pkl) is a sub-stochastic matrix,
describing the probabilities of state changes within the box. The distribution of the time spent in the
box (which is now the generalized state #4) turns out to be R(x) = p exp(�xB) "0, therefore the name
Matrix-Exponential (ME) distribution.

Therefore, V := [M(I�P)]�1 is called the service time matrix. Its elements Vij are the overall
mean times spent at phase j until the customer leaves the system, given that it started at phase
i.

The inverse of V, B := M(I � P), has the name service rate matrix. The distribution of the
time that the customer spends in the box follows from the Kolmogorov di�erential equations:

dR(t)

dt
= �R(t)B =) R(t) = exp(�tB);

where Rij(t) is the probability that the customer is in phase j at time t, given that it started in
i.

The components pi of the entrance vector p are the probabilities that a new customer upon
entering the system will directly go to phase i. Since this vector p is constant, the new customer
enters the system independently of any previous customer. Thus, the process that describes the
time in the subsystem for a series of customers is a renewal process.

The pair hp;Bi completely describes the subsystem and gives rise to an elegant formula for the
reliability function of the time that the customer spends in the box:

R(x) = p � exp(�xB) � "0: (B.1)

Thus the ME representation, hp;Bi, de�nes the distribution (B.1). If the underlying probabilistic
structure is given, hp;Bi is exactly the class of Phase-type distributions of [Neuts 81].
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However, the concept can be generalized: Any vector-matrix pair hp;Bi that generates a valid
reliability function via (B.1) can be used, e.g. p and B could contain negative or complex
elements. Such distributions are called ME distributions. The class of distributions that is covered
by the ME concept is broader than the Phase-type class, see Appendix B.2 for an example.

Di�erentiation of the reliability function yields the pdf:

f(x) = �dR(x)
dx

= pB exp(�xB)"0:

Also, the nth moments of these distributions follow from (1.1):

IE fXng = n!pVn"0: (B.2)

B.2 Special ME Distributions

There are a few basic types of distributions that are essential for modeling network traÆc. They
are described in this section together with their ME representation hp;Bi.

Exponential Distribution

The Exponential distribution (1.4) is the trivial ME distribution. The replacement box of Figure
B.1 just contains one state, thus the matrices have dimension T = 1, i.e. they are scalars:

p = 1; B = �; V =
1

�
=: �x:

The exponential distribution has as its only parameter its rate �. Therefore it is completely
de�ned by its mean IE fXg = 1=�. The coeÆcient of variation is always C2 = 1.

Hyperexponential-2 Distribution

<p,B>

p

1-p

µ

µ

1

1

2

1

HYP-2 distribution

Figure B.2:ME Representation of a HYP-2 Distribution: The simplest case of a distribution with
higher coeÆcient of Variation than the exponential distribution is a Hyperexponential distribution with
2 states. The P-matrix is zero, since there are no transitions within the box. Thus B =M.

Figure B.2 shows the ME-representation of a two-state hyperexponential distribution (HYP-2).
It has the reliability function:

R(x) = p1 e
��1 x + (1� p1) e

��2 x: (B.3)
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This function has three free parameters (p1, �1, �2), two of which can be �xed by matching the
�rst two moments:

IE fXg = p1
�1

+
1� p1
�2

=: �x; IE
�
X2
	
= 2

�
p1
�21

+
1� p1
�22

� �) C2 > 1
�
:

Any distribution with C2 > 1 can be matched in its �rst 2 moments by a HYP-2 distribution
in the following way:

�2 =
1

IE fXg
h
1�

q
p1

1�p1
� C2�1

2

i ; �1 =
p1

IE fXg � (1�p1)
�2

�

The probability p1 can still be chosen freely with the restriction that:

p1 < pmax = 2
IE fXg2
IE fX2g =

2

C2 + 1
�

In fact, the smaller p1, the larger becomes the third moment IE
�
X3
	
. Consequently, p1 can be

used to match the third moment of a given distribution within some range.

LAQT-Matrices:

p = [p1; (1� p1)] ; B =

�
�1 0
0 �2

�
; V =

"
1
�1

0

0 1
�2

#
�

Erlangian-T Distribution

µ µ µ

<p,B>

ERL-3 Distribution

Figure B.3:ME Representation of Erlangian-3 Distribution: Distributions with small coeÆcient of
variation (C2 < 1) can be approximated by Erlangian-T distributions. The Figure shows the case T = 3.

An Erlangian-T distribution is the convolution of T identical exponentials, i.e. the distribution
of the sum of T iid exponential random variables. Its probability density function is:

f(x) = �
(�x)T�1

(T � 1)!
e��x: (B.4)

Note that the density at the origin x = 0 is f(0) = 0 as opposed to Hyper-exponential distribu-
tions, whose density has its maximum at the origin.

It follows for the �rst two moments of the Erlangian-T distribution:

IE fXg = T

�
=: �x; IE

�
X2
	
=
T 2 + T

�2
: ) C2 =

1

T
< 1:

An Erlangian-T distribution with high T can be used as approximation for a deterministic
distribution (e.g. for service times within ATM-switches), which has variation C2 = 0.
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LAQT-Matrices:

p = [1; 0; : : : ; 0]; B = �

2666664
1 �1

1 �1
. . .

. . .

1 �1
1

3777775 �

V =
1

�

26664
1 1 : : : 1

. . .
. . .

...
1 1

1

37775 �

Truncated Power-Tail Distributions
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Figure B.4: Phase diagram for the TPT-T distribution: The probabilities �i =
�
�i�1(1� �)

�
=(1�

�T ) of entering phase i decay geometrically by a factor � < 1. Furthermore, the state-holding times grow
geometrically by the factor  = 1=�1=�.

When using special hyper-exponentials such as in Figure B.4, the reliability function of those
distributions,

RYT (x) =
1� �

1� �T

T�1X
i=0

�i exp

���T
i

x

�
; (B.5)

show Power-law behavior, R(x) � x�� for some orders of magnitude before they drop o� expo-
nentially, see [Greiner et al. 99] and Sect. 3.4. The higher the number of phases, T , the later
the drop-o� occurs. The exponential drop-o� is characterized in more detail in Sect. 3.5 by the
so-called Power-Tail Range.

The variable � can be chosen freely in the range 0 < � < 1. For larger value of �, more phases
are necessary to obtain the same PT Range as for lower �. In order to show Power-Law be-
havior with exponent �, and to have mean �x, the other constants in (B.5) have to be (see
[Greiner et al. 99]):
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 =

�
1

�

�1=�

;

�T =
1� �

1� �T
1� (�)T

1� �

1

�x
:

LAQT-Matrices:

pT =
1� �

1� �T
�
�0; : : : ; �T�1

�
:

BT = �T

264 1=0 0
. . .

0 1=T�1

375 :

VT =
1

�T

264 0 0
. . .

0 T�1

375 �
Example of a non Phase-Type distribution

So far, all distributions in this section are of Phase-Type. As an example of a distribution
which has an ME representation but is not Phase-Type, we discuss briey the following density
function:

f(x) =
1

c
(1� sinx) e�x =

1

c

�
e�x � 1

2i
e(i�1) x +

1

2i
e�(i+1) x

�
;

where c :=
R1
0 (1 � sinx)e�x dx and i :=

p�1 is the imaginary unit. This distribution has the
following ME representation:

p =
1

c

�
1; � 1

2 (i+ 1)
;

1

2 (i� 1)

�
; B =

24 1 0 0
0 �(i� 1) 0
0 0 i+ 1

35 �
From p"0 = 1, it follows that c = 1=2.

The density function f(xk) = 0 for in�nitely many

xk = (2k + 1)
�

2
; k = 0; 1; :::

It can be shown that no Phase-Type distribution can have such a property. Consequently, this
distribution provides an example of an ME distribution which is not Phase-Type.

Mixtures of Distributions

In the N -Burst model, the ME distributions are used for the burst-length distribution, i.e. the
length of a single ON period during which cells are transmitted. Di�erent applications result
in di�erent distributions of the burst-lengths, i.e. �le sizes are known to be TPT-distributed
([Garg et al. 92]) thus FTP-data transfers are as well. On the other hand, the frame-sizes
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Figure B.5: ME Representation of Burst-Length Distribution for TraÆc Mixes: The notion of
traÆc mixes is implemented by mixing di�erent distributions < p1;B1 >, ..., < pn;Bn > according to
their proportions a1; :::; an (

P
i ai = 1). The resulting matrix B is block-diagonal.

of a video transmission are closer to Erlangian distributions. In a heterogeneous network, such
applications usually coexist, often called traÆc-mix.

ME distributions allow for a simple incorporation of this idea: knowing the proportions a1; :::an,
(
P

i ai = 1) of each application and their distributions < pn;Bn >, the overall burst-length
distribution hp;Bi can be constructed in a way shown in Figure B.5. One obtains a mixture of
the individual ME distributions with ME representation:

p = [a1p1; : : : ; anpn] ; where

nX
i=1

ai = 1:

B =

264 B1 : : : O

O
. . . O

O : : : Bn

375 ; V =

264 B1
�1 : : : O

O
. . . O

O : : : Bn
�1

375 �

Hyper-Erlangian Distributions: A special case of a distribution mix is obtained when the indi-
vidual distributions are all identical Erlangians. The distribution mix is called Hyper-Erlangian
in this case. The relevance of such distributions is that they can have a high variance, C2 � 1,
but zero density at the origin [f(0) = 0].

B.3 Power-Tail Range of ME and Matrix Geometric Distributions

In the following, we look at ME distributions hp;Bi whose rate-matrix B is diagonalizable,

B = UB
�1 � diag ([�1; :::; �n]) �UB
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where �i are the eigenvalues of B. The spectral decomposition of the ME reliability function
(B.1),

R(x) =
X
i

��
pUB

�1
�
i
exp (�x�i(B)) (UB�

0)i
�
;

shows that the last exponential drop-o� of the reliability function is determined by the minimum
real-part of the eigenvalues �i(B) of B. Here, we assume that

�
pUB

�1
�
i
and (UB�

0)i are non-
zero, otherwise a reduction of the state-space could be performed.

Using the spectral decomposition, the PT Range as de�ned in Eq. (3.9), can be computed for
ME distributions by:

Rng (< p;B >) = max
i

�
1

Re f�i(B)g
�
� (B.6)

Note that the PT Range is independent of p. Therefore, we can abbreviate, Rng (B) :=
Rng (hp;Bi).
In case of two independent ME distributions with rate-matrices B1 and B2, the distribution of
the time until one of them �nishes has the rate matrix B1 �B2. Thus, its PT Range is

Rng (B1 �B2) = max
i

�
1

Re f�i(B1 �B2)g
�
=

1
1

Rng(B1)
+ 1

Rng(B2)

� (B.7)

For i independent ME distributions with the same rate-matrix B, the PT Range of the distri-
bution of the time until one of them �nishes is given by:

Rng
�
B�i

�
=

Rng (B)

i
� (B.8)

Discrete matrix-geometric distributions: The discrete equivalent of a ME distribution is a
Matrix-Geometric distribution:

pk = aAkb0 :

The two major examples for Matrix-Geometric distributions are the queue-length distribution
of an SM/M/1 queue in Appendix D.5 and the distribution of the number of cells during a burst
in Appendix C.4.

The PT range of pk is determined by the Eigenvalue �max of A with largest real part:

pk � �kmax = exp [�(� ln�max) k] :

Consequently, the PT Range of pk follows as

Rng (A) := Rng (pk) =
1

� ln�max(A)
� (B.9)

B.4 Residual Time of ME Distributions

[Lipsky 92] showed that the residual time of a ME distribution< p; B > with mean �x = pB�1�0

for a randomly arriving observer has the ME representation

< pB�1=�x; B > : (B.10)
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Therefore, the density function of the residual time,

fres(x) =
pB�1

�x
B exp (�xB) �0 = 1

�x
R(x) ; (B.11)

is the appropriately scaled reliability function of the original ME distribution.

This relationship holds in general, not only for ME distributions, see e.g. [Kleinrock 75].
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Appendix C

Semi-Markov Processes

C.1 Semi-Markov Processes

The ME distributions of Section B.1 are very useful for describing renewal processes. However, as
already mentioned, network traÆc cannot possibly be modeled by a renewal process, since the
individual inter-cell times are highly correlated. Therefore, [Fiorini et al. 95] extended the
concepts of Section B.1 to LAQT representations of correlated Semi-Markov (SM) processes.
If only the sub-class of distributions with Phase-Type representation are used within the SM
processes, they are identical to the Markovian Arrival Processes (MAPs) in [Lucantoni 93].

Notation: Later on, SM processes are introduced that use embedded ME distributions. Ma-
trices that refer to the SM-process will always be represented by caligraphic letters (e.g. B, V ,
L, Y, I) Be careful not to confuse those with the simultaneously used same Roman letters (B,
V, I, p) for the embedded ME distribution process. I and I are both identity matrices but
possibly of di�erent dimensions. Except for }, vectors that refer to the SM system are usually
also written Roman, since they always appear together with other matrices, and thus confusion
should not arise.

The LAQT representation of correlated arrivals also uses a network of phases such as in Figure
B.1. However, to introduce dependence, after a customer leaves the subsystem the next customer
enters in a phase that depends on the leaving phase of the previous customer.

Similar to B for the renewal-process, B :=M(I �P) describes the behavior of the customer
in the box until leaving the box. Then, another matrix L is introduced. The components Lij

are the departure rates from phase i, whereafter the next customer starts in phase j, i.e. for
small time intervals �, (Lij ��) is the probability that a customer at phase i leaves within �
and the next one starts in phase j. L and B must be consistent, i.e. L"0 = B"0, because both
matrices describe the departure rate of the customers. However, L does not capture what is
going on before the departure, while B does not a�ect the next customer. Analogous to the
matrix representation of ME distributions, we de�ne V := B�1.

The entrance vector p of the renewal processes is replaced by the L-matrix of the SM-Process.
However, an initial entry vector is important when investigating the transient behavior of SM
processes. The equivalent of the p-vector for renewal processes is the steady-state entry vector, },
whose i-th component is the probability that a newly arriving customer enters in phase i, when
the inuence of the startup of the process has ceased (i.e. in steady state). [Fiorini et al. 95]
showed that } is the left eigenvector of the matrix Y := VL with eigenvalue 1, i.e.

} = }Y :

Analogous to (B.2), the moments of the SM-Process are:

IE
n
Xk
o
= k!}Vk"0: (C.1)
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C.2 Markov Modulated Poisson Processes

The SM processes of the last section supply a means of modeling correlated and bursty traÆc
on a network line. The N -Burst model belongs to a smaller family of processes within the SM
processes, called Markov Modulated Poisson Processes (MMPPs), for which the L-matrix is
diagonal, i.e. generated cells (departures from the subsystem) do not change the state of the
subsystem.

��
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������

1 2

3

λ
λ

1
λ

3

2

Poisson-
rate

modulating process

ν

e.g. Switch [MMPP/M/1-Queue]

Figure C.1: Illustration of MMPP Arrival Process: A Markov Modulated Poisson Process (MMPP)
consists of a Markov Process (lower box) which describes the modulating process: A token moves around
in the box but never leaves it. The actual arrivals of e.g. cells to a system (e.g. Switch) are generated by a
Poisson process, whose rate is determined by the position of the token within the modulating process. In
the N -Burst Model of Chapter 2 the modulating process is a closed queueing system of M/G/N//K-type
which describes the arrivals and the duration of the individual bursts.

The idea of SM processes is that when a customer leaves the system to go somewhere (e.g. as
arrival to the exponential server that models the ATM-switch) the next one comes in according
to the L-Matrix. For MMPPs L is diagonal, and the mathematically equivalent abstraction is
possible that a token moves around in a closed system (describing the number of active bursts)
and the actual arrivals (cells) to the switch are separate entities. Both, the SM-view and the
MMPP-view describe exactly the same process. The only di�erence is that the �rst one uses
the customer of the modulating system as cell-arrival to the SM/M/1 queue and replaces it
immediately with a new one, while in the MMPP-view, the modulating process is a closed
system.

Figure C.1 illustrates the MMPP-view: The cells are always generated by a Poisson Process.
However, the Poisson rate depends on the state of a closed Markov Process. Let Q be the
generator1 of that modulating Markov process.

1The generator of a Markov Process is a matrix containing the transition rates Qij from state i to state j in
its non-diagonal elements. The diagonal elements are such that Q"0 = 0.
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The stationary probability vector2 � of the process has the property:

�Q = 0:

As mentioned before, the L matrix is diagonal and contains the corresponding Poisson rates:

L =

2664
�1 0 : : :

0 �2
. . .

0 : : :
. . .

3775 �
The B-Matrix which describes the SM-view of the process (i.e. the customer moves around in
the box and eventually leaves to go to the switch) must add these additional departures of L to
the description Q of the modulating process:

B = (�Q) +L:

Note that by de�nition the main diagonal of B contains positive elements while the elements on
the main diagonal of Q are negative. Hence, the minus in the formula.

As a consequence of �Q = 0, it follows that

�B = �L;

and, consistent with our original de�nition,

B"0 = L"0:

Therefore the vector

} =
�L

�L"0
=

�B

�L"0

has the property }Y = }, where Y = VL, i.e. } is left eigenvector of Y for the eigenvalue 1
and thus is the steady-state entry vector in the SM view of the MMPP.

Since
}V =

�

�L"0
;

the mean inter-cell time of the MMPP comes out to be

IE fXg = }V"0 =
1

�L"0
;

which makes sense intuitively, since �L"0 =
P

i �i�i is the average cell rate of the MMPP.

The modulating process of an MMPP is a Markov process, i.e. the state times are exponential.
Generalized modulated Poisson processes are used in Chapter 2, but the non-exponential states
are replaced by the ME representation of the general distribution (as in Figure B.1). After open-
ing up the ME boxes, the modulating process is a Markov process again, if the ME distribution
is of Phase-Type { which is the case almost always in this thesis.

MMPPs are a subclass of SM processes. The inter-cell times that are generated by MMPPs
are correlated, except for models with rank(Y) = 1, in which case the MMPP reduces to a
renewal process, see the next section. The marginal distribution of the generated inter-cell times
in steady-state has the ME representation < };B >.

TheN -Burst model of Chapter 2 belongs to the class MMPP. However, variations such as models
that generate cells right at burst-starts require the broader SM concept (with non-diagonal L).

2i.e. its components �i are the probabilities that the modulating process is in state i at arbitrary points of
time.
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C.3 Autocorrelation of Inter-Cell Times and Counts

LRD properties manifest themselves in the correlation structure of a stochastic process. For the
inter-cell times of a SM process, [Fiorini et al. 95] derive a formula for the covariance of the
process in steady state:

Cov(X;X+k) = }V(Yk � "0})V"0:

From there, the coeÆcient of autocorrelation follows by de�nition:

r(k) =
Cov(X;X+k)

Var(X)
=
}V(Yk � "0})V"0

2}V2"0 � (}V"0)2
�

The covariance of the counting process Ni(�) of an MMPP for an interval size � > 0 is obtained
in [Neuts 89]:

Cov(N;N+k) = �L [I � exp(�Q)]2 exp[(k � 1)�Q] ("0� �Q)�2L"0 :

Let � := �L"0 be the average cell-rate of the MMPP. Then, the expected value of N in steady
state is

IE fNg = �

IE fXg = �� :

The second moment of N is (see [Meier-Hellstern & Fischer 92]):

IE
�
N2
	

= ��+ �2�2 + 2�
�
�2 � �L("0� +Q)�1L"0

�
+

+2�L [exp(�Q)� I ] ("0� +Q)�2L"0 :

The coeÆcient of autocorrelation for the counting process follows as

rN (k) =
Cov(N;N+k)

IE fN2g � ( IE fNg)2 �

C.4 Distribution of Number of Cells in MMPP Subspace

The problem of computing the distribution of the number of cells per burst can be formulated in
the following abstract form: Let hp;Bi be a Phase-type distribution with its probabilities of phase
changes in P, i.e. B = M(I�P). While in phase i, Poisson events with rate �i are generated.
Let � be the diagonal matrix that contains the Poisson rates �i. Call �j(i) the probability that
exactly i events are generated during the hej;Bi distributed time-interval, where ej is a unit
vector with all components except for the j-th being zero. Formulas for those probabilities in
the special case of constant �i � � are derived in [Latouche & Ramaswami 99]. However, we
need the general case in Chapter 9 since the Poisson rate during a burst can vary due to the
throttling in that model.

In the general scenario, the following recursive equation holds for �(0):

�(0) = (M+�)�1
�
B�0 +MP�(0)

�
:

This equation follows from the two possibilities for generating no Poisson events given that
the process is in state j: Either the Phase-type distribution ends directly from state j with
probability

(B�0)j
Mjj + �j

;
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or a transition to another state k occurs, which contributes the probability

Mjj

Mjj + �j

X
k

Pjk�k(0) :

The analog argumentation leads to the recursive equations

�(n) = (M+�)�1 [��(n� 1) +MP�(n)] for n = 1; 2; ::: ;

for a positive number n of Poisson arrivals.

The two recursive equations together with the entrance vector p combine into the solution for
the scalar probabilities

�(n) = p
�
(B+�)�1�

�n
(B+�)�1B�0 : (C.2)

Thus the distribution of the number of Poisson events has a Matrix-Geometric form with the
factor matrix (B+�)�1�.

If the Poisson rates do not depend on the current state, � = �pI, (C.2) simpli�es to

�(n) = p
�
�pV(I+ �pV)�1

�n
(I+ �pV)�1"0 :

Finally, the PT Range of the distribution of the number of cells during the hp;Bi distributed
time-interval follows to be

Rng (�(n)) =
1

� lnmin fRe [� (�p(B+ �pI)�1)]g =
1

� ln [�p=(1=Rng (B) + �p]

=
1

ln [1 + 1=(�pRng (B)]
�

Asymptotically, when �pRng (B) is large, the Taylor approximation ln(1 + x) � x can be used:

Rng (�(n)) � �pRng (B) ;

which justi�es the de�nition of the MBS in Sect. 3.5.
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Appendix D

Matrix-Analytic Queueing Models

D.1 De�nition & Notation

*
*
*

n

2

1S

S

G

G

M

N

M/G/N/L/K-Queueing System

K

K-n

L
-N

Figure D.1: Example of a Closed M/G/N/L/K Queueing System: Subsystem S1 is the actual
considered queue containing N identical servers with an unspeci�ed (general) service-time distribution.
S2 generates the (Poisson-) arrivals to S1. S1 by itself is a loss-system; whenever there are L customers
at S1, additionally arriving customers are rejected. Here they go straight back to the queue of S2 since
the number of customers in the whole system is �xed at K.

The N -Burst model uses closed queuing systems of type M/G/N//K to describe the arrivals
of bursts and their duration. Figure D.1 pictures an M/G/N/L/K-system. It consists of two
subsystems: S2 contains an exponential server and generates the arrivals to the subsystem S1
which is the actual queue under consideration.

The so-called Kendall notation, x/y/N/L/K, describes the system: The �rst letter, x, describes
the type of the server in S2 that generates the arrivals to S1. The second component is the type
of the server in S1. N is the number of servers in S1. L is the maximum number of customer
in S1, i.e. the queue in front of the servers of S1 can hold at most L � N customers. K is the
overall number of customers in the closed system: if n customers are at S1, K �n are left at S2.
That also implies that customers that are rejected at S1 due to a full queue will go directly back
to the queue of S2 to keep the overall number of K customers. If any of the numbers K or L is
left out, they are assumed to be in�nite: If L is in�nite, there will never be any rejections at the
queue of S1. If K is in�nite, it implies that there is an in�nite supply of customer in the queue
of the arrival generating stage S2. The server at S2 is never idle, thus the arrivals to subsystem



D Matrix-Analytic Queueing Models 179

S1 are then distributed according to the distribution of the arrival-generating server at S2.

The systems used herein have either L = 1 or K = 1. The case K = 1 is called an open
system, because S2 has a never ending supply of customers in its own queue.

It turns out that the open loss-system M/G/N/K is mathematically equivalent to the closed
system M/G/N//K (the former has a �nite space for queueing in S1 while the latter has in�nite
queueing-space in S1 but a �nite number of customersK). The critical situation is when there are
K customers at S1: In the open loss-system every additional customer gets dropped, while in the
�nite closed system no additional arrivals can happen, since all customers are at S1. As soon as
one customer at S1 gets served, new arrivals to S1 can happen. The di�erence of the two systems
is, that in the M/G/N//K system, the arrival generating server at S2 starts at the moment
when a service at S1 �nishes, while in the M/G/N/K-system, the server at S2 has already been
working for some time. The memorylessness (1.5) of the exponential distribution causes these
two scenarios to be equivalent. This also holds for load dependent arrivals in Mld=Gld=N=[=]K-
systems, when the load-dependence is declared in terms of the load n at subsystem S1.

A very important parameter of a queueing system is the utilization, �, which we de�ne as the
ratio of the average arrival rate at S1 by the mean service-rate within S1:

� =
1= IE fX2g
N= IE fX1g =

IE fX1g
N IE fX2g ;

where IE fX1g is the mean service time of one server in S1 and IE fX2g is the mean time of the
arrival-generating server at S2. For load dependent arrivals or load dependent service times, this
de�nition would have to be modi�ed. For the open system (K =1), steady-state probabilities
for the number of customers at S1 exist for � < 1.

The mean queue-length, �q, is the average number of customers in subsystem S1, which includes
the customers in service.

Notation for Arrival Processes (i.e. type of server at S2)

Abbreviation Name Explanation

M Markovian exponential
Mld load dependent exponential
IS Independent Sources special case of Mld

GI General Independent general renewal process
SM Semi Markov correlated arrivals (here mostly MMPP)

Notation for Service Processes (i.e. type of servers at S1)

Abbreviation Name Explanation

M Markovian exponential
G General general distribution

Gld load dependent general
GldS server speci�c load dependence
Gph phase speci�c load dependence

The last two server-types are described in more detail in Sects. 2.5.2 and 2.5.3. The load depen-
dence is always in terms of the load n in subsystem S1.
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LAQT-techniques are applicable when G is Matrix-Exponential (ME). In that case, the queueing
system can be represented as a Markov Process with generator Q (name is chosen on purpose,
since the generator of M/G/N//K-queueing systems will be used as modulating process for
MMPPs).

If K or L is �nite, Q is �nite and the steady state solution of the system can then be calculated
by �Q = 0. However, the structure of the Q-matrix allows for more eÆcient solutions, as
summarized in the next few sections.

D.2 Mld/Gld/1//K-Systems

The mean queue-length, �q, of the open M/G/1-System is determined solely by the �rst two mo-
ments of the service-time distribution (Pollaczek-Khinchin formula, see e.g. [Kleinrock 75]):

IE fQg = �

1� �

�
1 + � � C

2 � 1

2

�
(D.1)

More advanced techniques have to be applied to obtain the distribution of the queue-length in a
closed Mld/Gld/1//K-system The following is a generalization of the derivation of the formulas
for the M/ME/1//K-system in [Lipsky 92] to load dependent stages S1 and S2. Let �(n) be
the load-dependent arrival rate. Also, let the service-time distribution of the single server at S1
be represented by < p;B >. That distribution also depends on the load n in S1 through the
factors �(n):

Bn := �(n)B; n = 1; :::;K

The stationary distribution vector � of the system can be partitioned into components �(i),
i = 0; :::;K for the load i at S1.

The balance equations of the system contain the following matrices:

Ai := I+
1

�(i)
Bi � "0p; Ui := Ai

�1; i = 1; : : : ;K � 1;

which lead to the solution

�(0) = c0p

�(n) = �(0)
�(0)

�(n)
U1 � : : :Un; for n = 1; : : : ;K � 1:

�(K) = �(0)�0U1 � : : :UK�1 [BK ]
�1 :

c0 is derived from
PK

i=1 �(i)"
0 = 1.

D.3 Mld/Gld/N//N-Systems

The special case of an Mld/Gld/N//N -Systems deserves extra treatment, since there exist more
eÆcient solutions. As mentioned in [Lipsky 92], due to the fact that there is no queueing at the
N -server unit S1, the ME-representation of the servers ful�ll the conditions of a Jackson-network.
Therefore, the mean queue-length at S1 does not depend on the service-time distribution any
more, but only on its mean (and on the load-dependence factors).
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1   (1)/xβ - N   (N)/x-β
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µ  γ1
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Figure D.2: Simpli�cation for Mld=Gld=N==N Queue: The stationary queue-length distribution of an
Mld=Gld=N==N system only depends on the mean �x of the service time-distribution and on the load-
dependence factors, not on the service-time distribution itself (see [Lipsky 92]). Therefore, the analytical
treatment reduces to a standard birth-death process with the transition-rate diagram shown in this �gure.

Thus, the general server units can be replaced by exponential servers with the same mean and
the underlying Markov process reduces to a standard birth-death process as shown in Figure
D.2.

The stationary queue-length distribution then is:

�(n) = �(0) � �
n
1

Qn�1
i=0 (i)

n!
Qn

i=1 �(i)
� �xn:

Again, �(0) is derived by normalization:
P

i �(i) = 1.

Remember that this formula does not hold if there is queueing outside of the N -server unit (K >
N), or if the load-dependence factors depend on the individual phase of the ME distribution
(Sect. 2.5.2), or if di�erent load-dependence factors exist for the N > 1 servers in S1 (see Sect.
2.5.3).

D.4 GI/M/1-Systems

M/G/N//K queueing systems are used in the N -Burst model to describe the active bursts
on the line, i.e. they represent the modulating process that determines the arrival rate at the
switch. The actual performance analysis of network components (e.g. ATM switches) is done by
a second queue of type MMPP/M/1 which uses the MMPP as arrival process1. The distinctive
feature of an SM process is that it can generate correlated arrivals: Not only is the distribution
of the inter-cell times important, but their order has to be taken into account as well.

However, to be able to compare the correlated arrivals of the SM/M/1-Queue (described
by < B;L >) with independent arrivals with the same marginal distribution (described by
< p;B >=< };B >) at an GI/M/1-queue, a short review of the GI/M/1-queue following
[Lipsky 92] is given:

Let the exponential server have rate � and let the arrival process be a renewal process de�ned
by < p;B > with mean �x := pV"0 where V = B�1.

The utilization of the GI/M/1 queue is

� =
1

�x�
;

1Do NOT mix up the SM/M/1-queue that models e.g. a switch (see also Figure C.1) with the embedded
M/G/N//K queue that describes the burst-arrivals!
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and the scalar2 queue-length probabilities, �̂(k), for length k turn out to be:

�̂(0) = 1� �;

�̂(k) = (1� s)�sk�1 for k = 1; 2; 3; ::: ; (D.2)

(D.3)

where s is the smallest positive eigenvalue of the matrix A:

s = min
i
f�i(A) j �i(A) > 0g ; A := I+

1

�
B� "0p:

The mean queue-length of the GI/M/1-queue follows as:

IE fQg =
1X
k=1

k � �̂(k) = �

1� s
� (D.4)

The mean system time (waiting time + service time) follows from Little's Law:

IE fTg = �x IE fQg = 1

�(1� s)
�

For an exponential arrival process (M/M/1-queue), s = �.

Since the arrival process is non-exponential, it makes a di�erence whether we look at the queue-
length probabilities at randomly chosen points in time or at arrival times. The latter is important
for determining bu�er overow probabilities for non-loss systems. If there is either a second
backup bu�er (assumed to be in�nitely large, e.g. a harddisk) or assuming a feedback mechanism
that signals the full primary bu�er to the sender and thus delays the new packet (i.e. the backup
bu�er is spread out among the transmission sources), the probability that a newly arriving
packet goes to the backup-bu�er is:

BOP(B) =
1X
k=B

a(k);

where B is the size of the primary bu�er and a(k) is the probability that the queue-length at
arrival times is k. It can be shown that (see [Lipsky 92], p. 219)

a(k) = (1� s)sk: (D.5)

=) BOP(B) = (1� s)

1X
k=B

sk = sB :

D.5 SM/M/1-Systems

The SM/M/1-queue is treated in [Neuts 81] as a so-called Quasi-Birth-Death Process. That
is a Markov process where the transition rate matrix is block-tridiagonal. The matrix notation
of [Neuts 81] is slightly di�erent but is changed here to make it consistent with the previous

2The state-space of the GI/M/1-queue is the product space of the possible queue-lengths k = 0; 1; 2; ::: and
the possible states of the arrival process. The scalar queue-length probabilities, �̂(k) := �̂(k)"0, add up the
probabilities of all the states with queue-length k.
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formulas. The state space of the SM/M/1-queue is the product of the state space of the arrival
process and the set of possible queue-lengths. The block-tridiagonal transition rate matrix (the
generator) Q̂ for the SM/M/1-queue is the in�nite matrix:

Q̂ =

266664
A1 A0 O :::
A2 A1 A0 O

O A2 A1
. . .

O O
. . .

. . .

377775 :
Let the SM arrival process be de�ned by < B;L >, then Q has the following form:

Q̂ =

2666664
�B L 0 0 � � �
�I �(B + �I) L 0 � � �
0 �I �(B + �I) L � � �
0 0 �I �(B + �I) � � �
...

...
. . .

. . .
. . .

3777775 :

The leftmost column of matrices represents the transitions to states with queue-length 0, the
next column for transition to states with queue-length 1, etc. . The blocks on the main diagonal
describe state transitions within the arrival process without a change of the queue-length. The
upper diagonal (L) describes the arrivals while the lower diagonal (�I) represents the service
of a cell (without changing the state of the arrival process).

The stationary queue-length distribution, �̂, can be partitioned into clusters of states with same
queue-length:

�̂ = [�̂(0); �̂(1); �̂(2); :::] :

The equation �̂Q̂ = 0 then has a matrix-geometric solution:

�̂(k) = �̂(0)Rk;

where the rate-matrix R has to ful�ll the following quadratic matrix equation,

A0 +RA1 +R
2A2 = O;

for A0 = L, A1 = �(B + �I), A2 = �I.

Interpretation of the elements of R: Rjk is the expected time spent in state (queue-length,
state)= (i+1; k) before �rst return to queue-length i, given that the process started at (i; j), in
units of (Bjj + �)�1, see [Latouche & Ramaswami 99]. That value is independent of i.

The boundary-condition is:

�̂(0)
�
A1 +RA2

�
= 0; here : �̂(0) (�B + �R) = 0:

Also, �̂ is a probability vector, thus:

1 =
1X
i=0

�̂(i)"0 =
1X
i=0

�̂(0)Ri"0 = �̂(0) (I �R)�1 "0:

These two conditions on �̂(0) are hold for:

�̂(0) = � (I �R) ;



184 Dissertation

where � = }V = (}V"0). Note that in case of an MMPP arrival process, � is the steady state
vector of the modulating process of the MMPP (see Section C.2).

The scalar steady-state probabilities for the queue-length are then obtained by

�̂(k) "0 = �(I �R)Rk"0; k = 0; 1; : : : : (D.6)

The matrix-geometric series in the mean queue-length formula can be simpli�ed when � < 1:

IE fQg =
1X
k=0

k �̂(k) "0 = �R(I �R)�1"0: (D.7)

The vector part of (D.6), �(I �R)Rk, has as its components the probabilities that the queue-
length is k and the arrival process is in the corresponding state. If we look at the queue at arrival
times, the states of the SM-process with a high departure-rate3 contribute more observation
points. Therefore, the probability vector has to be scaled by the L-matrix and then normalized
to give the probabilities at arrival times, see [Fiorini 97]. Adding up all the components results
in:

a(k) =
�(I �R)RkL"0

�L"0
� (D.8)

The queue-length at cell-arrival times, Q(a), is closely related to the cell-delay. The mean cell-
delay and the cell-delay variation are very important performance parameters. Therefore, the
�rst two moments of the queue-length distribution at cell-arrival times need to be studied:

IE
n
Q(a)

o
=
�R(I �R)�1L"0

�L"0
� (D.9)

IE

�h
Q(a)

i2�
=
�R(R+ I)(I �R)�2L"0

�L"0
� (D.10)

Finally, the overow probability for a bu�er of size B comes out as:

BOP(B) =
1X
k=B

a(k) = �RBL"0 (D.11)

The advantage of the matrix-geometric solution is that it is not necessary to do any calcula-
tions in the state-space described by Q̂. Independently of the bu�er-size, the calculations can
always be done with matrices of the dimension of the arrival process. Therefore, calculation of
bu�er-overow probabilities can be done for arbitrary large bu�er-sizes. That also holds for the
SM/M/1/B loss-system (see Appendix D.6 and [Krieger et al. 98]).

Finally, it is fairly easy to generalize the service time from exponential to any other matrix-
exponential distribution, e.g. Erlangian-M for ATM-switches. The only changes occur in the
block-matrices Ai. However, their dimension increases by a factor of M .

3The process itself is an arrival process when fed into a queue. However, we talk of departures from the SM-
process. Thereby we look at the phases of the sub-system that build up the arrival process. A departure from one
of the phases (described by the elements of L) then corresponds to an arrival at the exponential server of the
SM/M/1-queue.
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D.6 SM/M/1/B Loss Models

For the SM/M/1/B loss model, the generator matrix Q̂ is �nite with dimension (B+1) �dim(B):

Q̂ =

2666664
A1 A0 O :::
A2 A1 A0 O :::

O
. . .

. . .
. . . O

O A2 A1 A0

A2 A1

3777775 :

with A0 = L; A1 = �B � �I ; A2 = �I ;

and A1 =A1 +A2 = �B; A1 =A0 +A1 = L�B � �I

According to [Krieger et al. 98], the following mixed Matrix-Geometric solution for the
steady-state queue-length probabilities exist:

�̂(i) = aRi + bSB�i; i = 0; :::; B; (D.12)

where the two Matrix-Geometric factors are the minimal solutions of the following quadratic
matrix equations:

A0 +RA1 +R
2A2 = O;

S2A0 + SA1 +A2 = O:

Both matrix equations can be solved simultaneously with the spectral decomposition method,
see Sect. F.1. For the case � < 1 (i.e. �L"0 < �), the absolute value of all eigenvalues of R turn
out to be smaller than one, thus the inverse (I �R)�1 exists. S has exactly one eigenvalue
�S;1 = 1. Therefore, (I �S) is singular, but we will show below that sums of the form b

P
k S

k

can still be computed eÆciently.

The coeÆcient vectors a and b in (D.12) can be derived from the boundary equations in �̂Q̂ = 0,

[a jb]
�
A1 +A2 +RA2 RB (A0 �RA2)

SB (A2 � SA0) SA0 +A1 +A0

�
= 0; (D.13)

and from the normalization of �̂:

BX
i=0

�̂(i) "0 = 1 () a(I �R)�1
�
I �RB+1

�
+ b(I � ~S)�1

�
I � SB+1� = 1:

The de�nition of ~S requires some elaboration:

Singularity of (I�S): Exactly one eigenvalue of S is equal to one, �S ;1 = 1. The corresponding
left eigenvector is uS;1 = � which follows from

� (A0 +A1 +A2) = �(L�B) = 0;

and (I � S) (A0 +A1 + SA0) =A0 +A1 +A2 :

The last equation together with (A0 +A1 +A2) "
0 = 0, combines into

(I � S) �SA0"
0 �A2"

0
�
= 0;



186 Dissertation

which in turn proves that the normalized right eigenvector for eigenvalue �S ;1 = 1 is

v0S ;1 =
A2"

0 � SA0"
0

�(1� �)
�

The second set of equations in (D.13) together with A0"
0 �RA2"

0 = 0 proves that

bv0S ;1 = 0;

i.e. the right eigenvector for eigenvalue �S ;1 = 1 of S is orthogonal to the coeÆcient vector b
of the mixed Matrix-Geometric solution (D.12).

Consequently, the matrix-geometric sum with the coeÆcient vector b and the factor matrix S
can be simpli�ed:

b

BX
k=0

Sk = b(I � ~S)�1
�
I � SB+1� ;

where ~S = S � v0
S;1

� is in principle the matrix S, but with the contribution of its eigenvalue

�S;1 = 1 removed. This is possible in the summation above, since the right eigenvector v0
S ;1

is

orthogonal to the vector b.

Having obtained the steady-state queue-length probabilities �̂(i), the mean queue length of the
SM/M/1/B model can be computed by:

IE fQg =
BX
i=1

i �̂(i)"0 = a(I �R)�1
�
(I �R)�1 (I �RB+2)� (B + 1)RB+1 � I� "0

�b(I � ~S)�1
h
(I � ~S)�1 (I � SB+1)� (B + 1)I

i
"0 :

D.7 PT Range of Matrix-Geometric Queue-Length Distributions

Since the queue-length distribution of an N -Burst/M/1 queue with a Matrix-Exponential burst-
length distribution has a matrix-geometric representation (see [Neuts 81]),

�k = �0R
k ;

the scalar queue-length probabilities (both at random observation points and at arrival instances)
eventually decay geometrically as

�k � �k = exp [� ln (1=�) k] ;

where � is the eigenvalue with maximal absolute value of the matrix R, see also [Neuts 86].
Consequently, the decay-rate of the queue-length distribution is ln (1=�), thus the PT Range of
the queue-length probabilities can be computed as

q[N ] =
1

ln(1=�)
�
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Appendix E

EÆcient Matrix Representations of
N-Burst Models

E.1 Matrix Representation of N-Burst Models

The N -Burst traÆc models are described in detail in Sects. 2.3 to 2.5. Those models have an
MMPP representation, < B;L > or alternatively < Q;L > as it is introduced in Appendix
C.2. This section provides the detailed matrix representations together with derived closed-form
solutions for the steady-state vector � of the modulator Q, if available.

E.1.1 1-Burst Models

A single source (N = 1) ON/OFF process with exponential OFF periods with mean Z and
general Matrix-Exponential ON periods with representation hp;Bi (see Appendix B.1) has the
MMPP representation:

Q1 =

2664
�1=Z 1=Z p

B"0 �B

3775 ; L1 =

2664
0

�pI

3775+ �0I �

The stationary distribution vector of the modulating process

�1 =
1

1 + �x=Z

�
1;

1

Z
pV

�
; where �x := IE fhp;Big = pV"0;

satis�es the equation �1Q1 = 0 for the [M/G/1/1] model.

If we allow for waiting bursts in the N -Burst [M/G/1//K] model, the state-spaces has to be
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extended to keep track of the number of waiting bursts:

Q =

266666666666666666666666666664

�� �p 0

B"0 �B� �I �I O

O B"0p �B� �I �I O

. . .
. . .

. . .

O B"0p �B� �I �I

O B"0p �B

377777777777777777777777777775
Here, � is the arrival-rate of bursts. The �rst row of Q contains the transition rates from the
state with no active bursts. The next K rows of blocks contain the rates for transitions from the
sets of states with i = 1,..., i = K active respectively waiting bursts.

The cell-rates of the 1-Burst model is zero for the OFF-State and �p for the ON-States. In
addition, the model allows for smooth (i.e. Poisson) background traÆc with rate �0. Hence, L
is the following matrix:

L =

26666666666666664

0

�pI

. . .

�pI

37777777777777775
+ �0 I :

There is no closed-form expression for � when K > 1. However, the Matrix-Geometric formulas
in Section D.2 (with  � 1 and � � 1 for the above scenario) provide an eÆcient method to
compute �.

E.1.2 N-Burst Models

For multiple, simultaneously active bursts, the current state of each of the up to N active
servers in the modulating M/G/N//K queue has to be reected in the state-space. An elegant
formulation therefore is the use of Kronecker-Products and Kronecker-Sums of matrices , that



E EÆcient Matrix Representations of N -Burst Models 189

are de�ned as (see [Graham 81]):

A
B :=

264 a11B : : : a1nB
...

...
am1B : : : amnB

375 ; A
n := A
 � � � 
A:

A�B := A
 Idim(B) + Idim(A) 
B; A�n := A� � � � �A:
The notation A
i expresses the Kronecker product with i factors A. Analogously, A�i stands
for the Kronecker sum with i summands.

The aggregation of the traÆc from N identical ON/OFF sources in the IS model could be
represented using N Kronecker sums of Q1 respectively L1. However, this is no longer possible
for more general N -Burst models, such as the [M] model, see Sect. 2.4. Instead, a representation
of Q with a Quasi-Birth-Death structure is advantageous: the levels are de�ned by the number
of active sources. Within in the block-matrices that represent states with more than one active
source, Kronecker products have to be used. First, lets illustrate the simplest case, the 2-Burst
[M/G/2//2] model in which � is the rate of burst-starts.

[M/G/2//2] Model:

Q =

26666666666666664

�� �p 0

B"0 �B� �I � I
 p

0 (B"0)
 I �I
B�B
 I
I
 (B"0)

37777777777777775
;

L =

26666666666664

0

L0

L0 � L0

37777777777775
+ �0 I :

Thereby, L0 := �pI.

The stationary distribution vector � with �Q = 0 and �"0 = 1 can be derived as

� =
1

1 + ��x+ �2�x2=2!

�
1; �pV; �2 p
2 (V 
 I) (B �B)�1� : (E.1)

General Mld/G/N//N models: In the general case, the burst-start rate is not a constant �,
but it depends on the number i of active bursts, e.g. in the IS model �(i) = (N � i)=Z. The
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generator matrix Q for such general models and arbitrary large N has the form:

QN =

2666664
Z0 X0

Y1 Z1 X1

. . .
. . .

. . .

YN�1 ZN�1 XN�1

YN ZN

3777775 ;

where: Xi = �(i) I
i 
 p; i = 0; :::; N � 1; (E.2)

Yi = (B"0)�i; i = 1; :::; N; (E.3)

Zi = �B�i � �(i); I
i; i = 0; :::; N: (E.4)

Thereby, �(N) := 0 in order to obtain the right formula for ZN. Note that the main diagonal
blocks Zi ofQN are quadratic but with growing dimension T i for i active sources. Consequently,
the other two diagonals contain non-quadratic matrices Xi and Yi.

The matrix L contains the corresponding cell-rates:

LN =

2666664
0

�pI

2�pI

2

. . .

N�pI

N

3777775+ �0I :

The vector � can be partitioned in N + 1 sub-vectors according to the blocks in QN :

� = [�0; �1; :::; �N] :

that can be computed by the following iterative approach:

�0 =

"
NX
i=0

(�(i)�x)i

i!

#�1
; �i = �(i� 1) (�i�1 
 p)

�
B�i

��1
; i = 1; :::; N: (E.5)

Waiting Bursts: Finally, if bursts can queue up before they become active, when K > N , the
Q-matrix has to be extended by the following (K �N) blocks:

Q =

26666666664

. . .
. . .

. . .

YN�1 ZN�1 XN�1

YN ZN
(0) XN

(0)

YNI

N 
 p ZN

(1) XN
(1)

. . .
. . .

. . .

YNI

N 
 p ZN

(N�K)

37777777775
; (E.6)

where: YN = (B"0)�N ; as before;

XN
(j) = �(N + j) I
N 
 p; j = 0; :::;K �N � 1;

ZN
(j) = �B�N � �(N + j); I
N ; j = 0; :::;K �N:
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Again, �(K) := 0 has to be assumed so that the matrix ZN
(N�K) is described correctly.

There is no comparable explicit formula for � any more, since the Jackson-network approach of
Section D.3 does not apply when there is queueing in front of the N -server unit. Matrix-Analytic
methods for M/G/N//K queues are discussed in [Lipsky 92], alternatively � can be derived
directly from �Q = 0 and �"0 = 1.

TraÆc Mixes: If the traÆc consists of several classes with di�erent burst-length distributions
and di�erent cell-rates, as described in Sect. 2.5.2 and Appendix B.2, a more complicated burst-
length distribution hp;Bi results, and the L matrix is slightly more general,

LN =

2666664
0

L0
L0 � L0

. . .

L0
�N

3777775+ �0I ;

since L0 can contain di�erent intra-burst cell-rates �
(j)
p on its diagonal.

E.1.3 SHARED Model

In the model for elastic traÆc in Chapter 9, the cell-rate during an individual burst depends on
the number i of active bursts: each active source generates cells at rate �(i)�p. If all �(i) � 1,
the N -Burst model without throttling is obtained. For the SHARED model which is introduced
in Sect. 9.2.1, the factors �(i) are:

�(i) =

�
1 when i�p � �

0:8 �
i�p

otherwise
;

i.e. no throttling is performed if i�p < �. In order to keep the number of cells per burst the same,
the ON time duration has to be extended accordingly, which results in load dependent servers
of the modulating IS/Gld/N//N queue. Consequently, the load-dependence factors � a�ect the
cell-rates in LN but also the blocks Yi and Zi in QN that describe the burst-ends respectively
the internal phase transitions of the ME burst-length distribution:

~QN =

26666664

~Z0 X0

~Y1
~Z1 X1

. . .
. . .

. . .
~YN�1

~ZN�1 XN�1

~YN ZN

37777775 ;

where: Xi = �(i) I
i 
 p; i = 0; :::; N � 1;

~Yi = �(i) (B"0)�i; i = 1; :::; N;

~Zi = ��(i)B�i � �(i); i = 0; :::; N:
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Since the SHARED model is an extension of the Independent Source model, the load-dependent
burst-arrival rate is �(i) = (N� i)=Z in that case. The computation of � in (E.5) is also a�ected
by the load-dependence factors �(i):

~�i = �(i� 1) (~�i�1 
 p)
�
�(i)B�i

��1
; i = 1; :::; N;

where �0 follows from normalization, �"0 = 1.

Finally, the matrix L that describes the Poisson cell-arrival rates has to be modi�ed:

~LN =

2666664
0

�1 �pI

�2 2�pI

2

. . .

�N N�pI

N

3777775
Variations: More general variations of the load-dependent burst-durations are mentioned in
Sects. 2.5.2 and 2.5.3:

� If di�erent traÆc classes show di�erent back-o� behavior as proposed at the end of Sect.
2.5.2, di�erent load-dependent factors �j(i), i = 1; :::; N , for every phase j = 1; :::; T of the
burst-length distribution hp;Bi can be necessary. Thus, for i active bursts, the burst-length
distribution is described by the matrix

~B(i) = diag (�1(i); :::; �T (i))B:

The matrix ~B(i) has to replace B in the blocks Zi and Yi of QN , i = 1; :::; N .

Also, the i-th block of L is changed from L0
�i to (diag (�1(i); :::; �T (i)) � L0)�i.

� If all the i active bursts do not get throttled by the same factor �(i), but the j-th active
burst is assigned its `own' back-o� factor �(j)(i), j = 1; :::; i, the Kronecker-Sums of the
form

B�i or
�
B"0

��i
in the blocks Zi and Yi of QN need to be replaced by�

�(1)(i)B
�
� ::: �

�
�(i)(i)B

�
;

respectively the equivalent Kronecker-Sum of B"0. This back-o� behavior is discussed in
Sect. 2.5.3.

The same procedure is applied to the Kronecker-Sums of the matrix L0 that build up the
blocks of L.

E.2 EÆcient Algorithms

In the previous section, we described the details of the MMPP representation of all kinds of N -
Burst models. Once, those matrices are de�ned, properties of the N -Burst traÆc stream such as
moments and correlation can be computed numerically from the analytic model, see Appendix
C.2 and C.3.
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However, if the ME representation of the burst-length distribution requires more than only a
few states, the state-space of N -Burst models with larger N becomes large very quickly, see the
next section. Hence, eÆcient algorithms and possibly approaches to reduce the state-space are
discussed in this chapter. We concentrate on the evaluation of the N -Burst arrival process in
this chapter and move the eÆcient analysis of MMPP/M/1 queueing models to Appendix F.

An experimental evaluation of the eÆciency of the various algorithms is part of this chapter.
The experiments were conducted on a SUN Ultra 1, with 167 MHZ and 128 MB of main memory
running Solaris 2.5. The algorithms in this chapter are implemented in the software package that
is described in detail in [Schwefel 00a].

E.2.1 Setup of LAQT-Matrix Q

An important criterion for the performance of the algorithms is the size of the participating
matrices Q, B, and L. The matrix Q of the [M/G/N//K] model (E.6) has dimension:

dim Q =

NX
n=i

T i + (K �N)TN =
TN+1 � 1

T � 1
+ (K �N)TN ; for T := dim B > 1:

Every set of states with i � N active bursts has to keep track of all T possible states for each
of the i active servers, which leads to T i states at each i-active level.
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Figure E.1: State-Space Sizes of N-burst Models: The dimension of the Q-matrix in the
[M/G/N//K] model can be strongly reduced: The dotted lines show dim Q for N = K = 2 respec-
tively 5 and varying number of states in the burst-length distribution, T = dim B. The solid line shows
the number of states in the reduced representation and the dashed line the number of non-zero elements
in Q for diagonal B: Q is very sparse, i.e. the number of non-zero elements is very small compared to
the overall number of elements (which is (dim Q)

2
).

However, an improvement is possible: In case of N identical servers1 in the embedded queue-
ing model it does not matter whether server 1 is in state k and server 2 in state j or
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vice versa. Thus all states of this kind can be identi�ed (for details see [Schwefel 97] and
[Lipsky & Liefvoort 95]), and the number of states reduces to

dim Q =

�
N + T

N

�
+ (K �N)

�
N + T � 1

N

�
:

Figure E.1 illustrates the gain of this reduction. Furthermore, the matrices are very sparsely
populated, most of their (dim Q)2 elements are 0. For a diagonal representation B of the burst-
length distribution (as it is the case for the LRD model that uses TPT distributions, see Sect.
3.4) the number of non-zero elements in Q is for the reduced representation:

nnz (Q) = dim Q + 2T

�
N + T � 1

T

�
=) nnz (Q)

dim Q
=

2N

N=T + 1
+ 1 < 2N + 1:

Thus, the number of non-zero elements grows at most linearly with the dimension of Q and not
quadratic as the overall number of elements does. Since L is diagonal, B =Q+L has the same
number of non-zero elements as Q.
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Figure E.2: Execution Time for Matrix Setup and � Computation: The state-space reduction has
an enormous inuence on the execution times, here shown for the 2-Burst [M/G/2//2] model with TPT-T
distributed burst-lengths. The graph shows the execution times for the setup of Q and the calculation
of � for the unreduced state space (upper curve) versus the reduced state space (lower curve) and their
ratio. For higher values of N the performance e�ects are even more dramatic.

Making use of the sparse structure of the matrices results in an essential improvement for both,
computing time (see Figure E.2) and memory usage.

E.2.2 Calculation of Steady State Vector �

The steady state distribution vector � of the modulating process with generatorQ is the solution
of

�Q = 0; and �"0 = 1: (E.7)

1i.e. for all the variations of Sect. 2.5 except for the server-dependent scaling of Section 2.5.3.
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Q is singular since, Q"0 = 0. So the system (E.7) can be transformed to a modi�ed � ~Q = [0; 1],
where the last column of Q is substituted by "0.

However, there exist explicit formulas to compute � for N -Burst [Mld/Gld/N//N ] models, see
Sect. E.1.2, which can be computed much faster than solving Equations (E.7). Unfortunately,
for models with waiting bursts K > N or with more complicated types of load-dependent
burst-lengths (as in Sect. 2.5.2 and 2.5.3) no simple explicit formulas are available.

If (E.5) cannot be applied, the sparse system (E.7) should be solved by exact methods
(LU-decomposition, Gau�-algorithm), only if the state-space is small, say dimQ < 400. For
larger state-spaces, iterative methods such as GMRES or Biconjugate Gradients methods (see
[Stewart et al. 92]) are much more eÆcient without substantial loss of numerical accuracy.
Such methods iterate on the approximate solution of the linear equations until the error-vector
becomes small. To speed-up convergence, preconditioning by incomplete LU-decomposition can
be used, i.e. a partial and thus sparse LU-decomposition of the coeÆcient matrix is used as an
approximation for its inverse.

E.2.3 Evaluation of Cell-Arrival Process

Q, B, and L are sparse. Unfortunately an inverse of a sparse matrix is not sparse any more.
Thus, calculating V or Y is ineÆcient in terms of computing time and memory usage. If possible,
it should be avoided. According to (C.1) the moments of an SM-process are:

IE
n
Xk
o
= }Vk"0:

For MMPPs, the �rst moment (mean) of the process can be derived directly from the �-vector:

IE fXg = 1

�L"0
�

Also, the product }V which is needed for higher moments has a simpler form for MMPPs:

}V =
�BV

�L"0
= IE fXg � �:

since } = �L=(�L"0) = �B=(�L"0). Still, for higher moments the product (�V)Vk�1 needs
to be calculated. Due to the reasoning above, it is much more eÆcient to solve the system
xk+1B = xk, x1 = }V for successive k to obtain xk = }Vk without calculating V = B�1

explicitly.

As in the calculation of � from (E.7), iterative solvers such as GMRES for the linear equa-
tions are superior when the state-space is large. Also, the incomplete LU-decomposition for
preconditioning only has to be done once, since the coeÆcient matrix never changes.

An equivalent procedure has to be applied to calculate the covariance:

Cov(X;X+k) = }V
h
(VL)k � "0}

i
V"0 = }V (VL)k V"0 � IE fXg2 :

However, if the autocorrelation coeÆcient needs to be calculated for large2 lags k, the calculation
of Y = VL and its spectral decomposition3, Y =W�U ,W = U�1, will at some point get less
costly than the iterated solution of the linear system.

2As it is the case to verify the existence of Long-Range Dependence.
3i.e. Y =

PS
i=1 �iwi

0
ui =:W�U , where ui are the left eigenvectors, uiY = �iui, and �i the eigenvalues of

Y.
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Even for a sparse matrix, which Y is not, there do not exist any algorithms for a spectral
decomposition that take advantage of the sparsity. Also, the matrix of eigenvectors is in general
fully populated. Thus the spectral decomposition is advisable only for the case of large lags k
since the term Yk can be calculated eÆciently, once the decomposition is done.

Since }Y = } and Y"0 = VB"0 = "0, } and "0 are the left and right eigenvectors for eigenvalue
1. The subtraction of "0} in the formula for the covariance is equivalent to neglecting eigenvalue
�i = 1 of Y . Then, r(k) can be calculated as:

r(k) =
}VW ~�

k
U V"0

IE fX2g � ( IE fXg)2 ;

where Y = W�U , ~� is the �-matrix with eigenvalue 1 reset to 0. The eigenvalue analysis
delivers the left eigenvectors as columns of W . As usual, U is not calculated explicitly but the
vector h := UV"0 is derived as solution of the linear systemWh = V"0.
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Figure E.3: Comparison of Three Di�erent Methods for Calculating the CoeÆcient of Au-
tocorrelation: r(k) is computed for lags k = 1; :::; 200. The spectral decomposition is fastest for small
state-spaces (S < 465). Applying the iterative solver GMRES k = 200 times is slow for small state-spaces
but its execution time only grows linearly with S = dimQ. The execution time of the exact solver via
LU-decomposition is in between these two methods.

Figure E.3 demonstrates the advantage of the spectral decomposition for smaller state spaces
in terms of execution time. Also, for large lags, the execution times increase for the iterative
application of GMRES and the exact LU decomposition, while it remains nearly constant for
spectral decomposition, compare also to Fig. F.2.
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Appendix F

Matrix-Algebraic Algorithms for
MMPP/M/1 Queue Performance

This chapter discusses algorithms that are necessary for the computation of performance param-
eters of MMPP/M/1 queues, in particular for the steady-state queue-length distribution and for
the transient mean First Passage Time. Most algorithms can be applied to the more general
SM/M/1 queues with only minor modi�cations.

Let < B;L > be the matrix representation of the MMPP arrival process with stationary state-
probability vector �, see Appendix C.2. Furthermore, let � be the service-rate of the exponential
server in the MMPP/M/1 queue.

F.1 Steady-State Queue-Length Distribution

The principle of the matrix-geometric solution of the SM/M/1-queue is reviewed in Section D.5.
The hard part is solving the quadratic matrix equation for the rate-matrix R:

A0 +RA1 +R
2A2 = O; (F.1)

where A0 = L, A1 = �(B+�I), A2 = �I . Before we discuss and compare di�erent algorithms
to solve (F.1), a few properties of R can already be determined beforehand.

One prerequisite for the queue to be stable is that the utilization

� =
1

� IE fXg =
�L"0

�
;

is smaller than 1. In the stable case, the rate-matrix R has eigenvalues with absolute value
smaller than 1, thus Rk ! O for k !1.

R has only positive elements and from (F.1) it follows for the row-sums of R:

RA2"
0 =A0"

0: (F.2)

in our scenario: �R"0 = B"0 = L"0 =) �R"0 = �:

Once theR-matrix is obtained, the queue-length probabilities and overow probabilities can be
calculated as (see Section D.5):

�̂(k) = �̂(0)Rk = �(I �R)Rk; k = 0; 1; : : : :

It follows for the mean queue-length

IE fQg =
1X
k=0

k �̂(k)"0 = �R(I �R)�1"0 =
1

�
�(I �R)�1L"0;
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and its second moment

IE
�
Q2
	
=

1X
k=0

k2 �̂(k)"0 = �R(R+ I)(I �R)�2"0 =
1

�
�(R+ I)(I �R)�2L"0:

The queue-length-probabilities at cell-arrival times are

a(k) =
�(I �R)RkL"0

�L"0
=

1

�
�(I �R)Rk+1"0 : (F.3)

The last equality is due to L"0 = �R"0.

Finally, the bu�er overow probability, i.e. the probability that the primary bu�er of size B is
full at cell-arrival times, is:

IP
n
Q(a) � B

o
=

1X
k=B

a(k) = IE fXg �RBL"0 =
1

�
�RB+1"0 (F.4)

In the following Sections F.1.1 to F.1.3, di�erent algorithms for the computation of theR-matrix
are described. Their eÆciency and their numerical accuracy is compared in Section F.1.4.

F.1.1 Simple Functional Iteration

The �rst approach to solve (F.1) for the rate matrixR is a simple iterative procedure. Eq. (F.1)
is solved for the linear term of R, and the resulting equation is used as the de�nition of one
iteration-step:

Rn+1 = �(A0 +R
2
nA2)A

�1
1 : (F.5)

Starting with R0 = O (or another suitable initialization), this formula is repeatedly applied
until convergence is reached. [Neuts 81] showed that this procedure converges and delivers a
correct solution.

The individual steps of this algorithm are not very costly: The matrix inversion can be done
beforehand, yet the sparsity of A1 is lost thereby. Each iteration only needs two matrix-
multiplications and one addition of fully populated matrices. The problem is the speed of conver-
gence: Especially for heavy traÆc situations with long queues1 the number of necessary iterations
grows very quickly and the algorithm gets unusable.

One property of the R matrix can be deduced from this algorithm by induction: If A0 has a
row-vector with all its components being zero, then the corresponding row-vector inR has zero
elements as well. Thus the OFF-state of the N -Burst process with no background Poisson traÆc
(�0 = 0) causes the �rst row of R to contain only zeros.

There are variants of the functional iteration method that speed up convergence slightly (see
[Meini 97]). However, they all su�er from the same problem of an exploding number of iterations
(� 1000) for scenarios with long queue lengths.

1In classical model long queues are due to high utilization �. For LRD arrival processes, long queues can happen
at low utilization as well, see Chapter 5. In particular for such LRD N -Burst arrival processes, this algorithm is
useless due to its ineÆciency.
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F.1.2 Quadratically Convergent Methods

Logarithmic Reduction [Latouche & Ramaswami 93] describe a more eÆcient algorithm
for a time-discrete model. Since the Cyclic Reduction algorithm below is equally powerful, the
detailed description of the Logarithmic Reduction is spared here. The interested reader be re-
ferred to [Latouche & Ramaswami 93]. Only the fundamental formulas and the outline of
the algorithm are mentioned here:

The continuous process for the SM/M/1-queue is transformed to a discrete process by using
the embedded Markov chain at epochs of level-transitions2. The algorithm then works with the
following matrices for the discrete process:

� Gij = IP freturn to level � � 1 in state (� � 1; j) j starting at (�; i)g.

� Rij = IE fnumber of visits to (� + 1; j) until return to level � j started in (�; i)g.

� Uij = IP freturn to level � in state (�; j) under taboo of level � � 1j starting at (�; i)g.

The matrix G can be calculated eÆciently from

G =

1X
k=0

 
k�1Y
i=0

B0
(i)

!
B2

(k); (F.6)

where

Bi
(0) = (�A1)

�1Ai; Bi
(k) = (I �A1

(k))�1Ai
(k); i = 0; 2;

with

A0
(k+1) =

�
B0

(k)
�2

; A1
(k+1) = B0

(k)B2
(k) +B2

(k)B0
(k); A2

(k+1) =
�
B2

(k)
�2

:

Though all the used matrices have the dimension of Ai, they are written non-caligraphic to
emphasize that they refer to the time-discrete model.

The R-matrix of the continuous SM/M/1-process is then derived by

R =A0(�U)�1 = �A0(A1 +A0G)�1:

G is approximated by truncating the in�nite sum in (F.6) at some index. The truncation con-
dition is that G is stochastic within some error-bound Æ0:

jjG"0 � "0jj < Æ0:

Leaving out optimizations, the algorithm has the following form in MATLAB syntax, see
[MathWorks 96]:

2in this context, level i means all the states with queue-length i.
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i=0;

B0=-inv(A1)*A0;

B2=-inv(A1)*A2;

I=speye(size(A0,1));

eps=ones(size(A0,1),1);

S=B2; P=B0;

delta=1;

while delta>1e-12,

i=i+1; % number of iterations (summands for S)

B0 = inv(I-B0*B2-B2)*B0^2;

B2 = inv(I-B0*B2-B2)*B2^2;

S=S+P*B2; % S is finite sum approximating G

P=P*B0;

delta = norm(eps'-S*eps'); % until S stochastic

end;

U=A1+A0*S;

R=-A0/U;

Cyclic Reduction An equally powerful algorithm is based on algebraic transformations of Eq.
(F.1). The algorithm for time-discrete processes and results about its behavior are given in
[Bini & Meini 96]. As in Section F.1.2, it is possible to use the discrete embedded process at
epochs of level-transitions. However, a variant of the algorithm for continuous processes such as
our SM/M/1-model is developed here:

The algorithm transforms the Eq. (F.1) for R to equations for

R(k) :=
�
R(k�1)

�2
=R2k ;

which have the form

A
(k)
0 +R(k)A

(k)
1 +

�
R(k)

�2
A

(k)
2 = 0: (F.7)

Equation (F.7) is solved for R(k):

R(k) =

�
�A(k)

0 �
�
R(k)

�2
A

(k)
2

��
A

(k)
1

��1
=
�
�A(k)

0 �R(k+1)A
(k)
2

��
A

(k)
1

��1
: (F.8)

(F.8) is then substituted in
�
R(k) � (F:7)

�
:

�
�A(k)

0

�
A

(k)
1

��1
A

(k)
0

�
+ R(k+1)

�
A

(k)
1 �A(k)

2

�
A

(k)
1

��1
A

(k)
0 �A(k)

0

�
A

(k)
1

��1
A

(k)
2

�

+(R(k+1))2
�
�A(k)

2

�
A

(k)
1

��1
A

(k)
2

�
= 0:
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Now, the coeÆcient matrices A
(k)
i of Eq. (F.7) can be read o�:

A
(k+1)
0 = �A(k)

0

�
A

(k)
1

��1
A

(k)
0 ;

A
(k+1)
1 =A

(k)
1 �A(k)

2

�
A

(k)
1

��1
A

(k)
0 �A(k)

0

�
A

(k)
1

��1
A

(k)
2 ;

A
(k+1)
2 = �A(k)

2

�
A

(k)
1

��1
A

(k)
2 :

A
(0)
i =Ai; i = 0; 1; 2:

In the stable case (� < 1), all eigenvalues of R are smaller than 1, thus Rk converges to O.

Then, R(k) =R2k converges very fast (quadratically) to O. At some k, it can be assumed that
within numerical accuracy:

R(k+1) � 0:

Consequently, (F.7) with R(k+1) = 0 provides an approximation for R(k):

R(k) � �A(k)
0

h
A

(k)
1

i�1
:

R =R(0) can then be obtained by stepwise backwards substitution using (F.8):

R(k) = �
h
A

(k)
0 +R(k+1)A

(k)
2

i �
A

(k)
1

��1
:

This backwards substitution (and thus the necessary storage of all the matrices
�
A

(j)
i

�
can be

spared with the following approach: Starting o� from a rewritten form of (F.1),

R = �A0 [A1 +RA2]
�1 =: �A0

�
^
A

(0)
1 +R(0)A

(0)
2

��1
;

repeatedly apply (F.8) to get:

R = �A0

h
Â1

(k) �R(k)A
(k)
2

i�1
;

where Â1
(k+1)

= Â1
(k) �A(k)

0 (A
(k)
1 )�1A

(k)
2 ; Â1

(0)
=A1:

The elements of A
(k)
0 , A

(k)
2 , and R(k) are all non-negative and the limits for k ! 1 are all

bounded. For A
(k)
0 and R(k) the limits are actually O which can be used as stopping criterion

for the iterations. Other possible criteria would be either the row-sums of R,

jjRA2"
0 �A0"

0jj < Æ;

or the convergence of R(k) to O,

jjR(k+1)jj < Æ:

Most eÆcient is the use of A
(k)
0 , since the other criteria require at least the computation of R(k)

in each iteration. When using A
(k)
0 ! O as stopping criterion, the algorithm has the following

form:
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A0k=A0; A1k=A1; A2k=A2;

A1d=A1;

k=0;

delta=1; dold=2;

while (delta>1e-20) & (abs(delta-dold)>1e-20),

dold=delta;

H0=A0k*inv(-A1k);

H2=A2k*inv(-A1k);

A1d=A1d+H0*A2k;

A1k=A1k+H2*A0k+H0*A2k;

A2k=H2*A2k;

A0k=H0*A0k;

k=k+1;

delta=max(max(A0k));

end;

R=-A0/(A1d-A0k/A1k*A2k);

The number of iterations is determined by the speed of the convergence of R(k) ! O. If the
eigenvalues ofR are close to 1, which is the case for LRD N -Burst traÆc in the blow-up regions,
see 5.1, the number of iterations increases but due to the quadratic convergence of R(k) =R2k

not nearly as much as for the simple functional iteration of Sect. F.1.1.

F.1.3 Spectral Expansion

Spectral Expansion tries to overcome the problem that the number of iterations depends on the
resulting queue-lengths (i.e. the closeness of the eigenvalues of R to 1).

The method calculates the eigenvalues, �i, and the left eigenvectors, ui, of the rate-matrix R:

uiR = �iui:

Let U be the matrix with rows ui, and let W be the matrix whose columns w0
i are the right

eigenvalues of R such that
W = U�1:

Furthermore, let � = diag (�1; :::; �S). Then, the spectral decomposition of R is:

R =
SX
i=1

�iw
0
iui =W�U :

The left eigenvectors of R and its eigenvalues can be computed directly from (F.1) by the
following: Multiplying (F.1) by ui and substituting uiR = �iui yields a general, quadratic
eigenvalue (EV) problem:

uiA0 + �iuiA1 + �2iuiA2 = 0:

The quadratic EV-equation can be reduced to a standard EV-problem which has twice the
dimension: First introduce the vector ~ui and rewrite the quadratic EV-equation:

~ui := �iui =) uiA0A
�1
2 + ~uiA1A

�1
2 + �i ~ui = 0: (F.9)
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Then the standard EV-problem combines both equalities from (F.9):

[ui; ~ui]

�
O �A0A

�1
2

I �A1A
�1
2

�
= �i [ui; ~ui] (F.10)

Equation (F.10) is of twice the dimension of S = dim(R). Thus, (2S) possible solutions for
�i exist. All combinations of S eigenvalues out of those form a solution of the quadratic Eq.
(F.1). If the SM/M/1-queue is stable (� < 1), half of the eigenvalues from (F.10) are smaller
than 1, one eigenvalue is exactly one, and the rest is greater than one (in absolute value since
the eigenvalues can be complex). The S eigenvalues with smallest absolute value belong to the
minimal solutionR. Actually, the other half of the eigenvalues is not calculated in vain, but can
be used to get the minimal solution S of the equation

S2A0 + SA1 +A2 = O: (F.11)

R�1 is a possible solution of (F.11), however it is not minimal. Yet, the minimal solution
for S can be derived from the larger half of the eigenvalues, which together with the corre-
sponding eigenvectors form the spectral decomposition of S�1. S is important for the compu-
tation of the queue-length distribution for SM/M/1/B loss models in Appendix D.6, see also
[Krieger et al. 98].

The standard EV-problem (F.10) has a sparse coeÆcient matrix for the SM/M/1-queue, since
all the participating matrices are sparse and A2 is diagonal (thus its inverse is also sparse).
There are algorithms (see [Vorst & Golub 97]) that eÆciently calculate some eigenvalues
and eigenvectors of large sparse matrices. However, the complete decomposition is normally
done by standard (non-sparse) methods, such as the QR-algorithm, which is used herein, see
[MathWorks 96].

The equivalent formula to (F.2) for the row-sum of R in its spectral decomposition follows:

UR = �U =) �UA2"
0 = URA2"

0 = UA0"
0:

One advantage of the spectral expansion method is that it delivers the spectral decomposition
of R right away. Then, the calculation of Rk = W�kU and of (I �R)�1 can be done very
eÆciently. The formulas for the performance parameters have the following form:

Queue� length Probabilities : �̂(k) = �W(I ��)�kU"0: (F.12)

Mean Queue� length : IE fQg = �W(I ��)�1�U"0: (F.13)

Second Moment : IE
�
Q2
	
= �W(I +�)(I ��)�2�U"0: (F.14)

Bu�er Overow Probability : IP
n
Q(a) � B

o
= IE fXg�W�BUL"0: (F.15)

The right eigenvectors of R, which are the columns of W , always appear as �W in these
formulas. Thus,W = U�1 does not have to be calculated explicitly, but only yU = � has to be
solved for y = �W .

Also, L"0 in the bu�er-overow formula can be replaced by �R"0 (F.2) which yields:

IP
n
Q(a) � B

o
=

1

�
y�B+1U"0:

For large bu�ers, the eigenvalues of R that are close to zero do not matter in RB . Thus only
the ones that are close to 1 would be suÆcient and those can be calculated by special algorithms
that take advantage of the sparsity of the coeÆcient matrix in (F.10). However, to be able to
calculate the vector y with yU = �, the complete decomposition is necessary (which is done by
non-sparse algorithms).
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F.1.4 Execution Times and Numerical Error

Finally, the di�erent methods of solving Eq. (F.1) for the rate-matrix R of the SM/M/1-queue
are compared in terms of their execution time and their numerical accuracy. The execution time
is measured in seconds of CPU-time on a SUN Ultra 1, 167 MHz, with 128 MB of main memory
running Solaris 2.5.
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Figure F.1: Comparison of the Execution Time of Four Di�erent Methods for Calculating the
R: Simple functional iteration (stars), Logarithmic Reduction (crosses), Cyclic Reduction (diamonds),
and Spectral Expansion (circles). The graph shows the execution times for an [M/G/1//4] model with
� = 0:9 and TPT-distributed burst-lengths with T = 1; :::; 52 which results in state spaces of dimension
S = 5; :::; 209. For the high utilization � = 0:9, Spectral Expansion outperforms all the other methods.
Simple functional iteration requires such a high number of iterations that it is practically useless.

Figure F.1 compares the execution times of all four methods for the 1-Burst [M/G/1//4] arrival
process with an increasing number of states for the TPT-distribution of the burst-lengths. While
the simple functional iteration becomes useless very quickly due to the large number of iterations,
Spectral Expansion outperforms all other methods.

However, the number of iterations of the iterative algorithms depends on the resulting queue-
length distribution: The longer the queues, the more iterations are necessary. Thus, for small
utilization �, the eÆcient iterative approaches are faster than Spectral Expansion. But as Figure
F.2 shows, the higher � gets, the longer these iterative algorithms take, while spectral expansion
has almost constant execution time. The particularly strong increase in execution time at about
� = 0:7 in Figure F.2 is a consequence of the blow-up point that is located at exactly that value
of �, see Sect. 5.1.

On the other hand, it also needs to be investigated, how accurate the numerical results of the
individual algorithms are. There are two possible approaches to de�ne the numerical error:

Æ = jjA0 +RA1 +R
2A2jj;

or Æ� = jjRA2"
0 �A0"

0jj
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Figure F.2: Execution Times for N-Burst/M/1 Queues with Varying Utilization: The number
of iterations in Logarithmic Reduction (crosses) and Cyclic Reduction (diamonds) depends on the result-
ing queue-length distribution. Spectral Expansion (circles) on the other hand requires almost constant
computing time, i.e. it is slower than the iterative algorithms for smaller values of �, but much more
eÆcient for higher utilization. The numerical error Æ (see below) did not show any trends over that range
of �, it was in the order of 10�16 for spectral expansion and 10�18 for the iterative algorithms.

The de�nition of Æ follows straight from (F.1). Æ� uses property (F.2) of R.

Figure F.3 shows Æ for di�erent state-space sizes of the [M/G/1//4] model with � = 0:5. While
the numerical error in the spectral decomposition method is determined by the eigenvalue and
eigenvector analysis, the iterative methods can decrease the error in additional iterations. In
Figure F.3 the numerical error, Æ, seems to be a huge disadvantage of the spectral decomposition
method: It is larger by a factor of about 1011 for state spaces with more than 100 states of the
[M/G/1//4] model. Æ� shows a similar behavior.

The numerical error depends heavily on the model under consideration: E.g. for the [M/G/2//2]
model and 200 < S < 800, Æ for the spectral decomposition is always below 10�15, still about a
factor of 20 worse than the iterative approaches, but not nearly as bad in for the [M/G/1//4]
case.

Furthermore, even though Æ = 8:3 � 10�9 when using Spectral Expansion for the [M/G/1//4]
arrival process with T = 40 states, the relative numerical errors for IE fQg and IE

�
Q2
	
are of

the order of 6 � 10�15, which is in the order of the numerical accuracy of the used oating point
numbers.

For bu�er-overow probabilities with a bu�er of B = 103 cells, the relative numerical error
increases to about 2 � 10�12, but it is still acceptable. Thus the numerical error Æ can be rather
large without leading to numerically unacceptable results for the performance parameters of the
SM/M/1 queue.
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Figure F.3: Numerical error Æ = jjA0 +RA1 +R
2
A2jj for the Three Algorithms: While the

iterative methods hold the error below 10�18, it grows up to 10�8 for the spectral expansion (circles) in
the considered case of the [M/G/1//4] model.

Conclusion: Spectral expansion needs almost constant execution times for a �xed state-space
size, but the numerical errors Æ can get rather high. The iterative approaches are quicker for
some parameter sets of the model, but their execution time strongly depends on the model-
parameters, especially for N -Burst arrival processes with LRD properties as in Figure F.2. But
their advantage is the better control of the numerical error.

Summary of Execution Times

The comparison of execution times is now extended to the whole N -Burst package (see
[Schwefel 00a]), which includes the matrix-setup and the arrival process evaluation. The
algorithms for the latter two tasks are discussed in Appendix E.2.

Since the SM/M/1-evaluation with the spectral expansion does not depend as much on the
parameters of the arrival process as the other iterative algorithms, that method is used for
queueing analysis in this part.

As in Section F.1.4, the execution time is measured in seconds of CPU-time on a SUN Ultra 1,
167 MHz.

Figure F.4 shows the execution times of all the program modules of the package for the
[M/G/3//3] model, reduced state space, with TPT-distributions of varying T for the burst-
lengths. The queueing analysis and the calculation of the moments with exact algorithms do
not take advantage of the sparsity of the participating matrices and therefore are much worse in
terms of execution time (and also memory usage). All the purely sparse algorithms can handle
huge state-spaces of up to 30 000 states very eÆciently with Texec < 20 sec (Figure F.4, bottom).
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Figure F.4: Execution Times of Various Program-Modules for Large State-Spaces: 3-Burst
models with up to 30 000 states are considered in the lower graph. The execution times still remain
sustainable due to the sparsity of the involved matrices. The graphs show the execution times for the
setup of the Q-matrix of the [M/G/3//3] model, the calculation of �, the calculation of the �rst three
moments and r(1) (using GMRES versus exact solver), and �nally SM/M/1-Queueing using spectral
expansion.
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F.2 Mixed Matrix-Geometric Solution of TCP Queueing Model

The in�nite generator matrix of the TCPB1 queueing model in Sect. 9.2.2 has the following
Quasi-Birth-Death Structure:

Q̂ =

2666666664

A1 A0

A2 A1 A0

. . .
. . .

. . .

A2 A1 A0

C2 C1 C0

. . .
. . .

. . .

3777777775
;

where A1 = QN � LN , A0 = LN , A1 = QN � LN � �I refer to the unthrottled N -Burst
base model, see Appendix E.1.2. From level B1 on those matrices are replaced by the shared-
bandwidth model SHARED, see Appendix E.1.3: C0 = ~LN , C1 = ~QN � ~LN � �I. The service
process is always exponential with rate �: A2 = C2 = �I .

It can be shown (see [Krieger & Naumov 99] for the necessary proofs in a comparable
scenario) that the block-partitioned steady-state probability distribution of such a process,
� = [�0;�1; :::] with �Q̂ = 0, can be expressed in the following mixed matrix-geometric form

�i = aRi + bSB1�1�i; i = 0; :::; B1 � 1

�k = �B1 T
k�B1 ; k = B1; B1 + 1; :::

where the matrix factors R;S;T are the minimal solutions of the following quadratic matrix
equations:

A0 +RA1 +R2A2 = 0; A2 + SA1 + S2A0 = 0;

C0 +TC1 +T2C2 = 0:

The vectors a, b, and �B1 follow from the boundary equations at level 0, B1 � 1, B1 and from
normalization �"0 = 1 as the solution of the following system of linear equations:

[a; b]

�
La Ra d1
Lb Rb d2

�
= [0; 0; 1] ;

where

La = A1 +RA2;

Ra = RB1�2
�
RA0 � (A0 +RA1)C

�1
2 �

�(C1 +TC2)) ;

Lb = SB1�2
�
SA1 +A2

�
;

Rb = A0 � (SA0 +A1) C
�1
2 (C1 +TC2) ;

d1 =

B1�1X
k=0

Rk"0 �

�RB1�2 (A0 +RA1)C
�1
2

 
1X
k=0

Tk"0

!
;

d2 =

B1�1X
k=0

Sk"0 � (SA0 +A1) C
�1
2

 
1X
k=0

Tk"0

!
:
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Finally,
�B1 = �aRB1�2 (A0 +RA1) + b (SA0 +A1) C

�1
2 :

The equations for B1 = 0 (SHARED model), B1 = 1, and B1 = 1 (N -Burst model) are
somewhat simpler, but they have to be treated separately.

F.3 Computation of mean First Passage Times

An algorithms for the computation of mFPTs of M/ME/1 queues is derived in [Lipsky 92], pp.
174-186. That algorithm can be extended to MMPP/M/1 queues where the arrival process is
an MMPP, described by < B;L >. The mFPT to bu�er level n can be expressed as the sum of
the mean times, it takes to reach level `+ 1 from level `, for ` = 0; :::; n � 1:

mFPT(n) =
n�1X
`=0

pu(`)�
0

u(`) :

Thereby, the vector
pu(`) = }0 �Hu(0) � ::: �Hu(`� 1) ;

contains the state probabilities of the arrival process when reaching level ` for the �rst time. }0

is the initial state-probability vector.

The vector, � 0u(`), has as its components the mean time that is necessary to reach level `+1 for the
�rst time, given that the process started at level ` with the arrival process in the corresponding
state. � 0u(`) can be computed by the following recursive formulas:

� 0u(0) = B
�1"0; � 0u(n) = [B + �I � �Hu(n� 1)]�1

�
"0 + �� 0u(n� 1)

�
:

Finally, a recursive formula to compute the matrix Hu(`) can be derived. Its elements (Hu)ij
reect the probability that the arrival process is in state j when reaching level `+1 for the �rst
time, given that the queue started at level ` with the arrival process in state i:

Hu(`) = [B + �I � �Hu(`� 1)]�1L; Hu(0) = B
�1L :

The described algorithm requires n iterations to compute mFPT(n). For larger n, a more eÆcient
algorithm is presented in [Latouche & Ramaswami 99], which only require of the order of
logn iterations.
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Appendix G

Derivation of the Asymptotic Behavior
of the Conditional Overow Ratio

The conditional Cell-Loss Ratio (CLRc(t0; B)) in the �nite-bu�er loss model and its equivalent
in the in�nite bu�er back-up model, the conditional Bu�er-Overow Ratio (BORc(t0; B)), are
de�ned and discussed in Sect. 6.4. In this chapter, we derive the asymptotic behavior for large
bu�ers for both transient performance measures.

G.1 Conditional Cell Loss Ratio for In�nite Power-Tails

Overows for N -Burst/M/1 queueing models for large B and � not too close to 1 ( 1� � is the
fraction of the time that the server is idle ) are caused by long over-saturation periods, during
which the mean arrival rate is temporarily raised beyond the service-rate. According to Sect.
5.2, such over-saturation periods for the N -Burst model in blow-up region i0 have a duration X
that is also Power-Tailed, but with exponent � = i0(�� 1) + 1 (see Eq. (5.4)).

R(x) � c=x� ; f(x) � �c=x�+1 ; (G.1)

when the individual burst-lengths are Power-Tail distributed with exponent �.

During those over-saturation periods, the average cell-arrival rate is

�i0 = �+ i0(�p � �);

i.e. cells accumulate in the queue with average rate (�i0 � �) > 0. Assuming that the queue is
empty at the start of the over-saturation period, the length of the over-saturation period has to
be at least

X >
B

�i0 � �
=: x0 (G.2)

to be able to �ll up the bu�er to level B with the average rate (�i0 � �) > 0. In the following,
we look at over-saturation periods, X 0, which are long enough to cause cell losses, i.e. X 0 is the
conditional random variable X 0 = (X jX > x0). The density function and reliability function of
X 0 are obtained by normalization:

fX0(x) =
f(x)

R(x0)
; RX0(x) =

R(x)

R(x0)
; for x > x0:

Hence, assuming a PT distribution (G.1) with exponent � for X, the expected value of the
over-saturation periods X 0 that are conditioned on having at least length x0 is

IE
�
X 0 � x0

	
=

Z 1

x0

(x� x0) fX0(x) dx � 1

� � 1
x0; for large x0: (G.3)
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Note that the expected value of X 0 grows linearly with the threshold x0. That behavior is a
property that is peculiar for Power-Tail distributions, see Sect. 3.3.

In the �nite-bu�er N -Burst/M/1/[B] model, a long over-saturation period X 0 � x0 causes on
average N(cl) cell losses with

N(cl) =
�
X 0 � x0

�
(�i0 � �) :

When looking at the asymptotic behavior for large B, the probability that such long over-
saturation periods X 0 occur during time t0 becomes very small. Thus, if overows occur within
time t0, then { with high probability { they will be caused by only a single long over-saturation
period. Hence, asymptotically for large B,

CLRc(t0; B) �
IE
�
N(cl)

	
� � t0 =

IE fX 0 � x0g (�i0 � �)

� � t0 � (G.4)

Together with Eq. (G.3) and with the de�nition (G.2) of x0, we obtain for the asymptotic
behavior of CLRc(t0; B) for large bu�ers

CLRc(B; t0) � 1

� � 1
� B

� t0
=

1

�� 1
� 1
i0
� B

� t0
� (G.5)

Note that the derivation of the asymptotic behavior in (G.5) does not take into account that
the over-saturation period X 0 could last longer than the observation interval t0. In particular for
very large bu�ers B such a truncation of the over-saturation period by the end of the observation
interval is likely to happen.

For a mathematically rigorous derivation of the asymptotic behavior, the limit B ! 1 would
not be suÆcient, but a simultaneous limit t0 !1 with some restrictions on the speed of growth
of t0 in relation to the speed of growth of B has to be considered. However, for �nite t0 and
large B (G.5) provides a good approximation for the CLRc as it is shown in Sect. 6.4.

G.2 Conditional Bu�er-Overow Ratio for In�nite Power-Tails

The situation for the in�nite-bu�er N -Burst/M/1 model becomes somewhat more complicated.
Up to Equation (G.3) the argumentation is identical: bu�er-overows are caused by long over-
saturation periods X 0 > x0. However, in the in�nite-bu�er model, the queue-length can grow to
level Q1 > B during the over-saturation period, where

Q1 = X 0 (�i0 � �) :

As soon as bu�er-occupancy Bs is reached, all arriving cells cause overow events. Thus, the
number of overow events during the over-saturation period is on average

N(ov1) = (X 0 � x0) �i0 :

The critical di�erence to the �nite-bu�er model is that even after the over-saturation period X 0

ends, additional bu�er-overow events occur until the bu�er has drained below the occupancy
of B cells. In worst case, the over-saturation period with i0 long-term active sources ends and all
i0� 1 remaining sources stay active during the whole drain period, i.e. the queue-length reduces
with average rate (� � �i0�1) and the duration of the drain period is

T(dr) =
Q1 �B

� � �i0�1
�
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The probability of that worst-case scenario that all i0�1 sources remain active can be computed
from the duration of the time-period during which the same (i0 � 1) sources are active that
contribute their peak-rate during T(dr). That time-period, called Z, started an unknown time
Z0 >= 0 before the over-saturation period X 0. Thus, the probability that all those i0�1 sources
remain active during the drain-period of duration T(dr) is

IP
�
Z > Z0 +X 0 + T(dr)jZ > Z0 +X 0

	
=

(X 0 + Z0)
�[i0�1]

(Z0 +X 0 + T(dr))�[i0�1]
=

0@ 1

1 +
T(dr)
X0+Z0

1A�[i0�1]

(G.6)

�
 

1

1 +
T(dr)
X0

!�[i0�1]

�(G.7)

Equation (G.6) follows from the fact that time-periods with (i0 � 1) long-term active sources
show a Power-Tailed duration with exponent �[i0 � 1] = (i0 � 1) � (� � 1) + 1, see Sect. 3.3.
Frequently, the probability (G.6) of the worst case scenario is rather high (> 50%), so worst-case
can be considered to be a common scenario here.

If the assumption that the other i0 � 1 sources remain active during T(dr) does not hold, the
queue will drain more quickly, at best with rate (� � �), i.e. all of the i0 � 1 long-term active
sources �nish very quickly:

T 0(dr) =
Q1 �B

� � �
�

During the drain period of duration T(dr) (respectively T
0
(dr)), on average another N(dr) (N

0
(dr))

bu�er-overow events occur:

N(dr) = T(dr) � �i0�1 = (Q1 �B)
�i0�1

� � �i0�1
;

N 0
(dr) = T 0(dr)� = (Q1 �B) � �

� � �
= (Q1 �B) � �

1� �
�

Hence, during a single large over-saturation period X 0, the expected number of overow events
is in worst case

IE
�
N(ov1) +N(dr)

	
= IE

�
X 0 � x0

	�
�i0 + (�i0 � �)

�i0�1
� � �i0�1

�
=

= IE
�
X 0 � x0

	 �

�

1

1� i�
: (G.8)

The last equation follows from (5.1) and (5.3) by

�i0+k � � = �
b

1� b
(i� + k) :

In the case of faster draining with rate (� � �), we get instead of Eq. (G.8):

IE
n
N(ov1) +N 0

(dr)

o
= IE

�
X 0 � x0

	�
�i0 + (�i0 � �)

�

1� �

�
= IE

�
X 0 � x0

	 �i0 � �

1� �
� (G.9)
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For a large bu�er-size B, it is very likely that overows during the observation period t0 are
caused by a single over-saturation period. Therefore, asymptotically for large B:

IE
n
N(ov1) +N 0

(dr)

o
� � t0 � BORc(t0; B) �

IE
�
N(ov1) +N(dr)

	
� � t0 � (G.10)

Putting the formulas (G.8), (G.9), (G.3), and (G.2) together and using the burstiness b = 1��=�p
of the sources and Eqs. (5.1) and (5.4), we get:

The conditional overow ratio, BORc(B) in an N -Burst/M/1 model grows asymptotically lin-
early with increasing bu�er-size B,

B

�� 1
� 1
i�
� 1

� t0
� 1

1� �
� BORc(t0; B) � B

i0 (�� 1)
� 1

� t0
�

N 1�b
b

1
�

i� (1� i�)
; (G.11)

when the model operates in blow-up region i0 and the burst-length distribution shows in�nite
Power-Tails.

The two asymptotic bounds in (G.11) are identical for i0 = 1:

BORc(t0; B) � B

�� 1
� 1
i�
� 1

� t0
� 1

1� �
for i0 = 1 (G.12)

Note that for a mathematically rigorous derivation of the asymptotic behavior again a simulta-
neous limit B; t0 !1 has to be considered, see the end of the previous section.

The following list summarizes the assumptions or approximations that were made in the deriva-
tion of Eq. (G.11):

1. The overow events are caused by a single long over-saturation period with i0 long-term
active sources. This is very likely if (t0; B)� 1.

2. The queue is empty at the start of the long over-saturation period, which is a reasonable
assumption if � is not too close to 1.

3. t0 is large enough such that it contains the whole over-saturation period X 0 and the drain
period T(dr).

4. Additional overows that occur after draining to level B are neglected.

5. The distribution of the duration of the over-saturation periods shows PT behavior at least
from x0 on. Since a large bu�er-size, B, causes the necessary time, x0, for queue-growth
to level B to grow, the assumption holds for larger bu�er sizes.

6. The use of average rates (�i0��) and (���i0�1) (respectively (���)) for the queue-growth
and the subsequent draining neglects the variations due to the exponential distributions
in the intra-burst times and service-times, as well as variations due to shorter bursts. If
the time-periods X 0 and T(dr) are large, this is justi�ed, see also Sect. 6.5.

7. Over-saturation periods caused by periods with i0 + 1 or more long-term active sources
are neglected. Since the duration of such over-saturation periods is Power-tailed as well,
but with a larger exponent (quicker decay), they are less likely, the larger B is.

If for a �xed t0, B is increased too far, such that BOR
(PT )
c (t0; B) � 1, then Assumption (3) is

obviously violated.
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G.3 Truncated Tails

The main reason for the asymptotically linear increase of CLRc(B) and BORc(B) in Eqs. (G.5)
and (G.11) is a particular property of Power-Tail distributions: the expected residual time after
some known time x0 grows linearly with the threshold x0, see Sect. 3.3. For truncated tails as
described in Sect. 3.4, a di�erent behavior is expected.

Truncated tails of the burst-length distributions with Power-Tail Range xT cause a truncation
of the PT distribution of the over-saturation periods with i0 long-term active sources with PT
Range xT =i0, see Eq. (5.12). Therefore, ifB is large enough, such that x0 is larger than the Power-
Tail Range xT =i0, the duration of the long over-saturation periods that cause overows/losses
is not described by the Power-Tailed region of X, but instead by the exponential drop-o� with
mean xT =i0. Due to the memoryless property of the exponential distribution, the mean duration
of the long over-saturation periods X 0 is then given by

IE
�
X 0 � x0

	
=
xT
i0
: (G.13)

In the derivation of the asymptotic behavior of CLRc(t0; B), combining (G.13) and (G.4) provides
the asymptotic behavior for truncated tails:

CLR(TPT )
c (t0; B) � xT

i0
� �i0 � �

� � t0 =
b i�
i0

� MBS

� t0
; (G.14)

where MBS := �p � xT is the PT Range of the distribution of the number of cells in a single
burst, see Sect. 3.5.

In the in�nite-bu�er model, the combination of (G.13), (G.10), (G.8), and (G.9) lead to the
asymptotic bounds

b

1� �
� MBS

� t0
� BOR(TPT )

c (t0; B) � N

i0
� 1� b

� (1� i�)
� MBS

� t0
� (G.15)
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Appendix H

Martingale Computation for Transient
Overow Probabilities

This chapter summarizes the equations that allow to compute the expected value IE� and the
Laplace transform IEe�s� of the density of � . The detailed background and the derivations of
the theorems are given in [Asmussen et al. 00a]. First, the M/M/1 queue is considered as a
basic model before the algorithm is generalized to the Markov modulated setting.

H.1 The M/M/1 Queue

We assume here that Q(t) is the queue length (number in system) at time t in the M/M/1 queue
with arrival intensity � and service intensity � 6= �. The First Passage Time is de�ned as �n :=
infft > 0 : Q(t) = ng. Let fN�(t)g, fN�(t)g be independent Poisson processes with intensities
�, resp. �, and X(t) = N�(t)�N�(t). Then fX(t)g is a L�evy process with L�evy exponent

�(�) = log IE
n
e�X(1)

o
= �(e� � 1) + �(e�� � 1)

(see e.g. [Bertoin 90]). Let � = inf ft > 0 : Q(t) = 0g and let

L(t) =

�
0 for t < �

� inf��s�t(X(s)�X(�)) for t � �

denote the local time. Then the queue length process can be generated as

Q(t) = Q(0) +X(t) + L(t):

Note that L(t) is purely discontinuous, in fact equal to the number of times fN�(t)g has an event
(a 'dummy service') while the queue is empty. In other words, L(t) is the number of elements
of the random set

M(t) = fs � t : Q(s) = 0; N�(s) 6= N�(s�)g :

Let  be the non{zero root of �() = 0 (it is easily seen that  = � log �). Furthermore, let m
be the drift of the process fX(t)g:

m := �0(0) = �� � :

Theorem H.1.1 It holds that

IE fL(�)g =
en � IE

�
eQ(0)

	
1� e�

=
��n � IE

�
��Q(0)

	
1� �

; (H.1)

IE f�g =
IE fX(�)g

m
=

n� IE fQ(0)g � IE fL(�)g
m

(H.2)
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Further, for each �, one can compute x = x(�) = IE
�
e��
	
as the �rst component of the solution

(x; y) = (x(�); y(�)) of the linear equations

e�1nx� (1� e��1)y = IE
n
e�1Q(0)

o
;

e�2nx� (1� e��2)y = IE
n
e�2Q(0)

o
;

where �1; �2 are the roots of �(�) = ��:

�1;2 = log
�+ �� � �

p
(�+ �� �)2 � 4��

2�
�

Higher moments of the distribution of � can also be derived from the equations in Theorem H.1.1.
In particular, the second moment IE

�
�2
	
turns out to be useful for the computation of some

approximations for IP f� � Tg, see Section 3 of [Asmussen et al. 00a]. The detailed formulas
for the computation of the second moment are given in Appendix B of [Asmussen et al. 00a].

H.2 The MMPP/M/1 Queue

Let fJ(t)gt�0 be the background Markov process, say with p states, and Q = (qij)i;j=1;::: ;p its
intensity matrix, � = (�i)i=1;::: ;p the stationary row vector. Assume that the arrival rate is �i
when J(t) = i and the service rate �i. We use notation like ��, �� for the diagonal matrices
with the �i; �i on the diagonal.

We let fQ(t)gt�0 denote the queue length process and fX(t)gt�0 the unreected version, that
is, the di�erence between two MMPP's determined by the �i, resp. �i and the same driving
Markov process fJ(t)gt�0. The mean drift m = limt!1X(t)=t is

m =

pX
i=1

�i(�i � �i) = �(�� ���)1

where 1 = (1 : : : 1)T is the column vector with 1 at all entries.

Let the local time L(t) and � = inf ft > 0 : Q(t) = 0g be de�ned in terms of fQ(t)g, fX(t)g
precisely as in the M/M/1 case. Again, L(t) is the number of elements of the random set

M(t) = fs � t : Q(s) = 0; N�(s) 6= N�(s�)g :

Write Mi(t) = fs 2M : J(s) = ig and let Li(t) be the number of elements of Mi(t). Then
fLi(t)g is the local time in state i, and L(t) = L1(t) + � � � + Lp(t). By L(t) we denote the row
vector with ith component Li(t). We have Q(t) = X(t) + L(t).

De�ne

F [�] = Q+��(e
� � 1) +��(e

�� � 1):

The matrix F [�] is the matrix c.g.f. of f(J(t);X(t))g in the sense that the matrix with ijth
element

IE
n
e�X(t); J(t) = j

o
i

is given by etF [�]. For a real �, we denote by �(�) the eigenvalue with maximal real part of F [�]
and by h(�) the corresponding right column eigenvector.
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We can write

det(F [�]) =

pX
j=�p

fje
j�

and so there exist [up to] 2p roots 1; : : : ; 2p. Strictly speaking, the �j are only determined up
to a multiple of 2�i but the precise choice of this multiple is immaterial for the following. The
corresponding right column eigenvector are denoted by h(1); : : : ;h(2p) (do not confuse with h(�)

de�ned above!).

In the following, we use the normalization �h(�) = 1 and de�ne

k :=
d

d�
h(�)

����
�=0

:

Proposition H.2.1 In the MMPP/M/1 model, k = (Q� 1�)�1(mI +�� ���)1:

Theorem H.2.2 De�ne qi = IP fJ(�) = ig, `i = IE fLi(�)g. Then q1; : : : ; qp, `1; : : : ; `p are
determined as the solution of the linear equations

ejn
pX
i=1

h
(j)
i qi � (1� e�j )

pX
i=1

h
(j)
i `i = IE

n
ejQ(0)h

(j)
J(0)

o
; j = 1; : : : ; 2p: (H.3)

Further

IE f�g =
IE fX(�)gm

=
n� IE fQ(0) � `� cg

m
(H.4)

where ` = IE fL(�)g =Pp
1 `i and

c = IE
�
kJ(0)

	 � IE
�
kJ(�)

	
=

pX
i=1

ki( IP fJ(0) = ig � qi:

Remark: If the MMPP contains one or more states j 2 J0 with �j = 0 (so-called OFF states),
then the background process cannot possibly be in those states at time � , so from the above
de�nition of qi it follows that qj = 0 for j 2 J0.

Theorem H.2.3 For each �, de�ne 1(�); : : : ; 2p(�) as the roots of 0 = det(F []+�I) and let

h(j;�) be a non{zero column vector satisfying (F [j(�)] + �I)h(j;�) = 0. Then one can compute
x = x(�) = IE

�
e��
	
as x = x1 + � � � + xp by solving the 2p linear equations

pX
i=1

ej(�)nh
(j;�)
i xi � (1� e�j(�))

pX
i=1

h
(j;�)
i yi = IE

n
ej (�)Q(0)h

(j;�)
J(0)

o
for x1; : : : ; xp, y1; : : : ; yp.

Remark: For the OFF states j 2 J0 with �j = 0, the corresponding xj are automatically
xj = 0.
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H.3 Approximations

The algorithms of the last two sections allow the exact numerical computation of the probabili-
ties IP f�n � Tg. However, approximation formulas can be very convenient due to their largely
reduced complexity. Several approximations are listed here that follow from the asymptotic
theory as discussed in [Asmussen et al. 00a].

In the stable case � < 1, [Asmussen et al. 00a] provides four di�erent approximations:

� (EXP): The approximately exponential form of the density of f� suggest the approxima-
tion

IP f �n � t0 g � 1� exp

�
t0

IE f�ng
�
:

� (CYC): Another approximation follows from the analysis of so-called busy-cycles with
duration C:

IP f�n � t0g � fnt0
IE fCg � (H.5)

Thereby, C is the random variable that expresses the duration of a busy cycle, and fn =
IP f�n � Cg is the probability that bu�er-level n is reached in a busy cycle.

In the setting of the M/M/1 queue, we have:

fn = IP f�n � Cg = 1� �

1� �n
�n�1 and IE fCg = 1

�
+

1

�� �
:

� (GUMB): A limit theorem for the maximum queue-length until time T ~m leads to a so-
called Gumbel distribution, which can be used in the following way:

T ~m = e ~m
IE fCg
K

=) IP f � ~m+n > T ~m g ! e�e
�n

; (H.6)

where K is the tail-constant in the exponential decay fn � K exp(�n). Since K =
(1� �)=� in the M/M/1 setting, the limit theorem there simpli�es to

T ~m =
1

�(1� �)2
�� ~m =) IP f � ~m+n > T ~m g ! e��

n

:

� (LD): A large deviation limit can be derived which has the following form for � < 1

n

Tn
! m� > �0() =) 1

n
log IP f �n � Tn g ! �(�m�)

m�
� �m� ; (H.7)

with �0(�m�) = m�. In the stable M/M/1 setting, the conditions simplify:

m� > �� �; �m� = log
m� +

p
m�2 + 4��

2�
;

and �(�m�) = �
�
e�m� � 1

�
+ �

�
e��m� � 1

�
�

The use of the limits (EXP) and (CYC) for an approximation of IP f�n � Tg for given �, �, n
and T is straightforward. The (GUMB) limit can be used in the following way:

~m =
1


log

TK

IE fCg ; IP f�n � Tg � 1� e�e
�(n� ~m)

:

Similarly, the (LD) approximation is derived from (H.7)

IP f�n � Tg �
�
exp

�
�(�m�)

m�
� �m�

��n
; with m� =

n

T
�
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H.4 Solving the Eigenvalue Problem

The computation of the transform of the distribution of � in Theorem H.2.3 requires to solve a
generalized eigenvalue problem for i(�) and h

(i;�), i = 1; :::; 2p:

(F [j(�)] + �I) h(j;�) = 0: (H.8)

The same eigenvalue problem with � = 0 has to be solved for the computation of IE f�g in
Theorem H.2.2.

Using the de�nition of F [�] and substituting �i := ei(�) � 1; we get:�
Q+ �I +�� �i ���

�i
�i + 1

�
h(i;�) = 0:

Introducing a new vector variable,

ehi :=
1

�i + 1
h(i;�);

results in the new eigenvalue problem of dimension 2p:�
Q+ �I 0

I �I
�
�
"
h(i;�)ehi

#
= �i �

� ��� ��

0 I

�
�
"
h(i;�)ehi

#
� (H.9)

If all �i > 0, then (H.9) can easily be transformed to a standard Eigenvalue (EV) problem which
can be solved by standard algorithms (QR or QZ). Even though the QZ algorithm also works
for the generalized EV problem (H.9) if the matrix on the right-hand side is singular (at least
one OFF state, jJ0j � 1, where �j = 0 for all j 2 J0), it is advisable to reduce the EV problem
to dimension 2p � jJ0j: In order to achieve this, (H.9) has to be multiplied from the left by a
transformation matrix to erase all elements except for the diagonal element in column j of the
matrix on the left-hand side for all j 2 J0. Thereafter, those columns and rows can be deleted
and a standard eigenvalue problem of dimension 2p � jJ0j results. The remaining components

h
(i;�)
j for j 2 J0 are still necessary, but they can easily be determined from (H.8) since all the
i(�) = log(�i + 1), i = 1; :::; 2p � jJ0j are now known.

The case � = 0, which is needed in Theorem H.2.2, does not require any special treatment.

H.5 Laplace Transform Inversion

The Laplace Transform of a function f(t),

f̂(s) =

Z 1

0
e�st f(t) dt;

can be numerically inverted using the EULER algorithm, see [Abate & Whitt 92]:

f(t) =
2eat

�

Z 1

0
Re
�
f̂(a+ iu)

�
cos ut du ;

where a > 0 can be chosen freely, but its choice inuences the numerical properties of the
algorithm. Numerical integration via the trapezoidal rule (with h = �=2 t) yields:

fh(t) =
eA=2

t

"
1

2
Re
�
f̂(A=2t)

�
+

1X
k=1

(�1)kRe
�
f̂

�
A=2t+

k�

t
i

��#
; A := 2 � t � a:
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The evaluation of the in�nite sum should not be done by simple truncation, but the numerical
accuracy is greatly improved by more sophisticated summation methods, such as the Euler
summation. See [Abate & Whitt 92] for more details.

If f(t) is assumed to be a density function, the Laplace transform of the cumulative distribution
function F (t) with F 0(t) = f(t) can be easily obtained from the Laplace transform of f(t):

F̂ (s) =
1

s
f̂(s) :

The computation of the cumulative distribution function via Laplace transform inversion is used
in Sect. 6.3 for the transient overow probabilities (t0; B).

Probabilistic Scaling: If small probabilities need to be obtained via the inversion of the Laplace
Transform, the numerical accuracy of the result can be greatly improved by using Probabilistic
Scaling. See [Choudhury & Whitt 97] for the details.
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Appendix I

Tables

I.1 Tail Constants of PT Distributions

Power-Tail Distributions show the following asymptotic behavior (see Section 3.2):

R(x) � cPT (�; �x)

x�
=:

c
(1)
PT (�) � �x�

x�
;

where cPT (�; �x) is called the tail-constant. c
(1)
PT (�) is the tail-constant of the distribution when

scaled to have expected value �x = 1.

Thus c
(1)
PT (�) is the second important parameter of the Power-Tail of a distribution, in addition to

the tail-exponent � . The following table provides the tail-constants for two di�erent distribution
types. First, the TPT distributions from Sect. 3.4. Secondly, for a so-called Pareto distribution,
which has the reliability function:

R(x) =
1�

x
(��1) �x + 1

�� �
Consequently, its tail constant is

c
(1)
Pareto(�) = (�� 1)�:

For di�erent values of �, the numerical values of the tail-constant are:

� 1:2 1:4 1:8 2:0 2:2 2:5 3:0

c
(1)
TPT (�) 0:1290 0:2138 0:3860 0:4951 0:6320 0:9158 1:7544

c
(1)
Pareto(�) 0:1450 0:2773 0:6692 1:0000 1:4935 2:7557 8:0000

I.2 Measurements

A set of measurements is described in Sect. 4.1 that is used to obtain parameter estimates for
realistic settings of 1-Burst models. The statistical properties of some measurements together
with the calibration results are presented in the following.
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I.2.1 Statistical Properties

Name Duration [s] Mean X [�s] C2(X) Max [ms] 95% quant. [�s] r(1)

TX3 48:2 61:4 13:7 27:0 376 0:13

TX11 56:8 72:4 13:1 10:8 475 0:14
TX12 53:0 67:5 14:5 8:01 431 0:14
TX13 69:9 89:1 15:0 33:3 580 0:14
TX14 76:1 97:0 13:5 12:1 654 0:17

TX17 139 82:2 14:5 14:7 541 0:20
TX18 111 64:4 17:2 10:9 388 0:22
TX20 81:9 49:3 27:2 33:3 244 0:11
TX21 79:8 48:0 24:5 36:3 226 0:14
TX22 78:4 47:0 26:9 28:3 209 0:12
TX23 136 82:9 13:9 9:64 540 0:20
TX24 101 61:1 19:1 28:3 377 0:16
TX25 107 64:9 15:2 9:71 402 0:19

RX3 40:5 51:6 22:3 7:17 196 6:8 � 10�2
Ethernet 52:4min 3:14ms 3:22 342 8:15ms 0:20

Number of Samples: The number of samples is 7:8 �105 in measurements TX3 to TX14 and RX3.
The remaining TX17 to TX25 contain about twice as many inter-cell times, between 1:6 � 106 and
1:7 � 106. The sample set of the Ethernet data that is discussed in [Leland et al. 94] contains
106 inter-packet times.

Minimum and Quantiles: The minimal inter-cell time is 2�s in all ATM measurements. The
5%-quantile is 5�s for the TX direction and 3�s for RX. Finally, the median is 6�s in all TX
measurements, and slightly higher for the incoming RX direction.

I.2.2 1-Burst Calibration Results

The application of the methods for 1-Burst calibration in Sect. 4.3 provides the following results
for the 1-Burst parameters:
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T0 [�s] T1 [ms] �
h
cells
ms

i
�p

h
cells
ms

i
xp [�s] Z [ms] �0

h
cells
ms

i
b np

TX3 40:9 1:08 16:3 131 84:5 0:616 0:435 0:876 11:1

TX11 43:3 3:59 13:8 135 93:8 0:849 0:375 0:898 12:7
TX12 43:3 3:59 14:8 132 88:4 0:723 0:426 0:888 11:7
TX13 43:5 3:46 11:2 136 117 1:34 0:256 0:917 16
TX14 43:3 3:59 10:3 133 103 1:28 0:342 0:923 13:8

TX17 43:3 3:59 12:2 135 118 1:25 0:509 0:91 15:9
TX18 43:3 3:59 15:5 140 228 1:88 0:417 0:889 31:8
TX20 46:7 1:44 20:3 141 175 1:05 0:231 0:856 24:6
TX21 46:7 1:44 20:8 141 166 0:973 0:339 0:852 23:4
TX22 46:7 1:44 21:3 140 169 0:959 0:28 0:848 23:7
TX23 44:2 3:48 12:1 135 111 1:19 0:519 0:911 15
TX24 46:7 1:44 16:4 137 127 0:969 0:434 0:881 17:4
TX25 44:2 3:48 15:4 138 140 1:15 0:502 0:888 19:3

RX3 49:8 0:823 19:4 135 117 0:706 0:142 0:856 15:8

Note that the choice of the thresholds T0 and T1 inuences the result. In particular the choice
of T1 is not clear in all measurements, some do not show as clear plateaus as the simulations
of 1-Burst models in Sect. 4.3.3. This is an indication that the OFF-time distribution is not
quite exponential in the data. However, as Sect. 5.7 indicates, the actual shape of the OFF-time
distribution is not critical.

The LRD estimators of Sect. 4.4 indicate values between � = 1:4 and � = 1:8, see also
[Rimkus 99] and [Gogl 00]. Note that the background Poisson rate �0 only accounts for less
than 5% of the overall average rate �. The peak cell-rate �p during ON periods is by a factor 7
to 13 larger than the average rate.

The Ethernet data that appears in the previous section does not appear to be well modeled by
a 1-Burst process, see Sect. 4.5.

I.3 Solution of Non-Linear Equation

In Section 6.4.3, it is derived that the conditional Bu�er-Overow Ratio shows a minimum at
some bu�er-size Bmin which can be computed by Eq. (6.20). However, as part of this solution,
the value of z0(�) is necessary which is de�ned only implicitly as the root of Eq. (6.19):

exp(�z0) = 1

1 + �
��1 z0

�

z0 depends only on the PT exponent � of the over-saturation periods of the switch. Numerical
values are listed in the following table:

� 1:2 1:4 1:6 1:8 2:0 2:2 2:6

z0(�) 2:918 2:138 1:721 1:450 1:256 1:111 0:9035
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