
Lehrstuhl für Entwurfsautomatisierung
der Technischen Universität München

On the Performance Space Exploration
of Analog Integrated Circuits

Guido Stehr

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informations-
technik der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Georg Färber

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Kurt Antreich, em.

2. Univ.-Prof. Dr.-Ing. Lars Hedrich,
Johann Wolfgang Goethe-Universität Frankfurt am Main

Die Dissertation wurde am 13. 5. 2005 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 10. 9. 2005 angenommen.



A paperback version of this thesis was published by Verlag Dr. Hut, Munich, in 2005.

ISBN 3-89963-256-7.



When the tree is born, it is not big right away.

When the tree is big, it does not blossom right away.

When it bears fruit, they are not ripe right away.

When they are ripe, you do not eat them right away.

Aegiduis of Assisi
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Chapter 1

Introduction

Undoubtedly, today’s integrated electronic systems owe their remarkable perfor-
mance primarily to the rapid advancements of digital technology since the 1970s.
The key advantage of digital circuit design is its abstraction from the physical details
of the actual circuit implementation.

Digital functionality lends itself to a description based on Boolean algebra. This was
the basis for the development of automatic synthesis tools which cover the path from
a behavioral description at RTL level to the final layout. Furthermore, digital circuitry
is comparatively insensitive with respect to variations in the manufacturing process
and the operating conditions. Consequently, digital circuits frequently offer a more
robust behavior than their analog counterparts, albeit often with area, power and
speed drawbacks. Last but not least, digital designs allow functional complexity that
would not be possible based on analog technology. Due to these and other benefits,
analog functionality has increasingly been replaced by digital implementations.

In spite of the trends discussed above, analog components are far from obsolete
[GR00, Gil01, ITRS03]. In fact, a closer look reveals that they are key components
of modern electronic systems. There is a definite trend toward pervasive and ubiqui-
tous use of electronic circuits in everyday life. Wearable electronics [JLSW03], wire-
less communications [GK03] and the widespread application of RF tags [Bri03] are
just some examples of current developments. While all of these electronic systems
are based on digital circuitry, they heavily rely on analog components as interfaces to
the “real”, i.e. analog, world. In fact, many modern designs combine powerful digital
systems and complementary analog components on a single chip for cost and reliabil-
ity reasons [KCJ+00]. Unfortunately, the design of such systems-on-chip (SOCs) suf-
fers from the vastly different design styles of analog and digital components. While
mature synthesis tools are readily available for digital designs [Cad, Syn], there is
hardly any support for analog designers apart from well-established SPICE-like cir-
cuit simulators. Just recently, some simulation-based automatic sizing tools have
been introduced in the industrial environment [Mun, Neo]. Consequently, although
the analog part usually only occupies a small fraction of the entire die area of an
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1 Introduction

SOC, its design often constitutes a major bottleneck within the entire development
process [ORC96, ITRS03].

The rapid improvement of circuit functionality has only been possible due to a dra-
matic rise of the achievable integration densities. The corresponding permanent
shrink of realizable circuit structures, however, is a mixed blessing: While it is desir-
able from the integration point of view, it promotes more and more nonlinear physi-
cal phenomena which have only had minor impact so far. Therefore, many simplify-
ing assumptions no longer hold, which complicates the design of electronic circuits.
In fact, not only the analog domain is affected, but digital design is also increasingly
becoming aware of physical effects [KCJ+00,CDSS02,ITRS03,Kon04]. Unfortunately,
the consumer marketplace does not acknowledge these challenges. On the contrary:
Missing the market window can render a good product idea worthless. With analog
design automation at a low level, increasingly nonlinear circuit behavior, and tighten-
ing time-to-market pressures, is becomes obvious that improved analog design tools
are urgently needed [GR00, ITRS03].

1.1 Motivation

1.1.1 Systems on Chip

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
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Figure 1.1: System on Chip

In early stages of the SOC design process, the entire system functionality is parti-
tioned into a number of functional subsystems. The assignment of these subsystems
to digital, analog and mixed-signal circuit realizations is done according to “hard”
function-specific constraints such as the physical nature of the signal to be processed,
or “soft” considerations including power, cost and area trade-offs. Figure 1.1 shows
an SOC for a telecommunication device [KCJ+00]. It contains an analog RF frontend,
analog baseband signal processing, mixed-signal circuitry for signal conversion, as
well as digital units for signal processing and general device management. The work
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1.1 Motivation

at hand focuses on the performance space exploration of analog circuitry as it is used
in baseband processing, for instance.

The following section gives an overview of different analog design styles and puts
the application areas of performance space exploration into perspective.

1.1.2 Design Process of Analog Circuits

Overview of Analog Design Steps In general, the analog design process can be
partitioned into three major steps [HEL92, CGRS96, Sch02]:

1. Topology selection / generation:
A circuit structure has to be found, which has enough potential to finally meet the
given circuit specifications. To this end, an existing topology is chosen if possible,
or a new circuit structure is created otherwise.

2. Component sizing:
Actual values are assigned to the designable circuit parameters such as the tran-
sistor widths and lengths or resistance and capacitance values. The goal is to
adjust the circuit performances in such a way that they meet or exceed the speci-
fied goals, even with tolerances in the fabrication process and the operating con-
ditions. Examples of circuit performance specifications are the minimum transit
frequency or the maximum power consumption of an operational amplifier.

3. Layout generation:
Geometric structures are created which reflect the parameter values obtained in
the component sizing step, and which are suited for the actual implementation in
silicon.

In [CGRS96], the first two steps are referred to as the frontend of the analog design
process, while the third step is called the backend. At this point it should also be noted
that sporadic attempts have been made to intertwine these steps, e.g. [MCR95].

There are a number of influences which affect the circuit performance, but which are
beyond the control of the designer:

• The actual performances of a circuit do not only depend on the designable cir-
cuit parameters, but also on a number of parameters, which may vary during the
operation of the circuit. These parameters collectively describe the operating con-
ditions. Examples are the ambient temperature and the supply voltage, among
others. For each of them, an admissible value range is specified. The designer
then has to guarantee the specified circuit performances within the entire region
of tolerable operating conditions.

• The manufacturing process is subject to inevitable random process variations,
which can be described by probability density functions. This affects technological
parameters such as oxide thickness or doping. Besides, the actual values of the
designable parameters deviate from the intended ones.

3
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Especially analog circuits are sensitive with respect to these variations. Nevertheless,
their behavior must meet the specifications under all circumstances. Therefore, the
component sizing step is often separated into two distinct design tasks [Sch02]:

2 a. Nominal sizing:
The performances are adjusted under the assumption that both variations in the
operating conditions and in the manufacturing process can be neglected. To
do this, typical fixed values are assigned to the technological parameters. Fur-
thermore, it is common to assume worst-case values for the operating condi-
tions [Sch02]. Finally, there is no random deviation of the designable parameters.

2 b. Design centering:
The inevitable variations in both the operating conditions and the manufactur-
ing process affect the circuit performances. Given a stochastic characterization
of the manufacturing process and a certain range of admissible operating con-
ditions, the designer has to make sure that the circuit meets the specifications
under all conditions. A circuit which does not meet this requirement is consid-
ered dysfunctional and cannot be sold to the customer. This obviously raises the
effective production costs. Therefore, a prominent goal of the design process is
a good production yield, i.e. a high percentage of fully functional circuits. Ac-
cordingly, the circuits have to be designed in such a way that they are robust.
This means that they have to be insensitive to variations in the operating and
manufacturing conditions and that they should also have enough safety mar-
gins as regards the specifications. The design steps which are required to achieve
these goals are usually very simulation-intensive. Thus, the result of the nominal
sizing step usually serves as a starting point for a subsequent yield optimiza-
tion [AEG+00, GR00, Sch02].

Due to the high simulation costs, design centering is primarily used in the last phases
of a design. In earlier stages, especially in the conceptual and exploratory phases,
nominal sizing is performed. Hence, efficient nominal sizing techniques are urgently
required. They are needed to support designer creativity, and to help in exploring
different realization alternatives. Furthermore, a good nominal sizing facilitates suc-
cessful design centering. Considering the great rewards in this area, this work focuses
on nominal sizing techniques.

Performance Evaluation During the sizing process, the performance values have
to be determined for given parameter values. This is predominantly done using
numerical simulators, such as Eldo [Ana92], Saber [VVS87], SPICE [Nag75], Spec-
tre [Kun95], or Titan [FWZ+92]. These tools use sophisticated transistor models and
consequently yield accurate results. On the other hand, depending on the type of
simulation, they may require a considerable amount of computation power.

As an alternative, symbolic equations can be evaluated faster by orders of magnitude.
While there are automatic tools to build symbolic equations for a given circuit, they
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are usually restricted to DC and AC performances [GWS89, VDL+01]. Furthermore,
the complexity of the resulting equations is hard to keep under control [GRFRV02].

Response surface models try to combine the accuracy of numerical simulation with
the fast evaluation of symbolic equations. Based on comprehensive simulations,
numerical models can be built [HS96, Ziz01]. It depends on the actual application
whether the initial consumption of simulation time can be compensated by the sub-
sequent use of the model.

Sizing Method For a given set of parameter values, the performance values can
uniquely be determined using simulation or symbolic equations. The inverse map in
the opposite direction, i.e. from performances to parameters, is usually not unique
and also unknown. The parameters mostly outnumber the performances, which
causes ambiguity in the inverse map. The designer can exploit these degrees of free-
dom for performance optimization. Hence, the sizing task can be interpreted mathe-
matically as an optimization problem.

One way to eliminate the ambiguity is the use of design knowledge: The sizing prob-
lem is simplified heuristically until the resulting mathematical problem has a unique
solution. A final sizing result can then be obtained from the execution of a fixed se-
quence of symbolic calculation steps, which are defined in a so-called design plan.
Note that this knowledge-based approach is no optimization process in the strict
sense.

Other approaches exploit the available degrees of freedom mathematically, either de-
terministically or stochastically. Numerical deterministic techniques are mostly based on
gradient information and tend to find (local) optima efficiently. In order to escape
local optima, stochastic approaches allow a degradation in the objective function at a
certain probability. Many of these approaches mimic natural phenomena. Simulated
annealing is based on the observation that perfect crystals result from an infinitely
slow cooling process of a melted mass. Evolutionary techniques rely on the improve-
ment of circuit features by operations which copy the natural processes of mutation,
crossover, and selection. Yet, the ability to escape local minima comes at the price of
a large number of performance evaluations.

Classification of Automatic Circuit Sizing Techniques The two criteria concern-
ing performance evaluation and sizing method can be used to categorize automatic
sizing tools from the literature, as shown in Table 1.1.

The performance space exploration techniques presented in this work are simulation-
based and deterministic for the following reasons: Especially in the industry, simu-
lation is the prevailing method for performance evaluation because it combines ac-
curacy and ease of use. Due to the high cost of simulation, advanced deterministic
algorithms are used here in order to keep the overall execution times down.
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Heuristic Deterministic
Optimization

Stochastic
Optimization

Numerical
Simulation [NRSVT88, AEG+00]

[MFDCRV94, ORC96]
[KPRC99, PKR+00]

Symbolic
Equations

[De87, ETP89]
[HRC89]

[KSG90, MC91]
[HEL92, dMHBL98]

[dMHBL01, VDL+01]

[GWS90, ORC96]
[DLG+98, VDL+01]

Numerical
Models [Ziz01, DGS03] [ABD03]

Table 1.1: Classification of Automatic Sizing Tools according to Performance Evalu-
ation Method (vertical) and Sizing Method (horizontal)

Role of Performance Space Exploration within Sizing Process In the sizing pro-
cess, usually a number of performances have to be optimized simultaneously. Typi-
cally, there is not a single solution that optimizes all performances at the same time.
Instead, there is a trade-off situation where one performance can only be improved
at the cost of another. Most automatic sizing techniques, however, yield only a sin-
gle solution where it is not obvious to the designer why this particular solution was
chosen. Performance space exploration tools help to examine the trade-offs and to
pick a certain solution deliberately. In addition, the resulting information can help
to evaluate the performance capabilities of a given circuit topology, hence facilitating
topology selection [SG03,SGA04]. That way, performance space exploration provides
a link between the two design steps of topology selection and circuit sizing.

1.1.3 Hierarchical Circuit Sizing

For digital circuits, a hierarchical top-down design style has widely been adopted:
Starting from an integral view of the system, the latter is partitioned into subsystems,
which in turn are decomposed into functional blocks. In this way, implementation
details are added until the final realization is found. Accordingly, the original spec-
ifications are successively broken down to elementary specifications for basic cells
which are available in predefined libraries. This pure top-down design style used to
be feasible thanks to the abstract digital view. It has led to a remarkable degree of au-
tomation and a high productivity in the area of digital design. Yet, especially in mod-
ern platform-based digital designs, the non-ideal behavior of the available building
blocks has to be taken into account already at higher levels of abstraction [CDSS02].
In fact, this consideration of non-ideal effects already in early design stages has al-
ways been characteristic for analog design.

Figure 1.2 shows the hierarchical decomposition of an analog system as exemplified
by a phase-locked loop (PLL). The entire circuit is partitioned into three functional
blocks, which in turn consist of a large number of transistors. In a top-down siz-
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Figure 1.2: Hierarchical Sizing of an Analog System

ing process, the PLL specifications such as lock time or natural frequency are broken
down into specifications for the individual blocks. These block specifications are
finally mapped onto transistor specifications which amount to channel widths and
lengths (W, L). Unfortunately, such a top-down refinement of specifications may eas-
ily produce overambitious block specifications if the performance capabilities of the
underlying analog circuit implementations are not taken into account. Consequently,
low-level physical effects have to be propagated bottom-up: At each level of abstrac-
tion, there has to be a description of the performance capabilities of the respective
functional blocks. In [CCH+99,CDSS02,DJSV03,DSV04,DGV+04], the availability of
such an explicit block characterization is identified as a fundamental prerequisite to
any reuse-oriented platform-based design of SOCs. Thus, performance space explo-
ration techniques turn out to be a cornerstone of modern SOC design.

In summary, hierarchical analog design is characterized by a top-down propagation
of specifications and a bottom-up propagation of physical constraints. Therefore, per-
formance space exploration techniques provide the indispensable link between the
abstraction levels. They can also help to select a suitable circuit topology if several
implementation alternatives are available.

1.2 State of the Art

The essential role of bottom-up component characterization techniques in hierar-
chical sizing approaches has widely been acknowledged [HS96, KCJ+00, CDSS02,
DJSV03,DSV04]. Nevertheless, not all top-down sizing techniques do this component
characterization by means of performance space exploration in the strict sense. In-
stead, some of them model the relation of component parameters and performances.

7



1 Introduction

In [FOK96], numerical response surface models are generated based on design of ex-
periment techniques. In contrast to this quantitative model, a qualitative model is
employed in [DNAV99]: The parameter space is partitioned into subspaces in which
component parameters and performances either change in the same direction, in the
opposite direction or are independent. As results of the accompanying sizing tech-
niques, both approaches aim at finding entire parameter intervals instead of unique
solutions. Thus, they focus on a top-down propagation of the specifications rather
than on the bottom-up propagation of physical effects. The explicit characterization
of a component entirely in the performance space is not their intent. In other words,
they do not perform the abstraction step of fully decoupling the designable parame-
ters at the distinct abstraction levels. Instead, they provide an efficient link between
the component parameters and performances.

In this thesis the explicit identification of boundaries in the performance space is
regarded as an essential feature of any performance space exploration technique
in a narrower sense [DJSV03]. As a common denominator, all such exploration
techniques map bounds from the circuit parameter space into the circuit performance
space. Hence, they rely on an efficient performance evaluation. Especially for mixed-
signal circuits, this often requires a considerable amount of computational resources
[SGA03b]. Consequently, performance space exploration techniques were proposed,
which were customized to certain circuit types [dMHHM+99,dMH02,VG03,BGH04].
The approach in [BGH04], for example, particularly aims at delta-sigma analog-to-
digital converters: To reduce costly time-domain simulations to the minimum, ap-
proximate linear formulae are used for performance evaluation in a first stage. Only
promising circuit realizations are further examined in detail using simulation. To
explore the entire performance space, this approach relies on the fact that for delta-
sigma analog-to-digital converters, there is only a limited number of configurations.
Especially for challenging mixed-signal circuits such a customized approach is justi-
fied. Nevertheless, this thesis focuses on general approaches which allow the exami-
nation of a broad range of analog circuits.

1.2.1 Accurate Partial Exploration

The achievable performance values of a circuit topology are described by a region
in the performance space. Generally speaking, performance space exploration tech-
niques examine the boundary of this region, which is typically nonlinear. Accord-
ingly, nonlinear approaches are required if accuracy is important. Since it is rarely
possible to determine the boundary analytically, nonlinear performance space explo-
ration methods sample the performance space and determine distinct points which
characterize the boundary. Unfortunately, the resulting computational requirements
grow exponentially with the number of examined performances. In practical cases,
virtually all approaches aiming at an accurate description of the nonlinear perfor-
mance space boundary can only be applied to a few performances of particular inter-
est. Nevertheless, this is often sufficient, e.g. for visualization purposes.
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While in an interactive environment a set of sampling points might already convey
some insight, often a more systematic mathematical representation of the perfor-
mance boundaries is desired. In [HS96], specifications for an operational amplifier
are systematically varied and passed to the analog synthesis environment OASYS
[HRC89]. This tool tries to create an according circuit by executing a predefined de-
sign plan based on symbolic equations. Response surface modeling techniques then
relate the given specifications and the obtained performance values.

In many applications it is enough to examine those parts of the performance space in
which the different performances become “simultaneously optimal” in some sense.
This leads to a trade-off situation which can be described mathematically by the
concept of Pareto optimality. For this reason, many performance space exploration
approaches focus on this particularly interesting region, the so-called Pareto front
[dMHBL98, dMHBL01, DG03, WKWC03]. There are different methods to actually
identify the Pareto front.
The authors of [DG03] use a genetic algorithm for this task. Such an optimiza-
tion algorithm mimics the natural evolution process including gene mutation and
crossover. In this context, the numerical values of the designable circuit parameters
represent the genes. Thus, a circuit is characterized by its genome of parameter val-
ues. In [DG03], the circuit fitness is evaluated based on circuit simulation. The result
is used to decide on the reproductive success of this circuit instance. The proposed
performance space exploration technique starts with a random set of genomes. In the
course of the evolution process, the circuit population is drawn to the Pareto front.
Unfortunately, like all stochastic optimization techniques, this approach requires a
great number of performance evaluations resulting in serious simulation costs. As
an alternative, the genetic algorithm in [WKWC03] uses symbolic equations for a
quick performance estimation.
Similarly, in [dMHBL98, dMHBL01], the circuit behavior is described by means of
posynomial symbolic models. This means that a point on a performance bound-
ary can be determined by solving a convex optimization problem. For this type of
problems, there is a unique global optimum which can be found extremely fast us-
ing deterministic optimization techniques. It is therefore possible to simply sweep
some performance specifications and to solve the resulting optimization problems.
Since even a large number of boundary points can be found without great ef-
fort, no particular strategy for an efficient selection of sample points is required
in [dMHBL98, dMHBL01].

1.2.2 Approximate Comprehensive Exploration

For efficiency reasons, all exploration techniques discussed above restrict themselves
in two ways: First, they select only a few important performances in order to escape
the curse of dimensionality. Second, they focus on particularly interesting parts of
the associated feasible performance space and just examine a fraction of its entire
boundary. There are a number of approaches in the literature which are different in
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the second aspect: They examine the entire performance space boundary and yield a
description of the feasible performance space as a closed region. Nevertheless, this
particular problem has gained far less attention than the low-dimensional perfor-
mance space exploration.

The authors of [DJSV03] focus on efficient nonlinear performance space modeling
for a large number of dimensions. It is shown that a numerical modeling technique
using support vector machines can capture strong nonlinearities in high-dimensional
spaces accurately and efficiently. Instead of quantitatively describing relations be-
tween different performances, this numerical model separates feasible points in the
performance space from infeasible ones. Based on a large number of training sam-
ples, the numerical parameters of the model are adjusted to allow a good amount
of generalization while minimizing the danger of misclassifications. Even though
the modeling works efficiently even in high-dimensional spaces, the applicability of
this approach is limited to a few performances due to the large amount of required
training data.

At the price of a lower accuracy, performance spaces with a larger number of dimen-
sions can be described using linear approximations. A work based on [dMHBL98,
dMHBL01] is presented in [dMH03]. Again, the circuit behavior is approximated by
posynomial models. The optimizations, however, do not only focus on the Pareto
front, but involve the entire performance space. A convex combination of the solu-
tion points yields a polyhedral approximation to the feasible performance space. Al-
though this exploration technique is based on nonlinear analysis methods, it yields a
linear description of the feasible performance space.

By the same token, symbolic equations are the basis of a performance space explo-
ration approach described in [VLv+95, VDL+01], which uses early work presented
in [Lee90,LH91]. In a first step, the individual performances are examined separately,
and lower and upper limits are determined for each of them. The resulting feasible
hypercube is often too optimistic since it does not consider correlations between the
different performances. That is the reason why in a second step, linear performance
dependencies are considered [LH91] and the hypercube approximations are refined
by additional faces. Again, nonlinear symbolic analysis yields a linearized descrip-
tion of the feasible performance space.

In contrast to that, the approach presented in [MV89] relies on linearizations entirely.
Although this work primarily aims at the test of analog circuits, its techniques are
applicable to performance space exploration as well. To model random parameter
variations, value ranges are assigned to the individual designable parameters. In
this way, a hyperbox is defined in the parameter space. The relation of the parame-
ters and the performances is described by a linear approximation which is obtained
via nonlinear circuit simulation. The parameter hyperbox is then projected into the
circuit performance space, geometrically resulting in a polytope.
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1.2.3 Reasons for Performance Limitations

The performance boundaries of a given topology are ultimately caused by techno-
logical and topological constraints. Therefore, any performance space exploration
technique relies on a concise definition of these constraints. Surprisingly, many pub-
lications only contain little or vague information on this matter.

Almost any performance space exploration technique defines lower and upper
bounds for the individual designable parameters of the circuit. With this restric-
tion, the authors in [FOK96, DJSV03] assume that any circuit instance which can
be simulated successfully is acceptable. Going beyond that, most authors agree on
keeping transistors in saturation without going into detail [VLv+95,DNAV99,DG03].
A few publications, especially on knowledge-based or symbolic approaches, dis-
cuss additional constraints like symmetry, matching or maximum currents [HRC89,
dMHBL98]. However, even these approaches are far from a systematic or even auto-
matic derivation of performance-limiting constraints.

1.3 Objectives of the Work

The following sections give account for general considerations which led to the de-
velopment of the algorithms presented in this dissertation.

1.3.1 Systematic Derivation of Performance-Limiting Constraints

In spite of the outstanding importance of the performance-limiting constraints, Sec-
tion 1.2.3 states a surprising lack of systematics in their derivation. As an answer,
Section 2.1.3 systematically reviews prior work presented in [GZEA01]. The signifi-
cance of this work to performance space exploration is discussed in Sections 2.2 and
2.3.

1.3.2 Choice of Simulation-Based Deterministic Algorithms

Resource requirements are a major concern for any automatic circuit design tool. To
keep the computational costs low, many approaches resort to symbolic performance
descriptions [HRC89, dMHBL98, VDL+01]. Their unquestioned advantage is that
they allow extremely fast performance evaluations. They have a number of disadvan-
tages, though: First, symbolic equations usually only apply to DC and AC behavior.
Second, they often require a considerable amount of setup effort. Third, their accu-
racy is limited. Fourth, industrial circuit designers predominantly rely on numerical
circuit simulation rather than symbolic techniques. In line with these arguments, a
general trend toward simulation-based techniques has been observed [GR00].
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Unfortunately, circuit simulations often require considerable computational re-
sources. That is the reason why a high efficiency of the proposed algorithms is of
particular importance. Advocates of stochastic algorithms usually emphasize their
ability to escape local minima. Yet, this feature comes at the price of extremely high
computational costs. In contrast, deterministic algorithms tend to consume far less
computational resources, but they might get stuck in local optima. Fortunately, it
could be shown that the behavior of a circuit is usually well-natured as soon as it
works in the correct region of operation [SEGA99]. Hence, deterministic methods are
used in the new algorithms in order to keep the execution times in reasonable limits.

1.3.3 Application Scenarios

The main challenge for any performance space exploration technique is the vastness
of the space to be examined. Consequently, some simplification has to be applied in
virtually all practical situations. As indicated previously, there are two major simpli-
fication schemes:

• Reduce the examined portions of the performance space to the most interesting ones.
First, a small number of performances is selected, typically two or three. Second,
the examination of the performance boundaries is focused on those areas where
the performances become “simultaneously optimal”. With these restrictions, an
accurate nonlinear analysis becomes practical.

• Allow a higher number of targeted circuit performances, but limit the accuracy of the ex-
ploration algorithm.
With this restriction, a high-dimensional exploration at reasonable accuracy lev-
els is viable. With a highly efficient exploration algorithm, the region of achiev-
able circuit performance values can even be approximated in its entirety.

It is obvious that none of the above two strategies is superior to the other one. Instead,
there is a trade-off between accuracy and efficiency. The actual choice of a particular
algorithm depends on the particular application. The goal of this work is to provide
advanced performance space exploration techniques for the two scenarios described
above. Both of them offer a combination of efficiency and accuracy well beyond
the state of the art. Since the industrial applicability is a major requirement, both
algorithms were implemented based on the commercial design tool WICKED [Mun]
and haven proven their strength for different example circuits.

1.3.4 Proposed Algorithms

1.3.4.1 Accurate Low-Dimensional Nonlinear Performance Space Exploration

In Section 1.2.1, a number of low-dimensional performance trade-off analysis tech-
niques were reviewed. None of them combines the accuracy and flexibility of simula-
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tion with an efficient deterministic exploration technique. The algorithm presented in
Chapter 3 closes this gap. Additionally, the new performance space exploration tech-
nique allows the analysis of those constraints which inhibit a further performance
improvement. The application area of this algorithm includes performance trade-off
visualization as an interactive design aid and topology selection. The presented ap-
proach is the first one to use the algorithm presented in [DD98] for trade-off analysis
of analog circuits.

1.3.4.2 Approximate High-Dimensional Linear Performance Space Exploration

Section 1.2.2 discussed performance space exploration techniques which aim at a
larger number of circuit performances. However, there is no simulation-based tech-
nique that convincingly deals with a high dimensionality. The algorithm from
[Lee90] could be used albeit not very efficiently. The approach presented in [MV89]
could be adapted for linearized performance space exploration but it only allows
hyperboxes as feasible parameter spaces.

This dissertation presents a technique which allows a fast exploration of high-
dimensional performance spaces. Due to the complexity of the problem, it relies
on a simulation-based sensitivity analysis to linearize the circuit behavior. It applies
a well-established algorithm [DE73] which so far has not been used for performance
space exploration. The approximate performance space exploration technique cov-
ered in Chapter 4 allows a consistent bottom-up propagation of physical effects in
high-dimensional performance spaces at a reasonable accuracy. The targeted applica-
tion area is primarily automatic hierarchical optimization, as outlined in Section 5.4.

1.3.5 Previous Publications

A total number of twelve publications arose from this work. The particular role
of high-dimensional performance space exploration for hierarchical optimization is
subject of [SGA01,Ste01,SGA02,SGA03a,MSGS05]. The performance potential of hi-
erarchical simulation of large mixed-signal systems is highlighted in [SGA03b]. A
low-dimensional nonlinear performance space exploration is described in [SGA03c,
SGA03d]. A high-dimensional linear performance space exploration technique is pre-
sented in [SGA04, SGA05]. The automatic derivation of performance-limiting con-
straints from a given circuit topology is covered in [MSG03]. [SPS+03] shows how
these constraints can be used to find a beneficial starting point for any type of circuit
optimization technique.
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1.3.6 Organization of this Dissertation

This thesis is organized as follows: Chapter 2 introduces the process of nominal cir-
cuit sizing and describes the impact of sizing constraints on the achievable circuit
performances. Chapter 3 describes a low-dimensional nonlinear performance space
exploration technique, and Chapter 4 a full-dimensional linear exploration method.
Experimental results for both methods are presented in Chapter 5. Chapter 6 sum-
marizes the main ideas of this work. Appendix A details how the sizing constraints
can be utilized to find a good starting point for a subsequent circuit performance
space exploration. Alternative linear performance space exploration approaches are
reviewed in Appendix B, while the main ideas of stochastic optimization algorithms
are summarized in Appendix C.

1.4 Summary

A large fraction of today’s integrated circuits includes analog functionality. While
mature automatic digital design tools are available, analog design automation is still
in an early stage. The work at hand offers tools for the analog design frontend in-
cluding topology selection and circuit sizing. In both flat and hierarchical design,
the performance capabilities of a given circuit topology are of particular interest.
To this end, two performance space exploration techniques have been developed.
One of them accurately analyzes a low-dimensional subspace of interest using non-
linear optimization techniques. The other approach yields approximations to high-
dimensional performance spaces based on linear techniques. Both procedures are
simulation-based for accuracy and deterministic for efficiency.
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Chapter 2

Problem Description

This section introduces the terminology and the fundamental concepts which are
required to mathematically describe the sizing process and to formalize the task of
performance space exploration.

2.1 Nominal Circuit Sizing

As stated in Section 1.1.2, this work mainly focuses on nominal circuit sizing which
is usually referred to as circuit sizing or simply sizing in the following sections. In
this thesis, these terms are used in a very broad sense: Any assignment of parameter
values in such a way that the nominal circuit performances meet certain optimization
criteria is called sizing. Since the outcome of the sizing procedure is commonly also
called a sizing, the terms sizing process and sizing result are used for clarity where
appropriate.

2.1.1 Circuit Parameters

Analog circuit sizing is usually done at a comparatively low level of abstraction
where a circuit is described by a transistor netlist. For a fixed topology and pro-
duction technology, the circuit behavior is controlled by the values of its parameters.
Basically, there are three types of parameters [Ziz01]:

• Designable parameters are under full control of the designer. They comprise of, for
instance, CMOS channel widths and lengths, or capacitor and resistor values.

• Statistical parameters describe the variations in the manufacturing process. They
are beyond the control of the circuit designer because they are given by the pro-
duction technology.
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• Operational parameters take into account the variability of the operating condi-
tions, such as the ambient temperature, the supply voltage, or the load conditions.
The ranges of the operational parameters are given as part of the specifications
and cannot be controlled by the designer.

For nominal design, fixed values are assigned to the statistical and operational pa-
rameters. Thus, solely the designable parameters p with∗

p ∈ R
m (2.1)

are considered in this context. The terms designable parameters and circuit parame-
ters are hence interchangeable.

2.1.2 Circuit Performances

From a customer point of view, a certain circuit implementation is characterized by its
performances f. For a digital component such as a pad driver, important performances
are the power consumption and the propagation delay. As an example of an analog
block, an operational amplifier is described by its DC gain and its transit frequency
among others. In this thesis, the term performances refers to the input/output behav-
ior of a circuit in a black box fashion. Furthermore, the circuit behavior is determined
via circuit simulation and the actual performance values result from a postprocessing
of the raw simulation data.

For a certain technology, a given circuit topology maps its parameters p to its perfor-
mances f. Consequently, the evaluation of the performances, including simulation
and postprocessing, can formally be written as a function evaluation:

f = f(p) , f ∈ R
n . (2.2)

Note that usually the parameters outnumber the performances, i.e. m > n.

2.1.3 Sizing Constraints

Analog circuits are built up hierarchically: Individual transistors form transistor
pairs which constitute elementary building blocks such as current mirrors or dif-
ferential pairs. These transistor pairs are combined again to obtain larger building
blocks such as cascode current mirrors. Hence, a complete circuit can be interpreted
as a hierarchical combination of basic building blocks.

Most of these structures imply particular restrictions which have to be met for a
proper circuit operation. Examples are matching or saturation. These restrictions can

∗ In this thesis, regular lower case letters denote scalars. Vectors are written in bold lower case.
Matrices are bold capitals.
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be captured systematically by means of sizing constraints which frequently appear
in the literature, albeit with different names [HRC89, VLv+95, dMHBL98, DNAV99,
dMHBL01,VDL+01,GZEA01,MV01,DG03,DSV04]. Nevertheless, most authors take
them as granted and do not systematically describe their derivation.

The approach presented in [GZEA01, MSG03] allows an automatic setup of the sizing
constraints for a given circuit topology. It consists of two main steps: First, circuit
substructures are identified bottom-up in a hierarchical fashion as described in Sec-
tion 2.1.3.1. Based on the information thus obtained, sizing constraints are assigned
to the individual transistors in a second step as exemplified in Section 2.1.3.2.

2.1.3.1 Topology Analysis

For CMOS technology, a number of fundamental analog building blocks was iden-
tified based on [GZEA01, Ziz01]. There are five levels of hierarchy as depicted in
Table 2.1. Note that blocks at a certain hierarchy level are pairs of blocks taken from
lower levels. The atomic building blocks at level 0 are single transistors. Level 1 com-
prises of all meaningful pairs of transistors. Level 2 covers pairs of structures from
levels 0 and 1, and so on.

Based on this classification of building blocks, a circuit topology can be analyzed in
a bottom-up fashion. The concept shall be explained using an example. For a more
rigorous treatment, see [GZEA01, MSG03].

P1 P3 P5 P7 P9

P10P8P6P4P2

N7 N8

N10 N12

N11N9N5

N6N4N2

N1 N3

Figure 2.1: Folded Cascode Operational Amplifier

A schematic of a folded cascode operational amplifier is given in Figure 2.1. Although
it consists of only 22 transistors, a number of 47 building blocks can be identified.
Owing to the hierarchical method, the results of the analysis can be represented by
means of a topology tree as depicted in Figure 2.2. It shows the detected building
blocks in distinct hierarchy levels according to Table 2.1. The tree is a complete rep-
resentation of the shaded area in Figure 2.1.
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Function Schematic (NMOS) Hierarchy
(PMOS analogously) Level

Voltage-controlled resistor (res)
Voltage-controlled current source (cs) 0

Simple current mirror (cm) 1

Level shifter (ls)

Voltage reference 1 (vr1)

Current mirror load (cml)

Differential Pair (dp)

Voltage reference 2 (vr2)

Flip-flop (ff)

Level shifter bank (LSB)
...

2

Current mirror bank (CMB)
...

Cascode current mirror (CCM)

4-Transistor current mirror (4TCM)

Cascode current mirror bank (CCMB)
......

3

Differential stage
(CM ∈ { cm, CCM, 4TCM, CCMB })

(DST) CM 4
Table 2.1: Basic Analog Building Blocks
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2.1 Nominal Circuit Sizing

cs
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cs
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N1
N5
N8
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CCM

CCM

CMB

LSB ls
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dp

cm

cm

DST
CCMBfolded

cascode
amplifier

...
2 14 3

hierarchy
level 0

Figure 2.2: Topology Tree of Folded Cascode Amplifier

For example, it is evident that the transistors N7 and N8 operate as voltage-controlled
current sources (cs, level 0) and form a differential pair (dp, level 1). It constitutes a
differential stage (DST, level 4) together with a cascode current mirror (CCM, level
2). The latter in turn is made up of a current mirror (cm, level 1) and a level shifter
(ls, level 1) with according transistors working as current sources (cs, level 0). In
addition to being the basis of automatic sizing constraint generation, the hierarchical
decomposition and its representation as a tree is a valuable tool to visualize a given
circuit topology.

2.1.3.2 Constraint Assignment

A given building block only exhibits the expected behavior if the sizing constraints
are met. Three latter can be classified by three categories:

1. Geometric / electric: Geometric sizing constraints directly refer to transistor ge-
ometries. Electric constraints need to be evaluated based on circuit simulation. At
the current stage of development, the sizing constraints specify the DC operating
point only. This is sufficient for circuits operating in the AC domain and for bias-
ing circuitry. The temporary violation of these constraints in transient operation,
however, cannot be prevented in all cases by this approach.

2. Function / robustness: Functional constraints have to be met unconditionally in
order to allow a building block to fulfill the desired function. If, for example, the
transistors of a differential pair do not work in saturation, then the entire circuit
might not even exhibit the intended fundamental functionality (e.g. constant sig-
nal from an “oscillator”). Robustness constraints account for both variations in
the manufacturing process and in the operating conditions already in the nomi-
nal design phase.

3. Inequality / equality: Inequality sizing constraints require that electric or geo-
metric circuit quantities exceed or remain below certain thresholds. Equality con-
straints exist only for geometric quantities and thus demand that circuit parame-
ters may only differ by a constant factor.
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2 Problem Description

Usually, a transistor is part of a multitude of building blocks at different levels of
abstraction. Eventually, all sizing constraints refer to transistor quantities, either ge-
ometric or electric. Nevertheless, the constraints which are assigned to a certain tran-
sistor reflect the entire path from the respective level-0 node to the top node.

The sizing constraints for transistor N7 are listed below based on the results from
Figure 2.2. For each sizing constraint, the type is given according to the classification
above.

vds,N7 − (vgs,N7 − Vth) ≥ Vsat,min electric / function / inequality (2.3)
vds,N7 ≥ 0 electric / function / inequality (2.4)

vgs,N7 − Vth ≥ 0 electric / function / inequality (2.5)
WN7 · LN7 ≥ Amin geometric / robustness / inequality (2.6)

WN7 ≥ Wmin geometric / robustness / inequality (2.7)
LN7 ≥ Lmin geometric / robustness / inequality (2.8)
LN7 = LN8 geometric / function / equality (2.9)

WN7 = WN8 geometric / function / equality (2.10)
|vds,N7 − vds,N8| ≤ ∆vds,max electric / function / inequality (2.11)

vgs,N7 − Vth ≤ Vgs,max electric / robustness / inequality (2.12)

Transistor N7 has to work as a voltage-controlled current source (cs). Therefore,
(2.3)–(2.5) provide for saturation while (2.6)–(2.8) make sure that the transistor is less
sensitive to local parameter variations.

Since N7 forms a differential pair (dp) together with N8, both transistors have to be
sized identically to avoid mismatch, cf. (2.9) and (2.10). The difference between the
drain-source voltages must not be too large in order to avoid a systematic current
mismatch, cf. (2.11). The effective gate-source voltage is limited by (2.12) because the
differential pair has to provide accurate current differences.

Finally, N7 is part of a differential stage (DST). Although no generic sizing constraints
are assigned to this building block, this affiliation is mandatory for the assignment of
the differential pair sizing constraints. In other words, structures that look like dif-
ferential pairs, but are not part of a differential stage are not subject to the respective
sizing constraints. Hence, the entire path from the lowest to the highest hierarchy
level has to be taken into consideration when the sizing constraints are assigned.

The limit values like Amin in (2.6) or Vsat,min in (2.3) can be chosen by the designer as
safety margins. In this way, some heuristic account is already taken of manufacturing
and operational variations in the nominal sizing step already.

As shown above, a large number of sizing constraints is assigned to each transistor.
While transistors are the key components in electronic circuits, there may certainly be
additional components such as capacitors and resistors. For their component values,
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there are usually only explicit constraints which are comparable to the geometric siz-
ing constraints for transistors. For simplicity, the term geometric sizing constraint will
be used for any type of explicit constraint hereafter. Table 2.2 lists the total number
of equality and inequality constraints for six operational amplifiers. The first one is
the folded cascode architecture from above. Especially for larger designs, a manual
constraint assignment would be tedious and prone to errors.

Amplifier # Transistors # Equality
Constraints

# Inequality
Constraints

1 22 34 189
2 22 22 182
3 23 16 176
4 23 30 184
5 27 20 204
6 31 28 255

Table 2.2: Number of Sizing Constraints for Different Operational Amplifiers

In summary, the sizing constraints capture elementary design knowledge in the form
of mathematical expressions. They can be evaluated directly or based on DC simula-
tions. From a formal point of view, inequality sizing constraints bear resemblance to
circuit performance specifications. Yet, circuit performances usually describe the ex-
ternal black-box behavior of a circuit, while sizing constraints refer to the internal be-
havior. Moreover, circuit specifications are explicitly given by the customer, whereas
sizing constraints implicitly result from technological and topological necessities.

2.2 Feasible Parameter Space

A particular vector of designable parameter values p̃ ∈ R
m can be interpreted geo-

metrically as a point in the m-dimensional parameter space. Within this space, the
sizing constraints describe a subspace of feasible parameter values. The latter repre-
sent technically meaningful sizings according to good design practice. The different
types of constraints restrict the parameter values in particular ways.

Equality constraints are always given as explicit algebraic equations which directly
correlate the circuit parameters, cf. (2.9) and (2.10). Consequently, they can be used
to eliminate parameters algebraically. Thus, each of them effectively reduces the di-
mension of the parameter space by one. The actual sizing problem then has to be
solved in an m′-dimensional space with m′

< m. Since the algebraic parameter elim-
ination based on equality sizing constraints is trivial, only the reduced parameter
space R

m′ is considered throughout this thesis. For ease of notation, the tick indicat-
ing the reduction is omitted in the remainder of this thesis.
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2 Problem Description

Within the reduced parameter space, only inequality constraints have to be considered.
They exclude additional portions of the parameter space without further reducing its
dimension. With elementary algebraic transformations, all the sizing constraints can
be combined into a single nonlinear vector inequality which is interpreted element-
wise:

c(p) ≥ 0 ⇔ ∀
i∈{1...q}

ci(p) ≥ 0 . (2.13)

Here, the index i denotes the i th entry of the constraint vector function. The total
number of sizing constraints is q. Even for small circuits there is a large number of
constraints (cf. Section 2.1.3.2), i.e. q � m.

Figure 2.3 interprets (2.13) graphically for two constraints. Each of them describes
the positive halfspace of the associated coordinate axis. The intersection of all these
halfspaces yields the feasible constraint space C.

c2

c1

C

Figure 2.3: Feasible Constraint Space C

Since the constraints are functions of p, each of them implicitly defines a hypersur-
face in the parameter space corresponding to c(p) = 0. This hypersurface separates
the region where the associated constraint is violated (c(p)<0) from the region where
it is satisfied (c(p)≥ 0). For a geometric inequality constraint, the implicit represen-
tation of the associated hypersurface can be transformed into an explicit one analyt-
ically. After all, such a constraint is a simple algebraic expression in p, cf. (2.6)–(2.8).
An electric constraint, however, requires a nonlinear simulation, cf. (2.3)–(2.5). This
means that in this case it is usually not possible to analytically derive an explicit rep-
resentation of the associated hypersurface.

All sizing constraints are fulfilled in the feasible parameter space P ⊂ R
m:

P = {p|c(p) ≥ 0} , c(p) ∈ R
q , p ∈ R

m . (2.14)

The region P is bounded since the sizing constraints always include upper and lower
bounds for each parameter. For CMOS channel sizes, for example, minimum lengths
are ultimately given by the production technology if no larger bounds are required
due to matching considerations. Upper bounds make sure that the devices do not
become excessively large.
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2.3 Feasible Performance Space

Not all constraints effectively restrict the feasible parameter space. Some of them
are redundant, which means that their satisfaction is implied in the fulfillment of
some other constraints. For a five-dimensional constraint space with one redundant
constraint, the feasible parameter space is illustrated in Figure 2.4.

c(p) > 0
c(p) < 0p2

p1

redundant constraintP

Figure 2.4: Nonlinear Inequality Constraints Defining Feasible Parameter Space P

2.3 Feasible Performance Space

As discussed above, the sizing constraints implicitly define the feasible parameter
space P . According to Figure 2.5, there exists a corresponding feasible performance
space F ⊂ R

n, which is the image of P under the map f(·). Note that in general the
boundary of F , ∂F , is not the image of ∂P

�
.

f = f(p)

p2

p1

f2

f1

∂F
∂P

P F

Figure 2.5: Nonlinear Relation of Feasible Parameter Space P and Feasible Perfor-
mance Space F

Unfortunately, both the constraints and the performances can only be simulated
pointwise. Therefore, there is no way to determine F in its entirety. Yet, an im-
plicit definition of the feasible performance space can be given easily: It comprises
of all performance values which result from a set of feasible parameter values by
simulation. In mathematical notation, this corresponds to

F = {f | f = f(p) ∧ p ∈ P} , p ∈ P ⇔ c(p) ≥ 0 . (2.15)�
If f(·) is a homeomorphism (not to be confused with homomorphism), then the boundaries are
images of each other. A homeomorphism is a continuous bijective map with a continuous inverse.
It maps neighborhoods to neighborhoods and thus preserves orientation and boundary compo-
nents [CG78].
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2 Problem Description

2.4 Performance Space Exploration

In (2.15), F is still coupled to the parameter space. The goal of performance space ex-
ploration is to find a description of F entirely in the performance space. This allows
the evaluation of a given circuit without having to consider the actual implementa-
tion details. In general, performance space exploration identifies the boundary of F
entirely (cf. Chapter 4) or in parts (cf. Chapter 3).

Knowledge of the feasible performance space is extremely useful for a designer:

• The boundary of the feasible performance space illustrates the performance capa-
bilities of a given circuit topology: On ∂F , the performances cannot further be
improved without violating sizing constraints. Thus, topological and technolog-
ical constraints ultimately define the performance limits.

• Based on ∂F , different topologies can be evaluated and compared. Therefore,
performance space exploration enables topology selection.

• Traditional optimization techniques yield only a single point on ∂F . Its location
heavily depends on the algorithmic details. Yet, the intricate impact of these de-
tails is often not obvious to the designer. With knowledge of ∂F , the designer
can choose among “equally optimal” solution alternatives deliberately.

• Larger electronic systems are usually composed of several functional blocks.
When the performance capabilities of each of these blocks are known, then the
overall system specifications can be broken down to realistic block specifications
without having to consider the actual block implementations in full detail. In fact,
a description of F entirely in the performance space yields sizing constraints at a
higher level of abstraction.

2.5 Summary

This chapter introduced the terminology and concepts which are the basis of the dis-
cussion of different performance space exploration techniques in the following chap-
ters. Circuit parameters and circuit performances were defined, and the particular-
ities of nominal sizing were described. Owing to their fundamental importance for
performance space exploration, the systematic derivation of sizing constraints was
explained and exemplified. It was discussed how they define the feasible parameter
space and how the latter has an image in the performance space. Finally, the interre-
lationship of the feasible performance space and performance space exploration was
explained together with the role of performance space exploration within the design
process.
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Chapter 3

Nonlinear Performance Space
Exploration

Performance space exploration is a computationally expensive process. Due to re-
source limitations there is a trade-off between accuracy on the one hand and the
number of performances which can be examined simultaneously on the other hand.
Therefore, this thesis presents two exploration techniques aiming at different appli-
cation scenarios: This chapter presents a nonlinear technique aiming at high accuracy
for low-dimensional performance subspaces. Chapter 4 introduces a method, which
relies on linearizations in order to deal with high-dimensional performance spaces.

Typically, both the sizing constraints c(p) and the circuit performances f(p) are non-
linear functions in p. Accordingly, nonlinear techniques are required to accurately
identify the boundary ∂F of the feasible performance space F . In the following sec-
tion, a number of such performance space exploration techniques are discussed. To
keep the computational costs within reasonable bounds, all of them have to reduce
the problem complexity by two restrictions:

1. Only those parts of F are identified, where the performances become “simulta-
neously optimal”.

2. Out of the entirety of performances only the most important ones are selected
for exploration while minimum requirements are given for the remaining perfor-
mances.

3.1 Multi-Objective Optimization

3.1.1 Problem Formulation

Usually, the sizing process tries to simultaneously obtain values for a number of per-
formances that can be considered optimal in some sense. At the same time, the sizing
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3 Nonlinear Performance Space Exploration

constraints have to be met. Such a multi-objective or multi-criteria optimization prob-
lem can be stated as

“optimize”
p

f(p) =




f1(p)
...

fn(p)


 s.t. c(p) ≥ 0 , n ≥ 2 . (3.1)

It is rarely possible to find a unique set of parameter values that optimizes all the
performances at the same time. Instead, there is usually a trade-off situation where it
is only possible to improve one performance at the cost of another. This leads to the
concept of Pareto optimality [HM79, LTZ87, Sta88, EKO90, Ehr97, DD98, Deb01].

Without loss of generality, optimization means minimization∗ in the remainder of
this chapter . In multi-objective optimization, a vector a = [a1 . . . an]T � is considered
more optimal than a vector b = [b1 . . . bn]T if it dominates b:

a ≺ b :⇔ ∀
i∈{1...n}

(ai ≤ bi) ∧ ∃
i∈{1...n}

(ai < bi) . (3.2)

A vector f∗ � is Pareto optimal within F if it is non-dominated in F :

¬ ∃
f∈F

f ≺ f∗ . (3.3)

In Figure 3.1, point f� is dominated, but all the points on the arc between f∗a and
f∗b are non-dominated. This portion of the boundary ∂F is denoted as ∂F≺ here,
and it is called Pareto optimal front. This part of F is especially interesting for a de-
signer since it characterizes the ultimate performance capabilities of a topology and
the trade-offs involved. The points f∈∂F≺ are also called efficient points. The goal of
low-dimensional performance space exploration is to compute ∂F≺ efficiently and
accurately.

f�

∂F

f∗a
F

f∗b
∂F≺

Figure 3.1: Feasible Performance Space F with Pareto Optimal Front ∂F≺

The simultaneous exploration of numerous performances using nonlinear techniques
easily exhausts the available computing resources. Yet, in many situations only a few

∗ For maximization, the objective function can simply be multiplied by (-1).�
The superscript T identifies a transposed vector.�
Symbolic superscripts are used to mark special vectors.
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3.1 Multi-Objective Optimization

performances are of particular interest, while for the remaining ones it is enough
to meet certain minimum requirements. If for all performances optimization means
minimization, then these requirements can be given as upper bound specifications.
Mathematically, they have the same form as the sizing constraints. Additionally, both
performances and constraints have to be evaluated using simulation. Thus, they can
both be combined into an extended sizing constraint vector c̃(p). If, for example, the
focus is on the first two performances out of n (n ≥ 4 here), such a two-dimensional
optimization problem would be stated as

“optimize”
p

f̃(p) s.t. c̃(p) ≥ 0

with f̃(p) ⇔

[
f1(p)
f2(p)

]
and c̃(p) ⇔




c(p)
f3,max − f3(p)

...
fn,max − fn(p)


 , (3.4)

where c(p) represents the original sizing constraints. A comparison to (3.1) reveals
that the mathematical problem remains unchanged. Therefore, only the original
problem (3.1) is considered further.

For practical problems, it is usually not possible to obtain a description of the entire
Pareto optimal front in closed form. Instead, this region hast to be discretized by a
limited number of points. Practical experience shows that a linear interpolation of
the resulting Pareto points yields a good approximation in most cases.

A good performance space exploration method has to meet two requirements
[Zha03]: First, it should find advantageously distributed points on the Pareto front
for efficiency reasons. Second, it must be able to deal with nonconvex fronts as well.

In the remainder of this section, well-known multi-objective optimization approaches
are reviewed with emphasis on deterministic techniques. After that, an advanced
deterministic trade-off analysis technique is introduced in Section 3.2.

3.1.2 Stochastic Solution Techniques

The most common stochastic optimization techniques are simulated annealing and
genetic algorithms. Both of them mimic natural phenomena: Simulated annealing
resembles the cooling process of a melted mass, which leads to a perfect crystal lat-
tice if the temperature is lowered infinitely slowly. Genetic algorithms, in contrast,
imitate the evolution of life with its mechanism of promoting superior individuals
over the remaining ones. For further details, see Appendix C.

Especially genetic algorithms have been applied to the area of multi-objective opti-
mization [EK96, DG03, WKWC03], although simulated annealing approaches have
been reported as well [DHBS90, WGP96, UTO98].
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Stochastic techniques are popular because they are less likely to get stuck in local
optima than deterministic approaches. Unfortunately, this feature comes at the price
of enormous resource requirements [DG02, DG03].

3.1.3 Deterministic Solution Techniques

Deterministic gradient-based techniques transform the multi-objective optimization
problem (3.1) into a single-objective optimization formulation, which is then repeat-
edly solved. This is exemplified in the following subsections. For a more in-depth
treatment, see [HM79, Sta88, EKO90, Ehr97, Deb01].

3.1.3.1 Weighted Sum

One way to turn (3.1) into a single-objective optimization problem is to combine all
objectives into one by means of a scalar cost function s : R

n 7→ R. In the simplest
and most common implementation of this idea, s is a weighted sum:

s(f(p)) = wT· f(p) , w = [w1 . . . wn]T , ∀
i∈{1...n}

wi > 0 . (3.5)

This leads to the following scalar optimization problem:

min
p

wT· f(p) s.t. c(p) ≥ 0 . (3.6)

This approach is illustrated in Figure 3.2, where two contour lines of s(f) with con-
stant objective values are shown. The solution f∗ is where such a line is tangential
to ∂F≺. The orientation of the contour lines is determined by the weight vector w.
It can be shown that for a convex Pareto optimal front, every efficient point is the
solution of a problem according to (3.6) with a proper weight vector w [DD97].

.

s(f)
decreasing

∂F≺

fb w

f∗
∂F

s(f)=const.

fa

Figure 3.2: Weighted Sum: Efficient Point f∗ According to (3.6)

Yet, the weighted sum method has a major drawback: It is not able to detect all points
on nonconvex Pareto fronts. In Figure 3.3, the points on the arc between f♦ and f�

would not be obtainable using this method. Other approaches employing a scalar
cost function basically suffer from the same problem.
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f♦

f�

fa

fb

w

Figure 3.3: Weighted Sum Drawback: Nondetectable Efficient Points in Nonconvex
Regions

3.1.3.2 Objectives as Constraints

A different method to obtain a scalar optimization problem is to turn all objectives
but one into constraints:

min
p

f j(p) s.t. ∀
i∈{1...n}\{j}

fi ≤ fi,max ∧ c(p) ≥ 0 , j ∈ {1 . . . n} . (3.7)

Here, the optimization is controlled by varying the maximum values of the n–1 per-
formance constraints fi,max. In contrast to the weighted sum method, this approach
also yields the efficient points in nonconvex parts of the Pareto optimal front as
shown on the left in Figure 3.4.

In fact, the constraint method does not yield any dominated points. On the right in
Figure 3.4, an optimization with fi,max3 as a bound would yield f♦. Therefore, the
arc between f♦ and f� would result in a gap in the solution curve. However, this
consideration is primarily of academic interest since experience shows that such a
curvature is very unlikely for actual analog circuits.

f jf j

fi,max1 fi,max3fi,max2
fi fi

f♦
f�

Figure 3.4: Constraint Method Detects Efficient Points in Nonconvex Regions and
Leaves Out Non-efficient Parts

In contrast to the weighted sum formulation, which yields solutions for any weight
vector with nonnegative components, the constraint method does not lead to solu-
tions if the specified bounds are infeasible as shown with fi,max2 on the right in Fig-
ure 3.4. On the other hand, different bounds may lead to the same Pareto point. Both
effects waste valuable computing resources.

29
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In summary, the constraint method overcomes the limitation regarding nonconvex
Pareto fronts. Yet, unfavorable choices of the adjustable performance bounds do not
yield useful results.

3.1.3.3 Goal Attainment

The approach from the previous section transforms all performances but one into
constraints. The goal attainment method due to [GH75] goes even further in the
sense that it transforms all objectives into constraints:

min
p

z s.t. f(p) ≤ fgoal + z · w ∧ c(p) ≥ 0 , ∀
i∈{1...n}

wi > 0 . (3.8)

fb

fa

fgoal

f�
fb

fa

fb

fa

z · w

Figure 3.5: Goal Attainment

The geometric idea behind this approach is illustrated in the left part of Figure 3.5.
Originally developed for the determination of a single solution point, goal attainment
allows to specify a performance target fgoal. Depending on the value of the slackness
variable z, the goal can be overachieved (z < 0) or underachieved (z > 0). The weight
vector w relates the different performances. Geometrically, (fgoal + z · w) describes a
ray in the performance space. At the solution point f�, the constraint (f(p) ≤ fgoal +
z · w) is satisfied with equality.

With a proper choice of performance goal and weight vector, the determination of all
efficient points is possible, even in nonconvex Pareto fronts. The required values of
fgoal and w are not obvious, though. First of all, there are some degrees of freedom
because a single efficient point can be the result of numerous fgoal / w combinations,
cf. Figure 3.5, middle. Furthermore, even for a fixed performance goal, a uniform
variation of the weight vector does not lead to an even spread of solution points, cf.
Figure 3.5, right. Finally, for certain choices of fgoal and w, there is no solution at all,
as indicated by the dashed ray in Figure 3.5, right.

Note that the idea of a search ray in the performance space allows the identification
of efficient points even in nonconvex parts of the Pareto front. Yet, the goal attain-
ment method does not yield advantageously distributed solution points and does
not provide a methodology for the proper selection of fgoal and w. The next section
introduces an approach which bears resemblance to goal attainment but successfully
overcomes its limitations.
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3.2 Normal-Boundary Intersection

3.2.1 General Idea

∂F

H

fa

n f∗b

fb f∗a

Figure 3.6: Normal-Boundary Intersection

The Normal-Boundary Intersection method (NBI) [DD98] relies on four corner stones
as illustrated in Figure 3.6:

1. Individual minima: f∗i

There are special points f∗i in a Pareto front where the individual performances fi
show their global minima. These points are boundary points of the Pareto front
and are called individual minima. It has been pointed out earlier that caution has to
be taken not to initiate searches in regions where no efficient points can be found.
Therefore, extreme points of the Pareto front are sought in a first step. If no two
performances can be minimized at the same time, there is one unique individual
minimum for each of the n performances. Beyond their algorithmic importance,
the individual minima are of great interest to a designer.

2. Convex hull of individual minima: H
With the observation that the individual minima are boundary points of the
Pareto front, it is intuitive that there are efficient points “in between” them. The
simplest way to describe an area “in between” the individual minima is their con-
vex hull H. Geometrically, H is a polyhedron with the individual minima as its
corner points. It is (n–1)-dimensional if n individual minima exist. The basic idea
of NBI is to initiate searches for efficient points starting from points on H.

3. Normal vector to convex hull: n
A search on a line perpendicular to H toward the origin yields Pareto optimal
points if the respective portion of ∂F is convex. If the searches start from points
evenly distributed on H and run in the direction of a vector n normal to H, then
the solution points on the efficient front are also well-balanced. Note that it is not
even necessary for n to be exactly orthogonal to H. The only requirement on n is
that it contains significant negative entries for every performance fi.

4. NBI optimization problem formulation
A suitable optimization formulation captures the geometric deliberations from
above mathematically. The NBI optimization problem can be solved using non-
linear optimization.
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3 Nonlinear Performance Space Exploration

The NBI algorithm assumes that the individual minima f∗i limit the Pareto Front.
This is based on the requirement that the individual minima comprise of the global
minima of the distinct performances. If for some reason only local minima were
identified in the first step, the NBI method remains operational but yields inferior
results. In the graphs shown in Figure 3.7, the individual minimum f∗b was identified
correctly, whereas the other one, f̃∗a, is erroneous. In the left graph, only the fraction
of the Pareto front between f̃∗a and f∗b is identified, and it cannot be recognized that
the dashed part has not been found. In the right graph, the NBI algorithm yields
superfluous non-efficient points on the boundary curve between f̃∗a and f∗a. In this
case, however, the error can be noticed easily and the algorithm can be restarted with
the correct individual minimum f∗a. Fortunately, these problems are primarily of
academic interest because experience shows that real circuit behavior is much more
well-behaved as soon as the sizing constraints are satisfied.

f∗a

f̃∗a

f∗b

fb

f∗b

fafa

f̃∗afb

f∗a

Figure 3.7: Effect of Erroneous Individual Minima: Omission of Efficient (left) and
Inclusion of Non-Efficient Points (right)

3.2.2 Algorithmic Details

In this section, the four main ideas from above are elaborated mathematically.

1. Individual minima: f∗i

The individual minima f∗i can be determined using a conventional single-
objective optimization formulation in fi:

p∗i = argmin
p

fi(p) s.t. c(p) ≥ 0 , i ∈ {1 . . . n} , f = [ f1 . . . fn]T,

f∗i = f(p∗i) . (3.9)

The argmin operator yields the argument leading to the minimum objective
value.
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Let
fi,min = f ∗i

i (3.10)

denote the optimal value of performance fi as obtained from (3.9). Analogously,
fi,max could be defined as the upper bound of performance fi within ∂F≺. Since
the exact knowledge of the upper bounds is of minor interest, it is sufficient to
estimate them by the largest objective values occurring in the set of individual
minima {f∗1, f∗2, . . . , f∗n}:

fi,m̃ax = max( f ∗1
i , . . . , f ∗n

i ) , i ∈ {1 . . . n} . (3.11)

Adequate normalization of the objective values is crucial to any numeric opti-
mization. A normalization of the performance values according to (3.10), (3.11)
and

f̂i =
( fi − fi,min)

( fi,m̃ax − fi,min)
, i ∈ {1 . . . n} , (3.12)

yields a good improvement of the numerical condition of the resulting optimiza-
tion problems§. Provided that fi,min is the global minimum of performance i, this
normalization results in f̂i ≥ 0. Negative values indicate an erroneous individ-
ual minimum according to Figure 3.7, right. Since the largest value of fi within
the Pareto front was only estimated by fi,m̃ax, even larger performance values
might occur during the optimization process. Therefore, the upper bound of the
normalized performance value range is usually greater than 1. Consequently,
the suggested normalization maps the performance values to a range [0, u] with
u ≥ 1.

2. Convex hull of individual minima: H
If the normalized individual minima are combined in a matrix

F =
[
f̂∗1 . . . f̂∗n

]
, (3.13)

then their convex hull can be written as

H = F · w , w = [w1 . . . wn]T , wi ≥ 0 , ∑
i

wi = 1 , i ∈ {1 . . . n} . (3.14)

Note that the diagonal elements of F are all zero due to the normalization accord-
ing to (3.12). Geometrically, F maps a given weight vector w to a particular point
on H. This linear map establishes a straightforward relation between weights
and points as illustrated in Figure 3.8: An even spread of weights results in an
even distribution of points on H, see also Figure 3.11.

3. Normal vector to convex hull: n
The search along a family of normal vectors n offers the benefit of well-balanced

§ Obviously, this normalization cannot be used for the determination of the individual minima.
Here, other strategies should be applied such as the one outlined in Appendix A.2.1.
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Figure 3.8: Geometric Interpretation of Weights

solution points. This trait is only impaired marginally if the search direction is
not exactly normal to H. Hence, the following quasi-normal vector ñ, which is
very easy to calculate, is sufficient:

ñ = −F · 1 , 1 = [1 . . . 1]T . (3.15)

.

1

f̂a

f̂b

0
1

ñ
(−f̂∗a)

−f̂∗b

f�

f◦

Figure 3.9: Normalized NBI in 2 Dimensions

In the two-dimensional case, ñ turns out exactly normal to H owing to (3.12):
ñ=[-1 -1]T. This is illustrated in Figure 3.9: ñ results from the negative sum of the
normalized individual minima f̂∗a and f̂∗b, as indicated by the dotted arrows.
This figure also shows that NBI can trace nonconvex surfaces as well. In case of
extreme curvature, NBI also identifies points on dominated parts of ∂F , such as
the arc between f� and f◦. While this is a drawback in the strict mathematical
sense, a designer might prefer a contiguous surface to a Pareto front with a gap.
Fortunately, such extreme curvatures are very unlikely for practical circuits.
Figure 3.10 shows that if the normalization does not map all the individual min-
ima to unit vectors, then ñ is no longer normal to H. This happens if more than
two performances are examined. Yet, a search along this quasi-normal direction
also produces good results.
Note how for moderate curvature, evenly spread points on H yield well-balanced
efficient points on the Pareto front. In the case of extreme curvature, a higher sam-
pling density in certain parts of the Pareto front might be preferable. However,
some more research is required for a reliable adaptive weight selection strategy,
cf. Section 3.2.4.6.
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H
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Figure 3.10: NBI with quasi-normal vector ñ

4. NBI optimization problem formulation
Finally, the following NBI optimization formulation combines all components
described above:

[
p∗

t∗

]
= argmax

[ p
t ]

t s.t. F · w + t · ñ = f̂(p) ∧ c(p) ≥ 0 ;

wi ≥ 0 , ∑
i∈{1...n}

wi = 1 ; f∗ = f(p∗) . (3.16)

For a given vector w, the solution to this problem is a unique Pareto optimal
point f∗. Note that the objective function just consists of a newly introduced pa-
rameter t. The geometric idea behind NBI is coded in a vector equality constraint:
The term F · w ∈ H defines the base point of a search ray, which is oriented in
the direction of the quasi-normal vector ñ. Therefore, the left-hand side of the
equality constraint describes all points on this ray. The parameter t is a measure
of the distance from H. Since c(p)≥0 ensures feasibility of the parameter values,
f̂(p)∈F is a feasible performance vector according to (2.15). This optimization
formulation can be seen as a line search in the performance space: The goal is to find
a feasible performance vector that lies on the search ray and has the maximum
distance from H.
For an even spread of efficient points, the components of w can be chosen accord-
ing to

wi =
ji
k

, k ∈ N
+ , ji ∈

{
{0, 1, . . . , k · (1 − ∑

i−1
l=1 wl)} , 1 ≤ i < n

{k · (1 − ∑
i−1
l=1 wl)} , i = n

. (3.17)

This results in a total number of

Nn =
k

∑
α=0

k−α

∑
β=0

k−β

∑
γ=0

· · ·
k−ψ

∑
ω=0︸ ︷︷ ︸

(n−1) sums

1 (3.18)

points on H. For the cases n = 2 and n = 3, (3.18) simplifies to

N2 = k + 1 (3.19)

N3 =
(k + 1) · (k + 2)

2
. (3.20)
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Figure 3.11: Coverage Problems in 3-dimensional Performance Space

Figure 3.11 shows the arrangement of base points on H for n = 3 and k = 4. These
points are well-balanced and ensure a good coverage of the major part of the
Pareto front. The result is shown in the left part of Figure 3.12. Near the boundary
of ∂F≺, however, some efficient points are left out if no extra care is taken. The
dotted line in Figure 3.11 indicates that the boundary of H does not exactly corre-
spond to the boundary of ∂F≺. The reason is that the latter represents the trade-
off of performance pairs, whereas the quasi-normal vector ñ governs all three per-
formances. Consequently, an additional calculation of all two-performance trade-
offs in the three-dimensional space guarantees a complete coverage of the entire
Pareto front as shown in the right part of Figure 3.12. An analogous reasoning
applies to the exploration of more than three performances.

fbfa

fc

NBI exploration of
three-performance trade-off

additional NBI exploration of
all two-performance trade-offs

fa/ fb/ fc trade-off

fa/ fc trade-off

fa/ fb trade-off

fb/ fc trade-off

fbfa

fc

Figure 3.12: Complete Coverage of 3D Pareto Fronts
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3.2.3 Practical Solution via SQP

To operationally solve the NBI optimization problems, the work at hand uses an
adapted state-of-the-art SQP algorithm [Mat] in combination with a SPICE-like cir-
cuit simulator. Admittedly, like any gradient-based technique, SQP can get trapped
in local optima. Yet, it was observed that circuit performances are usually well-
natured as soon as all sizing constraints are fulfilled [GZEA01, DG03].

Genetic optimization approaches use the genetic difference of subsequent popula-
tions as a stop criterion. Therefore, they only yield solution points more or less close
to the Pareto front. In contrast, a deterministic search advances to the actual bound-
ary of F because it identifies the solution based on an analysis of the active con-
straints and of the slope of the objective function. The advantage is two-fold: First
of all, the solution points are really located on ∂F . Additionally, the SQP algorithm
identifies the entire set of active sizing constraints, which effectively limit the perfor-
mances. The stringency of the active constraints can even be quantified as explained
below.

3.2.3.1 Analysis of Active Constraints

With the abbreviation

g(p, t) := f̂(p) − F · w − t · ñ , (3.21)

the Lagrangian function corresponding to (3.16) is given by

L(p, t, λλλ) = t − ∑
j∈{1...q}

λj · cj(p) − ∑
j∈{1...n}

λq+j · gj(p, t) . (3.22)

Let p∗ and t∗ represent a solution to (3.16). With an appropriate vector of Lagrange
multipliers λλλ∗, the Karush-Kuhn-Tucker conditions [Fle87, NW99] can be satisfied:

∇pL(p∗, t∗, λλλ∗) = 0 (3.23)
∇tL(p∗, t∗, λλλ∗) = 0 (3.24)

c(p∗) ≥ 0 (3.25)
g(p∗, t∗) = 0 (3.26)

∀
j∈{1...q}

λj ≥ 0 (3.27)

∀
j∈{1...q}

λ∗
j · cj(p∗) = 0 (3.28)

∀
j∈{1...n}

λ∗
q+j · gj(p∗, t∗) = 0 . (3.29)

The SQP algorithm iteratively finds a solution to this nonlinear problem, which
makes the gradient of the Lagrangian function disappear ((3.23), (3.24)), and which
satisfies both the inequality (3.25) and the equality (3.26) constraints.
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The j th inequality constraint is called active in p∗ if it is satisfied with equality, i.e.
cj(p∗) = 0. Only in this case, the associated Lagrange multiplier λ j may be positive
due to (3.27) and (3.28). Conversely, the multipliers are zero for all inactive inequality
constraints. For a designer, the active inequality constraints in p∗ are of particular in-
terest because they prevent a further performance improvement. After all, the circuit
performances cannot further be improved without violating the corresponding siz-
ing constraints. Note that the vector equality constraint of the NBI problem (3.16) is
not of interest in this context because it does not correspond to any sizing constraint.

Beyond a mere identification of the performance-limiting constraints, their influence
can be quantified using the Lagrange multipliers. Mathematically, the question is
how the optimum value t∗ changes if the constraints are tightened slightly:

cj(p) − εj ≥ 0 , εj > 0 , j ∈ {1 . . . q} . (3.30)

Then, (3.22) turns into

L′(p, t, λλλ, εεε) = t − ∑
j∈{1...q}

λj · (cj(p) − εj) − ∑
j∈{1...n}

λq+j · gj(p, t) . (3.31)

Consequently, p∗, t∗, and λλλ∗ become functions of εεε. Due to (3.22), (3.28), and (3.29)

t∗(εεε) = L′(p∗, t∗, λλλ∗, εεε) . (3.32)

Hence,

dt∗(εεε)

dεεε
=

dL′(p∗, t∗, λλλ∗, εεε)

dεεε
(3.33)

=
∂L′

∂p∗
·

∂p∗

∂εεε
+

∂L′

∂t∗
·

∂t∗

∂εεε
+

∂L′

∂λλλ∗
·

∂λλλ∗

∂εεε
+

∂L′

∂εεε
. (3.34)

Here, the operators d
dx = [ d

dx1
d

dx2
. . . ] and ∂

∂x = [ ∂
∂x1

∂
∂x2

. . . ] yield row vectors,
whereas the nabla operator yields a column vector by convention. A Jacobian matrix
∂y
∂x has the derivative ∂yi

∂xk
at row i and column k. Recall from (3.23) and (3.24) that

(
∂L′

∂p∗

)T
= ∇pL′(p∗, t∗, λλλ∗) = 0 (3.35)

and
(

∂L′

∂t∗

)T
= ∇tL′(p∗, t∗, λλλ∗) = 0 . (3.36)

The partial derivative of the Lagrangian function with respect to the Lagrange mul-
tipliers is

∂L′

∂λλλ∗
= − ∑

j∈{1...q}
(cj(p∗) − εj) − ∑

j∈{1...n}
gj(p∗, t∗) . (3.37)
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3.2 Normal-Boundary Intersection

Let the set A contain the indices of the active constraints, and let I comprise of the
indices of the inactive ones. In (3.37),

cj(p∗) − εj = 0 , j ∈ A , (3.38)

for active inequality constraints and

gj(p∗, t∗) = 0 (3.39)

due to (3.26). For inactive inequality constraints with cj(p∗) − εj > 0, (3.28) yields

λ∗
j = 0 , j ∈ I . (3.40)

Assume that the components of εεε are sufficiently small not to change the set of active
constraints. Then the lambda values of the inactive inequality constraints remain
zero and thus show a zero sensitivity with respect to a variation of εεε:

∂λ∗
j

∂εεε
= 0 , j ∈ I . (3.41)

A combination of (3.37), (3.38), (3.39) and (3.41) yields

∂L′

∂λλλ∗
·

∂λλλ∗

∂εεε
= 0 . (3.42)

Furthermore, with λλλ(1...q) = [λ1 . . . λq] and (3.31),

∂L′

∂εεε
= λλλ(1...q) . (3.43)

Finally, (3.34), (3.35), (3.36), (3.42), and (3.43) yield

dt∗(εεε)

dεεε
= λλλ(1...q) . (3.44)

Therefore, the Lagrange multipliers can be interpreted as the sensitivities of the opti-
mum objective values with respect to a tightening of the active constraints.

From (3.16) it can be derived that

df̂∗ = ñ dt . (3.45)

Substitution and denormalization (cf. (3.12)) yield the sensitivities of the circuit per-
formances

d f ∗i
dεj

= ( fi,m̃ax − fi,min) · ñi · λj . (3.46)

These sensitivities are of great importance to a designer because they are a measure
of how stringent the active constraints are in a certain Pareto point.
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3.2.4 Efficiency Considerations

3.2.4.1 Choice of Beneficial Starting Point

It is well-known that especially deterministic optimization methods such as the SQP
algorithm used here require a suitable starting point in order to find a good opti-
mization result efficiently. If no problem-specific a priori knowledge is available,
then such a starting point should safely satisfy all sizing constraints and leave room
for the optimizer to move in any direction. The determination of such a starting point
is described in Appendix A.

3.2.4.2 Elimination of Conceptual Parameter

A comparison of the generic optimization formulation (3.1) to the NBI problem (3.16)
reveals that in the latter the set of designable parameters has been extended by the
conceptual parameter t. Effectively, one dimension was added to the design space,
which should make the optimization problem harder to solve.

Note that t only appears in the objective function and in the vector equality con-
straint. The latter comprises of n scalar equalities according to the number of per-
formances. Each of them relates t to one performance f̂i(p) analytically. Hence, one
equality could be removed from the vector of equality constraints in order to replace
t by a performance f̂i(p). For the two-dimensional case, (3.16) results in

min
p

f̂1 s.t. f̂1 − f̂2 + 2 w − 1 = 0 ∧ c(p) ≥ 0 , 0 < w < 1 . (3.47)

Practical experience shows that this simplification hardly affects the numerical effi-
ciency of the NBI algorithm.

3.2.4.3 Jump Start

The NBI method yields discrete points on the Pareto front. For each of them, a nu-
merical optimization is carried out using an SQP algorithm. Often, a new solution is
located in the neighborhood of the previous one. Hence, an improved efficiency can
be expected if an optimization run is initialized with the results from the preceding
run.

For the identification of the individual minima, the associated performances fi serve
as objective functions, cf. (3.9). Hence, the respective optimization problems are sub-
stantially different and have to be solved afresh.

In contrast, the intermediate points on the Pareto front are identified by solving very
similar optimization problems, which only differ in the choice of the weight vector w,
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3.2 Normal-Boundary Intersection

cf. (3.16). To efficiently solve such an optimization problem, the SQP algorithm builds
a second-order model of the Lagrangian function (3.22). Using finite differences or
the adjoint method, the Jacobian matrix of the Lagrangian can be determined via
simulation. In contrast, second-order information, as represented by the Hessian
matrix, is usually not accessible as easily. To obtain an approximation to the Hes-
sian of the Lagrangian function, the utilized SQP algorithm iteratively combines the
first-order information represented by the Jacobian with the help of the BFGS update
formula [Fle87,NW99]. The final approximation to the Hessian matrix captures valu-
able second-order information on the Lagrangian at the solution point. Fortunately,
a variation of the weight vector w in (3.21) does not affect the derivatives of the La-
grangian (3.22) and hence its Hessian. Therefore, the Hessian matrix and the solution
vector found in one optimization run can be used to initialize the SQP algorithm for
the subsequent run.

fa

without jump start

0fb

5
4

3

2
f∗b

f∗a

1

fa

0fb

5
4

3

2
f∗b

f∗a

1

with jump start

Figure 3.13: Efficiency Gain through Jump Start of Subsequent Optimization Runs

The effect of this jump start on the optimization process is visualized in Figure 3.13.
The numbers indicate the order in which the Pareto points are determined, where
0 is the starting point. Without jump start, every optimization starts afresh from
point 0. Even with jump start enabled, substantially different objective functions ap-
ply to the two individual minima (points 1 and 2) and to the first intermediate Pareto
point 3. Hence, three optimization runs have to be performed which start with a
newly initialized approximation to the Hessian matrix. Of course, the optimization
resulting in point 3 could be started from point 1. The Hessian could not be reused,
though. Experiments showed that in this case the optimization algorithm can easily
terminate prematurely because during the short trajectory to point 3 not enough in-
formation can be collected for a good Hessian approximation. Hence, a start from
point 0 turned out to be preferable in this case.

The benefit of the jump-start strategy is two-fold: First, the start from the previous
result usually shortens the optimization trajectory, and second, the reuse of the Hes-
sian matrix provides for an accurate local model of the Lagrangian right from the
beginning of the optimization run. In practice, this strategy is rewarded by a sub-
stantial efficiency gain: In the situation depicted in Figure 3.13 with 5 Pareto points
and two jump-start optimization runs, a 5%–30% reduction of the simulation count
can be expected.
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3.2.4.4 Equality vs. Inequality Constraint

In the NBI problem formulation (3.16), the equality constraint

F · w + t · ñ = f̂(p) (3.48)

defines a line in the performance space according to Figure 3.14.

fb

fa

F · w + t · ñ
incre

as
-t

t = 0

ing

Figure 3.14: Definition of Search Line by Equality Constraint

Accordingly, the iterative SQP algorithm is forced to move on this line during the
optimization process. This is illustrated conceptually in Figure 3.15: Starting from
an initial point 0 in the performance space, the optimization engine first steps on the
search line (point 1) and then takes a few more steps to find the Pareto optimal point.

1
0

2

34

fb

fa

Figure 3.15: Optimization Run Subject to Equality Constraint

While the definition of a search line according to (3.48) is elegant conceptually, it is
not advantageous numerically. After all, it heavily restricts the movements of the op-
timizer. The replacement of the vector equality constraint by an inequality constraint

F · w + t · ñ ≥ f̂(p) (3.49)

yields the same optimization results at an increased efficiency. Note that this change
results in one more similarity between NBI and the Goal Attainment method from
Section 3.1.3.3.

In (3.48), a given value of t designates a single point on the search line. A comparison
to (3.49) reveals that the inequality constraint includes the equality constraint as a
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3.2 Normal-Boundary Intersection

special case. For a fixed value of t, (3.49) designates a point on the line and addition-
ally all the points, which it is dominated by, cf. (3.2). The shaded areas in Figure 3.16
represent all these points for three increasing values of t. In each case, the upper right
corner point of the shaded area corresponds to the special case (3.48).
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fa

1

fa
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1 1

0

fb fb

fa

3

2 2

Figure 3.16: Optimization Run Subject to Inequality Constraint

The subfigures in Figure 3.16 illustrate three iteration steps of the modified optimiza-
tion formulation. With an inequality constraint instead of an equality one, the opti-
mization engine is free to surpass the performance values associated with a certain
value of t. Practical experience shows that this increased flexibility results in a signif-
icant gain in numerical efficiency, especially in combination with the jump start fea-
ture described above. In comparison to the equality-based optimization with jump
start, an additional reduction of the simulation count between 5% and 20% is typical.

3.2.4.5 Parallelization

For an even shorter execution time, the NBI approach can readily be parallelized: In
a first stage, the individual minima can be calculated in parallel according to (3.9). In
a second stage, the remaining efficient points are calculated using (3.16), which can
be done in parallel again. In order to retain the jump start feature, the examination of
the Pareto front should proceed from the individual minima toward the center of H.

3.2.4.6 Adaptive Sample Density

In Section 3.2.2, an even spread of Pareto points was suggested for a good discretiza-
tion of the Pareto front, cf. (3.17), Page 35. For the convex case, a computationally
more efficient arrangement of sampling points can be obtained if curvature informa-
tion of the Pareto front is taken into account.

In [Zha03] it was shown how the gradient projection method [GMW81, NW99] can
be used to identify planes which are tangential to the Pareto front. The main idea is
to project the gradients of the performances onto the feasible search space as defined
by the nullspace of the active constraints. This enables a description of the tangent
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planes entirely in the performance space. The result can be interpreted as mutual sen-
sitivities Sba and Sca of the conflicting performances f ∗a = fa(p∗), f ∗b = fb(p∗), and
f ∗c = fc(p∗) in a Pareto point f∗ = [ f ∗a f ∗b f ∗c ]T:

Sba =
∂ fb
∂ fa

∣∣∣∣
p∗

, Sca =
∂ fc
∂ fa

∣∣∣∣
p∗

. (3.50)

For the two-dimensional case, this is illustrated in Figure 3.17.

∆ fb

∆ fa

fb

p∗

Sba =
∆ fb
∆ fa

fa

Figure 3.17: Tangent to Pareto Front

For convex Pareto fronts, these tangents can be used to realize an adaptive sampling
strategy as illustrated in the left part of Figure 3.18. The intersection point of two
tangent lines or three tangent planes, respectively, is projected onto the convex hull of
individual minima H. This yields a new weight vector w which identifies a search ray
in a region where the Pareto front is likely to have a strong curvature. Unfortunately,
this approach may exert an unpredictable behavior for nonconvex fronts. This is
exemplified in the right part of Figure 3.18.

H

fa fa

success in convex case failure in nonconvex case

w

fbfb

Figure 3.18: Location of Additional Refinement Point by Intersection of Tangents

3.3 Summary

This chapter explained why nonlinear performance space exploration amounts to
multi-objective optimization. A systematic introduction to this optimization problem
was given, whereupon a number of nonlinear solution strategies, both stochastic and
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3.3 Summary

deterministic, were reviewed along with their shortcomings. The Normal-Boundary
Intersection (NBI) algorithm was introduced as a particularly beneficial optimiza-
tion strategy and algorithmic details were discussed. The main advantages of the
NBI method are two-fold: First, it identifies the Pareto front requiring only moder-
ate resources. Second, it is able to identify the obstacles for a further performance
improvement and even to quantify their stringency.
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Chapter 4

Linear Performance Space
Exploration

The previous chapter introduced a new approach to accurately identify the perfor-
mance limits of a given circuit topology based on nonlinear optimization. Unfortu-
nately, the nonlinear exploration of a high-dimensional performance space consumes
a prohibitive amount of computational resources. Therefore, the corresponding tech-
niques are forced to focus on a small number of performances, typically two or three.
However, analog building blocks are often characterized by far more performances.
That is the reason why an efficient high-dimensional performance space exploration
technique can play a key role in topology selection and hierarchical sizing.

In this chapter, a novel performance space exploration technique is suggested, which
calculates a linearized approximation to the range of feasible performance values. The
algorithm is based on the idea that, by its operation, a circuit maps its feasible param-
eter space to its feasible performance space. Accordingly, a linearized description of
the feasible parameter space is determined first. Then, the map into the performance
space is approximated by a linear relation of circuit parameters and circuit perfor-
mances. A new algorithm based on the Fourier-Motzkin elimination algorithm finally
yields a linear approximation to the feasible performance space. Owing to the effi-
ciency of this approach, it can deal with high-dimensional performance spaces which
are too complex for nonlinear exploration methods.

In Section 2.3, the feasible performance space was mathematically characterized as

F = {f | f = f(p) ∧ p ∈ P} , p ∈ P ⇔ c(p) ≥ 0 . (2.15)

In this formulation, F is still coupled to the parameter space. Yet, the goal of per-
formance space exploration is a description of F entirely in the performance space in
analogy to (2.14):

F = {f | k(f) ≥ 0} . (4.1)
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4 Linear Performance Space Exploration

Since the nonlinear maps f(p) and c(p) can only be evaluated pointwise, there is no
straight way to map P onto F in its entirety. Combining (2.15) and (4.1), the task at
hand can formally be described as follows: Find a vector inequality k(f) such that

c(p) ≥ 0︸ ︷︷ ︸
(I)

feasible
parameter space

P

∧ f = f(p)︸ ︷︷ ︸
(II)

map:
parameter to

performance space
p 7→ f

⇔ k(f) ≥ 0︸ ︷︷ ︸
(III)

feasible
performance space

F

. (4.2)

In most practical cases, the accurate calculation of a nonlinear description of F ac-
cording to (4.2)/(III) is not feasible. Using a novel Fourier-Motzkin-based technique,
however, it is possible to calculate a linear approximation to F efficiently.

4.1 Linearized Performance Space Description

The new linear performance space exploration technique comprises of three main
steps: Based on a linearized representation of the feasible parameter space (4.2)/(I)
and of the map from the parameter to the performance space (4.2)/(II), a linearized
description of the feasible performance space (4.2)/(III) can be calculated. These three
steps will be discussed elaborately in the following sections.

With these computationally inexpensive linearized approximations, good results
were achieved in hierarchical sizing, cf. Section 5.4. If more accurate performance
space descriptions are required, they can be computed nonlinearly according to
Chapter 3 if the computational resources allow it.

4.1.1 Linearized Feasible Parameter Space

In the neighborhood of a point p(0) in the parameter space, the constraint function
c(p) can be approximated by a linear Taylor expansion:

c(p) ≈ c(p(0)) +
∂c(p)

∂p

∣∣∣
p(0)

· ∆p , ∆p = p − p(0) . (4.3)

This linear approach is justified because experience shows that P is usually compar-
atively small, cf. Appendix A.1.6.1 and [SPS+03, DSV04].

Of course, the choice of p(0) in (4.3) is critical. If an approximation to the entire
feasible performance space is sought, then the sizing constraints should be satisfied
with maximum safety margins in the linearization point. Geometrically, this means
that p(0) is located near the center of P , where both the sizing constraints and the
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4.1 Linearized Performance Space Description

circuit performances are usually only weakly nonlinear [GZEA01]. The algorithm
presented in Appendix A yields a linearization point which meets these demands.
This results in a good linearization accuracy as exemplified in Section A.2.3.

The combination of (4.2)/(I) and (4.3) yields

∂c(p)

∂p

∣∣∣
p(0)

︸ ︷︷ ︸
C

·∆p ≥ − c(p(0))

︸ ︷︷ ︸
c

. (4.4)

The Jacobian matrix C describes the linearized behavior of the sizing constraints
with respect to the circuit parameters. Depending on the available circuit simulator,
this can be simulated directly or by finite differences.

Based on (4.4), the linearized feasible parameter space P is defined by

P = {p(0) + ∆p | C · ∆p ≥ c} . (4.5)

Geometrically, P represents a polytope in the parameter space [Zie95].

4.1.2 Linearized Map from Parameter to Performance Space

The performance function f(p) can be treated similarly to the constraints in the pre-
vious section:

f(p) ≈ f(p(0)) +
∂f(p)

∂p

∣∣∣
p(0)

· ∆p . (4.6)

The combination of (4.2)/(II) and (4.6) results in the wanted linearization

∂fp(p)

∂p

∣∣∣
p(0)

︸ ︷︷ ︸
F

·∆p = f − f(p(0))

︸ ︷︷ ︸
∆f

. (4.7)

In (4.7), the vector difference ∆f can be seen as variations of the circuit performances,
and the Jacobian matrix F describes the linearized behavior of the performances f
with respect to the parameters p.
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4.1.3 Linearized Feasible Performance Space

Based on the results from the previous sections, namely the linearized feasible pa-
rameter space (4.4) and the linearized map from parameter to performance space
(4.7), a linear approximation to the feasible performance space is sought, cf. (4.2):

C · ∆p ≥ c︸ ︷︷ ︸
(4.4)

linearized feasible
parameter space

P

∧ F · ∆p = ∆f︸ ︷︷ ︸
(4.7)

linearized map:
parameter variations

to performance variations
∆p 7→ ∆f

⇔ K · ∆f ≥ k︸ ︷︷ ︸
(4.8)

linearized feasible
performance space

F

.

If F is nonsingular, then the parameter vector ∆p in (4.7) can formally be obtained by
matrix inversion:

∆p = F−1 · ∆f . (4.9)

Using this result in (4.4) yields

C · F−1

︸ ︷︷ ︸
K

·∆f ≥ c
︸︷︷︸

k

. (4.10)

Accordingly, the linearized feasible performance space F is given by

F = {f(0) + ∆f | K · ∆f ≥ k} . (4.11)

In the general case, F is not invertible. For this situation, a two-step method was
developed to calculate (4.8), as described in the following two subsections.

4.1.3.1 Equation-Based Parameter Substitution

For the following derivations it is assumed that the parameters outnumber the per-
formances, i.e. m > n, and that F has full rank. These assumptions do not constitute
significant restrictions because for almost all practical circuit design problems there
are several degrees of freedom, which means that m > n. Moreover, if F does not
have full rank, then the algorithm described here can be applied to its range space.

Given these assumptions, there are permutations of the columns of F which allow a
partitioning of this matrix into a regular quadratic part F� and a remainder F♦,

F� = [F� F♦] , F� ∈ R
n × R

n , F♦ ∈ R
n × R

m−n , (4.12)

Applying the same permutation to the parameter vector, (4.7) can be rewritten as

[F� F♦] ·

[
∆p�

∆p♦

]
= ∆f . (4.13)
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Then, ∆p� can formally be obtained from

∆p� = F−1
� · ∆f − F−1

� F♦ · ∆p♦ . (4.14)

In analogy to (4.13), (4.4) corresponds to

[C� C♦] ·

[
∆p�

∆p♦

]
≥ c . (4.15)

The substitution of ∆p� in (4.15) by the expression found in (4.14) yields

[C� C♦]

[
F−1

�
−F−1

�
F♦

0 I

] [
∆f
∆p♦

]
≥ c (4.16)

⇔
[

C� F−1
�︸ ︷︷ ︸

X

− C� F−1
�︸ ︷︷ ︸

X

F♦ + C♦

] [
∆f
∆p♦

]
≥ c (4.17)

In (4.16), I is an identity matrix of dimension (m − n) × (m − n).

Instead of determining F−1
�

explicitly, the expression X = C� F−1
�

in (4.17) can be
obtained from solving

X F� = C� (4.18)

for X by Gaussian elimination or any other method to solve a system of linear equa-
tions. It is obvious that for this operation a good partitioning of F is essential. In this
work, those n columns from F are combined in F�, which yield the best numerical
condition. While for the solution of (4.14) this is the optimum strategy, this approach
does not consider the numerical impact of the chosen partitioning on the subsequent
manipulation steps, cf. Section 4.1.3.2. The development of a globally advantageous
partitioning requires additional research.

Note that in (4.16), the performances ∆f replaced an equal number of parameters
∆p�. Geometrically, the feasible parameter polytope was mapped from the ∆p space
into the ∆f/∆p♦ space. To obtain the feasible performance polytope in the ∆f space
according to (4.8), the remaining parameters ∆p♦ have to be eliminated as well. Geo-
metrically, this corresponds to an orthogonal projection along the coordinate axes of
the remaining parameters ∆p♦.

4.1.3.2 Inequality-Based Parameter Elimination

In a second step, the remaining (m − n) parameters ∆p♦ have to be eliminated from
(4.16). This can be done by Fourier-Motzkin elimination [Dan63, DE73], which is de-
scribed in detail in Section 4.2. This manipulation transforms (4.17) into

K · ∆f ≥ k , (4.8)

which is the sought linearized description of the feasible performance space.
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Although Fourier-Motzkin elimination has been known for a long time, it has only re-
cently gained increased attention in the area of combinatorial optimization and com-
piler construction [AI91, CR96, JLF98, CL]. Since the resulting algorithms are geared
toward discrete problems, they implement integer or rational arithmetic. Therefore,
they are not suitable for multi-dimensional performance space exploration based on
floating-point simulation data. For this reason, a dedicated Fourier-Motzkin elimi-
nation algorithm was developed, which meets the demands of a high-dimensional
performance space exploration based on floating-point simulation data.

4.2 Fourier-Motzkin Elimination

As described above, equation-based parameter substitution and parameter elimina-
tion according to Fourier and Motzkin are used to map the linearized approximation
to the feasible parameter space into the performance space. Since Fourier-Motzkin
elimination constitutes the core of the new performance space exploration algorithm,
it is discussed in detail in this section. After a general overview, an example illus-
trates the method, whereupon practical implementation aspects follow.

4.2.1 Basic Algorithm

The elimination of a variable xr, 1 ≤ r ≤ N, from a system of linear inequalities

Ax ≥ b , A =




aT
1
...

aT
M


 = [aij] , aT

i = [ai1 . . . aiN ] ,

x =




x1
...

xN


 , b =




b1
...

bM


 , M, N ≥ 2 , (4.19)

corresponds to the calculation of a new vector inequality with air = 0 for 1 ≤ i ≤ M.
To this end, Fourier-Motzkin elimination exploits two properties of inequalities:

s ≥ t ∧ y ≥ z ⇒ s + y ≥ t + z , (4.20)
s ≥ t ∧ y ≥ 0 ⇒ s · y ≥ t · y . (4.21)

The elimination of a variable xr from (4.19) comprises of two steps:

1. Sorting of inequalities
The individual inequalities aT

i x ≥ bi from (4.19) are partitioned into three sets:

(I) I>={aT
g x ≥ bg | agr > 0 ∧ g ∈ G}

(I I) I<={aT
l x ≥ bl | alr < 0 ∧ l ∈ L}

(I I I) I=={aT
e x ≥ be | aer = 0 ∧ e ∈ E}

(4.22)

with G ∩ L = G ∩ E = L ∩ E = ∅ ∧ G ∪ L ∪ E = {1 . . . M} .
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4.2 Fourier-Motzkin Elimination

2. Elimination of xr by linear combination
Note that the inequalities in I= are already independent of xr since aer= 0. They
can be included in the final set of inequalities without any further manipulation.
Geometrically, the elimination of a variable xr can be interpreted as a projection
of the original polytope along the xr axis. An inequality with aer= 0 describes
a halfspace, the boundary hyperplane of which is parallel to the xr axis. The
(N-1)-dimensional image of this hyperplane is equivalent to its intersection with
the subspace supported by the remaining parameters. This is depicted in Fig-
ure 4.1 for the three-dimensional case, where the shaded plane is projected onto
the xa/xb plane.

xr

xb

xa

aer = 0

Figure 4.1: Projection of a Parallel Boundary Plane

The set I= is then augmented by all pairwise linear combinations of inequalities
from I> and I< such that the r th coefficient is zero:

I= ∪ {(agr · aT
l − alr · aT

g ) · x ≥ agrbl − alrbg | g ∈ G ∧ l ∈ L} . (4.23)

Figure 4.2 shows how such a linear combination results in a zero coefficient of xr
and hence yields a plane which is parallel to the xr axis.

xr

xb

xa

alr < 0

agr > 0

agr · alr − alr · agr = 0 ,
cf. (4.23)

Figure 4.2: Projection of a Linear Combination of Planes

The final set of inequalities can be written in vector/matrix notation as

A\r · x ≥ b\r . (4.24)
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The entries in the r th column of A\r are all zeros. Hence, the variable xr has
effectively been removed from the system of inequalities.

4.2.2 Example

To demonstrate the Fourier-Motzkin algorithm, a hypothetic example with three cir-
cuit parameters, p1 to p3, and one circuit performance, f1 = f1(p1, p2, p3) is con-
sidered. Let the feasible parameter space be linearized at a suitable operating point
according to (4.4) and the circuit performance according to (4.7). Assume that ∆p1
has been replaced by ∆ f1 with equation-based parameter substitution:




5 1 7
1 1 −1
5 −1 −10
0 −3 −2

−7 0 −2



·




∆ f1
∆p2
∆p3


 ≥




63
1

−75
−74
−43




. (4.25)

The value range of ∆ f1 is sought, with the remaining circuit parameters varying
within the allowed bounds. Consequently, ∆p2 and ∆p3 have to be eliminated. Let
∆p2 be removed first. To this end, the inequalities are sorted according to (4.22):

(I)

(I I)

(I I I)




5 1 7 63
1 1 −1 1
5 −1 −10 −75
0 −3 −2 −74

−7 0 −2 −43




(a)
(b)
(c)
(d)
(e) .

(4.26)

For ease of notation, the resulting system of inequalities is written as an extended
matrix with a double line separating the left-hand from the right-hand side. The hori-
zontal lines separate the three sets of inequalities. The individual original inequalities
are marked by lowercase letters for further reference.

Four new inequalities according to (4.23) can be created. Consequently, inequalities
(a) through (d) are replaced by their linear combinations (a, d), (a, c), (b, c), and (b, d):

(I)
(I I)




15 0 19 115
10 0 −3 −12

6 0 −11 −74
3 0 −5 −71

−7 0 −2 −43




(a, d)
(a, c)
(b, c)
(b, d)
(e) .

(4.27)

In this new matrix, there are one positive, four negative and no zero coefficients of
∆p3. Accordingly, the final elimination step yields a system of four inequalities:

(I)

(I I)




−103 0 0 −587
235 0 0 117
279 0 0 −141
132 0 0 −774




(a, d, e)
(a, c, d)
(a, b, c, d)
(a, b, d) .

(4.28)
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4.2 Fourier-Motzkin Elimination

The inequality in the second line, for example, was derived from (4.27),(a, d) and
(4.27),(a, c). Hence, it comprises of the original inequalities (a), (c), and (d). With
(4.28), the elimination is finished and the resulting inequalities in ∆ f1 are





∆ f1 ≤ 587/103 ≈ 5.699 (a, d, e)
∆ f1 ≥ 117/235 ≈ 0.498 (a, c, d)
∆ f1 ≥ −141/279 ≈ −0.505 (a, b, c, d)
∆ f1 ≥ −774/132 ≈ −5.864 (a, b, d) .

(4.29)

Obviously, the feasible circuit performance range is only limited by inequalities
(a, d, e) and (a, c, d):

0.498 ≤ ∆ f1 ≤ 5.699 . (4.30)

Fourier-Motzkin elimination can be interpreted geometrically as an orthogonal pro-
jection along the coordinate axes as depicted in Figure 4.3: The original vector in-
equality (4.26) describes a polytope in the 3-dimensional space. The elimination of
∆p2 yields a polygon in the ∆p3/∆ f1 space. The final removal of ∆p3 leads to a line
indicating the value range of ∆ f1.

2
4
6
8

2
4
6
8

0

∆p3

20 ∆p2

original polytope
cf. (4.26)

∆ f11 2 3 4 50
∆ f1

cf. (4.28)

0 1 2 3 4 5

∆p2, ∆p3 eliminated

0

∆p3

∆ f1

∆p2 eliminated
cf. (4.27)

1 2 3 4 50

F

Figure 4.3: Fourier-Motzkin Elimination as Orthogonal Projection

4.2.3 Redundancy Detection

The example above was deliberately simple. Therefore, it does not immediately
reveal complexity as the severest challenge of the Fourier-Motzkin elimination. It
turned out in (4.29) that two inequalities were redundant. In fact, especially in high-
dimensional spaces, and after several elimination steps, a huge number of inequali-
ties can exhaust computing resources easily if no special care is taken. In Figure 4.4,
the two-dimensional projection of a dodecahedron is shown, which was originally
described by twelve inequalities. Note how many redundant inequalities occur.

The elimination order severely influences the generation of redundant inequalities
[ABS97]. Obviously, the most efficient way to cope with redundant inequalities is
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F F

without redundant inequalitieswith redundant inequalities

Figure 4.4: Generation of Redundant Inequalities

their avoidance in the first place. The number M of inequalities after an elimination
step can be calculated from the powers of the three inequality sets before the elimi-
nation:

M = |I>| · |I<| + |I=| . (4.31)
A locally optimal choice of the next parameter to be eliminated can be made by de-
termining the inequality sets from (4.22) and calculating the associated number of
inequalities according to (4.31). Finding a globally optimal elimination order, how-
ever, is still an unsolved problem [ABS97].

Let Mi be the number of inequalities before elimination step i. In the worst case, an
even number of inequalities splits up equally between I> and I< resulting in

Mi+1 =

(
Mi
2

)2
. (4.32)

Practical experience shows that typical application data comes close to this worst-
case scenario. Therefore, it is mandatory to exhaustively detect redundancies after
each elimination step. For this purpose, an efficient two-layered redundancy filter
was developed.

4.2.3.1 Fast Structural Redundancy Detection

An inequality is redundant if and only if it can be written as a positive combination of
other inequalities in the system [Zie95]. From this rule, Chernikov derived a criterion,
which allows a fast and easy identification of redundant inequalities [Che71, Zie95]:

An inequality is redundant after step i if it is based on more than i+1 original inequalities.

In (4.28), this criterion would have identified the third inequality, (a, b, c, d), as re-
dundant: After the second elimination step, it is based on more than three original
inequalities. The redundancy of the fourth inequality in (4.28), (a, b, d), would not
have been detected, though. The reason is that this criterion only identifies structural
redundancy and does not consider the numerical properties. In spite of this draw-
back, the Chernikov criterion has its value as a computationally cheap method to
expunge obvious redundancies.
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4.2.3.2 Exhaustive Numerical Redundancy Detection

Practical experience shows that an additional test identifying all redundancies is re-
quired to keep the number of inequalities within practical limits. After the first filter-
ing step using Chernikov’s criterion, each of the remaining inequalities is examined
numerically using linear programming [GLP].

aT
i x ≤ biaT

i x ≥ bi

original polytope extension resulting from
removal of i th inequality

Figure 4.5: Numerical Detection of Redundant Inequalities

In a system of inequalities, the i th inequality aT
i x ≥ bi is irredundant if and only if

its removal extends the feasible space. As illustrated in Figure 4.5, this extension is
described by the original system of inequalities with the i th inequality replaced by its
inverse, aT

i x ≤ bi [BW94]. Hence, inequality i is irredundant if and only if



aT
1
...

−aT
i

...
aT

N




x ≥




b1
...

−bi
...

bN




(4.33)

has feasible solutions. This can be checked efficiently using the first phase of the
simplex algorithm. It turns out that often more than 90% of the CPU time of the
entire performance space exploration algorithm is required by this second filtering
step. Yet, it is this very step that keeps the overall resource requirements in practical
limits, cf. Section 5.3.2.2. In this way, the Fourier-Motzkin elimination method can be
used for real-world circuits in spite of its non-polynomial complexity [Sch98].

4.3 Comparison to Alternative Approaches

Geometrically, the main task of the exploration algorithm presented in this chapter
is to determine the image of a polytope under a projective linear map. While this
approach is new within the area of performance space exploration, there are publi-
cations dealing with similar geometric problems, albeit from different points of view.
Two of them are outlined in the following sections. They are discussed in more detail
in Appendix B.

57



4 Linear Performance Space Exploration

4.3.1 Geometric Approach: Feasible Performance Space as an
Image of a Hypercube under a Linear Map

In the fabrication process of analog circuits, the circuit parameters are subject to ran-
dom variations. If the parameters are statistically independent and upper and lower
deviation limits are known, then the parameter range can be described by means of
a hyperbox. If a linear relation of parameters and performances is assumed, then the
resulting range of performance values is characterized by a polytope. Geared toward
analog test, [MV89] describes an algorithm to determine such a performance poly-
tope. Even though analog test is quite different from performance space exploration,
with a mere change of terminology, the method could be applied to performance
space exploration as well.

When parameters vary independently within known bounds, then their values can
be described by a hyperbox. With a suitable normalization, this hyperbox can be
transformed into a hypercube which is centered within the coordinate system:

∆P = {∆p | ∀
i∈{1...m}

−1 ≤ ∆pi ≤ 1} . (4.34)

Applied to ∆P , a linear map
∆f = F · ∆p . (4.35)

yields a centro-symmetric polytope

∆F = {∆f | K · ∆f ≥ k} . (4.36)

The key idea of the algorithm is to interpret the columns of F as a basis of the perfor-
mance space ∆F . The method exploits the fact that according to (4.34) the parameter
vectors are mutually independent, and the coordinates of the vertices consist of the
numbers 1 and −1 only. Based on geometric reasoning, the boundary hyperplanes of
∆F can be derived from sums and differences of the columns of F. More details are
provided in Appendix B.1.

Comparing (4.34), (4.35) and (4.36) to (4.4), (4.7) and (4.8), it turns out that this ap-
proach is less general than the new Fourier-Motzkin-based technique: It does not
allow linearized sizing constraints in their general form, where boundary hyper-
planes are not parallel to the coordinate axes. Unfortunately, the algorithm cannot
be adapted for this case since it relies on the special properties of ∆P according to
(4.34).

4.3.2 Algebraic Approach: Feasible Performance Space as
Solution Space of a System of Linear Equations

Chernikov [Che71] developed an algorithm to determine all nonnegative solutions
of an underdetermined homogeneous system of linear equations:

A · x = 0 , x ≥ 0 , A ∈ R
(n×m) , n < m . (4.37)
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In [Lee90], linear symbolic equations are used to describe the behavior of small cir-
cuits. By elementary algebraic transformations, variable substitutions and the in-
troduction of slack variables (cf. Section B.2), the circuit equations can be written
according to (4.37). Depending on the actual circuit, the vector x can comprise of
branch currents, node voltages, power dissipations, impedance values, and so on.

In a simulation-based environment, a linearized circuit description according to (4.7)
can also be written in the form of (4.37):

F · ∆p = ∆f ⇔ [F − I] ·
[

∆p
∆f

]
= 0 . (4.38)

Here, I is an (n × n) identity matrix. With (4.3), (4.4) and

c(p) − c(p(0)) = ∆c , (4.39)

sizing constraint variations can be related to parameter variations:

C · ∆p = ∆c . (4.40)

Then, (4.38) can be extended by the linearized constraint functions:

[
F −I O
C O′ −I′

]
·




∆p
∆f
∆c


 = 0 . (4.41)

In (4.41), I and I′ are identity matrices of appropriate dimensions, whereas O and O′

are null matrices of correct size.

With variable substitutions and the introduction of slack variables according to
[Lee90], lower and upper bounds can be imposed on the unknowns:

∆pmin ≤ ∆p ≤ ∆pmax (4.42)
∆fmin ≤ ∆f ≤ ∆fmax (4.43)
∆cmin ≤ ∆c ≤ ∆cmax . (4.44)

Owing to the available degrees of freedom in the circuit sizing process, (4.41) is sat-
isfied by an entire solution space. In the case of electronic circuits, the parameter,
performance, and constraint values are bounded for physical reasons. Therefore, and
due to the linearity of (4.41)–(4.44), the entirety of all solutions constitutes a polytope.
It can be expressed as the convex hull of its vertices vi, which may be written as the
columns of a matrix V:




∆p
∆f
∆c


 = V · u , V ∈ R

(m+n+q)×s , u ≥ 0 , ∑
i∈{1...s}

ui = 1 . (4.45)

Here, s is the number of vertices of the solution polytope. Chernikov’s algorithm
[Che71] can be used to determine (4.45) [Lee90].
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This approach can be used for linearized performance space exploration. Usually,
bounds are given for all parameters according to (4.42). Due to (4.2)/(I), the sizing
constraints only have a lower bound. With (4.4) and (4.40), the linearized sizing con-
straints can be written as

c ≤ ∆c . (4.46)

This is in line with (4.44) since the specification of bounds is optional and no upper
bounds need to be given. The resulting linearized feasible performance space can be
obtained from those n equations of (4.45) which refer to ∆f:

F = {f0 + ∆f | ∆f = Ṽ · u} ,

Ṽ =




v(m+1),1 . . . v(m+1),s
...

...
...

v(m+n),1 . . . v(m+n),s


 , u ≥ 0 , ∑

i∈{1...s}
ui = 1 . (4.47)

Note that even if an irredundant polytope description according to (4.45) is available,
the selection of a subsystem of equations introduces redundancy. This is plausible
even without a rigorous derivation: If, for example, only one performance fi were of
interest, its feasible range would be described by the convex hull of s points:

∆ fi = [vi,1 . . . vi,s] · u , u ≥ 0 , ∑
i∈{1...s}

ui = 1 . (4.48)

Yet, for a definition of a scalar interval, a maximum number of two points is required.
Hence, at least (s− 2) points in (4.48) must be redundant. It is shown in Appendix B.2
that Chernikov’s algorithm is the dual of the Fourier-Motzkin elimination method.
Consequently, it also tends to produce a large amount of redundancy even if no se-
lection according to (4.47) is done: In (4.45), the matrix V does not only contain actual
vertices of the solution polytope, but also numerous redundant points which are lo-
cated inside the polytope. In [Lee90], the problem of redundancy was not discussed
since only small circuits were considered.

So far, the discussion focused on how the algorithm from [Lee90] can be used for lin-
ear performance space exploration. Yet, this algorithm has no notion of bottom-up
constraint propagation and top-down specification propagation. Instead, it simulta-
neously calculates the feasible spaces of parameters, performances, and constraints, cf.
(4.45). For performance space exploration, only those n rows of V are exploited which
refer to performances. Analogously, a top-down propagation of performance specifi-
cations can be done if only the first m equations of (4.45) are considered∗. The feasible

∗ A linear top-down propagation of specifications is trivial if the resulting parameter space has to
be represented by a system of inequalities. Let performance specifications be written as f ≥ fspec .
Upper bounds can easily be accommodated by variable substitution. With (4.4) and (4.7), the
feasible parameter space is [

C
F

]
· ∆p ≥

[
c

fspec − f(p(0))

]
. (4.49)
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space of the sizing constraints are usually of minor concern. Since Chernikov’s algo-
rithm raises similar complexity challenges as Fourier-Motzkin elimination, it does
not appear favorable to solve the complex problem (4.41) and then only use part of
the solution. This was of minor importance in [Lee90], where only small circuits were
examined, but for linear performance space exploration with a large number of sizing
constraints this should be avoided. In addition, Chernikov’s algorithm requires non-
negative variables. To accommodate general bounds according to (4.42)–(4.44), slack
variables have to be defined (cf. Appendix B.2), which further enlarge the problem.

In (4.45), the feasible performance space is described by a convex hull of vertices. For
a given performance vector f∗, the check for containedness is not cheap in this case.
In contrast, this check is trivial if a representation of F as an intersection of halfspaces
according to (4.8) is available: It amounts to a numeric evaluation of the correspond-
ing system of inequalities and a subsequent check for negative components of the
resulting vector. This is particularly beneficial, for example, in hierarchical sizing
where the optimization engine has to check the feasibility of parameter vectors fre-
quently.

4.4 Summary

This chapter described how a linear approximation to the feasible performance space
of a circuit can be derived: A linear Taylor expansion of the sizing constraints yields
an approximation to the feasible parameter space. By its operation, a circuit maps its
parameters to its performances. When this map is linearized as well, the resulting
linear description of the feasible performance space can be calculated. It was shown
how equation-based parameter replacement and inequality-based parameter elimi-
nation yield the desired result. The corresponding elimination algorithm according
to Fourier and Motzkin was discussed in detail. It was interpreted graphically and
explained with the help of an elaborate numeric example. The generation of redun-
dant inequalities was identified as the greatest challenge of this algorithm, where-
upon an effective two-step redundancy removal strategy was presented. Finally, two
algorithms from the literature were briefly reviewed, which could be adapted for lin-
ear performance space exploration. However, it should be noted that none of them
was originally designed for this purpose.
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Chapter 5

Experimental Results

After a thorough discussion of the theory behind the two new performance space ex-
ploration techniques, this chapter provides experimental results. They illustrate typ-
ical applications and provide additional information concerning the algorithmic be-
havior of the algorithms. Section 5.2 deals with nonlinear performance space explo-
ration using Normal-Boundary Intersection. Linear performance space exploration
based on Fourier-Motzkin elimination is demonstrated in Section 5.3, whereupon
Section 5.4 suggests hierarchical optimization approach which incorporates the new
linear exploration technique.

5.1 Sample Circuits

Most of the experimental results in Sections 5.2 and 5.3 were obtained from a folded
cascode and a Miller compensated operational amplifier as depicted in Figure 5.1.
The corresponding numbers of transistors, inequality sizing constraints and des-
ignable circuit parameters are given in Table 5.1.

Figure 5.1: Folded Cascode (l) and Miller (r) Operational Amplifiers
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Circuit # Transistors # Inequality
Sizing Constraints # Parameters

Folded Cascode 22 189 11
Miller 8 79 8

Table 5.1: Characteristics of Sample Circuits

5.2 Normal-Boundary Intersection

In this section, the major features of the NBI-based performance space exploration
technique are highlighted: Section 5.2.1 shows how it can accurately identify the
trade-offs of competing performances even in the nonconvex case. Section 5.2.2
shows how the sizing constraints which are active in the Pareto points can be used
to identify those components of the circuit, which inhibit a further performance im-
provement. In addition, the stringency of the active constraints can also be specified
quantitatively. Since Pareto fronts represent the ultimate performance capabilities of
the underlying circuit topologies, these fronts can be used to compare different imple-
mentation alternatives as illustrated in Section 5.2.3. In a design process, this allows
the selection of the topology which matches the given specifications best. In spite of
the high accuracy of this nonlinear exploration method, its resource requirements are
moderate as shown in Section 5.2.4.

5.2.1 Trade-off Analysis

For the folded cascode architecture from Figure 5.1, a few two-performance trade-offs
are given below. While for the NBI-based exploration method only two or three per-
formances can be selected for examination, constraints can be given for the remaining
“invisible” ones. Here, a minimum 3 dB frequency of 500 Hz was specified in order to
avoid pathologic circuit behavior. The other performances were left unconstrained.

In Figure 5.2, all the performances have to be maximized. So the NBI method identi-
fies the upper right part of the boundary of the feasible performance space∗. There-
fore, the performance values have to be multiplied by –1 in order to obtain a min-
imization problem according to (3.9)–(3.16). In this sense, the points labeled 1 are
the individual minima of the DC gain and of the gain margin procedurally (cf. (3.9)),
while they actually indicate their maxima. The same applies to the 3 dB frequency
and to the transit frequency in the points labeled 5. Three line searches in the perfor-
mance space are performed according to (3.16) in order to obtain points 2 to 4. Linear
interpolation yields an approximation to the sought Pareto curve. These two exam-
ples show that Pareto fronts by no means have to be convex. In such cases, traditional
exploration methods would have run into trouble.
∗ The shaded areas merely symbolize the feasible performance space. Of course, the extension of F

in the unexamined directions remains unknown.
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Figure 5.2: Nonconvex Pareto Curves

The left trade-off curve in Figure 5.2 features two parts with strong curvatures, some-
times referred to as knees [Das98]. In the mathematical sense, all efficient points are
“equally optimal”. Yet, if a high 3 dB frequency is a concern, then the DC gain should
not exceed 55 dB. On the other hand, gain values beyond 75 dB can only be realized
for very low 3 dB frequencies.
In contrast, the trade-off between gain margin and transit frequency in the right part
of Figure 5.2 is almost linear, without any distinct region.

80 084 4088 80
0

120
0

4 2

8
4

12
6

1 12
23

3
4 4

5
5

F F

Phase Margin [◦]

D
C

Po
w

er
[m

W
]

D
C

Po
w

er
[m

W
]

Slew Rate [V/µs]

Figure 5.3: Convex Pareto Curves

Two trade-off curves involving the static DC power consumption are shown in Fig-
ure 5.3. Here, power has to be minimized, while phase margin and slew rate are
subject to maximization. Both Pareto curves are convex with one distinct knee each.

It is evident from Figure 5.3, left, that the folded cascode amplifier can achieve a
maximum phase margin of roughly 88.5◦. The trade-off curve shows that a phase
margin up to about 85◦ can be achieved at a fairly low power consumption, while the
“last few degrees” come at the price of prohibitively raising the energy dissipation.
On the other hand, lowering the phase margin below 80◦ does not further reduce the
power consumption.
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5 Experimental Results

The right Pareto curve in Figure 5.3 shows that for slew rates up to about 100 V/µs,
one mW of DC power consumption buys about 25 V/µs of slew rate. For extreme
slew rates, this rate deteriorates slightly.

These are only a few examples of how trade-off curves convey an insight to the be-
havior of a given circuit. In the actual design process, the designer can use this type
of analysis to examine the capabilities of a newly designed circuit or to evaluate the
suitability of an existing topology for a given set of specifications.

5.2.2 Examination of Limiting Sizing Constraints

In addition to a mere identification of the trade-off relationships as demonstrated
above, the new NBI-based exploration technique can also identify the limiting sizing
constraints and quantify their stringency. To demonstrate this feature, the trade-off
between gain margin and transit frequency from Figure 5.2 was selected for an in-
depth analysis. The corresponding Pareto curve and a labeled version of the ampli-
fier schematic are combined in Figure 5.4 for further reference. Table 5.2 gives an
overview of the active constraints and will now be discussed in detail.
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Figure 5.4: Amplifier Schematic and Corresponding Pareto Curve

Discussion of Table Structure

In the example presented here, a number of 12 sizing constraints turn out to have
a limiting effect on the performances. They are labeled by roman numbers in the
leftmost column. The second column lists the name of the constraints along with the
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5.2 Normal-Boundary Intersection

Pareto Points

1 2 3 4 5

I
minimum length
N2, 4, 6, 10, 12,
P2, 4, 6, 8, 10

sens. GM
[dB

%
]

0.0385 0.0586 0.0716 0.0763 0.0000

sens. Ft
[MHz

%
]

0.0000 0.3192 0.3896 0.4155 0.4853

II minimum width
N7, 8

sens. GM
[dB

%
]

0.1102 0.0305

sens. Ft
[MHz

%
]

0.0000 0.1658

III
minimum length
N1, 3, 5, 7, 8, 9, 11,
P1, 3, 5, 7, 9

sens. GM
[dB

%
]

0.0174 0.0391 0.0600 0.0000

sens. Ft
[MHz

%
]

0.0949 0.2129 0.3269 0.8493

IV maximum width
N9, 10, 11, 12

sens. GM
[dB

%
]

0.0269

sens. Ft
[MHz

%
]

0.0000

V maximum width
P7, 8, 9, 10

sens. GM
[dB

%
]

0.0098

sens. Ft
[MHz

%
]

0.0535

VI maximum width
N5, 6

sens. GM
[dB

%
]

0.0125 0.0262 0.0000

sens. Ft
[MHz

%
]

0.0683 0.1426 0.5600

VII maximum width
N7, 8

sens. GM
[dB

%
]

0.0000

sens. Ft
[MHz

%
]

0.4136

VIII
minimum drain-
source overdrive
P5

sens. GM
[dB

%
]

0.0006 0.0033 0.0032 0.0034 0.0000

sens. Ft
[MHz

%
]

0.0000 0.0179 0.0219 0.0185 0.0160

IX
transistor in
strong inversion
N8

sens. GM
[ dB

mV
]

0.1023

sens. Ft
[MHz

mV
]

0.0000

X
minimum gate-
source overdrive
N12

sens. GM
[dB

%
]

0.0077

sens. Ft
[MHz

%
]

0.0000

XI
minimum drain-
source overdrive
P6

sens. GM
[dB

%
]

0.0027 0.0030 0.0033 0.0000

sens. Ft
[MHz

%
]

0.0146 0.0164 0.0177 0.0171

XII
minimum drain-
source overdrive
N6

sens. GM
[dB

%
]

0.0020 0.0034 0.0000

sens. Ft
[MHz

%
]

0.0109 0.0186 0.0684

Table 5.2: Active Sizing Constraints
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transistors they refer to. The different types of active constraints are separated by a
double line: I to III are lower parameter bounds, IV to VII constitute upper parameter
bounds, and VIII to XII are electric constraints.

For each constraint, there are two rows which list the sensitivities of the two per-
formances gain margin (GM) and transit frequency (Ft) with respect to constraint
variations. The numeric values indicate how much the performances improve when
the respective sizing constraints are relaxed. For lower and upper bounds, relaxation
means a decrease and an increase of the limit values, respectively. Most electric con-
straints feature a safety margin, which can be lowered. Hence, the sensitivities could
be given in dB/µm or MHz/mV, for example. However, this would make it impos-
sible to compare the stringency of different types of constraints. For this reason, the
performance variations in dB and MHz, respectively, are related to a relative relax-
ation of the constraints. For upper and lower bounds, these relaxations are given in
percent of the limit values, and for electric constraints in percent of the safety mar-
gins. For example, for gain margin and a lower bound, a sensitivity value of 1 dB/%
would mean that if the lower bound were decreased by 1%, then the gain margin
would increase by 1 dB in the linear model. Of course, the actual improvement in
the real circuit might differ due to nonlinear effects. Additionally, a relaxation of one
constraint can activate another one which used to be inactive.

The last five columns list the actual sensitivity values for the five Pareto points ac-
cording to Figure 5.4. Empty fields mean that a constraint is not active. For a proper
interpretation of the sensitivity values, some specifics of the NBI method have to be
taken into account. Recall that for the determination of the individual minima, only
one performance is considered regardless of the other one. Graphically, this corre-
sponds to a further move in parallel to the respective coordinate axis, as indicated by
the arrows at point 1 and 5 in Figure 5.4. That is the reason why in Pareto point 1 the
sensitivity of the transit frequency is always zero and in point 5 the same is true for
the gain margin. For the intermediate points 2 to 4, a line search in the performance
space is carried out in the direction of the quasi-normal to the convex hull of indi-
vidual minima, cf. Figure 3.10. Consequently, there are always nonzero sensitivity
values for both performances in these points.

Analysis of Active Constraints

A look at constraints I and III reveals that the entire biasing circuitry is driven toward
minimum lengths. Constraint III shows that for all Pareto points above the minimum
transit frequency, the lengths of both the PMOS (P1, 3, 5, 7, 9) and the NMOS (N1, 3,
5, 9, 11) current mirrors hit their minimum values. Together with corresponding level
shifters (PMOS: P2, 4, 6, 8, 10; NMOS: N2, 4, 6, 10, 12), these current mirrors form a
cascode current mirror according to Table 2.1. The level shifters even have minimum
lengths for all Pareto points, cf. constraint I.
The only minimum width can be found in the differential input pair (N7, 8) for am-
bitious gain margins (constraint II, points 1, 2).
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5.2 Normal-Boundary Intersection

The examination of the active upper parameter bounds shows that they only refer to
device widths, but not to lengths. The focus moves from the NMOS part of the out-
put stage (N9, 10, 11, 12) in point 1 (constraint IV) to the corresponding PMOS part
(P7, 8, 9, 10) in point 2 (constraint V) and to the active load (N5, 6) of the differential
input pair in points 3 to 5 (constraint IV).
While for high gain margins the input pair (N7, 8) requires minimum widths (con-
straint II), it has the maximum width for the maximum transit frequency (constraint
VII, point 5).

As can be seen from constraint VIII, keeping transistor P5 in saturation is a prob-
lem throughout the entire Pareto front. The associated sizing constraint specifies the
minimum drain-source overdrive voltage:

vds(Ni) − (vgs(Ni) − Vth,n) ≥ Vsat,min,n for NMOS devices, 1 ≤ i ≤ 12 (5.1)
−(vds(Pj) − (vgs(Pj) − Vth,p)) ≥ Vsat,min,p for PMOS devices, 1 ≤ j ≤ 10 (5.2)

In these formulae, vds(·) denotes the drain-source voltage of a transistor and vgs(·) its
gate-source voltage. The threshold voltages for NMOS and PMOS are given by Vth,n
and Vth,p, respectively. The safety margins Vsat,min,n and Vsat,min,p are chosen by the
designer.
Constraint XI shows that not only the saturation of transistor P5 causes a performance
limitation, but also the saturation of P6 which forms a cascode with P5.
For increasing transit frequencies (points 3 to 5), the saturation of N6 which is located
in the active load of the differential pair becomes an obstacle for further performance
improvement (constraint XII).
In Pareto point 1, where the highest gain margin is achieved, the output load seems
to cause an asymmetry in the two branches of the output stage which are formed by
P7, P8, N9, N10 and P9, P10, N11, N12, respectively. This asymmetry is reflected by
two active constraints which ensure sufficient gain-source voltages for the transistors
N12 (X) and N8 (IX).
The minimum gate-source overdrive voltage of transistor N12 is specified by

vgs(N12) − Vth,n ≥ Vgs,min,n . (5.3)

Strong inversion of N8 is ensured by

vgs(N12) − Vth,n ≥ 0 . (5.4)

Since in (5.4) there is no safety margin which could be used as a reference, the cor-
responding sensitivity has to be given in dB/mV and MHz/mV, respectively. That
is no drawback because this is a “hard” constraint which cannot be relaxed without
sacrificing functionality.

So far, the actual numeric values of the performance sensitivities have not been con-
sidered. As discussed above, these values quantify how a relaxation of a certain
constraint can be traded off for a performance improvement. If a constraint relax-
ation of about 10% is considered acceptable, then the achievable gain improvements
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are about 1 dB at most (constraint II, point 1). For the transit frequency, additional
8.5 MHz are achievable in the best case (constraint III, point 5). At this point, it should
be noted that the sensitivities referring to electric constraints are even about one order
of magnitude smaller than those relating to parameter bound constraints

�
. Consid-

ering these numbers, it becomes obvious that a constraint relaxation for the sake of
performance improvement should only be done carefully. First of all, the improve-
ments will usually only be moderate. Furthermore, lowering safety margins and
minimum device sizes is likely to promote nonlinear effects, which can severely im-
pact the robustness of the circuit. An enlargement of devices is less critical if circuit
size is no major concern. Yet, a topological modification might be preferable to mere
constraint relaxations in most cases.

In summary, valuable design information can be gained by examining the set of ac-
tive sizing constraints and the associated sensitivities: problem areas can be spotted
and the corresponding sensitivity information can be interpreted as a measure of
stringency.

5.2.3 Topology Selection

As mentioned before, the Pareto fronts of a circuit topology describe its ultimate per-
formance capabilities for a given technology. Therefore, these fronts can be used to
compare different topologies in order to select the best one for a certain design task.
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Figure 5.5: 3D Pareto Fronts)
The only exception is constraint IX, which, however, is an inflexible constraint as discussed earlier.
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5.2 Normal-Boundary Intersection

Figure 5.5 shows two 3D Pareto fronts relating DC gain, phase margin, and slew rate
for the Miller (left) and the folded cascode architecture (right). In both cases, a phase
margin exceeding 60◦ was specified due to stability considerations. As in the previ-
ous section, the folded cascode amplifier additionally had to exhibit 3 dB frequencies
beyond 500 Hz to avoid pathologic behavior.

The homogeneously filled areas represent the three-performance trade-offs, whereas
the hatched parts indicate the extensions of the Pareto fronts due to the additional
pairwise trade-offs, cf. Figures 3.11 and 3.12 in Section 3.2.2. Note, for example, that
in the case of the Miller amplifier, the trade-off between phase margin and DC gain
significantly extends the overall Pareto front, whereas the trade-off between phase
margin and slew rate only contributes an insignificant part. Furthermore, the Miller
architecture yields a slightly nonconvex Pareto front, whereas the folded cascode
Pareto front is convex.

406080100 40120

60

60

70
80

8090

0

100

40

120
60

80

80

120

0

40

80

120

Slew Rate
[V/µs]

Phase
Margin [◦]

Rate
[V/µs]

Slew

Phase
Margin
[◦]

Miller

Folded Cascode

DC Gain [dB]
DC Gain [dB]

Figure 5.6: Topology Comparison Using Three-dimensional NBI

To allow an easy comparison, both Pareto fronts are shown in the same graph in Fig-
ure 5.6. The left subfigure adopts the viewpoint from Figure 5.5. While both circuits
are comparable in terms of phase margin, the Miller amplifier achieves slightly higher
DC gains. The most striking difference is the range of achievable slew rates. The
folded cascode amplifier is far superior in this respect. The right graph in Figure 5.6
depicts the same surfaces from behind and impressively shows how the folded cas-
code Pareto front arches over the Miller counterpart.

Three-dimensional graphs unfold their full potential in an interactive environment,
where by turning and moving the designer can get a vivid impression of the surface.
In static contexts, 2D representations of the essential trade-offs can be sufficient. As
an example, Figure 5.7 focuses on the trade-off between DC gain and slew rate.
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Figure 5.7: Topology Comparison Using Two-Dimensional NBI

From the above Pareto fronts it is evident that for low-speed applications the Miller
amplifier can be a good architecture considering its small size. For more ambitious
speed requirements, the folded cascode amplifier is the architecture of choice. That
way, Pareto fronts can be a valuable tool for interactive topology selection.

5.2.4 Computational Effort

The new NBI-based nonlinear performance space exploration method relies on
transistor-level circuit simulations for accuracy. Hence, the resource requirements
are a legitimate concern. All the experiments in this section were done on a single
3 GHz Pentium 4 machine with 1 GB of RAM. Table 5.3 summarizes the characteris-
tics of the experiments along with the respective computational effort.

To correctly interpret the number of simulations, it should be noted that the sizing
constraints and the performances are combined into simulation groups. This means,
for example, that for a certain parameter vector, all corresponding electric constraint
values including the static power consumption can be extracted from a single DC
simulation. Analogously, one AC simulation yields all small-signal performances.
Finally, one more simulation is required for the transient performances.
In the available simulation environment, the determination of constraint and perfor-
mance sensitivities had to be done using finite differences. To calculate the sensitivity
of a single performance group with respect to parameter variations, m+1 simulations
were required with m being the number of parameters. Consequently, a single sensi-
tivity calculation required 12 simulations for the folded cascode amplifier and 9 for
the Miller architecture. This is one of the reasons for the significant differences in the
simulation counts. Obviously, the simulation time can be reduced significantly if a
simulator is used which yields the sensitivities directly.

For the stochastic simulation-based exploration method presented in [DG02, DG03],
computation times of several hours were reported. In contrast, the suggested ap-
proach yields 2D Pareto fronts within less than fifteen minutes and 3D fronts within
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Amplifier Performance
Trade-Off

# Pareto
Points

Figure
Reference

# Simu-
lations

Wallclock
Time

[min:sec]

folded
cascode

DC gain
3 dB frequency 5 5.2 1553 15:13

folded
cascode

gain margin
transit frequency 5 5.2 1368 13:18

folded
cascode

phase margin
DC power 5 5.3 1348 12:38

folded
cascode

slew rate
DC power 5 5.3 1537 14:15

Miller
DC gain

phase margin
slew rate

16 5.5, 5.6 3264 31:18

folded
cascode

DC gain
phase margin

slew rate
16 5.5, 5.6 5434 49:30

Miller DC gain
slew rate 5 5.7 1133 10:35

folded
cascode

DC gain
slew rate 5 5.7 1681 14:34

Table 5.3: Characteristics of All Experiments from Section 5.2

tens of minutes. Since these runtimes were obtained on a single machine, a paral-
lelization would even shorten the execution times. Both a parallel simulation and a
concurrent determination of different Pareto points are feasible. The moderate run-
times make the new exploration method applicable to practical circuit design and to
topology selection in analog synthesis. Of course, this technique is well-suited not
only for cell-level design using circuit simulation but also for system-level design
using adequate models for the circuit performances.

5.3 Fourier-Motzkin Elimination

In the following sections, a few features of the Fourier-Motzkin-based exploration
technique are presented. Section 5.3.1 illustrates its use for the visualization of three-
dimensional performance spaces, which enables a fast interactive topology selection.
To evaluate the approximation accuracy, linearized results are compared to accurate
nonlinear ones. The runtime behavior of the Fourier-Motzkin elimination is dis-
cussed in detail in Section 5.3.2.
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5.3.1 Topology Selection

The primary goal of the suggested linear performance space exploration technique
is to derive a linear description of the entire high-dimensional circuit performance
space. After an equation-based parameter replacement, the remaining parameters are
removed using Fourier-Motzkin elimination. Of course, it is also possible to eliminate
all but three performances. The resulting three-dimensional feasible performance
space can then readily be visualized.
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Figure 5.8: 3D Performance Spaces

Figure 5.8 shows the estimated feasible performance spaces of DC gain, phase mar-
gin, and slew rate for the Miller and the folded cascode amplifiers from Figure 5.1.
This experiment was similar to the nonlinear one that led to the results in Figure 5.5.
The only difference was that no minimum phase or minimum 3 dB frequency were
specified. In spite of obvious linearization errors such as negative slew rates in the
case of the folded cascode amplifier, these linearized feasible performance spaces im-
mediately reveal the strengths and weaknesses of the different amplifiers: The Miller
architecture achieves higher DC gains, but it is far inferior to the folded cascode am-
plifier in terms of slew rate. The combination of both feasible performance spaces into
a single graph allows an even easier topology comparison as shown in Figure 5.9, left.

Since only phase margins exceeding 60◦ are displayed in the combined graph, the
results are directly comparable to the 3D Pareto fronts from Figure 5.6. Those fronts
are shown again in the right part of Figure 5.9 for convenience. It is evident that
the linear approximations are reasonably accurate. Yet, a closer look reveals some
inaccuracies: While the achievable slew rates were estimated very well for the folded
cascode amplifier, they have been underestimated slightly for the Miller topology.
For both amplifiers, the maximum DC gains were met accurately, whereas the mini-
mum gain was predicted too optimistically for the Miller amplifier. Finally, the phase
margins were overestimated by roughly 10◦ in both cases. In spite of these inaccura-
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Figure 5.9: Performance Comparison of Two Operational Amplifiers

cies the linear estimates correctly reflect the characteristics of the two amplifiers. This
is an excellent trade-off between accuracy and speed. The total computation time of
these estimates, including simulation, performance space exploration and visualiza-
tion, was about 1.5 minutes on a 3 GHz Pentium 4 machine, cf. Section 5.3.2.3. In
contrast, the nonlinear exploration required 81 minutes in total.

5.3.2 Runtime Behavior

This section provides a detailed insight into procedural details of the Fourier-
Motzkin elimination through the discussion of intermediate data: Section 5.3.2.1
shows how the number of inequalities evolves during the determination of an eight-
dimensional performance space, whereupon the effectiveness of the overall redun-
dancy detection strategy is demonstrated in Section 5.3.2.2. Effective CPU times are
presented in Section 5.3.2.3.

5.3.2.1 Determination of an Eight-Dimensional Performance Space

Low-dimensional performance spaces can be handled by nonlinear techniques, albeit
with long runtimes. The true strength of the linearized approach, in contrast, lies
in the examination of high-dimensional spaces which can no longer be handled by
nonlinear methods.
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For the following example, the eight-dimensional performance space of the folded
cascode amplifier from Figure 5.1 was examined. According to Table 5.1, this circuit
consists of 22 transistors and has 11 designable parameters. An automatic topological
analysis resulted in a total number of 189 inequality sizing constraints. For perfor-
mance space exploration, the following steps were carried out:

• Simulation-based determination of linearized circuit descriptions according to
(4.4) and (4.7).

• Initial numerical redundancy check according to Section 4.2.3.2: 38 out of 189
inequalities were identified as irredundant.

• Equation-based replacement of designable parameters 1, 5, 6, 7, 8, 9, 10, and 11.
• Fourier-Motzkin elimination of remaining parameters 2, 3, and 4:

Parameter 2 Parameter 3 Parameter 4

|I<| 19 142 357 (I)
|I>| · 16 · 74 360 (II)
|I=| + 3 + 2 + 0 (III)
# Inequalities = 307 = 10510 = 128520 (IV)

# Void − 5 − 8 − 6 (V)

# Redundant Inequalities
Detected by Chernikov − 0 − 9674 − 126136 (VI)

# Redundant Inequalities
Detected by Linear
Programming

− 84 − 111 − 562 (VII)

# Irredundant Inequalities = 218 = 717 = 1816 (VIII)

Recall that for the elimination of a certain parameter, the set of all inequalities is
partitioned into three subsets I<, I>, and I=. They comprise of those inequali-
ties which have a negative, a positive or a zero coefficient at the position of the
respective parameter. The total number of inequalities right after the parame-
ter elimination and before any redundancy detection can be calculated from the
powers of these sets according to lines (I) to (III) and (4.31). The respective results
are given in line (IV).
The following lines give details on the redundancy detection process: A few
inequalities had only zero coefficients and could be discarded (line (V)). The
Chernikov criterion (line (VI)) and the linear-programming-based redundancy
detection (line (VII)) left a final number of irredundant inequalities as given in
the last line. Note how the efficiency of the Chernikov criterion improved in the
course of the successive elimination steps. Although the relative importance of
the second redundancy removal step seems to vanish at the same rate, the oppo-
site is true as will be shown in the next section.
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5.3 Fourier-Motzkin Elimination

5.3.2.2 Effectiveness of Redundancy Detection

To illustrate the effectiveness of the suggested two-step redundancy detection, an op-
erational transconductance amplifier was examined. It featured 11 parameters and
3 AC performances. Consequently, eight Fourier-Motzkin elimination steps were re-
quired. An initial redundancy check using linear programming reduced the number
of original inequalities from 120 to 47. The impact of different detection strategies is
illustrated in Figure 5.10. Without any redundancy detection, the number of inequal-
ities exploded already after the second elimination step and the calculations had to
be stopped due to resource limitations. The exclusive use of the Chernikov criterion
was only able to postpone this explosion by one step. With the help of redundancy
detection via linear programming, the resource consumption could be kept within
practical limits.
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Figure 5.10: Effect of Different Redundancy Detection Strategies

5.3.2.3 Computational Effort

An outstanding efficiency in high-dimensional spaces is the greatest strength of the
new linear performance space exploration technique. This claim is well supported
by the runtimes of the experiments presented above, which have all been carried out
on a 3 GHz Pentium 4 machine with 1 GB of RAM.

Topology Selection The left part of Figure 5.9 shows three-dimensional linearized
performance spaces of the Miller and the folded cascode amplifiers from Figure 5.1.
The entire performance space exploration process which was required to create that
graph consisted of the following steps:
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1. Circuit simulation to obtain a linearized circuit description according to (4.4) and
(4.7).

2. Equation-based parameter replacement and inequality-based parameter elimina-
tion via Fourier-Motzkin.

3. Visualization of the resulting geometric object [Fra04].

To put the different contributions to the overall computation time into perspective,
they are listed separately for both amplifiers in Table 5.4. The contribution of the
second step was not subdivided further because the effort of parameter replacement
is negligible compared to the cost of parameter elimination as will be shown later.

Amplifier Simulation Parameter Replacement/
Elimination Visualization

Miller 6 sec 2 sec 4 sec
folded cascode 15 sec 56 sec 14 sec

Table 5.4: Contributions to Overall Computation Time for Linearized Performance
Spaces in Figure 5.9

It is striking that the parameter replacement and elimination, respectively, only plays
a minor role for the Miller amplifier. The reason is that this circuit has only eight pa-
rameters, which means that just five elimination steps had to be done. For the folded
cascode amplifier with eleven parameters, eight elimination steps were needed. Ad-
ditionally, the folded cascode amplifier is much larger and is subject to far more in-
equality sizing constraints (189 vs. 79, cf. Table 5.1).
Nonetheless, the complete topology comparison required just 97 seconds in total.
This is especially remarkable in comparison to nonlinear exploration times of far
more than an hour.

The table above highlighted two exploration runs for a certain combination of three
performances. To get a better idea of the resource consumption of the Fourier-
Motzkin elimination method, it is instructive to perform the projection for all per-
formance triples and to compare the computation times. Since the available ampli-
fier testbench provided a total number of eight performances, there were 56 different
triples. Figure 5.11 summarizes the resulting projection times for both amplifiers
in the form of histograms. The x-axis, which represents the calculation time, was
divided into 50 equal intervals or bins. The y-axis corresponds to the number of pro-
jection runs, which had calculation times from within the respective bins.

First of all, it is evident that the projections for the Miller amplifier are more than two
orders of magnitude faster than those for the folded cascode architecture. This ob-
servation is in line with the result presented in Table 5.4, and the reasons were given
above.
Yet, the most important effect to note is the distribution of the computation times. In
both cases, most of the samples cumulate in the lower half of the entire time range.
The individual computation times differ significantly, though. It is obvious that the
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Figure 5.11: Histogram Showing Projection Times for All Performance Triples

execution time of the Fourier-Motzkin elimination algorithm is not only determined
by the circuit size and the number of elimination steps. Instead, the computational
effort clearly depends on the numerical properties of the actual problem. Unfortu-
nately, the derivation of reliable numerical criteria which allow an evaluation of input
data and a prediction of the computation times to be expected is still in an early stage,
cf. footnote on Page 102 in Section A.1.4.1.

Eight-Dimensional Performance Space Section 5.3.2.1 presented a detailed anal-
ysis of how the number of inequalities evolved during the exploration of an eight-
dimensional performance space. A breakdown of the corresponding calculation
times can be found in the left part of Table 5.5.

This table reflects three procedural stages:

• Initialization: The simulation data is read and the equation-based parameter re-
placement is carried out. This yields the original set of inequalities. At this stage,
the Chernikov criterion is not applicable since it can only detect structural redun-
dancy, which is introduced in the course of the elimination process. Therefore,
the inequalities are directly passed on to an initial numerical redundancy detec-
tion. Note that the computation time for these steps, and for the equation-based
parameter replacement in particular, is negligible.

• Parameter Elimination: To obtain the eight-dimensional feasible performance
space, three Fourier-Motzkin elimination steps were required. It is evident that
the computational effort increases with each step due to a rising number of in-
equalities. Note that the numerical redundancy detection using linear program-
ming consumes the largest fraction of the CPU time.

• Output of Final Inequalities: The internal representation of the final inequalities is
converted into a text format which can easily be read by other tools. The resource
consumption is marginal.
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Experiment from
Section 5.3.2.1

Experiment from
Section 5.3.2.2

Creation of
Inequalities;
Chernikov

Numerical
Redundancy

Detection

Creation of
Inequalities;
Chernikov

Numerical
Redundancy

Detection
Initialization < 1 sec < 1 sec < 1 sec < 1 sec
Elimination Step 1 < 1 sec 1 sec < 1 sec < 1 sec
Elimination Step 2 < 1 sec 8 sec < 1 sec 1 sec
Elimination Step 3 3 sec 169 sec < 1 sec 2 sec
Elimination Step 4 1 sec 29 sec
Elimination Step 5 3 sec 74 sec
Elimination Step 6 2 sec 14 sec
Elimination Step 7 2 sec 18 sec
Elimination Step 8 1 sec 7 sec
Data Output 2 sec < 1 sec
Total 183 sec 154 sec

Table 5.5: Numerical Redundancy Detection as Major Contributor to Overall Com-
putation Time

Effectiveness of Redundancy Detection To justify the effort of an expensive nu-
merical redundancy detection, Section 5.3.2.2 showed that only with this second de-
tection step the overall resource requirements could be kept under control. The right
part of Table 5.5 provides details on the calculation times. In this example, the effort
for both initialization and the final data output was negligible. As could be expected
from Figure 5.10, the resource requirements for redundancy detection reached their
maximum in the fifth elimination step in accordance to the number of inequalities.
The determination of the final 327 inequalities took 154 seconds in total and required
just 7.3 MB of main memory. The numerical redundancy detection consumed about
94% of the entire CPU time.

5.4 Hierarchical Sizing

While the previous section focused on the Fourier-Motzkin-based exploration tech-
nique itself, a more comprehensive view follows, which puts this method into a larger
context.

When design decisions can be based on the trade-off of only a few performances, then
nonlinear optimization-based methods are the tools of choice. Yet, for example in hi-
erarchical sizing as outlined in Section 1.1.3, high-dimensional performance spaces
have to be explored. This cannot be done using nonlinear techniques due to exces-
sive resource requirements. This is the area where the suggested linear exploration
technique can unfold its full potential.
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The problem of hierarchical sizing is described in Section 5.4.1. A hierarchical sizing
method which embeds the suggested linear exploration technique is presented in
Section 5.4.2. As an illustration, a biquad bandpass filter design is demonstrated.

5.4.1 Problem Description

Simulation-based circuit sizing requires a large number of circuit simulations. Small
to medium-sized analog circuits with short simulation times and a moderate num-
ber of designable parameters can be sized based on transistor models and simu-
lators like SPICE. Yet, for complex electronic circuits this approach results in im-
practical resource requirements due to long simulation times and a large num-
ber of designable parameters. There is common agreement about the necessity of
a hierarchical approach for the simulation-based sizing of larger analog circuits,
e. g. [CCC+97, DNAV99, VDL+01, HS96, DGV+04]. Yet, there is little material in the
literature when it comes to concrete solutions. A problem of paramount importance
is the suitable formulation of physically motivated, possibly high-dimensional siz-
ing constraints at higher levels of abstraction. This problem is a main target of the
suggested linear performance space exploration method. As an illustration, a hierar-
chical sizing approach is presented below, which features two levels of abstraction.

In the preceding parts of this thesis, circuits were considered from a non-hierarchical
point of view as a netlists of transistors. This level of abstraction is referred to as
block level henceforth, and the designable parameters p are called block parameters.
Accordingly, the performances f are named block performances. At this level, the sizing
process can be written in the form of the following optimization problem * :

p̂ = argmin
p

∥∥(
f(p) − f̂

)
/f̂

∥∥ s.t. c(p) ≥ 0 . (5.5)

Here, the operator / denotes a component-wise vector division. The specifications
and the corresponding sizing result are marked by a hat. The goal of the above op-
timization formulation is to meet the specifications as closely as possible. The sizing
constraints make sure that only “technically meaningful” sizings are considered.

Larger analog circuits, such as the PLL in Section 1.1.3, are composed of functional
blocks of small to medium size. Each of these blocks can be modeled behaviorally,
e.g. using a hardware description language like VHDL-AMS [CB99, APT02]. If the
entire circuit is described as a netlist of such behavioral models, then a simula-
tion speedup of two to three orders of magnitude can be expected [Ziz01, SGA03b].
Hence, simulation-based sizing becomes viable again. This level of abstraction is
called system level henceforth, and the large circuit is referred to as system accord-
ingly. In the case of a PLL, the system performances s include the lock time and the+

This is a simple optimization formulation for conceptual purposes. For a more in-depth discussion,
cf. [Sch02].
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natural frequency, among others. The actual behavior of the models can directly be
adjusted by appropriate parameters. Since the models and their underlying circuit
realizations are supposed to behave identically, the performances of the functional
blocks also serve as model parameters, which are called system parameters here. Ex-
amples are delay, gain, or dynamic properties. The system-level netlist might inherit
some elementary components from the block-level netlist, which do not need behav-
ioral modeling. Examples are capacitors or resistors in feedback networks. Since
these components are not subject to abstraction, their parameters are shared between
both levels of abstraction. Therefore, they are called shared parameters here.

Assume that a given electronic system is partitioned into N functional blocks. Let the
performances of the i th block be referred to as fi. Then the parameters at system level
comprise of the block performances and the shared parameters, which are written as
fN+1 in this context:

f =




f1
...

fN
fN+1


 . (5.6)

The system performances s result from a quick behavioral simulation:

s = s(f) . (5.7)

In analogy to the block level, the range of feasible system parameters should be re-
stricted by sizing constraints at system level. Obviously, the feasible range of the sys-
tem parameters fi, 1 ≤ i ≤ N, is limited by the feasible block performance spaces.
Of course, there may be constraints on the shared parameters also: kN+1(fN+1) ≥ 0.
Additionally, all system parameters f may be subject to constraints, which refer to
the system as a whole: ksys(f) ≥ 0. These constraints control system behavior, which
would usually not be specified explicitly. They might, for example, ensure stability.
Since they have to be evaluated using system simulation, they correspond to electric
sizing constraints at block level.

Let ki(fi) ≥ 0 with i ∈ {1 . . . N} denote the feasible performance space of block i
according to (4.2). Then the sizing constraints at system level can be written as

k(f) ≥ 0 ⇔




k1(f1)...
kN(fN)

kN+1(fN+1)
ksys(f)



≥ 0 . (5.8)

With such a system description, a two-step hierarchical sizing can be carried out as
depicted in Figure 5.12.

In a first step, a single optimization is carried out entirely at system level:

f̂ = argmin
f

∥∥(
s(f) − ŝ

)
/ŝ

∥∥ s.t. k(f) ≥ 0 . (5.9)
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Figure 5.12: Hierarchical Sizing

In this way, the system specifications ŝ are broken down to individual block spec-
ifications f̂i. The system sizing constraints k(f) make sure that these specifications
can actually be met by the available circuit topologies. One more optimization per
functional block yields the actual component values at block level:

∀
1≤i≤N

(
p̂i = argmin

pi

∥∥(
fi(pi) − f̂i

)
/f̂i

∥∥ s.t. ci(pi) ≥ 0
)

(5.10)

The shared parameters of the elementary components keep their values regardless of
the level of abstraction. The alias

p̂N+1 ≡ f̂N+1 (5.11)

emphasizes their validity at the lower level of abstraction also. The final sizing at
block level is

p̂ =




p̂1...
p̂N

p̂N+1


 . (5.12)

Figure 5.13 summarizes this hierarchical sizing approach.

5.4.2 Iterative Sizing Approach

If an accurate nonlinear description of the high-dimensional system sizing con-
straints k(f) were available, then a straight top-down optimization according to Fig-
ure 5.13 would solve the sizing problem.

The Normal-Boundary Intersection technique presented in Section 3.2 can be used
to accurately identify the boundaries of feasible block performance spaces. Like all
nonlinear performance space exploration methods, however, this method consumes
a prohibitive amount of resources if high-dimensional performance spaces have to be
examined.
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system specifications ŝ

p̂i = argmin
pi

∥∥(
fi(pi) − f̂i

)
/f̂i

∥∥
s.t. ci(pi) ≥ 0

p̂N+1 = f̂N+1

f̂ = argmin
f

∥∥(
s(f) − ŝ

)
/ŝ

∥∥
s.t. k(f) ≥ 0

sizing at system level
≡

block specifications
∪

sizings of
elementary components

f̂ =




f̂1
...

f̂N
f̂N+1




p̂ =




p̂1
...

p̂N
p̂N+1




block sizings
∪

sizings of
elementary components

≡
sizing at block level

Figure 5.13: Overview of Hierarchical Sizing Procedure

In this situation, an approximation to the feasible system parameter space can be ob-
tained using the Fourier-Motzkin-based exploration approach. Due to linearization
inaccuracies, however, unachievable block specifications might result from (5.9). Us-
ing a biquad filter as an example, the following section demonstrates how an iterative
technique compensates for linearization inaccuracies and thus enables a successful
hierarchical sizing.

5.4.2.1 Example Circuit

OUTIN−
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VBP

VDD

VBN
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Figure 5.14: Operational Transconductance Amplifier
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In Figure 5.14, an operational transconductance amplifier (OTA) is given in the form
of a transistor netlist [GESSL95]. Based on symmetry requirements and additional
heuristics, the number of essential block parameters pi was reduced to nine. They
comprise of the widths and lengths of the transistors and the bias current and volt-
ages. To adequately describe the electrical AC behavior of the OTA, the block perfor-
mances fi do not only include its transconductance g, but also its input and output
impedance, among others. In total, five important AC performances were identified.
This OTA can be used as a building block for the biquad bandpass filter given in
Figure 5.15 [GESSL95].
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Figure 5.15: OTA-C Biquad Bandpass Filter Schematic

For an efficient simulation of the entire filter, the OTAs were modeled behaviorally
in VHDL-AMS based on [GESSL95]. The models feature electrical pins in spite of the
elevated level of abstraction. Consequently, the filter is represented by a netlist of
eight behavioral OTA models and two capacitors. In AC domain, the system perfor-
mances s comprise of the center frequency f0, the pass-band gain G0, and the quality
factor Q.

Due to symmetries in the filter, two pairs of OTAs, namely OTA4/OTA7 and
OTA5/OTA6 can be sized identically. The values of the two capacitors are shared
parameters, which are not transformed hierarchically. Consequently, the biquad fil-
ter has 6 · 5 + 2 = 32 system parameters.

With i ∈ I = {1, 2, 3, (4/7), (5/6), 8} and fC = pC = [C1 C2], Table 5.6 summarizes
the characteristics of the two abstraction levels.

Block Level System Level

Netlist Elements transistors,
elementary components

VHDL-AMS models,
elementary components

Parameters pi = [WM1 LM1 . . . IB] , pC f = [f1 . . . f8 fC]
Performances fi = [g Rout Cout . . . ] s = [ f0 G0 Q]

Table 5.6: Abstraction Levels of Hierarchical Filter Description
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5.4.2.2 Iterative Sizing Algorithm

Given high-dimensional block performance spaces, the sizing constraints at system
level can only be approximated. Hence, the capabilities of the functional blocks can
be over- or underestimated. In the first case, unachievable block specifications could
result from a system sizing according to (5.9). In the second case, the capabilities of
the entire system would not fully be exploited. In engineering and science, a wide
range of nonlinear problems is routinely solved by algorithms which combine lin-
earization and iteration. For hierarchical optimization, too, this is a viable approach.

Linear approximations are accurate in the neighborhood of the linearization points.
Ideally, the performance spaces of the functional blocks should be linearized in the
neighborhood of the final sizing. Of course, there is no a priori knowledge to do this.
Yet, iteration enables a simultaneous improvement of both the linearization and the
sizing: Based on initial approximations to the feasible block performance spaces, the
system specifications are translated to a block-level sizing according to Figure 5.13. If
at system and/or block level some specifications were missed, then another iteration
can be started and the linearizations are updated with the current sizings as new
linearization points. The main idea is that even if a sizing result does not meet the
specifications, at least it identifies promising regions in the block parameter spaces.
The circuit behavior in these regions can then be approximated more accurately by
new linearizations. After that another top-down sizing run is carried out.

∀
i∈I

determine p̂i with c(p̂i) ≥ 0 by initial sizing, cf. Appendix A (I)

∀
i∈I

determine Ci , ci , Fi , fi(p̂i) via simulation at p̂i, cf. (4.4) and (4.7) (II)

∀
i∈I

calculate Ki, ki, cf. (4.8) (III)

f̂=argmin
f

∥∥(
s(f) − ŝ

)
/ŝ

∥∥ s.t. ∀
i∈I

Ki ·
(
fi − fi(p̂i)

)
≥ ki

∧ fC ≥ fC,min ∧ −fC ≥ −fC,max (IV)

[Ĉ1 Ĉ2] = p̂C = f̂C (V)

∀
i∈I

(
p̂i = argmin

pi

∥∥(
fi(pi) − f̂i

)
/f̂i

∥∥ s.t. ci(pi) ≥ 0
)

(VI)

∥∥(
s(f̂) − ŝ

)
/ŝ

∥∥
∞

< ε̂s ∧
∥∥(

fi(p̂i) − f̂i
)
/f̂i

∥∥
∞

< ε̂f

∧
∥∥(

s(p̂1, . . . , p̂8, p̂C) − ŝ
)
/ŝ

∥∥
∞

< ε̂v (VII)

I ={1, 2, 3, (4/7), (5/6), 8}; / is element-wise vector division; ‖ · ‖∞ denotes L-Infinity-Norm

Figure 5.16: Hierarchical Sizing Algorithm
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The outline of a hierarchical sizing algorithm for the above filter is given in Fig-
ure 5.16. There are seven procedural steps. The linear performance space exploration
described in Chapter 4 is done in steps II) and III).

I) Determination of initial linearization point by means of initial sizing:
For a technically meaningful sizing, the OTAs have to satisfy all sizing constraints
at block level. For symmetry reasons, for example, the drain-source voltages of
the two transistors M1 and M2 must not differ too much. Therefore, it is advis-
able to choose an initial linearization point which safely satisfies all block-level
constraints c(p̂i) ≥ 0. This is true for the center point of the feasible parameter
space Pi, which is the result of the initial sizing process according to Appendix A.
In addition, this point yields good linearization results since the circuit behavior
is usually only weakly nonlinear in the center of the feasible parameter space.

II) Determination of linearized circuit description via simulation:
A linear approximation to the feasible parameter space Pi of OTA i is given by Ci
and ci, cf. (4.4). The relation of block parameters pi and block performances fi is
approximated by Fi and fi(p̂i) according to (4.7).

III) Calculation of system sizing constraints:
For each OTA, a linearized representation of its feasible performance space Fi
according to (4.8) is determined using the Fourier-Motzkin-based exploration
method.

IV) System sizing:
This sizing step is carried out entirely at system level. The associated sizing task
can be interpreted mathematically as an optimization problem. The argmin oper-
ator yields the system parameter vector f̂ leading to the minimum relative devia-
tion of the achieved performances from the specified values ŝ. The system sizing
constraints limit the optimization engine to the feasible OTA performance spaces
and to the upper and lower capacitance bounds.

V) Assignment of shared parameters:
The determination of the shared parameters is trivial.

VI) Simultaneous block sizing:
In the block sizing step, the remaining system parameters f̂1 . . . f̂8 turn into the
block specifications of the individual OTAs. One block-level sizing run per OTA
yields the block parameter values.

VII) Check of exit conditions:
If both the system sizing and the block sizing were successful, then the filter per-
formances can be simulated at block level (if the circuit size allows it) in order to
verify the sizing result§.

§ Of course, further criteria are required to ensure a reliable termination.
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5.4.2.3 Exemplary Hierarchical Sizing Run

To illustrate the hierarchical sizing algorithm, it is applied to the above filter for the
specifications

ŝ = [ f̂0 Ĝ0 Q̂] = [1 MHz 1.00 50] . (5.13)

The procedural steps are as follows:

• Initial sizing
• First iteration

– Linear performance space exploration with initial sizing result as linearization
point.

– The system sizing yields s(f̂) = [1.050 MHz 1.020 45.00].
The maximum relative difference between the achieved system performances
s(f̂) and the system specifications ŝ is εs =

∥∥ 45−50
50

∥∥ = 10%.
– The detailed results of the block sizing are omitted here for brevity. Instead,

the table below gives the maximum relative difference between the achieved
block performances and the block specifications for each OTA.

OTA1 OTA2 OTA3 OTA4,7 OTA5,6 OTA8

εf [%] 28.6 2.0 1.9 2.0 2.1 2.1

– The exit conditions are not met: For ε̂s = ε̂f = 2%, both the system sizing and
the block sizing terminate with unacceptable errors. Consequently, another
iteration is required.

• Second iteration
– Linear performance space exploration:

Based on sizing result from previous iteration.
– System sizing:

s(f̂) = [0.9974 MHz 1.006 49.87] ⇒ εs = 0.6%.
– Block sizing:

OTA1 OTA2 OTA3 OTA4,7 OTA5,6 OTA8

εf [%] 0.23 0.14 0.12 0.13 0.13 0.11

– Exit conditions:
The sizing errors both at system and at block level meet the tolerances of
ε̂s = ε̂f = 1%. A final non-hierarchical block-level simulation of the entire
filter is easily possible in this case due to a small circuit size. It yields the
system performances

s(p̂1, . . . , p̂8, p̂C) = [0.9985 MHz 1.002 49.50] ⇒ εv = 1.0% = ε̂v .

The final verification confirms the success of the hierarchical sizing process.
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5.5 Summary

In this example, just two iterations were required in order to find a suitable sizing.
The initial approximation to the feasible system parameter space did not allow the
optimization engine to choose system parameter values which could make the filter
meet the specifications. Besides, the specifications for OTA1 turned out as overam-
bitious. Nevertheless, the first iteration identified parameter vectors in promising
areas of the feasible OTA parameter spaces. New linearizations in the neighborhood
of the block-level sizing results p̂i led to an improved accuracy in the areas of inter-
est. In the second iteration, it turned out that the capabilities of the filter had been
underestimated at system level previously. By the same token, more realistic approx-
imations to the feasible OTA performance spaces were obtained, which prevented
unachievable block specifications for all OTAs.

5.5 Summary

This chapter demonstrated how the suggested performance space exploration meth-
ods can be applied in practice. It was shown how the nonlinear Normal-Boundary
Intersection technique enables a trade-off analysis between competing performances
and allows an analysis of the performance-limiting sizing constraints both in terms
of identification and quantification. The resulting Pareto fronts represent the ulti-
mate performance capabilities of a given circuit topology. Therefore, they facilitate
the comparison of competing circuit realizations and hence enable a topology selec-
tion according to a given set of specifications. For all examples, the simulation times
were given, which show that the resource requirements are moderate, especially in
comparison to stochastic techniques.

In contrast to Normal-Boundary Intersection, the Fourier-Motzkin-based linear ex-
ploration technique primarily aims at high-dimensional performance spaces. Of
course, this method can be applied to three dimensions as well in order to perform a
topology selection by inspection. This was demonstrated using the same circuits and
performances as for Normal-Boundary Intersection. A comparison of the results re-
vealed a reasonable accuracy of the linear technique. It was shown that the demands
on the computational resources were remarkably low even in high-dimensional per-
formance spaces.

To illustrate an important application of linear performance space exploration, this
technique was embedded in a hierarchical sizing method which features two lev-
els of abstraction. In this context, the descriptions of the feasible block performance
spaces provide the link between the levels of abstraction. Using a biquad bandpass
filter as an example, it was shown that this sizing approach works even with approxi-
mate performance space descriptions because iteration compensates for linearization
inaccuracies.
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Chapter 6

Conclusion

In recent years, there has been an ongoing trend toward more and more functional-
ity even in medium or low cost consumer electronics. The mass market of handheld
computing and communication devices has seen a tremendous growth. Within these
gadgets, digital processing cores offer mobile computing power that was found in
desktop computers a short time ago. RF circuitry allows communication at any lo-
cation and networking on the fly. Yet, complexity is only one challenge. In a global
competition, a short product development cycle is essential since only the first few
suppliers in the market can benefit from attractive profit margins, whereas the fol-
lowers might suffer financial loss in spite of good products. In this situation, it seems
paradox that modern process technologies offer more performance potential than
is actually used in the designs. The reason is that the design tools improve at a
much slower pace than the process technology. This so-called design productivity
gap widens although there are decent tools for digital synthesis readily available.
Unfortunately, the situation is even worse in the analog domain because of the many
degrees of freedom inherent to analog design. This discipline often becomes the bot-
tleneck in the entire design process due to the lack of automatic tools. This problem
is even going to intensify for “smart” systems, which feature analog and digital elec-
tronics in order to combine sensing, computing and acting.

Within analog design, the exploration and evaluation of different implementation
alternatives in the conceptual stage is a particularly time-consuming task. Therefore,
new design tools which focus on this particularly rewarding part of the entire design
process have been presented. The suggested methods unfold their full potential in
an environment where two methodological premises hold:

• Simulation is employed to analyze the circuit behavior. As an alternative, sym-
bolic equations could be used. They can be evaluated very fast, but only yield
approximate results. Moreover, symbolic equations partially require a laborious
setup process and usually refer to DC and AC performances only. In contrast,
simulation can be applied to any type of performance and yields accurate results.
Finally, the use of a simulator reflects the industrial status quo. This facilitates the
transition of the tools from the academic to the industrial environment.
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6 Conclusion

• To keep the resource requirements in moderate bounds in spite of expensive cir-
cuit simulations, deterministic optimization algorithms are used, as opposed to
stochastic ones. The latter are less likely to get stuck in local optima, but their
resource requirements are much higher.

The need for performance space exploration arises naturally in the design process:
For a given circuit topology and production technology, the question occurs what
the ultimate performance capabilities of the circuit are. More precisely, the feasi-
ble range of performance values is sought. While most other publications on per-
formance space exploration remain vague about what actually restricts the feasible
performance space, this thesis shows that a systematic and comprehensive setup of
sizing constraints is the basis of any successful performance space exploration. This
setup relies on two cornerstones:

• A given circuit topology is analyzed hierarchically in a bottom-up fashion start-
ing from the individual transistors. It was shown how the circuit topology can be
represented by means of a topology tree. With the entire circuit as the root and
the individual transistors as the leaves, each node of the tree represents an analog
building block at a particular hierarchical level.

• A generic rule set captures fundamental circuit design knowledge. For each path
from root to leaf the appropriate rules are instantiated, which results in a number
of sizing constraints for the individual transistors. These constraints specify the
DC operating point and ensure saturation, matching or symmetry conditions,
among others.

Any particular circuit sizing result which satisfies the sizing constraints is in line with
good design practice. Using simulation it can be mapped to a point in the feasible
performance space. Consequently, the sizing constraints represent the basis of the
entire performance space exploration process.

There is a trade-off between the accuracy of the exploration technique and the num-
ber of performances which can be analyzed at the same time. In this thesis, two
exploration methods were presented which feature a combination of accuracy and
efficiency well beyond the state of the art. The two approaches focus on different
application scenarios:

• For the accurate exploration of low-dimensional performance spaces with typically
two or three performances, a nonlinear method was derived. It incorporates the
Normal-Boundary Intersection (NBI) algorithm and offers full simulator accu-
racy.

• For the approximate exploration of high-dimensional performance spaces with pos-
sibly ten or more performances, a linear method was developed. It relies on the
Fourier-Motzkin elimination (FME) algorithm and operates on a linear descrip-
tion of the circuit behavior as obtained from a simulation-based sensitivity anal-
ysis.
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The analog sizing process comprises of three main steps: topology selection or gen-
eration, circuit sizing, and layout generation. Out of these three steps, the two new
performance space exploration methods support the first two as was demonstrated
by a number application examples.

Accurate Low-Dimensional Performance Space Exploration via
Normal-Boundary Intersection (NBI)

Methodology For a given unsized topology it is impossible to accurately describe
the boundaries of its feasible performance space without actually having performed
the sizing. That is the reason why NBI-based performance space exploration auto-
matically performs multiple sizing runs with well-defined optimization criteria. In
fact, the advantageous translation of the exploration problem into a sequence of op-
timization problems is the main contribution which differentiates the new method
from the current state of the art.
To keep the exploration times within moderate bounds, only the two or three most
important performances are selected, while fixed bounds can be imposed on the re-
maining performances. Furthermore, out of the entire boundary of the feasible per-
formance space, only the trade-off region is identified. There, one performance can
only be improved at the cost of the remaining performances. More precisely, this re-
gion is referred to as the Pareto front.
The suggested exploration procedure can be partitioned into two stages, which con-
stitute the actual Normal-Boundary Intersection algorithm: First, those points in the
performance space are identified where the different performances show their indi-
vidual optima regardless of the remaining performances. The convex hull of these
points represents a first approximation to the Pareto front. In the second stage, a
successive refinement is carried out by line searches in the performance space. They
emanate from evenly distributed points on the convex hull and proceed in a normal
direction. Each such optimization yields one additional point on the Pareto front.
In contrast to other exploration techniques found in the literature, the NBI-based
method yields well-discretized Pareto fronts and is applicable even to the nonconvex
case.

Topology Selection Since the Pareto fronts represent the ultimate performance ca-
pabilities of a circuit, they can be used to compare different topologies and to select
the most appropriate one for a given set of specifications. In addition, a visualization
of the Pareto fronts can help the designers to obtain a more intuitive grasp of the
circuit characteristics. It was exemplified that two-dimensional explorations take be-
tween 10 and 15 minutes on a single computer. For three-dimensional Pareto fronts
the simulation times are considerably less than an hour.
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6 Conclusion

Circuit Sizing The contribution of NBI-based performance space exploration to the
circuit sizing process is two-fold:
First, the designer can determine the ultimate performance limits of a certain topo-
logy. This conveys a sense of how ambitious actual sizing targets are.
Second, the obstacles to a further performance improvement are identified. Thanks
to the systematic setup of sizing constraints and the deterministic optimization algo-
rithm, the designer gets comprehensive information on what constraints are active
in the Pareto fronts and how stringent they are. From the design point of view, the
active constraints highlight those parts of the design which need modification if extra
performance has to be achieved.
Based on an elaborate example it was demonstrated how the presented nonlinear ex-
ploration method allows an in-depth design analysis which can be of great value in
the circuit sizing process.

In essence, the novel NBI-based performance space exploration technique is a valu-
able enhancement of current interactive design environments because it is the first
tool to combine the following features:

• Full simulator accuracy
• Moderate execution times
• Well-balanced discretization of Pareto front
• Applicability to nonconvex Pareto fronts
• Identification of performance-limiting sizing constraints and quantification of

their stringency

Approximate High-Dimensional Performance Space Exploration via
Fourier-Motzkin Elimination (FME)

Methodology The exploration of high-dimensional performance spaces based on
time-consuming circuit sizing runs is clearly infeasible due to excessive resource re-
quirements. In this thesis, it was demonstrated that for an approximate exploration
actual sizing runs are not needed. Instead, a linearization of the circuit behavior al-
lows the estimation of the feasible performance space.
Owing to the resulting efficiency, no restriction to a subset of performances is re-
quired. In addition, no focus on the Pareto front is needed. The feasible performance
space is described as a closed region instead.
Conceptually, the approximate exploration method comprises of three steps: First,
the sizing constraints are linearized based on circuit simulation. This yields a linear
description of the feasible parameter space. Mathematically, a circuit realizes a map
from parameters to performances. In the second procedural step, this map is lin-
earized in the same way as the sizing constraints. In the third step, the image of the
linearized feasible parameter space under this linear map is calculated. The result is a
linear description of the feasible performance space. This last step is the algorithmic
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core of the linear exploration algorithm and it usually requires the largest fraction of
the entire computational effort. The calculation of the feasible performance space is
done in two stages: An initial coordinate transformation maps the feasible parameter
space into an intermediate space, which features the same number of dimensions as
the parameter space, but comprises of all performances and an appropriate number
of remaining parameters. A subsequent elimination of the last parameters using the
Fourier-Motzkin elimination method yields the feasible performance space.
In contrast to similar algorithms in the literature, the new Fourier-Motzkin-based ap-
proach was specifically designed for linear performance space exploration. Hence, it
meets all its requirements while at the same time offering a remarkable efficiency.

Topology Selection It was shown that in spite of inevitable linearization inac-
curacies, the FME-based exploration method gives a good idea of the feasible per-
formance spaces of different circuit topologies. This allows topology comparisons
within runtimes of a few minutes. Of course, this approach can be used to obtain
three-dimensional performance spaces for visual inspection in an interactive envi-
ronment. However, it unfolds its true strength in combination with automatic tools,
which perform topology selection or even hierarchical sizing in high-dimensional
spaces.

Circuit Sizing With the help of a circuit example it was shown that the FME-based
linear performance exploration method is a key enabler for hierarchical sizing. In this
design style, which is mandatory for larger analog designs, the specifications of the
entire circuit are successively broken down to specifications of the functional blocks
until at the lowest level transistor widths and lengths are obtained.
Sizing constraints play a key role in flat circuit sizing because they restrict the opti-
mization engine to technically meaningful parameter values. In a hierarchical circuit
description, the entire circuit is partitioned into functional blocks which are described
phenomenologically by behavioral models. The performances of the models can di-
rectly be adjusted by means of behavioral parameters. At this level of abstraction,
a parameter value is technically meaningful if the corresponding block performance
value can be achieved by the actual topology of the functional block. Hence, the fea-
sible parameter space of a behavioral model is identical to the feasible performance
space of the corresponding transistor implementation. That is the reason why per-
formance space exploration yields sizing constraints at higher levels of abstraction.
In this way, the top-down propagation of circuit specifications is complemented by
a bottom-up propagation of physically motivated constraints. These constraints en-
sure technically meaningful circuit realizations even at higher levels of abstraction.
Since behavioral models often feature far more than just two or three parameters,
a high-dimensional performance space exploration technique is of paramount im-
portance to a successful hierarchical sizing. In exemplary fashion it was shown that
iteration can successfully compensate for linearization inaccuracies.
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6 Conclusion

In summary, the suggested FME-based performance space exploration method is
unique within the literature because it offers the following features:

• Exploration of high-dimensional performance spaces at an outstanding efficiency
• Reasonable accuracy
• Compatibility with simulation-based design environments
• Key enabler for hierarchical sizing
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Appendix A

Initial Sizing

Circuit sizing is a computationally expensive problem, especially when variations
in the manufacturing process and in the operating conditions are also taken into ac-
count. For an increased efficiency, the sizing task has traditionally been divided into
two steps as outlined in Section 1.1.2: Nominal design identifies a circuit sizing which
meets the specifications under nominal (or fixed worst-case) conditions. Design cen-
tering then improves the result with regard to robustness. In this way, a sizing step
with limited resource requirements provides a promising starting point for a subse-
quent improvement with tighter requirements and higher computational costs.

The fundamental importance of sizing constraints was discussed in Section 2.1.3:
Any technically meaningful sizing has to satisfy these constraints. In fact, the tra-
ditional two-step sizing method can be extended by one more step called initial siz-
ing. Disregarding any specifications, this step only focuses on the fulfillment of the
sizing constraints. Table A.1∗ shows how the scope of the resulting three-step sizing
procedure is gradually widened at the cost of increasing computational costs.

Initial Sizing Nominal Sizing Design Centering
Computational Costs low moderate high
Sizing Constraints Met yes yes yes
Specifications Met
at Nominal Conditions no yes yes

Specifications Met
Even With Variations no no yes

Table A.1: Three-step Sizing Procedure

The result of the initial sizing step does not only provide a good starting point for
a subsequent nominal sizing, but it also plays important roles in performance space
exploration as will be shown later.

∗ A “no” entry means “only by chance”.
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A Initial Sizing

Especially for modern low-voltage designs, the feasible parameter space P can be
extremely small. Thus, the mere identification of a sizing which meets all sizing
constraints can be a challenging problem. This chapter discusses an initial sizing
algorithm which efficiently and reliably solves this task.

A.1 Initial Sizing Algorithm

A.1.1 General Idea

The fulfillment of the sizing constraints is a prerequisite to any further performance
optimization. In the case of violated functional sizing constraints, a circuit might
not even exhibit the desired fundamental functionality (e.g. constant signal from an
“oscillator”). Therefore, and for the sake of efficiency, the initial sizing step should be
separated from the actual performance optimization. This section outlines a method
to reliably calculate an initial sizing, denoted as ps .

Recall that the feasible parameter space P was defined by

P = {p|c(p) ≥ 0} , c(p) ∈ R
q , p ∈ R

m . (2.14)

Obviously, ps ∈ P is a necessary condition. Furthermore, it is beneficial to choose a
point “in the center” of P for two reasons: First, in this point all sizing constraints are
satisfied with maximum safety margins. This means that all the parameter values in
the neighborhood of ps will be feasible. Second, the performances are only weakly
nonlinear when all sizing constraints are safely satisfied, as shown in [GZEA01].

Within the area of performance space exploration, the initial sizing result is useful in
various contexts:

• Normalization:
The initial sizing ps, the corresponding constraint values c(ps), and the perfor-
mance values f(ps) can be used as reference values for numeric normalization,
cf. Section A.2.1.

• Optimization:
The parameter vector ps is a beneficial optimization starting point, especially for
deterministic techniques as used in the Normal-Boundary Intersection algorithm,
cf. Section A.2.2.

• Linearization:
A linearization of the circuit behavior in ps yields a good approximation accu-
racy, cf. Section A.2.3. This is especially important to high-dimensional linear
performance space exploration.
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A.1 Initial Sizing Algorithm

A.1.2 Geometric Illustration

Finding the center of the feasible parameter space P is a nonlinear problem, which
cannot be solved directly. After all, the sizing constraints only provide an implicit
description of P and can only be evaluated pointwise using simulation. Yet, this
problem can be solved by an iterative numerical optimization process, which relies
on approximations to P . In the neighborhood of a particular sizing vector p(0), the
function c(p) can be approximated by a linear Taylor expansion:

c(p) ≈
∂c(p)

∂p

∣∣∣
p(0)

· (p − p(0)) + c(p(0)) =: C(0) · ∆p(0) + c(0) . (A.1)

This yields the following linear approximation to (2.14):

P
(0)

= {p(0) + ∆p(0) | C(0) · ∆p(0) + c(0) ≥ 0} . (A.2)

The Jacobian matrix C(0) ∈ R
q ×R

m contains the sensitivities of the sizing constraints
with respect to the transistor parameters. It can be approximated by finite differences
from a number of quick DC circuit simulations or based on the adjoint method. Geo-
metrically, (A.2) describes a polytope in the parameter space [Zie95].

p2

P

p(1)

p(0)

p2

p(1)

p(2)

P
(0)

P
(1)

p1p1

Figure A.1: Iteratively Finding Center Point Using Ellipsoids

Figure A.1 illustrates the basic idea behind the suggested algorithm. The dotted lines
indicate the bounding hypersurfaces of P . The linearization at p(0) according to (A.2)
yields the polytope P

(0). The further the point p(0) is outside P , the worse P
(0) usu-

ally approximates P .

Computational geometry provides algorithms to determine an ellipsoid with maxi-
mum volume which is contained in a given polytope [BGT81, ZG03]. It can be seen
from Figure A.1, left, that the center p(1) of such an ellipsoid roughly lies in the mid-
dle of the polytope P

(0). In addition, p(1) moves closer to the actual center of P .

As shown in Figure A.1, right, a new linearization at p(1) yields a better estimate
P

(1) of P . Newly inscribing a maximum volume ellipsoid yields a further improved
center point estimate p(2). This procedure is repeated until point p(j+1) lies close to
p(j). Then, the sought initial sizing is ps = p(j+1).
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A Initial Sizing

A.1.3 Overview of Algorithm

choose p(0) with pmin ≤ p(0) ≤ pmax, and let j = −1 (I)

c(0) = c(p(0)) from simulation (II)

increase j by 1 (III)

C(j) = C(p(j)) from finite differences, DC simulation (IV)

p(j+1) = p(j+1)(C(j), c(j)) via Ellipsoidal Update (cf. Sec. A.1.4) (V)

c(j+1) = c(p(j+1)) from simulation (VI)

until ‖p(j+1) − p(j)‖ ≤ ε ∧ c(j+1) ≥ 0 (VII)

ps = p(j+1) (VIII)

Figure A.2: Overview of Initial Sizing Algorithm

Figure A.2 gives an overview of the algorithm. It requires hardly any a priori knowl-
edge but lower and upper parameter bounds, which, however, should be known for
any sizing problem. As an initial approximation to the center point, an arbitrary siz-
ing p(0) can be chosen which lies within the parameter bounds pmin and pmax and
which has DC convergence.

C(j) and c(j) are obtained in a loop from simulations at the current point p(j), and
a new center p(j+1) is calculated until convergence is detected. For termination, all
sizing constraints have to be satisfied and the distance between the center point ap-
proximations ‖p(j+1) − p(j)‖ has to be sufficiently small. This distance is measured
using the Euclidean norm and an appropriate normalization of the parameter vec-
tors. In most practical cases, the value of ‖p(j+1) − p(j)‖ decreases monotonically.
While no strict proof of convergence can be given, extremely reliable convergence
behavior was observed for practical circuits, cf. Section A.1.6.2.

A.1.4 Determination of New Linearization Point via Ellipsoidal
Update

The determination of the new linearization point p(j+1) in line (V) of Figure A.2 is
the critical step in the entire algorithm. For this purpose, a robust ellipsoidal update
procedure was developed. The MVE algorithm which is used to calculate the maxi-
mum inscribed ellipsoid is introduced in the following subsection. The entire update
procedure which embeds the MVE algorithm is discussed afterwards.
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A.1 Initial Sizing Algorithm

A.1.4.1 MVE Algorithm

Originally developed for linear programming, the ellipsoid algorithm according to
Khachiyan [Kha79] can be used to find a maximum volume ellipsoid inscribed in a
polytope [AMH91, BGT81]. For this particular application, however, the algorithm
is not very efficient. Recently, a much superior maximum volume ellipsoid (MVE)
algorithm was published that aims at practical performance rather than theoretical
properties [ZG03]. It owes its remarkable performance to two corner stones: First, it
is based on an advantageous mathematical formulation of the underlying geometric
idea. Second, the resulting problem was partially solved symbolically. Hence, at
runtime, only a simplified problem has to be addressed numerically. The key ideas
of this algorithm are summarized in the following paragraphs.

Given a center point pe ∈ R
m and a symmetric, positive definite matrix E ∈ R

m ×R
m,

an ellipsoid E is uniquely defined by

E(pe, E) = {p | p = pe + E · v ∧ ‖v‖ ≤ 1} . (A.3)

Geometrically, the ellipsoid is the image of a unit ball under the linear map E with its
center point shifted to pe.

With ∆p(j)
e =p(j)

e −p(j), the ellipsoid E (j) is inscribed in P
(j), i.e. E (j)⊂P

(j), if and only if

∀
i∈{1...q}

inf
‖v‖=1

(
c(j) T

i · (∆p(j)
e + E(j) · v) + c(j)

i
)
≥ 0 (A.4)

⇔ ∀
i∈{1...q}

c(j) T
i · ∆p(j)

e − ‖c(j) T
i · E(j)‖ + c(j)

i ≥ 0 . (A.5)

Here, c(j) T
i is the i th row of C(j) and c(j)

i is the i th entry of c(j). The geometric idea
behind (A.4) is that for a containment check it is sufficient to examine the boundary
points which are characterized by ‖v‖ = 1. The infimum operator identifies the
greatest lower bound of the bracketed expression:

inf
‖v‖=1

(
c(j) T

i · (∆p(j)
e + E(j) · v) + c(j)

i
)

(A.6)

= c(j) T
i · ∆p(j)

e + c(j)
i + inf

‖v‖=1

(
c(j) T

i · E(j) · v
)

(A.7)

= c(j) T
i · ∆p(j)

e + c(j)
i − c(j) T

i · E(j) T ·
E(j) · c(j)

i

‖E(j) · c(j)
i ‖

; note: E(j) = E(j) T (A.8)

= c(j) T
i · ∆p(j)

e + c(j)
i −

(E(j) · c(j)
i )T · (E(j) · c(j)

i )

‖E(j) · c(j)
i ‖

(A.9)

= c(j) T
i · ∆p(j)

e + c(j)
i − ‖E(j) · c(j)

i ‖ (A.10)

The main idea in (A.8) is that the infimum occurs when v and E(j) · c(j)
i point in the

opposite direction.
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A Initial Sizing

If Vb is the volume of the n-dimensional unit ball, then the Ellipsoid E from (A.3) has
the volume [BV04]

Ve = det(E) · Vb . (A.11)

Therefore, det(E) could be used as an objective function for the maximization of the
ellipsoid volume. Yet, using the logarithm of the determinant, (A.5) and (A.11) yield
the following convex optimization problem [BV04, Hin04]:

[∆p(j)
e E(j)] = argmax

[∆pe E]

log det(E)

s. t. ∀
i∈{1...q}

c(j) T
i · ∆pe − ‖c(j) T

i · E‖ + c(j)
i ≥ 0 . (A.12)

Here, the notation [∆p(j)
e E(j)] denotes a matrix consisting of ∆p(j)

e and E(j). The
argmax operator yields the argument leading to the maximum objective value.

The ellipsoid center

p(j)
e = p(j) + ∆p(j)

e (A.13)

is used as an improved linearization point in the next iteration of the initial sizing
algorithm:

p(j+1) = p(j)
e . (A.14)

The matrix E(j) is not needed for initial sizing. Yet, it could be used to estimate the
shape and the orientation of P (j) [AMH91] , .

It is possible to directly solve problem (A.12) numerically. Yet, in [ZG03] it was shown
how efficiency can be improved by a far-reaching symbolic simplification: Setting
up the Karush-Kuhn-Tucker (KKT) conditions for (A.12) yields m2 + m + 2q single
equations. With clever transformations, m2 equations can be eliminated symbolically.
In the MVE algorithm, the thus simplified KKT conditions are solved numerically
using a primal-dual algorithm. This approach involves iteratively finding the roots
of the perturbed KKT conditions [NW99]. A symbolic transformation of the resulting
system of equations to triangular shape further improves the performance because,
at runtime, the roots can be found by simple back substitution.

Note that these symbolic simplification steps were done manually only once. The
resulting algorithm is purely numeric in nature.-

It was stated in Section 5.3.2.3 that so far no reliable criteria have been available to estimate the com-
putational effort of a given Fourier-Motzkin elimination problem. The MVE algorithm might be
useful in that context: Recall that the equation-based parameter replacement results in a polytope
according to (4.17). Using Fourier-Motzkin elimination, the remaining parameters are eliminated
from the system of inequalities. The MVE algorithm could be applied to the polytope from (4.17).
The ellipsoid principal axes and the condition of E might play an important role in estimating the
difficulty of the given elimination problem.
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A.1 Initial Sizing Algorithm

A.1.4.2 Robust Ellipsoidal Update Algorithm

The MVE algorithm requires a starting point ∆p(j)
a which is located inside the poly-

tope, i.e. C(j) · ∆p(j)
a + c(j)

> 0. This point can be obtained by solving the following
auxiliary linear programming (LP) problem:

[z(j)
a ∆p(j)

a ] = argmax
[z ∆p]

z s. t. C(j)·∆p+c(j) ≥ 1·z . (A.15)

In (A.15), the vector 1 ∈ R
q consists of all ones. It is obvious that the constraints

can always be satisfied by choosing z sufficiently small, i.e. negative and with a large
absolute value. The parameter z=0 yields the original constraints. Thus, increasing z
as required by the argmax operator successively tightens the constraints. Depending
on the resulting value of z(j)

a , two cases can be distinguished:

Case 1, z(j)
a > 0: An interior point exists if and only if z(j)

a > 0. Then, ∆p(j)
a is

the required starting point for the MVE algorithm which yields p(j+1) according to
(A.12)–(A.14).

Case 2, z(j)
a ≤ 0: In this case, P (j) represents an empty polytope. However, any

meaningful circuit topology under reasonable operating conditions has a non-empty
feasible parameter space P . The reason for this discrepancy is that for remote lin-
earization points, P (j) as given by C(j) and c(j) often does not approximate the feasi-
ble parameter space P well. Especially in the early stages of the initial sizing process,
empty polytopes P

(j) occur frequently. That is the reason why an update strategy
was developed that reliably deals with this problem.

If (A.15) cannot find an interior point, then the linearization point p(j) is most likely
too far outside P , resulting in a poor approximation P

(j). In this case, a point p(j+1)

closer to P is sought: First, a suitable search direction emanating from p(j) is identi-
fied and second, an appropriate step length is estimated. A subsequent simulation-
based line search yields p(j+1).

Search direction: As before, the rows of the Jacobian Matrix C(j) are denoted as c(j) T
i .

They contain the gradients of the sizing constraints with respect to p(j). For the i th

sizing constraint, the gradient at p(j) is

∇ci(p)|p(j) = c(j) T
i . (A.16)

Since p = p(j) means ∆p(j) = 0, the sizing constraint i is violated at this point if
c(j)

i = ci(p(j)) < 0. Let V(j) ⊆ {1 . . . q} comprise of the indices of the violated sizing
constraints in p(j). Then, a step ∆p(j) reduces the violations if

∀
i∈V(j)

c(j) T
i · ∆p(j)

> 0 . (A.17)
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c(j)
k (p)= 0

p2 p2
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∆p(j)
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> 0
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x(j)
max∆p(j)

d

Figure A.3: Polytope Relaxation

Of course, no remaining sizing constraint may be violated:

∀
i∈{1...q}\V(j)

c(j) T
i · ∆p(j) + c(j)

i > 0 . (A.18)

Here, the operator \ denotes the set difference. A combination of (A.17) and (A.18)
yields

C(j) · ∆p(j) + c̃(j)
> 0 , c̃(j)

i =

{
0 , i ∈ V(j)

c(j)
i , i ∈ {1 . . . q}\V(j) .

(A.19)

From a different point of view, and with ≥ instead of >, (A.19) can be interpreted as
a relaxed version of the original polytope P

(j), where the point p(j) has been made
feasible by moving the boundaries of the violated sizing constraints appropriately.

Figure A.3, left, illustrates this interpretation. Four linearized sizing constraints are
shown. The hatchings mark the side of the boundaries, where

c(j)
i (p) := c(j) T

i · ∆p(j) + c(j)
i < 0 . (A.20)

In this example, no point exists that satisfies all sizing constraints. In p(j), constraint
k is violated. Geometrically, modifying the constant c(j)

k means a parallel shift of
the associated boundary. Setting c(j)

k = 0 forces the boundary to go through the
linearization point p(j), which results in a non-empty relaxed polytope.

As can be seen from Figure A.3, right, the center of this polytope indicates a suit-
able search direction ∆p(j)

d because it provides an improvement in the violated sizing
constraint while staying away from the remaining boundaries. Therefore, ∆p(j)

d is
determined based on (A.19) using the MVE algorithm.

Step length: The point p(j) + ∆p(j)
d could be used as a new linearization point p(j+1).

Yet, the efficiency of the algorithm can further be improved if the search direction
∆p(j)

d is maintained and a maximum step length x(j)
max is calculated according to

x(j)
max = max

x
x s. t. C(j) · ∆p(j)

d · x + c̃(j) ≥ 0 . (A.21)
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Note that (A.21) refers to the relaxed polytope, which is reflected by the modified
constraint vector c̃(j) from (A.19). In the linear approximation, the step x(j)

max · ∆p(j)
d

yields large reductions of the sizing constraint violations without newly infringing
any remaining sizing constraints (cf. Figure A.3, right).

In awareness of the limitations of the linear model, x(j)
max can merely be used as an

estimate. The actual step length is determined by a simulation-based line search in
the direction of ∆p(j)

d : To find a point which reduces the actual constraint violations,
all constraints are simulated at

p = p(j) + x(j) · ∆p(j)
d , x(j)

max ≥ x(j)
> 0 (A.22)

for different values of x(j). Initially, x(j) = x(j)
max. The step length x(j) is gradually

decreased until a new linearization point p(j+1) = p(j) + x(j) · ∆p(j)
d has been found

which satisfies
(
|V(j+1)| < |V(j)|

)

︸ ︷︷ ︸
(I)

∨
(
|V(j+1)| = |V(j)| ∧ ∑

i∈V(j+1)

(c(j+1)
i )2

< ∑
i∈V(j)

(cj
i)

2
)

︸ ︷︷ ︸
(I I)

. (A.23)

Recall that the set V(j+1) contains the indices of the violated constraints in p(j+1) with
c(j+1)

i < 0. The operator | · | returns the cardinality of a set.

This line search strategy ensures that the new linearization point p(j+1) combines
a large step length with reduced constraint violations as specified by (A.23): Cri-
terion (I) means that the number of violated constraints is reduced. Criterion (II)
describes the case where the number of violated constraints remains unchanged, but
the actual values of the constraint violations are diminished. The performance of this
strategy is demonstrated in Section A.1.6.2.

A.1.5 Comparison to Ellipsoid-Based Design Centering

The presented initial sizing algorithm bears some resemblance to geometric design
centering approaches. These techniques seek the center of the feasible parame-
ter space as given by explicit performance specifications. Deterministic [AMH91,
AMHH99, DH77, SVP98, WV93] and stochastic [Kje91, KT81] methods were sug-
gested. Both rely on ellipsoidal approximation.

The new technique can be interpreted as a new solution method for ellipsoid-based
geometric design centering. It has the following characteristics:
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• Arbitrary starting point p(0):
Deterministic design centering procedures usually require some a priori knowl-
edge of the location of the feasible space. Even stochastic techniques [Kje91,KT81]
can have difficulties in finding feasible designs due to the small size of the feasi-
ble parameter space (c.f. Section A.1.6.1). No such information is required for the
new initial sizing method. In fact, an efficient and robust convergence to the cen-
ter of the feasible parameter space from a remote starting point with numerous
heavily violated sizing constraints is an emphasis of the algorithm.

• Efficient approximation of the feasible parameter space P :
To identify the boundaries of the feasible parameter space, most determin-
istic design centering techniques identify a number of boundary points ei-
ther by nonlinear optimization [SVP98, WV93] or a multitude of line searches
[AMH91,AMHH99,DH77]. These strategies are not favorable considering a high-
dimensional parameter space and a large number of sizing constraints. An in-
creased efficiency results from the determination of a linear approximation to the
feasible parameter space by simultaneous linearization of all sizing constraints in
one point. That way, the time-consuming identification of boundary points can be
avoided. While most design centering techniques aim at accuracy, initial sizing
aims at efficiency.

• Advanced solution to the maximum volume ellipsoid problem:
The suggested algorithm takes advantage of the new MVE algorithm, as opposed
to [AMH91, AMHH99], where the traditional ellipsoid method is used. Experi-
mental results show that this results in a speedup of almost two orders of magni-
tude.

A limitation of this approach is that for nonconvex feasible spaces there might not be
a unique center point. In fact, this limitation applies to all the ellipsoid-based design
centering techniques. Practical experience, however, suggests that this concern is
primarily of academic interest.

A.1.6 Experiments

The experimental results in the following Sections A.1.6.1–A.1.6.3 were obtained from
the folded cascode and the Miller compensated operational amplifier as depicted in
Figure 5.1, Page 63.

A.1.6.1 Smallness of Feasible Parameter Space

As indicated earlier, only a small fraction of the entire parameter space yields legal
sizings. For each amplifier, a number of 10,000 samples p with pmin ≤ p ≤ pmax
was generated and simulated. For the folded cascode amplifier none of the samples
satisfied all sizing constraints, while for the Miller amplifier only 182 of them were
feasible.
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A.1.6.2 Performance of Initial Sizing Algorithm

The initial sizing procedure has to be carried out only once for a given circuit topo-
logy in a certain technology. Yet, in order to demonstrate the reliability of the initial
sizing algorithm, 100 random samples from within the lower and upper parameter
limits were chosen and each of them was used as a starting point p(0) for one initial
sizing run.

Circuit # Failures Average #
Steps

Average #
DC simulations

folded cascode 0 6.0 74.5
Miller 0 3.3 30.1

Table A.2: Performance Statistics for 100 Initial Sizing Runs

Table A.2 gives some overall performance statistics. First of all, there was not a single
failure, which demonstrates that the algorithm reliably converges from practically
any starting point. Moreover, the algorithm used only little computing resources.
On an average it took about 6.0 iteration steps for the folded cascode architecture,
resulting in 74.5 quick DC simulations which can readily be parallelized. Reflecting
the simpler architecture, only 3.3 steps with 30.1 simulations were sufficient for the
Miller operational amplifier. These results are remarkable considering how small the
feasible parameter spaces are.

Circuit # Runs With
z(j)

m ≤ 0
Average #

Line Searches

folded cascode 97 2.2
Miller 23 0.3

Table A.3: Handling of Poor Linearizations (100 Initial Sizing Runs)

In the ellipsoidal update algorithm, special emphasis was put on the case where the
linearizations yield empty polytopes, i.e. z(j)

a ≤ 0, cf. Section A.1.4.2, Case 2. The first
column in Table A.3 shows that, in practice, there is a substantial number of sizing
runs which have to deal with poor linear approximations in one or more steps. In this
experiment with 100 sizing runs, this situation arose in 97 and 23 cases, respectively.
Therefore, the reliable handling of this case is crucial to a dependable initial sizing
algorithm.

Recall that for empty polytopes a line search is done to achieve a good reduction of
the sizing constraint violations. Experience shows that steps which are based on line
searches only occur at the beginning of the initial sizing procedure. Once a good
linearization describing a non-empty polytope has been found, a small number of
ellipsoidal steps completes the centering. For the folded cascode amplifier the first
2.2 steps out of 6.0 were on an average carried out based on line searches rather than
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direct ellipsoidal centering. It may be surprising that there were only 0.3 steps with
line searches out of 3.3 for the Miller amplifier. This can be put into perspective from a
different point of view: If the average number of line searches is related to the fraction
of sizings that required line searches at all, it turns out that the folded cascode needed
2.2/(97/100)=2.3 line search steps and the Miller required 0.3/(23/100)=1.3 of them.

Circuit Average #
Steps

Average #
DC Simulations

folded cascode 8.3 100.1
Miller 3.4 30.5

Table A.4: Performance Statistics With Line Search Disabled

The discussion above showed that the line search procedure is an integral part of the
initial sizing algorithm. In Section A.1.4.2, it was argued that for Case 2 performing
an actual line search instead of simply solving the relaxed problem yields significant
speedups. To support this claim, the line search feature was disabled temporarily.
Then, the algorithm was rerun using the same starting points as for the previous
experiment. Table A.4 shows the results. The fact that the Miller amplifier is com-
paratively well-natured explains the minimal increase in computational cost for this
circuit. In contrast, for the folded cascode architecture, the number of steps increased
by 38% and the number of simulations by 34%. This indicates that especially for
challenging circuits the line search technique yields a significant performance im-
provement.

A.1.6.3 Performance of MVE Algorithm

Number of Ellipsoidal Iterations in Total
Algorithm Step 1 Step 2 Step 3 Step 4 Duration

MVE 19 25 20 19 13 sec
KE 17510 17584 18152 17463 17 min 27 sec

Table A.5: Performance Comparison

As mentioned in Section A.1.4.1, under the constraints of initial sizing the new MVE
algorithm [ZG03] is superior to alternative algorithms such as the original ellipsoid
algorithm due to Khachiyan (KE) [AMH91, BGT81]. As a demonstration, an initial
sizing run of the folded cascode amplifier with four iteration steps was examined.
In each step, the two algorithms mentioned above, which are iterative themselves,
calculated the ellipsoid centers. Table A.5 shows the results obtained on a cluster of
800 MHz Pentium III machines. It is striking that the MVE algorithm is almost two or-
ders of magnitude faster than KE. Considering that the numerical circuit simulations
only took additional 18 seconds in this example, the necessity of a high-performance
ellipsoid algorithm becomes obvious.
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A.2 Relevance to Performance Space Exploration

The result of the initial sizing process plays important roles in the context of the
performance space exploration techniques presented in this thesis.

A.2.1 Normalization

Normalization is of great importance to numerical algorithms. Obviously, these al-
gorithms only deal with numbers, usually in floating-point format. Yet, as in the case
of circuit sizing, the parameter and performance values are products of numerical
values and physical units. Of course, the physical nature of these values is ignored
in the computations. This can be interpreted as normalization mathematically. Ad-
ditionally, the numerical values of the parameters and performances often differ by
many orders of magnitude. Owing to the limited accuracy of floating-point compu-
tations, this may lead to severe numerical problems which can easily render a com-
putation result worthless. Hence, normalization has to deal with both the physical
units and the numerical values. In the actual implementation of the presented explo-
ration methods, all the input data was normalized as stated below. In the discussion
of the algorithms this detail was skipped for simplicity.

Parameters Initial sizing identifies a parameter vector ps in the center of the fea-
sible parameter space. This vector was used as a reference value and all parameter
vectors were normalized according to

p̃ =
p − ps

ps
. (A.24)

This maps the initial sizing result to the center of the normalized parameter coordi-
nate system. Additionally, this normalization makes sure that the occurring parame-
ter values are roughly in the same order of magnitude.

Performances A similar reasoning yields the following normalization of the per-
formances:

f̃ =
f − fs

fs
, fs = f(ps) . (A.25)

Constraints The initial sizing ps satisfies all sizing constraints with maximum
safety margins. Therefore,

c̃ =
c
cs

, cs = c(ps) , (A.26)

leads to reasonably scaled constraint values. In contrast to (A.24) and (A.25), there
is no shift in order to retain the convention that a sizing constraint is satisfied if and
only if its value is nonnegative.

109



A Initial Sizing

A.2.2 Optimization Starting Point

The initial sizing ps is a beneficial starting point for subsequent optimization steps.
Starting from this point, a performance optimization algorithm can choose any search
direction without violating the sizing constraints early. Thus, ps is an unbiased opti-
mization starting point. Besides, the circuit behavior is usually only weakly nonlinear
in ps, which is particularly beneficial for gradient-based deterministic optimization
techniques. Therefore, ps is used to initialize the Normal-Boundary Intersection al-
gorithm presented in Section 3.2.

To illustrate the impact of the starting point on the optimization process, three differ-
ent optimization strategies were applied to an industrial bandgap amplifier with 30
transistors, 107 inequality constraints, and 15 designable parameters. Lower bounds
were specified for the slew rate and the gain, among others. Upper bounds were
given for the power consumption and the overshoot, for example. Each optimization
started from the same set of parameter values which were located outside of P . The
results, which are in line with experiences gained from other circuits, are summarized
in Table A.6.

Optimization Strategy # Simulations
gradient-based — (failed)

combined evolutionary / gradient-based 7444
initial sizing / gradient-based 596

Table A.6: Performances of Different Optimization Strategies

A purely gradient-based optimization failed due to convergence problems. This is
not surprising because the circuit performances tend to become heavily nonlinear as
soon as the sizing constraints are violated. In such a situation one might resort to a
stochastic technique because it does not require an explicit starting point. In this ex-
periment, an evolutionary technique was applied to the problem. Upon termination
of the this algorithm, a few gradient-based optimization steps quickly identified the
final optimization result. This approach “implicitly” found its way into the feasible
parameter space and generated a good result after 7444 simulations. Yet, the combi-
nation of the initial sizing procedure with the gradient-based optimization algorithm
terminated successfully after only 596 simulations with a comparable quality of the
result.

This experiment suggests two conclusions: In comparison to stochastic techniques,
the dedicated initial sizing algorithm shows a much better efficiency in finding the
feasible parameter space. Furthermore, it is evident that a starting point centered in
the feasible parameter space is well-suited to initialize (especially gradient-based) op-
timization procedures. Considering that nonlinear deterministic optimization tech-
niques gather higher-order information by iteratively evaluating first-order data, it
is obvious that they benefit greatly from the good linearization quality at the initial
sizing.

110



A.2 Relevance to Performance Space Exploration

A.2.3 Linearization Quality

The accuracy of a linear approximation to a nonlinear function is best in the neigh-
borhood of the linearization point. If a linear approximation to the entire feasible
performance space F is sought and no further a priori knowledge is available, then
the initial sizing ps is a beneficial linearization point.
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Figure A.4: Approximations to Feasible Performance Space Based on Different Lin-
earization Points

For the folded cascode operational amplifier, the linearization quality for different
linearization points is compared in Figure A.4. The projections for two performance
combinations, namely DC gain vs. 3 dB frequency and gain margin vs. 3 dB fre-
quency, were first calculated at a parameter vector p(0) at the boundary of P and
then at the initial sizing. The filled polygons indicate the two-dimensional projec-
tions of F . All performance values within these polygons are achievable according
to the linear approximation. The light gray areas represent the approximation at p(0),
and the dark gray polygons represent the approximation at the initial sizing ps. For
validation purposes, a large number of sizings from within the nonlinear feasible
parameter space P were mapped to the according performances by simulation. A
comparison to the linear approximations clearly reveals that the first linearization
severely overestimates F , whereas the linear model at the initial sizing point much
closer resembles the actual feasible performance space.
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Appendix B

Comments on Alternative Algorithms
for Linear Performance Space
Exploration

B.1 Determination of the Image of a Hypercube under
a Linear Map by Geometric Reasoning

The algorithm presented in [MV89] calculates the image of a centered m-dimensional
hypercube

P = {p | ∀
i∈{1...m}

−1 ≤ pi ≤ 1} (B.1)

under a linear map F : R
m 7→ R

n with

f = F · p , F = [f1 . . . fm] , fi ∈ R
n , m > n . (B.2)

The result is a centro-symmetric n-dimensional polytope

F = {f | K · f ≥ k} , K =




kT
1

...
kT

r


 , k =




k1
...
kr


 . (B.3)

Geometrically, F is described by an intersection of r halfspaces:

kT
i · f ≥ ki , i ∈ {1 . . . r} . (B.4)

The vector kT
i can be interpreted as a normal vector of the associated boundary hy-

perplane of F . By the same token, the constant ki reflects the distance of that hyper-
plane from the origin of the coordinate system.
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Determination of K: The matrix F realizes a linear map R
m 7→ R

n. Each subset
of (n − 1) linearly independent columns of F from (B.2) constitutes the basis of a
hyperplane H in R

n passing through the origin. Let the index set

I ⊆ {1 . . . m} , |I| = n − 1 (B.5)

comprise of the indices of the selected columns, where |I| defines the power of I.
Then, the associated hyperplane H can be described by

H = {f | f = ∑
i∈I

fi · pi} , pi ∈ R (B.6)

⇔ H = {f | f = F · p} , pi ∈

{
R , i ∈ I
{0} , i ∈ Ī , (B.7)

with Ī = {1 . . . m} \ I. The generalized cross product∗ of all fi , i ∈ I, yields a vector u
which is normal to H. Then, an alternative way to describe this hyperplane is

H = {f | uT · f = 0} . (B.11)

The assignment of constant values other than 0 to the parameters pi , i ∈ Ī , in (B.7)
results in a parallel shift of H without affecting the normal vector u. Consequently,
(B.11) becomes

H = {f | uT · f = v} , (B.12)

where v 6= 0 indicates that H no longer passes through the origin.

∗ The cross product of two three-dimensional vectors, say a and b, can be written as a formal deter-
minant:

a × b =

∣∣∣∣∣∣

a1 b1 e1
a2 b2 e2
a3 b3 e3

∣∣∣∣∣∣
. (B.8)

The entries ei, i ∈ {1, 2, 3}, symbolize orthonormal basis vectors with 1 at their i th component and
0 elsewhere. This concept can informally be generalized by a “cross product” of (n − 1) vectors in
an n-dimensional space:

z = ×(a, b, . . . , x︸ ︷︷ ︸
(n-1)

vectors

) =

∣∣∣∣∣∣∣∣∣

a1 b1 . . . x1 e1
a2 b2 . . . x2 e2
...

...
...

...
...

an bn . . . xn en

∣∣∣∣∣∣∣∣∣
. (B.9)

As in the three-dimensional case, the resulting vector is orthogonal to all (n − 1) vectors a, . . . , x.
More precisely, z is the Hodge dual of the exterior product of the vectors a, . . . , x [HS84, Dar94]:

z = ∗(a ∧ b ∧ · · · ∧ x) . (B.10)

Here, ∗ denotes the Hodge star operator. Due to the shape of the operator ∧, the exterior product
is often referred to as wedge product.
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Now assume that H is shifted in the direction of u, which means v > 0. Since for
i ∈ Ī the parameters are restricted to −1 ≤ pi ≤ 1, there are two distinct parallel
hyperplanes that both have a maximum distance |v̂| from the origin:

H1 = {f | uT · f = v̂} (B.13)
H2 = {f | uT · f = −v̂} . (B.14)

In fact, H1 and H2 represent boundary hyperplanes of F . The region between H1 and
H2 is given by

A = {f | f = F · p} , pi ∈

{
R , i ∈ I

[−1, 1] , i ∈ Ī .

= {f | − v̂ ≤ uT · f ≤ v̂}

=

{
f

∣∣∣∣
[

uT

−uT

]
· f ≥

[
−v̂
−v̂

]}
.

(B.15)

For each index set I, there is one such region. Their intersection yields F .

A comparison of (B.3) to (B.15) reveals that for each set of basis vectors fi, i ∈ I, the
matrix K contains one pair of normal vectors, uT and −uT . The calculation of the
associated constants ki = −v̂ is described in the next section.

Determination of k: While for each boundary hyperplane, its normal vector u is
derived from fi with i ∈ I, its distance from the origin can be calculated from the
remaining column vectors of F. Note that f can be written as

f = F · p = ∑
i∈I

fi · pi + ∑
j∈ Ī

fj · pj (B.16)

and recall that
uT · fi = 0 , i ∈ I . (B.17)

For a hyperplane H according to (B.12), the value of v then results from

v = uT ·∑
i∈ Ī

fi · pi , −1 ≤ pi ≤ 1 . (B.18)

If a boundary hyperplane has to be determined, then v must be maximized or mini-
mized, respectively. Since (B.18) is linear in pi, it is obvious that pi ∈ {−1; 1} in this
case. If, again, v > 0 is assumed, then maximization results from

v̂ = uT · ∑
i∈ Ī

fi · sgn(uT · fi) , (B.19)

where sgn(·) is the signum function.
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Conclusion This algorithm draws its efficiency from two algorithmic benefits:

• Owing to the restriction of the parameter space to a unit cube, cf. (B.1), both K
and k can be derived from the columns of F directly. Note that any hyperbox can
be transformed into a hypercube by proper normalization.

• Redundancy is avoided by construction: In [MV89] it is shown that for every vec-
tor u which is normal to a subset of (n − 1) linearly independent columns of F,
there are exactly two boundary hyperplanes. The identification of their distance
from the origin according to (B.19) implicitly avoids the introduction of redun-
dant hyperplanes.

Unfortunately, the assumption that the parameters are uncorrelated is crucial to this
algorithm. Therefore, it cannot be applied to to linearized sizing constraints in their
general form.

B.2 Duality of Fourier-Motzkin Elimination

For an underdetermined homogeneous system of linear equations,

A · x = 0 , A ∈ R
(n×m) , n < m , (B.20)

the space X of all nonnegative solutions .
X = {x | A · x = 0 , x ≥ 0} , (B.21)

can be determined using an algorithm due to Chernikov [Che71]. This space can be
described by the nonnegative linear combinations of its basis vectors bi :

X = {x | x = B · u , u ≥ 0} , B = [b1 . . . bs] . (B.22)

Geometrically, X is a polyhedral cone [Che71,Zie95], which implies the following prop-
erties:

pointedness: 0 ∈ X (B.23)
unboundedness: x ∈ X ⇒ c · x ∈ X , c ≥ 0 . (B.24)

In [Lee90], this algorithm is used to calculate the solution space of an inhomogeneous
system of linear equations, where upper and lower bounds may be given for each
variable / :

A · x = d , xmin ≤ x ≤ xmax , A ∈ R
(n×m) , n < m . (B.25)

Since Chernikov’s algorithm requires a homogeneous system of equations and nonneg-
ative variables, two transformation steps have to be applied to (B.25):0

Note that X is not the kernel of (B.20) because it is restricted to the nonnegative solutions.1
Since in [Lee90] both circuit parameters and circuit performances are combined in x, the compo-
nents xi are referred to as variables here for generality.
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• Variable substitutions and the introduction of slack variables transform (B.25)
into a problem with only nonnegative variables.

– An unbounded variable x can be written as a difference of two nonnegative
variables:

x = x̂1 − x̂2 , x̂1, x̂2 ≥ 0 . (B.26)

– For a non-positive variable x, use the substitution

x = −x̂ , x̂ ≥ 0 . (B.27)

– For the general case of finite lower and upper bounds,

d1 ≤ x ≤ d2 , (B.28)

the substitution
x̂1 = x − d1 (B.29)

yields a nonnegative variable with an upper bound:

0 ≤ x̂1 ≤ d2 − d1 . (B.30)

The upper bound can be transformed into an equality by the introduction of
a nonnegative slack variable x̂2. Therefore, (B.28) results in

x̂1 ≥ 0 ∧ x̂1 + x̂2 = d2 − d1 ∧ x̂2 ≥ 0 . (B.31)

If all variables including substitution and slack variables are combined in a vector
x̂, and all the constants in d̂, then (B.25) turns into

Â · x̂ = d̂ , x̂ ≥ 0 . (B.32)

• With the help of one additional variable ŷ, (B.32) is transformed into a homoge-
neous system of equalities:

[
Â − d̂

]
·

[
x̂
ŷ

]
= 0 . (B.33)

Chernikov’s algorithm can then be applied to (B.33). It yields a solution space in x̂
and ŷ which is unbounded due to (B.24). Finally, the substitutions are reversed and
the variable ŷ is replaced by the constant value 1 again. This yields the solution space
of (B.25) which does not have to be bounded for mathematical reasons.

However, when the above method is applied to circuit design according to [Lee90],
then the solution space comprises of the feasible circuit parameter and performance
values. Consequently, this space is definitely bounded for physical reasons. This
means that if (B.25) describes an actual circuit, (B.33) necessarily contains a condi-
tion like

∑
i

x̂i + ŷ = const . (B.34)
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In the process of back substitution, this condition ensures boundedness of the orig-
inal solution space. Geometrically, the latter represents a bounded polyhedron, or
polytope, for short [Zie95].

In fact, the above algorithm is the dual of the Fourier-Motzkin elimination method.
This interrelation is outlined briefly here; for more details see [Che71, DE73]. To con-
vey a rough idea, it is instructive to examine how the solutions of

A · x = 0 , x ≥ 0 , A ∈ R
(n×m) , n < m , (B.35)

can be found using Fourier-Motzkin elimination: Consider the system of linear in-
equalities

AT · r + t ≥ 0 . (B.36)
The elimination of all variables ri yields

C · t ≥ 0 . (B.37)

Then, (B.35) is solved by [Che71, DE73]

X = {x | x = CT · u , u ≥ 0} . (B.38)

Note that in (B.35), the solution vectors x describe the nonnegative weights which
make the weighted sum of the columns of A disappear. Similarly, Fourier-Motzkin
elimination finds the nonnegative linear combinations of the individual inequalities
of (B.36) which make up the rows of AT (= columns of A) disappear. This explains the
transposition of A in (B.36).

In (B.36), the vector t is introduced in order to create a “log” of the elimination pro-
cess. Every inequality is uniquely identified by one distinctive variable ti . Therefore,
the coefficients of the linear combinations resulting from Fourier-Motzkin elimina-
tion are preserved in the rows of C. These linear combinations make the rows of AT

and hence the columns of A disappear. Consequently, the respective coefficients are
the columns of CT and form the basis of the solution space X according to (B.38).

As a side note, recall that the Fourier-Motzkin elimination can only build nonnegative
linear combinations of inequalities since the orientation of the inequality sign has to
be preserved. This corresponds to the nonnegativity requirement in (B.35).

The duality of Chernikov’s algorithm and Fourier-Motzkin elimination is also re-
vealed by the way the resulting solution spaces are described. There are two
dual, mathematically equivalent ways to describe a polyhedron [Zie95, ABS97]:
An H-Polyhedron is given as an intersection of halfspaces, whereas a V-Polyhedron
is a positive hull of vertices. The Fourier-Motzkin elimination describes its so-
lution space in terms of an H-Polyhedron, while Chernikov’s algorithm yields a
V-Polyhedron. While a row of C in (B.37) describes a bounding halfspace of the as-
sociated H-Polyhedron, a column of CT in (B.38) represents a vertex of the respective
V-Polyhedron. Recall that Fourier-Motzkin elimination tends to produce redundant
inequalities which correspond to redundant halfspaces. Accordingly, Chernikov’s
algorithm yields redundant points which are located inside the polyhedron. This
implies the introduction of redundant variables ui.
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B.3 A Note on Range Arithmetic

Most numerical algorithms in engineering and science rely on floating point calcula-
tions which produce results in the form of numeric values, yet without quantifying
their accuracy. This is a serious concern because a limited machine precision can
result in severe rounding errors if no care is taken. Also, the input data might be
uncertain due to measurement inaccuracies. As a solution to this problem, range
arithmetic does not produce a single numeric value, but provides lower and upper
bounds which provably contain the exact result. Two realizations of range arithmetic
are briefly outlined in the following sections and then contrasted to Fourier-Motzkin
elimination and to the two algorithms presented in Sections B.1 and B.2.

Interval Arithmetic

The idea of interval arithmetic, also known as interval analysis [Moo66], is to represent
a real quantity, say x, by an interval x̂ which definitely contains the exact value of x:

x̂ = [xl, xu] with xl ≤ x ≤ xu . (B.39)

In a computer algorithm, xu and xl are floating-point numbers which are conserva-
tively rounded according to the respective IEEE standard [IA85].

In line with this idea, conventional arithmetic operations are extended to entire inter-
vals in such a way that the resulting interval is guaranteed to contain the exact value
of the represented quantity. Subtraction, for example, is defined by

x̂ − ŷ := [xl − yu, xu − yl ] . (B.40)

More complex operations such as multiplication, division, or trigonometric functions
can be taken into account by minimum and maximum calculations in combination
with detailed case analyses. Thus, conventional algorithms can be replaced by their
interval equivalents entirely. For applications, refer to [Kea96].

The greatest weakness of interval arithmetic is that the results are often far too pes-
simistic. With x̂ = [7, 11], for example,

x̂ − x̂ = [7, 11]− [7, 11] = [−4, 4] , (B.41)

whereas [0, 0] should be the actual range of the expression. Such overestimations
accumulate throughout the steps of an algorithm and can render a computation result
worthless in extreme cases.

For a classification of the algorithms from Sections 4.2, B.1, and B.2 consider that in in-
terval arithmetic, ranges are assigned to the variables which are regarded as mutually
independent. Geometrically, this corresponds to hypercubes in the case of orthogonal
coordinate axes. In fact, both algorithms presented earlier in this chapter assume in-
dependent input variables. Yet, their results are polytopes geometrically. Hence, their
capabilities go beyond what traditional interval arithmetic can offer. The same is true
for the Fourier-Motzkin algorithm which deals with polytopes throughout.
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Affine Arithmetic

In affine arithmetic [dS97], a real quantity x is represented by an affine form which is a
linear polynomial of the following form:

x̃ = x0 + x1ε1 + x2ε2 + · · · + xnεn , ∀
1≤i≤n

−1 ≤ εi ≤ 1 . (B.42)

The coefficients xi, 0 ≤ i ≤ n, are floating point numbers. The noise symbols εi,
0 ≤ i ≤ n, are symbolic real variables for which only bounds are known. Each of
them captures one independent component of uncertainty of x. The quantitative
contribution of a particular noise symbol to the overall uncertainty is given by the
corresponding coefficient. The summand x0 is called central value of x̃. If the actual
value of x is a floating-point number, then x can be represented by x̃ = x0 precisely.

Based on (B.42), the standard arithmetic operations can be extended to ranges. For
example, the sum and the difference of two affine forms can be written as

x̃ + ỹ := (x0 + y0) + (x1 + y1)ε1 + (x2 + y2)ε2 + · · · + (xn + yn)εn (B.43)
x̃ − ỹ := (x0 − y0) + (x1 − y1)ε1 + (x2 − y2)ε2 + · · · + (xn − yn)εn . (B.44)

If a certain noise symbol is not common to x̃ and ỹ, then the respective coefficient
is zero in one of the affine forms. In linear operations such as sum and difference,
the set of noise symbols remains unchanged. Nonlinear operations, however, have
to be approximated by affine forms. The unavoidable uncertainty is reflected by the
introduction of new noise symbols.

The greatest advantage of affine arithmetic is that different affine forms can share
noise symbols, which allows the formulation of dependencies. Let two independent
quantities be described by

x̃ = x0 + x1ε1 (B.45)
and ỹ = y0 + y2ε2 . (B.46)

Their sum is
z̃ = (x0 + y0) + x1ε1 + y2ε2 . (B.47)

In contrast to interval arithmetic which would just yield a lower and an upper bound
for z, affine arithmetic preserves the information that z̃ depends on x̃ and ỹ. This is
especially important in multi-step computations where it helps to avoid an excessive
blow-up of the guaranteed bounds. Hence,

z̃ − ỹ = x0 + x1ε1 = x̃ (B.48)

and in particular
x̃ − x̃ = 0 . (B.49)

Such a cancellation of terms would not have been possible in interval arithmetic.

120



B.3 A Note on Range Arithmetic

Since the variables are regarded as independent in interval arithmetic, their joint
ranges are hyperboxes geometrically. In [dS97] it is pointed out that in affine arith-
metic, the joint ranges of two partially dependent variables are centro-symmetric
polytopes. Recall that the algorithm from Section B.1 [MV89] deals with exactly the
same geometric structures. In fact, a comparison of (B.42) to (B.1) and (B.2) reveals
that the problem description of [MV89] is given as a system of affine forms whose
central values are all zero. Yet, the algorithm does not feature affine arithmetic: The
focus of affine arithmetic is the efficient algorithmic manipulation of affine forms. Dur-
ing this process, new affine forms are derived from the original data until the final
result is obtained. In contrast, the aim of the algorithm from [MV89] is the inter-
pretation of a fixed set of constant affine forms and its representation as a system of
linear inequalities. The values which are described by the affine forms do not change,
just their representation. That is the reason why this algorithm does not fall into the
category of affine arithmetic. Instead, it could be used as a final procedural step to
transform the result of an affine arithmetic algorithm into a hyperplane representa-
tion.

Interval arithmetic and affine arithmetic in particular generalize real arithmetic in
the sense that guaranteed lower and upper bounds are provided for the exact but un-
known real-valued results. For example, this allows to calculate ranges which contain
the roots of nonlinear functions [Wil81,dS97]. In [LHB02] it is shown how guaranteed
bounds on an optimization result can be calculated when the designable parameters
are subject to uncertainty. The motivation behind Chernikov’s algorithm from Sec-
tion B.2 is different: It calculates all nonnegative solutions of an underdetermined
homogeneous system of linear equations, cf. (B.21). The result is a set of vertices
whose positive combinations describe the desired solution space without safeguard-
ing overestimation. No uncertainty is considered and consequently no methods of in-
terval or affine arithmetic are used. For this reason, both Chernikov’s algorithm and
Fourier-Motzkin elimination as its dual are no representatives of interval or affine
arithmetic.

Conclusion

In essence, neither of the algorithms presented in Sections 4.2, B.1, and B.2 relies on
interval or affine arithmetic. Yet, all of them operate on intervals. For this reason, it
is justified to refer to them as interval methods in a broader sense.
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Appendix C

Basic Concepts of Popular
Stochastic Optimization Techniques

While numerous stochastic optimization techniques were proposed [RH01], two of
them moved to mainstream: genetic algorithms and simulated annealing. The fol-
lowing sections give an overview of the basic concepts behind these approaches.

C.1 Genetic Algorithms

Genetic algorithms are nonlinear optimization strategies, which can be applied to
a wide variety of engineering problems. Circuit optimization is one of them: For
a given circuit topology, i.e. a certain map f(·), a particular circuit instance is fully
characterized by its parameter values p̂. In the area of genetic optimization, such a
unique instance is referred to as an individual. In a biological analogy, its parame-
ter values are called genes because they determine the traits of that particular indi-
vidual. The quality of these traits is quantified by a scalar value which is referred
to as fitness of the individual. This value is calculated from the performances f(p̂)
and the sizing constraints c(p̂). In contrast to most other optimization techniques
which successively optimize one distinct individual, genetic algorithms operate on
sets, or populations, of individuals. Therefore, they seem particularly suited for multi-
objective optimization where not only a single optimum solution exists, but a large
number of Pareto optimal solutions. Genetic optimization is an iterative process and
the consecutive populations are interpreted as generations. The optimization starts
from an initial population, the genes of which are randomly distributed in the entire
parameter space. Imitating the mechanisms of survival of the fittest, mating and ran-
dom mutations, a new offspring generation is derived from the current parent generation
in each iteration. That way, the average fitness of the generations tends to increase in
the course of the evolution process.
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The following operations procedurally describe the creation of a new generation:

I) Selection
From the current population, two individuals at a time are selected for mating.
Their offspring will be placed into the new generation which is usually equal in
size to the parent generation. There are numerous selection schemes which share
a fundamental common trait: The chance for an individual of being selected de-
pends on its scalar fitness value. In multi-objective optimization, a Pareto ranking
has to be implemented which ensures that the non-dominated individuals have
a higher fitness than all others and that infeasible individuals have low fitness
values. Furthermore, genetic diversity has to be encouraged to avoid clustering
in certain regions of the feasible performance space. Since the selection process is
usually stochastic, a certain individual might be selected multiple times, and also
dominated individuals can be selected, albeit at a lower probability. In this way,
inferior traits are likely to die out.

II) Crossover
In the mating process, a new individual is created that inherits genetic informa-
tion from both parents. The details of the crossover algorithm depend on how
the genes encode the parameter values. Binary genetic algorithms use bit strings
of finite length as genes. In this case, a new gene is composed by combining bit
sequences from one gene with sequences from the other one. In spite of their al-
gorithmic convenience, binary genes are of limited suitability for continuous pa-
rameter values. For real-valued genes the crossover step is more intricate, which
has lead to a large number of different algorithms.

III) Mutation
In the crossover step, genetic information is exchanged between individuals. Mu-
tation, in contrast, causes a random perturbation within the genes of a single in-
dividual. In binary genetic algorithms, for example, single bits may be altered
at a low probability. For real-valued genetic algorithms, on the other hand, the
parameter values may, for example, be perturbed according to a zero-mean Gaus-
sian distribution.

In summary, the crossover and mutation steps promote diversity and hence drive the
exploration of the performance space. The selection step is responsible for increas-
ing the average fitness of successive populations. An in-depth treatment of multi-
objective optimization using genetic algorithms can be found in [Deb01].

While the manipulation of entire sets of individuals is an appealing feature in the
area of multi-objective optimization, the main drawback of genetic approaches is
their huge computational effort. Recall that each individual corresponds to a cir-
cuit instance, the fitness of which has to be evaluated based on simulation. Further-
more, convergence can only be detected by examining the genetic dissimilarity of
consecutive populations. Therefore, in contrast to deterministic techniques, there is
no precise optimality criterion.
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C.2 Simulated Annealing

Simulated annealing imitates the natural process of cooling a melted mass, which
leads to a perfect crystal lattice if the cooling process proceeds slowly enough. In
contrast to genetic algorithms, single-objective simulated annealing algorithms work
with a single search agent, i.e. they successively improve one particular solution can-
didate. For multi-objective optimization, a number of independent search agents can
be used in parallel [NP00]. Starting from initial parameter vectors and a certain vir-
tual temperature, the optimization relies on the iterative execution of the following
operations:

I) Perturbation
To explore the performance space, the momentary parameter vectors are per-
turbed by a certain amount. This operation is similar to the mutation operation
of genetic algorithms. Yet, mutation only results in minor variations, whereas the
main source of diversity in genetic algorithms is crossover. In simulated anneal-
ing, however, perturbation yields major variations because it is the only mech-
anism for exploration. The implementation details of the perturbation operator
depend on how the parameter values are encoded – either binary or as real val-
ues.

II) Selection
For each search agent, the performance values resulting from the perturbed pa-
rameter values are compared to the old performances. If the new performance
values dominate the old ones, then the perturbed parameter values are accepted
immediately. Otherwise, the new parameters are accepted at a certain proba-
bility, which nonlinearly depends on the temperature and on the performance
values. At high temperatures, a performance degradation is readily accepted,
while for falling temperatures the importance of performance improvement in-
creases steadily. This strategy combines versatile exploration in the first phase
and fine-tuning in the final phase.

III) Cooling
After each parameter update by perturbation and selection, the temperature is
lowered. The actual nonlinear cooling scheme has a major impact on the conver-
gence speed and the quality of the final result.

While simulated annealing can be applied to multi-objective optimization, it has been
reported that it is inferior to genetic algorithms both in terms of computational re-
sources and solution quality [NP00].
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Abstract in German

Sowohl beim flachen als auch beim hierarchischen Entwurf analoger Schaltungen
spielt die Frage nach den realisierbaren Eigenschaftswerten einer gegebenen Schal-
tungsstruktur eine wichtige Rolle. Im Rahmen dieser Arbeit wurden zwei simu-
lationsbasierte Verfahren zur Eigenschaftsraum-Exploration vorgestellt, die für un-
terschiedliche Anwendungsgebiete optimiert sind. Ein nichtlineares Verfahren er-
möglicht die genaue und effiziente Identifikation der Tradeoffs zweier oder dreier
Eigenschaften. Dabei werden auch jene Schaltungskomponenten identifiziert, die
eine weitere Eigenschaftsverbesserung verhindern. Muss wie beim hierarchischen
Entwurf eine Vielzahl von Eigenschaften gleichzeitig untersucht werden, sind nicht-
lineare Verfahren wegen ihres hohen Simulationsaufwandes nicht mehr geeignet.
Zu diesem Zweck wurde eine Methodik entwickelt, die das Schaltungsverhalten
linearisiert und daraus eine lineare Approximation des realisierbaren Eigenschafts-
bereiches berechnet.
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