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Chapter 1
Introduction

Electronic structure calculations evolved from illustrative numerical applications of the
Schrodinger equation to a scientific area of predictive strength [1, 2, 3, 4, 5, 6, 7]. Quan-
tum chemistry, the theoretical treatment of the electronic structure of molecular systems,
nowadays is one of the major subfields in the area of numerical calculations of the elec-
tronic structure of matter. Whether specific problems can be solved by quantum chemistry
depends much on the availability of suitable methods which incorporate the relevant in-
teractions so that pertinent characteristics of the system can be modeled. Relativistic
quantum chemistry, which by now covers a vast variety of methods and approximations
8], is a field that grew with the attempts to account for relativistic effects in the quantum
mechanics (QM) of molecular systems. Such effects are due to the fact that the speed of
light is finite, but large enough so that in most cases it can be assumed to be essentially
infinite. Relativistic effects are often thought of as unimportant for “normal” molecu-
lar system. Very many purely chemical applications of quantum chemistry are successful
without accounting for relativity. However, modern chemistry could hardly be imagined
without such spectroscopic techniques as electron paramagnetic resonance (EPR), nuclear
magnetic resonance (NMR) or other high-resolution methods where relativistic interac-
tions often play an important role. The chemistry of heavy elements cannot be described
theoretically without, in some way, accounting for relativistic effects.

A well known example of a relativistic effect is the spin-orbit (SO) interaction in atoms
and molecules. One of the observable effects of SO interaction is the fine structure of
atomic and molecular spectral lines [9, 10]. The term “spin-orbit” was originally used to
describe the coupling ((r)ls of the orbital angular momentum I of an electron and its
spin s in atoms. The eigenfunctions of the spherically symmetric SO Hamiltonian are
eigenfunctions of the total angular momentum 3 = I + s. The energy dependence on
quantum numbers j = [ + % is able to describe the fine structure of atomic levels. The

radial function ((r) determines the strength of the SO coupling in atomic shells localized at
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different separations from the nucleus and thus the magnitude of the fine structure in atoms.
The expectation values of the electron magnetic moment g = I 4+ 2s, responsible for the
interaction with an external magnetic field, has to be taken with eigenfunctions of the total
angular momentum j to determine properly the g factor, an EPR parameter of an unpaired
electron. SO interaction plays an important role also in molecules although the orbital
angular momentum is often not a good quantum number there. The SO interaction renders
the g factor of an electron in a radical different from the exact g = 2 of a free electron
[l1]. In molecular compounds where the orbital interplay involves the SO interaction,
structural parameters, e.g. the geometry, can be notably affected by the SO interaction.
The so-called scalar relativistic (SR) effects, the counterpart of the SO relativistic effects,
always make notable contributions to the physics and chemistry of the heavy elements and

their compounds. However, these effects are rather of quantitative than qualitative nature.

One of the common approximations assumes a simple form for the SO coupling constant
¢(r) = dV/dr, where V is a effective electronic potential function. For a hydrogen-like
atom, the potential is V' = —Z/r with Z being the nuclear charge; such a radial potential
is not that good an approximation for heavier atoms where the screening effects of the
electron density has to be accounted for. The screening effects of the electron density reduce
the effective nuclear charge Z, hence they also reduce SO effects, the more so the higher
in energy (and, therefore, more diffuse) an atomic state is. In actual implementations, the
form of the SO (relativistic) interaction terms may differ from the simple form ((r)ls , as
for example in the Douglas—Kroll (DK) formalism [12]. As in the simplest case, neglecting
the relativistic effects of the electron-electron interaction often limits the accuracy of a

formal description.

A basic task for a quantum chemical calculation is to determine approximately the
many-electron wavefunction and the density of the ground state of a system. For compu-
tational efficiency, the equations of quantum mechanics are often cast into algebraic form
by representing the wavefunctions as linear combinations of some finite set of simple basis
functions. Effectively, a wavefunction is represented by a vector of coefficients; concomi-

tantly, quantum operators are expressed by matrices. A strait-forward, “wavefunction”

based approach, e.g. the Hartree-Fock (HF) formalism [I, 2, 3] followed by configura-
tion interaction [7], can become computationally very demanding even for a moderate-size
system.

Density functional theory (DFT), by now well founded [1, 5, 13], avoids many bottle-

necks of wavefunction-based approaches at the expense of having a closed analytic form
of the total energy of a system. DFT in its most popular form of the Kohn-Sham (KS)
formalism [11] was proven to perform well in quantum chemistry, both in terms of accuracy

and computational efficiency [15]; it was successfully applied to many physical and chemi-



cal problems. The accuracy of a KS calculation depends significantly on the quality of the
approximation for the exchange and correlation (zc) energies as functionals of the density.
Much effort was spent to find and investigate rigorous expressions of such zc¢ functionals
for some limit cases of the electron density and to develop practical expressions for use in
the whole domain of the electron density values [15]. Because of the complex dependence
of the zc functionals on the density, as a rule it is only possible to evaluate the necessary
quantities by numerical integration. In fact, in some setups, the accuracy of the entailed
numerical integration can demand a substantial computational effort, it can even turn into

a bottleneck of the whole computation.

Relativistic extensions of DFT present an efficient way to account for relativistic and
correlation effects on the same footing [16, 17]. One of the most reliable and cost-efficient
relativistic methods of quantum chemistry is the Douglas—Kroll (DK) approach [12]. The
DK strategy reduces the fully relativistic Dirac equation for four-spinor wavefunctions to
an equation for two-component spinors [12]. In combination with a technique of Hess et al.
[18] for an approximate evaluation of the momentum-dependent operators in a finite basis
set, the DK formalism evolved to the practical Douglas—Kroll-Hess (DKH) computational
method [16, 19, 17].

For larger molecular systems exhibiting some symmetry, it is advantageous to exploit
its consequences to reduce the computational cost of the electronic structure calculation,
applying e.g. selection rules for matrix elements. The power of a group-theoretical analy-
sis helps much in the interpretation of the interactions in the system, for instance, when
analyzing orbital interaction in molecular or super-molecular systems. Similarly, a sym-
metry analysis allows to eliminate completely the spin degrees of freedom in a closed-shell
non-relativistic calculation. However, if SO (relativistic) coupling terms are included in
the Hamiltonian, is is no longer possible to separate off spin and spatial components of
the wavefunctions. Inclusion of the SO interaction forces one to retreat to two-component
(or four-component) complex-valued spinors, and to projective (double-valued) group rep-
resentations. This turns into significant computational overhead in quantum chemistry
programs. Fortunately, most operators in a quantum chemistry calculation that includes
SO interaction still exhibit the symmetry of the non-relativistic Hamiltonian which also
entails invariance with respect to rotations of the spin coordinates. Such operators are
often referred to as “spin-free” or “spinless”. It is, therefore, possible to treat such opera-
tors in a more efficient (and cheaper) way than via general spin-coupling. However, some
measures to ensure a consistent simultaneous usage of the operators of two kinds, spin-free
and spin coupled ones, as well as a unifying framework, e.g. transformations back and forth

between single- and double-valued representations, is required.

PARAGAUSS is a general purpose quantum chemistry program package for carrying out
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density functional (DF) calculations on molecular many-electron systems [20, 21]. Several
approximations of the zc functional, the kernel of a KS calculation, are implemented in
the program; they exhibit different accuracy and applicability domains. It was one of the
tasks of this work [22] to implement the newly proposed PBE functional [23] and several
of its variants [24, 25] and to evaluate its accuracy for molecular systems.

With PARAGAUSS, one is also able to perform relativistic DFT calculations, at both the
SR and the SO level. SO interaction was treated in the approximation that only the nuclear
attraction part of the effective potential was assumed to contribute to the relativistic effects
[26]. A consistent and variational incorporation of the relativistic effects of the screening
terms of the Coulomb (Hartree) potential of the density into the relativistic model formed
another major task of the present work [27].

The third task of the work was to derive and implement an efficient symmetry treatment
of relativistic SO calculations, in a framework where one can exploit the spin-free character
of the operators. In particular, limitations of the numerical integration of the spin-free zc
potential had to be removed to overcome performance restriction of SO calculations.

Chapter 2 presents the formalism of the well-known Douglas—Kroll-Hess approach to
the relativistic KS problems and its extension to a variational incorporation of the screening
effects of the Hartree potential (Sections 2.1 and 2.2). Applications to validate the quality of
the approximation are presented in Section 2.3. Next, in Chapter 3, the theory underlying
the symmetry treatment in PARAGAUSS is described. In particular the procedures of a
consistent spinor and orbital symmetrization are discussed. In Section 3.5, the numerical
integration of the zc potential as an example for spin-free operators in SO calculations
is presented. Finally, Chapter 4 is devoted to zc functionals of the PBE family; the
performance of several zc functionals is investigated for a set of small molecules and some

transition metal carbonyl complexes.



Chapter 2

The Electron-Electron Interaction in
the Douglas—Kroll-Hess Approach to
the Dirac—Kohn—Sham Problem

Compounds of heavy elements present a challenge to computational chemistry because
both electron correlation and effects of relativity have to be accounted for when a reliable
description is to be achieved [28, 29]. Relativistic methods based on density functional
theory (DFT) are suitable for reaching this dual goal [16, 17]. The appropriate framework
for discussing a relativistic electronic system is quantum electrodynamics, also within DFT
(30, 31]. A relativistic extension of the Hohenberg—Kohn theorem [32] has been formulated
with reference to the covariant four-current density [33]. The corresponding Kohn—-Sham
(KS) problem [11] results in a Dirac-type equation for four-component one-electron wave-
functions, so-called four-spinors (or bi-spinors) [34, 35]. In the KS approach to DFT, the
effect of the electron-electron (ee) interaction is described by an effective field (to be deter-
mined self-consistently) which comprises the classical Coulomb interaction of the electron
charge density as well as exchange-correlation (zc) contributions. In conventional formula-
tions of relativistic DF schemes, the same zc functionals as in the non-relativistic methods
are applied, but in a fully relativistic description the zc¢ functional changes as well [31, 30].

From the non-relativistic (Schrodinger) limit it is known that for most chemical prob-
lems a formalism employing two-component spinors is able to provide a reasonably accurate
description of electrons in light atoms and molecules. Therefore, the idea of incorporat-
ing relativistic effects as small corrections into a two-component picture is very attrac-
tive. Several methods exist to reduce the four-component theory to a two-component
Schrodinger-like formalism with an effectively relativistic Hamiltonian by decoupling elec-
tronic and positronic degrees of freedom [37, 12, 38, 39, 10, 11, 12]. The change of picture

underlying this decoupling procedure entails a modification of pertinent operators, such as
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the kinetic energy, the nuclear attraction, and the ee interaction. Relativistic corrections
arising from this modification can be classified into scalar-relativistic (SR) and spin-orbit
(SO) terms [13]. If one neglects SO interaction, one arrives at a SR formalism, effectively
a one-component theory [16, 38], which nowadays can be applied almost in routine fashion
[17]. For KS calculations, an SR formalism involving transformed operators of the kinetic

energy and the nuclear attraction energy has proven to be very successful [16, 17, 44].

It is well known that ee contributions are very important for a quantitative description
of relativistic effects on numerous properties of many-electron systems [15, 16, 17, 18, 19].
Spin-orbit interaction provides one such example which has been studied in detail. The
corresponding one-electron term is screened in part by an effective two-electron contribu-
tion [50]. For very light elements, the two-electron contribution to the spin-orbit splitting
was found to be of the same order as the one-electron term [15, 18, 51, 9, 52]. Recently, the
relative importance of one- and two-electron contributions to the spin-orbit interaction was
discussed in general [53] and, in particular, with regard to the NMR shielding tensor, both
within an conventional quantum chemistry (ab initio) description [51] and a DFT-based
formalism [46, 47]. In those studies, the effect of the SO interaction was explored by a
perturbation approach at either the non-relativistic or scalar relativistic (SR) level. The
importance of the ee contribution for the proper calculation of the g-tensors of molecular
systems was very recently demonstrated [55], using the theoretical approach developed
here; the SO interaction was also included in a self-consistent fashion. The SO interaction
often is described in a perturbation approach or by more elaborate post-SCF methods [15].
A self-consistent treatment of the SO interaction is much less frequent; this holds for both
HF-based ab initio methods [15] and DF calculations [39, 26].

A rigorous description of the SO interaction implies a relativistic treatment of the
ee interaction. In HF-based methods, the two-electron integrals have to be corrected
relativistically which becomes quite expensive for larger systems [53, 56], but also in a DF
treatment the computational effort increases notably when the SO interaction is taken into
account. Therefore, further approximations to the ee contributions are sometimes invoked,
e.g. a single-center SO approach with adjusted atomic parameters [57] and a mean-field
SO approach [56] which recently was employed also in DF calculations of NMR shifts and
g-tensors [16, 17]. A complete mean-field SO technique also requires a transformation of
the two-electron integrals, but an efficient approximation hardly sacrificing any accuracy

is obtained when the SO interaction is restricted to one-center contributions [50].

In the following, we will discuss the relativistic ee contributions in the KS method
and, in particular, the self-consistent treatment of the SO interaction. In Section 2.1,
we introduce the pertinent notation of the Douglas—Kroll (DK) method for obtaining a

two-component version of the relativistic Dirac-Kohn-Sham (DKS) Hamiltonian. Then
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we shall describe the relativistic extension of the algebraic form of the DK formalism, as
pioneered by Hess and Buenker [3%, 18], to a consistent treatment of the ee interaction,
Section 2.1.4. We will pay special attention to the relativistic formulation of the fitting
function approach to the KS method [58, 59, 60]. In Section 2.2.3, we will describe and
discuss pertinent details of the implementation in the program PARAGAUSS. Finally, in
Section 2.3, we shall supplement these methodological discussions with selected applica-
tions, concerning the spin-orbit splitting of the KS one-electron energies of the Hg atom,
g-tensor shifts of NO,, and various properties of the diatomic molecules TIH, PbO, Bis,,
and Pb,.

2.1 The Relativistic Kohn—Sham Problem

2.1.1 The Four-Component Formalism

Relativistic density functional theory emerges from a covariant renormalized density func-
tional of the four-current density [31]. In the absence of an external vector potential (i.e.
without an external magnetic field), the ground state energy of the system is a functional
El[p] of the electron density p only. To minimize this energy functional by means of the

variational KS or DKS approach, it is convenient to separate the energy functional as usual:

ED[p] = TE[p] + Eeatlp] + Beclp] (2.1)

where the superscript (4) indicates the four-component picture of the operator in question.

T 5(4) is the relativistic kinetic energy,

occ

TP =Y / Br @1 (r) (ape + 8@ (r) (2.2)

of the non-interacting DKS reference whose electron density p is constructed from the

four-component DKS eigenfunctions ¢§4) :

occ

plr) = [ ()P (2:3)

E..t[p] is the interaction energy of the electron density p with an external potential which,

for a molecular system, usually is the potential V,,,. set up by the nuclei:

Ealp) = [ &7 p(r)Vase(r). (2.4
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The ee interaction is represented by the functional E..[p] [13]:

Eeelp] = Enlp] + Euclp] - (2.5)

It is convenient to separate the classical Coulomb self-interaction energy (Hartree energy)

of the electronic charge density p,

Enlpl = % / i @iy LT (2.6)

r =7’

and the exchange-correlation (zc¢) contribution. Actually, Egs. (2.4) and (2.6) define the
zc functional F,.[p]. Its detailed form is unknown; in a relativistic system this energy
functional also contains relativistic contributions [31, 61, 30] which are of little importance
for many chemical properties of molecules [38, 56, 62, 36, 63, 19]. Variation of the energy

functional with respect to the orbitals w§4) yields the Dirac-Kohn—Sham equation [31, 10]

kst = eyl (2.7)
with the DKS Hamiltonian
hpks(Vers) = ape+ B + Vegy. (2.8)
The effective potential
Vers = Vaue + Vee = Viue + Vi + Vi (2.9)

is the sum of the external contribution V,,,., the Hartree potential of the electron density

Ps
Vir(r) = /d%’ o) (2.10)

=]
and the zc potential

Vie = . (2.11)

2.1.2 The Douglas—Kroll Two-Component Formalism

Operators in the DKS Hamiltonian such as the kinetic energy of a free particle t(s4) =

apc + 3¢, the effective potential Verr and its constituents Ve, Vg and V. are 4 x 4
operators. However, only the free-particle kinetic energy has a nontrivial four-component
structure; the other operators are diagonal in the four-spinor space. Most relevant for

the following is the block structure of operators implied by the partitioning of four-spinor
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components into electronic (large, L) and positronic (small, S) spinors:

w_ [ v*
" ( i’ ) . (2.12)

This partitioning is based on the fact that for positive energy solutions (in the regions
where the potential is not extremely strong) one finds [1)%| > [1)°|. In this sense, diagonal
operators like V¢ are block-diagonal, but the kinetic energy operator tgl) is not because
it couples large and small components. Any 4 x 4 operator () can be represented as a sum

of its even and odd parts £[Q] and O[Q)], respectively:

£lQ] = ( QgL Q(;s ) 0[Q] = ( QOSL Qgs ) . (2.13)
Q- ( gi gz ) — £(Q] + 0[q) (2.14)

where the even part is block-diagonal in large and small spinors and the odd part has only
off-diagonal nonzero 2 x 2 blocks. Such a decomposition is trivial for the kinetic energy

operator t(;) because 3¢c? is even and arpe is odd.

To construct a two-component representation of the DKS equation, one applies a uni-

tary transformation U which brings the DKS Hamiltonian to even (block-diagonal) form

()2

As a consequence, the four components of the DKS four-spinors are decoupled into two
two-component spinors, so-called positive and negative energy solutions ¢*). In chem-
istry, we are interested only in the electronic block (upper left-hand or “++7) of the
DKS Hamiltonian. The other block on the diagonal (“——"), a representation of the DKS
Hamiltonian in the basis of negative energy (positronic) solutions, is of negligible inter-
est in the context of chemical problems. This transformation U, sometimes referred to
as the “exact” Foldy—Wouthuysen (FW) transformation [11, 12], unfortunately results in
a Hamiltonian which is highly singular, hence not suitable for numerical calculations. A
transformation suggested by Douglas and Kroll (DK) [12] avoids this problem by a series
of successive approximations that, at each the step, yield an effective Hamiltonian which
entails only well-behaved operators. The first step in a series of DK transformations is
the free-particle Foldy—Wouthuysen (fpF'W) transformation, an exact decoupling transfor-

mation of the free-particle Dirac Hamiltonian. An alternative transformation strategy to
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a two-component relativistic Hamiltonian that is successfully used in many applications

relies on the “zeroth-order regular” approximation ZORA [39, 40, 64, 65].

Not only the Kohn—Sham Hamiltonian and its constituents change their form with the
picture change (7, 9) — () 1)(7)), but also the energy expression changes its algebraic
form. Yet, to preserve the variational nature of the Kohn—Sham construction, the total
energy expression and the effective DKS Hamiltonian must be consistent. This consistency
is not only important for formal reasons, but should also be ensured in practical imple-
mentations of the formalism, e.g. when one constructs displacement derivatives (forces) of

the total energy. We will return to this topic in Section 2.1.5.

The “zeroth-order” DK approximation is identical to the fpFW decoupling transforma-

tion which is exact for the free-particle Hamiltonian, namely of the kinetic energy operator

[12, 18, 66]:

A E, 0
E=UtYUl = BE, = ( P > (2.16)
0 —-E,

where
E, =1+ (p/c)?. (2.17)

The fpF'W transformation can be expressed analytically:

Us = A,(1+ BR,) (2.18)

with R, = K,ap and the kinematic factors A, = \/(E, + ¢?)/2E, and K, = ¢/(E, + ¢?).
Any even operator V (e.g. Vopp, Vg or V,.) transforms to

UVUI = &[V] + O4[V] (2.19)
&[V] = A,V + R, VR,)A,
Oy [V] = ﬁAp(RpV - VRP)AP

The even term &;[V] represents the fpFW transformed potential V. Together with the
transformed kinetic energy operator it forms the fpFW transformed Hamiltonian, also

referred to as first-order DK Hamiltonian:

Uh\ s [VIUS = E + V] + O]V (2.20)
= Wy ® by + Oi[V]. (2.21)

Here, the even terms F and &, were separated into electronic and positronic Hamiltonians,

hgkl and hsj}?l, respectively. The odd term O;[V] couples electronic and positronic

solutions in the case of a non-vanishing effective potential V; it is of first order in the
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potential V. Eigenfunctions of the electronic two-component Hamiltonian h(DQ;ﬂ for heavy
atoms exhibit a large contamination by negative energy solutions with eigenvalues that lie
lower than those of the corresponding DKS problem [067, 68]. Therefore, it is advisable
to take the decoupling to further steps, to improve the handling of strongly relativistic

systems [12, 69].

The first-order DK transformation can be represented by a unitary operator [12]

R o o 1 . o
U1:\/1+W2+W:1+W+§W2+O(W3) (2.22)
with an anti-Hermitean generator W = —WT that is assumed to be small. If applied to

the one-particle DKS Hamiltonian hggS[V] together with the fpFW transformation U,

U = U,Uy, one obtains the second-order DK Hamiltonian which exhibits approximately

block-diagonal form:
UL Ut =p2  anl2 4+ 0,V 2.23
DKS DK?2 DK 2 2[ ] ( : )

Here, the two-component operators h(DZ}{,Q and hﬁ;ﬁg represent the decoupled electronic
and positronic second-order DK Hamiltonians, respectively. The coupling term O,, Eq.
(2.23), is of second order in V/E, where E, is the relativistic kinetic energy operator for
a free particle, Eq. (2.17). The generator W depends on potential V' in first order of
V/E,, Eq. 2.28. The diagonal blocks thI?Q are accurate to third order in V/E, [12]. The
DK transformation can be viewed as a mapping of four-component operators hg}s[‘/],

parametrized by the potential V', onto two-component operators:

Ist order DK transf.: h%}m[\/] — hgb[‘/] (2.24)
with the trivial limiting case of a free particle: hgks[()] — F,. To derive an expression
for the second-order DK Hamiltonian with a general potential V' one will need an explicit

form of the transformation generator w.

Application of U; to any operator C' yields

o 1. - o o
U,CUl = C + [W,0] + SV W, T + O(W3) (2.25)

= O+ W,C) 4 (12,0} — WOW 4 O(17). (2.26)

Here, square brackets denote a commutator and curly brackets an anti-commutator. For an
even operator C' and an odd operator W, the first correction term [W, C1] of this equation

is odd and the remaining correction terms are even. One chooses W[V] such that this first,

odd term resulting from the first-order transformation U; of the relativistic kinetic energy
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E cancels O,[V]:
W,E]+0; =0. (2.27)

This equation is solved by an odd, anti-Hermitean operator best expressed in terms of its

matrix elements in a plane-wave basis [12]
W V] = BO1pp [V]/(Ep + Ep). (2.28)
The weighting with (E,+ E,y)~* can be conveniently accounted for by formally substituting

V— ‘Zﬁp’ = V;op’/(Ep + Ep’) (2.29)

in Eq. (2.19). After application of the second unitary transformation U [V] and canceling

terms according to Eq. (2.27) one has:

U\Uph{SksUSU = B+ &+ LW, [, E]) + W, 0] + [, 6] + ... (2.30)
Here all terms of O(W3) = O((V/E,)?) have been dropped. The new (odd) coupling
term Oy = [W,&] is of second order in potential, O((V/E,)?), and will be neglected in
this work. Alternatively, one can continue with further transformations to reduce the
order of the coupling term [12] and produce DK Hamiltonians of higher orders. Recently,
applications of the third-order DK transformation were reported to improve the energies
of the lowest-lying s levels of superheavy atoms [70, 71, 72], but for chemical properties
of molecules the second-order DK formalism is usually a good approximation [70, 71, 72].
With help of Eq. (2.27) we expand the commutator

W,0,] = =[W,[W, E]] (2.31)

which is also of second order in the potential, O((V/E,)?) and is twice the double com-
mutator already present in Eq. (2.30) with the opposite sign. The Hamiltonian h%}gz V]
DK-decoupled to second order is:

Wk alV] = B+ &[V] + &[V] (2.32)
V] = —%[W, W, B (2.33)

A Aa 1 - ~
=WEW — §{W2, E}

The DK method allows one to continue with further transformations, e.g. U, Us, ... each

defined similarly to Uy, Eq. (2.22), via transformation generators Wg, Wg, ... and aimed
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at eliminating the remaining odd coupling terms of lower-order DK Hamiltonians. For
example, the transformation Us; may be applied to eliminate the odd term Oy = [Wl, &
of Eq. (2.30). Its transformation generator W, will be defined similarly to Eq. (2.28) as

Wpr/ [V] = 502,1)19’ [V]/(Ep + Ep’) (2-34)

Let us, however, continue with the second-order DK Hamiltonian. If one now sub-
stitutes £ in Eq. (2.32) by BE, and restricts the decoupled operators & and & to the
electronic 2 x 2 blocks, one obtains the corresponding two-component DK Hamiltonian of

second order:
Wk olV] = B, + EP V] + EPV]. (2.35)

Note that the two-component “potential” terms 51(2) [V] and 52(2) [V] (which are of first and
second order in V', respectively) have a more general origin. For instance, 52(2) also contains
corrections to the kinetic energy operator that are induced by the picture change. This
separation is a result of the convention where one isolates the kinetic energy operator £,
in its simple fpFW representation (DK transformed to first order) and assigns all kinetic
terms induced by further DK transformation to the term 82(2). With Egs. (2.19) and (2.32)
the explicit forms of the 2 x 2 terms 51(2) [V] and 52(2) [V] read:

EPV] = A(V + RVR)A (2.36)
EP V] =~ (W, (W, ,})
=-WE,W — %{WQ, E,}

with
WI[V]=A(RV —VR)A. (2.37)
and

R=Kop (2.38)

In summary, to construct a two-component picture of the four-component DKS Hamil-

tonian hg}s[‘/] = tgl) + V', one applies a unitary transformation U that decouples an
effective DK Hamiltonian hg}m[V] =U h(D%(S[V]U T to a certain order (here: second or-

der) in the potential V. The transformation U[V] depends on the effective one-electron
potential V. Finally, employing the projection operator B onto the space of the electronic

solutions (), the corresponding two-component Hamiltonian is:

hg}(,z[v] = Bhg}gz[v]BT (2-39)
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For many applications to chemical problems [16, 11, 20] one obtains a satisfactory ap-
proximation by further simplifying the DK Hamiltonian h(DQ}(Q [Versl, Eq. (2.35). To this
end, one takes only V,,,. into account, both when constructing the decoupling transfor-
mation U|[V,,.] and when transforming the DKS Hamiltonian. Thus, one applies the DK
transformation machinery to the “reduced” DKS Hamiltonian with V' = V,,,., by formally

invoking the mapping in Eq. (2.24), and adds the electronic parts of the potential a poste-

TL0TL:
2 2
h'(D}(nuc,Q = h(D}(Q [Vnuc] + ‘/6@ . (240)
This popular variant of a two-component DK method [16, 44, 70, 73, 71] is commonly

referred to as DK formulation “in the nuclear field only”. In the work, we will present
the first formalism which goes beyond this “nuclear only” approximation, referred to as
DKnuc, of the DK formalism.

Thus far, we used the “square root” parametrization of the unitary rotation matrix U,, =
1+ Wﬁ + Wn, Eq. (2.22). However, there are alternatives to this original proposition of

Douglas and Kroll [12]. For example, three other analytical definitions
1\
U, = [ 2 (2.41)
1-Ww,
0T
U, = 2 W (2.42)
2-W,
U, = exp(W,) (2.43)

are equivalent to that of Eq. (2.22) when expanded up to second order in the generator
W, [72]. In many implementations, including this work, only these expansion terms up to
second order are included. The three expressions represented by series in W, differ by their
radii of convergence. The exponential ansatz for the transformation matrix is convenient
to construct higher-order expansions because of its well known property [75], [cf. Eq. (2.26)

for a “square root” parametrization]:

1

exp(W) C exp(=W) = C + [W,C] + §[W, W, (2.44)
...+%[W,...,[W,cn...]+...

Moreover, the transformation matrix U, may be defined directly by an expansion series in
W, with the optimal coefficients to account for maximum unitarity of a truncated expansion
[72]. The coefficients of such an optimal expansion were recently given [72]. Maximum

unitarity ensures that eigenvalues and eigenvectors of the two-component DK Hamiltonian
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are the best approximation to their DKS counterparts.

2.1.3 Scalar Relativistic Treatment and Spin-Orbit Interaction

The spin operator s = o/2 does not commute with the two-component DK Hamiltonian
hg}@’ Eq. (2.35). In a relativistic atomic Hamiltonian, s and the orbital angular mo-
mentum I = [r X p| are coupled by the SO interaction. For molecules the SO interaction
terms can be approximated either by a superposition of atomic contributions of the type
¢(r)ls, eventually adjusted for inter-atomic interactions [57], or, more generally, by a term
proportional to s-[VV x p|. Therefore, the spin coordinates cannot be separated from the
spatial coordinates and a genuine two-component treatment is necessary. As a consequence,
the symmetrization of DKS orbitals has to be achieved with the help of complex-valued
double-group representations or, more appropriately, by projective representations, e.g. by
representations generated by half-integer angular momentum eigenfunctions (see Chapter
3) [76, 77]. The additional computational effort concomitant to the intrinsic two-component
formalism induced by the inclusion of SO interaction in the Hamiltonian often motivates
a further approximation, namely the SR approximation which results in a spin-free, ef-
fectively one-component formalism. Any Hermitian 2 x 2 operator C'® can be uniquely
represented as C® = Cgg + co; in the SR approximation one neglects the term co.

As an example, consider the term opVop which is part of the first-order correction
51(2) of the DK Hamiltonian, Eq. (2.36). Invoking the identity o;0; = d;; + i€;;,05 for Pauli

spin matrices [78], the last expression leads to
opVop =pVp+ilp x Vplo. (2.45)

Here, the first term represents the SR part of the operator and the second term, attributed
to the SO part of the operator, is neglected in the SR approximation. Finally, we mention
some debate whether the separation of relativistic effects into SR and SO contributions
is rigorous and physical [13, 79]. Visscher and van Lenthe showed [13] that there is more
than one way to derive a spin-free form of a Dirac equation and, hence, more than one

way to separate spin-coupling terms.

2.1.4 Relativistic Transformation of the Coulomb Potential

In the DKS formalism a system of “noninteracting” electrons moves in an effective field V,f
which is the sum of the nuclear potential V,,,,. and the electron-electron interaction V.., Eq.
(2.9). In regions close to the nuclei, relevant for the relativistic characteristics, one usually

has V.. < V,,.. Mainly due to this fact it has become an efficient practical approach to
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exclude the ee interaction from relativistic transformations. The DK Hamiltonian [see Eq.
(2.40)]
(2) — (2) (2) _
hDKTLUC,Q - Ep + 81 [VTLUC] + 52 [VTLUC] + ‘/ee - Ep + Vnuc,q"el + ‘/ee (246)

takes the SO interaction into account in an approximate fashion. In a recent study it was
shown that hg}qu provides a satisfactory description of various molecular properties [26].
At this level of approximation, matrix elements of V. are interpreted as <¢§2) Veelp?)] \@ZJ&(?)}
where p? = EE|@Z)£2)|2 is a “two-component” density, generated directly from the Kohn—

Sham solution in analogy to the non-relativistic Schrodinger picture.

The a posteriori addition of V., Eq. (2.40), requires a justification because it repre-
sents an additional approximation. After the picture change induced by the relativistic
decoupling transformation, the functional form of the operator V. changes. Moreover, the
effective potential V' = V.5 = V,,uc+ Vee defines the second-order DK transformation Uy [V].
Treating V.. as an external “add-on” is only justified if the relativistic effects due to it are
relatively small. This is not always the case [15, 16, 17, 18, 19] as is also demonstrated in

the following discussion and by some applications in Section 2.3.

Therefore, we shall now discuss how to include relativistic effects due to V... Of course,
formally, there is no difference between V.. and V,,,.: only their sum V' = V, ;¢ matters and
defines relativistic corrections as described in Section 2.1.2. The question then is how to
construct an efficient approach for evaluating relativistic corrections due to V.. in the light
of its specific features. As mentioned above, the fact that V., is relatively weak compared
to the V. presents an advantage. At variance with V., V.. is not known at the outset
and has to be determined self-consistently during the SCF process. This aspect and the
fact that the relativistic corrections depend in a nonlinear fashion on the ee potential

complicate the task.

For computational algorithms that deal efficiently with the complications induced by
Vee (see Section 2.1.5), it seems worth to preserve a linear dependence of the effective
relativistic DKS Hamiltonian on V... Several options come to mind how to achieve this.
Instead of simply adding V.. unchanged to the DK Hamiltonian hg}mm,2 after decoupling to
second order in the nuclear field, one can subject V.. to the transformations U,. Formally,
this results in replacing V. by &£1[Vee] in Eq. (2.32). More accurately, one can transform
Vie by U[Viue] = Ut[Viue]Up. Obviously, the substitution

Vee = U[Viuc] VeeU' Vaue] — Vg}(eeﬁ (2.47)

yields a two-component form of the ee interaction, decoupled in the same picture as the
rest of operators, U = U[V,,.], that includes only correction terms linear in V.; see Eq.

(2.19). However, because the transformation U depends on the nuclear potential, some
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of the correction terms are of second order in the effective potential V.sr, namely those
which are proportional to V. X V.. Such terms are absent if the zeroth-order DK (or free-
particle FW) transformation is applied to V... Finally, one can invoke a straightforward
Taylor expansion of the DK Hamiltonian, Eq. (2.32), to first order in V.. as an accurate

representation of relativistic effects at that level.

In summary, the two-component DKS model Hamiltonians just discussed are in order

of increasing complexity and rigor:

M ke = Mok olViae] + Vee (2.48)

W keers = Bk o[ Vanel + BUVee U BT = h3 Vool + €17 Ve (2.49)

W keens = ik oViuel + BU Ve Ve Ul Ve BY = g o[Viwe) + Vi oo (2.50)
(5h(2)

R L (251)

hoks =0okalVessl = Ep+ EP Vigs] + E2 [Vegy) (2.52)

The two-component Hamiltonian hg}Q[Vnuc] is obtained when the four-component DKS
Hamiltonian h%}(S[Vnuc] is decoupled to second order in the nuclear field; see Eq. (2.40).
The Hamiltonian h(DQ}(nucQ’ Eq. (2.48), augmented by the untransformed ee interaction
V.., was recently used successfully for an approximate self-consistent treatment of the SO
interaction [26]. The next two approximate Hamiltonians hg%(eew and hg}(eem exhibit
variants of V.. that result when DK transformations of increasing order are applied. On
the other hand, hg}(eegg is obtained when one linearizes the Hamiltonian hg}(g, Eq. (2.52),
consistently in the quantity V... The term added to hg}(,2 [Vaue) in Eq. (2.51) is a linear
functional of V..; in other words, the functional derivative 5hg}{72 /0Vpue{-} is a linear

operator acting on V.

Next, we derive an explicit expression for hg}@m by carrying out the Taylor expansion
of the two-component DK Hamiltonian hg}Q[V]. The potential term 51(2) = PV of the

DK Hamiltonian is linear in V'; hence
EP WVae + Vee) = EP Vi) + EP Vo] (2.53)

where the second term is of first order in V,.; see Eq. (2.19). On the other hand, the
second-order term 52(2) [V] cannot be represented as a straightforward sum of nuclear and
ee contributions. Formally, the correction terms to 52(2) due to V.. can be obtained using

(@) (2) 08"
82 [Vnuc + Vvee] ~ 52 [Vnuc] + V{‘/ee} (254)
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but we prefer a different derivation. The transformation generator W[V], Eq. (2.37),
depends linearly on the potential V'; thus

W[‘/eff] = W[VHUC] + W[Vvee] = Wnuc + Wee . (255)

The terms of 52(2), Eq. (2.36), split accordingly. As an example, we note for the term
H{W? E,} that
W? =W2,.+ {Waue, Wee} + W2 (2.56)

nuc

The assumption W, < W, implies the ordering W2 < {W,ue, Wee} < W2,.. With Egs.
(2.35) and (2.36), we obtain the effective DK Hamiltonian to first order in V.. if we keep

the terms linear in W,,:
1 1
hipicees> = Miptcnues + €1 Veel = 5 {Wee: (Waser B}y = 5 (Waser (Wee, Bp}} - (257)

In the Hamiltonian h(g}(’Q, Eq. (2.52), the terms of order W2

ee’

neglected in Eq. (2.57), are

retained.

We could also have obtained the result of Eq. (2.57) by separating the terms of the
double anti-commutator form of the second-order potential term 52(2), Eq. (2.36). After
substitution W' = W, + We,, the term {W,{W, E,} } /2 may be split into three parts. The
first and largest one, {Wiue, {Whue, Ep}}/2, is the unmodified nuclear only contribution
52(2) [Viue| assigned to hg%(nucg. The second part, linear in Wee, is {Wiue, {Wee, Ep}}/2 +
{Wee, {Wihue, Ep}}/2 which matches the V,.-dependent terms in Eq. (2.57). The last con-
tribution, {Wee, {Wee, E,}}/2, is of second order in V,.; it is discarded in the Hamiltonian
hg}(eew but not in the full second-order Hamiltonian hg}m, Eq. (2.52). Thus, the relation

between these two Hamiltonians reads:

1
hg}(ee3,2 - hg}(,Q + §{Wee7 {Weea Ep}} (258)

Next, we compare hg}@ew, Eq. (2.57), with hg}@m of Eq. (2.50), where V., is sub-
jected to a DK transformation in the field of the nuclei only and then added to h(g}{nm.
They obviously differ because the approximate Hamiltonian h(DQ}(eeZ? does not comprise
any contributions linear in V. that result from applying the decoupling transformation
U|[Vaue + Vee] to the Hamiltonian hg}(S[VnuC]; see Eq. (2.40). Rather, hg}@m contains only

those contributions that emerge when V.. undergoes a DK transformation U[V,.] in the
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nuclear field only, Eq. (2.47):

UVaiel VeeU Ve = Us[Vae (E1[Vee] + O1[Vee ) UL [Virue] (2.59)

~ & [Vee + [Wiue, O1[Veel] (2.60)

= & [Vee) = Wi, Wee, E] (2.61)

With O1[V..] = —[W.., E], Eq. (2.27), and after projection B onto the electronic 2 x 2
block, we get

Vikees = E0 WVeel = {Wose, {Weer B} } - (2.62)

Here, W, is explicitly defined by Eq. (2.37) whereas the picture change used to transform
V.. is induced by the nuclear field V. only, i.e. with W,,. With this definition of V2

ee,2?
the Hamiltonian hg}(%m, Eq. (2.50), becomes
2 2 2
W keens = hkenues + € Veel = {Waes {Wee, B }} - (2.63)

Comparison of the ee-dependent terms of this equation with those of Eq. (2.57) establishes

a relation between the two approximate Hamiltonians:
1
2 2
hipkees2 = hpkeezs = 5[ Wees Waael, Bl (2.64)

Thus, one pathway where the general expression of hg}w [Viue + Veel is linearized in V.
according to Eq. (2.51), and another pathway, Eq. (2.50), where hg}(nucz is supplemented
by Vie, but transformed with U[V,,.] to the same picture, differ only by the double com-
mutator [[Wee, Whue|, Ep]/2. This difference is expected to be minor as we will confirm
for some atomic and molecular properties when we compare the two variants of the final

two-component DK Hamiltonians hg}(eem and hg}(%w; see Section 2.3.

It may be useful to compare the five approximate Hamiltonians of Eqs. (2.48-2.52) by
listing explicitly the defining additional term compared to the pertinent reference Hamil-

tonian:

M ke = Mk ol Virue] + Ve (2.65)
W keer2 = Dl o[ Vie) + £ [Vl (2.66)
hg}(aez,z = h(DQ}(eelﬂ - {Wnum {Wee’ Ep}} (2-67)
M keess = Mkeess — [Wees W), ) /2 (2.68)
Wks = hDkess — {Weer {Wees By} /2 (2.69)

Finally, we note that the linearization approach which we used for V.. is applicable to any
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(scalar) potential AV. All correction terms which are small enough to be treated by the
linearization approach presented above, appear in additive fashion in the corresponding
Hamiltonians. For instance, to account for relativistic effects of some AV in the Hamilto-
nian hg}(eem one may add the term E[AV] = {Wue, {Wav., E,}} to that Hamiltonian
as long as both V., and AV are small compared to V..

2.1.5 Density-Fit Based Relativistic Expression for the Hartree
Energy

Thus far we have considered a four-component density functional formalism and its re-
duction to a two-component picture by a DK transformation. Starting from the four-
component DKS formulation we obtained several approximate DKS Hamiltonians which
incorporate the relativistic contributions to the ee potential at various levels of accuracy.
Next, we will discuss how these approximate DKS Hamiltonians can be related to approx-
imate DF energy expressions. At the same time, we would like to take into account how
the approximate two-component DKS Hamiltonians just introduced can be efficiently im-
plemented in existing density functional computer codes which rely on the expansion of a
two-component DKS one-electron wave functions in a finite set {x;} of (basis) functions.
This two-component basis is related to a four-component basis {X§4)} by the picture change
with transformation U, Eq. (2.15); see Egs. (2.3) and (2.39):

W =U'Bly, (2.70)

We will invoke a further approximation which exploits the common separation of the ee
interaction energy F.., Eq. (2.5), into the classical Coulomb energy Ey and the significantly
smaller exchange-correlation energy FE,. [I3]. Whereas the discussion of the preceding
Section 2.1.4 was based on the general ee interaction, i.e. all of V. in the effective potential
Verr = Vaue + Vee, Eq. (2.9), in the following we will restrict the relativistic treatment to
the Hartree term represented by the potential Vg in V.. = Vg + V., exploiting the fact
that commonly V,. < Vj [13]. Thus, formally this additional approximation implies that
V.. is replaced by Vg in all approximate two-component DKS Hamiltonians of Section
2.1.4 and that the zc energy (V.. potential) is added a posteriori to the relativistic energy
expressions (Hamiltonians) in its unmodified non-relativistic form. Of course, for the
approximate Hamiltonian h(DQ}{nch? Eq. (2.48) and the corresponding energy expression,
this new strategy does not imply any further change because the expressions for the Hartree
potential (Ey energy) and the zc potential (E,. energy) were left unmodified in the full
Hamiltonian (total energy expression) in nuclear field only DK (model DKnuc).

In the model DKnuc, only relativistic effects on the kinetic energy and the nuclear
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attraction energy are accounted for. Hence, a suitable energy expression is:
E = TS, rel Eemt,rel + EH + Erc (271)

The subscript rel shall indicates the relativistic approximation; thus, here rel=“DKnuc,2”.
Compared to non-relativistic calculations, it suffices to modify the matrices of the kinetic
energy ts — tg o and the nuclear attraction Vyue — Vpue rer i the basis {x;} to get the
proper energy:

Ts,ret + Eeat,ret = tr[P(ts ret + Ve, ret)] - (2.72)

Here, tr indicates the trace of an operator, and P is the density matrix [7]. The last
expression is invariant to any unitary transformation; therefore, it holds in both the original
four-component Dirac picture and in a two-component picture after applying a suitable DK
transformation, as done here. It is this latter case which we are targeting with this energy
expression, the case of the Schrodinger picture normally employed in calculations. In this
picture the operators have a modified form and the density matrix P = (P,;) represents

the two-component density [00]

occ

p7) = 3o = 3 Pt (2.73)

generated from the solutions ¢§2)(T) of the two-component DKS problem. When this
density is used to evaluate Ey and FE,., one recovers the approximate two-component

DKS total energy expression and, by variation of that, the Hamiltonian of Eq. (2.46).

To evaluate the Hartree energy Fpy, Eq. (2.6), and the matrix elements of the corre-
sponding potential Vi, Eq. (2.10), one needs four-center (two-electron) Coulomb integrals
of the basis functions {y;}. An alternative approach, sometimes referred to as “density
fit” [59, 60] or as “resolution of identity” [80, &1], avoids this computational effort by

representing the electron density p = p® with the help of an auxiliary basis {f;}:

p(r) = p(r) =Y afil(r). (2.74)

k

For convenience, we introduce the short-hand notation for the Coulomb interaction energy

[o1llp2) = //CF’ dr ’pl AT)palr). (2.75)

r’|

of two densities:

Together with an auxiliary density basis set, it is common [59, (0] to approximate the
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Hartree energy Fy|p| as

Eulp, {d] = oll7) — 300117 = Ewlo] - 512l1A0) (2.76)
= Z Pjilig||kar — %Zak[kﬂl]al : (2.77)

where Ap = p — p, [k[[l] = [fu[| fi] and

[ig11k) = Dbl fi] - (2.78)

For given a density p (or p), the expansion coefficients aj, are determined by minimizing
the difference
By — By = [Apl|Ag)/2> 0, (2.79)

cf. Eq. (2.76), between the exact and the approximate Hartree energies [60], i.e. by maxi-
mizing Fy. This variation procedure is apparently equivalent to the best density fit with
the Coulomb norm defined by Eq. (2.75). With this particular choice of the Coulomb norm,
the two variational approaches become equivalent and ultimately one obtains a system of

linear equations:

Sl = o) = 3 Pl (2:30)

!
Here, we neglected the constraint of this minimization due to charge conservation, N =
[ p(r)d* , to simplify the presentation. The approximate Hartree potential Vj; which is
obtained by varying the approximate energy Ey[p, {a}] is

] 5F ,
VH(T) = il - / 3 |rp_ 7'/’ Za’k’Fk (281)

where

Fy(r) = /d3 Julr). (2.82)

vl
One reason for the computational efficiency of this fitting function (FF) approach derives

from the identity
[i7]1k] = (il Fxls) = Ol Frlx;) (2.83)
so that

(iValj) = D axli||k]. (2.84)

k

Now we go beyond the non-relativistic approximation for Ey, Eq. (2.76), and define

a relativistically corrected expression Ep . in line with the FF methodology. For this
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purpose, we approximate the Hartree energy of a four-component density p by

1
EH rel p7 {ak} Z P]z Zij rel Ak, — 2 Zak[k”l]al . (285)

ijk kl

The subscript rel indicates the decoupling transformation U or, more rigorously, the rel-
ativistic model used (see below). The analogy of Eq. (2.85) and Eq. (2.76) is obvious.
A similarly close analogy can be constructed for the three-index integrals [ij||k].e; which
describe the Coulomb interaction of a product of four-component basis functions X,E4) and
X§-4) with the partial density fi, see Eqgs. (2.70) and (2.78):

.. 4 4 4 4 2 . 2 .
[i]1Kl et = DY IE] = OGP IEIY) = Ol FS) dxg) = GIES) 1) (2.86)

Thus, the term [ij||k] e can be considered as matrix element of a two-component operator
Fgl{k with two-component basis functions x; and x;. The operator Fr(sl)k is the DK-
transform of the operator Fj, see Eqgs. (2.49) and (2.50):

F%,=BURU'B". (2.87)
Again, by variation of the energy expression Ey .., Eq. (2.85), one obtains the correspond-

ing relativistic approximation \_/H, re1 Of the Hartree potential which can be represented by

the matrix

(i[Va el 1) =D anligl[K]ver - (2.88)

Depending on the decoupling transformation U, one is able to account for relativistic
effects on the Hartree contribution to the ee interaction at various levels. After adding
the xzc contribution V. in untransformed form (see above), one arrives at the effective
two-component model Hamiltonians hgz where rel = DKeel or DKee2 for U = U, or
U = Ui[Viue|Uy according to Eqgs. (2.49) and (2.50), respectively. Recall that in these
approximate DKS Hamiltonians the relativistic corrections to the ee interaction are linear
in V. by construction, just as Eg_,[p, {ar}], Eq. (2.85), is linear in the electron density p.
The matrix elements of Fgl{ . for rel = DKeel or DKee2 also arise in the transformation
of the Hartree potential of the approximate density p to the space of the two-component
DKS solutions:

Vilpl = anFi — BUVRU'B' =" 0, F2) . (2.89)
k k

For a given density p, the density expansion coefficients a; are obtained by maximizing

Ew valp, {ax}], Eq. (2.85), just as in the non-relativistic case. Thus, one has to solve a
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relativistically adjusted system of linear equations, see Eq. (2.80):

Z[M |l]al = Z sz [ZJ| |k]rel (290)

l

Because the approximate DKS Hamiltonians hg}@m , Eq. (2.49), and hg}(eem, Eq.
(2.50), as well as the density expansion coefficients a; rely on the corresponding DK-
transformed matrices of Vi or equivalently on Fgl)’k, only one set of three-index terms
[i7]|k]res Occurs in each case. Thus, the two-component relativistic models hg}(eem, Eq.
(2.49), and hg}(ee2,27 Eq. (2.50), where one transforms the Hartree potential to the picture
of first or second order, respectively, at the DKnuc level, may be associated with energy
expressions which can be used in two variational procedures: for obtaining the Hamiltonian
as well as for determining the optimal density fit p, i.e. for the best set of expansion coeffi-
cient aj. Such a computational scheme where all unknown variables arise in a variationally
consistent fashion from a single total energy functional is advantageous, e.g. when nuclear
displacement derivatives (forces) are to be calculated.

The situation is different at the next level of approximation, DKee3, because there
are two options to arrive at a practical computational approach based on the two DKS
Hamiltonians hg}@e&?, Eq. (2.51). In the first case, one distinguishes two variational
problems: one is the variation of an approximate total energy functional that generates the
approximate DKS Hamiltonian h(DQ}(ee?)’Q, and another for constructing the auxiliary two-
component representation p of the four-component density p based on the minimization of
the Coulomb self-energy [Ap||Ap]/2 of the density difference Ap = p — p, Eq. (2.76). The
first problem requires relativistically modified three-index terms [ij||k].e; with rel=DKee3
as they occur in the matrix representation of the Hamiltonian hg%(ee3,2 and hence in the
corresponding total energy approximation; see Eq. (2.57). On the other hand, in the
determination of the density expansion coefficients ay,, different three-index terms [ij||k]
with rel=DKee2 as naturally defined by the DK transformation of two-component orbitals
in order to determine the density of four-component orbitals, see Egs. (2.70) and (2.86),
should be used.

An alternative approach, favored by us, preserves the stationarity condition of the
approximate total energy expression also with respect to the density expansion coefficients
ag. Instead of minimizing the Coulomb self-energy [Ap||Ap]/2 of the density difference
defined in terms of four-component orbitals, back-transformed with the DK transformation
U, one can define the coefficients a; by minimizing the difference Ey ;¢ — E'H, rel between
the true Hartree energy functional and its approximation in the two-component picture;
see Eq. (2.76). The functional £ 1. rer and the energy difference Epy e — E i, el are defined
by the three-index terms [ij||k].; with rel=DKee3; no other types of three-index integrals
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are required. However, because the numerical differences between the two types of three-
center integrals [ij||k] e, with rel=DKee2 and rel=DKee3, are rather small, only minor
differences between the two alternatives are expected; see the discussion at the end of
Sections 2.1.4 and 2.3.2.

The subtle difference of the two procedures defining the expansion coefficients a;, merits
a closer look. The coefficients a; are arguably considered as expansion coefficients of the
electron density. However, in the first place, these coefficients enter the energy definition,
Eq. (2.85). In fact, the fitting approximation was introduced to construct a practical
energy expression. The two approaches to obtaining the expansion coefficients depend
on the answer to the question, what the target quantity of the fitting procedure is, the
density or the energy. The question is irrelevant in the non-relativistic case where density
fit and energy fit are fully equivalent, see discussion following Eq. (2.79). In the relativistic
picture, the density fit evolves to a four-component density fit driven by the Coulomb norm
minimization of the error in the four-component density; the Hartree energy defined by
the Coulomb self-interaction of the density naturally evolves into corrected terms due to
the self-interaction of the electron density. Of course, the latter term covers the Hartree
energy itself, now corrected relativistically, and the contributions due to the picture change
of other operators, as induced by the Hartree potential; such operators include the nuclear
attraction potential and the kinetic energy. At variance with the non-relativistic case, the
best density fit and the best energy fit differ in nature. The question which target quantity
to fit is disputable just as much as the question which norm to use in a general fitting

procedure.

In all cases discussed previously — non-relativistic, DKeel and DKee2, the self-interaction
energy of Ap provides a clear minimum. In the case of DKee3, this term still dominates
and one can expect a clear minimum which is modified by small relativistic corrections.
However, we do not have a strict proof that the stationary condition results in a minimum

nor was it the goal of this work to establish a proof that such a minimum exists.

Note that in the DKee3 case, in the expression Ep re — EH7 rel 10 be minimized only
the term F 1, ret depends on ay. Thus, in the end, the approximate total energy functional
is used both for defining the Hamiltonian by variation with respect to the elements P;; of
the density matrix and for determining the density expansion by variation with respect
to the coefficients ax. In both procedures the same three-index matrix elements [ij||k] e
with rel=DKee3 (and only those) are required. The corresponding approximate total
energy functional, which when varied with respect to p yields the Hamiltonian h(DQ}(%S’Q,
Eq. (2.51), can be constructed as a linearization in the density difference Ap. For the case
of a non-relativistic Hartree energy, this more general strategy is equivalent to the original
formulation [59, 60]; see Eqgs. (2.76) and (2.85).
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Finally, as an example, we give a closed expression for the Hartree-potential related
three-index terms [ij||k] pxees that are required for the matrix representation of the two-
component effective KS Hamiltonian h(g}<663’2, Eq. (2.51), and the corresponding energy
functional. We exploit the linearized form of the Hartree-related part of this Hamilto-
nian. The first potential term 51(2), Eq. (2.36), is linear in V; thus the relevant Hartree
contribution is EP[Vy] = > ar€?[F). The transformation generator Wy = W ([Vyl,
Eq. (2.37), which appears in 552(2) /6V, is a linear combination of contributions due to
the various potential terms F}, just as in the approximate Hartree potential, Eq. (2.81):
Wy = >, axWa,,. We collect all terms of hg}(eew, Eq. (2.51), that are related to the
Hartree contribution arising from a charge component f; of the auxiliary basis, and obtain

the following explicit form of the relativistic three-center integrals:

[i71|k] prcecs = (G1EPTFRS)
— <Z'|WnucEpWH;k + WH;kEanuc + {{Wnuc, WH;k}; Ep}/2|j> (2.91)

As already mentioned, partitioning of the effective Kohn-Sham potential V. is of no
fundamental relevance for the DK transformation of the relativistic Kohn—Sham formalism.
The effective potential Vs enters the final expressions of the DK decoupling as a whole
only. However, from a practical point of view, it is convenient to distinguish different

contributions to V.¢ when constructing efficient implementations of the formalism.

The linearization approach can be extended to the zc contributions along the same
lines the corrections of the Hartree terms were made. Several approaches to represent the
zc potential (and the zc energy) by an algebraic expression, an expansion series similar
to Eq. (2.81), instead of the commonly used numerical quadrature were developed and
successfully applied to molecular systems [82, 83, 84, 85, 86, 87, 88]. These methods avoid,
sometimes completely, the expensive numerical quadrature, thus reducing the calculation
of the zc contributions by as much as an order of magnitude [38]. Calculating the zc
potential in a numerical way often limits the overall performance of a calculation (see
Section 3.5). Moreover, once the Hartree terms and the zc terms are treated by a similar
fitting technique the relativistic formalism presented above for the Hartree energy and the
resulting potential may be applied to the corresponding zc¢ terms in analogous fashion.
Ultimately, there may be no need at all to distinguish the two ee contributions as far as

the relativistic transformations are concerned.

To complete this section, we briefly summarize the current derivation of computation-
ally practical two-component relativistic DF methods which incorporate relativistic effects
due to the Hartree part of ee interaction. In the fully relativistic four-component Dirac

picture, the Hartree energy Fy which is a bilinear functional of the four-density p con-
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structed of four-component orbitals is replaced by an approximate functional Ey that is
linear in p. The four-component orbitals are solutions of the DKS Hamiltonian in an ef-
fective field that comprises the approximate Hartree potential V. A unitary rotation,
here a suitable approximation of the “exact” DK transformation, is used to eliminate
the small components of the DKS solutions and to bring the Hamiltonian into an ap-
proximately decoupled block-diagonal form. The form of the energy functional and the
operators entering the DKS Hamiltonian change accordingly, and so does the form of the
approximate Hartree potential Vy = > x axFy. The latter form of the potential reflects
the approximation p = ), axfx of the density p. Exploiting the linear structure of the
approximate two-component DKS Hamiltonians discussed above, one can collect all those
contributions of the matrix representation of the DKS Hamiltonian which are due to a
single F}, into a three-index integral [ij||k],«;. Of course, the exact form of these quantities
depends on the specific two-component DKS Hamiltonian. For the approximations DKeel
and DKee2, these relativistic three-center integrals [ij||k].; are equivalent to the matrix
elements of the corresponding two-component DK transformed potential operators Ff:l{ k-
Because the same operators FSZ . enter the equations defining the density expansions co-
efficients a, one arrives at a completely variational structure of the formalism where the
total energy expression is stationary with respect to a;. When the contributions due to a
given potential term Fj do not combine into the DK transformed operator (e.g. in DKee3),
one can still formulate a variational scheme if one defines the density fit in a different
way, namely by maximizing the approximate relativistic Hartree functional £ i, re- This is
consistent with the previous definition of the best fit where one minimizes the difference
Ey — Ey = [Ap||Ap]/2 which happens to be the self-interaction energy of the density
difference Ap.

2.2 Implementation

2.2.1 Primitive Integrals. Integrals Based on the Momentum

Representation

In this section, we discuss the basics of how to calculate the additional primitive integrals
that arise in the implementation of the relativistic treatment of the ee interaction discussed
above. This includes also details for evaluating momentum integrals as required by DKee
implementation.

The program PARAGAUSS is a general purpose molecular DFT program designed to
take full advantage of the parallel architecture of modern computers [20, 21]. A detailed

description of the computational methods implemented in PARAGAUSS, and the internal
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workflow of the program may be found in Refs. [77, 89, 90, 91]. There, one may find an

introduction to the evaluation of standard integrals in PARAGAUSS [39, 90].

PARAGAUSS makes use of the common LCAO approach (linear combination of atomic
orbitals) to represent the molecular orbitals [7, 6]. The LCAO approximation is based
on the fact that one-electron molecular eigenfunctions may be accurately represented as
a linear combination of atomic orbitals. The atomic orbitals, in turn, are represented
by linear combinations of the so-called primitive basis functions which are given as sim-
ple analytic expressions; for this representation, one may achieve any desired accuracy,
depending on the number and quality of such primitive functions. Alternative implemen-
tations may use the tabulated atomic eigenfunctions as a basis for the LCAO approach
[7, 6]. Finally, some implementations, those targeting solids and surfaces in the first place,
may go beyond LCAO approximation by introducing basis functions not centered on any
atom, e.g. the plane waves [7, (]. The program PARAGAUSS adopts the LCGTO-FF-
DF method [59, 92, 60, 93] (linear combination of Gaussian-type orbitals fitting-functions
density-functional) which exploits the advantages of Gaussian-type functions for the an-
alytic evaluation of integrals [94, 95, 96, 97, 98, 99, , , 92, , , , ].
Many other implementations of the LCAO method for solving the KS equation exist
[106, , , , , , , , , , , 117]. Although Slater-type functions
[7, 6] permit a more compact presentation of atomic eigenfunctions, many QM programs
adopt Gaussian-type functions because the former do not allow simple analytical expres-
sions and an efficient implementation of the complex integrals [1158]. To build the Hartree
energy functional in PARAGAUSS, one expands the density in an auxiliary basis set of
so-called “fitting functions” (FF) [92, 102]. This auxiliary basis set is constructed similarly

to the orbital basis from the Gaussian-type functions.

The atomic orbitals used in PARAGAUSS as basis functions are combinations of angular

and radial dependent parts [1 19, 89]
o(r; a,l,m) = C),(r — a)dy(lr — al). (2.92)

This particular atomic basis function with electron coordinates r belongs to the angular mo-
mentum shell / of an atom at position a@. The angular dependent part C! (z) = 2'C! (x/x)
is a solid spherical harmonic [120, 95, 96]. The radial part d, depends only on the distance

x = |r — a| from the center a and it is a linear combination of Gaussian-type functions
dy(z) = Z d? exp(—aga?). (2.93)
q

The process of forming linear combinations of primitive exponentials is referred as basis
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set contraction; in general, it reduces the essential degrees of freedom of the LCAO ansatz.
One speaks of a segmented contraction scheme when the coefficients df are non-zero only
for some range of the index ¢ [7, 6]. The most general case without restrictions on the
coefficients d? is called a general contraction scheme [7, 6]; PARAGAUSS exploits the latter,
more general scheme. In the auxiliary basis sets used to fit the density, some exponentials
are pre-multiplied by a factor proportional to 72 to improve the representation of partial

densities generated by p orbitals.

The angular dependent part, the real spherical harmonic C! (7), may be expressed with

the help of complex spherical harmonics Yy, (r/r) [120, 95, 90]

Co(r) = r'Yoo(r/r) (2.94)
L (r) = rl% (= 1)™Yi(r/7) + Yim(r/r)] for m > 0 (2.95)
! (r) = rlﬁ (= 1)™Yi_n(r/r) — Yiu(r /)] for m < 0. (2.96)

For the complex spherical harmonics, we adopt the phase conventions of Condon and
Shortley [120, 121, 122].

Thus, any orbital function in PARAGAUSS may be written as a linear combination of
normalized primitive Gaussian functions [119, 89], parametrized by
x(r; a,a,l,m) = N(a,)C!,(r — a) exp (—a(r — a)?) (2.97)

with the normalization factor

o a l 1/2
N(a, 1) = (2?(2%)1)0 . (2.98)

One of the important features of Gaussian functions which promoted their use in quantum
chemistry is that the product of two Gaussian functions is again a Gaussian function
[102]. Another feature, the easy differentiation of Gaussian functions, allows an alternative

definition for the primitive Gaussian basis function [102, , 89]
x(r; a,a,l,m) =n(a,1)CL (V,)x(r; @, a,0,0) (2.99)
with the normalization factor
n(a,l) = (ol (21 — 1))~/ (2.100)

One may think of the differential operators C! (V,), a “gradient spherical harmonic”, as
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polynomials of degree [ in three variables 0/da,, 0/0a,, and 0/0a.; the coeflicients of these
polynomials should be then taken from the definitions of the solid spherical harmonics.

These basis functions are used to compute the matrix elements of the KS Hamiltonian,
in a complete analogy to the Roothan equations of the HF formalism [7, 6]. At this stage,
the advantages of Gaussian functions become apparent. Many of the matrix elements in-
volving simple operators and Gaussian basis functions may be expressed in closed analytical
form [102]. For example, the overlap of two s-type Gaussian functions x, = x(7; @, a, 00)
and x, = x(r; 3,b,00) is given by [102, , 89

S(a,a, 8,b) == (xa|xs) = (4%)3/4 exp (— ao‘ﬁ (a - b)2> . (2.101)

The general overlap matrix elements for any angular momentum indices may be derived
from this equation with the help of “differential” form of a spherical Gaussian, Eq. (2.99).

For any functions x, = x(r; a, a,l,, m,) and x, = x(7; 3, b, [, myp) one has [102, , 89]
S(a,a,le, mq, B,b, 1y, my) = n(a, l)n(B,1,)Cl (V,)CE (Vy)S(a,a, B,b). (2.102)

To unfold this expression, one uses the following rules [119, 89]

Cy(V) f (r2/2)=CAL4(r) B /2) (2.103)
C( Z Z €l [Crn (V) f] - [C 7 (V) g] (2.104)
CL(V)CE(r) = (21 -1 ”Zelmm,C’L { (2.105)

These formulae give the action of a gradient spherical harmonic on a spherically symmetric
functions f, a product of functions f - g, and a spherical harmonic, respectively. The

coefficients €M

, are vector coupling coefficients, usually pre-computed and made available
in tabulated form [123, . With the help of these three rules, closed expressions for
practically any type of integral can be derived, starting from the corresponding expressions
for spherically symmetric Gaussians [102, , 89].

To build up the KS matrix and the energy expression, primitive integrals of the ba-
sic participating operators in the primitive basis are required. For the traditional non-
relativistic KS problem, these matrix elements are (x,|p?/2|xs) with p = —iV for the
kinetic energy, {xo|R.'|xs) with R, = |r — ¢| for the Coulomb field of a (point) nucleus at
location ¢, and (xq|Fy(r — ¢)|xp) with Fy = [ &' fy(r' —¢)/|r — /| for the Coulomb field
of the partial fit densities fj [00]. Integrals of the zc potential, though also required, are

evaluated differently, namely by numerical integration on a grid [60]. In a SR calculation
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at the DKnuc level, in addition the operator pV,,,.p occurs when one constructs the rela-
tivistically modified nuclear field; this operator is represented by primitive matrix elements
(Xa|PR;'p|x3) [77]. Tts SO counterpart opVyu. X p, another contributor to pV,,,..op, re-
quires similar primitive integrals (x,|pR;* X p|xs) [77]. Both types of integrals are some
combinations of the more general primitive integrals (x.|p;R.'p;lxs), i,j = 1,2,3. When
one goes beyond the DKnuc approximation in a relativistic calculation (e.g. at the DKeel
level), matrix elements (m|opFiop|n) of the Coulomb potential of the partial fit densities
I}, are required for a consistent extension of the DKH approach to the Hartree potential
which is represented as partial potential contributions of auxiliary basis basis functions
[27]. If one does not invoke the auxiliary expansion of the density and the resulting repre-
sentation of the potential, similar matrix elements of the local Hartree (and zc) potentials

are required [124].

To minimize the number of the primitive integral types required at higher levels of
relativistic approximation and to simplify expressions for them, we exploit the “resolution
of identity” where one inserts the expression ) |m)(m|~ 1 and computes the matrix of

an operator product as a product of representation matrices [77]:

(m|opFrop|n) ~ Z(m[ap|r>(r]Fk|s)<s|a’p[n). (2.106)
In this way, only two kinds of integrals have to be computed for the r.h.s. of this equa-
tion, namely those of the Coulomb field of the partial densities (r|Fy|s), already mentioned,
which are required already at the non-relativistic level, and a new but fairly simple integral
of the operator op. After explicit expansion of the o matrices, the matrix representation
of this latter operator (in spinor space) is expressed via matrix elements of the momen-

tum operator p in orbital space. Hence, primitive two-center integrals of the dipole type

(Xa|P|Xp) are required.

The primitive matrix elements of the operator p for s-type Gaussian basis functions

have the form

P(a,a,5,b) = (xalplxs) = —i{xal VIxs) (2.107)
. e
=1iV,S(a,a,3,b) = 2za fﬁ(a —b)S(a,a,p,b). (2.108)
To obtain the last expression we used the identity V = V, = —V, when acting on a

function of the argument » — b, and the differentiation rule of the spherically symmetric
function S ~ exp[—aB/(a+8)(a—b)?. The matrix elements for basis function of arbitrary

angular momenta [, and [, are derived from the above expression by double differentiation
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of the product vS := (a — b)S :
P(a,a,ly,mg, B,b, 1, my) ~ Cla (V,)Ck (V) {vS}. (2.109)

Note that S is also a function of v = @ — b. For any function of v, one has the operator
identity C! (V,) = —C! (V}), and one arrives at an expression where both differential

operators have the same argument:
l !
Cr (V)CE (V{F -G} (2.110)

with FF = v and G = S. This double differentiation of a product occurs with many
integral types required for a typical calculation. Therefore, it was made available as a
subroutine in PARAGAUSS. The input to such a subroutine should be the values of F
and G, for a particular parameter set (o, a, 3,b), and all values of the (double) derivatives
Ch (V)C2 (V)F and C (V)CE2 (V)G for i < I, [mu| < I, o < 1y, Ima| < Iy at the
chosen set of parameters (a, a, 3,b).! Such a strategy is analogous to providing as input the
coefficients of a Taylor expansion, instead of an supplying an ezpression which determines

the functional dependence of F' and G.
The derivatives of v are trivial

Vi ifl=0
CL(Voug =2 b ifl=1 (2.111)

0 otherwise

In fact, C¥ is the identity, C! (V,) = 8/0a,,, and all higher-order derivatives yield zero.
In PARAGAUSS, a different indexing of vector components is often used to allow a uni-
form treatment together with the indexing of the component of C} [90]. In that nota-
tion, the vector components (v_y, v, v41) refer to the (v,,v,,v,) in their usual meaning.
[However, vector components and other quantities with the indexing (Im) are stored in
the order (0,+1,42,... & 1), positive indices first.] The result of the double derivative
C’,l;;a(Va)C,lgb(Vb) applied to v is an obvious extension of the case list above. The double
derivatives of the overlap Cls (V,)Ck (V,)S are overlap matrix elements which are re-
quired for almost any type of integrals and are employed in the evaluation of many types

of integrals [119, 77, 89].

'For consistency, one may also consider the value of the functions F' and G as result of “zeroth-order”
differentiation, e.g. C§(V)CQ(V)F.



2.2. IMPLEMENTATION 33

2.2.2 Relativistic Transformations

The implementation of the DKH transformation follows the strategy for the SR variant
[125] which later on was extended to a treatment of the nuclear SO interaction [77]. How-
ever, the DKH SO implementation was mostly rewritten to allow for a more uniform
treatment of both types of DKH variants, that in the nuclear field only DKH (DKnuc) and
the DKee models (Section 2.1.4). Another reason for rewriting this program sections is
connected with the goal to improve the performance of the relativistic transformations via
efficient computational routines for matrix algebra [1206, , |. In fact, the whole DKH
machinery is based on matrix manipulations including the very expensive ones like similar-
ity transformations and matrix diagonalizations. From the new implementation, one could
also expect a performance improvement for the construction of the KS Hamiltonian due
to a reorganization of the matrix manipulations in momentum space. There is even room
for further improvements, especially with regard to the symmetry properties of spinless
operators; this question will be addressed in Section 3.6.

In the classic DKH approach, construction of a relativistically corrected Hamiltonian

or a relativistic energy expression in algebraic from proceeds via the following steps [16].

Basis set orthogonalization. A typical quantum chemical computation starts from a
non-orthogonal basis and explicitly deals with the overlap matrix S (which differs
from a unit matrix). The so-called canonical orthogonalization [129], also used in
PArRAGAUSS for the DKH approach, involves a solution of the eigenvalue problem
for the overlap matrix S. Furthermore, some matrices need to be adapted to an

orthogonal representation by a similarity transformation.

Construction of the basis in momentum space. Most DK operators are best repre-
sented in momentum space, i.e. in a basis of plane-wave functions; for instance, the
kinematic factors A,, K, and the relativistic (free-particle) kinetic energy E, are
diagonal in a momentum representation [16]. Relatively complex expressions of the
DK Hamiltonian are easier to compute in momentum space. According to Hess and
Buenker [130, 18], one may use the eigenvectors of the kinetic energy operator p?/2 as
basis for an approximate representation of momentum space, namely as finite basis
analogue of plane waves. This concept lies at the very hart of the Douglas—Kroll-Hess
(DKH) strategy. Because the kinematic factors and the relativistic kinetic energy ex-
pression are all functions of p?, they are easily computed once the eigenvalues and
eigenvectors of p? are known. This step involves solution of the eigenvalue problem
for the kinetic energy p?/2 after an orthogonalization transformation in the preceding

step. The basis set rotation matrices made available in this step are further used to
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transform other operators to a momentum space representation, e.g. the potential of

the nuclei V,,,. as well as the SR and SO parts of opV,,..op .

Construction of the relativistic operators in momentum space. This step comp-
rises the actual implementation of the DK expressions for the Hamiltonian. The
matrix algebra at this stage involves arithmetic operations with diagonal and full
matrices as operands, but no eigenvalue problems. The computation time is compa-
rable to that of the previous steps due to relative complexity of the DK expressions;
it may be substantially reduced by reorganizing the expressions in a mathematically

equivalent form which allows factorization and re-use of partial expressions.

Transformation back to real space. The relativistic Hamiltonian or the potential eval-
uated in momentum space is transformed back to real (orbital) space by another

similarity transformation.

Matrix contraction. The accuracy of the approximate momentum space representation
mediated by the eigenvectors of the operator p? in a finite basis strongly depends
on the size and the flexibility of that basis. One way to ensure the accuracy of the
relativistic transformations is to carry them out in the yet uncontracted Gaussian-
type orbitals basis and contract the latter only afterwards to reduce the matrix size

for the efficiency and stability of the SCF iteration process [130, 15].

If, as done in PARAGAUSS, one exploits the point group symmetry of the system then
the total Hamiltonian and all related matrices are of block-diagonal from in the index of
the irreducible representations (“irrep” for brevity) ([77], Chapter 3). In that case, the
five steps just described have to be repeated for each symmetry (irrep) subblock, without
any need for sharing any information between these tasks. This observation opens the
possibility for splitting the whole tasks into smaller ones which can be processed in parallel
on several processors [77].

An algorithm of the DKH transformation” as implemented in PARAGAUSS is illustrated
by the pseudo-code shown in Algorithm 2.1. The input provided to the DKH procedure
includes the matrix representations of the kinetic energy T(i,3) = (i [p?/2| j), the poten-
tial matrix V(i,j) = (¢|V]j), and the coupling potential terms PVP(i, j) = (i |opVeop|j)
in the original non-orthogonal basis, and the overlap matrix S. The coupling matrix PVP
contains, as presented here, both SR and SO contributions, may be, however, alternatively
defined to contain only SR terms or only SO ones. On output the procedure provides the
relativistic counterparts of the kinetic energy and potential, the matrices TR and VR, respec-

tively. The preparations to the DKH transformation start from eigenvalue problem solution

2Implemented in modules/reltrafo.f90 module. Some identifiers changed for readability
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Algorithm 2.1: Pseudo-code of the DKH SO implementation in PARAGAUSS.

II'INPUT: overlap S, kinetic matriz T, potential V, coupling potential terms PVP
I OUTPUT: relativistic kinetic energy TR, and potential VR
-/./
II' STEP 1 : CANONICAL ORTHOGONALIZATION
' O(EV +2MM)

call EigenSolver(S,s,Q) !l diagonalize overlap

QF = Q = s™1/2 !l orthogonal transformation matriz ...
QB = s'/2 % qf !II'... and reverse of that

T=QF T x QF Il orthogonalize kinetic matriz

!l STEP 2 : CONSTRUCTING MOMENTUM SPACE BASIS
' O(EV +TMM)

call EigenSolver(T,p2,U) !l find p* eigenfunctions in orthogonal basis
UF =QF * U !II'... and now in the original basis

UB = U' x QB Il ... and now the reverse transformation
V = UFf * V x UF !l potential matrices to momentum space
PVP = UF' % PVP x UF !I' PVP contains SO and/or SR terms

II' STEP 3.1 : MOMENTUM SPACE COMPUTATIONS DKH(1)
I'O(0M M)
call KineticFactors(p2,Ep,Ap,Kp) Il compute diagonal matrices

AVA = Ap x V x Ap !l first-order DKH terms ...
ARVRA = (Ap * Kp) * PVP * (Kp * Ap) !/ including SO and/or SR potential terms
VR = AVA + ARVRA Il first-order DKH approximation

I STEP 8.2 : MOMENTUM SPACE COMPUTATIONS DKH(2)
11 O(2MM)
forall ( i=1:N, j=1:N) 11 replace Vi by Vi = Vi /(Eyp + Ey)
AVA(i,j) = AVA(i,j) / (Ep(i) + Ep(j))
ARVRA(i,j) = ARVRA(i,j) / (Ep(i) + Ep(j))

end forall

R2 = Kp? * p2 Il put R* = K2p* between W matrices
RW = R2 * AVA - ARVRA IIin —3{2WE,W — E,W? — W?E,}
VR = VR + RW' * (Ep/R2) * RW Il add —-WE,W = -WR(E,/R*) RW
W2 = - RW * (1/R2) * RW I W?=WR(1/R>)RW, RW' = -WR

VR =VR - ( Ep *x W2 + W2 * Ep )/2 !/ add the rest of 2nd-order DKH
!I' STEP J: BACK TO REAL SPACE
II'O(BMM)
UBf * VR * UB !l ... relativistic potential
UB" * (Ep - c?) * UB Il ... and rel. kin. energy w/o rest mass

VR
TR
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for the overlap matrix S; its eigenvalues s and eigenvectors Q are used to construct orthog-
onalization transformation matrix QF and its reverse counterpart QB = QF~!.The kinetic
energy matrix T is then transformed to the orthogonal basis by similarity transformation
(Step 1, Algorithm 2.1).

As the next step, the eigenvalues p2 and the eigenvectors U of the kinetic matrix T are
found. The eigenvector basis, an approximation to the “plane-wave” basis, is used to build
the momentum representation of the potential terms V and PVP (Step 2, Alg. 2.1). In the
current implementation the preparation steps 1 and 2 together make up the largest part
of the whole transformation. The formal cost of the preparation steps is O(2EV + 9M M)
where M M denotes the cost of a matrix multiply and EV ~ 20 — 100M M [131] denotes
3

the cost of an eigenvalue problem solution.” To estimate approximately the operation

count, we ignore all matrix multiplications involving diagonal matrices, e.g. the square

root s/2

of the diagonalized overlap matrix s, and the kinetic factors E,, A,, K,. Such
operations are much less expensive than those involving multiplications of dense matrices.
A similarity transformations requires two multiplications of (dense) matrices; construction
of the transformation matrix to momentum space and of the backward transformation

matrix requires one (dense) matrix multiplication each.

As next, the relativistic potential matrix VR, as given by the 1st order DKH expression
Vi = AVA+ARV RA [& of Eq. (2.36)], is computed. This step is particularly cheap, since
it does not require expensive dense matrix multiplications (Step 3.1, Alg. 2.1). Indeed, the
matrix representations of V' and opVop need only to be multiplied by kinetic factors A,
and K, which are diagonal in momentum space. Further the program flow proceeds to
the evaluation of the 2nd order DKH correction terms (Step 3.2, Alg. 2.1). The rotation
generator W, Eq. (2.37), contains the factor op once, so is not possible to construct its
matrix representation starting from the matrix representations of V' (V) and opV op (PVP)
only; neither is it possible for R, Eq. (2.38). One circumvents this by slightly modifying
the expressions for &, Eq. (2.36), with the help of an identity R? = (Kop)? = K%p*:

1
E=-WE,W — 5{W2, E,} (2.112)
1
= -WR(E,R*)RW — §{WR(R‘2)RW, E,} (2.113)
1
= +RWH(E,R™*)RW + §{RWT(R‘2)RW, E,} (2.114)

3In fact, for our current needs, which are limited by the single-point SO runs, there is no need to
separate the two first steps, canonical orthogonalization and diagonalization of kinetic energy matrix. One
may solve a generalized eigenvalue problem for the kinetic energy matrix T with the metric S instead. The
presented approach matches well the SR implementation which covers not only the single point calculations
but also allows evaluation of the relativistic forces and, thus, efficient geometry optimization procedure.
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In the the last equality, Eq. (2.114), the quantity RW appears repeatedly and may thus
be re-used; this possibility is emphasized by underlining. Also note that WR = —(RW)f

as can be seen by comparing the two definitions:

RW = R?*(AVA) — ARVRA (2.115)
WR=ARVRA — (AVA)R? (2.116)

R? is a diagonal matrix so that the evaluation of RW from the matrices AV A and ARV RA
matrices is inexpensive. The savings due to the pre-evaluation of this intermediate quantity
become apparent when one compares how, for instance, the quantity W R(R™?)RW had

been previously evaluated [125, 77]:

(ARVRA)(AV A) + (AVA)(ARV RA) (2.117)
— (ARVRA)(R™?)(ARVRA) — (AVA)R*(AV A) (2.118)

Here, four multiplications of dense matrices are required. With the intermediate matrix
quantity RW the final expression for &, Eq. (2.114), requires only two multiplications
of full matrices, disregarding for this purpose the effort of multiplications involving the

diagonal matrices E, and R™2.

Alternatively, one may “factorize” the diagonal elements of E, by sacrificing algebraic
matrix operations. In such an approach, the matrix elements of & are obtained in element-

wise fashion in a three-fold loop over all i < j, and k [125, 77]:
. w1 . : “r1 N e :
Exli,g) = £(5,1) = 5 ) _{2B(k) + E(i) + EG)YRW" (k. )R> (R)RW.(k,j) . (2119)
k

Although this is equivalent to Eq. (2.114), it does not follow the strategy of exploiting effi-
cient implementations of matrix algebra operations. Still, this approach may be sufficiently
efficient on vector computers. Note that, here as well, one may profit from pre-computing
the matrix RW.

Evaluation of the DKH Hamiltonian in the momentum space together with the last
step, the back transformation of the relativistic matrices into real (orbital) space, formally
takes only O(bM M) operations, Alg. 2.1.

The pseudo-code of Alg. 2.1 is very close to the actual Fortran 90 implementation, even
up to the operator notation for matrix operations. The operator interface to an efficient
matrix arithmetics module is described in Appendix A. Two types of matrices are involved
in the computations: diagonal matrices and full (dense) square matrices. The former are

internally represented as one-dimensional arrays. The most demanding operations, which
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determine the performance of the algorithm, are the subroutine calls for the eigenvalue
problem and the general matrix multiplications. Both procedures require O(N?) floating
point operations and work with O(N?) storage elements. The different scaling behavior
of floating point operation number and memory references suggest algorithmic solutions
which allow an efficient re-use of memory (caching) to minimize memory references as

best strategy for a high performance implementations. For the matrix operations on most

platforms, we use the library ATLAS [127], an efficient implementation of the basic linear
algebra subroutine package BLAS L3 [126]. We solve the eigenvalue problem with the help
of the library LAPACK [128] which refers to BLAS L3 for matrix arithmetics, ensuring

high efficiency.

2.2.3 Relativistic Transformation of the Hartree Potential

Section 2.1.5 presented the formalism for incorporating relativistic effects of the screening
Hartree (Coulomb) field into the DK approach. In particular, the DK transformation
concept was combined with the so-called “fitting-function” approach to the Coulomb self-
interaction energy of the electron density and the corresponding potential terms. In this

section, we will discuss the relevant details of its implementation in PARAGAUSS.

The task of computing the relativistic corrections due to the Hartree terms of the fitted
density p [Eq. (2.74)] is very closely related to the DKH transformation of the Hartree
potential V. The latter is a linear “contraction” of partial contributions due to the
individual functions of the fit basis which represents the density p. The number of such
functions may be comparable to the size of the orbital basis, 20 — 50 per atom and more;
it is especially large for heavy elements. The coefficients of this contractions are adjusted
in every SCF iteration until convergence is reached. One is faced with a choice between

two alternatives.

For one, one carries out the DKH transformation of the whole (contracted) potential
Vi = > p @y during each SCF iteration. Alternatively, as preferred by us, one pre-
calculates relativistic corrections due to each potential contribution F} and contracts them
every time a new set of coefficients a; is available. In this latter strategy, one has a
number of uniformly defined operators which have to be subjected independently to a
DKH transformation; this number grows with the size of the system. This should be
contrasted with a standard DKH implementation (DKnuc) where one has to transform
only the nuclear attraction V. and kinetic energy 7. On a parallel computer one may
achieve an efficient parallelization by dividing the workload among processors according
to subranges of the index k of the fit function f, or Fj, respectively. Nevertheless, for

the overall performance, it is crucially important to implement efficiently the relativistic



2.2. IMPLEMENTATION 39

transformation of a given partial contribution Fj. As an immediate consequence, one
has to avoid the repetition of the same computational steps for consecutive contribution.
For this reason, it is absolutely essential to rearrange the existing (standard) code for a
DKH transformation so that it can be applied efficiently to the DKH transformation of FF

contributions.

Another issue which makes the DKH transformation of a potential term F}, different
from that of transforming the nuclear potential V,,,. is the way how the matrix elements of
the relativistic coupling terms are presently evaluated. Whereas the coupling terms due to
the nuclear potential opV,,,.op are combined from four analytically derived contributions
ZW{(SW, v} (1P Vauepv|7), & = 1,2, 3 corresponding to the scalar operator pV,,,.p and
three components of the vector operator pV,.,. X p, we opted for an alternative strategy
where the corresponding matrix elements of F}, are algebraically evaluated from the matrix
representation (i|F}|j) and the matrix representation of the bracketing operator (i |op| j).

For this purpose, we (twice) introduce the approximate resolution of the identity:

(ilopFoplj) =) (iloplk) (k| F|i)(llopl) (2.120)

k.l

Use of the resolution of the identity reduces the number of additional integral types to be
computed and stored; however, at the same time, it increases the quality requirements on

the basis set that is used to construct the matrix representations (see Section 2.3.4).

Moreover, the fact that the two-component operator op is not totally symmetric, re-
quires one to treat simultaneously two coupled irreps. Even though op looks like a scalar,
it is not. Loosely speaking, it is a contraction of the vector p and the pseudo-vector (axial
vector) o into a pseudo-scalar. A pseudo-scalar transforms as a true scalar quantity under
all proper symmetry rotations (i.e. it is invariant) but it changes sign under improper rota-
tions, among them the inversion. This feature of the two-component operator op is closely
related to the parity balance requirement [73] between large and small components of four-
spinors (see Section 3.3.4) and to the totally symmetric character of the four-component
operator ap. Throughout the thesis, we adhered to the following particular choice of the
parity operator P as expressed by the action on large and small components of a four-spinor
[78]:

Pyl — ¢ and ©¥ — —¢° (2.121)

Here P designates the inversion of the spatial coordinate system. Instead of the sign
change, one often employs an alternative choice of phases which entails additional factor i

in the transformations above [70].

The appearance of the pseudo-scalar operator op forces one to choose different basis
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sets for large and small components to achieve a numerically adequate description. This
kinetic balance [132] between basis sets of large and small components can be (approx-
imately) achieved by generating the basis set of the small components from that of the

large component as follows [133]:

V¥~ apyt/2c (2.122)

In the program PARAGAUSS, basis sets for large and small components are constructed
from two-spinors of two irreps 7 and 7/ which are coupled by the pseudo-scalar irrep P:
(7') = P ® (¥); see Section 3.3.4. The two-spinor bases for irreps 7 and 7' are constructed
from the atomic bases in standard fashion, without any further reference to the kinetic
balance condition, simply by reduction of the direct product of orbital and spin state
spaces. Therefore, it is natural that the basis set dimensions of coupled irreps differ in such
an approach, dim # dim 7/, as is the case in general. The basis for one of the coupled
irreps, say o/, may even be empty: dim#z’ = 0. This happens normally only in atomic
systems when the basis does not contain sufficiently high angular momentum functions.
Of course, the coupling between irreps is mutual; if (7/) = P ® (P) then () = P ® (V)

because P? = 1. This coupling also defines selection rules for any pseudo-scalar operator.

The peculiarities presented above originate in the need to handle explicitly the momen-
tum matrix representation op. For the sake of simplicity, the two-component pseudo-scalar
operator op should always be considered as (off-diagonal) block of the four-component to-
tally symmetric operator ap because the selection rules for totally symmetric operators
are remarkably simple. Totally symmetric operators have non-zero matrix elements only
between functions of the same irrep. In general, the matrix of a totally symmetric operator

in a symmetrized basis reduces to block diagonal form comprising smaller matrices:
V=gv? (2.123)

Here, V) denotes a single block which corresponds to irrep ©. For four-spinors, it is
convenient to specify the transformation properties 7 by those of its large component.
In this work, this convention will be assumed whenever the symmetry of a four-spinor is

referred.

In the four-component picture, it is also useful to exploit the 2 x 2 block structure
of matrices induced by the classification of large and small components. Specifying the

subscripts LL, SS, SL, and LS, the block structure of matrices can be represented as
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follows:

Vir V,
v=|[ " (2.124)
Vs Vss

This partitioning may, of course, be combined with the symmetry reduction, Eq. (2.123).
Then each irreducible block V® will additionally be separated into the blocks VL(?, VS(?,
VS(?, and VL(?. Furthermore, for an even operator V' only the LL- and SS-blocks are
non-zero, and for an odd V' only the SL- and LS-blocks.

With all this in mind, the trivial selection rules for the totally symmetric operator ap

which limit its matrix elements to those between four-spinors of the same irrep 7,
ap = Plap)?, (2.125)

replace the non-trivial selection rules of op. In addition, the matrix representation of
the odd operator ap is restricted to the off diagonal blocks (ap)(LﬁS) and (ap)gg; see Eq.
(2.124).

Several cases of irrep coupling (7') = P ® (v) by a pseudo-scalar P are discriminated
in the code PARAGAUSS. According to the symmetry rules, the overall transformation of
the potential contribution Fj may be separated into smaller tasks, similarly to a reduction
of the eigenvalue problem to a set of smaller ones in the case of symmetry. Reduction of
the eigenvalue problem allows one to treat symmetry-reduced matrices of different irreps
independent of each other, cf. Eq. (2.123). However, the non-trivial symmetry relation of
large and small components of a four-spinor sometimes makes it advantageous to treat two
coupled symmetries in parallel.

One can distinguish three cases of pseudo-scalar coupling:

1. The case 7 = ¢'. The spinor irreps for the large and small components of the four-
spinor coincide. This implies that the dimensions of the bases for large and small
components are equal. Hence, all matrices, e.g. the blocks of the even operator V,
VL(Z) and Vé?, and the blocks of the odd operator ap, (ap)(Lﬁg and (ap)(SDL), are all
square matrices of the same dimensions. However, even if 7 = 7/, the irrep bases for
the large and small components may still differ by a unitary transformation which
brings the direct product basis of P ® (7) into the canonical form of the irrep o/ = v
(see Section 3.3.4).

2. The case v # ¢/ and dim o/ # 0. The spinor irreps for the large and small components
of the four-spinors of symmetry v differ. The bases for the large and small components
have different sizes which results in (square) matrix blocks VL(Z) and VS(? of different

size and rectangular matrices (ap)% and (ap)g;g.
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3. The case v # I/ and dim?’ = 0. The spinor basis of symmetry 7/ for the small
components is empty. This case occurs in systems of high symmetry in cases of a
relatively small orbital bases (with low maximum angular momentum). It is is a sub-
case of the previous case; however, it requires some special treatment because the
matrices which formally involve small component functions vanish. With the matrix
arithmetic and eigensolver routines properly extended to such “zero-sized” matrices,

one is able to avoid a third branch of the code (see Appendix A).

As will be show in Section 3.3.4, careful construction of the small component four-
spinor basis for irrep U from the two-spinor basis of the coupled symmetry 7/ may save the
effort of maintaining the matrix representation of the four-diagonal operators (e.g. V') in
the four-spinor basis. (Such an operator, which is diagonal in all four spinor components,
is necessarily even and spin-free, i.e. it does not couple “up” and “down” components of
neither large nor small components.) The procedure ensures that any four-diagonal totally

symmetric operator, e.g. the matrix of the potential V', reduces to block form*

V=P evid) (2.126)

v

where the SS and LL blocks of irreps 7 and the corresponding irrep o/, coupled by a

pseudo-scalar, are equal (Sec. 3.3.4):
) _ /@) @) _ /(@) N ~
Vog =V, and V) = Vg’ for (') =P ® (D). (2.127)

This relation between the matrix elements does not hold for a general independent choice of
large- and small-component bases. One can imagine a unitary transformation of the large-
component basis of irrep 7 (or just a random phase shift applied to each basis spinor)
which will change the phases of VL(Z) but not those of Vég), and, thus, the relation in Eq.
(2.127) would not hold any more.

Because both matrices VL(? and VS(? (equal to VS(Z/) and VL(Z/) respectively) are needed in
the DK transformation to obtain the two-component representation of V', it is advantageous
to process irreps 7 and 7/ in parallel and re-use the quantities which otherwise would have
to be stored or re-computed. Note that the potential matrix V' discussed here is a matrix
representation of one of the many auxiliary potential basis functions F}, the potential of the
partial fit density fi to be DK-transformed. Therefore, any optimization gain is multiplied
by the number of FF basis functions, hence may drastically reduce the total computing

time.

4In Sections 3.2.4 and 3.3.3 it will be shown how to further reduce the matrix representation of spin-free
operators.
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Algorithm 2.2:  Pseudo-code of the relativistic transformation of a potential contribu-
tion Fj,.

II' INPUT: non-relativistic potentials F

Il forward and backward transformations UF, UB

Il kinetic factors, op represented in momentum space by SP
I OUTPUT: relativistic potential FR

!I' LEVEL 1 : LOOP OVER IRREPS
do Irril=1,N_TRREPS
Irr2 = pseudoScalarCoupling(Irrl) !/ returns NO_IRREP in case Irr2 is empty
if( Irrl /= Irr2 )then
call doTwoBlocks(Irrl,Irr2) I mark both as processed to skip afterwards
else
call doOneBlock(Irrl)
endif
enddo
I LEVEL 2: TWO-BLOCKS-AT-ONCE DKH(1)
SUBROUTINE doTwoBlocks(Irrl,Irr2)
II' processes two blocks with irrep indices Irrl and Irr2
!II' takes into account relation of LL/SS and Irr1l/Irr2 blocks
!I' STEP 1 : PREPARATIONS
Il composite indices XX and YY below will refer to LL and SS diagonal
!l blocks of matrices, indices XY and YX to the off-diagonal ones
!II' it has to be assured that if X=L then Y=S and, reversed, if X=S then Y=L
do XX=LL,SS
A(XX) = UB" (XX) * Ap(XX) * UFT(XX) !/ diagonal blocks Ar; and Agg to real space
enddo
do XY=LS,SL
AR(XY) = Ap(XX) * Kp(XX) * SP(XY) [/ off-diagonal blocks (AR)ps and (AR)sy, ...
AR(XY) = UBT(XX) * AR(XY) * UFT(YY) !/ ... transformed to real space
enddo
II' STEP 2 : FIT TRANSFORMATIONS

do k=1,N_FF !l for all fit functions
F(LL) = readFromTape(Irrl,k) !l use mapping LL < Irrl, SS < Irr2
F(8S) = readFromTape(Irr2,k) !l must handle NO_IRREP gracefully
do XX=LL,SS

FR(XX) = A(XX) * F(XX) * AJr (XX) /! compute ALLFLLALL+(AR)LSFSS(RA)SL
+ AR(XY) * F(YY) * ARV(XY) // ... and AssFssAss + (AR)s Frp(RA) s

enddo

call writeToTape(Irrl,FR(LL)) Il output results

call writeToTape(Irr2,FR(SS)) !l use mapping LL < Irrl, SS < Irr2
enddo

END SUBROUTINE
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Common prerequisites for the consecutive transformations of all auxiliary potential
basis functions Fj should be precomputed once and re-used later for all Fj,. These prereq-
uisites differ for the DKH transformation of first and second order. One clearly does not
need to repeat the construction of the momentum space basis, i.e. the matrix Uy of the
forward transformation to momentum space and the matrix U, = Uy ' of the backward
transformation to orbital space; they can be taken from the nuclear potential transforma-
tion procedure (Algorithm 2.1). Moreover, the bracketing matrices of the final expression
for the transformed potential matrix F}.; ; should be factorized and precomputed for re-use.

As an example, we discuss the first-order DKH transformation of an auxiliary potential Fj,
at the DKeel level [see Eq. (2.36)]:

Foo = Ul (AF,,A + ARF,,RA)U,
= U} (AU} F,,sUs A+ ARU}F,, U RA)U,
= AT ForbAorb + (AR)oerorb<RA)orb (2128)

orb

Here, we have omitted the subscript k for easy readability. The indices orb and pw refer
to the orbital and plane-wave (momentum) representations, respectively, of the operator
F and the index rel identifies the relativistically transformed operator F. The following

definitions were used for the “kinetic factors” in the orbital representation:

Aoy = U AU, = U, AU, (2.129)
(RA)or, = U RAU, = U, ' RAU, (2.130)
(AR)ors = (RA)},, (2.131)

The last expression of Eqgs. (2.128) is the usual definition of the first-order DK transformed
operator F,. where the operators are represented in orbital space instead of momentum
space. In such a formulation, computing the relativistically corrected operator F;.; requires
only four matrix multiplications. Note that one can avoid the transformation of F' to the
momentum space representation; its relativistic counterpart can be obtained directly from
the orbital representation F,;, see Eq. (2.128). Because of the more complex expressions
involved in the DKee2 and DKee3 models, calculations in the momentum representation

are unavoidable.

The four-component structure of the last expression in Eq. (2.128) is masqueraded by
the designations used. If written explicitly, the essential difference between the first and

second terms becomes apparent. Indeed the LL (upper left) block of the DK transformed
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operator F, is made up of two contributions (subscript orb omitted)

(AFA)L = ALFrLiArr
(ARFRA)LL = (AR) s Fes(RA)ss (2.132)

To compute the first contribution, the representation of the operator F' in the basis of the
large components is required; for the second contribution, the representations of F' in the
small component basis and the “large-small” off-diagonal transition elements of the odd

operator R or rather of AR are needed.

A careful reader will have noticed that we do not group odd operators R (or RA),
which contain one instance of ap (op), into couples to render the resulting operators
representable as a matrix — at variance with what we had done in the previous section for
the DKnuc implementation. This difference goes back to the primitive matrix elements with
which we start. For DKnuc, these were (i |V|j) and (i |opVop|j); for the DKee models
and the contained fit transformation, the pertinent primitives are (i |Fy|j) and (i |ap|j),
the latter being derived from (i |op|j), of course. Thus, in the fit transformations, we
have the possibility to build explicit matrix representations of operators, containing an

odd number of the ap (op) instances.

The evaluation of the expression for the second-order DKH Hamiltonian — in fact,
several flavors thereof (DKee2 and DKee3, Section 2.1.4) — was implemented in momentum
space. Reverting back to orbital space works only for the model DKeel, but not for
DKee2 and DKee3 where a large part of the calculation is performed via the momentum
representation. In the following, we will discuss our computation strategy for the models
DKee2 and DKee3. The second-order ee terms in Eq. (2.62) contributing to the DKee2

model Hamiltonian for a particular W,, = W,.[F}| are given by the lengthy expression
52 = _WnucEpWee - WeeEanuc - WncheeEp - WeeWnucEp . (2133)
These terms may be evaluated in two steps:

X i= WoueWee By + Wie E,Wee (2.134)
E = —(X + XT). (2.135)

The first step involves expensive matrix multiplications, the second step is cheap. The

second-order terms in the DKee3 model, Eq. (2.91), differ by an alternative definition of
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X. Using a temporary quantity Y, one can write:

Y 1= WoueWee (2.136)
1
X = §(Y +YNE, + Woaue E,2W,e . (2.137)

Again, as done in the implementation of the DKnuc variant, expressions which include

products of two W operators are evaluated via RW (W R) intermediates:
WiueWee = (W R)ue R2(RW ) e (2.138)

with the help of the identity R™* = K ?p~? for diagonal matrices. The definition is similar
to that in Section 2.2.2:

(WR)nue = ARVRA — (AV A)R? (2.139)
(RW)ee = R*(AFA)— ARFRA. (2.140)

The computation of the matrices ARFRA and ARV RA deserves a comment. In a true
momentum space basis, the perturbation by the “scaling” operation expressed by the tilde

[see Eq. (2.29)], is interchangeable with operators depending only on p or p?.
ARVRA = ARVRA (2.141)

However, this identity holds only approximately for the representation matrix R(p) =

K,ap in the finite basis of the eigenvectors of the operator p?:
ARVRA ~ ARVRA (2.142)

Of two approximately equal matrices in the last equation, the former was chosen in the
implementation; in other words, first the quantity ARV RA is evaluated and the scaled,
following Eq. (2.29).

The pseudo-code presented in Algorithm 2.2 shows the Fortran implementation of the
DKH transformation of potential contributions Fj at the DKeel level as implemented in
the program PARAGAUSS. Much of the information computed during the DKnuc step
where the nuclear potential is transformed, can be re-used here, e.g. the forward and
backward transformation matrices and the kinetic factors. The first part of the code
examines the given conditions and dispatches the execution to the appropriate branch
(Level 1, Algorithm 2.2). Each particular branch is optimized for the specific case. Only

one case is shown in the pseudo-code of Algorithm 2.2, namely the case of a symmetry where
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the irreps coupled by the pseudo-scalar are distinct and, as a result, a fit transformation
where two blocks are treated at once (DKH(1), Level 2). First, the orbital space operator
representations of App, Ass, (AR)Ls and (AR)gy, are pre-evaluated (Step 1, Algorithm
2.2). The irrep coupling, discussed above, is taken into account. Then, for each fit function
potential Fj, the matrix representations for irreps Irrl and Irr2 are transformed to the
relativistic picture according to Eqgs. (2.132) and (2.128), (Step 2, Algorithm 2.2).

2.3 Applications

2.3.1 Computational Details

The various relativistic methods for a self-consistent two-component treatment of the SO
interaction discussed in Section 2.1.4 were implemented in the parallel density functional
program PARAGAUSS [21, 20], based on the LCGTO-FF-DF method (linear combination
of Gaussian-type orbitals fitting-functions density functional) [60].

As mentioned before, the functional form of the exchange-correlation energy E,. is in
general different in non-relativistic and relativistic methods. Relativistic corrections to the
zc functional often have very little influence on many molecular properties [30, 36, 61, 63].
To allow for easy comparison with earlier results on various diatomic molecules that ac-
counted only for the self-consistent effect of the spin-orbit interaction due to the nuclear
potential [26], we used standard non-relativistic zc¢ approximations, namely the local den-
sity approximation (LDA) as suggested by Vosko, Wilk, and Nusair (VWN) [134] during
the KS SCF iteration and, afterwards, evaluated the energy functional of the generalized
gradient approximation (GGA) for the self-consistent LDA density. As GGA, we used
the combination of Becke’s exchange and Perdew’s correlation functionals (BP) [135, 130].
Such a post-SCF approximation is very economical and usually sufficiently accurate.

Next, we describe the basis sets used for representing the Kohn—Sham orbitals and the
relativistic transformations. In general, we use larger bases for the relativistic transforma-
tions of the integrals (uncontracted, higher angular momentum) than for describing the
KS orbitals. In the relativistic transformations of the various DKee variants, higher angu-
lar momentum functions provide an improved representation of the resolution of identity,
in particular for representing vector operators like p and op which locally couple angu-
lar momentum eigenfunctions according to the selection rule L — L 4+ 1. (For technical
reasons it was not possible to eliminate completely these additional angular momentum
basis functions during the SCF procedure, but we minimize the effect of these functions
by contracting them during the SCF procedure as much as possible.)

For NOy we used a (13s,8p,7d) basis set for each atom, contracted in generalized fashion
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to [8s,7p,3d]| [137]; the s and p contractions were taken in generalized form, employing
atomic eigenvectors of VWN calculations. The d-type exponents were set equal to the
(largest) exponents of the corresponding p set; in the SCF calculations, only the 2nd, 3rd,

and 4th most diffuse d exponents were used in uncontracted fashion.

For the diatomics examined here, we used a series of four sequentially improved basis
sets for the heavy elements Pb, Bi, and TIl, to judge accuracy and completeness of the
basis sets, in particular with respect to the relativistic transformation. We started with
smaller basis sets of “standard” quality (referred as std) for Pb, Bi, and T1 [138] of the
size (20s,18p,12d,6f,6¢9). Available basis sets [135] of size (19s,16p,10d,5f) were augmented
by one diffuse s exponent, one diffuse and one tight p exponent, two diffuse d exponents,
and one diffuse f exponent. All added exponents were derived from the highest or lowest
exponents of the original set in an even-tempered fashion. The set of g-type exponents
was set equal to the set of f-type exponents, in analogy to the procedure described above
for NO,. The larger basis sets of the heavy atoms were well-tempered basis sets (wtbs,
[139]): (28s,24p,18d,12f,12g) for Pb, Bi, and T1. We augmented these wtbs basis sets in
several ways. One extension (wtbs+3c) comprised the addition of three core exponents in

1/2
/2 where ag, oy, and

each L shell: a_j/p = a/a1s, a1js = (apar)'?, and agje = (araz)
ay are the three largest exponents of a shell. Another, even larger basis set (wtbs+3c3v)

was constructed by extending the latter basis set in an analogous fashion by three valence

exponents in each L shell, designated as a,_3/2, p—1/2, and ay,41/2. In each case, the set of
g-type exponents was identical to the set of f-type exponents. None of these heavy-element

basis sets was contracted.

In the calculations on diatomics, we used the contracted basis sets (8s,4p,3d) — [4s,3p,2d|
for H and (145,9p,4d) — [5s,4p,2d] for O [110]. The basis set used for calculations of the
orbital spectrum of the Hg atom was (21s,17p,12d,7f,4g) [111].

In the LCGTO-FF-DF method, the classical Coulomb contribution to the electron-
electron interaction is evaluated with the help of a basis set representation of the electronic
density [00], see Section 2.1.5, Eq. (2.74). The corresponding “auxiliary” basis sets were
constructed from the corresponding orbital basis in a standard fashion [60] and augmented
by even-tempered sets (factor 2.5) of five p exponents starting at 0.1 au and five d exponents
starting at 0.2 au.

Grids for the numerical integration of the xc contributions were set up as combination

of radial and angular grids [142]. The radial grids comprised 112 shells for Hg, 166 shells
for Bi, 185 shells for Pb, 193 shells for T1, 48 shells for O, and 44 shells for H. In each shell,
a Lebedev angular grid [113] accurate up to angular momentum values L = 23 was used

in the molecular calculations.

The interatomic distance of diatomics was optimized in a point-wise fashion. Typically,
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N =5 or 6 calculated total energy values were fitted with a polynomial of degree N — 1;
the energy minimum was obtained from this polynomial representation. The harmonic
vibrational frequency was derived by numerical differentiation using two additional total

energy values at distances located symmetrically with respect to the equilibrium.

2.3.2 Spin-Orbit Splittings in the Hg Atom

As a first illustration of the relativistic corrections due to ee interactions, we considered
the fine structure of the mercury atom, i.e. the SO splitting of the atomic shells with
non-zero angular momentum. In Table 2.1 we present the spin-orbit splittings of the Hg
atom, calculated with three models. DKnuc is the DK level introduced previously [20],
with the DK transformation in the nuclear field only. The models DKeel and DKee2,
as defined in Sec. 2.1.4 by Eqs. (2.49, 2.50), take ee contributions into account; in the
KS Hamiltonian, the untransformed Hartree potential Vy of DKnuc is replaced by its
relativistic counterpart. As a reference, we use results of a fully relativistic four-component
DKS calculation [111]. The relative errors of the models DKnuc, DKeel, and DKee2 with
respect to the DKS results are designated as A,,,. and Ay, and A,, respectively. Effects of
the DKee3 approximation, Eq. (2.51), will be discussed later.

The errors A,,,. of the DKnuc results clearly demonstrate the limitation of this model.
First of all, all SO splittings are overestimated, and the relative error increases with the
value of the angular momentum. Starting from 1.6% for the 2p splitting, the error gradually
increases with the principal quantum number to 2.2% for the 5p shell. For the d shells,
the errors, ranging from 14% to 18% again increase with the principal quantum number.
Finally, in the 4f shell, A,,. acquires the ultimate value of 51%. The errors A; of the
DKeel results are much more uniform over the range of angular momenta and principal
quantum number values, and are substantially smaller than the A,,,. values (Table 2.1). For
instance, the error A,,,. of the 4f shell splitting is drastically reduced from 51% to —3.2%.
The splittings of the d shells are reproduced with errors of 3.0 to —3.8% at the DKeel level.
Thus, most DKeel values are considerably more accurate than the corresponding DKnuc
values; the absolute accuracy of the p shell splitting is only slightly improved. The negative
sign of the error Ay in all cases is worth noting. Thus, in general, the first-order method
DKeel slightly underestimates the SO splittings, at variance with the clear overestimation
at the DKnuc level. In addition, the accuracy of the 1s;/, orbital energy increases by a
factor of two, from —0.4% at the DKnuc level to —0.2% at DKeel level. The errors A, of
the DKee2 method are similar to those of the DKeel variant. For the absolute energy of
the 151/ level and the SO splittings of the p levels, the errors A, are slightly smaller than
Arq; on the other hand, errors Ay of the d splittings are slightly larger.
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Table 2.1: Energy of 1s;/, orbital and spin-orbit splittings ASO of the p, d, and f shells
of the Hg atom (in au). DKS — numerical DKS results”, DKnuc — model without ee-
corrections, DKeel and DKee2 — models including first- and second-order ee-corrections
due to Vj, respectively. A,.., A1, and A, designate deviations of the models DKnuc,
DKeel, and DKee2, respectively, from the corresponding full DKS results. For the number
of digits displayed, results of the DKee3 approach are identical to DKee2 (compare Table
2.2).

DKS DKnuc A,..[%] DKeel A;[% DKee2 A,[%]

e(1syy9) —3047.5 -3033.8 -0.4 -3041.7 -0.2  -3043.7 0.1
ASO
2p 71.493  72.649 1.6 70.615 -1.2 70.712 -1.1
3p 15.831  16.110 1.8 15.630 -1.3  15.649 1.1
4p 3.832 3.905 1.9 3.783 -1.3 3.788 -1.1
op 0.679 0.694 2.2 0.671 -1.2 0.672 1.1
3d 3.395 3.862 13.8 3.291 -3.1 3.281 -3.4
4d 0.714 0.820 14.8 0.687 -3.8 0.685 4.1
od 0.067 0.079 17.9 0.065 -3.0 0.065 -3.0
4f 0.154 0.233 51.3 0.149 -3.2 0.149 -3.2
a) Ref. [111].

Table 2.2: Contribution to the energy of the 1s;/, level and the spin-orbit splittings of
Hg at successive approximate levels normalized to the corresponding DKnuc value (in %).
Column ADKeen, n = 1,2,3 shows the fractional corrections (in %) to the preceeding
approximation: ADKeen = 100 [DKeen — DKee(n — 1)]/DKnuc (DKee0 = DKnuc).

ADKeel ADKee2 ADKee3

£(Ls1/2) 0.3 0.06 21073
ASO
2p 2.8 0.14 51073
3p -3.0 012  6:1073
4p -3.2 012  6:1073
5p -3.4 012 61073
3d -16.8 -0.30 31073
4d ~18.7 -0.40 31073
5d -20.8 -0.44 41073

Af -955.2 -0.01  -1-1073
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In Table 2.2 we collected data illustrating the relative importance of different ee con-
tributions to the DK Hamiltonian. The columns ADKeel, ADKee2, and ADKee3 denote
successive contributions due to the relativistic treatment of the Hartree term for the se-
ries of corresponding approximations, Eqs. (2.36). The largest effect is due to ADKeel:
this term eliminates the main source of the DKnuc inaccuracy as just discussed. This
term contributes ~3% to the splittings of p shells, 17-21% to splittings of d shells, and
55% to the 4f shell splitting. Obviously, the second-order contribution ADKee2 is much
less important than ADKeel: contributions to the splittings are 0.12-0.14% for p shells,
0.30-0.44% for d shells, and 0.01% for the 4f shell. The latter value likely should not be
considered representative. The last column of Table 2.2, denoted as ADKee3, shows the
difference of DKee2 and DKee3, not a further correction of DKee2. The values displayed
in the last column are the relative difference (in percent) of two similar second-order mod-
els (see Section 2.1.4): the one derived as a linearized expansion of 52(2) Voue + Vi in Vi
and the other derived by adding the Hartree term Vj, resulting from a second-order DK
transformation in the nuclear field, to h(DQ;(nuc,Q‘ The quantity ADKee3 is several orders of
magnitude smaller than the second-order correction ADKee2 itself; relative contributions
range from —1073 to 6 - 1073% of the quantity of interest. Thus, at least at the present
level of accuracy, there is apparently no difference between the two flavors of second-order
corrections terms in hg}(%m and hg}@m as described in Section 2.1.4. From the data
presented in Table 2.2 we conclude that the most important relativistic SO contributions
to the DK Hamiltonian of the Hartree term derives from the first-order potential term
AEI(Q) = 51(2)[VH] — Vp. Inclusion of the second-order potential contributions due to the

Hartree term introduces changes that are smaller at least by an order of magnitude.

It is easy to rationalize the changes induced by a particular SO approximation and
the relative importance of different contributions. The relativistic transformation in the
nuclear field only (DKnuc) does not account for the screening effect of the ee repulsion
on the SO interaction. Effectively, the SO field (that part of the whole field which does
not commute with the spin) is overestimated if the screening due to ee interaction is
completely ignored; this rationalizes the sign of A,,. (Table 2.1). The overestimation is
more pronounced for outer orbitals, for which the ee screening of the nuclear potential plays
a more significant role, namely for orbitals with higher angular momentum or principal
quantum number. The Hartree contribution to the SO field apparently eliminates the
main error of the DKnuc level. In regions far from the nuclei, the nuclear attraction
is partially compensated by the Hartree repulsion; the same obviously holds for the SO
coupling field at the DKeel level. Therefore, the errors A; of the model DKeel (Table
2.1) are reduced and essentially independent of the spatial distribution of the orbital. The

overcompensation by the Hartree term, reflected in the slightly underestimated splittings,
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Table 2.3: EPR g-tensor shifts (x107°) of NOg. Results of LDA (VWN) and GGA (BP)
calculations in comparison with experiment.

VWN BP
DKnuc DKeel DKnuc DKeel ZORA® UKS® exp.©
XX 588 457 609 472 500 340 390
yy 2051 1573 -1977  -1514 -1600 -1123 -1130
77 -91 —73 -90 —72 —60 -69 -30
a) ZORA SO, Refs. [150, 152], b) unrestricted Kohn—Sham calculation, perturbative treat-
ment of an SO effective core potential, Ref. [17], ¢) Ref. [153]

likely is due to the fact that the (attractive) exchange potential has not been taken into

account in the relativistic transformation.

2.3.3 Effects of Relativistic Contributions to ee-Interaction on
the g-Tensor of NO,

In this section we demonstrate effects of the newly derived relativistic models on a purely
spin-orbit induced property, namely the g-tensor shifts of radicals. We will use the NO,
radical as an example.

EPR spectroscopy is widely exploited to study systems with an unpaired electron, e.g.
organic radicals, coordination compounds, and paramagnetic sites in solids. The inter-
action of the electron spin with the orbital movement (angular momentum) affects the
resonance frequency of the spin-flip transition and thus results in a shift of the g-tensor
from the corresponding isotropic value of a free electron. To properly reproduce the EPR
parameters in a numerical simulation, one needs a model that describes SO interaction
in an adequate fashion. We mention semiempirical models [115, | and HF-based ab
initio models [117, , 119] as well as density functional methods [150, , 47, , H5].
In g-tensor calculations, the SO interaction often is introduced as a second perturbation,
— along with the magnetic field. Our model, similarly to ZORA [150], provides a self-
consistent treatment of SO interaction in a DF framework; therefore, the g-tensor is a
first-order property in the magnetic field, fully determined by the ground-state orbital
wavefunctions [55].

In Table 2.3, we collected various computational results for g-tensor eigenvalues of
NO,, obtained with both LDA (VWN) and GGA (BP) zc functionals. Only the differ-
ence with respect to the g-tensor value of a free electron is shown. This difference is of

inherently relativistic nature and vanishes in the formal limit of infinite speed of light,
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¢ — oo. These numbers are relatively sensitive to the approximations made for the SO
treatment as demonstrated by a comparison of the DKnuc and DKeel values. No changes
in the significant digits were calculated when the alternative models DKee2 or DKee3 were
applied.

At the BP/DKnuc level, the eigenvalue shifts (Agy,, Agyy, Ag..) = (609, ~1977, -90),
scaled by 10° for readability, are noticeably larger (by absolute value) than their experi-
mental counterparts, (390, —~1130, -30) (Table 2.3). At the DKeel level, the absolute values
of the shifts are reduced by about 30%, to (472, 1514, —72), bringing them significantly
closer to experiment. Thus, the trend parallels our finding for the orbital SO splittings of
the Hg atom (Section 2.3.2). LDA and GGA values differ by no more than 4% and therefore
are not responsible for the remaining difference with experiment. Taking spin-polarization
into account and extending the spin-orbit treatment to the zc potential probably improves
the agreement with experiment.

The present DKeel values are rather similar to the g-tensor shifts computed with the
ZORA procedure, (500, —1600, —60) [150, 152] (Table 2.3). This holds in spite of the fact
that the two models, ZORA and the improved DK method used in the present work, differ
substantially not only in the underlying formalism, but also in the implementation. Our
DK approach relies on an analytic evaluation of the Coulomb terms in a Gaussian-type
basis set whereas the ZORA implementation uses Slater-type orbitals and a numerical
integration which allows a uniform treatment of Coulomb and zc potential terms. On
the other hand, our results differ notably from those of another DF based procedure [17],
(340, —1123, —69) which agree better with experiment (Table 2.3). Malkina et al. include
the SO interaction by perturbation theory after SCF convergence is achieved at the non-
relativistic unrestricted DF level, exploiting gauge corrected IGLO orbitals for post-SCF
g-tensor calculations; they explicitly deal with two-electron SO terms, whereas we aimed
at including ee interaction consistently in our relativistic KS model.

For an extensive study of paramagnetic species using the implementation of SO inter-
action presented in this work, we refer to the recent work of Neyman et al. [55] where
limitations and further improvements of the DK approach to g-tensor shifts are discussed

in detail.

2.3.4 Spin-Orbit Effects on Properties of Diatomic Molecules

Finally, in our examination of spin-orbit effects related to Coulomb screening of the nuclear
field, we present properties of the diatomic molecules TIH, PbO, Phs, Biy. All of these
molecules contain elements of the sixth period which, due to their relatively high atomic

numbers, are expected to exhibit relativistic effects including those of SO interaction. How
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important SO effects are for the structural properties of molecules depends, among other
things, on the atomic orbitals which participate in the bonding. The heavy elements
selected here all bind essentially via their outer p orbitals, so that one may expect some
changes between different approximations of the relativistic model. Our choice of diatomics
was guided by the intention to compare directly with experimental and theoretical results

of other investigations [154, , 26, 156].

Previous versions of the code PARAGAUSS allowed a treatment of SO interaction via
the DK transformation of second order only in the nuclear potential (DKnuc) [26]. Now,
we also include the classical Coulomb part of the ee interaction in that transformation
(DKeel, DKee2, and DKee3), at least in an approximate way. For the diatomics just
mentioned, we calculated the equilibrium geometry, the binding energy and the harmonic
vibrational frequency at the LDA (VWN) and post-SCF GGA (BP) levels (see Tables 2.4,
2.5, and 2.6). For reference, we also provide results obtained with the SR variant of the

DKnuc approach.

The results compiled in these tables show how the selected molecular properties depend
on the quality of the orbital basis. We compare results of the methods DKnuc, DKeel,
and DKee2 for the basis sets std, wtbs, wtbs+3c, wtbs+3c3v (see Computational details,
Section 2.3.1). Data obtained with the DKee3 approach yield no differences to DKee2
results at the accuracy displayed. Thus these results are not shown in Tables 2.4-2.6. The
basis set dependence is to a significant degree connected with the strategy to evaluate
complex operators like opV op via a matrix representation of the operators p (and op).
This procedure is convenient, but certainly not optimal; direct analytical evaluation of the
corresponding integrals is preferable, but for the present work such more efficient treatment
is not required. The DKnuc results for bond lengths and vibrational frequencies hardly
change with the various basis sets; even the basis set dependence of the binding energies is
small for this formalism. Scalar relativistic results are even less dependent on the basis set,
as shown by a comparison of the results for the smallest (std) and a more flexible (wtbs)
basis sets (see Tables 2.4, 2.5, and 2.6).

The results of the methods DKeel and DKee2 depend noticeably more on the basis
set. Bond lengths and harmonic vibrational frequencies are in general less sensitive than
the binding energy. In fact, for these observables, relatively small changes occur when one
switches from the smallest basis set std to the basis set wtbs; further extension of the latter
basis set to wtbs+3c3v causes only minor changes (Tables 2.4 and 2.5). The situation is
notably different for the binding energy (Table 2.6). Inspection of Table 2.6 supports the
conclusion that the most flexible basis set wtbs+3c3v yields results that, at the level of
accuracy reported, are close to convergence for all observables studied. Now, we discuss

the various properties in detail.



2.3. APPLICATIONS 95

Table 2.4: Bond lengths 7. (in A) of the diatomic molecules determined with various SO
approximations DKnuc, DKeel, and DKee2 (Sec. 2.1.4) using molecular orbital basis sets
std, wtbs, wtbs+3c, and wtbs+3c3v of increasing accuracy (see Sec. 2.3.1). Also given are
results of SR calculations, other calculations, and experiment.

Bi, Pb, PbO TIH

LDA GGA LDA GGA LDA GGA LDA GGA

DKee2  wtbs+3c3v  2.639 2.687 2.892 2971 1.911 1.939 1.867 1.899
wtbs+3c 2.650 2.697 2901 2.978 1.915 1.942 1.868 1.899
wtbs 2.646 2.693 2.894 2.970 1.915 1.942 1.868 1.899
std 2.610 2.654 2.835 2.904 1.913 1.941 1.856 1.886
DKeel  wtbs+3c3v 2.640 2.688 2.895 2.974 1.911 1.939 1.867 1.899
wtbs+3c 2.651 2.698 2.903 2.980 1.915 1.943 1.869 1.900
wtbs 2.649 2.697 2.900 2977 1.915 1.943 1.869 1.900
std 2.619 2.663 2.848 2.919 1.913 1.941 1.856 1.886
DKnuc  wtbs+3c3v  2.644 2.693 2.900 2.981 1.912 1.939 1.866 1.897
wtbs+3c 2.655 2.703 2909 2.988 1.915 1.943 1.866 1.897

wtbs 2.655 2.703 2.909 2.988 1.915 1.943 1.866 1.897

std 2.651 2.699 2.900 2.978 1.916 1.944 1.854 1.884

SR wtbs 2.621 2.660 2.865 2.924 1.915 1.942 1.895 1.923

std 2.617 2.658 2.858 2.917 1.916 1.942 1.882 1.910

ZORA® 2.637 2.685 1.910 1.937 1.868 1.900

BDF? 2.689 2.982 1.939 1.901

exp‘ 2.661 2.932 1.922 1.870
a) Ref. [151], b) Refs. [155, 156], ¢) Ref. [157]

Comparison of the Tables 2.4, 2.5, and 2.6 reveals that LDA and GGA results exhibit
very similar changes if one compares results for any two of these four basis sets. In the
following, we will discuss the quality of the various relativistic approximations using results

for the most flexible basis set available, i.e. for basis set wtbs+3c3v.

The equilibrium bond lengths of the diatomics are hardly affected when the classical
Coulomb part of the ee interaction is accounted for in the SO treatment; cf. DKnuc and
DKeel results in Table 2.4. The GGA distance at the DKeel level is 0.005 A shorter for
Bi, than the DKnuc result; for Pby the contraction is 0.007 A. For PbO and TIH, the bond
length hardly changes at all in this comparison. The results of the DKeel and DKee2
models are to a large extent equivalent; the largest difference, a further contraction by
0.003 A, occurs for Pby. DKee3 results (not shown in Table 2.4) agree with those obtained
at the DKee2 level in all digits displayed.

The various SO models change the interatomic distances approximately by an order of
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Table 2.5: Harmonic vibrational frequencies w, of various diatomic molecules (in cm™!).
Lay-out as in Table 2.4.

Biy Pb, PbO TIH

LDA GGA LDA GGA LDA GGA LDA GGA

DKee2  wtbs+3c3v 179 169 119 109 745 710 1388 1337
wtbs+3c 182 172 119 108 740 705 1385 1336

wtbs 182 173 118 110 740 703 1388 1335

std 198 185 133 123 736 700 1411 1349

DKeel  wtbs+3c3v 179 169 119 109 745 711 1389 1339
wtbs+3c 182 172 120 108 740 703 1385 1329

wtbs 181 173 119 111 740 705 1392 1336

std 194 182 131 120 735 701 1410 1348

DKnuc  wtbs+3c3v 179 167 119 107 744 710 1393 1331
wtbs+3c 182 170 118 108 739 703 1399 1332

wtbs 182 171 118 108 740 702 1392 1332

std 184 171 120 109 733 696 1412 1350

SR wtbs 202 193 138 130 751 715 1383 1326
std 203 194 140 131 745 709 1396 1337

ZORA“ 186 174 755 720 1390 1330
BDF? 171 107 716 1324
exp* 173 110 721 1391

a) Ref. [151], b) Refs. [155, 156], ¢) Ref. [157]

magnitude less than inclusion of the SO interaction itself. From the SR reference data of
this work and a previous study [20], it follows that inclusion of SO interaction may change
the distances by several hundreds of an angstrom; the largest effects occur again for Pho,
namely a bond elongation by 0.04 or 0.06 A for LDA and GGA, respectively. As often,
LDA distances turn out somewhat shorter than GGA distance, calculated with the same
method; differences (0.05 A for Biy, 0.08 A for Pby, 0.03 A for PbO and TIH) are very
similar for the various methods of approximation DKnuc, DKeel, and DKee2. In fact, in
all cases studied, the experimental bond length [157] is bracketed by the LDA and GGA
results (Table 2.4). It is gratifying to note that the present calculated results agree very
well with those of previous accurate relativistic DF methods, namely those of ZORA SO

[151] and a four-component treatment by the BDF program [155, 156].

Next, we discuss the harmonic vibrational frequencies of the set of test molecules (Table
2.5). Again, a flexible basis set is required for SO calculations to avoid artifacts due to
the relativistic transformation procedure; frequencies change by up to 20 cm™!; cf. std and

wtbs+3c3v values. The absolute values of the SO effect, derived from a comparison of
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Table 2.6: Binding energies D, of various diatomic molecules (in eV). Lay-out as in Table
2.4.

Bis Pb, PbO TIH

LDA GGA LDA GGA LDA GGA LDA GGA

DKee2  wtbs+3c3v 292 2.19 1.60 1.24 5.41  4.65 240 217
wtbs+3c 2.89 217 1.60 1.24 5.36  4.60 2.40 2.16

wtbs 3.00 2.28 171 1.35 5.27 4.61 240 217

std 437  3.73 2.65 227 5.43  4.67 256  2.37

DKeel  wtbs+3c3v 2.88 2.15 1.57 1.21 5.41  4.65 240 217
wtbs+3c 2.85 2.13 1.57 1.21 5.36  4.60 239 2.16

wtbs 290 2.18 1.61 1.26 5.37 4.61 240  2.17

std 4.07 344 241  2.03 5.41  4.65 256 237
DKnuc  wtbs+3c3v 2.80 2.08 149 1.13 5.34 4.58 238 2.15
wtbs+3c 275  2.04 148 1.13 5.29 4.53 238 2.15

wtbs 2,76  2.04 1.48 1.13 5.29 4.53 2.38 2.15
std 296 2.35 1.51 1.15 5.27 4.51 2.54  2.35
SR wtbs 3.75  2.70 293 239 6.59  5.46 296 2.73
std 3.77 272 296 241 6.55 5.43 298 2.76
ZORA“ 2.83 1.98 5.25 4.15 2.39  2.10
BDF? 2.45 1.14 4.39 2.17
exp* 2.03 0.86 3.87 2.06
a) Ref. [151], b) Refs. [155, 156], ¢) Ref. [157]

vibrational frequencies determined at the SR and DKnuc levels with the wtbs basis set,
range from a decrease of about 20 cm™! for Bi, and Pby, via a moderate decrease by
slightly more than 10 cm™! for PbO, to an increase by less than 10 cm™! for TIH. The
effects of the improved SO models DKeel and DKee2 follow a the different pattern, but
are very small; compared to the DKnuc results, the DKee frequencies increase by about 2
cm ™! for Biy and Pby, 1 em™! or less for PbO and 5-8 cm™! for TIH, depending on the
zc functional and the particular DKee model. The various DKee models are essentially
equivalent for determining the vibrational frequencies of the selected diatomics. As often,
LDA frequencies are larger than GGA values, by 5-10%, which is of the order of 10-60
cm~! for the current set of molecules; the increments between different SO models are
quite similar for LDA and GGA. Except for TIH, the LDA and GGA values bracket the
experimental frequencies; both LDA and GGA underestimate the vibrational frequency
for TIH. The frequencies agree well with those computed by ZORA and BDF calculations
[154, 155, 150]; the largest deviation is below 15 cm™ for the highest frequency (TIH).
Finally, we turn to a discussion of the binding energies, Table 2.6. This quantity is most

sensitive to SO effects, i.e. even at the DKnuc level as already shown by a comparison of std
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and wtbs results. This sensitivity increases notably when one goes to DKeel and DKee2
results which clearly exhibit artifacts with the std basis set; the discrepancy is particularly
large for Bi, and Pbsy, small for TIH, and essentially absent for PbO. In all cases, more
flexible basis sets yield smaller binding energies. This deficiency may be interpreted as a
basis set superposition effect of the relativistic transformation because the binding energies
converge to smaller values with the more flexible basis sets wtbs, wtbs+3c, and wtbs+3c3v.

In fact, the binding energies convergence to some extent with growing size of the basis set.

Compared to the SR results, SO binding energies at the DKnuc level (with the basis
set wtbs) are lower by 0.6-1.5 eV. The SO effect on the binding energy is largest for Phy
where it approaches 1.3 eV at the GGA level or 1.5 eV at the LDA level. For Bis, this
effect is 1.0 and 0.7 eV and for PbO 1.3 and 0.9 eV, with GGA or LDA, respectively; for
T1H, the SO effect is about 0.6 €V irrespective of the zc functional. The absolute values of
the binding energies — and in most cases, the SO induced changes — are larger for LDA
than for GGA, in accordance with the known tendency of LDA to overestimate binding
energies. The changes induced by the DKeel model relative to the DKnuc energies are in
general smaller and, as noted previously for the vibrational frequencies, they are largely
independent of the zc functional. Furthermore, these changes have a sign opposite to that
of the previously discussed SO effect, thus canceling partly the effect of DKnuc on the
SR reference. For Biy, Pby, and PbO, differences between DKeel and DKnuc results are
about 0.08 ¢V, and for TIH about 0.02 eV. For Biy and Phs, the binding energies decrease
even further at the DKee2 level, by 0.04 and 0.03 eV, respectively; for PbO and TIH
no further change occurs. The slight increase of DKee binding energies, relative to the
values calculated at the DKnuc level, may again be interpreted as partial compensation
(“screening”) of the decrease induced by the SO terms when going from the SR treatment
to the DKnuc level. The GGA results overestimate the experimental binding energies, even
at the DKnuc level, by about 0.05 eV for Bi,, 0.3 eV for Pby, 0.7 ¢V for PbO, and 0.1
eV for TIH. The DKee levels increase the binding energies slightly and thus enlarge the
discrepancy with experiment even more. The DKee2 results (obtained with the basis set
wtbs+3c3v in the GGA zc approximation) agree very well with those of previous accurate
relativistic DF calculations, namely those obtained with ZORA [154] and a four-component
treatment [150, 150].

Thus, with a suitable basis set, the binding energies of the DKee models are larger
than at the DKnuc level, by about 0.1 eV for Pbs, Bis, PbO, and less than 0.02 eV for
TIH (Table 2.6). These effects normally reduce the interatomic distance by a rather small
amount, with the largest effect, 0.007 A, obtained for Pb, (Table 2.4).

In summary, the results of the models DKeel and DKee2 agree essentially for the

molecular properties investigated. Changes at the DKee3 level relative to the results of
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DKee2 are not significant at the level of accuracy discussed here; therefore these results

were not included in Tables 2.4, 2.5, and 2.6.

2.4 Conclusions

The Douglas—Kroll-Hess scheme of treating the Dirac-Kohn—-Sham (DKS) problem of rel-
ativistic DFT was extended to account for spin-orbit (SO) interaction due to the classical
Coulomb (Hartree) part of electron-electron interaction. This allows for a screening of the
nuclear attraction field by the electron density. In particular, we discussed the implemen-
tation of various approximate schemes in combination with the density fitting technique
(“resolution of identity”). We used several examples to illustrate the effect of the new
type of corrections to the standard DKS treatment where the transformation to the two-
component picture is restricted to the nuclear part of the effective one-electron potential:
(7) the fine structure of the mercury atom, (7i) the g-tensor shift of the NO, radical, and
(731) structural and energetic properties of the diatomic molecules Biy, Pbe, PbO, and
TIH. We showed that replacing the hitherto employed unmodified Hartree term Vy by
its relativistically corrected counterpart &;[Vy| can substantially improve the accuracy of
properties that inherently depend on the spin-orbit interaction, such as the spin-orbit split-
tings of heavy atoms and the g-tensor of molecules (even in molecules containing only light
atoms). The SO interaction due to the Hartree potential affects the structural properties
of the diatomics in a minor way only. In particular, a first-order approximate treatment
is often sufficient. The corresponding second-order correction is much less important; the

two flavors of second-order corrections introduced here lead to essentially the same results.
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Chapter 3

Symmetry Treatment in Relativistic
Electronic Structure Calculations of

Molecules

Understanding symmetry in quantum chemistry tasks provides not only the power of ad-
equate interpretation of basic interaction pattern but also allows a significant reduction of
the computational expense. Symmetrized molecular orbitals used throughout in quantum
chemistry proved to provide a basis for computational efficiency. There are several ways to
generate symmetrized bases, e.g. the projection technique [158, |, matrix diagonalization
[160], algebraic approaches [161], and the method of generator orbitals [162, 163]. In rela-
tivistic quantum chemistry where one is not able to separate spin coordinates from space
coordinates, orbitals evolve to spin-orbitals (spinors) or, in a fully relativistic description,
to four-spinors (bi-spinors); concomitantly, the computational cost often increases drasti-
cally. It is therefore imperative for an efficient implementation of a quantum chemistry
method to fully exploit the symmetry of the system under investigation. Indeed, much ef-
fort was spent to construct symmetrized bases for double group representations as required
for relativistic electronic structure problems [164, , , , , 169].

Some methods for constructing symmetrized basis functions rely on tabulated standard
group-theoretical information, e.g. characters, matrices of irreducible representations (ir-
reps), as for instance the standard projection operator technique [158]. Other methods
specifically try to avoid such a dependence [160]. A good compromise, from our point of
view, is to generate all group theoretical information starting with the group definition
(e.g. via its generators), thus avoiding the need of much tabulated data like group multi-
plication tables, irrep matrices, Clebsch-Gordan (CG) coefficients. In this spirit, a method
is preferable which allows a clear algorithm and is easily implemented in the form of a com-

puter program. One of the most successful tools for constructing and analyzing rotation
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groups is the algebra of quaternions [76] which is formal enough to be implemented in a
program. However, it permits only to build the group elements from group generators and
to construct multiplication tables and class operators. To proceed to the transformation
matrices of irreps, irrep bases, and CG coefficients, the eigenfunction method (EFM) [170]
fulfills the requirements for implementation as a program [171]. The basic idea of EFM is
to find symmetry functions as eigenfunctions of some symmetry related operators; hence,
it is a natural choice for generating symmetrized basis functions. The method was also
successfully applied to obtain consistent irrep matrices and CG coefficients for subgroup
chains [172].

One of the advantages of using symmetrized basis functions is that one is able to exploit
selection rules for symmetric operators. Totally symmetric operators are of particular
importance; the (KS) Hamiltonian is an obvious example. However, invariance under
all group operations is not the only characteristic which may be used to treat operator
representations efficiently in symmetrized bases. Coupling orbital and spinor components is
another example: operators diagonal in the spinor components should be treated differently
from those which couple spinor components. There may also be a difference in how even
and odd operators are treated in a four-component formalism (see Section 2.2.3).

In this chapter, we describe that part of the PARAGAUSS code which deals with sym-
metry and the underlying algorithms: group parametrization by quaternions (Section 3.1),
the EFM formalism (Section 3.2), and issues of symmetry adaption specific to orbitals,
two- and four-spinors (see Sections 3.3.1, 3.3.3, and 3.3.4, respectively). In Section 3.5 we
illustrate the advantages of symmetry adapted basis functions for solving the relativistic
(DKH) KS problem, specifically for building the representation of the zc potential by nu-
merical integration over symmetrized two-spinor basis functions, a task which may become

a bottleneck of the calculation if symmetry is not fully exploited.

3.1 Quaternion parametrization

The first step on the way to exploit the symmetry of molecular system is to provide access
to the full group-theoretical information, in either tabulated or re-computed form. For
this purpose, a single module in PARAGAUSS collects the generators of all pertinent (74
in total) point groups. Next, group multiplication tables, classes and coset decompositions
are constructed to establish all pertinent group-theoretical information. These operations
rely on the parametrization of the group elements by quaternionic numbers. An excellent
review of the properties of quaternions and their usage in group theory can be found in

Ref. [76].

There exists a homomorphism between any group of proper rotations and the algebra
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of quaternions of the type +q(¢n): q(¢n) = (A, A) = (cos(¢/2), nsin(¢/2)) where ¢ is
the rotation angle and n = n,i + n,j + n.k expanded in the basis of unit quaternions i, j,
and k defines the rotation axis. The quaternionic product of two parametrized rotations
readily yields the parameters of the resulting composite rotation. This permits one to
construct all elements starting with the group generators. The group multiplication table
is easily obtained as well. The ambiguity regarding the sign is not a deficiency of the
parametrization; rather, it is a key aspect with regard to projective representations (see
below) that are required for the symmetrization of spinor wavefunctions. For example,
quaternionic parameters of rotations that differ by an angle 27 have opposite signs: ¢((¢+
2m)n) = —q(¢m). This is exactly the familiar behavior of spinors or projective (double
valued) representations [173].
To define a projective representation, one starts with the assumption that application
of a symmetry operation g, = ¢;¢; to a wavefunction is different from that of applying g;
and g¢; in this sequence. The postulates of quantum theory indeed allow a phase factor
n(i, j):
9i95(r) = (i, j)grep(r). (3.1)

Here, the notation g; was adopted to distinguish an operator acting on a spinor wavefunc-
tion them from the corresponding group element g;. A standardized set of phase factors
n(i, j), which, by a careful choice of phases of the operators g;, g;, and g, may be reduced
to the values +1, forms the projective factor system of the group under investigation [76].
To distinguish representations with the trivial factor system 7(7, j) = 1 and those with non-
trivial ones one refers to them as “vector” and “projective” representations, respectively.
Another very convenient feature of the quaternion parametrization is that the projective
factors (7, j) are given by the signs of products ¢;q; = £qx, once the quaternionic param-
eters have been fixed in some fashion for all rotations g;, g; and g [70].

For the full rotation group SO(3), a standard parametrization may be chosen by the
following simple rules. The parameter space {¢m, 0 < ¢ < 7} of all rotations is geomet-
rically equivalent to a ball of radius . For all rotations “inside” the ball, i.e. rotations
by angle ¢ < 7 (so-called regular rotations) one adopts the standard quaternionic param-
eters (cos(¢/2),nsin(¢/2)). The restriction ¢ < 7 ensures that for the real part of this
quaternion one has A = cos(¢/2) > 0. Now, one is left with the task to select the standard
quaternionic parameters for rotations which correspond to points on the surface of the
ball ¢ = m. Rotations by m, called binary rotations, are bilateral, i.e. their axis may be
either n or —n; the resulting operations are equivalent. To provide a unique parameter
set {¢n} for binary rotations, one separates the surface of the parametric ball into positive
and negative “hemispheres” X and R such that if the sphere point n belongs to hemisphere

X then the opposite point is automatically assigned to another hemisphere X. There are
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many choices for such partitions. Probably the simplest one is given by

all n with n, > 0
N=¢ alln withn,=0and n, >0 (3.2)
n = (0,1,0)

However, for applications to point groups and to point group chains, alternative parti-
tions prove to be more useful [70, |. The standard quaternionic parameters for binary
rotations are chosen to be (0,m) with n € R. In summary, the rules to chose standard

quaternionic parameters for a particular sphere partitioning into hemispheres X and R are:

(LA = { (cos(¢/2),nsin(¢/2)) for ¢ <m (3.3)

(0,m) with n € X forp =7

Note, that the real part of the standard quaternionic parameters is non-negative: A > 0.
According to these rules, the identity corresponds to the real unitary quaternion ¢(E) =
(1,0).

The product of two “standard” quaternions, however, may not comply to the rules
above. For instance, the square of any binary rotation Cs (in quaternionic parametrization)
yields ¢(7)? = q(27) = —1, i.e. the negative of the quaternionic unity. The real part of
the resulting quaternion, (—1,0), is negative so that it does not belong to the standard
set. On the other hand, in the group algebra we have the identity C = E, parameterized
by q(E) = +1. Thus, by comparing the results of the group algebra and the quaternion
algebra, we obtain that, for any binary rotation Cs, the projective factor n(Cy, Cy) = —1.
Similarly, one obtains the complete projective factor table of a group.

The four quaternion components may be augmented by a fifth parameter which ac-
quires the values 1 or —1 to represent proper and improper rotations, respectively; for the
composition of two symmetry operations, these fifth parameters are to be multiplied. In
this way, improper rotations are treated in PARAGAUSS.

We have showed how the quaternionic parametrization can be used to construct all
group elements from the group generators, the group multiplication table, and the projec-
tive factor system of the group. At this stage, the decomposition of the group into classes
and cosets may be achieved. Also, based on the quaternionic rotation parameters, simple
expressions of the rotation matrices in the space of angular momentum eigenfunctions (and
in three-dimensional vector space as a special case) are readily available for integer and half
integer angular momentum values. These matrices can be used to construct other matrix
group representations. The basic group-theoretical information is then used in the EFM
to generate matrices of irreducible representations (irreps) and to classify accordingly any

set of functions.
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3.2 The Eigenfunction Method

The key idea of the EFM is to classify objects that transform into each other by symme-
try with the help of an eigenvalue problem into “symmetry types”, so-called “irreducible
representations”. The idea is quite familiar in quantum mechanics where eigenvalues of
an operator (observable) are often used to identify quantum states. For example, the
eigenvalues of an operator pair (1%, [,) uniquely identify the rotational symmetry charac-
ter of states of any spherically symmetric problem. In this particular case of symmetry
operators, observables are often referred to as integrals (invariants) of motion or “good”
quantum numbers. Note that (i) one actually needs two operators to fully determine the
rotational behavior of a function because the eigenvalue of I? only assigns the function to
a (in general) degenerate subspace of otherwise indistinguishable functions and (ii) these
two operators must commute so that they can be simultaneously diagonalized. In the
following, we will follow the programme of Chen [I70] as implemented in PARAGAUSS
by Mayer [77] and we will construct so-called “class operators”, to be used in the EFM.
In fact, for any point group, a class operator can be chosen whose eigenvalues uniquely
define the basic symmetry character of a function, i.e. its irrep and thus the corresponding
“symmetry label”. Furthermore, class operators of a (properly chosen) chain of subgroups
form a complete set of commuting symmetry operators determining all symmetry related

quantum numbers in a function space.

3.2.1 Basic Concepts of the Eigenfunction Method:
Atomic Orbitals in Cy, Symmetry

We will illustrate the basic idea of the EFM method by way of an example before we
describe the method in detail.

Consider an atom in a ligand field of Cy, symmetry. The group Cly, consists of 8
elements: identity F, four-fold rotations in either direction, Cj and C,, around the z-
axis, the binary rotation Cy around z-axis, and two groups of reflections (0,1, 0,2) and
(041, 042) With mutually orthogonal mirror planes. The properties of s, p, and d functions,
atomic eigenfunctions in a spherically symmetric field, will be analyzed in the lower CYy,
symmetry. It is natural to classify the atomic functions according to their behavior with
respect to the operations of the group Cy,. For instance, the s function is invariant under
any operation. In C},, this also holds for the function p,, in spite of the fact that it

represents a quite different distribution in space. Application of C} and C to the two
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other p functions, p, and p,, transforms them into each other:

Cy: p. —p,and p, > —p, (3.4)
Cy @ pe — —py and py, — p,.

Here, we adopted the active picture of symmetry transformations [76] in which a trans-
formation of a function, more precisely of its graph, is performed similarly to rotating a
solid object. Application of the reflections 0,1 = 0,, and 0,2 = 0,. changes the sign of the

functions p, and p,, respectively; they do not lead to a mutual “coupling”:

Op1: Pz — P and py, — —py (3.5)

O0y2 : Pz — —Pgz and Py — Dy-

In (4, symmetry, the d functions d., and d., behave similarly to the functions p, and p,
as can be seen from the analogy d., ~ p.p, and d., ~ p.p,. Results of applying symmetry
operations to d,2, dy2_,2, and d,, are obtained in similar fashion.

Looking ahead to conjugate or “similar” elements, i.e. elements which belong to the
same class, we now consider the result of applying an operator constructed as a sum of

such “similar” symmetry operations:

CLi=Cf +Cf (3.6)

C2 = 0Oyl + 0y2-

The result of such composite operators is taken as sum of the results of the individual
contributors. When applied to the atomic trial functions discussed above, the “class”
operators C; and C, yield just multiples of those functions. Thus, all these atomic functions
are simultaneous eigenfunctions of both class operators. The corresponding eigenvalues
were collected in Table 3.1. The atom-centered trial functions were augmented by one
two-electron function p,(1)p,(2) — p,(1)p.(2) to show a symmetry behavior (irreducible
representation) not yet covered by the rest. Inspection of this table reveals a one-to-one
correspondence of the symmetry behavior of the function (indicated by the Cy, irrep label)
and the pair of eigenvalues of the class operators C; and C,. In fact, these eigenvalues may
be used to define the labels of the irreps.

By convention, symmetrized functions (of one-dimensional irreps) which are not changed
by a rotation along the principal symmetry axis are labeled with the letter a. Such func-
tions may be identified by the eigenvalue 2 of the operator C;. The totally symmetric irrep
is always assigned the label a;; the other function with eigenvalue 2 is called as. One-

dimensional irreps with eigenvalue —2 of the class operator C; are assigned the label b,
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Table 3.1: Atomic functions as eigenfunctions and the corresponding eigenvalues of the
class operators C; = C; + C; and Cy = 0,1 + 042 of Cy, as well as of the class operator
C3 = 0, of the subgroup C; (see text).

C4U Cs
Cq Cy Irrep Cs Irrep

S, Pz, dz2 2 2 aj 1 a

/
Pz, dzx 0 0 e 1 (Z”
pya dzy -1 a
dm2,y2 -2 2 bl 1 a
dmy -2 -2 by -1 a”
px(Vpy(2) —py(Lp2(2) 2 -2 a -1

again with the subscript depending on behavior under further symmetry operation classes.
The two-dimensional irrep is, by convention, labeled as e.

Careful inspection of Table 3.1 reveals the limitation of our choice of the eigenvalues of
C; and Cy as symmetry identifiers. These class operators, or rather their eigenvalues, do
not distinguish the partners within an irrep e.g. p, and p,. This is a principal restriction
which one is not able to circumvent by another choice of Cly, classes when building the
class operators. For fundamental reasons, one can not distinguish between p, and p, on
the base of their characteristics in Cy,.! In fact, as the class operators identify only spaces
but not basis functions in them, the equivalence of partners goes beyond the fact that one
cannot distinguish between them; in fact, any two orthogonal combinations of partners are
equally well suited as “basis functions”, e.g. the pair p, + p,.

This degeneracy issue is often met in physical problems. Degenerate states (i.e. states
of the same energy) in a system of high symmetry are split by a field of a lower symmetry.
Thus, it is natural to classify the atomic orbitals further by their symmetry behavior in
a system of lower symmetry — in addition to the irrep classification performed for Cly,.
Symmetry properties in subduced groups provide criteria for distinguishing irrep partners
of the starting group. There are several possibilities to chose a subgroup of Cy,. Consider
the groups Cy and Cy; both have only one-dimensional irreps. The major difference is that
the irreps of Cy are real and those of Cy (as for any axial group) are complex [174]. Thus,
from a practical point of view, one should prefer C,.

The group Cs comprises two elements: the identity E, and a reflection o. Let us select
the group element o,; of Cy, as generator of the subgroup Cs. This mirror operation

forms a class of C; on its own and is the only candidate for a class operator. The atomic

! This statement holds as long as there is no sufficient reason to prefer, for instance, o, to oys — which
would amount to a lowering of the symmetry.
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trial functions we had chosen are again eigenfunctions of C3 = o,;; the corresponding
eigenvalues are also listed in Table 3.1. Note that the functions p, and p,, degenerate
in C}y,, are eigenfunctions of C3 with different eigenvalues 1 and —1, respectively. This
reflects the irrep subduction (e) — (a’) @ (a”) in the subgroup chain Cy, D Cs. For higher
symmetries, irrep subduction may sometimes lead to a situation where a subduced multi-
dimensional group irrep contains multiple instances of a subgroup irrep. This introduces
an ambiguity for the classification of eigenfunctions which, however, can be avoided by

choosing a canonical subgroup chain [170, Section 3.3.3].

In practice, one can avoid the simultaneous diagonalization of two class operators of
Cyv, C1 and Cy. For this purpose, one introduces an operator which is a linear combination
of them, e.g. Ci5 := 2C; + C5. The eigenvalues A5 of this operator are linear combinations
of the eigenvalues A\; and Ay of C; and Cy according to Ao = 2\ + Ay. Due to the one-to-
one correspondence between eigenvalues of Ajp and pairs (A1, A2), one can use the former
instead of the latter to classify the irreps. The coefficients of such linear combinations
are not unique; the only requirement is to avoid any accidental degeneracy which would

destroy the one-to-one correspondence.

The eigenvalues of Ci5 and C3 form a complete set of symmetry-related quantum num-
bers. These quantum numbers may be interpreted either as irrep labels and, in the case of
multi-dimensional irreps, as labels of partner functions, or as irrep labels in a group chain
subduced from the original group. The remaining degeneracy, e.g. between p, and d,, (see
Table 3.1) will be lifted by the ligand field, i.e. the Hamiltonian H which assigns different
energy eigenvalues € to them. The term “lifting the degeneracy” should be understood
as “forming linear combinations with well defined quantum numbers”. For example, the
ligand field of Cj, symmetry will mix p, and d., into two functions with different eigen-
values; a Hamiltonian of spherical symmetry will leave the functions unchanged, but still,
their eigenvalues for p and d functions will in general differ. If we started from a different
set of trial functions, e.g. from the complex functions py = p, +ip,, we would also have
combined them in linear fashion to produce proper eigenfunctions of C3 = 7,;.

We implicitly assumed that it is possible to find simultaneous eigenfunctions of H
and the pair of class operators (Ci2,C3). Only mutually commuting operators may be
diagonalized simultaneously. This requirement is indeed fulfilled for Hamiltonians H of
Cy, symmetry or higher. A formal requirement that H commutes with any symmetry
operation in C}y, automatically implies that the commutators of H and (Ci3,Cs) vanish
because the latter are linear combinations of Cy, elements.

Now, the set of operators (H,Cia,C3) with eigenvalues (e, A\j2, A3) form a complete set
of quantum numbers for our system: € is interpreted as energy and (A2, A\3) as symmetry-

related quantum numbers. The corresponding eigenfunctions are, in general, linear com-
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binations of the trial functions chosen as atomic basis.

3.2.2 Theory of the Eigenfunction Method

In the previous section, the basic concepts of the EFM method were illustrated with the
symmetry classification of atomic basis functions. An advantage of the EFM method is
that it is equally well applicable to any set of objects which are transformed into each other
under symmetry operations. This set of objects may be a closed subset of atom-centered
basis functions, as in the example above, atomic displacement vectors (forces), or any
derived quantities like products of basis functions or matrix elements of some operator. To
emphasize this generality, one often refers to a linear space £ with symmetry operations
of some group G defined as linear transformations on it. A linear space is an invariant
space if the result of any symmetry operation applied to its elements belong to that space
as well.

The formal theory of the EFM method is developed by exploring an abstract linear
space, the so-called group algebra space L of a group G [170, Sections 2.6.2 and 2.6.3].
This is a linear space where the elements of GG are considered as basis vectors and the
application of the group operators to those vectors is derived from the group multiplication
table. Thus, in practice, the group elements are not only allowed to by multiplied by each
other according to the group multiplication rules, but also to form any linear combination
with arbitrary coefficients. For example, the operators Cyp = 2(C) + C;) + 041 + 04 and
Cs = 0,1 (Section 3.2.1) are two specific elements of the group space (or, more exactly of the
group algebra). Note that one is talking about an algebra if multiplications of the elements
are defined. Without emphasis on multiplications one may consider any algebra space as
a linear space. By reference to the group multiplication table and simple arithmetics, one
may easily check that [Ci2,C3] = 0.

A general element of the group algebra,

(€]
9= ingi € Lg, z; € C, (3.7)

=1

can be interpreted either as a vector or as an operator in the group algebra space, depending
on the context. For example, when considering “matrix elements” D, (g) = (a|g|b) of some

group (or algebra) element g defined by

gb = Z aDa(9) , (3.8)

aceG

the bra and ket vectors (a| and |b) should be considered as elements of L and g as
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an operator acting on |b). The group algebra space Lg carries the so-called “regular
representation” of the group. For any group element g, the representation matrices of the
regular representation are the matrices D(g) build of matrix elements Dg,(g) of ¢ in the
basis a, b € G; for each b, there is only one non-zero element D,;,(g) equal to 1, namely that
for which a = gb [170, Section 2.6.1]. The regular representation comprises all irreps [170),
Section 3.9] and, in the EFM, via its reduction the complete irrep information is generated
[170, Section 3.9].

Class operators of the group G are elements C; = >, g, gx € C; of the group algebra
which represent the sum of all elements of class C;, i = 1,... N; N is the number of classes
in the group. Recall that NV is also the number of irreps [170, Section 3.2]. Class operators

have following important properties: they commute with all group operations,
Ci,g] =0 Vg e G (3.9)

and thus can be viewed as “integrals of motion”, constant in the space of symmetry equiva-
lent functions [175]. Consequently, they commute with any element of L, thus also among
each other:

[C;, C5] = 0. (3.10)

This is a necessary attribute of a set of properties (or operators) which are to be defined

(or diagonalized) simultaneously. The set of class operators is closed under multiplication

CiCy = chiCy (3.11)
k

with integer cfj [170, Section 3.1.1] and thus also forms an algebra, to be referred to as
Lc. One can formally prove that the chosen set of “motion invariants” is complete by
showing that any group algebra operator A € L; commuting with all group elements,
[A, g] =0, Vg, is necessarily a class operator or a linear combination thereof, A € L [170,
Section 3.1.1]. Class operators are either Hermitean operators or can be used to construct
Hermitean operators [170, Section 3.2.4]. For an ambivalent group where inverse group
elements belong to the same class, one has: C’J = (. In a non-ambivalent group, one uses

the following combinations instead, C; + Cy and i(C; — Cy), which are always Hermitean

with Cy == C/.

The complete set of N class operators (C,...Cy) corresponding to N group classes
is a complete set of commuting operators (CSCO) in the class space L¢; we refer to it as
CSCO-I of the group G [170, Section 3.2]. The CSCO-I set may actually be reduced (in a

non-unique way) to less than N class operators (cf. Section 3.2.1 where we used only two
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class operators C; and Cs); it may be even linearly combined into a single operator

C = Z Oéz'CZ'

A =" (3.12)

with some coefficients «; analogous to what we did when we constructed Ci5 from C;
and Cs in Section 3.2.1. The purpose of such linear combination is to avoid the task of
simultaneous diagonalization of several operators in practical applications; a single operator
is diagonalized instead. The only requirement on the coefficients «; is that the resulting
operator affords a one-to-one correspondence between A*), v < N, and the N-tuples of
eigenvalues ()\g”) by )\%)). Class operators C; for which the corresponding coefficient «;
is taken equal to zero are not required in the definition the CSCO-I operator C'. The
CSCO-I for 74 point groups, as used in PARAGAUSS, are specified in Appendix B. While
not unique, different CSCO-I sets are nevertheless equivalent in the sense that they have

identical eigenvectors in the class space L¢,

N

QW =3 d"c, (3.13)
=1

QW) = \VQW. (3.14)

The eigenvectors Q) as algebra elements form a set of idempotent projection operators,

Q(V)Q(H) — 5VM77VQ(V) (315)
POIPW — 5, PO, (3.16)

where P®) = n71Q") and 5, are suitable factors. Therefore, one can represent a CSCO-I

operator in spectral form as
N

C=) Apw. (3.17)

v=1

The class space L¢ is just a subspace, an N-dimensional hyperplane, in the larger |G|-
dimensional group space Lg. N eigenfunctions of CSCO-I in the N-dimensional class space
L¢ are uniquely identified by their CSCO-I eigenvalues A*), v = 1... N. Only these N
eigenvalues appear if CSCO-I is applied to a larger |G|-dimensional group space Lg [170,
Section 3.3]. Thus, in L5 CSCO-I is degenerate; it is not a complete set of commuting
operators in the group space L. However, (degenerate) eigenvalues of CSCO-I define the

major symmetry “quantum number” of its eigenfunctions in L, namely the irrep label. In
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fact, by solving the eigenvalue problem for CSCO-I and any group representation space £
(not limited to L), one divides this space into subspaces L, that correspond to distinct

eigenvalues A*) of N inequivalent group irreps,

N
L= c) (3.18)
v=1
such that
CLu) = AL, (3.19)

In general, subspaces corresponding to a particular eigenvalue A*) may be still be reducible

into several irreducible subspaces:
Loy =P Lw (3.20)

In general, this is the case for Lg (but not L¢). The regular representation in the basis
of L is known to contain h, instances of each h,-dimensional irrep [170, Section 3.9].
Another example occurs when one analyzes the symmetry properties of atomic f functions
in the group Cy,, following the procedure of Section 3.2.1; in the manifold of seven f

functions, there are two independent subspaces of irrep character e.

Thus far, we described a way how to separate an arbitrary invariant representation space
of GG into subspaces corresponding to inequivalent irreps by solving the eigenvalue problem
for CSCO-I. However, an essential degeneracy exists within the subspaces corresponding
to multidimensional irreps. Indeed, for any function 1/)@ € L) one may find h, symmetry
equivalent functions making up a basis of {ngy)} and called irrep partners; the dimension
of irrep v is h,. However, the particular choice and grouping of partners is not defined by
CSCO-I. A tedious iterative procedure of collecting the bases of {G@/}ﬁy)} into L,y with
a subsequent Schur orthogonalization [170] of the different L,y is feasible, but certainly
not an elegant solution. Even if applied, the resulting partners may not be consistent for
different irreducible subspaces L. ,) of the same symmetry; in other words, irrep matrices

within each irreducible space will be similar, but not necessarily equal.

To classify the partners of multidimensional irreps uniquely and uniformly over the
whole subspace L), one has to lift their inherent degeneracy. This usually happens as
a consequence of symmetry reduction. The behavior in lower symmetries naturally dis-
criminates otherwise equivalent partners of an irreducible subspace. It is exactly this
behavior which correlates the corresponding partners in different irreducible subspaces. As
an example, we refer to Section 3.2.1, where we lowered the symmetry from Cjy, to C,

to discriminate the partner functions p, and p, as well as d., and d,. Otherwise, in an
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automatized procedure, one might arrive at the partner functions p, and p, in one sub-
space, but orthogonal linear combinations of d., and d., in the other subspace, hence one
would have lost the distinct phase relationship among the partner functions of different
subspaces. Thus, to avoid such an undesirable situation, subgroups and subgroup chains

come into play.

We saw already that class operators of the group, conveniently combined in CSCO-
I, define a particular symmetry class of any function. Subgroups G(s;) C G subdivide
the classes further according to the behavior in the lower symmetries. A fully distinctive

classification is achieved by taking a canonical subgroup chain
G DG(s1) D...G(sp) (3.21)

which is constructed in such a way that irreps of each member of the chain split into a sum
containing no more than one instance of the irreps of the subsequent member of the chain.
The last member of the chain must be an abelian group with one-dimensional irreps. These
conditions assure an unambiguous classification of all partners of irreducible subspaces of
G. PARAGAUSS follows the canonical chains suggested by Altmann and Herzig; [171] see
Figure B.2 in Appendix B.

The class operators of a subgroup G(s;) may easily be added to the CSCO-I of G
because the classes C(sy) of the subgroup G(s;) (as elements of the group algebra G)
commute with all class operators C' of the group G, Eq. (3.9), and, thus, with CSCO-
I of G. This argument holds for any subsequent pair G(s;) D G(s;11) of the subgroup
chain. Thus, the CSCO-I operator C' of G commutes with all CSCO-I operators C(s;)
of any subgroup G(s;) from the group chain; therefore, all of them may be diagonalized
simultaneously. The joint CSCO-I sets (C, C(s)) of the group and the subgroup chain is
referred to as CSCO-II of the group G. Here C(s) is a shorthand notation for the union of
all CSCO-I operators (C(s1),...,C(s,)) of subgroups or, in practical applications, a linear
combination of them, similar to Eq. (3.12). The pair (Cy2,Cs), which forms a CSCO-II for
Cyy, was used in Section 3.2.1 to fully characterize the symmetry properties of the atomic

functions.

The eigenvalues of the CSCO-IT (A®), k(")) marked by indices (v, 1) form a complete set
of symmetry related quantum numbers. The first index v labels the irrep and the second p
labels the partner functions of the irrep. Any remaining “degeneracy” of a set of functions
of the same symmetry (v, 1) has to be lifted by an operator of a different nature, e.g. the
Hamiltonian H which was used in Section 3.2.1 to label the independent subspaces by their
energy eigenvalues. With the introduction of the Hamiltonian H, a certain partitioning

of the independent irrep subspaces, Eq. (3.20), is established, namely that based on the
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energy eigenvalues e€:
L = @ ﬁ(y) (3.22)
Loy = @E(V,M) (3.23)
I

Lo = @ Licwp (3.24)

Assuming that there are no accidental degeneracies, the linear space L. ,,,,) is one-dimensional
with eigenfunction @/}éw ) as the only basis function. The symmetry of the Hamiltonian H

expressed by its commutation properties,
[H,G]=[H,C|=[H,C(s)] =0. (3.25)

assures that the three operators (H,C,C(s)) can be simultaneously diagonalized. The
CSCO-II of the group together with the Hamiltonian H forms the CSCO of the common
quantum-mechanical problem of finding the eigenvalues and the corresponding eigenvectors
in a system (H,C,C(s)) with a certain (spatial) symmetry.

However, when one considers only the group-theoretical problem of constructing a

CSCO for a group representation space Lq, a different operator takes on the role of the

Hamiltonian H. It may be shown [170] that the CSCO-II of the intrinsic group, which is
anti-isomorphic to G [170, Section 3.7|, together with the CSCO-II of G form a CSCO of
the group space L¢ [170, 77]. The union of the CSCO-II operators of the group G and its
intrinsic isomorphism is called CSCO-III of the group [170]. The reduction of the regular
representation with help of the CSCO-III operator is used in PARAGAUSS to obtain the
canonical irrep matrices [77]; later on, they are required to obtain, for instance, the CG
coefficients [77].

3.2.3 The Eigenfunction Method for Double Groups

Let us now discuss some issues specific to projective (double valued) representations of a
group which are relevant for the symmetrization of spinor wavefunctions. Spinors emerge
as mathematical representation of particles with half-integer intrinsic angular momentum
(spin), e.g. electrons. In general, a particle with spin J (integer or half-integer) is repre-
sented by 2J + 1 probability amplitudes ¢?, 0 = —J ... J that describe the measurement
of finding the particle in one of the 2.J 4 1 selected states; for brevity, these states normally
are chosen to have well-defined angular momentum projection on the z-axis, M = —J ... J.

In this basis, the matrix representation of J, is a diagonal matrix with the correspond-
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ing eigenvalues M on the diagonal. An electron is characterized by spin J = 1/2; the
corresponding wavefunction has two components. From angular momentum theory it is
known that a rotation ¢m transforms the components of a wavefunction, characterized by

an integer angular momentum L, according to [70]

etHioL

én — exp(—ignL) — . (3.26)
oL

The matrix on the right-hand side is the representation of a rotation by ¢ around the z-axis
in the basis which we have chosen above. Thus, a full turn, ¢ = 27, generates an identity

transformation 1° — 1, due to the Euler relation e*™ = 1.

The half-integer spin of electrons entails an essential difference. Similarly to Eq. (3.26),
the transformation of the two spinor components corresponding under a rotation ¢n is

given by [70]
oo/
on — exp(—igns) — o2 | (3.27)

Again, the rightmost matrix is the representation of rotation by ¢ around the z-axis in the
basis of s, eigenfunctions. The essential difference is connected to the fact that projections
of spin s = o/2 take on the half-integer values +1/2. Thus, because of the identity
e™ = —1, a full turn induces a sign change, ¥° — —1°. This mismatch requires one to
treat spinors by projective representations. In Section 3.1, we considered the product of
two binary rotations by m; that product is an identity operation from the group-theoretical

point of view, but a phase change when this product is applied to a spinor.

As described in Section 3.1, projective representations are formally defined by the
multiplication rules of linear operators g;, g;, and g, which represent the action of the

group elements g;, g;, and g, when applied to spinors:

9i9; = Gk
9i9; = n(i, J)gn- (3.28)

Here, the projective factors (i, j) will acquire values 1 or —1 for some choice of phases
for g;, g;, and g; [76]. One may declare positive and negative elements of the operator
algebra as elements of some abstract covering group G = {gi,gi; 1 = 1...|G|}, also called
double group; the elements g; and g; of the double group G correspond to the operators
Ji, —30;, respectively. Then one may proceed to analyze the class structure of the double

group, construct class operators, CSCO, irreps etc. However, in this approach, one ignores
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the fact that actually not all elements of the operator representation of the double-sized
group G are linearly independent. Furthermore, double group representations cover the
true vector representations of the group G it would be less elaborate if one could obtain
the vector irreps of G directly from those of G.

With projective representations in mind, it is advantageous to consider operator rep-
resentations of the double group G with projective multiplications rules, Eq. (3.28), an
approach which explicitly accounts for the linear dependence of the operators representing
g and g. To illustrate the difference between the group algebra and the operator algebra,
consider g + g which is a non-empty group algebra element, but for the operators one has
G+3g=G—¢g=0. For this reason, class operators of the double group which contain both
g and g vanish (see below).

Let us examine the class structure of the double group G and compare it to the class

structure of GG. Here, we adopted the following notation:

e C(g): a class of G which contains the conjugates of g; it is an element of the group

algebra G and never empty.

e (C(g): aclass operator of G which corresponds to C(g); it is an element of the operator

algebra GG and may be zero.

e C(g): aclass of G which contains conjugates of ¢; it is an element of the group algebra

G and never empty.

o C (9): aclass operator of G which corresponds to C (9); it is an element of the operator

algebra G and may be zero.

e g and §: corresponding elements of the double group G; element ¢ is at the same

time an element of G.

e regular ¢g: in point groups a proper rotation by an angle ¢ # w. For such g, C(g) is

called reqular.

e irregular g: the opposite of above, i.e. either a binary rotation by 7, a reflection, or

inversion. For such g, C(g) is called irregular.

The class structures of the group G and and the corresponding double group G are
closely related. In this discussion, we use the following notation. If C(g) designates a
class of G which contains the conjugates of the regular element g, then C(g) and C(§)
are two distinct classes of the double group G and one has C(g) = C(g). The double
group classes C(g) and C(§) for an irregular group element g (i.e. a binary rotation, a

reflection, or inversion) coincide and thus include conjugates of both g and §g. Therefore,
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the corresponding class operators are either linearly dependent for a regular g, C(g) =
—C(§) = C(g), or they vanish for an irregular g, C'(g) = C(§) = 0. Hence, there are only
r < N linearly independent class operators, r being the number of regular classes of G
and N being the total number of classes of G. When applying the EFM method to an
operator algebra of r linearly independent class operators, one obtains r eigenvectors with
r eigenvalues corresponding to the r projective irreps of G. In analogy to the case of a
“simple” group, the projective CSCO-I is constructed from the projective class operators
of G; see Appendix B. Furthermore, class operators of a subgroup chain are added to

construct a CSCO-II and the class operators of an intrinsic subgroup chain are added to
construct a CSCO-III [77, 170].

3.2.4 CSCO in orbital and spinor spaces

Next, we will construct a complete set of commuting operators in orbital and spinor spaces
and compare them in the light of a typical computational problem of quantum chemistry.
As mentioned above, the choice of a CSCO is not unique. One may actually start from any
given group operator set and extend it to completeness. We start with the group CSCO
(C,C(s)) whose eigenvalues (v, ) uniquely identify the symmetry of states (irrep and irrep
partner) and add the non-relativistic Hamiltonian H which will separate different energy
levels of the same irrep. We arrive at a complete set of state quantum numbers in orbital

space, defined as eigenvalues (g, v, i) of
(H,C,C(s)). (3.29)

Similarly, for the spinor space and a Hamiltonian H that includes spin-orbit interaction,
we may use the CSCO
(H.C,C(s)) (3.30)

with eigenvalues (&, 7, 1). However, in the last case, we may also use the spin-free totally
symmetric (scalar relativistic) Hamiltonian H instead of the Hamiltonian A which includes

spin-coupling to build another CSCO
(H,C,C(s)) (3.31)

in the spinor space. The spin-free Hamiltonian H exhibits energy levels which are de-
generate with respect to the spin orientations, but the pair of projective symmetry op-
erators (C',C/(s)) with eigenvalues (7, i) provide the means to distinguish them. As an
analogy, consider the angular dependence of atomic spinors where the eigenvalues of

(L2, J?%,J.) uniquely identify the symmetry properties of any function ¢X/™ such that
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L2pLIM = (L + 1)ptM | 2t I™M = J(J + 1)pEM | and JplM = MyL/™ . However,
the spin-free operator L? is degenerate with respect to the spin projections, but it is com-
plemented by the pair (J2, J.). On the other hand, L? is required to build a CSCO for the

angular-only functions, because it discriminates the manifolds such as p3/, and ds/s.

However, a CSCO (H,C,C(s)) in orbital space is not a CSCO in spinor space. The
eigenvalues of this set are obviously degenerate with regard to the spin orientations because
all operators of the set including (C,C(s)) act on the orbital (spatial) components only,
and, hence, are spin-free. By appending the operator on for any direction m or just o,

we introduce an explicit dependence on spin and arrive at a complete set
(H,C,C(s),0.). (3.32)

This last set is always implicitly used in any spin-polarized non-relativistic calculation
— and also in any spin-restricted calculation where the degeneracy with respect to o,
is factored out. Two sets of quantum numbers, (C,C(s),0.) and (C',C(s)), of a spinor
space CSCO are independent of a particular Hamiltonian H. These sets can be used

interchangeably as they are fully equivalent.

The special case of a spin-free operator C' as class operator in the set
(C,C,C(s)), (3.33)

[see Eq. (3.31)] is of particular interest when dealing with other spin-free operators. In the
angular momentum theory, this set corresponds to the set of quantum numbers (L?, J?, J,),
introduced above, which is essential for L-S coupling. Similarly to the latter, but defined
for any point group, the set (C, C, C(s)) identifies spinors with well-defined projective irrep
labels and well-defined vector irrep labels. C' and C' commute and thus may simultaneously
be diagonalized. The set of operators may now be augmented by the spin-free Hamiltonian
H (which also commutes with C) to distinguish levels within the eigenspaces of (C, C, C(s))
and to transform this set into a CSCO of the system:

(H,C,C,C(s)) (3.34)

The spin-free character of H makes this combination with C' possible. The spin-coupling
Hamiltonian H is neither invariant under pure “orbital rotations” C, [f[ ,C] # 0, nor under
pure “spin rotations”, [H, o] # 0; therefore, it cannot be used in a CSCO in combination

with either C or o..

The eigenvectors of (C, C, C(s)) with eigenvalues (v, 7, i) form a suitable basis for rep-

resenting the totally symmetric spin-free Hamiltonian H or the spin-coupling Hamiltonian
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H in matrix form. The commutation properties require the matrices to be diagonal in v

and i and degenerate with respect to fi:

n

(IO H ™)) = HE) G500 (3.35)

In addition, the matrix of a spin-free operator H (or any other spin-free operator) must be
diagonal in v:

I 505

(WY H|Y 7 E)Y = HYP 6,0 0550570 (3.36)

nm

A procedure to construct spinor bases with the well-defined quantum numbers (C, C, C(s))

using CG coefficients will be presented in the following sections.

3.3 Symmetry Adapted Functions

3.3.1 Symmetrized Molecular Orbitals

Now, we will describe how molecular orbitals are symmetrized, using the information estab-
lished by the EFM. The code PARAGAUSS is designed to perform molecular computations
at the non-relativistic level on the one hand and with inclusion of spin-obit interaction
on the other hand. With regard to symmetry and the basis functions needed, scalar rel-
ativistic calculations do not differ from the non-relativistic and thus do not represent a
special case as far as this aspect is concerned. In short, it is necessary that one is able
to establish symmetrized molecular orbitals as well as symmetrized molecular spinors. We
will discuss possible ways to do so for both cases and we will relate the two types of sym-
metrization procedures to each other. The ultimate goal is to create an algorithm that
reduces the computational costs to the minimum consistent with the symmetry properties
of the operators involved.

The concept of a “unique” atom is used throughout the program to designate a repre-
sentative of set of symmetry-equivalent atoms of a molecule. The positions a; of equivalent
atoms form a set {a;, i = 1...N,} of objects which are permuted among each other under
the symmetry operations; thus, they form the basis of some group representation. As each
a; is a vector, all permutations of {a;} may be easily obtained once the transformation
properties of vectors (or equivalently, of spherical harmonics with L = 1) are known for
a given group. These properties may be computed from the quaternion parametrization
of the symmetry elements. In practice, all equivalent a; are generated from the position
of the “unique” atom provided in the input by applying symmetry operations. Only one
of the coset representative of the “little group” G(a;) — the subgroup of G which leaves

a; invariant — needs to be applied to the initial a; to obtain the rest. The constructed
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group representation (a; |G| a;) in the basis of the set {a;} becomes the input for the EFM
routine which generates eigenvectors of “symmetrized positions”, i.e. bases for irreducible
representations of G.

EFM:  (a;|G|a;) — a!""" (3.37)
Here and in the following discussion, the superscripts of symmetry adapted solutions denote

the particular vector, e.g. its symmetry type, and subscripts run over vector components.

(uu)n

The eigenvectors a , i = 1...N, are labeled by (v, ) which indicates the symmetry
of the solution, namely irrep v and the partner pu; s labels eventually multiple instances
of that symmetry. These eigenvectors later will be coupled with spherical harmonics to
distributed molecular orbitals. Note that here we consider a; as a formal solid object so that
the representation under investigation comprises N, = |G|/|G(a;)| permuting points and
not the 3N, mutually transforming vector components. In fact, one might have obtained
the same result by investigating a representation of the group G in the algebra space of
the factor group G/G(a;), [170, Section 1.8] operating directly with cosets instead of a
particular set of vectors {a;}. Even though there may be several “unique” atoms in a
molecule, the symmetry types of the sets {a;} are obviously limited by the number of the

possible subgroups G(a;) C G.

Another prerequisite for the construction of symmetrized molecular orbitals is the sym-
metrization of the spherical harmonics. Here, the differences between orbitals and spinors
have to be looked at more closely. It is natural to use atomic reference orbitals or at least
basis functions of the same spherical symmetry for the construction of molecular orbitals.
However, the types of functions that appear in the non-relativistic atomic model and in the
spin-orbit model differ: these are the spherical harmonics Y}, in the non-relativistic case
and the two-spinors €2, in the spin-orbit case. Both types are eigenfunctions of the angular
momentum operator and their transformation properties (for both integer and half-integer
angular momentum values) are assumed to be known as functions of the quaternion (rota-
tion) parameters. The EFM may be applied to reduce bases of vector (integer j) as well as
projective (half-integer j) representations. However, we first restrict ourselves to spherical
harmonics of integer j keeping in mind that a similar procedure applies also for spherical

spinors of half-integer j.

In fact, in PARAGAUSS real spherical harmonics Cj,,, are used instead of the complex
harmonics Yj,,,. The former are simple combinations of the latter; nevertheless, the trans-
formation properties of C},, differ slightly from those of Y},,. Once a group representation
in the space of {C},,, m = —j...j} is constructed, it is used by the EFM procedure to
generate irrep bases.

EFM:  (Cjm, |G| C; (i 3.38
 {(Chn 6] Cmg) — o (3.38)
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The CSCO eigenfunctions y%’f)“, m = —j...J, where the labels have the same meaning as
above in Eq. (3.37) are symmetrized spherical harmonics. As indicated above, such sym-
metrized “atomic” orbitals will be now coupled with the symmetrized “positions vectors”

to yield molecular orbitals.

Now, the central observation is: the function space generated by the atomic orbitals
|jma;) == xjm (T —a;) of some angular momentum j centered on every symmetry equivalent
atom a; of set {a;} is a direct product of two vector spaces: the position vector space and
the orbital space of a particular j-shell. The symmetrization in this product space is
conveniently carried out with the help of the Clebsch-Gordan coefficients CEZ‘ ;’f) (vapy) WhiCh
govern the reduction of the product of the two participating irreps, specifically the k-
instance of irrep v in the product of irreps vy and vy (1) ® (v2) = @,,.(V)x. Expressed

literally, molecular orbitals originating from j-shell orbitals of a “unique” atom a read:

No +J

lvw, kag) : Z lvi, kagg) Z Z da”m |7ma;) (3.39)

i=1 m=—j

Here, k represents the combined index (k, vy, V9, K1, ko) of multiple instances of the (v, i)

symmetry. The coefficients dm i " are evaluated as
(vp)rvivakiky _ (vu)k (vipr)k1, (vap2)ke
daijm - Z C(I/Lul)(ljglu,g)a’i y]m (340)
oye

The indices v and v, of the factors are not good “quantum numbers” for our purpose, so
we simply subsume them into the multiplicity index k. In fact, once the quantum numbers
(11, 1) are recognized as unessential, the flexibility of the EFM allows an alternative ap-
proach to symmetrized molecular orbitals: provided the transformation properties of the
position vectors {a;} and the spherical harmonics {C},,} are known, one may skip the
separate symmetrizations of {a;} and {C},,} and first construct a representation of the
product space which then is reduced by the EFM. Actually, this strategy would be quite
similar to the work done when one computes the Clebsch-Gordan coefficients; therefore,
we ignore this alternative.

Now that the symmetrized molecular orbitals have been constructed, the basis repre-
sentation of any totally symmetric operator V is a block-diagonal matrix with respect to

irrep index v and partner pu:
(v, KIV |V BT = (v, ||V v, K'Y 600 (3.41)

Only the reduced matrix elements V&) (k, k") := (v, k||V||v, k') need to be computed,

stored, and processed. Because the matrix elements are independent of the partner in-
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dex p the following equation for “average over partners” holds:
1
(v, bV vy, ) = - Z(w’, EV v ) (3.42)
o

To rationalize this, note that any symmetry transformation g applied to a matrix element
of the operator V() can be expressed via the matrix elements of V (g~ 'r) = V(7); on the

other hand, g applied to the basis function gives a linear combination of irrep partners

glvu.k) = v kD, (9) (3.43)
Nl

Selection rules, Eq. (3.41), and the unitarity of representation matrices D) (g) immediately
gives the “average over partners” rule, Eq. (3.42). The real value of Eq. (3.42) lies in the
following: the “average” may be evaluated for the symmetry “irreducible” part V(r) of the

totally symmetric operator V = > f/(gfl'r). In the case of numerical integration of the

geG
exchange-correlation potential V,. over a grid of points, this allows a substantial reduction

of the number of integration points in space to the symmetry inequivalent subset of them.

The symmetry of the position vectors (or, better, the distance vectors) is used to reduce
the number of primitive integrals needed to construct symmetry-adapted matrix elements
(v, kaj|V|vp, k'bj") of some totally symmetric operator V. Leaving out non-pertinent

indices k, k', j, and j’, the symmetrized matrix element may be expressed as:

1
(vu, alVivp,b) = = > (vp,ai|Vivp, by) (3.44)
v wik
N,
= > (vp, a1 |[Vivp, by) (3.45)
v wk
N,N(1,k
= % > vp, @ Vivp, by) (3.46)
v wk

First, the “average over partners” rule, Eq. (3.42), was invoked and the basis functions
were separated as sums over “one-center” contributions, Eq. (3.39). Then, the integral was
restricted to the “irreducible” part of it: only the contribution of a; of the N, symmetry-
equivalent atoms of type a was factorized; at last, the sum Y’ over k was limited to one of

the N(1, k) atoms of type b generated by the “little group” G(a;) which leaves a; invariant

[176].
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3.3.2 Pseudo 2D Representations

Non-ambivalent groups, e.g. (abelian) cyclic groups of higher orders C,, n > 3 or some
polyhedral groups (e.g. T), are characterized by pairs of complex conjugate one-dimensional
irreps 'E(g) = 2E(g)*, g € G. The corresponding irrep bases generated from spherical
harmonics are, in general, complex functions, complex-conjugate for the conjugate irreps.
However, in the absence of a magnetic field, the molecular Hamiltonian is invariant with
respect to time reversal or, equivalently, with respect to complex conjugation of the orbital
wavefunctions. Hence, all energy levels are doubly degenerate. This degeneracy allows us
to combine complex eigenfunctions into real functions, which are still eigenfunctions of the
original Hamiltonian. With due caution, one may perform a similar procedure for the basis
functions at the early stages to avoid calculations in the domain of complex numbers. This
is done by introducing so-called pseudo-2D irreps, which can be made real. A pseudo-2D
representation is obtained by a unitary rotation of the joint bases of the two conjugate
irreps. If the functions @ and a* are bases of the irreps 'E and 2E, respectively, then the

basis (bye, bi,) is real:

be \ _ 1 11 a \ R(a)
() =m (i) (2)-n()  en

R and Z designate real and imaginary parts. However, because the functions b,. and b,
are both combinations of functions of two irreps, matrix elements of a totally symmetric
operator are, in general, nonzero between them. In the original basis of size n, the matrix
representation of a totally symmetric operator contains two n X n complex matrices, one
being the conjugate of the other. In the pseudo-2D basis the corresponding matrix repre-
sentation is a 2n x 2n matrix built of n 2 x 2-blocks.? Each 2 x 2 block may be obtained
from its diagonal representation in the (a,a*) basis with the pair of complex conjugate

values (¢, ¢*) on the diagonal by applying the similarity transformation form Eq. (3.47):

c 1 c+c* ilce—rc* R(c) —I(c
i =)\ _ [ R ~I() 5.18)
c* 2\ —i(ec—c¢*) c+c Z(c) R(c)
Another efficient approach to work with pseudo-2D bases (and other, e.g. spinor, bases
exhibiting time-reversal symmetry) would be a quaternion transformation [177].
A similar procedure is also used in PARAGAUSS to render irrep bases and irrep matrices

real for other (higher) symmetries in cases where canonical irrep matrices are complex-

valued. This situation occurs if the canonical subgroup chain contains a non-ambivalent

20r, equivalently, of 4 n x n blocks. Then ¢ and ¢* in the equations below should be considered as
n X n matrices.
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group, which happens rather frequently. However, for higher symmetries where complex-
conjugate (time reversal) partners belong to the same irrep and the transformation does not
mix irreps, there is no need for a specific treatment of the resulting matrix representations.
The real-valued basis is still irreducible and all symmetry selection rules apply without
any changes. An alternative way to arrive at real irrep bases is to choose a subgroup chain

different from the canonical one.

3.3.3 Symmetrized Molecular Spinors

One possible procedure for creating symmetrized molecular spinors is analogous to that just
described for orbitals. Starting from position vectors and atomic spinors €2;,, with half-
integer (7, m) and proceeding along the same lines, one arrives at |Ufi, kaj) which are now
two-component complex spinors constructed from the j-shells of atoms a;. We use (7, 1)
here to denote projective irreps and partners, respectively. CG coefficients cEZf /1?)(172;12)
for products of vector and projective irreps are required to couple position vectors and
(half-integer) angular momentum functions. Just as in the case of orbitals, any totally
symmetric operator is diagonal in the irrep index  (now projective) and partner index fi.
However, there are important differences between spinors and orbitals which have great
consequences for the computational savings achieved by symmetrization. First, matrix
elements of operators are in general complex-valued. Second, for the point groups, there
are normally less projective irreps than vector irreps; thus, there are less independent blocks
and they are on average of higher dimensions which reduces the computational savings.
Finally, introducing spin coordinates already in the eigenfunctions €2, of 72 = (I + s)?
effectively doubles the size of the basis. For a treatment of spin-orbit interaction, such
doubling of the size of the basis by the spin components is unavoidable, in principle.
However, only the spin-orbit operator couples spin components and hence by its nature
requires a double-sized spinor basis from the very beginning. Spin-free operators (i.e.
operators diagonal in the spin components) are naturally represented in an orbital basis
of normal size. Therefore, in the following, we will present a procedure to construct a
symmetrized spinor basis which allows us to exploit directly the spin-free character of such
operators as the nuclear attraction V., the kinetic energy p?/2, the Hartree potential Vy
and the exchange-correlation potential V., all of which are used throughout in (normal)
quantum chemistry calculations.

The spin of an electron, parametrized as a column vector u € C2, forms a projective
representation SU(2) of the full rotation group SO(3). This is the same representation as
the two-dimensional basis D/?) of angular momentum eigenfunctions with j = 1/2. Even

when restricted to a finite point group G, we will refer to the spin rotation representation
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SU(2) | G=DY? | G as DU/? or, later on, as () to emphasize its spin origin.
Eigenfunctions of half-integer angular momentum j in spherical symmetry may be

considered as irrep bases of the reduced direct product:
DV & DW/2) _, pl=1/2) o pU+1/2) (3.49)

(DY denotes an irrep carried by angular momentum eigenfunctions of eigenvalue j, D(~1/2)
is a placeholder.) In angular momentum theory, this procedure is usually referred as LS
coupling [122]. The same obviously holds for representations DY) subduced to the finite
point group G; however, that does not imply the irreducibility of D). Thus, instead of a
reduction of a given basis of eigenfunctions of half-integer j, one might follow the standard
two-step procedure, direct product — reduction, for the pure spinor and pure orbital bases.

The view of molecular spinor space as a direct product of three items — (i) orbital mo-
mentum eigenfunctions, (ii) different spin states, (iii) localization on a particular atom —,
opens the possibility to couple them in various ways. To discuss different coupling schemes,
we introduce the following notations for the symmetry-related quantum numbers of differ-

ent spaces:

o [ shall designate the symmetry-related atomic quantum numbers. It corresponds to
the orbital angular momentum (/,[,) in the spherically symmetric case and to the
irrep and partner indices (v, i) of symmetrized spherical harmonics yj(:ff) ", Eq. (3.38),

in the case of point groups.

e S shall designate the spin state quantum numbers. It corresponds to the spin vari-
ables (s, s,) in the spherically symmetric case. The spin rotation representation D(/?)
of SO(3) subduced to point group G is an irreducible two-dimensional representation
DU/2) | G for point groups of interest. Two irrep partners are, thus, also interpreted

as two spin states (Kramer’s partners).

e J shall designate spinor state quantum numbers. It corresponds to total angular mo-
mentum (7, 7,) in the spherically symmetric case and to projective irrep and partner

indices (7, i) in the case of point groups.

e K shall designate “rotational” or position vector quantum numbers. It corresponds
to (v, ) of the symmetrized position vectors az(»”“)"“, Eq. (3.37). Tt is specific for

molecular systems and has no counterpart in the angular momentum theory.

In the case of spherical symmetry, one commonly couples L and S to obtain eigen-
functions of the total angular momentum J. With a slight generalization one may use

an analogous terminology for any group G. In Section 3.3.1, we showed how to construct
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symmetrized molecular orbitals by coupling L and K, the symmetrized spherical harmon-
ics and the symmetrized position vectors, respectively. We also mentioned that similar to
LK coupling one may use JK coupling to produce symmetrized molecular spinors. The
latter procedure may be implemented as (LS)K coupling or even as JK coupling if .J
eigenfunctions are given a priory. However, one can proceed via an alternative route to
symmetrized molecular spinors, e.g. by (K.S)L coupling. We claim, however, that (LK)S
is a superior coupling scheme in cases where one wants to exploit the symmetry of the

spin-free operators to full extent.

Recall that in cases without spin-orbit interaction LK coupling leads to symmetrized
molecular orbitals (Section 3.3.1). After subsequent coupling with spin S, one obtains sym-
metrized spinors with well defined quantum numbers LK which characterize the symmetry
of the spatial components of the spinors. Because spin-free operators do not operate on
spin components, their matrix representations will be diagonal in the coupled LK quan-
tum numbers (see Section 3.2.4 and below). With a proper choice of phases, those matrix
elements will be equal to their counterparts in the non-relativistic case and, consequently,

are necessarily real.

Suppose {|vu), p = 1...h,} is a set of molecular orbitals of (v, u) which refer to the
coupled LK labels, characterizing the symmetry of the product functions; the specific
values of the quantum numbers L and K are irrelevant in the current context. If one now
takes possible spin states {|a) := u® € C?, a = 1...2} transforming as D!/?) in G and
examines the product space, one finds (e.g. with an EFM-based strategy) symmetrized
spinors:

Vo) =Y o) oala) i) (3.50)

pa

Here, we use o to denote the spin representation D(/?); the quantities cg K g(m) are CG
coefficients of (v) ® (o) — @(7). We will keep the mdex v in |v) because we will
see that this is a good quantum number for our purposes. One should pay attention to
the following aspects: (i) we did not yet clarify the question of the reducibility of D®/2),
(ii) there is no index of multiple instances of the same (7, 1) in CG coefficients. The
two-dimensional representation D(!/?) is irreducible for most point groups [174]. Excep-
tions are the abelian groups C,,, C,;, and S,, where it necessarily reduces to two different
one-dimensional complex-conjugate irreps. In C; and C; with a certain gauge, the repre-
sentation D1/ reduces to the two instances of a trivial unity irrep. On the other hand,
the product of a vector and a projective irrep does not contain multiple instances of any
other projective irrep [174]. With this in mind, there is no need for a multiplicity index
of the CG coefficients, even if D(/?) is reducible. C; is the special case; there, one may

introduce Kramer’s conjugation (equivalent to time reversal [177]) to establish a relation
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between different spin states that build an “irrep”.
The matrix representation of a totally symmetric spin-free operator V' is diagonal in

the spin coordinates, («|V'|3) = Vd,p3; therefore, in the |[vDfi) basis one has:

IRV = 525 ¢l V1 (351)
= Z‘ (0a) V,u\V|l/u> (3.52)
= o (|IVv) (3.53)

Here, we used the symmetry properties of V', in particular, the block-diagonal structure

of the matrix representation in the symmetry indices (v, u) and the fact that the matrix

elements are independent of . We also employed the orthonormalization condition of the
: (p)«  ('E) : :

CG coefficients 3- ., ¢ a)Clopmy (o) = 0720 [170, Section 3.16]. The quantity (v||V][v)

denotes the symmetry-reduced matrix representation of V' in the orbital basis of symmetry

v, i.e. exactly the same representation which appeared in the non-relativistic case, Section
3.3.1.

This finding was presented in Section 3.2.4 as the result of a possible choice of
(V,C,C,C(s)) (with a spin-free operator V) as CSCO of the spinor space. The com-
muting operators V' and C' have common eigenvectors. Thus, in any basis of eigenvectors
of C' the matrix elements of V' vanish between subspaces which correspond to different
eigenvalues of C.? These eigenvalues label the vector irreps in the EFM theory.

With such spinor basis, the symmetry-reduced matrix representation of V' is block-
diagonal in both irrep indices 7 and v, the latter being the orbital symmetry where the
spinors originate from. Last but not least, there are no accidental phase shifts, so that
VD (k K) = V@ (k,K'). For example, V is represented by a real matrix, because the
orbital basis was chosen to render V®)(k, k') real. Phase shifts do not occur because we
used the same (CG) coefficients for all subspaces {|vu, k), p = 1...h,} of different %k to
generate spinors. Independent reduction of each product space {u®} @ {|vu,k)} allows
more freedom for the choice of phases. In other words, the sole fact that (V,C,C, C(s)) is
a CSCO is not enough for making any statement about the phases of the matrix elements
of V in the basis of (C,C,C(s)) eigenfunctions.

General symmetry considerations would only suggest a block structure for the matrix
representation of the totally symmetric V' with respect to the total spinor symmetry :
V=0, V@ Our specific choice of a basis ensures that each V® is still block-diagonal

in the other quantum number v: V® = ' V) where summation runs over such v that

30f course, the opposite also holds: matrix elements of C' vanish between different eigenspaces of V.
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() ® (o) 3 (7).

As an example, let us consider the case of Cy,. In Figure 3.1, we present a schematic
decomposition of a totally symmetric operator represented in a spinor basis which was
constructed in the manner proposed above [Eq. (3.50)] using Cy, symmetry as an example.
The block decomposition of the matrix representation depicted in Figure 3.1 illustrates the
selection rules for the matrix elements based on the symmetry of the basis functions. The
block decomposition of the reduced matrix elements is depicted in Figure 3.1: the trivial
dependence of the matrix elements on the partner indices p and p’ corresponding to the
factor 6,,, in Eq. (3.41) is omitted. Only the shaded blocks of the matrix representation in
Figure 3.1 are non-zero for symmetry reasons; therefore, only these matrix elements need to
be evaluated and stored. For a general totally-symmetric operator (including spin coupling
ones), the matrix representation reduces to two independent blocks represented by the two
large light-grey squares. This is, for example, the block structure of a Hamiltonian that
includes spin-orbit interaction. For an operator which does not couple spin components,
further restriction on the block structure apply: only the subblocks which are also diagonal
in the vector irrep indices (labels) differ from zero. These subblocks are exactly the same
as those which appear in the block-reduction of the same operator in the orbital basis
without resorting to spinors and projective symmetries (double groups). They are of the
same dimensions determined by the size of the orbital basis and are filled with the same
(real) values. Therefore, the two instances of the e-subblocks (depicted as hatched squares),
one belonging to the e/, block, the other to the e/, block, — are necessarily identical. In
fact, both originate from the same orbital basis of e symmetry by coupling with the spin
coordinates in different fashion: (e) ® (o) — (e1/2) ® (es/2) (o, as always, denotes the spin

functions).

3.3.4 Symmetrized Molecular Four-Spinors

The implementation of the relativistic counterpart of the Coulomb self-interaction (Section
2.1.4) requires a representation of some operators in four-component space. Here, we briefly
discuss the essential issues of how one constructs and symmetry adapts four-spinor bases

for representing operators of the DKS Hamiltonian.

The DKH transformation of the DKS Hamiltonian h = apc + 3c¢? + V involves com-
puting matrix elements of some operators in the momentum space (Section 2.1.2). As an
example, we examine the product AKapV apK A where A and K are some functions of
p?; this operator is a part of the DKH Hamiltonian [Eqgs. (2.35) and (2.36)]. Following

the strategy of Hess (Section 2.2.2) the matrix elements of such an operator product are
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Figure 3.1: Layout of a reduced operator representation in the spinor basis with well-
defined spatial symmetry quantum numbers. Cy, symmetry is chosen as an example:
ai, az, by, by, and e are the vector irrep labels; e;/; and e3/; are the projective irrep
labels. Blocks with an irrep label inside represent basis function/spinor indices of that
symmetry. Spinor basis functions are constructed from the corresponding symmetrized
orbital functions. The representation of a generic totally symmetric operator reduces to
two non-zero blocks, diagonal in the projective irreps e;/; and es;. Spin-free operators
are additionally restricted to the subblocks diagonal in vector irreps. Moreover, the two
hatched subblock instances originating from the same orbital basis e are identical. The
pattern corresponding to selection rules with respect to partners of multi-dimensional irreps
is not shown.

1/2 3/2

1/2

eS/ 2
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evaluated by invoking the resolution of the identity:

(p|AKapVapKAlq)~ > (p|AK|p) (¢ lapVap|q) (¢ [KA|q). (3.54)

r'q

For a basis functions |p) represented as a linear combination of Gaussian-type functions,
it is possible to evaluate the expression (p'|apVap|q’) directly (analytically) for some
potentials V', e.g. for the Coulomb 1/r. Alternatively, one invokes once again the reso-
lution of identity and constructs the “matrix of a product” as a “product of matrices”;
this procedure implies a basis representation of the primitive operators ap and V. We
have implemented the first alternative for the nuclear attraction potential and the second
alternative for the Hartree potential in PARAGAUSS.

A matrix representation of the odd operator ap implicitly introduces small compo-
nents into the calculations. For example, ap is used for the evaluation of the relativistic
counterpart of the fitted contribution F,.; [cp. Eq. (2.128)]:

Frel =~ FLL—I—...(ap)LSFSS(ap)SL... (355)

where L and S denote the large and small components, respectively. This notation brings
out the block structure of the relevant operators in terms of large and small components of
four-spinors. Note that only totally symmetric operators (in the sense of a “double group”)
enter the last equation. For example, the ap operator can be viewed as a scalar product
of two vectors (see related discussion in Section 2.2.3).

There is obviously “more symmetry” in the potential V' than just the spatial symmetry
when its four-component structure is considered. As a totally symmetric operator, V'
commutes with all symmetry transformations: [V, g] = 0, Vg € G. Moreover, as a four-
component operator V = V(r)d,gs is diagonal in the four components, a, 5 = 1...4, with
a single function on the diagonal. That is V is a spin-free operator, [V, o] = 0,* and at the

same time, V' commutes with the “charge conjugation” operation

. 01
V5 = 10717273 = 10 (3.56)

which permutes large and small components (here, standard notations are used for 79 = 3,

v = B [78]):
V,75] =0 (3.57)

Stated differently, the blocks Vi, and Vgg of the four-component operator V' are func-

o’O).

*In a true four-component notation one has [V, %] = 0 where ¥ = ysa = (7
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tionally equivalent (yet, the latter interpretation is not universal: for the odd operator
ap “charge conjugation” invariance also holds, [ap,vs] = 0). However, if the bases for
large and small components were chosen independently, the matrices Vi, and Vsg would
not be related in any simple way. There are some considerations in favor of a particular
choice of the small component basis, which are based on “kinetic balance” arguments [178].
These arguments rely on the fact that small components g and large components ), are

approximately related by
Vs = y0pYL/2c (3.58)

(see Section 2.2.3). Here, we explicitly introduce the “charge conjugation” 5 to swap
large and small components. One implication of this “kinetic balance” relation is that the
spatial parts of large and small components exhibit opposite parity because of the factor
p which is a real vector. Of course, a four-spinor as a whole can have only one parity, if
any. Therefore, symmetrized basis functions for “electronic” and “positronic” subspaces
must be constructed such that this parity difference is accounted for. No other “kinetic
balance” restrictions will be adopted here for construction of large- and small-component
bases, except these pure symmetry considerations.

Any small-component four-spinor transforms as a plain two-component spinor under
all proper rotations, but differs by a sign under improper rotations. To account for this

behavior, we explicitly introduce the pseudo-scalar P in their definition (cp. Section 2.2.3):

_ (Y _( 0
¢L—<O>, iﬁs—(Pw) (3.59)

Here, 9 is a plain two-spinor, e.g. an eigenfunctions of half-integer angular momentum j
in the case of an atom. In compact form, the relation of the two basis functions may be

expressed by

Vs =Pir (3.60)
Y, = vPs

This is a kind of “kinetic balance” relation to be compared with Eq. (3.58). Note that
72 =1and P? =1.

Different transformation properties, in this case by a pseudo-scalar P, imply a change
of the irrep involved. If the spinors {1#(;’1 )~ Y@ ;i =1...hy} form a basis of an irrep
v, then the set of spinors {wgyﬂ) ~ PY@) . [ = 1...hs} is a small-component basis
of irreducible representation 7/ (cp. Section 2.2.3). The symbol “~” reads “transforms
as”, however the irrep matrices associated with the basis {Pw(ﬁ [‘)} are not necessarily in

standard form chosen for 7/ irrep. Therefore, one needs to apply a (unitary) similarity
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transformation U which maps ws to w(y ") Wwith a different choice of partners:
V) = Z Ui ™ = 5P Z Up ity " (3.61)

The elements of the unitary matrix U are in fact CG coefficients of the irrep product

(7)®(P) = ('), the conjugate matrix UT corresponds to the irrep product (7)®(P) = (¥):

S (7 B
Unp 3= € i) = Coinyp) (3.62)
The inverse transformation 1/1 V) (Lﬂf‘ ) is obtained similar to Eq. (3.61) by replacing

U with UT; by just interchanging subscripts L and S without changing the irrep indices

[see Eq. (3.60)], two complementary transformations may be obtained: @D(V“ — (Lﬁ’ﬂ ) and

1(317’/1’) N k(gﬂu)‘

With two basis functions w(LDf‘ ) and wgﬂ ) of a large-component basis, the following

selection rule holds for the matrix elements of the operator V:
< |V|¢ VH)> ( )(L17L2)5uy’6u# (363)

where V) (L1, Ly) is an element of the symmetry reduced matrix of operator V', specifically,
of its VL(Z) block. For the corresponding small-component functions @Dgﬁ ) and @Dgﬂ ,), Eq.
(3.61), we only need to investigate the case of the same irrep and and partner indices of

the bra- and ket-functions due to selection rules as in Eq. (3.63):

V(S S,) = <¢§i“>|vw<”“’>
= 3 Uin Vw0 1PV PIUET™)

= (UU")up VP (L1, L)
= VO(Ly, Ly). (3.64)

Here, we used the identity 737; V~sP = V which holds because ~; is self-adjoint: 73) = s;
it commutes with V| [V, 5] = 0, because of its “charge conjugation” invariance, Eq. (3.57).
Note again that 42 = 1. Additionally, we used the fact that the pseudo-scalar P commutes
with V' and also yields unity if squared, PV'P = V. Furthermore, we used the selection
rules of Eq. (3.63) and the unitarity of the CG matrix U. The only property of operator V'
that was used to prove Eq. (3.64) was its “charge conjugation” invariance. For a general
operator V', not necessarily even and spin-free, but commuting with 5 the above holds

too. Additionally, there is a similar relation for the matrix representation of the odd part
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of V: V)(S,, Ly) = VP)(Ly, S5)° in the basis constructed according to Eq. (3.61).
In summary, if the basis set was chosen according to Eq. (3.61), one has V#)(S, S,) =
VO(Ly, Ly) and VZ)(Sy, Ly) = V)(Ly, S,) or, equivalently,

v =vy (3.65)

Vi =V (3.66)
between the corresponding blocks of irrep 7' and the coupled irrep v: (0) ® (P) = (V).
This relation was used in Section 2.2.3 where two coupled irreps were processed at the
same time for optimal performance and memory requirements.

The reader who wonders why one should apply transformation U if it always enters the
final expressions in the combination UUT = 1 should recall that we considered only matrix
elements which are diagonal in partner index fi as allowed by the symmetry selection rules.
Selection rules are not immediately applicable if the partners within different subspaces,
e.g. {w(ﬁ‘ '} and {wg”ﬂ l)}, were not chosen consistently.

The odd operator ap is also “charge conjugation” invariant. As is always the case for a
totally symmetric operator, the blocks LS and SL of ap need to be computed and stored
only for pairs of four-spinors which exhibit the same symmetry Q/Jgﬁ ) and @ng ). In the
corresponding two-component picture, the pseudo-vector character of o in op is canceled

by the pseudoscalar P which is due to the small-component function wgm ),

3.4 Implementation

3.4.1 Symmetrization Coefficients

In PARAGAUSS, a module is implemented to construct symmetry adapted functions of
LCAO-type, starting with spherical harmonics, for orbitals, spinors, and four-spinors. Any

symmetry-adapted function

Q
v k) => d¥*g) v <N, p<h, k<K, (3.67)
q
is internally represented as a set of indexed coefficients d((;'“ * of its expansion in the basis

{lg), ¢ < Q}. The indices of such coefficients include the symmetry indices (irrep v
and partner u), index ¢ of the original representation basis |¢), and, eventually, index k

which identifies one of K, > 0 functions of the same symmetry. The coefficients dg”“ )k

5Not to be confused with V(") (S, Ly)* = V) (Ly,S;) for the SL and LS blocks of the same irrep
which holds for any Hermitean V in any basis.
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may be organized as a set of one-dimensional Fortran arrays d“"*(1: Q)% with array
elements d“"*(q), two-dimensional arrays (matrices) d**(1:Q, 1:h,) with array (matrix)
elements d“)*(q, 1), or even three-dimensional arrays d*)(1:@Q,1: h,,1: K,) with array
elements d")(q, i, k). Note that array bounds h, and K, depend on v so that adding a
forth dimension ¥ < N to the array is not straightforward. However, if a unique mapping
(vpk) < p of multiple indices onto a single one is established in some way, all the coefficients
fit into a single square matrix d(1:Q,1:Q) with elements d(q, p) = dy*'*. (In some cases,
e.g. when only functions of totally symmetric type are considered, the ranges of ¢ and p
may differ, rendering the matrix rectangular.)

The symmetrization procedure is a unitary transformation of the original, unsym-
metrized basis. The unsymmetrized basis and thus the resulting symmetrized basis may
be either orthogonal or non-orthogonal. The symmetrization procedure should be distin-
guished from the orthogonalization, although it enforces partial orthogonality according
to the symmetry selection rules. The unitary matrix u(q, p) for the symmetrization of the

basis,

{lva)} — D) = Pluy™r, u<hl, (3.68)

is a square matrix with the combined index p = (vuk) which in addition to the symmetry
indices (vu) comprises a counter x for the instance of v. The matrix elements u,(f“ % fit the
layout of the structures described above for symmetrized functions. In fact, the expansion
coefficients of the symmetrized functions may be considered as elements of (unitary) matrix
implementing the symmetrizing transformation.

The original (unsymmetrized) representation basis |¢) may actually be indexed by a
combined index ¢ = (im) (i.e. a multiple index), to account for the underlying direct prod-
uct representation of the basis: |¢) = |i)|m). To construct coefficients of the symmetrized
LCAO orbitals, Egs. (3.39), (3.40), we considered direct products of position vectors {a;}
of a symmetry equivalent set of atoms a and spherical harmonics {C},,} with angular mo-
mentum j, Section 3.3.1. Taking all symmetry equivalent atom types a and all angular
momentum shells j into consideration, the complete expansion basis |g) is indexed by tuple
ranges ¢q; = (im). The LCAO coefficients, Eq. (3.40), are stored for each a and j either
as matrices d®)%%(q, 1) or as three-dimensional arrays d®%% (i, m, u).”*

The symmetrized spinors constructed from the symmetrized orbitals also match the

6We make use of Fortran syntax 1:Q to denote array bounds and conventional indexing d*** of
different arrays.

"It would be sufficient to compute and store LCAO symmetrization coefficients for distinct types a of
“unique” atoms {a;}, e.g. for four-fold equatorial atoms, axial atoms and so on.

8The Fortran feature, that a three-dimensional array A(i, j, k) of size M x N x K may also be accessed
as a two-dimensional array A(ij, k) of size (M N) x K, allows seamless switching from one representation
to another.
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direct product scheme. Indeed, the CG coefficients of the direct product of the vector irrep

v and the spin “irrep” o, reduced to the projective irrep 7, CEZZ ))(m), Eq. (3.50), stored

as arrays ") (u, «, fi) with triple index (i, a, fi) of corresponding irrep partners, may be
equally well viewed as the a-component (a = £1/2) of the (1) spinor, expanded over the

partners p of the orbital representation space (v).

(vp)s
(v1pn)(vape

(1) ® (1) — (V). are similarly represented by arrays of coefficients ) 1v2(py, iy, 1),

The general CG coefficients ¢ ) for the (vector or projective) irrep product
indexed by the three indices (p1, p12, it), two of which, (u1u2), label basis functions |uq)|u9)
of the product space (v1) ® (12).

The index structures of the symmetrized bases d((f“ )k, symmetry transformation matri-

ces u((f“ )k, and CG coeflicients CEZ” ;)f) (vags2) based on their common origin as basis transfor-
mations —, they all allow sharing of processing methods and storage structures between

at first glance different objects.

The two basic structures used in PARAGAUSS for symmetry adaptation are transfor-
mation matrices u*)*(g, 1) in general and CG coefficients )% (1, 12, 1t) as a special case
for direct product spaces (tuple index ¢ = (p1p2) implemented as double index). The
diversity of objects used in the symmetry part of the code, the symmetrized spherical har-
monics and the atomic positions, the symmetrized orbitals, large- and small-component
spinors, the CG coefficients for vector and projective irreps, — including the special case
of projective representation SU(2), not necessarily irreducible —, may be represented by
these structures and processed by unified methods.

In the following, we will discuss the details of the symmetrization in cases where spin-
orbit interaction is treated explicitly. Then three types of the CG coefficients are computed

and stored in module clebsch gordan.f90:

(vp)s
(v1p)(vape

ucts (11) ® (o) — (v)x. The coefficients for particular subspace k of the reduced

cg(v, vy, 15) — structure to store CG coefficients ¢ ) for vector-vector irrep prod-
product are stored in the structure component? %sub (x)%c (i, 1, p12) . The array of
subspaces %sub(:) is of size %mult which may be zero. This type of the CG coeffi-
cients is used when symmetrized spherical harmonics of integer angular momentum
[ and symmetrized atomic positions are coupled to build symmetrized molecular or-
bitals.

(Th)k
(vipa)(P2fiz
products (1) ® (y) — (7),. The coefficients for particular subspaces of the reduced

vpcg (v, vy, 5) — structure to store CG coeflicients ¢ ) for vector-projective irrep

9Modern Fortran implementations allow structured variables of user-defined types with several compo-
nents of arbitrary types. The typed variable A may be declared with integer and real components A%Int
and A%Real.
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product are stored in the structure components %sub(x)%c (i, i1, fi2) . The complex
coefficients may be accessed via %z (i, p1, fi2) or via the real and imaginary parts
hre (i, p1, flo) and %im(f, pq, fio), respectively. This type of the CG coefficients
is used when symmetrized spherical harmonics of half-integer angular momentum
j (spherical spinors) and symmetrized atomic positions are coupled to build the
symmetrized molecular spinors.

(i)
(vip)(oa
sentation products (1) ® (o) — (v), where (0) = SU(2) | G is a pure spin rotation

vsu2cg (v, v) — structure to store CG coefficients ¢ ) for vector-projective repre-
representation. The coefficients for particular subspaces of the reduced product are
stored in the structure components %sub(x)%c (i, 1, @). The complex coefficients
may be accessed via %z (i, p11, @) or via the real and imaginary parts %re (j, t1, a)
and %im(f, puq, ), respectively. This type of the CG coefficients is used to couple
properly symmetrized (molecular) orbitals with the spin components; such coupling

also results in symmetrized (molecular) spinors.

Algorithm 3.1 represents the pseudo-code used for generating the symmetrized spinor
coefficients d™*(q, o, fi) of the expansion in the basis of products |a)|¢) [cp. Eq. (3.50)] from

the previously obtained orbital coefficients d®*(g, 1) of the expansion in some basis |q)
(PR)R

(vp) (oo
The orbital coefficients were assumed to be taken for a particular atomic shell {a;}@{Ci,},

with the help of the spin coupling CG coefficients ¢ ) which are stored as ¢ (u, a, fi).
Egs. (3.39), (3.40); however, this is not necessary as the coefficients may represent any set

of symmetrized orbitals.

3.4.2 Transformation from an Orbital Representation to

a Spinor Representation

The ordering of the basis functions used by PARAGAUSS to store operator matrix represen-
tations is outlined in Algorithm 3.2. Basis sets for different irreps are handled separately
and, most of the time, the distinction of the partners within an irrep may be ignored. The
coarsest division is by the group of symmetry equivalent atoms {a;}. This range of basis
functions is partitioned into atomic shells of different angular momentum {a;} ® {Ci,.}.
The latter may be eventually split into several independent subspaces k of the same sym-
metry {a;} ® {Ci,} — (v)i. Finally the radial dependence of the functions is addressed,
which, depending on the situation, is the number of uncontracted exponents of the basis
or the number of contracted functions. The only essential difference of the pseudo-code
between orbital and spinor bases is the origin of the number of irrep instances within an

atomic shell. For orbitals, this is the number of times a (vector) irrep appears in the direct
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Algorithm 3.1: Pseudo-code for obtaining symmetrized spinors from symmetrized orbitals.

Il INPUT: symmetrized molecular orbitals d*)*(q, 1)

Il combined index ¢ = (im) runs over pairs i € {a;}, m € {Cy,} of a shell {a;} @ {C,,}
Il OUTPUT: symmetrized molecular spinors d”*(q, a, ji)

I = +£1/2 is the spinor component

forall Projectivelrreps v do: Il irrep of resulting spinor
Fproj = 0 !l no instances of v yet
forall VectorIrreps v and

forall IrrepInstances ky. in d™*wec and !/ over instances of (v) € {a;} @ {Cp,}
PR . - o i (D
forall IrrepInstances k in ¢, i, do: [/ is emptg if () & (V) ® ((7) B
kproj = Eproj + 1 ! there will be one more instance of (V)
forall SpinorComponents « in (:I:%) and /! obtain spinor expansion coefficients

forall ProjectivePartners i in Projectivelrrep v and

forall BasisFunctions ¢ do: 11 dPkeroi (g, v, i) for all partners fi
dDkeroi (q, o, i) = Do dWkvee (g 1) (o, i) ! is a matriz product
done forall Il over (fi, v, q)
done forall I over (v, kyee, K)
done forall Il over (V)

product {a;} ® {Cj,,}; for spinors, it may be computed as number of (projective) irrep
instances in {a;} ® [{Ciy1/2m} + {Ci—1/2,m}], or, preferentially, determined by counting
instances in [{a;} ® {C}, }] ® (0); the latter strategy is consistent with the way the spinors
are generated.

This particular ordering of the basis functions actually destroys the clear block structure
of the spin-free operators in the spinor representation.'” The spinor ordering by atomic
shells is a straightforward extension of the ordering of orbitals. However, atomic basis
functions of each shell are combined into molecular orbitals of several (vector) irreps.
When coupled with spin to spinors of certain projective irrep, such a shell may in general
contain spinors of several spatial symmetries. The spinors of the next atomic shell in a
sequence will be also of different spatial symmetries. The ordering of spinors by atomic
shells and the ordering by their spatial symmetry are, in effect, two exclusive ordering
schemes. Thus, the block structure of spin-free operators which was implied, for example,
in Figure 3.1 is not immediately visible in the default ordering. To preserve such a block

structure, spinors have to be ordered according to their spatial symmetry. Algorithm 3.3

0Indeed, it renders the matrix sparse, but not full. Selection rules still hold, of course.
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Algorithm 3.2: Pseudo-code to order orbital basis functions and spinor basis functions.

for Irreps v =1..N;, do: !l irrep bases are largely independent
k=0 !l reset counter for irrep v
for AtomGroups a =1..N, do: !l loop over atomic ...
for AngularMomentumShells [ = 0..[,4,(a) do: Il ... shells

Il here access to symmetry reduced orbitals or spinors of atomic shell required
for IrrepInstances k in {a;} ® {Cin} — (V). do:!! this may be empty
for RadialFunctions r = 1..N,,,; do: !II' fully contracted basis
!l irrep partners p not counted!
k=Fk+1 Il add another function to counter
II'k is the order of \vp;a,l, k,1) = |vu; k)
done for
done for
done for
done for
Size0f(v) = k !II' final number of functions for irrep v
done for

Algorithm 3.3: Pseudo-code to generate an alternative order of the spinor basis functions
which emphasizes block structure of matrix representation of spin-free operator as in Fig-
ure 3.1.

for Projectivelrreps v = 1..INp,; do: !l irrep bases are largely independent
k=0 !l reset counter for irrep v
for VectorIrreps v = 1..Ny, do: Il vector irreps of orbitals
for Instances k in (V) ® (0) — (), do: !/ typically 1 or 0. one or none
for Orbitals ¢ = 0..8ize0f (v) do: Il already ordered orbitals
!l irrep partners i not counted!
k=Fk+1 Il add another spinor to counter
II'k is the order of vifiy k) built of {|vu;q), p=1...h,}
done for
done for
done for
Size0f (1) = k !II' final number of spinors for irrep v

done for
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displays the pseudo-code for such alternative ordering of the basis spinors. There, it is

assumed that the basis orbitals are already somehow ordered, e.g. by Algorithm 3.2.

For historical reasons, the spinors in PARAGAUSS are not ordered as just described in
Algorithm 3.3, but rather analogous to Algorithm 3.2. However, the “clean” ordering of
the spinors according to the spatial symmetry is used as an intermediate step on the way
from the orbital representation of the spin-free operator to its spinor representation. With
an alternatively ordered spinor basis, this transformation is carried out just by copying
the orbital representation matrices to the proper position within the spinor representation
matrix. Then, one only needs to apply twice a permutation to rows and columns of the
resulting matrix to obtain the representation in the spinor basis which is ordered according

11

to atomic shells. In this way, the representation matrix V. is generated, but any other

spin-free operator may be treated in the same way.'?

3.5 Application to Numerical Integration of the
Exchange-Correlation Potential
One of the most time-consuming tasks in Kohn—Sham calculations is the construction of

the matrix representation of the exchange-correlation (zc¢) potential V... The nonlinear

dependence of the zc functional

E,. = / d*r epe(p, Vp) (3.69)
and of the resulting potential
0 0
Vee= | 7= = V== €sc 3.70
[0/) 0Vp} ‘ (3.70)

on the density and the density gradients makes a numerical integration over a spatial grid
indispensable. To avoid higher derivatives of the density by explicit evaluation of V., one

transforms integrals involving the potential to

[#rvig= [ @ (a(;;cﬁ 33”;%) = [dragrevg) @

HTmplemented for triangular storage mode of symmetric matrices in module xc_ham_trafo.£90.

2The emphasis of this work was the efficient evaluation of V. matrix elements since it has to be
repeated every SCF iteration. Other operators, e.g. kinetic energy or potential of density fit functions
are only evaluated once. Of course, all spin-free operators are represented as real block-diagonal matrices
similarly to V.. This fact is, however, exploited only for V..
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where the scalar a and the vector b represent (real) functions of . After discretization,
the integral [ dr turns into a weighted sum Y, w(r;) over the grid points 7;; the dis-
cretized weight function w(r;) may be conveniently integrated into the definition of a(r;)
and b(r;). Then the matrix elements V(m,n) = (¥;,|Vie|thn) of the potential V. are

evaluated approximately as the sum
1
> (hatitons + iV (@) ) = Z¢ (5%% + biwz)m) tecofmen (3.72)

Subscript i indicates the point r; at which the function to be integrated is evaluated.
The omitted term on the r.h.s. is obtained by complex conjugation of the first term after
interchanging indices m and n. Thus, one may efficiently obtain all the matrix elements
V(m,n) by a single matrix multiplication step of quantities indexed by (m,i) and (n, 1)
and subsequent rendering to a Hermitean quantity: V(m,n) := V(m,n) + V*(n,m). Very
efficient implementations of such a matrix multiplication are available in special libraries
[126, |. The integration is performed for all partners within each irrep. The target
quantity is the “average over partners” > ( %“)|%C|¢f{/u)>, see Eq. (3.42); at the price of
having to deal with all partners p of an irrep, one is able to reduce the number of grid
points to be processed to only the “unique” wedge of the grid, i.e. to those points that are

not equivalent by symmetry.

The derivation above is applicable irrespective of what the basis functions are, sym-
metrized two-component complex spinors 1" or symmetrized real orbitals ¢\, In the
latter case, complex conjugation has no effect, of course. The computational expense of the
integration is quite different in these two cases: every multiplication of two real numbers
in case of an orbital integration corresponds to a sum of four products for both the real
and the imaginary parts of the result in case of two-spinors. The number of memory refer-
ences increases accordingly: instead of fetching two real numbers one needs two numbers
(real and imaginary parts) for each of the two spinor components of both participating
operands. These simple arithmetic does not take into account the fact that the dimension
of the problem (basis size of the irrep) is often larger in a spin-orbit calculation than in
a standard run, i.e. a non-relativistic or a scalar relativistic calculation. Therefore, the
integration step is a promising candidate for applying the formalism discussed above to

exploit the spin-free character of operators, V. being such an operator.

Let the real functions a and b be given; they are characteristic of the spin-free potential
Vye. The computational task of computing the representation V) (m,n) of V., in the
orbital basis gzﬁf}f“ ) is independent of the origin of a and b; these “parameters” may be
computed using non-relativistic or spin-orbit densities (density gradients). In a spin-orbit

calculation, the matrix V®)(m,n) is exactly the representation V”)(m,n) one is after,
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Table 3.2: Timings of essential parts of relativistic calculations for the example of Au;z in
Oy, symmetry.” Comparison of various types of calculations: SO, SO exploiting the spin-free
character of V,., and scalar relativistic (SR) variants. The columns “Integration”, “Or-
bitals”, and “Density” correspond to the separate parts of the SCF procedure: integration
of V., evaluation of the basis orbitals on the grid and the density,’ respectively. “SCF”
refers to the whole SCF part. “Total” is the total time for the calculation; the number of
SCF iterations is given in parentheses. Percentages are relative to the total time of the
run. SO speed up factors compare SO with and without special treatment of V,.; SR speed
up factors compare the SR to the faster SO variant.

Integration Orbitals Density SCF Total

SO plain 7802 1066 877 9843 10221 (23)
76% 10% 9%  96%

SO spin-free 63 1296 883 2340 2711 (23)
2% 48% 33% 86%

SR 52 193 23 276 303 (21)
17% 64% 8%  91%

SO speed up 124.8 0.8 1.0 4.2 3.8

SR speed up 1.1 6.1 353 1.7 8.2

a) CPU timings in seconds for a parallel run on 3 Pentium 4 (833 MHz) processors.
b) most time consuming step is evaluation of eigenfunctions from the basis functions.

provided the spinor-basis ;MW ) is constructed from the orbital basis gb%”“ ) by adding spin
coordinates in the fashion described above: (v)® (o) — (7). To compute the representation
V®)(m, n) in the orbital basis one may re-use the non-relativistic procedure and concentrate
on optimizations at a single place.

In Table 3.2 we present timings of three calculations on Auys3: SO with a “totally
symmetric V,.”, SO with “totally symmetric and spin-free V,.”, and an SR calculation.
Although they give exactly the same results, the total time of the two SO calculations
differ by a factor of 3.8. Three major numerical integration tasks, namely the integration
of the z¢ matrix, the evaluation of basis orbitals/spinors, and the evaluation of the density,
determine the SCF performance to a large extent; together, they take 80-90% of the total
time. Of those three numerical tasks in a plain SO calculation, the integration consumes
76% of the total time; the two other tasks, evaluation of the orbitals and the density require
10% and 9%, respectively. If one exploits the implications of the spin-free character of
the potential V., these relations change drastically: in a “SO spin-free” approach, the
integration takes less than 2% of the time, the evaluation of the orbitals and the density
consume 48% and 33%, respectively. The integration step shows a speed up of more than a

factor of hundred, partly because of the reuse of the highly optimized non-relativistic code;
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in absolute terms, it takes hardly more time than in a SR calculation. The requirement of
both spinors and orbitals to be computed on the grid in the “SO spin-free” case increases
the time for that part by about 20%. With the option to exploit the spin-free character
of the potential V., SO calculations are still about 8-9 times more expensive than SR
calculations.

Finally we note that in noncollinear spin-density functional theory with the energy
functional E,. = [ d®re,.(p,s) where s = |s]| is the spin-density s = (1/2) > ¢loi):,

the potential V. has spin-coupling terms (which may also lower the symmetry):

0 o8O0
Ve = {a_p + ?g} Cxc - (3.73)
The commutator of V,. and the Pauli matrices is
o x s] Oeg.
Vie, o] =2 0 3.74
Ve, 7] = 20172550 (374

Such a potential is not invariant under rotations in spin space, i.e. it is not a spin-free
operator. Hence, the strategy discussed above for spin-free operators is not applicable in

the case of noncollinear SO.

3.6 Further Applications

In this section, we discuss applications of the symmetry formalism developed above which
have not yet been implemented in the code.

Two-component spin-orbit implementations in the spirit of the DKH approach (see
Chapter 3) allow one to explore the symmetry of spin-free operators at several stages. The
only spin-coupling contribution of the DKH transformation is o/[pV,.. X p|. For other
operators, e.g. the spin-free counterpart pV,,..p of this operator, the kinetic energy, the
nuclear attraction, the Coulomb field of the electron density, and the overlap, one may use
representation in the orbital basis. One advantage is immediate: a representation in the
orbital basis requires less storage because the matrices are real and of lower dimensions.

Further advantages may be illustrated when one considers the diagonalization of the
kinetic energy matrix 7' = p?/2 which is an essential step in the DKH strategy, Section
2.2.2. The solution of the eigenvalue problem is performed in three steps: diagonalization of
overlap matrix S required for the canonical orthogonalization of the basis, transformation

of the kinetic matrix 7" to this orthogonal representation, and diagonalization of T" (Section

BFurther improvement may be expected if calculation of the basis spinors (spinor gradients) at grid
points is avoided. Basis spinors are later combined into (spinor) eigenfunctions to obtain the density
(density gradients). Alternatively, basis orbitals may be combined into eigenfunctions directly.
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2.2.2). The overlap S as a spin-free “operator” is represented in spinor basis by a block-

diagonal matrix:
/
S=Ps” =Hps” (3.75)

where the sum @), is over those irreps v that fulfill (7) € (v) ® (o), Section 3.3.3. Di-
agonalization of the block diagonal (and real) matrix S is achieved by a real orthogonal

matrix U which is also block-diagonal:

U= @ u® (3.76)

Here, each U™ diagonalizes corresponding S™):
UMt — @) (3.77)
with diagonal matrices s**). The orthogonalization of the kinetic energy matrix
T — sV2UtTU /2 (3.78)

and the subsequent diagonalization are performed block-wise.

The matrix of the transformation to momentum space

= @ P (3.79)

may thus be obtained block-wise by operating with the real matrices of the orbital represen-
tation. This transformation may be applied to transform the block-diagonal representation
of the spin-free potential operator V', with a block structure equivalent to that of S in Eq.
(3.75):

V - P'VP (3.80)

Moreover, the real-valued block-diagonal transformation matrix P allows savings also when
one has to transform the matrix representation of a general (spin-coupling) operator V.
To see that, one separates the matrix representation V”) into sub-blocks V,,(f,,)a according
to the spatial symmetry of the spinors; for a spin-free V', only the blocks with v, = 1, are
non-zero. The transformation to momentum space may be performed as

V@ PGy @) pls) (3.81)

V1,V2 v1,v2

where, in general, a complex matrix Vl,(f,z,Q is multiplied by the real matrices P*2) and
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[P1)]71. The back-transformation of the relativistic DKH Hamiltonian may be performed
similarly.

Another application, where a coherent treatment of orbital and spinor bases is advan-
tageous, could be, for instance, a perturbation (or any other post-SCF) treatment of the
SO interaction, where solutions of a converged scalar relativistic Hamiltonian are re-used

in a post-SCF' treatment of the SO interaction.



Chapter 4

Density Functional Study of Small
Molecules and Transition Metal

Carbonyls Using Revised PBE

Functionals

By now, density functional theory (DFT) is a widely accepted framework for calculating
ground state electronic state properties of molecules, clusters, and solids. In the Kohn—
Sham (KS) approach to DFT, in principle only the exchange-correlation (zc) energy F,. =
E,.+ E. needs to be approximated as a functional of the electron density and many variants
arise from different choices of approximate xc functionals [13, |. For most applications
in chemistry, the local (spin) density approximation (L(S)DA) has now been superceded
by functionals that also depend on the local value of the density gradient (generalized
gradient approximation, GGA) [13, , |. In comparison to LDA, GGA functionals
tend to improve total energies, atomization energies, and energy barriers [179, ]. GGA
functionals in general yield chemical bonds slightly longer and less strong than LDA, an
effect that corrects (and sometimes overcorrects) LDA predictions. Well-known and widely
used gradient-corrected functionals (for short, termed conventional GGAs in the following)
are combinations of Becke’s gradient-corrected exchange functional [135] with correlation
functionals of Perdew [136] (BP) or Lee, Yang, and Parr [181] (BLYP), or a GGA functional
proper (PW91) [182].

In 1996 Perdew, Burke, and Ernzerhof (PBE) [23] presented a generalized gradient
approximation for the exchange-correlation functional which exhibits a simple functional
form, and where all parameters (except those the of LSDA it is based on) are fundamental
constants. Only the general features of the detailed construction underlying the PW91

GGA were invoked. Improvements over PW91 include an accurate description of the linear

105
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response of the homogeneous electron gas, the correct behavior under uniform scaling, and
a smoother potential [23].

Subsequently Zhang and Yang [21] revised the original PBE functional (revPBE) to
systematically improve molecular atomization energies. They suggested to discard the local
Lieb-Oxford bound [183], an inequality linking the exchange energy density per particle to

the electron density p at all positions 7:
(1) > —1.68p"3(r) (4.1)

In this way, they gained freedom for optimizing the parameter s of the exchange energy

density enhancement factor Fj(s) (relative to the corresponding LSDA value),
Fo(s) =14 ps*/(1 + ps®/x) (4.2)

This is the general form suggested earlier by Becke [181]. Here, s(r) is a dimensionless

function of the density gradient which serves as a measure of “non-locality”:
s(r) = [Vpl/[2(37%)/2p"?] (4.3)

In the original PBE functional x is 0.804 [23], while Zhang and Yang suggested k=1.254 [21].
Zhang and Yang chose the value of k by fitting atomic exchange energies to “exact” values
obtained by the optimized exchange potential method [185]. Becke’s value is k=0.967 [181];
his partially empirical exchange approximation also features a different value of ©=0.235
instead of 0.220 in the PBE functional. Although the revPBE functional does not obey the
local Lieb-Oxford bound, Zhang and Yang emphasize [21] that for atoms and molecules
they have found the Lieb-Oxford constraint to be fulfilled in the integral sense.

In 1999 Hammer, Hansen, and Ngrskov [25] developed an alternative revision of the
PBE functional, RPBE, which provides the same improvement of the energetics as the
revPBE functional and at the same time also fulfills the Lieb-Oxford criterion locally. The
construction of the RPBE functional does not involve any parameter fitting. Rather, a
functional form is chosen for the exchange enhancement factor that obeys the Lieb-Oxford
bound by construction,

Fo(s) = 1+ K[l - exp(—ps?/x)]. (1.4)

with the same value £K=0.804 as in original PBE functional. Thus, F,(s) features the same
asymptotic value for s — oo as the PBE functional. In the range of small and mid-range
values of s, the exchange enhancement factors of both functionals, revPBE and RPBE, are
very similar and this similarity translates into very close results for molecular calculations,

as we shall see in the following.
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When introduced the PBE functional was shown to provide results in close similarity
to the functional PW91 using a test suite of small molecules [23]. The revised functional
revPBE was tested for a slightly extended set of molecules [24]. On the other hand,
Hammer, Hansen, and Ngrskov applied their functional RPBE only to adsorption of O,
CO, and NO on metal surfaces using slab models. They also compared the two revised PBE
functionals to the original PBE functional and to the PW91 functional. Thus, we felt that
a more systematic comparison between older GGA functionals and revised PBE functionals
is advisable. The present work compares the GGA functionals BP, PW91, and PBE to the
two revised functionals revPBE and RPBE based on a set of small molecules. Furthermore,
we extend this comparison to common test systems of organometallic chemistry, namely

to carbonyl compounds of first-row transition metal atoms.

4.1 Computational Details

The calculations reported here were carried out at the all-electron level using the parallel
DF program PARAGAUSS [20, 21]. For the small molecules, we employed rather large
140
(8s,4p,3d) for the H, (14s,9p,4d,3f) for elements of the second row, and (17s,12p,5d,4f)

for elements of the third row of the periodic table. The transition metal carbonyl metals

uncontracted Gaussian-type molecular orbital basis sets of the following sizes |

were calculated using flexible contracted Gaussian-type orbital basis sets of high quality:
(21s,15p,10d,6f,4g) — [6s,5p,4d,3f,2g] for the metal atoms Cr, Fe, and Ni; (14s,9p,4d,3f)
— [5s,4p,3d,2f] for C and O. All contractions were of general type based on atomic natural
orbitals optimized over several states (excited, charged) [186, 110]. Although these con-
tractions were not generated within a DF approach, a comparison of observable properties
of CO as test molecule showed that contracted and uncontracted orbital basis sets yield
very similar results, even for a smaller number of contracted functions.

PARAGAUSS employs a fitting strategy for the electron charge density to simplify the
evaluation of the Coulomb contributions to the KS potential and the total energy [90, 59,

]. The fitting basis set was derived from the orbital basis set by scaling the exponents
[60]. In this way, s- and p-type functions of the molecular orbital basis set give rise to s-
and d(r?)-type fitting functions [60]. Furthermore, the fitting basis sets were augmented by
polarization functions of p- and d-type located on every atom with five exponents chosen
as geometrical series; p-type: 0.1 (x 2.5), and d-type: 0.2 (x 2.5) [60].

The exchange-correlation contributions to the KS Hamiltonian were evaluated by an
accurate numerical integration and treated self-consistently in the Kohn—Sham procedure.
For the LDA approximation, we employed the widely used VWN functional [131] as well
as a very similar functional due to Perdew and Wang (PWL) [187]. All gradient-corrected
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functionals contain as a primary part one or the other LDA. The zc¢ functional of Becke and
Perdew (BP) [135, 188, 136] is based on the VWN LDA functional; the other zc functionals
(PWO1 [182], PBE [23], revPBE [21], and RPBE [25]) are based on PWL.

Atomization energies of small molecules were calculated for experimental geometries
[189, | to permit a consistent comparison with previous benchmark studies of the func-
tionals PBE [23] and revPBE [21]. However, to investigate effects of the revised PBE
functionals on structures and to achieve a broader comparison of various PBE-type func-
tionals with previous GGAs (BP and PW91), we also optimized the structures of the
molecules with the various xzc functionals. All geometry optimizations were performed
under appropriate symmetry constraints using gradients of the total energy.

Spin unrestricted molecular and atomic calculations were carried out for open-shell
systems. In these cases the natural (spatial) symmetry of the electronic wave functions
was allowed to break; for atoms this approach implies a non-spherical electron density

distribution and results in a lower total energy.

4.2 Results and Discussion

4.2.1 Small Molecules

The quality of various exchange-correlation approximations as well as general trends and
relations between different zc functionals can to some extent be illustrated by a statistical
analysis of experimental and calculated results. For this purpose the same evaluation set of
19 small molecules (see Table 4.1) was used as in previous studies of PBE-type functionals
[23, 24]. It comprises molecules which contain hydrogen atoms and atoms from the second
row of the periodic table as well as P and Cl of the third row. Although this test set is
not particularly large it provides sufficient data to draw some useful general conclusions
on trends. We expect that the observed trends to be discussed in the following will hold
up for other test sets albeit the average deviations among the various sets of results will
change, of course.

We begin by discussing the calculated atomization energies. In Table 4.1 these results
are displayed together with the corresponding experimental values. To analyze these data,
we show in Table 4.2 the average deviations (AD) and the absolute average deviations
(AAD) between these calculated data sets and experiment as well as among the data sets
of various zc¢ functionals. According to the AAD values relative to experiment (column 1,
Table 4.2), the various zc¢ functionals can be grouped into three set of roughly equivalent
accuracy. In increasing order of accuracy these groups are LDAs (PWL, VWN) with AAD
values of more than 30 kcal/mol, conventional GGAs (BP, PW91, PBE) with about 8
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Table 4.1: Atomization energies (in kcal/mol) calculated with different exchange-
correlation functionals.”

Molecule PWL VWN BP PW91 PBE revPBE RPBE exp.’

HF 162.0 162.1 1443 142.7 142.1 138.2  137.6 140.8
CcO 299.2  299.0 264.6 269.1 269.1 259.6  258.2 259.3
LiF 156.3 156.3 138.9 140.6 138.9 133.6  133.3 138.9
LiH 60.8  60.9 584 54.5  53.5 53.1 53.4 578
Ny 2679 2675 2384 243.2 2439 2344 2334 228.6
Fy 781 781 51.2 53.6  53.2 46.4 454 38.5
H,0O 266.4 266.5 238.6 2354 2344 2278 2269 232.2
CHy 462.1 462.4 4289 4215 420.2 4119  411.0 419.3
OH 124.1 1242 1121 110.5 110.0 106.9  106.5 106.4
CoHy 459.9 459.9 414.5 415.6 415.0 402.1  400.5 405.4
P, 144.1 1443 1195 1223 121.6 115.6  114.7 117.3
CoHy 632.4 6325 576.9 573.3 572.0 556.8  555.1 562.6
H, 113.0 113.1 111.7 105.2 104.6 1055  105.5 109.2
Cly 84.3 842 64.0 66.9 66.8 61.4 60.7  58.0
NH; 3373 3374 3084 303.1 302.2 294.5 293.7 2974
Liy 23.8 236 20.2 21.0 199 19.1 202 244
HCN 360.9 360.6 323.5 3264 326.4 315.1 3139 3119
NO 199.6 199.3 168.2 1724 1729 163.8  162.7 152.9
0o 175.3 175.2 140.2 143.8 144.3 1353  133.9 120.5
a) Experimental geometries used throughout [189, |. See text for explanations of the

various zc¢ functionals. b) Experimental estimate corrected for the zero point vibrational
energy [24, 191, 192].
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Figure 4.1: Deviations of atomization energies from experiment for the test suite of small
molecules as calculated by various exchange-correlation functionals: PWL, BP, PBE,
RPBE, and M-GGA (see text for an explanation of the acronyms).
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Table 4.2: Cross correlation of average absolute deviations (AAD) and average deviations
(AD)* of atomization energies (in kcal/mol) between experiment and results of various
exchange-correlation functionals.

exp. PWL VWN BP DPW91 DPBE revPBE
PWL  33.0/-33.0  0/0
VWN  33.0/-32.9 0.2/0.1 0/0
BP 7.9/-74  255/255 255/255  0/0
PW91  85/-7.3 25.6/25.6 25.5/25.5 3.4/0.1  0/0
PBE 8.2/-68 26.1/26.1 26.1/26.1 3.7/0.6 0.7/0.5  0/0

revPBE  4.9/0.0  33.0/33.0 32.9/32.9 7.4/74 7.4/74 69/68  0/0
RPBE  5.0/08 33.7/33.7 33.7/33.7 82/82 82/81 7.7/7.6 0.9/0.8

a) Calculated as A = X,y — X,ow, where A is the deviation between the quantities X,
and X, referred to by the column and row designators, respectively.

kcal/mol, and the two revised PBE functionals (revPBE, RPBE) with 5 kcal/mol. For
the LDAs and conventional GGAs these facts are well known [13, , , 23]. Although
not of chemical accuracy (1-2 kcal/mol), both revised PBE functionals afford a noticeable
improvement of molecular energetics over conventional GGAs and they correct their general

tendency to a small overbinding.

From the AD (signed, in contrast to absolute) values (Table 4.2, column 1, denomi-
nator) one concludes that LDAs and conventional GGAs on average all overestimate the
atomization energies while the results of the revised PBE functionals oscillate around the
experimental values. This implies another improvement introduced by the two revised
PBE functionals, namely the resulting atomization energies seem almost unbiased — in a
statistical sense — with respect experiment. This is demonstrated by the very small AD
values, 0.0 and 0.8 kcal/mol, and becomes evident by the graphical comparison (Figure
1). In Figure 1, we also display results obtained with the meta-GGA zc functional that
has been proposed by Perdew et al. [193] in 1999. This functional goes beyond conven-
tional GGAs by incorporating also the kinetic energy density (via the gradients of the KS
orbitals). The functional has an AAD value of 3.5 kcal/mol over the present test set of

small molecules [193].

The data assembled in Table 4.2 also allow a quantification of the differences and
similarities of the various zc functional among each other. In fact, the grouping of the
various zc functionals into three subsets, as stated above, is convincingly supported by the
corresponding AAD (and AD) values. Most obvious from the AAD value of 0.2 kcal/mol
is the fact that both LDAs, PWL and VWN, indeed yield almost identical results. The
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Table 4.3: Cross correlations of average absolute deviations (AAD) and average deviations
(AD) of nearest-neighbor bond distances (in 1073 A) between experiment and results of
various exchange-correlation functionals.®

exp. PWL VWN BP PW91 PBE revPBE
PWL  11/-3  0/0
VWN  11/-3  0.2/-02  0/0
BP 13/-12  12/-9  12/-9  0/0
PW9l  11/-10 11/-7  11/-7 2/2  0/0
PBE  12/-11 11/-8 11/8 1/1 1/-1 0/0
revPBE 16/-16  15/-13  15/-13 4/-3  6/-6 5/-4  0/0
RPBE 16/-16 16/-13 16/-14 4/-4 7/-6 6/-5  1/-1

a) Layout as in Table 4.2.

conventional GGAs also exhibit rather small AADs among each other, e.g. PW91 and PBE
with AAD = 0.7 kcal/mol. Yet, one also notes certain differences among them. Different
construction principles underlying BP and PBE (and PW91) result in noticeable point-
wise deviations which are reflected in the AAD values of 3.4-3-7 kcal/mol. Furthermore,
binding energies calculated with PW91 are slightly larger than those of PBE, as shown by
the PBE AD value of 0.5 kcal/mol (Table 4.2). Finally, and most important for the goal of
the present study, both revised PBE functionals, revPBE and RPBE, furnish very similar
molecular binding energies, with an average absolute deviation of only 0.9 kcal/mol; the
RPBE AD value of 0.8 kcal/mol shows that atomization energies calculated with revPBE

are on average somewhat smaller (see also Fig. 4.1).

The main improvement of revised PBE functionals over conventional GGAs seems to
be more accurate molecular binding energies. Nevertheless it is interesting to also compare
the geometries calculated with the various zc¢ functionals and to subject these results to a
similar statistical analysis. For this purpose we have carried out geometry optimizations
of the same set of small molecules (see Table 4.1); the statistical analysis of these results
is summarized in Table 4.3. When comparing AAD values relative to experiment (Table
4.3, column 1), we find that the members of the three classes of zc functionals (LDAs,
GGAs, and revised PBE functionals), defined above by their increasing energy accuracy,
yield AAD values for bond distances in reverse order. As noticed before [13, , 1,
LDA structural parameters are often in better agreement with experimental data than
geometries obtained by GGA functionals. Here, they show the smallest AAD value, 0.011
A relative to experiment, while the AAD values of the conventional GGAs are slightly
larger, 0.01240.001 A. The revised PBE zc¢ functionals yield a noticeably larger value,
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AAD = 0.016 A; bond distances obtained by revised PBE functionals are on average by
about 0.006 A longer than those of GGA calculations (Table 4.3).

Compared to experiment, bond distances of all zc¢ functionals investigated here turn out
to be somewhat too long on average, as demonstrated by the negative AD values (Table
4.3, column 1, denominator). Bond distances within the three classes of zc functionals
turn out to be very similar, with relative AAD values of at most 0.002 A.

Summarizing the results for the test suite of 19 small molecules, one notes that the
two goals, accurate molecular energies and structures, apparently are to some extent in
conflict. Improvement of the energetics comes at the prize of slightly worse structural
results. However, it is fair to say that the bond elongation of GGAs and revised PBE
functionals relative to LDAs is rather moderated compared to the significant improvement

achieved for molecular bond energies.

4.2.2 Transition Metal Carbonyls

While DF methods have been extensively evaluated for molecules of main group elements,
much fewer tests are available for transition metal compounds (for a review see e.g. Ref.
[179]). The scarcity of reliable experimental data renders benchmark studies of such sys-
tems difficult. Therefore, calculations of high accuracy may significantly ameliorate this
situation.

After the overview of general features and accuracy of revised PBE zc functionals and
their relation to conventional GGAs presented above, we now turn to applications of revised
PBE functionals to transition metal carbonyl complexes. Transition metal carbonyls have
been studied extensively by a variety of quantum-chemical methods [194, , , ,

, |. As a matter of fact, the first successful application of the RPBE functional
was devoted to the adsorption of small molecules at transition metal surfaces where it was
shown to yield significantly reduced and thus improved adsorption energies [25].

In the present work we investigated structural parameters and ligand bonding energies
of the transition metal carbonyls Cr(CO)g, Fe(CO)s, and Ni(CO),. These species are all
of high symmetry: Oy, Ds;, and Ty, respectively. Removal of one CO ligand leads to
fragments of reduced symmetry. Cr(CO)s5 exhibits Cy, symmetry, Fe(CO), Cs, symmetry,
and Ni(CO)3 appears to have Dg;, symmetry.

Several xzc functionals were employed for the calculations, PWL, PBE, revPBE, and
RPBE. This choice embraces members of all three classes of zc¢ functionals as established
in the previous section: LDA, conventional GGA, and the two revised PBE functionals.
The first bond dissociation energies calculated for the three transition metal carbonyls are

summarized in Table 4.4 and compared to results of other DF calculations [198] and to
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Table 4.4: First metal carbonyl bond dissociation energy (in kcal/mol) of various transition
metal carbonyls.

CI‘(CO)G FG(CO)5a NI(CO)4

S T
VWN® 62.1 65.9 69.5 44.9
PWL 58.6 66.0 69.9  43.6
BP? 45.9 44.8 43.0 28.7
PBE 43.0 50.2 48.1 29.8

revPBE 36.9 44.2 40.4 24.6
RPBE 36.1 43.2 39.2 23.8

exp. 37+2¢ 42 — 25427
a) Results for Fe(CO), in singlet (S) and triplet (T) states. b) Ref. [196]. ¢) Ref. [200].
d) Ref. [201].
experiment [200), ]. The present results were determined as total energy differences of

structures that were optimized with the appropriate zc functional. From these data it is
obvious that the LDA functionals overestimate the metal-carbonyl bonds by about 20-25
kcal /mol, as they often do for small molecules (Table 4.2). The two conventional GGAs BP
and PBE significantly improve the first ligand dissociation energy, with errors of about 4-8
kecal/mol. Again, in accordance with the previous discussion for small molecules, the two
revised PBE functionals reduce the bond strength by about 5-6 kcal/mol with respect to
PBE and BP and bring the calculated dissociation energies in excellent agreement with ex-
periment. The revPBE functional yields first carbonyl disassociation energies of 36.9, 40.4,
and 24.6 kcal/mol for Cr(CO)g, Fe(CO)s, and Ni(CO)y, respectively; the corresponding
experimental values are 3742, 42, and 2542 kcal/mol [200, ]. The alternative revision
RPBE furnishes somewhat smaller dissociation energy, by about 1 kcal/mol, just as for

the test suite of small molecules (Table 4.2).

The fragment Fe(CO), presents a difficult case since it features states rather close to

the ground state [190, , ]. We have investigated two states, *By and *A;. The LDA
functionals fails to correctly predict the ground state which experiment suggests to be a
triplet state [203]. According to LDA, the triplet state is by about 3.6 kcal/mol higher

than the singlet. GGAs correct this and furnish a stabilization of the triplet over the
singlet state by 1.8 (BP of [199]), 2.1 (PBE) or even about 4 kcal/mol (revPBE, RPBE).
In a conventional quantum chemical treatment this difference has been estimated to 1545
keal/mol [196].

For the nickel complex, we also calculated the second, third, and forth carbonyl dissoci-
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Table 4.5: First metal carbonyl bond dissociation energy (in kcal/mol) of Ni(CO),, (n =
1-4) fragments.

Ni(CO), Ni(CO); Ni(CO);  Ni(CO)  average

PWL 43.6 52.0 29.6 78.2 58.3

PBE 29.8 39.1 48.2 55.7 43.2

revPBE 24.6 34.2 43.3 49.1 37.8

RPBE 23.8 33.4 42.7 48.2 37.0

CCSD* 23.2 29.8 39.0 19.2 27.8

CCSD(T)“ 29.8 34.6 42.6 34.5 35.4

B3LYP® 20.6 29.0 40.7 31.6 30.4

exp. A° 25+2 13£10 54415 29£15 303

exp. B 254-2¢ 29427 51444 3543¢ 357

exp. C 25+2¢  28.3£2.39 47.1£5.89 40.51+5.89 35.2

exp. D" 35.3£0.6
a) Coupled clusters results of Ref. [201]. b) Ref. [205]. ¢) Ref. [201]. d) Ref. [206] of Ref.
[204]. e) Derived from the other results of this row; see Ref. [201]. f) Ref. [200]. g) Ref.
[207]. h) Ref. [208].

ation energies (Table 4.5). Experimentally, these energies seem difficult to determine; they
vary noticeably from one experiment to another. Data set B (Table 4.5) originates from
four different sources [201, , , ]. Data set C, although incomplete, is likely to be
most reliable [207]. While increasingly more energy is required to remove the first three
ligands, the dissociation energy of the last carbonyl ligand, Ni(CO)—Ni+CO, is found
drop by about 7-16 kcal /mol relative to the previous ligand (data sets B and C, Table 4.5).
This difference can be rationalized if one considers the formation of the Ni-CO bond of the
monocarbonyl as a combination of two steps: excitation of a free Ni atom to the bonding
state d'? and successive ligand association [209]. For the second carbonyl the first step is

not necessary and thus a stronger (second) Ni-CO bond results.

CCSD(T) results [208] reproduce the first three dissociation energies (DE) quite well;
the deviation from experiment is about 4-8 kcal/mol (Table 4.5). The average dissociation
energy is also well reproduced. B3LYP results [205] are of comparable quality although
there is a noticeable tendency to underestimate the ligand binding energies as illustrated
by the low value of the average binding energy (Table 4.5). All “pure” DF zc¢ functionals
fail to reproduce the drop-off of the last carbonyl dissociation energy (Table 4.5). The
LDA values are much too large, but PBE values are significantly smaller, the first three
DEs by about 12-14 kcal/mol and the forth DE by about 23 kcal/mol. Revised PBE

functionals reduce the PBE dissociation energies even further, by a rather uniform amount



116 CHAPTER 4. DFT STUDY OF MOLECULES AND METAL CARBONYLS

Table 4.6: Structural parameters (distances in A, angles in degree) of Cr(CO)g® and
Cr(CO)s.0

Cr(CO)s Cr(CO);

MC CO  MGC, MG, €O, COp CuMCy,
HFe 1.968 1982 1.136 L1137 919
MP2° 1759 1.880 1.213 1.186  87.7

PWL 1.870 1.143 1.803 1.871 1.151 1.146 90.1
VWN?  1.866 1.145
BP¢ 1.910 1.153
PBE 1.909 1.152 1.842 1910 1.159 1.154 90.8
revPBE 1.921 1.155 1.853  1.922 1.162 1.157 91.0
RPBE  1.925 1.156 1.857 1.925 1.163 1.158 91.0
exp.© 1.918 1.141

a) Calculated in Oy symmetry. b) Calculated in Cy, symmetry with angles MCO fixed to
180°. The subscripts 'ax’ and 'bs’ indicate ligand atoms on the main axis and in the basal
plane of the square pyramid, respectively. ¢) Hartree-Fock and many-body perturbation

theory 2nd order; Ref. [197]. d) Ref. [199]. e) Ref. [210].

of about 5-7 kcal/mol. It is interesting to note that these revised PBE values of the
second and third DEs agree very well with the corresponding CCSD(T) results (Table
4.5). Tt seems that the dissociation energy of Ni(CO) is particularly difficult to determine
by a DF method [179] since it involves an open-shell atom with two nearly degenerate
configurations d®s? and d?s! as well as a configuration change of the transition metal (to d'°)
as a consequence of the bond formation (see above). Most likely the shortcomings of the DF
functionals which impact the dissociation energy of Ni(CO) are due to the representation
of the exchange energy, since the BSLYP method (which features a contribution of “exact”
single-determinant exchange [179]) yields a drop-off of about 9 kcal/mol compared to the
experimental value of about 7 kcal/mol. We refrain from further discussing these aspects
in the context of the present benchmark study of revised PBE functionals; more theoretical

and experimental investigations of the nickel carbonyl fragments are desirable.

Finally, we briefly describe the optimized geometries of the transition metal carbonyl
complexes. The structures of saturated metal carbonyls and of the corresponding dis-
sociation fragments were determined by imposing appropriate symmetry constraints. In
addition, all angles M-C-O were fixed to 180°. This additional constraint may to some
extent affect the structures of the fragments Cr(CO)s (Cy,) and Fe(CO)y (Cyp). Elimi-
nation of this degree of freedom will increase the total energy of these species and thus

presumably implies a small increase of the ligand binding energy of the corresponding sat-
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Table 4.7: Structural parameters (distances in A) of Fe(CO)5.%

M-C,, M-C,, C-O, C-O
PWL 1777 1772 1142 1.145
LDA® 1769 1.789 1.145 1.149
PBE 1814 1.808 1150 1.154
BP? 1819  1.816 1153 L.157
revPBE  1.825 1819 1153 1157
RPBE  1.828 1.822 1154 1.158
exp.t  1.807 1.827 1152 1.152

a) Calculated in D3j, symmetry with angles MCO fixed to 180°. The subscripts "ax’ and ’eq’
indicate ligand atoms on the main axis and in equatorial plane of the trigonal bipyramid,
respectively. b) Ref. [199]. ¢) See Ref. [211].

Table 4.8: Structural parameters (distances in A, angles in degree) of Fe(CO), in the triplet
and singlet state.”

State M-Cop, M-C.q C-On C-Op CowMCh CegMCo,

PWL 5B, 1.804 1.763 1.145 1.146 151.6 97.0
LDA? 1.800 1.756  1.147 1.148 154.6 95.0
BP? 1.859 1.820 1.156 1.160 147.4 99.4
PBE 1.846 1.813 1.153 1.154 149.3 98.1
revPBE 1.859 1.827 1.155 1.156 148.7 98.3
RPBE 1.864 1.832 1.156 1.157 148.4 98.4
PWL 1A, 1780 1.750 1.144 1.150 178.3 136.5
LDA? 1.775 1746 1.146 1.152 177.0 130.2
BP? 1.834 1.793 1.153 1.160 167.7 129.8
PBE 1.818 1.783 1.152 1.159 172.5 134.2
revPBE 1.829 1.793 1.155 1.162 171.0 133.5
RPBE 1.832  1.796 1.155 1.163 170.6 133.3

a) Calculated in Cy, symmetry with angles MCO fixed to 180°. The subscripts "ax’ and ’eq’
indicate atoms X of ligands which subtend the larger and smaller angle XMX, respectively,
with the metal center and their symmetry equivalent partner. The bonds C.,-M-C,, were
chosen to lie in the xz plane. b) Ref. [199].
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Table 4.9: Structural data of Ni(CO),* and Ni(CO)s® (distances in A).

Ni(CO), Ni(CO);

M-C C-O M-C C-O
PWL 1786 1.140  1.768 1.142
LDA® 1779 1.140  1.765 1.145
BP* 1.830 1.150  1.829 1.153
PBE 1.824 1.148  1.803 1.151
revPBE 1.836 1.151  1.814 1.154
RPBE 1.840 1.152  1.817 1.155
exp?  1.838 1.141

a) Calculated in T, symmetry. b) Calculated in Cs, symmetry; the resulting structure
exhibits essentially Dsj, symmetry. ¢) Ref. [199]. d) Ref. [212].

urated species. The species Ni(CO)3 was calculated in Csz, symmetry, but was found to
adopt a planar structure and thus features an effective Dgj, symmetry. Characteristic bond
distances and angles of the optimized structures as obtained for various zc¢ functionals are
collected in Tables 4.6 to 4.9 together with available experimental data [210, , .
As in previous calculations [130, , | metal-carbon distances at the LDA level are
found too short compared to experiment, but in good agreement at the GGA level. The
metal-carbon bond distances determined with GGA zc functionals increase in the order
PBE < revPBE < RPBE, with overall changes of up to about 0.02 A. On the other hand,
the C-O bond distances are in general best described at the LDA level (just as for the other
small molecules discussed in the previous section). The only exception is Fe(CO)s where
the GGA values of the C-O distance are closer to the experiment than the LDA values.

4.3 Conclusions

We have examined two recently developed revisions of the PBE exchange-correlation func-
tional, revPBE and RPBE, for molecular calculations. For a set of small molecules these
two functionals were compared with widely used conventional functionals such as BP,
PWO91, and PBE as well as with two LDA functionals. In general, both revised PBE func-
tionals yield improved molecular atomization energies; average absolute deviations from
experiment of both functionals are about 5 kcal/mol. The values of the RPBE functional
are on average about 1 kcal/mol smaller than those obtained with the revPBE functional.
Application of the revised PBE functionals to the metal carbonyls Cr(CO)g, Fe(CO)s, and

Ni(CO), corroborates their superiority over other conventional GGA. With errors of about
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2 kecal/mol, revised PBE functionals furnish first ligand dissociation energies in excellent
agreement with experiment. Overall, revised PBE functionals result in somewhat longer,
less strong bonds than those calculated with conventional GGAs (BP, PW91, PBE). Bond
distances are on average about 0.006 A longer than those obtained with the parent PBE
functional. Both revised PBE functionals represent a good compromise between accurate
binding energies and bond distances. As their results are very similar, the RPBE functional
may be chosen if one wants to employ a functional that also obeys the local Lieb-Oxford
bound.

The present work supports the statement of Perdew et al. [23] that consistent, system-
atic improvement of zc functionals is possible. Revised PBE functionals provide so far
the best energetics of all exchange-correlation functionals that depend locally only on the
electron density and the density gradient.

Of course, one should keep in mind that all these statements about trends are based on
a statistical analysis of results of a rather small set of molecules with atoms of the first to
third rows of the periodic table. Clearly, broadening of the data base to include more and
a larger variety of systems (e.g. to include transition metal compound as well as energy

barriers) is highly desirable.
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Chapter 5
Summary

The presented work was devoted to extending and optimizing the relativistic options of the
parallel quantum chemical density functional program PARAGAUSS. Three major tasks of
different complexity and problem background were addressed in the course of the work.
However, they serve a common goal, namely they are intended to improve the quality and
the efficiency of simulations of molecular systems in the framework of Density-Functional
Theory (DFT) with a strong emphasis on those systems, where relativistic effects are

important. These tasks, addressed in chronological sequence, were:

e Integration of the Perdew—Burke-Ernzerhof (PBE) exchange-correlation (zc¢) func-
tional family into PARAGAUSS and investigation of the quality of the novel, and
ultimately improved approximation for small molecular systems and the bonding of

ligands to transition metals.

e Derivation and implementation of a variational formalism to “screen” the nuclear
potential by the Hartree potential in the relativistic framework based on the Douglas—
Kroll-Hess (DKH) approach. A procedure to generate four-spinor bases optimal for

91

representing operators invariant to “charge conjugation”" was developed specifically

for subjecting the Hartree potential to a relativistic transformation.

e Analysis and optimization of the way orbitals and spinors are symmetrized in a
spin-orbit calculation to fully exploit the symmetry properties of spin-free operators.
For this purpose, a new formalism to generate symmetrized spinors that uses point
group symmetry and the corresponding double group symmetry was developed and

implemented.

ncluding but not limited to operators of the type V(r)dags , i.e. diagonal in all four spinor components,
a and 3, and independent of them. In general, “charge conjugation” is equivalent to the permutation of
large and small components.

121
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The family of the PBE zc¢ functionals includes the exchange and correlation functionals
due to Perdew, Burke, and Ernzerhof [23], and the two alternative exchange functionals,
one due to Zhang and Wang [24], and another one due to Hammer, Hansen, and Ngrskov
[25]. All of them are gradient corrections to the corresponding local density approximation
(LDA). The correlation functional is based on the LDA parametrization of Perdew and
Wang [187], an alternative to the well known Vosko-Wilk—Nusair parametrization [131].
Thus, the former also needed to be incorporated into the program. At the time all these
approximations emerged, there was some discussion about which functional matches more
rigorously the restrictions on the asymptotic behavior of the exact functional and which
one has a better performance in practical applications [23, 24, , 25]. The present work
contributed to this discussion by comparing the performance of these functionals to each
other and to the several conventional ones in prediction of structure and energetics of
transition metal carbonyls and a set of the small molecules [22]. It was shown that the
performance of the PBE functionals family is often better then that of the de-facto stan-
dard Becke—Perdew functional; subtle differences within the family of gradient corrected
functionals were systematically investigated and documented. Adding these functionals to
the codebase significantly increased the flexibility of the code with respect to the choice of

zc functionals.

To treat relativistic systems, the program PARAGAUSS implements the DKH scalar
relativistic Hamiltonian and four flavors of spin-orbit (SO) Hamiltonian: with an untrans-
formed Hartree term and with three variants of a relativistically transformed Hartree term
of different accuracy. In its simplest form (DKnuc), the DKH approach completely neglects
relativistic effects due to the electron-electron interaction. The present work released this
limitation for the first time by introducing a relativistic expression for the Hartree energy.
This was done in a way that is consistent with the DKH philosophy [27]. The formalism
is variationally consistent; this ensures that the potential can be obtained from the en-
ergy expression by variation. In a simplified formulation this approach accounts for the
relativistic effects on the Coulomb (Hartree) “screening” by the electron density repulsion
field. The approach was adjusted to the special procedure in which the Hartree term is
treated in the program PARAGAUSS: the fitting procedure where the electron density is
represented as a linear combination of auxiliary basis functions. Three approximations
of the method were implemented: first-order DKH transformation of the Hartree terms
(DKeel), and two variants of the second-order DKH transformation, DKee2 and DKee3.
In addition, the code was adjusted for use on parallel machines. The applicability and
the quality of the novel approaches were evaluated for the level structure of heavy atoms
(here Hg), for structural, vibrational, and energetic properties of diatomic molecules (PbO,
Pby, Biy, and TIH), as well as for g-tensor shifts (NOs). It was demonstrated that the
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new approaches improve the level structure of atoms to yield very good agreement with
fully relativistic (four-component) Dirac-Kohn—Sham results; also, g-tensor values were
predicted in significantly better agreement with experiment. Some molecular properties,
like the geometry and vibrational frequencies are hardly affected by the DKee models when
compared to DKnuc results. The atomization energy may, however, change substantially,
e.g. by several tenths of an eV. The DKee methods in the current implementation were
found to be more sensitive to the quality of the orbital basis set than “standard” DKnuc
or non-relativistic models, requiring very flexible basis sets. It was also demonstrated that
the two second-order models DKee2 and DKee3 are essentially identical in practical ap-
plications. For most purposes, excluding calculations of the total energy and atomization
energies, the first-order transformation DKeel is sufficient and gives essentially the same

results as the second-order variants DKee2 and DKee3.

In general, methods that include the SO interaction are substantially more expen-
sive than the analogous non-relativistic or scalar-relativistic calculations. To exploit the
symmetry of the SO operator, one has to deal with spinor wavefunctions, double groups,
and double-valued representations instead of orbitals, the pertinent point groups and their
single-valued representations. On the other hand, only a few operators in an SO calculation
really contain the inherent spin-coupling terms, e.g. the operator [pV x p|s in the DKH
Hamiltonian or {(r)ls in the Pauli Hamiltonian. During this work, a general framework
for exploiting the symmetry of spin-free operators in any SO calculation was developed.
For this purpose, the symmetry part of the program was extended to provide the option
of “coherent” symmetry adaption of orbitals and spinors. In such a procedure, the basis
spinors are simultaneous eigenfunctions of projective class operators of the double group
and of vector class operators of the corresponding point group. The eigenvalues of projec-
tive and vector class operators label the symmetry type of any basis spinor. On the other
hand, any SO Hamiltonian commutes with projective class operators and any spin-free
operator commutes with class operators of both types; these commutation properties allow
operators to have common eigenvectors with all implications for selection rules. Thus, the
projective and vector symmetry labels as “good quantum numbers” of a basis chosen ac-
cordingly provide the symmetry selection rules for the spin-free operators to be exploited
in parallel to the selection rules for the general spin-coupling ones. The matrix represen-
tation of a spin-free operator in a spinor basis constructed according to this procedure is
block-diagonal with respect to point group irreducible representations and these blocks are
equivalent to the (real-valued) representation in the orbital basis; this makes transitions

from orbital to spinor representations and back a trivial matter.

This symmetry framework was applied to build up the matrix representation of the

exchange-correlation potential. The latter is constructed by numerical integration over
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a grid of points, which is a very time consuming step, much more time consuming in
spinor bases than in orbital bases. The newly developed construction procedure of the
spinor representation of the exchange-correlation potential via the intermediate orbital
representation, on the other hand, is no more expensive than a construction in the orbital
representation itself. Thus, the most time consuming step of an SO calculation was made to
perform as efficient as that of a non-relativistic one, which not only removed the bottleneck
of the integration of zc potential, but made it, in fact, negligible in comparison to the costs
of other tasks, e.g. the evaluation of the density.

In summary, this work contributed (i) a novel method to treat the relativistic Hartree
terms in a DKH calculation and its implementation in a parallel program, (ii) an efficient
symmetry treatment for spin-free operators in any SO calculation and an implementation
for the integration of the zc potential which removed the most severe bottleneck of SO
calculations, and (iii) an implementation of the PBE family of exchange-correlation func-
tionals. Altogether, these contributions added much flexibility, performance and rigor to
the program PARAGAUSS.

Due to the quality of the results demonstrated in this work, in combination with the
considerably increased computational efficiency, new fields of quantum-chemical studies
are now accessible, which before had not been addressed due to methodological as well
as computational limitations. Examples are the study of the chemistry of lower oxidation
states of the actinides, the effects of SO interaction on the magnetism of transition metal

clusters, or more accurate predictions of EPR parameters.



Appendix A

An Interface to Matrix Arithmetics

A set of modules has been added to the source of PARAGAUSS to deal efficiently and
transparently with matrix arithmetics. The primary focus was the DKH SO implementa-
tion; however, other applications are possible.! The package defines several matrix types
and operations associated with them. Currently matrix types include general complex ma-
trix, real matrix, and real diagonal matrix. Operations defined for these types of matrices
are usual arithmetic operations: multiplication by a scalar, addition and multiplication
of matrices. Interfaces to the LAPACK subroutine for the eigenvalue problem and to the
MPI packing/unpacking subroutines are also available. The main idea was to create an
interface to the efficient BLAS (LAPACK) kernels which is easily read by programmers.
There is definitely no need to argue that the efficiency of the code is important. However,
for a project with more than 10° lines of code, maintainability of the code is at least as
important. The latter depends much on the ease of reading and understanding of the code.

There are also other advantages of an interface between performance optimized libraries
and the main code. With the new concept of (multi-dimensional) zero-sized arrays, the
bodies of wrapper routines are the best place to catch different kinds of exceptions. For
some purposes it may be useful to “extend” the definition of a matrix multiplication to zero-
sized matrices. Examples of such more “physical” rather than mathematical definitions

are

A(0x K)* B(K x N) =C(0 x N) (A.1)
A(M x K)* B(K x 0) =C(M x 0) (A.2)
A(M x 0) % B(0 x N) = ZERO(M x N) (A.3)

where zero-sized matrices of different ranks have 0 as one of the dimensions and Z ERO (M x

'Meanwhile the package is also used by the modules which implement the calculation of g-tensor and
hyperfine coupling constants.
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N) is a M x N matrix of zeros. With help of these definitions it is possible to avoid separate
branches of the code when treating empty irrep bases while processing two coupled irreps
in the module which transforms the contributions of charge fitting functions.

In the following, we present a short description of the interface of the package:
e Supported matrix types

cmatrix general complex matrix with the following components
%n dimension of the matrix. Defined for square matrices. For rectangular ma-
trices use %n1 and %n2 instead
%1, %n2 dimensions of the matrix, always defined

hre(:,:), %im(:,:) real and imaginary parts of the complex matrix elements
rmatrix general real matrix with the following components

Jn, %nl, %n2 dimensions, see above

Jm(:,:) storage
rdmatrix A real diagonal matrix with the following components

%n dimension of the matrix.

%d(:) diagonal elements of the matrix
e (Creation and destruction of matrices

subroutine alloc(n,A1,A2,...) allocates (square) matrices; generic, imple-
mented for cmatrix :: Al, rmatrix :: A1, and rdmatrix :: A1l; accepts up

to 10 matrix arguments.

subroutine alloc(nl,n2,A) allocates a rectangular cmatrix :: A or a

rmatrix :: A.

subroutine free(A1,A2,...) deallocates memory associated with matrix A;
generic, implemented for cmatrix :: Al, rmatrix :: Al, rdmatrix :: Al;

accepts up to 10 matrix arguments.
e Arithmetic operations

assignment (=) used in the assignment statement L=R. For cmatrix :: L the ex-
pression R on the r.h.s. may be another cmatrix or an array real(:,:,2)
holding real and imaginary parts in real(:,:,1) and real(:,:,2, respectively.

For the rdmatrix :: L the expression R has to be an array real(:).
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operator(*), mult(A,B) is used to construct expressions of the type A * B. For
most combinations of typeA :: Aand typeB :: B this operator is defined intu-
itively. Arrays real(:) are treated as diagonal matrices, not as vectors. Types
typeA and typeB may be real, real(:), real(:,:,2), rdmatrix, rmatrix,
and cmatrix. An escape interface mult() to the operator(*) is provided for
cases where the built-in Fortran array multiplication rules prevent one from

using the operator notation.

operator(+), operator(-) is used to construct expressions of the type A £+ B and

—B. Extends the built-in definitions to several matrix operand types.
function tr(A) returns the transposed or the Hermitean conjugate of a matrix A.

subroutines eigs(H,e,V), geigs(H,S,e,V),... generic interfaces to the LA-

PACK subroutines for the (generalized) eigenvalue problem.

e other matrix methods for special cases of matrix multipliers, inquiries and consistency

checks, packing and unpacking.

In the following, we provide an example which uses some functionality of the package;
it represents code used in the relativistic transformations of the Hartree potential of the
fitted density:

use matrix._module

| declare arrays of matrices; LL=1,SS=2,LS=1,SL=2
type(cmatrix) :: AFA(LL:SS), ARFRA(LL:SS), F(LL:SS)
type(cmatrix) :: AR(LS:SL)

type(rdmatrix) :: Ap(LL:SS)

!

! allocate storage:

call alloc(nL,AFA(LL))

call alloc(nS,AFA(SS))

I

I do some work:

AFA(LL) = Ap(LL) * F(LL) * Ap(LL)
ARFRA(LL) = AR(LS) * (F(SS) * tr(AR(LS)))
AFA(SS) = Ap(SS) * F(SS) * Ap(SS)
ARFRA(SS) = AR(SL) * (F(LL) * tr(AR(SL)))

! free the storage:
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call free(AFA(LL),AFA(SS))

This type of code combines the readability of the operator notation for the arithmetics

and the efficiency of the computational kernel underneath.
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Group-Theoretical Information:

Generators, Canonical Subgroup

Chains, CSCO

Figure B.1: Point group generators.

Polyhedral groups Axial groups
I C5+,17 C;lv Cy, i Cn CF, o,
I G5y, Gy, Oy, D, CF, Cy,
O, Ci,,CL,i Dna S5, Coy
O 0;1: C4+z Dy, CJ, 02,1, Oh
Ty C’;l, Ca,, i C, CfF
Td C:;l’ S4+z Sgn S;rn
T C;Tla CQZ Cnh Cﬁ_, Op
D2 OQza 02:(: Cs Oy
Cy Oy
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Figure B.2: Canonical subgroup chains for polyhedral and axial groups [77]. Dashed lines
indicate subduction to real vector representations.
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Table B.1:

(CSCO) for point groups.

Complete set of commuting operators

# Group vector CSCO  projective CSCO
1 Cy E E
2 Cy Cy Cy
3.10 C,,n=23.10 Cr Cr
11 C; 0 i
12 Cs oy, oy,
13.21 Sy, n = 2..10 Sy Sor
22 D, 205, + Coy 2F
23 Ds C31 Coa
24 Dy, 20 + 44 20,
25 Ds 2C5 +Cy, 2C5 +Cy,
26 Ds 2Cs +Cy, 204
27 Dy 207 +Cy, 2C7 +Cj 4
28 Dy 205 +2C4 204
29 Dy 2Cy + C4, 2Cy +C,
30 Dy 2CH, + Ch 4 207
31 Dy, 6Cy, + 2Co, + i i
32 Dsy, Cyy +on Sy
33 Dy, ACT +Cy +i 4CF +1i
34 Dsp, ACT + Ch, + oy, 405 + S
35 Dy, ACT +Cyy +i 4CF +1
36 Doy, ACT +Cy + o, 4CFH + S
37 Dgy, 205 +2C5, +1 203 + 2i
38 Dy, 2Cy +Cy ) +on 2Cy + oy,
39 Dion 4CT + 20y, +i 4G +1i
40 Doop® 205 +2C5, +1 204 +2i
41 Dy 25, + o4, 25,
42 D3y 2i + 04, 20+ o,
43 Dyg 3Sg + 04, 355
44 D5y 2570 + 04, 2570 + 04y
45 Dy 487, + o4, 455,
46 Dry 257, + 04, 257, + 04,
47 Dgg 2516 + 04, 257
48 Dy 251% + 04, 2515 + 04y
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Table B.1: (continued)

# Group vector CSCO  projective CSCO
49 Digq 2S5 + 04, 255,
50 Co, 2Cy + 0, 2F
ol Csy o Ty
52 Ciy 2CY + o), 20
53 Cs, 20 + oy, 205 + oy,
54 o 2CF + o), 204
55 Cry 2CT + oy, 20+ + oy,
56 Csy 2C5 + 20, 20
57 Co, 20y + 0y, 204 + oy,
58 Cloo 2CT, + o), 207
59 Cio 2Cy + o1, 20,
60 Con 2C, + i 205 + i
61 Csp, Ci + 50y, Cs + 50y,
62 Cun 20 + 51 207 + 5i
63 Csn 20+ + 50y, 20T + 50y,
64 Cen 2C§ + 51 2C§ + 5i
65 Con 2CF + 5oy, 2CF + 5o,
66 Csn 204 + 5i 205 + 5i
67 Con 2C5 + 5oy, 205 + 50,
63 Cion 20T, + bi 201, + bi
69 0, Cy. cy
70 T Cs, i,
71 O 204, + i 204 +i
72 Ty Cyy +5i Cqy + 5i
73 Ty Od, Sta
74 I 20+, + Caa 205,
75 Iy 205, + Cyq + 1 205, +1

a) Dsop when required in input is internally treated as Dgj, which is equivalent to the

former for angular momentum eigenfunctions with [ < 4.
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