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FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

In this work the prospect of utilizing lookup tables in the molecular dynamics simulator md-
flexible, which is part of the AutoPas project, is investigated. First the neccessary theoretical
background on molecular dynamics simulations, lookup tables and the Lennard-Jones and
Axilrod-Teller potentials is established. Then different implementations to efficiently compute
these are discussed and investigated for their space-efficiency and performance characteristics.
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Zusammenfassung

In dieser Arbeit wird die Möglichkeit Lookup Tabellen in dem Molekulardynamik Simulator
md-flexible, welcher Teil des AutoPas Projekts ist, untersucht. Zunächst wird der nötige
theoretische Hintergrund bezüglich Molekulardynamik Simulationen, Lookup Tabellen sowie
den Lennard-Jones und Axilrod-Teller Potentialen erörtert. Dann werden verschiedene
Implementationen, um diese effizient zu berechnen, diskutiert und ihre Speicherplatz- sowie
Geschwindigkeitscharakteristika untersucht.
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Part I.

Introduction and Theoretical
Background
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1. Molecular Dynamics Simulations

”Computational simulations and thus scientific computing is the third pillar
alongside theory and experiment in todays science.” [RWK+09]

By no means are simulations able or supposed to permanently replace either theoretical
analysis nor real-world experiments, but they contribute greatly to the toolkit that is available
to those seeking to advance their scientific field of choice [BZBP13]. They have therefore
become an integral part in the scientific process of discovering, interpreting, contextualizing
and validating new knowledge.
The definition of ”simulation” can by no means be considered agreed-upon, but one can very
inclusively define it as any process or techology concerned with the prediction or recreation
of a certain scenario. [BZBP13]. Simulations of real-world processes were some of the first
tasks given to electronic computers after their invention with the american ENIAC, one of,
if not the first machine to fit the modern definition of a computer, being used to calculate
the hydrodynamics of shock waves for the development of the thermonuclear bomb, and
another, the MANIAC being used to run the first Monte-Carlo simulation [Ste13]. Since
then they have firmly established themselves in many areas, from physics and chemistry to
material science, engineering and medicine [Bor21].
Their place right inbetween experiment and theory stems from their ability to recreate
experimental results and predict the effects of assumptions made in new theories. Recreating
empirical observations in a simulation allows for a dissection of the causalities and a better
understanding of the recorded data. But they can also be used to run experiments that are
not possible or desirable in real life, from things so small they are too difficult to measure,
to astronomical processes happening on a timescale inconceivable to the human mind, or
nuclear explosions and meteorite impacts, which while interesting as an object of study
are generally considered undesirable to have occur on this planet. Another benefit over
experiments is the lack of unknown external factors, such as contaminations in reactants,
temperature fluctuations in a sample or inaccurate measurement devices. For theorists they
can assist by showing the consequences of the laws that were derived from their newest
assumptions in various scenarios. Molecular dynamics simulations are a special kind of
simulation whose subject of interest are molecules and atoms. It is obvious that the simulated
volumes must be very small, because of the extremely high particle density in most gases,
liquids or even solids. Due to the large amount of interactions between those particles in
any given timeframe, the time step must also be very small to remain accurate enough to
the time-continuous model to be meaningful. Therefore the simulated timeframe has to be
chosen very carefully for the computation to be able to finish in a reasonable amount of time.
They were pioneered in the 1950s and see extensive use in all areas were phenomena are
studied that are hard or impossible to model with continuous techniques [BZBP13, AW57].
The molecular dynamics simulations that are relevant for this work follow the laws of classical
mechanics, most importantly Newton’s second law which states that F⃗ = ma⃗, with m being
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the mass of the particle, a⃗ its acceleration and F⃗ the force acting on it. It is also assumed
that all particle positions and velocities are known exactly at all times and the speed of force
propagation is infinte, meaning forces act instantly. In theory, this makes the simulation
inherently deterministic, although in practice the inaccuracies of floating point operations
can introduce some unpredictable behavior [Ste13]. The consequence is, that the effects of
quantum mechanics are disregarded.

Modeling

Numerics

Implementation

Visualization

Validation

Embedding

Figure 1.1.: The simulation pipeline

The process of running any kind or simulation is made up of several steps, a so called
simulation pipeline (Figure 1.1).

Modeling Creating a formal, usually simplified description of a suitable excerpt
of the object of interest.

Numerics Deriving equations from the model and suitable algorithms to solve
these

Implementation Writing code on the target architecture that implements the
developed algorithms in a time- and memory-efficient manner

Visualization Processing the gathered data to allow for interpretation of the
result

Validation Searching for potential sources for errors in the model, algorithms,
implementation and interpretation by comparing the results with those from
other models, algorithms, implementations and experiments

Embedding Simulations are only meaningful in their context, for example a re-
search and development campaign, and have to be integrated in their surrounding
processes.

A downside of simulations that must be mentioned here, is that in each of the first three
steps, inaccuracies are introduced that must be accounted for and measured if possible. The
model is a simplification of the reality, therefore it will behave differently, at least in certain
scenarios. The algorithms often discretize, usually by introducting time steps instead of
treating time as a continuum, leading to inaccuracies whose magnitude is determined by the
length of the chosed step as well as the ability of the algorithm to correct for them. Lastly,
the implementation will introduce an error whenever floating point numbers are used, as they
can only provide a limited accuracy and are subject to many different unwanted side-effects.
This makes the validation step all the more important. The maximum theoretical error of
an algorithm or implementation can be calculated but the best assessment of the effect on
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1. Molecular Dynamics Simulations

the end result is often given by a comparison with other data. This paper is concerned near
exclusively with the implementation step. The model and accompanying equations have
already been provided in the form of the inter-molecular potentials discussed the Theoretical
Background chapter. As this work is a part of a research project to develop a framework for
simulations there is also no need for validation and embedding, besides the measurement of
inaccuracies caused by the new implementation and testing for its correctness. An simulation
implementation can generally be divided into certain steps, which are shown in Figure 1.2.

Figure 1.2.: General simulation program structure

Parameter Specification Set the conditions of the scenario such as initial tem-
perature, number of particles, density or specific placement, time step, etc.

Initialization Initialize the system according to the previously set conditions, for
example particle positions and velocities

Main Simulation Loop Start Gets run for each specified time step until the set
end time is reached

4



Calculate Forces Compute the forces on all particles

Update velocities From the computed forces Newton’s equations of motion are
used to find each particle’s new velocity

Update positions Combining the velocities and time step the particles’ new
positions are determined

Sample The metrics of interest are sampled. This can include particle positions,
velocities, density or total global energy, among others

Main Simulation Loop End

Finalization From the gathered samples, averages or other interesting data points
of the measured quantities are calculated and store, and any needed cleanup is
performed

[FS23]

Obviously by far the most important part to optimize is everything in the main simulation
loop, just based on the number of times it is executed ranging from thousands to millions
and beyond. Out of the four steps in the loop, the computation of the particle forces reigns
above all else in time-consumption due to the complex equations involved and the fact that
if no other optimizations are performed to reduce them, the number of calculations scales
with the square of the number of particles, or even the cube if a three-body potential is
used [FS23]. To be exact, the computational complexity scales with O(nm) with n being the
amount of total particles and m the number of particles partaking in a single interaction.
The other steps need to be performed at most once per particle which makes them not
irrelevant, but definetely less critical for the performance of the implementation as a whole.
Because of that the optimizations discussed in this work are concerned exactly with this
performance critical step.

5



2. Theoretical Background

2.1. Lookup Tables

The principle of a lookup table is as simple as it is old. If the result of an expensive to
calculate function is required often, one can decide to precompute these results and save them
in a table, where they can be looked up easily and quickly during the actual computation.
Depending on the function and context, the table can either include the result for every
possible input value, or a range of values selected according to some logic. Traditionally
popular functions where lookup tables were applied were the trigonometric functions or
logarithms, because exact computation of their values required many steps and lengthy
algorithms such as the Taylor series. The concept of using a table of precomputed values to
speed up other calculations dates back at least to ancient mathematicians of Sumer and circa
2600 BCE. Since then they have become increasingly popular throughout history [CKCFR03].
An example of such a manual lookup table for logarithms can be seen in Figure 2.1

Figure 2.1.: Historic logarithm lookup table [Qui]

Lookup tables already became a topic in computer science at the infancy of computers. In
the beginning one of the primary purposes of these machines was the calculation of such
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2.1. Lookup Tables

tables, which were previously calculated by hand. For finding tables to solutions to problems
which could not easily be represented in a single formula, simulations were employed. Very
famously in 1954 a group of researchers successfully calculated the best strategy for every
possible combination of cards in the game of blackjack by running millions of simulated
hands on an IBM 701 [IBM11].
Since then, they have become a staple of program optimization both in regular software but
also in hardware [Fog24, HLR+23, Mav15, DLR+15, SB94]. They can be used to speed up
the evaluation of a function, if it is expensive enough to compute so retrieving its value from
memory is faster than the computation. Then, by precomputing the result of the function
over a domain of inputs, expensive runtime evaluations can be replaced with cheaper table
lookups leading to significant performance gains [PF05]. The issue of lookup latency has
become more and more significant, the larger the gap between the processing speed of
chips and the access time of memory became. Therefore tremendous care must be applied
to ensure the table remains in a memory level, be it L1, L2, or L3 cache or even main
memory, where the access times are lower than the calculation time. This usually means
that compromises in other areas of the table design must be made to ensure the table size
remains small enough to fit in the desired memory location.
Most generally a lookup table can be classified according to two criteria, first being dimen-
sionality. This referres to the number of parameters required to compute a result’s table
index and is usually corresponding to the number of parameters required by the precomputed
function [PF05]. The second important property is the granularity. If the evalutated points
are spread uniformly over the function domain the granularity is defined as

Granularity =
Domain

Size
(2.1)

with Size referring to the number of table entries [Wil12]. In theory the best lookup table
would allocate 2u entries, each v bits wide, with u being the combined length of the function
parameters in bits and v the size of the output. This works for very small input and entry
sizes, but with today’s standard number representations often being 32 and 64 bit long this
naive implementation is rarely practical or efficient [Par19]. Obviously the number of entries
need to be limited somehow. A popular option is to allow for some pre- or post-computation
of the table entry. This can be useful when simple transforms of either the input operands
or the result can yield great reductions to the table size, for example through the use
of symmetry present in the function. Such optimzations are dependent on the function
itself and there are tradeoffs to be considered between computation time and lookup table
size [Par19].
For non-trivial functions this is often not possible, or just not enough to permit a 1-to-1
mapping, where for every possible inputs its exact function result is stored. Therefore
another compromise has to be struck, this time between size and accuracy. Instead of
mapping every input value to its exact function result, an intervall is chosen and only one
point per intervall is computed and stored. On lookup the intervall containing the desired
input is determined and then the result assigned to this range returned. Depending on the
specific funtion and interval size this can add a significant error.
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2. Theoretical Background

(a) Error from lookup with 7 intervals (b) Error from lookup with 14 intervals

Figure 2.2.: Error of lookuptables with different interval sizes

It is immediately obvious that the error increases with the rate of change in the intervall. A
possible optimization preserving both accuracy and table size could therefore be, to divide
the domain into multiple subranges and implement a different lookup scheme with differing
granularity for each. Notably this does make the process of determining the correct index
in the corresponding subtable more complex, offering yet another trade-off that has to be
considered and evaluated [Par19].
Another possible solution to the issue of keeping the table size relatively small while retaining
a high accurary is the use of an interpolation function. They aim to, instead of directly
storing more evaluations in the table, approximate the function output for inputs between
the stored ones. The most basic one is what was already discussed, selecting the nearest
value for every input, which is called direct access, nearest-neighbor or in this work
next neighbor interpolation [Wil12, PF05]. More complex and accurate interpolation
algorithms combine multiple entries representing function evaluations near the desired point.
A comparatively simple scheme that still provides a significantly error reduction is the
linear interpolation. Here two entries are retrieved, corresponding to the two neighbors
of the desired result and then combined to an average weighted according to their respective
distance from the point[Wil12]. This is done according to the formula

y = y1 + (x− x1) ∗
(y2 − y1)

(x2 − x1)
(2.2)

where (x1, y2) is the value of the evalutated function at x1 and (x2, y2) at x2 respectively
and x1 and x2 are points stored in the lookup table. x1 is the smaller of the two.
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2.2. Lennard-Jones Potential

Figure 2.3.: Error from lookup with linear interpolation and 4 intervals

The advantage in error-reduction is immediately obvious if Figure 2.3, where with only
5 stored points an accuracy similar to the next neighbor with 14 points can be achieve.
An additional point needs to be stored to provide a partner for interpolation in the lowest
interval. The obvious disadvantage is that a second table lookup is needed and additional
computation needs to be done after the memory access. There exist many more interpolation
algorithms requiring more table entries to be retrieved or more calculations to be performed
on the results, which can achieve even better accuracy, making for yet another trade-off to
be considered when choosing the correct lookup table implementation strategy [Par19].
Yet another optimization option would be to only store a part of the domain in a table,
and compute the excess during runtime. Usually the stored values will be those, that are
evaluated the most frequently. What those values are, can be determined either during
the implementation, if enough knowledge about the runtime scenaio exists, or determined
during runtime in which case the table would behave more like a cache rather than what is
traditionally considered a lookup table. Either implementation does however present the
need for additional conditional logic to check if the desired value is present in the table or
needs to be computed, and conditionals are expensive [Wil12]. An additional possibility,
which will play a role in the implementation of the Lennard-Jones lookup table, is for the
table to serve the values in the subdomain in which the function changes very little, keeping
the resulting error small, and calculating the values for the more critical region during
runtime.

2.2. Lennard-Jones Potential

The Lennard-Jones potential is an intermolecular pair potential that describes the interactions
between a pair of uncharged particles. It was first described by British mathematician and
professor of theoretical physics Sir John Edward Lennard-Jones in 1931. It has been relevant
in computer based modeling since the beginning of scientific computing and has remained
the most popular and most thouroughly studied intermolecular potential ever since [LSH24].
The Lennard-Jones potential is defined as
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2. Theoretical Background

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]

(2.3)

where r is the distance between the two particles ϵ is the depth of the potential well and σ
is the distance at which the potential energy between the two particles reaches 0. These are
obviously dependent on the types of interacting particles [FW23]. The term is comprised
of two simple parts, modeling a repulsive and an attractive force component as seen in
Figure 2.4. A repulsive 12-term models the Pauli repulsion of atoms which are very close
together. Its exponent 12 was chosen not based on any scientific theory, but because it fit
the empirical data. The exponent 6 in the attractive term is derived from the strength of
the van der Waals forces [FW23].

Figure 2.4.: Lennard-Jones potential and its two parts

While mathematically particles affect each other over an arbitrarily large distance, in
computing to save on processing power and increase simulation speed, one often employs a
cutoff distance, after which the force between the particles is assumed to be 0. This is possible
due to the rapid convergence towards 0 making the Lennard-Jones a so-called short-range
potential, which allows the employment of a cutoff without a significant divergence from the
fully calculated simulation.

2.3. Axilrod-Teller Potential

The Axilrod-Teller potential is most often used in combination with a pair-wise potential such
as the aforementioned Lennard-Jones potential [Att92, Sad98]. It is a three-body potential
providing a correction to the modeling of the van der Waals interactions and was introduced
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2.3. Axilrod-Teller Potential

by B. M. Axilrod and E. Teller in 1943 [AT43]. They derived it by applying third-order
Rayleigh-Schrödinger pertubation theory to a triplet of noble-gas atoms [PBJB84]. This
straightforward process gives a formula of

Eijk = Z
1 + 3 cos θi cos θj cos θk

(rijrjkrki)
3 (2.4)

to calculate the interaction energy between the particle i, j and k. rij represents the distance
between particles i and j, and θi the angle at point i between the lines i-j and i-k. Z is the
so-called the Axilrod-Teller coefficient and is the only parameter in the equation [BC21]. In
the original paper by Axilrod and Teller Z is described as a positive quantity of the order
V α3. V is the ionization energy and α is the polarizability of the interacting particles [AT43].
Obviously the three-particle interaction results in a lot more combinations resulting from
the same amount of particles than with a two-particle potential, which requires many more
calculations. Also notable is that the potential can result both in attracting, but also
repelling forces. This is due to the three cosines, which depending on the angles can result
in a negative numerator and as such a negative result as the distances and therefore the
denominator, as well as the Axilrod-Teller coefficient Z are always positive. Specifically the
term is positive (Eijk repulsive) if all three angles are < 90◦ and negative (Eijk attractive)
if one angle is > 90◦, reaching its minimum of −2 when all three particles are on a straight
line [PBJB84]. For better understanding of the term’s behavior, Figure 2.5 is provided.

Figure 2.5.: 3D graph of the Axilrod-Teller numerator with θi and θj as the axis, running
from 0◦ to 180◦. θk is determined by the sum of angles in a triangle.

From observation of the term it is obvious, that the effect of the Axilrod-Teller interaction
increases greatly, the closer the particles are to each other.
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2. Theoretical Background

2.4. AutoPas

AutoPas is an open source C++ library for particle simulations in active development
primarily at the Technical University of Munich. It specializes in simulating N-body systems
governed by short-range interactions. During the development of such a simulation the
researcher or developer must make many important decisions pertaining to the algorithms
used, data layout, parallelization strategies and other optimizations. The most favourable
combination of choices in each of these areas depends greatly on the exact scenarion being
simulated. Therefore this selection process requires extensive background knowledge and
experience. Additionally over the course of the running simulation this optimal selection
can change, opening up the possibility of great performance losses even if the initial setup
was chosen with care [GSBN22].
AutoPas seeks to provide a solution to this complex problem through a process termed
automated algorithm selection, a type of auto-tuning. During the simulation run it measures
the speed of different configurations and uses the sampled data to decide the optimal selection
for a user-specified amount of future iterations [GST+19]. There are currently four different
parameters that can be adjusted by AutoPas. The first optional optimization is the use
of Newton’s third law of motion. This states, that for every force exerted on a body i
by a body j, a reactive force, equal in magnitude and opposite in direction is exerted on
body j. In practice this amounts to a near 50% reduction in the number of calculations
needed, as every force on a particle i interacting with a particle j can be very easily and
inexpensively be transformed into the force acting on particle j during the interaction with
particle i. In some cases, for example in the simulation of Smooth Hydrodynamics, the pair-
wise potentials used are not symmetric, so the Newton3 optimization isn’t possble [GSBN22].

Figure 2.6.: AoS and SoA Container data retrieval [GST+19]

One of the most important features of any particle simulation implementation is the layout
in which the particles are stored. As seen in Figure 2.6 storing the particles in a structure of
arrays instead of an array of structure allows data to be loaded into vector registers more
easily, as they can be accessed in continuous batches, greatly increasing the throughput
when utilizing SIMD-instructions. The array of structures layout has the advantage of easier
access to single particles with all their information, which can make it faster to transfer
them between MPI ranks [GSBN22].
Because AutoPas focuses on short-range interactions, it implements a cutoff-distance after
which the force resulting from the influence of one particle on the other is considered to be
equal to 0 and therefore doesn’t need to be calculated. This is an optimizations which is
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2.4. AutoPas

crucial for simulations with a very large number of particles to be possible at all. Due to
the nature of the short-range potentials which are simulated, this does not introduce any
significant error, but allows the computational complexity of the N-body problem to be
reduced from O(N2) to O(N) because the number of other particles in the cutoff radius
is independent of the total number of atoms in the simulation scenario [GSBN22, EP10].
With some additional correction calculations this can even be done correcting Therefore
another important parameter is the data structure in which the particles are stored, which
in turn determines the method used for finding which pairs can acutally interact with each
other. Doing this efficiently is required to gain any performance from this optimization.
For this reason AutoPas implements many different particle containers, each with different
use-cases [GST+19].
The last important parameter AutoPas can dynamically adjust is the parallelization strategy.
For multithreading the popular OpenMP1 API is used. The two metrics that must be
optimized for here are minimal scheduling overhead combined with a maximized spread of
load among the available processor cores. If the exact simulation scenario is not known
beforehand, these two goals are in conflict with each other. Also, if the Newton 3 opti-
mization is enabled, race conditions can occur if a processor tries to access the second
particle but it is owned by another, which must be accounted for and can result in additional
overhead [GST+19]. All of these parameters can be adjusted by AutoPas, although the
user is left the choice of restricting the allowed options. Importantly this should only be
done if assumptions about the simulated scenario can be made, that allow for reasonable
restrictions on the algorithm choices. All of this enables domain scientists without extensive
expertise in the implementation of N-body particle simulators to write code which will
dynamilcally optimize itself to deliver faster simulation speeds than would otherwise be
possible. To implement AutoPas in their own simulator, the user has to provide two classes.
A custom particle class which contains all properties and information the simulated particle
should possess. To ensure compatability, the class must be derived from the provided
autopas::ParticleBase class. The second requirement is the pairwise force calculation
that shall be applied to each pair or triplet of particles in every iteration. The classes
implementing these are called funtors and at least one is required. They too have to be
derived from template classes provided by AutoPas, either autopas::PairwiseFunctor or
autopas::TriwiseFunctor which are themselves derived from autopas::Functor. The
functor, or functors can use any information saved in the particle class for their calculations.
If the interactions between different kinds of particles have to be modeled, a type-ID flag
can be implemented in the particle class to allow the functor to distinguish the differnent
types of particles [GSBN22]. In the functor compile-time optimizations for example the
use of SIMD-extensions implemented in the users processor such as SSE and AVX in the
x86-64 architecture, can be implemented by the user. Also possible would be the selection
of different algorithms based on some parameter during the compilation. These and similar
optimizations are referred to as static tuning, compared to the dynamic tuning which is
AutoPas’ main appeal [GST+19].
The author’s work was done in an molecular dynamics simulator called md-flexible that is
shipped as an example implementation with AutoPas. The Lennard-Jones and Axilrod-Teller
Functors implemented in the md-flexible simulator, in which the lookup tables were imple-

1https://www.openmp.org/
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2. Theoretical Background

mented, are derived from the autopas::PairwiseFunctor and autopas::TriwiseFunctor

respectively.
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Part II.

Implementation
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Figure 2.7.: Implementation Structure Diagram

All implementation work was performed in md-flexible, a programm integrating AutoPas in
a working molecular dynamics simulator to show off its features as well as serve as a guide for
new users seeking to use the library in their own work. In the repository the relevant files can
be found under AutoPas/applicationLibrary/molecularDynamics/molecularDynamicsLibrary/.
In total three important files were added and another three had important modifications
done to them to implement the lookup scheme. A new namespace ForceLookupTable was
introduced to bundle all new classes and enumerations and prevent pollution of the global
namespace. Following the general style of md-flexible functors, namely the LJFunctor and
AxilrodTellerFunctor which the lookup tables enhance, the tables are implemented as
templated classes. This has the advantage of removing unneccessary conditionals from the
retrieveValue method which could slow down execution at runtime. Because the performance
of the table lookup is absolutely critical for the performance of the entire simulator, the
extra compilation time caused by the extensive use of templates is accepted.
Besides inheriting the floatType and intType parameters from their respective functors
for compatiblility, they both expect two more parameters. The first one is intervalType,
which is currently unused. It is intended for potential future options to control the placement
of evaluation points. As both the Lennard-Jones and Axilrod-Teller potential graphs’ slopes
are significantly steeper the closer the particles are to each other and nearly flat once the
distances are great enough, it could be beneficial to place more points in the first part and
less in the second, as this would decrease the maximum error from accessing a value between
the points, while keeping the table size small, at the cost of a more complicated access
function.
The second parameter, interpolationType designates the interpolation function which
should be used when retrieving values from the table. Such a function was implemented
LJLookUpTable and will be discussed in Figure 3.2.
The two template parameter are each implemented as a custom enumeration, called
IntervalType and InterpolationType respectively, that allows a convenient overview
of the available options and prevents any need for parsing logic which would be required for
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strings, while keeping the obvious names, removing any potential for user error caused by
ambiguous names.
The tables themselves are stored in the ParticlePropertiesLibrary, which also stores
the physical properties of the different molecule types, and therefore provides all informa-
tion needed for their generation. While this requires the table to be retrieved from the
ParticlePropertiesLibrary on every lookup, due to the implementation of AutoPas the
force functors get rebuilt on every iteration, which would cause the tables to be completely
rebuilt as well. The ParticlePropertiesLibrary on the other hand does not have this
limitation, so the tables only have to be constructed once, during initialization. Technically
the floatType and intType parameters are also determined from here, but as they should
be the same everywhere in the code, this hardly makes a difference.
The LJFunctor and AxilrodTellerFunctor class templates were expanded with an addi-
tional useLUT parameter which is used in combination with a if constexpr-statement in
the calculation to make the decision about accessing the lookup table or performing the
force calculation at runtime, can be at compile time, preventing slow branches at runtime.
The inner workings of both tables are very similar. They feature constructors taking a
std::initializer_list<floatType> as an argument. This is neccessary because due
to the (potentially) many possible combinations of interval and interpolation type many
different parameters could be required, in-turn causing massive amounts of code duplication.
The downside two-fold. Firstly, not all parameters are floating point numbers, requiring
casting, and secondly the great potential for user-error due to mistakes in the ordering of
input arguments. Mitigation was attempted by thouroughly documenting the argument-
structure and most importantly ensuring that the user never has to directly interact with
the constructors. Depending on the intervalType a fill function is called by the constructor
that initializes the table with values according to the selected point distribution startegy.
The second important function visible to the outside is the retrieveValue method. This
is what is called in the force functors to access the lookup table and provides a uniform
interface independent of the choices in interval and interpolation, decoupling the lookup
table strategy from the functor implementation and improving the developer experience
for the user. Their parameters are therefore only dependent on the force functor and not
the internals of the table. Internally retrieveValue contains a number of if constexpr-
statements to determine how the desired value should be retrieved without any additional
runtime branching. From here the appropriate interpolation function is called, as only there
can it be determined which and how many elements have to be read from the lookup table.
The interpolation will then, again using if constexpr-statements, check the intervalType

and call the appropriate getIndex method to compute the location of the required entries
in the table. From there it will interpolate and return the result to the force functor.
Internally the entries are stored in a std::vector due to its flexibility in ordering the entries
as well as most importantly its superior random access speed. For filling the vector, both
classes also include a copy of their respective force functors.
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3. Lennard-Jones Lookup Table

The Lennard-Jones lookup table is a one-dimensional lookup table as the only parameter
that is unknown at runtime is the distance between the two particles whose forces need to be
computed. All other paramters neccessary for the calculation of the Lennar-Jones potential,
sigma and epsilon, as well as the cutoff distance, are provided to the table in its constructor
and stored internally. Its retrieveValue method takes as its only argument the squared
distance between the two particles. This is calculated in the LJFunctor prior to the call to
the lookup table by means of a dot product of the distance vector between the two particles
with itself. Mathematically the formula looks like (v1 − w1)2 + (v2 − w2)2 + (v3 − w3)2

with vX and wX representing the position coordinate of particle v and w respectively in
dimension X. In an effort to achieve good accuracy without an overly large table size,
different interpolation methods and other improvements were tested which will be discussed
in the following.

3.1. Next Neighbor

1 f loatType getNextNeighbor ( f loatType dr2 ) {
2 i f ( dr2 >= cuto f fSquared )
3 return l u t . at ( numberOfPoints−1) ;
4 else
5 return l u t . at ( std : : f l o o r ( dr2 / po intDi s tance ) ) ;
6 }

Listing 3.1: Simplified code for the next neighbor table lookup

The first interpolation function that is implemented is a naive next neighbor approach. Here
the input dr2 is divided by the distance between the reference points in the lookup table.
Flooring the result of this computation gives the interval in which the point is located. As
a special case, if dr2 is exactly the cutoffSquared, this computation would result in an
off-by-one error and therefore an out of bounds access. There should never be a value greater
than cutoffSquared as they should have been filtered out by the force functor, but for
safety it is left in the code.
For example, a cutoffSquared of 2, combined with a numberOfPoints value of 4 would
result in 4 distinct intervalls each with a size of 2

4 = 0.5 which is at the same time the
pointDistance between the reference points which get stored in the lookup table. If
there is now a table access with a distanceSquared between the two particles of 0.75,
the retrieveValue and from there the getNextNeighbor method is called with dr2 set
to 0.75. 0.75 is obviously not equal or greater than the cutoffSquared, so we move to
the else part of the code. 0.75

0.5 = 1.5 and ⌊1.5⌋ = 1, placing us in the second interval, as
array-indexing starts at 0. The second interval goes from 1 ∗ pointDistance = 0.5 ≤ 0.75 to
2 ∗ pointDistance = 1 > 0.75 and is therefore the correct interval. So the return value is
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3.1. Next Neighbor

the point in the lookup table which represents all values in this interval.

(a) Return values from the lookup table when
using the naive point placement graphed
against the actual Lennard-Jones poten-
tial and the absolute difference between
the two.

(b) Return values from the lookup table when
using the better point placement graphed
against the actual Lennard-Jones poten-
tial and the absolute difference between
the two.

(c) The total error summed up over 1000 measurements from
distances 0.95 to 6.25 measured on both kinds of point
placement with increasing table size

Figure 3.1.: Comparison of the naive and better point placements

As seen in Figure 3.1a selecting the point at the beginning of the interval as representative
for the whole introduces an unneccessarily big error. A simple optimization that can be
performed is to instead select the point in the middle of the diagram, as done in Figure 3.1b.
This reduces the total error as seen in Figure 3.1c. Notably, this optimization can be
implemented without any additional cost, except a slightly more complicated table fill
function. Instead of

1 void f i l lTab l eEvenSpac ing ( ) {

19



3. Lennard-Jones Lookup Table

2 for (auto i = 0 ; i<numberOfPoints ; i++) {
3 l u t . push back ( LJFunctor ( ( i +1) ∗ po intDi s tance ) ) ;
4 }
5 }

Listing 3.2: Naive point placement for filling the table with evenly spaced points

it now has to be

1 void f i l lTab l eEvenSpac ing ( ) {
2 for (auto i = 0 ; i<numberOfPoints ; i++) {
3 l u t . push back ( LJFunctor ( ( po intDi s tance /2) + ( i ∗ po intDi s tance ) ) ) ;
4 }
5 }

Listing 3.3: Improved point placement by placing reference points in the middle of their
respective intervals

but everything about the lookup logic itself stays the same.

3.2. Linear Interpolation

Figure 3.2.: Comparison of the error from next neighbor and linear interpolation over different
table sizes

As discussed in Section 2.1 a method to decrease the error caused by the lookup while keeping
the table size is the employment of a interpolation function. Therefore a linear interpolation
function was impemented in the Lennard-Jones lookup table. As can be seen in Figure 3.2
this does provide a sizable accuracy improvement over the next neighbor interpolation and
therefore allows for a smaller table. Notable is also the far more rapid decrease in the total
error which was measured exactly as in Figure 3.1c. The other important requirement for the
viability of this approach over the next neighbor is that of its performance characteristics,
which will be investigated in Section 6.1. The interpolation function is a direct translation
of the formula shown in Section 2.1. To prevent divisions by 0, which can occur if the
particle distance falls exactly onto a stored point, although unlikely due to the nature
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3.3. Optimizations

of floating-point numbers, this is checked. If such a case happens, naturally the stored
point being the exact value is returned. If a distance short of the lowest stored distance
is requested, the lowest stored point is returned, as there is no partner which would be
required for the interpolation.

3.3. Optimizations

Figure 3.3.: Evaluation of the ”perfect lower” optimization

As evident in Figure 2.4 the steepest slope in the graph is encountered close to particle
distance 0. And as discussed in Section 2.1 the error caused by the use of a lookup table
increases drastically with the slope of the function it is modeled after. A potential remedy
for this was suggested in reducing the interval between stored points in steep-slope parts
of the graph. In an effort to reduce the total error greatly without having to increase the
table size, or lose out on the speedup from the use of a simpler version of this idea was tried
out. If the distance to be computed is lower than the lowest stored in the table, instead
of accepting the large error from returning this entry, the value is calculated accurately
using the regular Lennard-Jones functor and then returned. This was indeed successful in
reducing the error, both for the next neighbor interpolation as well as the linear interpolation
implementation, as can be seen in Figure 3.3. Again, the performance implications are
discussed in Section 6.1, although they should obviously be somewhere between those of the
lookup table and regular functor implementations. Even the lower bounds check conditional
was already required beforhand in the linear interpolation function, removing the only new
potential for additional latency in this implementation.
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4. Axilrod-Teller Lookup Table

4.1. Naive Implementation

Figure 4.1.: Naive Axilrod-Teller Lookup Table Implementation which stores all possible
relative particle positions

The Axilrod-Teller potential presents a much bigger challenge for efficient lookup table
implementation as not one, but nine different parameters are required for its calculation.
This being the vectors describing the relative positions of the three participating particles to
each other in three-dimensional space, making for three vectors with three dimensions each.
Each of these nine parameters has a range of −cutoff to +cutoff as this is the maximum
distance two particles can be from each other. In reality obvioulsy only certain combinations
of those nine parameters are possible, as the particles can only be cutoff -distance apart from
one another in total, so an displacement vector of (cutoff, x, y) is impossible for any x, y > 0.
A naive approach to this would be to place points evenly spaced in the cubical volume
defined by the corners (−cutoff,−cutoff,−cutoff) and (+cutoff,+cutoff,+cutoff) and
store the return value of the Axilrod-Teller potential for each of those configurations. This
approach is illustrated in Figure 4.1. Then at runtime the three input parameters are
mapped to their three closest stored points and the stored value for these three points is
returned. Other interpolation functions than this next neighbor approach would be possible,
although the three-dimensional nature of the problem space makes them far more complex
and require even more values than in the one dimension of the Lennard-Jones lookup table.
Also important is that for a trio of small enough distances, they could all be mapped to
the same point, asking the lookup table for the Axilrod-Teller potential of three particles
in exactly the same location, which is undefined. So this must also be accounted for and
prevented. The second major drawback is the space requirement of such a table. As there
are nine parameters the number of points stored in the table increases with O(n9) with n
being the number of stored points for each dimension.
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4.1. Naive Implementation

4.1.1. Optimization to Exponent of 6

(a) (b)

Figure 4.2.: Optimized Axilrod-Teller Lookup Table Implementation which stores all possible
relative particle positions where one particle is at the origin

A possible optimization for this problem is to map the first vector to the origin by subtracting
its three components from their counterparts in the other two vectors. The effect of this
idea is illustrated in Figure 4.2a. This removes all duplicate triangles and can be considered
a requirement to make this approach at all usable in a real simulation. The massive effect of
this optimization on the space-requirements of the table with increasing number of points
can be seen in Figure 4.2b, although the difference is so stark that the line for the optimized
table can barely be made out at the bottom, while that of the naive approach is already
exiting the view after 5 points per dimension. There are however still duplicates being
stored, in the form of triangles of the same shape, but differing rotation. An algorithm to
remove those as well will be investigated in the next chapter.
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4. Axilrod-Teller Lookup Table

4.2. Rotating Triangles

Figure 4.3.: Size growth of lookup table storing particles according to Figure 4.2a vs only
the triangles

In theory, the lengths and relative directions of the force vectors are only dependent on the
shape and size of the triangle defined by the displacements between the three particles. The
only difference from there on is the rotation of this triangle in three dimensional space. The
size and shape are also only determined by the three sidelengths. Therefore it is possible
to implement a lookup table with only three parameters. This can again lead to large
space-savings, as the table size now scales with O(n3) with n being the number of different
sidelengths that shall be stored. This improves the table’s growth rate and therefore the
maximum resolution which can be used before higher-latency caches or even the main
memory must be utilized for storage as seen in Figure 4.3. The major disadvantage of this
implementation are the expensive operations required to find the rotation required to match
the stored triangle to that made of the input particles and perform the rotation. This has
major implications as discussed in Section 6.2.
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4.2. Rotating Triangles

4.2.1. Optimizations

Figure 4.4.: Comparison of space saving measures in the triangle implementation

With this approach however, there is still potential for improvement in space on two fronts.
First of all there are still duplicates stored, for example the triangles with sidelengths
(1, 2, 3) and (3, 1, 2) are just rotated versions of the same triangle. Also the triangle defined
by (3, 2, 1) is the same shape, but the order of sides has been changed. Secondly some
combinations of sidelengths don’t make up a triangle, which can easily be checked using the
triangle inequality i + j >= k. The question is which of these causes more wasted space. As
can easily be seen in Figure 4.4 it is the amount of duplicated triangles. Therefore these were
eliminated in this implementation by ensuring that the sidelengths of the stored triangles
fulfill the inequality i >= j >= k.

25



5. Related Work

A very similar task as is this work was completed and implemented by [Str23]. They used a
similar, lookup table based approach for the calculation of a combination of not only the
Axilrod-Teller but also other contributing inter-particle potentials. Similarly to the rotating
triangles optimization discussed here, the table consisted of triangles of different shapes and
sizes which were then stored. What is very notable is that they, instead of generating the
configurations by their three sidelengths, used two sidelengths and the encompassed angle.
Their goal was to prevent storing any sidelength combinations which do not make up a
viable triangle. As discussed in Section 4.2 this does happen in this work’s implementation
and causes a decent amount of wasted memory space. They however undertook no steps to
exclude duplicate triangle configurations which as discussed in Section 4.2 is the far more
important space-saving optimization. It does however make for a simpler lookup function
as the complicated index calculation is not needed anymore. Instead however, the angle
needs to be computed. Additionally they used a cubic interpolation function, which could
have allowed them to compensate for the smaller table. Their paper does not include any
information about the accuracy nor speed of their lookup table implementation, preventing
any more detailed comparisons.
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6. Benchmarks

6.1. Lennard-Jones

All measurements were performed on a Lenovo ThinkPad X1 Yoga G6 featuring an Intel
i7 1165G7 processor and 32GB of memory. Available are 48kiB of L1d and 1.25MiB L2
cache per core as well as 12MiB of shared L3 cache. Installed on the system is Linux
version 6.7.9-arch1-1 x86 64 and gcc version 13.2.1. For the Lennard-Jones benchmarks the
simulation scenario found in AutoPas/examples/md-flexible/input/fallingDrop.yaml

running for 2000 iterations was used and for the Axilrod-Teller benchmarks the scenario
AutoPas/examples/md-flexible/input/3BodyTest.yaml running for 500 iterations.

Figure 6.1.: Comparison of simulation time for different Lennard-Jones next neighbor table
sizes

Immediately obvious and against expectations in Figure 6.1 is the observation that table
size has a lot smaller effect on the performance that what raw latency numbers may lead
one to believe. The measurements were made with tables exceeding not only L1 or L2,
but even L3 cache and only when the size reached 4MB, overflowing into L3 cache could
performance degradation be measured. But even with parts of the table in main memory was
the performance far from desastrous. This might be because the most used table entries are
kept in faster cache and there are very few misses, although more investigation is required.
It is also notable that even though the Lennard-Jones potential is rather cheap to compute
the table implementation matched it in performance.

27



6. Benchmarks

Figure 6.2.: Comparison of simulation time between next neighbor and linear interpolation

Introducing linear interpolation carries a notable performance penalty as seen in Figure 6.2.
Obviously the second table lookup introduces additional latency, although it is located on
a neighboring cache line, meaning that it most likely is not as heavy as a random lookup.
Secondly the calculation itself seems to cause a measurable slow down.

Figure 6.3.: Performance when introducing the ”perfect lower” optimization

For this benchmark the table size was greatly decreased to ensure the lowest interval, which
is what has been changed, is hit more often. This had the effect of greatly increasing the
performance overall as seen in Figure 6.3, for all implementations, even beyond the regular
Lennard-Jones functor. This happens most likely because of compiler optimizations in the
table access and extremely good cache locality. This could also explain why introducing this
change to the next neighbor version has decreased its speed as the calculation can profit
less from these benefits. Extremely interesting is however, that the linear interpolation
implementation not only caught up to the other two, but significantly exceeded their
performance. While this could very well be due to the sensitivity of the performance of
the test system to heat, enough test runs were performed to mostly exclude this possibility.
Therefore the low number of intervals must have allowed the compiler to make great
improvements to the interpolation function, while the second lookup profited greatly from
the improved cache locality.
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6.2. Axilrod-Teller

6.2. Axilrod-Teller

Figure 6.4.: Comparison of simulation time for different Axilrod-Teller next neighbor table
sizes

The Axilrod-Teller functor is much more expensive to compute, making the lookup table
about twice as fast in Figure 6.4. Again we find that the size of the lookup table is much
less important for its performance than what memory latencies would lead one to believe.
But due to the extremely high rate of size growth the implementation as it stands is still
not a viable replacement for the regular functor. It is however obvious that there is a lot
of headroom for interpolation, as done by [Str23], which in combination with a system
equipped with a very large amount of memory could make this an option for some users.

Figure 6.5.: Comparison of simulation time for different Axilrod-Teller triangle table sizes

Firstly, the table size again has little impact on the performance, repeating previous
observations. This doesn’t deter from the fact that the cost of the rotation operations far
exceeds any speedup from utilizing the lookup table, preventing this from being a viable
replacement for the Axilrod-Teller functor currently implemented in AutoPas. It may
however be an option for even more expensive functors.
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7. Future Work

Because the corresponding conditionals would test information already known at the begin-
ning of runtime which doesn’t change for the entirety of the execution, they would always
evaluate to the same result. If this is recognized by the processor, the performance impact
of implementing the lookup tables as regular classes instead of templates.
Additionally the interaction of different types of particles should be implemented. Different
interpolation functions are also a possible avenue for exploration and finally an integration
into AutoPas’ auto-tuning would finalize the process after all other work is completed.
Before this can happen, much more investigation into the performance charasteristics of the
different implementations has to be done.
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Part III.

Conclusions
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The implementation of different lookup table designs has yielded many interesting insights.
While for the Lennard-Jones functor the tables could be considered a viable alternative,
if the accuracy can be improved enough for the desired application, the Axilrod-Teller
functor is too complex to be replaced by any of this work’s implementations. Interesting
performance characteristics were discovered, but much more investigation is yet to be done
and improvements to be made.
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Part IV.

Appendix
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As part of this work the time to start and stop a timer in AutoPas was determined to
average around 4273499891 ns, with around 2019457897 ns being measured by the timer
itself due to the time it takes to stop.
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