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Suppression of Endothelial Cell FAK Expression Reduces
Pancreatic Ductal Adenocarcinoma Metastasis after

Gemcitabine Treatment
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Despite substantial advances in the treatment of solid cancers,
resistance to therapy remains a major obstacle to prolonged pro-
gression-free survival. Pancreatic ductal adenocarcinoma (PDAC)
is one of the most aggressive cancers, with a high level of liver
metastasis. Primary PDAC is highly hypoxic, and metastases are
resistant to first-line treatment, including gemcitabine. Recent
studies have indicated that endothelial cell (EC) focal adhesion
kinase (FAK) regulates DNA-damaging therapy-induced angio-
crine factors and chemosensitivity in primary tumor models. Here,
we show that inducible loss of EC-FAK in both orthotopic and
spontaneous mouse models of PDAC is not sufficient to affect
primary tumor growth but reduces liver and lung metastasis load
and improves survival rates in gemcitabine-treated, but not untreat-
ed, mice. EC-FAK loss did not affect primary tumor angiogenesis,
tumor blood vessel leakage, or early events in metastasis, including
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the numbers of circulating tumor cells, tumor cell homing, or
metastatic seeding. Phosphoproteomics analysis showed a down-
regulation of the MAPK, RAF, and PAK signaling pathways in
gemcitabine-treated FAK-depleted ECs compared with gemcita-
bine-treated wild-type ECs. Moreover, low levels of EC-FAK cor-
related with increased survival and reduced relapse in gemcitabine-
treated patients with PDAC, supporting the clinical relevance of
these findings. Altogether, we have identified a new role of EC-FAK
in regulating PDAC metastasis upon gemcitabine treatment that
impacts outcome.

Significance: These findings establish the potential utility of
combinatorial endothelial cell FAK targeting together with gemci-
tabine in future clinical applications to control metastasis in patients
with pancreatic ductal adenocarcinoma.

Introduction

The lung and liver are common sites of metastasis for pancreatic
ductal adenocarcinoma (PDAC), the fourth leading cause of cancer-
related death, with a dire 8% five-year survival rate (1). Most patients
with PDAC are not eligible for surgical resection as they present with
advanced metastatic disease at time of diagnosis. Although treatment
with nucleoside analogues, including gemcitabine, remains a part of
the first-line chemotherapy treatment for PDAC, resistance to gemci-
tabine is still a significant limitation for treatment efficacy and con-
tributes to the associated poor prognosis (2). Thus, new therapeutic
strategies are needed.

The tumor microenvironment has been described previously to play
key roles in modulating chemotherapy resistance and subsequent
disease progression (3). Apart from their role in the development of
new blood vessels that are essential for oxygen and nutrient delivery to
the tumor, tumor endothelial cells (EC) and their angiocrine-secreted
factors constitute a vascular niche essential for initiation, growth, and
progression of cancer (4, 5). For example, primary tumor cells induce
activation of EC-Notch 1 in pre-metastatic sites, which induces over-
expression of angiocrine-senescent factors that facilitate extravasation
of malignant cells and metastasis (6). In breast and colorectal cancer,
EC-Jagged-1 not only induces a stem-like phenotype but also enhances
pro-metastatic traits (7). EC-secreted EGF has been shown to also
induce both EMT and acquisition of a stem-like phenotype in head and
neck cancer cells (8). The cross-talk between lymphoma cells and
neighboring ECs affects chemotherapy response. FGF4 produced by B-
cell lymphoma cells upregulates EC-Jagged 1 that in turn induces
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activation of Notch2-Heyl pathway in lymphoma cells. This FGF4-
Jagl-Notch2 loop enhances lymphoma aggressiveness and chemore-
sistance (9). DNA-damaging therapy induces secretion of IL-6 and
Timp-1 from ECs via NF-kB pathway in the thymus. Release of these
angiocrine factors upon DNA-damage in Burkitt’s lymphoma, pro-
duces a chemoresistant niche that induces the survival of a minimal
residue of tumor burden responsible for cancer relapse (10).

Focal adhesion kinase (FAK) is a member of the nonreceptor
protein tyrosine kinase family. FAK is ubiquitously expressed and
signals downstream of integrins and growth factor receptors in its role
as a coordinator of cell migration and proliferation (11).

Loss of FAK in tumor ECs reduces tumor angiogenesis initiation
thus affecting tumor growth (12). In addition, loss of EC-FAK
regulates tumor metastasis to the lung via the control of phosphor-
ylation of VE-cadherin (13). In this study, conditional EC-FAK kinase
dead (KD) knockin mice were used to show that loss of EC-FAK kinase
activity prevents VEGF-stimulated tumor cell extravasation and spon-
taneous metastasis without impacting primary tumor growth (13).
Most recently, tumor angiogenesis has been shown to be differentially
regulated by EC FAK tyrosine-397 and -861 phosphorylation (14)
and EC-FAK kinase activity is involved in regulating doxorubicin
sensitivity (15).

Several lines of evidence have indicated essential roles for FAK in the
production of secreted paracrine signals (16). Most relevant here, EC-
FAK regulates angiocrine-derived paracrine factors that control a
chemoprotective tumor cell niche (17). Inducible loss of EC-FAK in
established tumors does not affect tumor angiogenesis but does
sensitize malignant cells to DNA-damaging therapies. In melanoma
and Lung Lewis carcinoma subcutaneous murine models treated with
doxorubicin, a significant reduction in tumor growth was observed
upon EC-FAK depletion compared with treated EC-FAK" " mice (17),
suggesting that loss of EC-FAK expression together with doxorubicin
treatment generates a niche that sensitizes malignant cells to doxo-
rubicin. However, the role of EC-FAK in chemosensitization and
metastatic PDAC is unknown.

Here, we establish that loss of EC-FAK can reduce liver or lung
metastases in gemcitabine-treated mice without affecting PDAC pri-
mary tumor growth.

Materials and Methods

Genetic modified mouse models

All animal procedures described previously in this project were
approved by the UK Home Office and carried out according to the
ARRIVE guidelines. The inducible mouse model Pdgfb-iCre™"; Fak/™"
has been previously described and characterized (12). The Pdx1-flp;
frt—STOP—frt—KrusGlZD ar p53ﬁ ¥+ (KPF) mice (18) were bred with the
Pdgfb-iCre™ "; Fak™" mice to generate the spontaneous model PdxI-
lp; frt-STOP-frt-Kras®'*™+; p537'"; Pdgfb-iCre™ "; Fak™”". Genotyp-
ing of the mice was performed as described previously (12, 18).

8661 and TB32048 pancreatic cancer cell lines

For the 8661 cell line (gift from Prof. Dieter Saur, Technische
Universitat Miinchen, Miinchen, Germany), primary PDAC cell
cultures were isolated from autochthonous PDAC and cultured as
described previously (19). All cells used were cultivated for less than 30
passages, authenticated by genotyping, validated by a specific PCR that
detects the recombined LSL allele of KrasG12D, and tested regularly
for Mycoplasma contamination by PCR (20).

KrasLSL.G12D/"; p53R172H/*; PdxCretg/* (KPC)-derived TB32048
murine pancreatic cancer cell line (derived from C57/BL6) was obtained
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from Prof. David Tuveson (Cold Spring Harbor, Cold Spring Harbor,
NY) and treated as for the 8661 cell line.

Pancreatic orthotopic injections

A total of 1x10° 8661 or TB32048 pancreatic cancer cell lines were
injected into the pancreas of syngeneic immunocompetent Pdgfb-
iCrePRT, Fak™" mice. Briefly, mice were anesthetized by inhalation
anesthesia (2% isoflurane) and given analgesia subcutaneously. An
incision in the left flank of the skin followed by an incision in the
muscular layer using blunt-ended scissors was made to carefully reveal
the spleen and pancreas. Cells were injected into the tail of the pancreas
in 10 uL of 1:1 Matrigel and PBS, using a Hamilton syringe. After
positioning the organs back inside the body cavity, the muscular layer
and skin incision were closed with sutures and surgical staples,
respectively. Animals were monitored until complete recovery.

Intrasplenic injections

Pdgfb-iCre™™ ' +; Fak™" and Pdgfb-iCre®™ " —; Fak™" mice were
anaesthetized by inhalation anesthesia (2% isoflurane) and given
analgesia subcutaneously. An incision in the left flank of the skin
followed by an incision in the muscular layer using blunt-ended
scissors was made to carefully reveal the spleen on the surface of the
body during surgery. A total of 4x 10° 8661 pancreatic cancer cells in
30 pL of PBS were injected into the spleen using an insulin syringe.
After the injection, a cotton bud was pressed onto the injection site for
at least a minute to avoid any leakage or bleeding. The spleen was
repositioned back inside the body, the muscular layer sutured and the
skin incision closed using surgical staples. Animals were monitored to
complete recovery. For 7-day colonization experiments, a splenectomy
was performed 5 minutes after injection using a cauterizer to avoid
primary tumor formation in the spleen. For short-term experiments (2
and 48 hours after injection) the spleen was not removed.

In vivo treatment strategy

Upon orthotopic injections, mice were given a soy-free diet (Harlan)
to reduce estrogen levels and increase tamoxifen sensitivity. At day 12
after tumor cell inoculation, tumors were palpable and imaged by MRI
(Bruker ICON 1T MRI system, Bruker) to confirm tumor formation.
Mice with no tumor at this stage were discarded from the study and
mice with tumors sized between 30 and 100 mm® were treated
intraperitoneally (IP) with 100 UL of 10 mg mL™" tamoxifen (Sigma
T5648) for two consecutive days. After the last tamoxifen injection all
mice were fed a tamoxifen-containing diet (TAM400, Harlan). Mice
were then injected IP with 75 mg kg™ of gemcitabine (Gemzar), or
saline as a negative control, every other day for three days. Tumor
growth was monitored by MRI every week at experimental days 19, 23,
and 26.

For the spontaneous PdxI-flp; frt-STOP-frt-Kras®™?™'+; p53+;
Pdgﬂ)-iCreERT; Fak™ model, mice were monitored for evidence of
a palpable tumor. These mice were then imaged by MRI or Ultrasound
(Vevo 2100 system) to assess tumor size, and only mice with tumors
sized between 50 and 350 mm® were used for the experiment.
Experimental mice were given two tamoxifen injections intraperito-
neally followed by tamoxifen diet and subsequently treated or not with
gemcitabine (75 mg kg™") every other day for three days, as described
previously. All mice were monitored for disease symptoms and killed
at humane end points. For model characterization, nontumor bur-
dened animals were treated IP with tamoxifen for two consecutive
days. 48 hours after treatment tissue from pancreas, liver, kidney, heart
and lung was processed and hematoxylin and eosin (H&E)-stained for
histopathological assessment.
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For the intrasplenic model, before tumor cell injections, mice were
given two tamoxifen injections intraperitoneally followed by tamox-
ifen diet and gemcitabine treatment or not (75 mg kg™') every other
day for three days.

Tumor progression and metastasis assessment

Tumor growth over time and tumor size at day 26 was calculated by
MRI images using VivoQuant software. Final tumor volumes (FV)
were measured at end point (day 41 for untreated cohort and day 44 for
the gemcitabine-treated group) using a caliper and calculated: FV =
length x width x depth. Metastatic burden was assessed histologically
by H&E staining and metastasis size was quantified using Pannoramic
Viewer Software and viewed with 3D HISTECH software. The scanner
produced images by tiling high-resolution fields together.

Gemcitabine delivery

Pdgfb-iCre™ "; Fak™" mice were orthotopically injected with 8661
tumor cells and treated with tamoxifen and gemcitabine as described
previously in “In vivo treatment strategy.” At day 28 after injection,
mice were injected intraperitoneally with a high dose of gemcitabine
(125 mg kg™') and culled after 15 minutes. Tumors and livers were
collected and three pieces of at least 10 mg of each organ per mouse
were snap-frozen in liquid nitrogen and stored at —80°C before
analysis by LC-MS/MS by the CRUK Cambridge Institute PK/
Bioanalytics core facility. Digestion and sample preparation for LCMS
analysis as well as the bioanalytic study for Gemcitabine (dFdC), and
2'-deoxy-2',2'-difluorouridine (dFdU) detection was performed as
previously described (21).

Circulating tumor cells

Pdgfb-iCre™ "; Fak™" mice were orthotopically injected with 8661
tumor cells and treated with tamoxifen and gemcitabine as described
previously in “In vivo treatment strategy.” At day 41 after injection,
blood was removed by cardiac puncture as an end point procedure.
Plasma was discarded and the blood transferred to a 15 mL falcon tube
for red blood cell lysis. For red blood cell lysis, 9 mL of 1x Red blood
cell lysis solution was added to the blood, mixed and incubated for
10 minutes at room temperature. Samples were then centrifuged at
400 x g for 8 minutes at room temperature. The resulting pellet was
washed with PBS and used for subsequent flow cytometry analysis. The
eBioscience Foxp3 /Transcription Factor Staining Buffer Set (Thermo
Fisher Scientific; 00-5523-00) was used for the intracellular staining of
Pdx-1 (Abcam ab47383), diluted 1:100, and CD45-Pacific Blue-
conjugated antibody (BioLegend, 103125), 1:200 dilution, following
the manufacturers’ instructions. Anti-Goat Alexa Fluor 647 (Invitrogen;
1:100 dilution) was used as secondary antibody and Zombie Green
viability dye to stain dead cells (Zombie Green Fixable Viability kit,
BioLegend). For flow cytometry analysis, samples were run on the BD
LSRFortessa flow cytometer (BD Biosciences) using the BD Cell Quest
Pro software. Blood from a nontumor-bearing mouse, and 8661 tumor
cells were processed in parallel and were used as negative and positive
controls, respectively, for the gating strategy.

Homing experiment

8661 pancreatic cancer cells were labeled with GFP using Cell-
Tracker Green CMFDA (Invitrogen C7025) following the manufac-
turers’ instructions, and injected intrasplenically into Pdgfb-iCre®X";
Fak™" mice previously treated as described in “In vivo treatment
strategy.” 2 hours after injection, livers were collected and digested
for subsequent flow cytometry analysis. First, livers were minced and

incubated with collagenase P (Roche 11213865001) for 10 minutes at
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37°C and Trypsin/EDTA for 3 minutes at 37°C. Cell suspension was
filtered using a 70-um strainer and centrifuged for 5 minutes at
1,200 rpm. Cell pellets were resuspended in ACK lysis buffer (Gibco
A10492-01) and incubated for 1 minute at room temperature for red
blood cell lysis. After washing with DMEM medium, pellets were then
resuspended with FACS buffer filtered through a 70-um strainer and
stained with 3 umol/L DAPL Samples were run on the flow cytometer
BD LSRFortessa (BD Biosciences) using the BD Cell Quest Pro
software. Liver cell suspension from a noninjected animal and GFP
labeled 8661 tumor cells were used as negative and positive controls,
respectively. The percentage of GFP-positive cells in the DAPI-
negative population was calculated per liver sample.

Seeding and colonization experiment

Pdgfb-iCre™™; Fak™" mice were injected intrasplenically with 8661
tumor cells, previously treated as in “In vivo treatment strategy.”
Livers were collected at 48 hours after injection to assess seeding and
at 7 days after injection to assess colonization. Livers were fixed in 10%
formalin overnight and transferred to 70% ethanol. Tumor cell seeding
and colonization was assessed by Pdx-1 staining of liver sections.

Hoechst leakage

Pdgfb-iCre™®"; Fak/™" mice were orthotopically injected with 8661
tumor cells and treated with tamoxifen and gemcitabine as described
previously in the “In vivo treatment strategy” section. At day 28 mice
were injected via the tail vein with 100 uL of Hoechst at 4 ug mL™
(Thermo Fisher Scientific 33342; Mw 561.93 kDa) dye and culled 1
minute after injection. Frozen sections were stained with CD31
conjugated with PE (BioLegend 102498), mounted with Vectashield
Antifade Mounting Media without DAPI (Vector Laboratories) and
scanned using the Nano Hamamatsu Nano Zoomer 2.0-RS slide
scanner. Hoechst and CD31-positive area were measured by Image]
software and blood vessel leakage was calculated by the ratio between
both areas.

Immunostaining

H&E and Pdx-1 staining (Abcam 47267) was performed using the
Ventana Discovery XT (Roche Diagnostics). For endomucin (Santa
Cruz Biotechnology sc65495, 1:250 dilution) and Ki67 (Abcam 16667,
1:200 dilution) staining, paraffin sections were deparaffinized in 2
changes of xylene, 10 minutes each, then hydrated in 2 changes of
100% ethanol for 5 minutes followed by 80%, 70%, and 50% ethanol, 2
minute each before 2 minutes in distilled water. Sodium Citrate Buffer
(10 mmol/L, pH6) was heated in the microwave for 10 minutes. Slides
were then immersed in preheated Sodium Citrate Buffer for 10
minutes and cooled on the bench for 20 minutes. Slides were then
washed twice with PBS and endogenous peroxidase was blocked with
3% H,0, in methanol. Slides were washed twice with PBS and once
with PBS 0.1% Tween (PBS-T) followed by blocking with horse serum
for 1 hour at room temperature. Slides were incubated overnight with
primary antibody diluted in blocking buffer overnight at 4°C. The
slides were then washed three times with PBS-T before incubating
with the secondary anti-rat biotinylated antibody (be-9401 Vector
Laboratories, 1:200 dilution) in blocking buffer for 40 minutes at
room temperature. Slides were washed three times with PBS-T and
incubated with ABC working solution (Vectastain ABC kit PK-6200
Universal) for 30 minutes at room temperature. The reaction was
developed using DAB substrate and slides were counterstained with
hematoxylin. Slides were dehydrated then mounted with DPX mount-
ing media. Stained sections were scanned (Panoramic 250 Flash)
and visualized using the Pannoramic Viewer software. Proliferative
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index was calculated by dividing positive DAB nuclei by total
hematoxylin-stained nuclei using Visiopharm Quantitative Digital
pathology software.

For Glut-1 (Thermo Fisher Scientific, 37783), paraffin sections were
deparaffinized in 2 changes of xylene, 10 minutes each, then hydrated
in 2 changes of 100% ethanol for 5 minutes followed by 80%, 70%, and
50% ethanol, 2 minute each before 2 minutes in distilled water. Slides
were incubated at 60°C for 20 minutes and then subjected to antigen
retrieval using antigen unmasking solution, Citric Acid Base (1:100; H-
3300; Vector Laboratories) at 110°C for 6 minutes in a Decloaking
Chamber NxGen (Biocare Medical). Samples were blocked with Dual
Endogenous Enzyme-Blocking Reagent (Dako) for 10 minutes and
then incubated with primary antibodies (1:500 dilution) for 40 minutes
at room temperature, washed and then incubated with rabbit (1:200;
BA-1000; Vector Laboratories) or mouse (1:200; BA-9200; Vector
Laboratories) biotinylated secondary antibody for 30 minutes at
room temperature. Signal was then amplified using Vectastain ABC
HRP Elite kit (PK-6100; Vector Laboratories) for 20 minutes at
room temperature and the reaction was developed using VIP
substrate (SK-4600, Vector Laboratories) for 10 minutes at room
temperature. Stainings were counterstained with hematoxylin. Both
tumor and liver sections were scanned using the NanoZoomer S210
slide scanner. Staining quantification was performed using QuPath
0.1.2. The entire whole-section images were analyzed performing
positive cell detection.

For FAK/endomucin sequential staining, paraffin-fixed sections
were stained as described previously (22). Briefly, tumor tissues were
formalin-fixed paraffin-embedded (FFPE) as per standard protocols.
Sections of 4-pm thickness were heated at 60°C for 1 hour and then
incubated in xylene and ethanol series, with 2 x 5 minutes H,0,/
ethanol incubations to block endogenous peroxidase. Antigen retrieval
was performed in Antigen Unmasking Solution (H-3300, Vector
Laboratories) using a pressure cooker system (110°C for 10 minutes).
Samples were washed in Dako Wash Buffer (§3006) and endogenous
biotin was blocked by incubating for 30 minutes, with each solution
from the Avidin/Biotin Blocking Kit (SP2001, Vector Laboratories),
before primary antibody incubation (1 hour, 1:50 anti-FAK, CST
3285), diluted in Antibody Diluent Reagent Solution (003218, Invi-
trogen/Thermo Fisher Scientific). Samples were washed and incubated
with biotinylated secondary antibody, diluted in same antibody diluent
solution (goat anti-rabbit, 1:200, Vector Laboratories) for 30 minutes.
Signal was amplified using the Vectastain ABC HRP kit (PK-4000,
Vector Laboratories) for 20 minutes and the reaction was developed
using VIP peroxidase substrate solution (SK-4600, Vector Laborato-
ries) for 10 minutes. All incubations were carried out at room
temperature. Slides were counterstained with hematoxylin and
mounted using DPX mounting medium (06522-500ML, Sigma).
Slides were scanned using the NanoZoomer S210 slide scanner. The
next day, slides were processed using the same procedure, using anti-
endomucin primary antibody (40 minutes, 1:200, sc-558) and bioti-
nylated goat anti-rat secondary antibody (1:200, Vector Laboratories, 1
hour); signal amplification, mounting, and imaging was repeated as
before. Slide images were aligned using QuPath software v.0.2.0m7 and
double staining assessed qualitatively in FIJI v1.52p, using 3 fields of
view per slide at x10 magnifications that were endomucin-positive
stained, a score between 0 and 1 was assigned per field of view whereby
0 = all vessels FAK, 1 = all vessels FAK™.

For colocalization analysis, images for PDX-1 and vimentin (Cell
Signaling Technology, 1:700; 5741) markers were aligned in FIJI
v1.52p using TrackEM2 module. Next, color deconvolution was
performed using AEC-hematoxylin vectors and a composite was
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created using channel-2 (red) for each staining. The composite was
adjusted inverting the LUT for each marker and was given a pseudo-
color (Vimentin, green; PDX-1, red; nuclei, blue). Composite images
were analyzed in Qupath using cell detection tool, to quantify the
percentage of double-positive cells.

For cleaved caspase-3 (CC3) and PECAM immunofluorescence,
tumors were dissected and snap-frozen. Frozen tumor sections were
air-dried then rehydrated for 5 minutes in PBS. Sections were fixed
with ice-cold acetone for 10 minutes and washed once with PBS.
Sections were blocked for 30 minutes at room temperature with
1%BSA/PBS followed by incubation with CC3 (Cell Signaling Tech-
nology, 9664) and PECAM (Agilent Dako, clone JC70A, 76539)
overnight at 4°C (both diluted 1:100 in PBS). The following day
sections were washed 3 times with PBS then incubated with the
relevant fluorescent-conjugated antibody diluted 1:100 in 1% BSA/
PBS for 1 hour at room temperature. This was followed by three PBS
washes and one wash with water containing 1:10,000 dilution DAPI
(Molecular Probes). Sections were mounted with Prolong Gold
anti-fade solution.

Histological staining

FFPE liver tissue sections (3 um) were deparaffinized and rehy-
drated according to standard protocols. Histological staining using
H&E, Picrosirius red, periodic acid-Schiff (PAS), and Prussian blue
were conducted according to standard protocols.

Cell culture

Cell culture was carried out under sterile conditions in a tissue
culture hood and cells were grown at 37°C and 5% CO,. 8661 and
TB32048 pancreatic cancer cells were grown in DMEM (Sigma D6429)
with 10% FBS (Sigma F9665) and 1% penicillin-streptomycin (P4333
Sigma).

Western blotting

FAKYT and FAKX® primary lung ECs were isolated as described
previously (23). Protein was isolated by lysing cells in RIPA buffer
containing protease and phosphatase inhibitors (1:100 dilution,
Roche) at 4°C for 10 minutes followed by centrifugation for 10 minutes
at 4°C to pellet cell debris. For analysis of protein levels, lysates were
subjected to SDS-PAGE and transferred to nitrocellulose membranes
(Amersham Biosciences) for Western blotting. Blots were probed for
FAK (1:1,000 dilution, 3285, Cell Signaling Technology), Phospho-
PAK1/2 and PAK1 (both 1:1,000 dilution, 2601 and 2602, Cell
Signaling Technology), Phospho-f-Catenin (Ser675; 1:1,000, 4176,
Cell Signaling Technology), HSC70 (1:5,000 dilution, V7C7, Santa
Cruz Biotechnology), and tubulin (1:2,000, T5168, Sigma) for the
loading control. Densitometric readings of band intensities were
obtained using the Image] software.

Statistical analysis

All after analysis studies from the in vivo experiments were carried
out in a blinded manner. Statistical analyses were performed using
GraphPad Prism 8.0 software. Kolmogorov-Smirnov and Shapiro-
Wilk tests were used to assess normality. For paired comparisons with
normal distributed data, a Student t test was used. Nonparametric
Mann-Whitney test was used when data showed non-normal distri-
bution. Two-way ANOVA was used for multiple comparisons and x*
test for incidence analysis. Statistical significance was considered when
a P value was of <0.05.

Cumulative survival probabilities were estimated using the
Kaplan-Meier method, and differences between survival rates in
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murine models were tested for significance using the Gehan-
Breslow-Wilcoxon test.

Phosphoproteomics analysis

Protein extraction and trypsin digestion was performed as previ-
ously described (24, 25). 7.5x 10° FAKWT or FAK®® mouse lung ECs
(MLEC) grown in MLEC media (40% Ham’s F12 with Glutamax, 40%
DMEM with 1g/1 glucose, Glutamax and pyruvate, 20% FBS, 12.5 mg/L
of EC supplements, 1% penicillin/streptavidin and 2% Glutamax) plus
10 nmol/L tamoxifen, were seeded in 10-cm dishes pre-coated with
0.1% gelatin in PBS with 22.5 pg/mL collagen and 5 pig/mL fibronectin.
The day after, the media were replaced with or without 60 nmol/L
gemcitabine for both cell lines, and cells were grown in normoxia or
hypoxia (0.8% O,) for 48 hours. Briefly, cells were washed twice with
ice-cold PBS supplemented with phosphatase and protease inhibitors
(1 mmol/L Na3VO, and 1 mmol/L NaF) and lysed (either in normoxia
or hypoxia) with a denaturing buffer with phosphatase and protease
inhibitors (20 mmol/L HEPES pH 8.0, 8 mol/L urea, 1 mmol/L
Na;VO,, 1 mmol/L NaF, 2.5 mmol/L Na,P,0,, 1 mmol/L 3-glycerol-
phosphate). Cell lysates were further homogenized by sonication and
insoluble material was removed by centrifugation at 13,000 x g for
10 minutes at 4°C. Protein concentration in the supernatants was
calculated using Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific). 250 g of protein was reduced and alkylated by sequential
incubation with 10 mmol/L dithiothreitol and 16.6 mmol/L iodoace-
tamide for an hour. Urea concentration was diluted to below 2 mol/L
with 20 mmol/L HEPES (pH 8.0), trypsin beads (50% slurry of
TLCK-trypsin; Thermo Fisher Scientific; 20230) were added and
samples were incubated on a thermoshaker for 18 hours at 37°C.
Trypsin beads were removed by centrifugation at 2,000 x g for
5 minutes at 4°C. Peptide solutions were desalted using 10-mg
OASIS-HLB cartridges. Cartridges were activated with acetonitrile
(ACN; 100%) and equilibrated with washing solution (1% ACN, 0.1%
TFA). After loading the samples, washing solution was applied to
cartridges. Peptides were eluted with glycolic acid buffer (1 mol/L
glycolic acid, 50% ACN, 5% TFA).

To enrich phosphopeptides, sample volumes were normalized using
glycolic acid buffer (1 mol/L glycolic acid, 80% ACN, 5% TFA), 50 uL
of TiO, beads (50% slurry in 1% TFA; Hichrom) were added to the
peptide mixture, incubated for 5 minutes at room temperature with
agitation and centrifuged for 30 seconds at 1,500 x g. For each sample,
the supernatant was transferred to fresh tubes and stored on ice and the
pelleted TiO, was loaded into an empty PE-filtered top tip (Glygen)
prewashed with ACN and packed by centrifugation at 1,500 x g for 3
minutes. After loading the remaining volume of the supernatant by
centrifugation at 1,500 x g for 3 minutes, top tips were sequentially
washed by 3 minutes centrifugation at 1,500 x g with glycolic acid
buffer, 100 mmol/L ammonium acetate in 25% ACN and twice with
10% ACN. For phosphopeptide recovery, peptides were eluted 4 times
by 3 minutes centrifugation at 1,500 x g with 5% NH,OH. Eluents
were dried in a speed vac and peptide pellets stored at —80°C.

For LC-MS/MS analysis, phosphopeptides were reconstituted in
13 uL of reconstitution buffer (97% H,0, 3% ACN, and 0.1% TFA,
50 fmol/uL-1 enolase peptide digest) and sonicated for 2 minutes
at room temperature. Phosphopeptides were analyzed using nano flow
ultimate 3000 RSL nano instrument, coupled on-line to a Q-Exactive
plus mass spectrometer (Thermo Fisher Scientific). Gradient elution
was from 3% to 35% buffer B in 90 minutes at a flow rate 250 nL/min
with buffer A used to balance the mobile phase (buffer A was 0.1%
formic acid in water and B was 0.1% formic acid in ACN). The mass
spectrometer was controlled by Xcalibur software (version 4.0) and
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operated in the positive mode. The spray voltage was 1.95 kV and the
capillary temperature was set to 255°C. The Q-Exactive plus was
operated in data-dependent mode with one survey MS scan followed
by 15 MS/MS scans. The full scans were acquired in the mass analyzer
at 375—1,500 m/z with the resolution of 70,000, and the MS/MS scans
were obtained with a resolution of 17,500.

Peptide identification and quantification

For peptide identification, MS raw files were converted into Mascot
Generic Format using Mascot Distiller (version 2.7.1) and searched
against the SwissProt database (release September 2019) restricted to
human entries using the Mascot search daemon (version 2.6.0; ref. 25)
with a FDR of approximately 1% and restricted to the human entries.
Allowed mass windows were 10 ppm and 25 mmu for parent and
fragment mass to charge values, respectively. Variable modifications
included in searches were oxidation of methionine, pyro-glu (N-term)
and phosphorylation of serine, threonine and tyrosine. Peptides with
an expectation value of <0.05 were considered for further analysis.
The mascot result (DAT) files were extracted into excel files. For
peptide quantification, Pescal Software (26) was used to construct
extracted ion chromatograms (XIC) for all the identified peptides
across all conditions and calculating the peak heights. These peptide
peak heights were then normalized to the sum of the intensities
for each individual sample and the average fold change between
conditions could be determined. Statistical significance between
conditions was considered significant when the Student ¢ tests
produced P < 0.05 following Benjamini-Hochberg (BH) multiple
testing correction. Kinase substrate enrichment analysis (KSEA)
was performed as described before (26). Briefly, peptides differen-
tially phosphorylated between a set of samples (at nonadjusted
P < 0.05) were grouped into substrate sets known to be phos-
phorylated by a specific kinase as annotated in the PhosphoSite,
Phospho.ELM, and PhosphoPOINT databases (27-29). To infer
enrichment of substrate groups across sets of samples, the
hypergeometric test was used followed by BH multiple testing
corrections.

Conditioned medium experiments

FAKY" or FAKX® MLEC were grown to confluency and treated
with 7.5 ug/mL mitomycin C for 2 hours at 37°C. The cells were
trypsinized and replated into T25 flasks in MLEC for 24 hours. The
following day, the medium was discarded and replaced with medium
with 100 nmol/L gemcitabine for 48hr (based on dose-response
curve data).

A total of 1x10° 8661 cells/well were seeded into 96-well plates in
DMEM + 10% FCS (Life Technologies), allowed to adhere and then
the medium was replaced with Optimem. After 48 hours, MLEC
conditioned medium (CM) was collected, filtered, and added to the
8661 cells. 8661 cell proliferation was assessed at day 3 after incubation
with CM using the MTT assay. MLECs were trypsinized and
protein extracted for Western blot analysis for phospho-PAK1 and
phospho--catenin levels.

MTT assay

MTT powder (Invitrogen, M6494) was dissolved in PBS to make a
5 mg/mL solution (10X stock). The media were removed from the
96-well plates and a IX MTT solution (dissolved in 8661 medium) was
added to the wells. The plates were incubated at 37°C for 3 hours then
the MTT solution was removed and 50 uL. DMSO added to each well to
solubilize the formazan. The plates were read at 570 nm with the
Omega plate reader (BMG Labtech).
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Human data

All human pancreatic cancer samples were collected from patients
with informed consent, and all related procedures were performed
with the approval of the internal review (as requested by the
Declaration of Helsinki) and ethics boards of Sun Yat-Sen University
memorial hospitals. Ethnics no: SYSEC-KY-KS-2019-100.

Immunostaining of human tissue

Human pancreatic cancer samples (Sun Yat-Sen memorial hospital)
were obtained with signed informed consent from patients and ethical
committee approval. Patients with PDAC all received gemcitabine-
based treatment after surgery and their clinical responses to gemci-
tabine were evaluated and recorded (n = 40 patients), and some of
these patients with their relapse information (n = 26 patients with
PDAC). FFPE human PDAC tissues were cut into 4-mm sections and
subjected to immunofluorescent staining as previously described (30).
Antibodies used for immunofluorescent staining were mouse mono-
clonal anti-CD34 antibody against human cell surface glycoprotein
(ZSGB-BIO, ZM-0046, 1:100 dilution) and rabbit monoclonal anti-
FAK antibody against human or mouse (Cell Signaling Technology,
32858, 1:100 dilution). For the immunofluorescence analysis, Alexa
Fluor-conjugated secondary antibodies (Invitrogen Molecular
Probes) were used to detect human antigens, and the sections were
counterstained with DAPI (Sigma-Aldrich, D8417). For data analysis,
the percentage of FAK negative blood vessels was calculated as the
number of CD34-positive blood vessels that were negative for FAK
over the total number of CD34-positive blood vessels. Patient data are
expressed as those with either less, or more, than 44% of blood vessels
that are FAK negative.

Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (31) partner repository
with the dataset identifier PXD021542 and 10.6019/PXD021542.

Results

EC-FAK deletion does not affect primary PDAC tumor growth
but regulates liver and lung metastasis upon gemcitabine
treatment

To study the effect of EC-FAK deletion on primary tumor growth,
murine pancreatic 8661 cancer cells were injected into the pancreas of
both Pdgfb—iCreERT - Fak" and Pdg]‘h—iCreERT +; Fak™? (12). Once
tumors were established, mice were given tamoxifen to induce FAK
deletion in ECs of Pdgfb-iCre™ " +; Fak™" (EC-FAK*®) but not Pdgfb-
iCre™®" _; Fak/"" (EC-FAK"T) mice. Tumor burdened EC-FAKX® and
EC-FAK™T mice were treated with gemcitabine, or saline as controls,
every other day for three days. Efficient in vivo deletion of FAK was
observed in EC-FAKX® mice, both untreated and gemcitabine treated,
when compared with EC-FAK"™ mice in the endothelium of primary
tumors and liver metastatic nodules (Supplementary Fig. SIA-S1D).
Primary tumor growth was monitored over time and no differences in
tumor growth, final tumor volume, gross tumor appearance, mor-
phology, tumor weight (Fig. 1A-C) or mouse body weight (Supple-
mentary Fig. S1E) were observed upon EC-FAK deletion regardless of
gemcitabine treatment. EC apoptosis, was not detectable by double
immunostaining for cleaved caspase 3 and PECAM in primary 8661
tumors, from treated or untreated EC-FAKWT or EC-FAKX® mice
(Supplementary Fig. S1F).

When examining metastases, both EC-FAKWT and EC-FAKX®
mice had similar numbers of 8661 liver metastatic nodules with or
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without gemcitabine treatment (Fig. 1D), and individual metastatic
liver nodule areas were similar in both genotypes (Fig. 1E). However,
in contrast, individual liver metastatic nodule area was significantly
decreased in gemcitabine treated EC-FAK® compared with gemci-
tabine EC-FAK™T mice (Fig. 1F). Also in this 8661 model, although
the number of lung metastases was comparable between the genotypes,
there was a trend toward a reduction of individual lung metastasis area
in gemcitabine treated EC-FAKX® mice at this time point (Supple-
mentary Fig. S1G).

Using a second murine pancreatic cancer cell line, TB32048 injected
orthotopically in the pancreas, no differences in primary tumor
volume, tumor weight or mouse body weight were observed between
EC-FAK™T or EC-FAK® mice after gemcitabine treatment (Supple-
mentary Fig. S2A-S2C). In this model, metastasis to the lung was
prevalent, but hardly any metastasis to the liver was observed. Exam-
ination of lung metastases showed a similar number of metastatic lung
nodules between gemcitabine-treated mice, and a significant reduction
in nodule size in EC-FAKX® gemcitabine-treated mice (Supplemen-
tary Fig. S2D-S2F). No significant differences in primary PDAC
tumor cell Ki67 staining were observed at the experimental end
point of gemcitabine- or saline-treated EC-FAK"" or EC-FAK*®
mice (Supplementary Fig. S3A and S3B).

Together, these data indicate that loss of EC-FAK can decrease
metastasis area in liver and lung depending on the orthotopically
injected PDAC model used.

Because epithelial-mesenchymal transition (EMT) is a key driver of
metastasis, changes in metastasis could be attributed to altered EMT
transition. Analysis of numbers of Pdx1*/vimentin™ cells showed an
increase in these markers at the invasive front, compared with the
tumor body, of tumors from both genotypes. This was not affected by
gemcitabine treatment, suggesting that the EC-FAK® tumors had
similar levels of EMT to EC-FAK"" (Supplementary Fig. S3C). Levels
of metastasis may also be associated with intrinsic changes in liver
fibrosis, iron deposition, and metabolic zonation that occur in other
liver pathologies (32). No obvious changes were observed in H&E,
Sirius Red, PAS or Prussian Blue staining between pre-metastatic
livers from gemcitabine-treated EC-FAKX? and EC-FAK™ T mice,
suggesting an absence of changes in liver fibrosis and iron depo-
sition that might be responsible for the altered metastasis observed
in gemcitabine treated EC-FAKX® mice (Supplementary Fig. S4A). In
addition, no changes in Glutamine synthetase (Glul) and Arginase-1
(Argl) staining were observed between genotypes, indicating unal-
tered metabolic zonation (Supplementary Fig. S4B). These results
suggest a role for EC-FAK in regulating PDAC metastatic, upon
gemcitabine treatment, without affecting primary tumor growth
or markers of changes in EMT, liver fibrosis, iron deposition or
metabolic zonation.

Utility of a third model of PDAC, the genetically modified Pdx1-
flp; frt-STOP-frt-Kras®'”~; p53™+ (KPF) mice, identifies that
EC-FAK deletion enhances mean survival and decreases liver
and lung metastasis after gemcitabine treatment

We next asked whether the reduction in metastatic growth in
gemcitabine-treated EC-FAKX® mice could provide a survival advan-
tage. For this, we generated a KPF EC-FAK spontaneous mouse model
by crossing Pdgfb-iCre™"; Fak™" where FAK deletion is under the
control of tamoxifen inducible Cre, with the spontaneous PDAC
model PdxI-flp; frt-STOP-frt-Kras®'2P'*; p537+ (KPF; ref. 18) where
Kras activation and p53 deletion in the pancreas is induced by flippase
(Flp) under the constitutive control of the mouse Pdxl promoter.
Tamoxifen was administered to PdxI-flp; frt-STOP-frt-Kras®*?"'*;
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tantly, Western blot analysis identified that isolated lung ECs from
KPF; EC-FAK®® mice had a significant reduction in FAK expression
when compared with ECs from KPF; EC-FAK"" mice (Supplemen-
tary Fig. $4D). KPF; EC-FAK"" and KPF; EC-FAKX® mice showed no
differences in primary tumor onset, body weight, Mendelian ratios or
gender distribution (Supplementary Fig. S4E-S4H).
Tumor-burdened, tamoxifen-treated, KPF; EC-FAK"" and KPF;
EC-FAK®® mice, were treated with gemcitabine, or saline as controls,
and survival rates assessed (Fig. 2A). KPF; EC-FAK¥® mice showed
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Figure 2.

EC-FAK deletion enhances the mean survival and decreases liver and lung metastasis of gemcitabine-treated but not untreated mice using the spontaneous Pdx7-fip;,
frt—STOP-frt—KrasG72D/+,‘ p53f"/+ (KPF) mice. A, KPF mice are a model of spontaneous PDAC. Schematic representation of experimental and treatment timeline for
KPF; EC-FAK mice. B, Similar mean survival was observed between KPF; EC-FAKWT and KPF; EC-FAK*® mice; n =14 WT and 6 KO mice. C, Gemcitabine-treated KPF;
EC-FAK*® mice had longer mean survival compared with gemcitabine-treated KPF; EC-FAKWT control mice; n =19 WT and 18 KO mice. Kaplan-Meier graphs. *, P <
0.05; Gehan-Breslow-Wilcoxon test. D, Tumor volume at endpoint between genotypes upon gemcitabine treatment; n =14 WT and 19 KO mice; Mann-Whitney test.
Representative images of gross tumors are shown for gemcitabine-treated KPF; EC-FAKWT and KPF; EC-FAKX® mice. E and F, Number of nodules (E) and metastatic
burden (F) was calculated for gemcitabine-treated cohorts; n =16 WT and 24 KO mice. G, Number of metastatic lung nodules (n =9 WT and 8 KO mice) and individual
nodule area for gemcitabine-treated mice was quantified (n =98 WT and 33 KO lung nodules). *, P< 0.05 Mann-Whitney test. Representative images of H&E-stained
liver and lung metastases are shown. All H&E-stained section images were taken by Pannoramic scanner and viewed with 3D HISTECH software. Black dashed lines,
metastatic nodules. Scale bar in F, 200 um; scale bar in G, 50 um. All bar charts show mean values + SEM. ns, nonsignificant; nsd, not statistically different.
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efficient deletion of FAK in the tumor endothelium regardless of
gemcitabine administration, as well as in the ECs of liver metastatic
lesions (Supplementary Fig. S5A-S5D). In saline-treated KPF mice,
loss of EC-FAK had no significant impact on survival (Fig. 2B). In
contrast, gemcitabine-treated KPF; EC-FAKX mice had significantly
longer survival time compared with gemcitabine treated KPF; EC-
FAKYT mice (Fig. 2C). In line with this, saline-treated KPF; EC-
FAK™T and KPF; EC-FAKX® mice showed no differences in primary
tumor growth (Supplementary Fig. S6A) or liver metastasis (Supple-
mentary Fig. S6B-S6D). However, although gemcitabine-treated KPF;
EC-FAKX® and KPF; EC-FAK™T mice had no significant differences
in primary tumor volume (Fig. 2D), a significant decrease in the
number of liver metastatic nodules and overall metastatic burden was
observed in gemcitabine treated KPF; EC-FAKX® mice compared with
gemcitabine treated KPF; EC-FAK"T mice (Fig. 2E and F). In
addition, although the numbers of metastatic lung nodules was similar
between KPF; EC-FAK™' and KPF; EC-FAKX®, individual lung
nodule area was significantly reduced in KPF; EC-FAK®® mice, upon
gemcitabine treatment (Fig. 2G).

These data indicate that EC-FAK loss increases the median survival
and decreases liver and lung metastasis of gemcitabine treated, but not
saline-treated, KPF mice.

Loss of EC-FAK does not affect blood vessel density, leakage, or
gemcitabine delivery in primary pancreatic tumors

Given that the tumor vasculature plays a key role in both tumor
progression and metastatic dissemination and that EC-FAK has been
described previously to affect tumor angiogenesis in other murine
cancer models (12), we next asked whether loss of EC-FAK had an
effect on tumor blood vessel density in the pancreatic 8661 orthotopic
model upon gemcitabine treatment. Primary 8661 tumor sections were
immunostained for endomucin and the blood vessel density was
assessed by counting the number of blood vessels per unit area of
viable tumor section. Primary tumor blood vessel density was not
altered in gemcitabine-treated EC-FAKX® compared with EC-FAK™”
mice (Fig. 3A). Tumor blood vessel leakage was assessed by measuring
perivascular uptake of Hoechst dye injected via the tail vein in an
antemortem process. No differences in Hoechst leakage were observed
between gemcitabine treated EC-FAK™' and EC-FAKX® mice
(Fig. 3B), suggesting no changes in tumor blood vessel leakage
in vivo. To further examine the functionality of the blood vessels, we
next tested the efficacy of gemcitabine (2,2'-difluorodeoxycytidine,
dFdC) delivery and metabolized gemcitabine dFdU (2’-deoxy-2',2'-
difluorouridine) in the primary tumor and nonmetastasized liver of
EC-FAK"" and EC-FAK®® mice by LC-MS/MS. No differences in
dFdC or dFdU levels were observed between genotypes in primary
tumors or livers (Fig. 3C and D). These data indicate that EC-FAK loss
does not affect primary tumor blood vessel density or leakage and has
no apparent effect on gemcitabine delivery or metabolism, suggesting
that the reduction in liver metastatic burden is not due to changes in
these features.

EC-FAK regulates metastatic pancreatic tumor cell colonization
in the liver of gemcitabine-treated mice, but does not affect
numbers of circulating tumor cells, tumor cell homing or
seeding

Metastatic burden can be affected by the intravasation of tumor cells
from the primary tumor into the bloodstream to generate circulating
tumor cells (CTC) followed by homing and seeding of tumor cells at a
secondary site (33). 8661 tumor-burdened, gemcitabine-treated EC-
FAKWT and EC-FAKX® mice showed no differences in numbers of
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CTCs (CD457; Pdx1" population; (Fig. 4A; Supplementary Fig. S7A
and S7B), suggesting that EC-FAK is not involved in the tumor cell
escape from the primary tumor.

To assess tumor cell seeding, nontumor-bearing EC-FAK™™ and
EC-FAK®® mice were gemcitabine treated, intrasplenically injected
with GFP-labeled 8661 cells and livers harvested and digested 2 hours
aftter injection. Gemcitabine-treated EC-FAK"" animals showed sim-
ilar levels of GFP-positive cells in the liver compared with gemcitabine
treated EC-FAK®® mice (Fig. 4B; Supplementary Fig. S7C and S7D),
indicating no changes in homing upon EC-FAK deletion and gemci-
tabine treatment.

To assess tumor cell seeding and colonization in the liver, EC-
FAKWT and EC-FAKX® mice were gemcitabine treated, and sacrificed
48 hours and 7 days after tumor cell intrasplenic injection and the
presence of pancreatic cancer-specific Pdx1-positive cells in the liver
assessed. No statistical differences in percentage of animals with Pdx1-
positive cells in the liver were observed at 48 hours between gemci-
tabine-treated EC-FAK" T and EC-FAK®® mice (Fig. 4C). However,
at 7 days after 8661 intrasplenic injection, significantly fewer gemci-
tabine-treated EC-FAK®® mice presented with tumor cells in the liver
compared with gemcitabine-treated EC-FAK™' control mice
(Fig. 4D). In addition, the incidence of tumor cell colonies (counted
as cell clusters with >3 cells) was also reduced in EC-FAK*® gemci-
tabine-treated mice when compared with gemcitabine treated EC-
FAK"T mice (Fig. 4E). Together, these results indicate that EC-FAK
deficiency combined with gemcitabine treatment does not affect
numbers of CTCs, early pancreatic tumor cell homing or seeding but
instead regulates the ability of tumor cells to successfully colonize in
the liver.

EC-FAK regulates phosphoproteomic signatures depending on
oxygen availability

During the process of tumor cell establishment, the hepatic niche
provides important angiocrine signals that influence the ability of
metastasis-initiating cells to engraft and grow. High levels of hypoxia
are a salient feature of primary PDAC (34) and can affect gemcitabine
efficacy (35). Immunostaining for Glutl, a marker of tumor hypoxia,
showed significantly increased levels of hypoxia in primary PDAC
tumors compared with liver metastatic lesions in gemcitabine treated
EC-FAK™T mice (Fig. 5A). Given that ECs can activate distinct
signaling pathways depending on the oxygen availability (36), we next
asked whether EC-FAK regulated angiocrine responses to gemcitabine
would be affected by exposure to hypoxia, thus possibly pointing
toward differential effects observed in metastases but not in primary
tumor growth.

We performed phosphoproteomic analysis of FAK-NULL (KO)
ECs versus WT ECs from the following conditions: Hypoxia plus
gemcitabine, normoxia minus gemcitabine or normoxia plus gemci-
tabine. EC FAK deficiency altered the number of phosphopeptides,
detected by phosphoproteomics analysis when compared with WT
ECs (Fig. 5B; Supplementary Fig. S8A-S8C). Further analysis iden-
tified significantly enriched regulatory phosphorylation sites (29) in
FAK-NULL ECs versus WT ECs only in normoxia plus gemcitabine
treatment conditions but not significant in the other conditions
(Fig. 5C). Among them, Jun (Transcription factor AP-1) and
Mapk? phospho-sites were found to be enriched in FAK-KO ECs in
normoxic conditions plus gemcitabine versus WT ECs under the same
conditions. In contrast, Map2Ks (Dual specificity MAPKs), Akt (RAC-
alpha serine/threonine- protein kinase), Rafl (RAF proto-oncogene
serine/threonine-protein kinase), and Pakl (serine/threonine-protein
kinase) were downregulated in normoxia plus gemcitabine FAK-KO
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Figure 4.

EC-FAK deletion in gemcitabine-treated mice does not affect numbers of circulating tumor cells or tumor cell homing/seeding to the liver but reduces liver metastasis
colonization. A, Numbers of circulating tumor cells are not affected by EC-FAK loss in gemcitabine-treated mice. 8661 cancer cells were injected into the pancreas of
both Pdgfb-iCret?” +; Fak™" (EC-FAKKO) and Pdgfb-iCretRT-; Fak™" (EC-FAKWT) mice and given tamoxifen to induce EC-FAK deletion in Cre™ mice. All mice were
treated with gemcitabine. At day 41after 8661tumor cell inoculation, flow cytometry of CD457/Pdx1™ cells isolated from the blood were considered circulating tumor
cells. n = 9 WT and 10 KO mice; Mann-Whitney test. B, Tumor cell homing. EC-FAKWT and EC-FAKX® mice were treated with gemcitabine before performing
intrasplenic injection of GFP-labeled 8661 pancreatic cancer cells. Two hours after tumor cell injection the percentage of GFP™ tumor cells seeding in the liver was
assessed. n = 8 mice per group; Mann-Whitney test. C, Tumor cell seeding. Intrasplenic injections of 8661 cells was performed as in B and livers harvested at 48 hours
after injection. Immunostaining of Pdx1 was performed and Pdx1-positive cells were identified as metastatic cancer cells in the liver. The same number of mice
presented with Pdx1 + cells after 48 hours (n = 8 mice per genotype). Representative images of Pdx1 staining in the liver shown for both experimental groups at
48 hours after injection were taken by Pannoramic scanner and viewed with 3D HISTECH software. Scale bar, 50 um. Higher power insets, 10 um. D, Tumor cell
colonizationin the liver is reduced in gemcitabine-treated EC-FAK"® mice. At 7 days after intrasplenic injection of 8661 cells, EC-FAK loss combined with gemcitabine
treatment caused a decrease in the percentage of animals with Pdx1+ cells in the liver (E) and with cell clusters of more than 3 cancer cells.n=8 WT and 6 KO mice. All
bar charts show mean values 4+ SEM. *, P < 0.05 X2 test applied in incidence data. nsd, not statistically different.
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ECs versus WT ECs. We examined phosphorylated PAK1 levels in
FAK-KO and WT ECs, both in the presence of gemcitabine, and
showed that FAK loss in ECs downregulates signaling through phos-
pho-PAK1 and, downstream of PAKI, B-catenin (37), suggesting an
association of inhibition of the PAK1-f-catenin signaling pathway in
FAK-KO ECs (Fig. 5D). Medium from these cells (CM) was added to
8661 tumor cells for up to 72 hours, to mimic the metastatic envi-
ronment (i.e., in normoxia) and tumor cell proliferation was measured.
CM from gemcitabine-treated FAK-KO ECs significantly reduced
tumor cell proliferation (Fig. 5E). These results suggest that EC can
control tumor growth via angiocrine signals regulated by a combina-
tion of FAK and gemcitabine.

These results indicate that loss of FAK affects phosphoproteomic
profiles in ECs depending on oxygen availability and gemcitabine
treatment. Overall, our data suggest that angiocrine signals from ECs
can regulate tumor cell proliferation at the secondary site to mediate
metastasis. Deletion of EC-FAK inhibits these signals to reduce
metastatic growth.

Low EC-FAK expression correlates with better survival and
reduced relapse incidence in gemcitabine-treated patients with
PDAC

Given that metastatic dissemination is a defining indicator of poor
prognosis among patients with PDAC, we explored whether endo-
thelial FAK expression levels could have clinical relevance in corre-
lating with patient survival after gemcitabine treatment. EC-FAK
expression was examined by immunofluorescence in primary PDAC
tumor sections from patients treated with gemcitabine alone or in
combination with other treatments and the percentage of EC-FAK-
negative blood vessels across individual patients was calculated. This
revealed a mean of 44% of blood vessels being EC-FAK-negative
across individual patients (Fig. 6A and B). Patients with a high number
of EC-FAK-negative vessels had significantly improved survival and
decreased incidence of relapse compared with patients with a low
number of EC-FAK-negative vessels (Fig. 6C and D). These results
provide clinically relevant evidence to support the notion that low
levels of EC-FAK in the primary tumor vasculature improves survival
of gemcitabine-treated human patients with PDAC.

Discussion

PDAC is a highly aggressive disease associated with a very poor
outcome. Gemcitabine is part of the first-line treatment given to
patients with advanced metastatic disease. For many of the less
advanced disease patients, where primary resection is possible, distant
metastasis ensues. Thus, understanding the mechanisms that enable
the control of metastatic growth becomes an important goal (38).

Here, we have identified a new role for EC-FAK in regulating
metastasis upon gemcitabine treatment that has effects on survival,
both in murine models and human patients. Our results show no
changes in primary pancreatic tumor growth upon EC-FAK loss
(Supplementary Fig. S8D). Previous studies performed using the
Pdgﬂ?—iCreERT; Fak™ mouse model have shown differences in
tumor growth when deleting EC-FAK before tumor formation (12).
However, no differences were shown when EC-FAK was deleted
after the tumor was established (15, 17) and our results corroborate
these findings. Other studies using the EC-FAK heterozygous
K454R mutant-KD mouse model also reported no differences on
tumor growth, further confirming our results (13). Interestingly,
EC-FAK mutated at Y397 or Y861 residues has differential effects
on tumor growth and tumor angiogenesis (14), indicating that
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beyond its kinase activity, the phosphorylated sites are also impor-
tant for the regulation of tumor angiogenesis and subsequent tumor
growth.

EC-FAK loss combined with chemotherapy can have different
effects depending on the chemotherapeutic agent and type of
cancer. In contrast to no differences in pancreatic tumor growth
of gemcitabine treated EC-FAK-deleted mice shown here, doxo-
rubicin-treated EC-FAK-deleted mice showed reduced melanoma
tumor growth (17). Similar to EC-FAK-deleted doxorubicin-
treated mice (17), tumor angiogenesis of EC-FAK-deleted gemci-
tabine-treated mice was not affected, despite the pro-angiogenic
effect of gemcitabine previously described (39).

Our results indicate differences in metastasis in EC-FAK-deleted,
gemcitabine-treated mice. Multiple studies have demonstrated a role
for FAK in regulating vascular integrity and barrier function in a
physiological context (40, 41) and in cancer (12, 13,17, 42). A previous
study reported that EC-FAK kinase activity can impact on the met-
astatic process by regulating VEGF-stimulated vascular permeability
through phosphorylation of VEC-Y658. Although no confirmation of
vascular leakage was shown in vivo, the authors suggest that the
difference in metastasis is due to changes in EC-permeability regulated
by EC-FAK in breast cancer (13). This permeability phenotype,
correlated with VEC-Y658 phosphorylation, was corroborated by
another study using the same EC-FAK KD mouse model (42). In
contrast, our results do not show differences in blood vessel leakage
and instead, recapitulate results previously shown in this regard with
the same EC-FAKX® mouse model (17). Given that most of the reports
studied EC-FAK in response to VEGF, the differences in vascular
leakage may rely on the characteristics of the tumor. Although ovarian
and melanoma tumors are highly vascularized with elevated VEGFA
expression (43), pancreatic tumors are poorly vascularized and most
likely have lower amounts of VEGF. In contrast to Jean and collea-
gues (13), in the present study, differences in metastasis regulated by
EC-FAK were observed only upon gemcitabine treatment. No differ-
ences in vascular leakage and CTCs upon EC-FAK loss and gemci-
tabine treatment were observed, suggesting that EC-FAK is not
regulating metastasis by affecting the escape of tumor cells from the
primary pancreatic adenocarcinoma.

Previously published studies have revealed that metastatic target
organs are modified before the arrival of disseminating tumor cells by
primary tumor-secreted factors creating a pre-metastatic niche (44).
For example, PDAC-derived exosomes induce liver pre-metastatic
niche formation by regulating a fibrotic reaction that enhances bone-
marrow derived macrophage recruitment into the liver (45). Inter-
estingly, liver ECs can also regulate hepatic metastasis in an angiocrine
independent manner (46). In addition, hepatocytes have recently been
described to influence the formation of the pre-metastatic niche in the
liver by inducing fibrosis and accumulation of myeloid cells (47) and
sc-RNAseq of liver ECs and hepatocytes has shown zonated vascular
signaling mechanisms that may be involved in responses to cancer (48).
Our data, using the intrasplenic model, show differences in liver
colonization upon EC-FAK deletion and gemcitabine treatment in
the absence of a primary tumor, suggesting that changes in the hepatic
vasculature are enough to modulate metastatic engraftment. Our
results indicate that tumor cells are less able to colonize in gemcita-
bine-treated EC-FAK-depleted livers after 7 days after injection.
Interestingly, EC-FAK has been previously described to modulate
metastasis in the lungs (13) and correlates with our findings that lung
metastasis area is reduced significantly in EC-FAKKO mice treated
with gemcitabine at least in the TB32048 and KPF models. Notably,
this study showed no differences in initial cell homing and adhesion
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Low EC-FAK expression correlates with improved survival and less incidence of relapse in human pancreatic gemcitabine-treated patients. A, Human pancreatic
ductal adenocarcinoma biopsies (n = 40 individual patient samples) were double immunostained for FAK and the EC marker CD34. Representative images of double
immunostained sections are given. Scale bar, 50 um. B, Quantitation of the percentage of EC-FAK-negative blood vessels across individual patients revealed that 16
out of 40 patients (green bars) have more than the mean (44) percentage of EC-FAK-negative vessels. C, Kaplan-Meier curves. Patients with more than the mean
percentage of EC-FAK-negative vessels have significantly improved survival compared with patients with less than the mean percentage of EC-FAK-negative
vessels. Log-rank statistical test. D, Patients with more than the mean percentage of EC-FAK-negative vessels have significantly decreased incidence of relapse

(n = 26 patients). Fisher exact test applied; **, P < 0.01.

(6 hours) but showed fewer cells engrafted in the lungs at 16 hours
upon EC-FAK inhibition. These observations are in line with our
findings as no differences were observed in homing or seeding but less
colonization was found upon EC-FAK deletion with gemcitabine
treatment. In fact, EC-FAK has been described previously
to modulate cancer cell homing in the lungs by upregulating
E-selectin (49).

Liver metastases are significantly less hypoxic than primary
tumors, and both cancer cells and ECs can trigger different signal-
ing pathways in different oxygen conditions (36). Also, hypoxia has
been shown to affect EC angiocrine signals (50). Therefore, we
hypothesize that different environmental hypoxia levels could
explain a different angiocrine regulation by EC-FAK causing a
reduction of metastatic growth without influencing primary tumor
size. In fact, phosphoproteomic analysis revealed that gemcitabine-
treated FAK-KO ECs downregulate the MAP kinase cascade in
normoxic conditions (which resemble the liver metastatic site) and
not in hypoxic conditions (more similar to the primary tumor).
MAPK signaling pathway has been largely studied due to its

1922 Cancer Res; 82(10) May 15, 2022

multiple functions regulating cancer progression (51), including
the modulation of cell survival and apoptosis (52). Our data also
show significant downregulation of RAF proto-oncogene serine/
threonine protein kinase (Rafl) and Filamin-A (FlnA) in ECs upon
FAK deletion and gemcitabine treatment only in normoxic con-
ditions. Rafl can activate the MAPK pathway as well as promote
cell survival by antagonizing apoptosis (53) and KO of FInA in ECs
has been shown to reduce fibrosarcoma growth (54). Moreover,
overexpression of some MAP3K can lead to the activation of p38
and JNK pathways (55). The p38 pathway in ECs has been
described previously as a major regulator or tumor progression
and metastasis (56). Other p38 activators are the p21-activated
kinases (PAK). In the present study, phosphorylation of the serine/
threonine—protein kinase PAK 1 (PAK1) was significantly reduced
in ECs upon FAK deletion and gemcitabine treatment in normoxia
but to a lesser extent in hypoxia conditions. PAK1 is a protein
kinase that plays an essential role downstream of receptor-type
kinases and integrins in several signaling pathways regulating actin
cytoskeleton dynamics, cell polarity, invasion, and apoptosis

CANCER RESEARCH

20z IMdy 9} uo 3senb Aq ypd 606 1/169161£/6061/01/28/4Pd-801e/S81180UED/6.10°S|EUINOLIOEE//:ARY WO PapEOjUMOQ



among others (57). In fact, PAKI inhibition has been shown to
increase effector caspase activation and apoptosis in non-small cell
lung cancer cells (58) and to phosphorylate death agonist Bad to
protect cells from apoptosis (59). Notably, some studies show that
PAKT1 inhibitors reduce pancreatic cancer cell growth in vivo (60)
and improve gemcitabine efficacy in murine pancreatic cancer
models (61). Furthermore, PAK1 regulates B-catenin activation
and overexpression of PAK1 is correlated with accumulation of
[-catenin in colon cancer to drive cancer progression (37). These
molecular changes observed in gemcitabine treated ECs regulated
by FAK are possibly part of an angiocrine signal that may regulate
tumor cell survival and apoptosis in the metastatic secondary site.
Indeed, our results show that CM from gemcitabine-treated FAK-
NULL ECs was able to significantly reduce tumor cell proliferation.
One possibility is that changes in the PAK-B-catenin signaling
pathway may drive changes in angiocrine production when FAK is
deleted in ECs, to regulate metastatic tumor growth. Why this is
not seen in the primary tumor could be explained by differences in
the expression of genes in ECs from different tissue beds (62)
differentially regulating tumor cell growth or by the difference in
levels of hypoxia between the primary and metastatic tumor
environment.

Most importantly, our data revealed that the reduction of liver
metastasis regulated by EC-FAK was enough to improve survival rates
in our gemcitabine treated KPF spontaneous mouse model. Moreover,
gemcitabine-treated patients with low levels of EC-FAK showed a
better survival rate and were less prone to relapse, confirming the
clinical relevance of these findings.

Data indicating FAK as an effective therapeutic target has led to the
development of FAK inhibitors (63). Some studies have already shown
the benefits of FAK inhibitors alone or in combination with other
therapies (64). FAK is hyperactivated in PDAC where it is implicated
in increased fibrosis and inflammation and is associated with poor
prognosis. FAK inhibitors have been shown in vitro and in vivo to
inhibit tumor growth and metastasis (65), and in combination with
other chemotherapeutics can potentiate efficacy. Our findings further
corroborate this idea by showing a direct positive effect of low FAK
expression in the EC compartment on survival of gemcitabine-treated
patients.

Overall, our results show a novel role of EC-FAK in PDAC when
combined with gemcitabine treatment highlighting the importance of
the tumor vasculature regulating the efficacy of chemotherapy. EC-
FAK in the presence of gemcitabine regulates liver metastasis directly
affecting survival in both mouse models and patients. These findings
open new avenues for considering the potential utility of the combi-
nation of FAK inhibitors with gemcitabine in future clinical applica-
tions, leading to new ways of controlling liver metastasis in patients
with PDAC.
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