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ABSTRACT
The interior of living cells is densely filled with proteins and their complexes, which perform multitudes of biological functions. We use
coarse-grained simulations to reach the system sizes and time scales needed to study protein complexes and their dense solutions and to
interpret experiments. To take full advantage of coarse-graining, the models have to be efficiently implemented in simulation engines that
are easy to use, modify, and extend. Here, we introduce the Complexes++ simulation software to simulate a residue-level coarse-grained
model for proteins and their complexes, applying a Markov chain Monte Carlo engine to sample configurations. We designed a paralleliza-
tion scheme for the energy evaluation capable of simulating both dilute and dense systems efficiently. Additionally, we designed the software
toolbox pycomplexes to easily set up complex topologies of multi-protein complexes and their solutions in different thermodynamic ensem-
bles and in replica-exchange simulations, to grow flexible polypeptide structures connecting ordered protein domains, and to automatically
visualize structural ensembles. Complexes++ simulations can easily be modified and they can be used for efficient explorations of different
simulation systems and settings. Thus, the Complexes++ software is well suited for the integration of experimental data and for method
development.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0117520

I. INTRODUCTION

Biomolecular simulations provide insight into the molecu-
lar structures and interactions underlying biological functions.1
With limits on the available computational power,2 one way to
extend the length scales, time scales, or sampling needed to study
more complex biomolecular systems is through coarse-grained

simulation models.2–6 In these models, multiple atoms are typi-
cally grouped into a single interaction site or bead. This reduction
in the number of degrees of freedom and model complexity low-
ers the computational cost of evaluating energies and forces. The
corresponding smooth potential energy surfaces speed up particle
dynamics compared to fine-grained models. The overall simplic-
ity of coarse-grained models also makes them easier to analyze
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and modify. However, this increase in computational efficiency and
modifiability usually comes with a decrease in accuracy. The latter
can be improved, for example, by using force fields with multi-body
interactions for the same resolution level.7

To take full advantage of coarse-grained simulations and
improve their predictive power, simulation engines must be highly
efficient and easy to use, modify, and extend. Importantly, coarse-
grained simulations can be more easily used to explore differ-
ent simulation systems and settings than, for example, atomistic
simulations.8,9 The computational and memory efficiencies are
increased, and we can run multiple simulations in rapid succes-
sion and in parallel, even on a single machine. Thus, coarse-
grained models are ideally suited to screen vast parameter spaces
by running multiple simulations. One can modify and study system
properties such as stoichiometry, chemical composition, thermo-
dynamic states, chemical functionalization, and initial structures.
The possibility to try different settings makes coarse-grained sim-
ulations especially well suited for the integration of additional
data, as in inferential structure determination10 and ensemble
refinement.11,12 Moreover, the reduced number of degrees of free-
dom and the model simplicity allow us to more easily bias the
underlying energy surfaces or force fields using enhanced sampling
techniques.

Here, we present an efficient open-source implementation of
the KH model,13 which combines knowledge-based information
about amino acid interactions14 with physical interaction laws to
model protein complexes15 and even intrinsically disordered pro-
teins.16 The KH model was developed for protein complexes con-
taining ordered protein domains, possibly connected by flexible and
disordered polytpeptides. Such systems are common in biological
systems. For example, the KH model has been applied to infer the
dynamic solution ensembles of the ESCRT–I complex,17 the Atg1
complex,15 and a module of a polyketide megasynthase.18 To tackle
such systems, where we often have only limited or coarse initial
structural information, the simulation software has to be compu-
tationally efficient and easy to use to be able to explore systems
and settings efficiently. In the development of our simulation soft-
ware, we addressed these two main challenges of efficiency and
usability.

We optimized computational and memory efficiency at differ-
ent levels of our software. For example, we developed and imple-
mented a parallelization scheme designed to handle diverse sys-
tems ranging from dense to dilute protein solutions. Moreover, the
simulation of protein complexes, where ordered protein domains
modeled as rigid bodies are linked by disordered polypeptides, is
computationally highly expensive. The presence of explicitly mod-
eled peptide linkers between ordered protein domains hinders their
diffusion and is detrimental to sampling. We thus model disordered
linkers as harmonic restraining potentials in simulations and regrow
explicit linker structures in post-processing.

To make our software easy to use, modify, and extend, we fol-
lowed a twofold strategy. We developed an efficient and versatile
simulation engine, Complexes++, using C++17.19 Additionally, we
provide the pycomplexes toolbox to set up, modify, process, and visu-
alize Complexes++ simulations. It enables the user to, for example,
prepare coarse-grained simulations from atomistic structure PDB-
files from the Protein Data Bank (https://rcsb.org)20 or efficiently
add explicit polypeptide linker configurations by post-processing

sampled simulation frames. The versatility and extendability of
the Complexes++ simulation engine and the pycomplexes tool-
box facilitate the systematic and comprehensive study of complex
biomolecular systems where, for example, only limited initial struc-
tural information is available or the interplay of a large number of
protein domains is of interest.

This article is organized as follows: We first introduce the
Complexes++ simulation engine, its architecture, and its function-
ality and present the toolbox pycomplexes in Sec. II. We present
method details in Sec. III and performance results in Sec. IV. We
end with a discussion and conclusions in Sec. V.

II. THE COMPLEXES++ SOFTWARE
We first give a brief overview of the Complexes++ simulation

engine. Then, we discuss implementation details and afterward the
pycomplexes toolbox.

A. Overview
In the KH model, one represents amino acids of proteins with

single interaction beads centered at the positions of Cα atoms.13 In
this model, the knowledge-based Miyazawa–Jernigan potentials14

acting between beads are complemented by electrostatic interac-
tions approximated in terms of the Debye–Hückel potential for
an implicit solvent with different salt concentrations. Folded pro-
teins and multi-protein complexes are represented as rigid bodies.
These rigid domains can be connected by disordered polypep-
tides, modeled as flexible polymer chains, or as effective potentials.
We call the full set of connected domains a topology. Poten-
tial energies are evaluated at the bead level, and position updates
are done at the domain and topology levels. In addition to the
Lennard–Jones-like potential of the KH model, we also implemented
the Weeks–Chandler–Anderson (WCA) repulsive and attractive
potentials,21 a softcore potential,22 and interactions of Gaussian
charge distributions.23

To generate configurations according to the underlying sta-
tistical ensemble, Complexes++ uses a Markov chain Monte
Carlo algorithm.24 We implemented the canonical ensemble
(NVT) and the NPT ensemble, where P is here the osmotic
pressure. For enhanced sampling, Complexes++ provides dif-
ferent replica-exchange algorithms, such as temperature replica
exchange,25 pressure replica exchange,26 and Hamiltonian replica
exchange.27 As an exchange scheme, we use the odd–even pair
scheme.27

For the rigid domains, we implemented random translation
and rotation Monte Carlo moves. Each component of a trial trans-
lation vector is chosen uniformly from a user-defined interval. The
rotations are generated by choosing a random rotation axis and uni-
formly selecting a rotation angle in a user-defined interval.28 We
define the direction of the rotation axis by uniformly selecting a
point in the unit cube. Even though rotation axes along the edges
are more likely, they do not affect the generated ensembles due to
detailed balance. Translation and rotation moves are selected with
equal probability.

We model disordered polypeptides connecting rigid
domains using a Gaussian polymer model during simulations
and grow explicit linker configurations for sampled frames in
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post-processing. In the original simulation code,13 disordered
polypeptides connecting rigid domains could also be simulated
using a bead-chain model using bond, angle, and dihedral potentials
similar to molecular dynamics force fields.29 The advantage of this
model is that amino acids are modeled explicitly as beads, which
can interact with the rigid domains. However, these interactions are
difficult to model accurately. Moreover, configurations of explicit
rigid domains linked by disordered polypeptides are hard to sample,
especially with single particle Monte Carlo moves. As a result, the
chain diffuses slowly through configuration space and strongly
restrains the diffusive motion of attached domains. While this
explicit model can be applied to smaller protein complexes,30 it
makes simulations of larger complexes15,18 inefficient.

To efficiently sample the configuration space of protein
domains connected by flexible polypetide linkers, we use a linker
model that avoids entropic bottlenecks in the sampling and con-
strains protein movement the least. For a polypetide linker, its
potential mean force (PMF) is mainly determined by its length and
not by its amino acid sequence.31 Thus, we assume that the main
function of the linker is to restrain two connected domains accord-
ingly. We replace the explicit peptide chain with a PMF that only
depends on the distance between the two rigid domains and the
number of amino acids in the linker, i.e., its length. This PMF acts
as a restraining potential and ensures that the distance distribution
between two rigid domains is physically meaningful. The diffusion
of the rigid domains is least hindered by this linker model because
no explicit linker beads are involved.

In Complexes++, we use the PMF of the Gaussian chain poly-
mer model.32,33 Our PMF acts between two beads, one on each of
the two connected domains. These two beads have to be added
to the length N of the linker. The final PMF for a linker of
length N is

PMF(r⃗0, r⃗N+1) =
3

2b2
1

N + 1
(r⃗ 0 − r⃗ N+1)

2, (1)

with r⃗0 and r⃗N+1 being the positions of the two beads of the rigid
domains that are connected by the linker. Beads on the linker are
separated by an average bond length b such that the average end-
to-end distance of the linker is

√

Nb. In the following, we use
b = 3.81Å.34 After the simulation, we add explicit linker configura-
tions to the sampled structures using our pycomplexes toolbox (see
Sec. II C).

B. Complexes++ architecture and functionalities
We designed the Complexes++ software to give the modeler

freedom when setting up simulations. To increase flexibility, domain
classes are defined on-the-fly during runtime using domain tem-
plates. A domain is composed of move types, their parameters, and
interaction kernels with other domains. Move types and interaction
kernels are implemented separately. Domains have unique names.
For each simulation, one can specify the exact domains, set their
Monte Carlo move parameters, and define interactions with the rest
of the system.

Complexes++ is composed of several abstraction layers (Fig. 1).
These abstraction layers are based on the main components of the
Monte Carlo algorithm and ensure a high degree of modularity.

FIG. 1. Architecture of the Complexes++ simulation software. In colored boxes,
we display different classes (rectangular boxes). Some of these classes are
abstract classes, which serve as templates. Derived classes are shown as bullet
points within the same colored box. As indicated in the small rectangular boxes,
some of these classes are parallelized with Message Passing Interface (MPI) or
OpenMP, or use the vectorization library Inastemp36 for improved performance.
Black arrows with full arrow heads indicate that a class (start of the arrow) owns
another class object (full arrow head). Gray arrows indicate that a class (start of
the arrow) contains a smart pointer to another class (empty arrow head). These
pointers are needed such that the class holding the pointer can automatically
determine if the other class has changed. The interaction kernel “LJH” includes
Lennard–Jones (“LJ” in “LJH”) and Debye–Hückel (“H” in “LJH”) potentials. “WCA”
stands for Weeks–Chandler–Andersen.21 The “softcore” interaction kernel com-
prises a softcore Lennard–Jones potential22 and interactions of Gaussian charge
distributions.23

This design makes it possible to add new components with only
minimal changes. One can add a new domain type or a new type
of Monte Carlo sweep in a few implementation steps. The abstrac-
tion layers are implemented as abstract classes in C++ and use
the template method pattern,35 which is language-independent. For
example, the abstract Monte Carlo class uses the template method
pattern for the sweep operation that each sub-class must have. As
a result, Complexes++ can be used not only to perform simula-
tions of the KH model but also to develop and test other molecular
models.

Complexes++ is parallelized using MPI and OpenMP. MPI
is optional and can be disabled during the compilation stage. In
replica-exchange simulations using MPI, the replicas are statically
distributed to the processes, and there can be at most as many
processes as there are replicas. We avoid global communication
and synchronization by using a point-to-point exchange scheme
between processes when replicas might be exchanged. The MPI-
related code is localized in a single file and is transparent to the rest
of the application. For instance, any class that could be exchanged
together with a replica only has to provide serialize/deserialize
methods. We use the same principle for shared-memory paral-
lelization, which is done over the different replicas such that one
replica is managed by a single thread for a given number of
sweeps.

In replica simulations using only OpenMP, a parallel loop is
performed over the replicas, leading to at most one thread per replica
but with potentially several replicas for some of the threads. In order
to manage the cases where the number of available threads is greater
than the number of replicas still to be processed or the workload per
replica is highly heterogeneous, we use a pool of tasks to dynami-
cally share the work and adapt the execution. However, the tasks are
created only when at least one thread becomes idle, which happens
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immediately when there are fewer replicas than threads or after a
delay when there is no more replica to assign to a thread. After
this point, all threads that were computing their own replica alone
begin to create tasks. With this approach, we minimize the possible
overhead coming from the task-based mechanism itself or from the
division of the replicas. When all replicas have progressed and per-
formed their sweeps, a point-to-point synchronization between the
threads is used to test and potentially exchange some replicas.

We vectorize the interaction kernels using the Inastemp
library,36 which was originally created specifically for Complexes++.
Since then, it has been used in multiple other applications. One
example is ScalFMM,37 which implements a fast multipole method.
Applying Inastemp, the kernels are written in C++ using a
hardware-independent data type. During the compilation stage,
this data type is replaced with an Inastemp class selected by the
compiler according to the CPU’s capabilities. Inastemp supports
common instruction sets (SSE{3/4.1}, AVX{1,2-512}, and VMX)
and ensures that even kernels with condition statements are vector-
ized. This mechanism ensures pre-compilation portability and high
performance while being easy to maintain.

We developed and implemented a variant of the cell-list algo-
rithm to efficiently evaluate the interaction energies. We adapted the
algorithm for sparse as well as dense systems, respectively. The inter-
action kernels used in Complexes++ are generally short-ranged,
such that one can apply a cutoff distance. In the original cell-
list method,28 we partition the simulation box into a 3D cell grid
and compute the interactions between beads in neighboring cells
only.

In our version of the cell-list algorithm, we work on the
beads and domains in different ways to compute the global energy
and the interaction energy of a single domain with all the oth-
ers, and to move a single domain and update the grid accordingly.
To do so efficiently, we do not store the beads directly in the
cells. Instead, we use the notion of intervals, where an interval is
composed of a domain identification number (id), a starting bead
index, and an ending bead index. We store beads contiguously in
memory, no matter their distribution in the grid. One can then
efficiently access all the bead coordinates of a domain for fur-
ther computations. Moreover, for each domain, we use a list of
interval-index/cell-id pairs, which allows us to iterate over the cells
crossed by a domain and to compute the energy related to a single
domain efficiently. Finally, the update of the grid when a domain
has moved can be done efficiently, as it consists of updating the
cells’ interval vectors by removing the old intervals and inserting the
new ones. The overall computational complexity of these different
stages is linear with respect to the numbers of beads, intervals, and
domains.

For this cell-list algorithm, we provide two different data struc-
tures or containers to store the cell-grid, depending on the sparsity
and size of the system. The first container, called “dense data
structure” in the following, is a 3D array for dense molecular sys-
tems. The second container, called “sparse data structure,” is an
unordered hash-map with the linearized 3D indices as keys for
sparse or dilute molecular systems. Whereas the memory consump-
tion of the former increases with the number of cells and thus with
the volume for a given cell size, the memory consumption of the lat-
ter is independent of the number of cells. The sparse data structure
enables us to run multiple replicas on a single node, where memory

can become the limiting factor. Such situations arise, for example,
when running replica-exchange simulations. For both data struc-
tures, the time complexity of the cell-list algorithm scales linearly
with the number of beads. See the user manual for further details on
our implementation of the cell-list algorithm.

C. Pycomplexes: A helper toolbox
The pycomplexes toolbox provides diverse functionality to effi-

ciently prepare, modify, process, visualize, and analyze simulations.
It was designed for convenience and ease-of-use. Pycomplexes is
written in Python and harnesses widely used libraries, such as
Numpy38 and MDAnalysis.39 Thus, it is cross-platform compati-
ble and easily extensible. It may be used from the command line,
but is also easily integrated in interactive Python environments such
as Jupyter notebooks.40 Along with the code, we provide numerous
tutorials.

Pycomplexes may be regarded as a set of tools, as included,
e.g., in the AMBER toolbox,41 the GROMACS simulation suite,42

or HOOMD-blue.43 To start with, the user may use pycomplexes
to generate coarse-grained structures and topologies from atom-
istic PDB files.20 Complexes++ stores the full information needed
to run simulations in our newly developed CPLX file format using
YAML.44 CPLX files are human-readable such that they can be man-
ually modified. For example, we can set larger values of the bond
length b in simulations to make the linkers more extended.45 We
can also set different average bond length values b for different
linkers.

CPLX files contain the topologies, coordinates, and force fields
and their parameters, making it easy to share complete simu-
lation details. Such CPLX files can be set up efficiently using
the “pycomplexes convert” command and our newly developed
TOP files as input. The latter contain information about the topolo-
gies of the different complexes, i.e., about connectivities and their
multiplicities. In these files, the user may specify an arbitrary number
of copies of a certain protein domain of interest, for example. The
copies are then automatically placed in the simulation box without
further input from the user.

Additionally, pycomplexes can be used to update coordinates
contained in the CPLX files or to adjust the topology accord-
ing to the pH value, for example. It can automatically create
Visual Molecular Dynamics (VMD)46 input scripts for visualiza-
tion, generate demuxed Monte Carlo sampling series from replica
exchange simulations, which correspond to time-continuous tra-
jectories in molecular dynamics simulations, and add linker posi-
tions in post-processing (see below). Furthermore, pycomplexes
may be used to shift and scale the Miyazawa–Jernigan force
field parameters.14 Hence, the coarse-grained force field may be
tuned according to experimental reference data while conserv-
ing the relative residue–residue affinity.13,47 Such fine-tuning of
the force field is an essential feature of coarse-grained sim-
ulations and has been applied to Martini simulations,48,49 for
example.

We construct explicit linker configurations by post-processing
trajectories in two steps. First, we grow linker bead positions
between connected domains according to the Gaussian chain model.
However, the distribution of bead distances is non-physical. Thus,
we equilibrate the Gaussian chains using the original linker model13
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TABLE I. Protein structures for benchmarks. N is the number of amino acids, and D
is an estimate for the largest extension.

Protein (complex) PDB ID N D (Å)

Lysozyme 6LYZ50 129 44
Ras G12V-PI 3-kinase gamma 1HE851 749 96
Atg17-Atg31-Atg29 4HPQ52 1282 334

with an average bond length b = 3.81 Å. We explain these two steps
in more detail in Appendix A.

III. METHODS
To assess the performance of Complexes++, we ran dense pro-

tein simulations with three different proteins and protein complexes
(Table I). The structures differ in size, from small and compact to
large and elongated. We use the original KH model for the inter-
action potentials. For all benchmarks, if not further specified, the
protein volume fraction is set to 0.1. To calculate this volume frac-
tion, we assign each protein a volume given by the volume of a
sphere with a diameter equal to the protein’s maximum exten-
sion (see Table I), for which we use the dense data structure for
the cell-list algorithm. The cell size is set to 12 Å, the number

FIG. 2. Scaling of the runtime of Complexes++ simulations for the solutions of
the three different proteins (colored symbols with lines as a guide to the eye, see
Table I) with the number of beads. We show images of the PDB structures of
the three proteins (same colors as symbols) on the right with scale bars of 1 nm
length, emphasizing their different shapes and sizes. Protein numbers were var-
ied between 2 and 512 in steps of the power of 2 (blue triangles-6LYZ, orange
squares-1HE8, green disks-4HPQ). The slope of the dashed gray line indicates
ideal linear scaling. All simulations were performed using a single thread. Note the
double-logarithmic scale.

FIG. 3. Comparison of the two cell-list data structures designed to be computationally efficient (dense data structure-blue) or memory efficient (sparse data structure-orange)
systems. The data structure for dense systems is computationally more efficient than the algorithm for sparse systems (top). The memory consumption of the data structure
for dense systems is orders of magnitude larger than for sparse systems at low densities (bottom). The memory consumption of the latter is independent of the density and
always lower than that of the dense data structure. For large enough densities, both data structures will consume the same amount of memory. Symbols indicate different
numbers of threads.
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of sweeps is 5000, and the temperature is set to 300 K. For the
implicit Debye–Hückel solvent, we set the Debye length to 10 Å
and the dielectric constant is 80, corresponding to physiological salt
conditions.

Single-replica and MPI benchmarks were performed on the
COBRA cluster of the Max Planck Computing and Data Facility
(MPCDF). A node consists of two Intel Xeon “Skylake” processors
with 20 cores @ 2.4 GHz per processor and 96–192 GB of mem-
ory. Cell-list algorithm benchmarks were performed on the DRACO
cluster of the MPCDF. A node consists of two Intel Xeon E5-2698
processors with 16 cores @ 2.3 GHz per processor and 128 GB of
memory.

IV. RESULTS
We first confirm that our cell-list algorithm using bead intervals

scales linearly with increasing number of beads using a single thread
(Fig. 2). To this end, we performed simulations of identical proteins,
which were modeled as rigid domains. The number of protein copies
varied between 2 and 512. The simulation of the largest protein with
PDB code 4HPQ contained 656 384 beads. For each of the three
proteins, the runtime increases nearly linearly with the number of

protein copies in the simulation. Moreover, the runtime is indepen-
dent of the domain size and depends only on the total number of
beads.

We also compared the two different cell-list data structures
designed for dense and sparse molecular systems (Fig. 3). We vary
the protein volume fraction for a given protein copy number of
128 by changing the simulation box volume. We find that the
dense data structure is generally computationally more efficient
(Fig. 3, top). However, the memory consumption of the dense data
structure increases linearly by orders of magnitude with increas-
ing box volume for a given cell size. Correspondingly, memory
consumption depends inversely on the density (Fig. 3, bottom).
The memory consumption of the sparse data structure remains
constant over the full density range and depends linearly on increas-
ing protein size, i.e., bead number (Fig. 3 bottom; increase in
plateau from left to right). The sparse data structure thus allows
us to use the cell-list algorithm when computer memory is limited.
Such situations occur when running multiple replicas on a single
node.

We tested the dependence of the performance of Complexes++
for a single replica and a single node on the chosen number of
threads (see Fig. 4). We varied the copy numbers for each of the three

FIG. 4. Runtime of single replica simulations using an increasing number of threads for three solutions of proteins (see Table I) with protein copy numbers from 2 to 1024 in
powers of 2. The shape of the curves of the runtime (top) is similar for all copy numbers. For the two largest systems, 1HE8 and 4HPQ, the runtimes show single minima
for eight threads. For the smallest systems, 6LYZ, the runtime is the smallest for a single thread. To quantify this behavior, we show the relative performance with respect to
a single thread (bottom). It is defined by the runtime for a single thread divided by the runtime for the given number of threads.
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proteins from 2 to 1024 in steps of the power of 2. For all copy num-
bers of a protein, the dependence of the runtime on the number of
threads is similar in shape (Fig. 4, top). For the two larger systems,
1HE8 and 4HPQ, the optimal runtime is reached with eight threads.
There, the runtime as a function of the number of threads shows a
clear minimum. For the smallest system, 6LYZ, the optimal number
of threads is one. The runtime increases with increasing numbers of
threads and converges to a plateau.

We next illustrate the behavior of the runtime for different
protein copy numbers by defining the relative performance as a
function of the number of threads. The relative performance is
given by the runtime for a single thread divided by the runtime for
the given number of threads (Fig. 4, bottom). For the two larger
systems, the relative performance has a clear peak at about eight
threads. There, the relative performance is nearly twice as good
as for a single thread, or equally that the time to solution is only
half. The highest throughput is reached for a single thread. For the
smallest system here, performance peaks for a single thread. For
this setting, time to solution is the shortest and throughput is the
largest.

For replica-exchange simulations, the MPI parallelization can
make use of multiple nodes for different replicas and multiple
threads per replica (Fig. 5). For different numbers of replicas of pro-
tein solutions of 1HE8 with 1024 copies, we used several MPI/thread
configurations and different numbers of nodes. Each replica is man-
aged by a single MPI process, such that if we have more replicas than
MPI processes, some MPI processes will have to process more than
one replica. Then, each process uses one or several threads, as is done
with the pure OpenMP implementation. We chose the number of
MPI processes per node and the number of threads per process such
that the CPU cores are fully used. That is the number of MPI pro-
cesses per node times the number of threads per process is equal to

FIG. 5. Total runtime of MPI replica exchange simulations of 1HE8 for a vary-
ing number of nodes with 1024 protein copies per replica. For a given number
of nodes, we varied the numbers of threads per MPI process (one—magenta,
two—blue, four—green, eight—yellow) and the numbers of replicas (64—circle,
128—triangle, 256—square). The thick gray lines show ideal scaling, proportional
to the inverse of the number of nodes, as a guide to the eye. The total number
of MPI processes does not exceed the total number of replicas. Additionally, we
choose the number of MPI processes to use all available cores. Thus, different
combinations of numbers of nodes and threads are realized for different numbers
of replicas.

the number of physical cores per node. The latter is 40 on the com-
pute cluster used for benchmarking. We used one, two, four, and
eight threads per MPI process.

We find that the runtime decreases with increasing node num-
bers in all cases. For the same node number, single threads per
replica are generally more efficient. However, when using more
threads per replica/process, we use more nodes and thus decrease
the runtime further. The lowest overall runtime is reached with eight
threads per process and the largest numbers of used nodes. With
these settings, we reach a similar runtime for the three different
numbers of replicas.

V. DISCUSSION AND CONCLUSIONS
Complexes++ was developed for simulations of protein sys-

tems with the KH model and KH-like models. The KH model and
its variations have a wide range of different applications, which
warrants the development of highly efficient and versatile simula-
tion software. Applications include, for example, the study of the
binding kinetics of the HIV-1 capsid proteins,53,54 the kinetic behav-
ior of proteins in crowded environments,16,55–57 inferential struc-
ture determination,15,30,58–60 protein–protein interactions,26,47,61,62

protein design,63 docking,64 initial structure generation for atom-
istic simulations of dense protein solutions,8 epitope map gen-
eration for the SARS-CoV-2 spike protein,65 and multi-enzyme
complexes.18,31,66–68 Models like the KH model are also excellent
tools for method development due to their coarse but realistic
description of proteins, their comparably simple energy functions,
and their computational efficiency.47 Note that recent applications of
the KH model have already used our Complexes++ and pycomplexes
software.8,18,47,65

To further support such applications, we designed our soft-
ware to be not only efficient but also easily extensible. Compared to
previous implementations of the KH model, new interaction poten-
tials can be easily implemented in Complexes++. The addition of
these potentials allows us to fine-tune pairwise interactions for a
large variety of different systems. For example, the WCA potentials21

could be used to fit coarse-grained models into electron densities.
The electron density would be represented by beads that interact
purely attractively via the WCA attractive potential with proteins.
At low enough temperatures in a temperature replica-exchange sim-
ulation, we expect the proteins to assemble according to the electron
density. To further facilitate customization, different domain types
can be defined at runtime with explicit definitions of interaction
potentials between different domain types. The new interaction
potentials also allow us to implement alternative coarse-grained
models.

One can improve the predictive power of coarse-grained force
fields by encoding knowledge about the interactions and their defi-
ciencies by modifying the force fields accordingly. pycomplexes has
such functionality to set up diverse systems and modify them and
their force fields built in. These capabilities are especially useful
when we integrate additional knowledge in the form of experimental
measurements.11,69

The extensibility of our software is an important foundation for
further improvements. For example, molecular dynamics can effi-
ciently propagate the coordinates of disordered linkers16 and could
be implemented in a hybrid Monte Carlo scheme.70 Another feature
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might be to account for the flexibility of proteins.71 Due to its flexible
design, our software is set to implement libraries of different con-
formers and switch protein structures using a Monte Carlo scheme.
Such structure libraries could be generated by combining elastic
network models for proteins with low-frequency normal modes.72

We developed Complexes++ and its pycomplexes toolbox
specifically for the KH and related models to be able to take
full advantage of their properties. The KH linker model has been
used in LAMMPS73 and HOOMD-blue43 to simulate liquid–liquid
phase separation.16 The KH model has also been implemented on
GPUs.74 Due to its clear, efficient, and extensible structure, our
open-source code is well suited to combine protein models based
on the KH model with, for example, elastic models of lipid mem-
branes.75 Such a combination of models of different scales is crucial
for the computational investigation of complex sub-cellular struc-
tures due to their shear sizes and the large time scales of relevant
processes.

In summary, Complexes++ and pycomplexes are efficient and
flexible computational tools to study large scale protein complexes
and their solutions. Our software emphasizes ease-of-use in set-
ting up, modifying, post-processing, and visualizing simulations of
the KH model and related models. The simulations are highly effi-
cient, also due to our cell-list method specifically tailored to the wide
range of applications of KH-like models. Our software thus enables
scientists to efficiently explore structural ensembles of protein
complexes and possibly refine these ensembles with experimental
data.11,30,69

Our open-source software can be downloaded free of charge at
https://github.com/bio-phys/complexespp. We encourage users to
take advantage of this community platform and raise any issues they
encounter with the software. The code can be re-used in agreement
with the GNU Lesser General Public License version 3.
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APPENDIX A: ADDING EXPLICIT LINKERS
1. Adding Gaussian polymer chains

Pycomplexes uses an iterative algorithm to generate positions
for the linker beads, given fixed positions for the first and last beads
of the linker. Given the positions of beads N and 1, a single bead
N − 1 can be generated with the following algorithm:

1. Randomly choose a distance RN,N−1 = dstart between beads N
and N − 1 distributed according to Ref. 76,

P(Rij) = 4πR2
ij
⎛

⎝

3
2π⟨R2

ij⟩

⎞

⎠

3/2
exp
⎛

⎝

−

3R2
ij

2⟨R2
ij⟩

⎞

⎠

(A1)

for Rij > 0, where ⟨R2
ij⟩ = b2

( j − i) is the mean squared dis-
tances between beads i and j. This distance defines a sphere
around bead i = N, on which bead j = N − 1 will be placed.

2. Randomly choose a distance dend between beads i = 1 and
j = N − 1, according to Eq. (A1), so that the sphere around
bead 1 intersects with the sphere calculated in step 1. If the
two spheres do not intersect, discard both randomly chosen
radii and repeat steps 1 and 2.

3. Choose a random point on the intersection of two spheres
centered at beads 1 and N to place the bead N − 1. In three
dimensions, the intersection is a circle, so a random angle θ
has to be drawn.

To grow the next bead, with index N − 2, simply repeat the algo-
rithm with bead N − 1 as the new starting point to choose the
random distance RN−1,N−2. Repeat this algorithm until all beads are
generated.

This algorithm gives the three distances between the beads
1, N, and N-1 and the angle θ that uniquely determine where a
new bead should be placed. To calculate the actual coordinates
in the coordinate system of the simulation, we use the following
algorithm:

1. Determine the axis ⃗z′ = (z′0, z′1, z′2)
⊺ along the vector r⃗N − r⃗1.

2. Determine and normalize perpendicular axes
⃗x′ = (− z′1+z′2

z′0
, 1, 1)

⊺
. Permutate elements of ⃗x′ if z′0 = 0.

3. Determine ⃗y′ = ⃗x′ × ⃗z′, where × is the cross product.
4. Determine angle ϕ using cos(ϕ) = d2

start+d2−d2
end

2d startd
, with

d = ∣r⃗N − r⃗1∣.
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5. Calculate r⃗N−1 in the coordinate system spanned by ( ⃗x′, ⃗y′, ⃗z′)
from the spherical coordinates given by (dstart, θ, ϕ).

6. Convert r⃗N−1 into reference coordinate system (x⃗, y⃗, z⃗).

To avoid overlaps between beads and to generate more extended
configurations, we add overlap checks in steps 1 and 3 of the first
algorithm and redraw distances if two beads are too close to each
other.

2. Relaxing Gaussian polymer chains
To generate more physical bead coordinates, we have to relax

the structures generated by the previous algorithms. For the relax-
ation, we use the linker energy of the KH force field13 in combination
with a Monte Carlo equilibration. In a trial move, we displace an
individual bead of the linker. The start and end beads are held
fixed. For a linker of length N the probability to pick a bead is
uniform between all N − 2 beads. A sweep consists of N − 2 trial
moves. Note that we only do displacements of the beads and no
angular or dihedral trial moves. Therefore, we adjust the size of
the maximum displacement after each sweep to achieve a tar-
get acceptance ratio of 30%. If after a sweep the acceptance ratio
is greater than 30%, we increase this step-width by 10%, if it is
below 30%, we decrease the step-width by 10%. Note that we do
not reset the counters for the numbers of attempted and accepted
moves.

APPENDIX B: TYPICAL WORKFLOW

Below, we show a minimal code example for a typical work-
flow with Complexes++. Conveniently, we use pycomplexes for the
preparation and analysis of the simulations. In this example, we use
pycomplexes from the command line; however, it may also be used
through Python, e.g., via interactive Python notebooks.

First, we prepare a short equilibration of our system of inter-
est, Code Example 1. To this end, we use pycomplexes to generate
the input file for this simulation, equilibrate.cplx. This file is
processed by Complexes++.

The submodule “pycomplexes convert” processes the input
file, binding.top, which we prepared beforehand. This is a

Code Example 1. System equilibration.

Code Example 2. Production run.

Code Example 3. Simulation analysis.

human-readable file, which contains topological information such as
the geometry of the simulation box and a PDB structure from which
the coarse-grained topology shall be prepared. After completion of
the simulation, we may analyze the output file equilibrate.stat
to check, e.g., acceptance rate and potential energy. Besides that, we
also obtain a trajectory and a reference structure in the form of a
PDB file.

Next, we may start our production run, Code Example 2.
We use pycomplexes to continue the production run from the
equilibrated structure.

After completion of the simulation, we use pycomplexes to
analyze our results, Code Example 3. We may, e.g., prepare a
coarse-grained representation of the simulation trajectory in VMD.
Furthermore, we may grow the linker domains in post-processing or
we may analyze a replica exchange trajectory.

For a complete list of submodules of pycomplexes, a man-
ual, and extensive tutorials, please see https://github.com/bio-
phys/complexespp.
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30B. Różycki, Y. C. Kim, and G. Hummer, Structure 19, 109 (2011).
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