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ABSTRACT
Quantum devices are subject to natural decay. We propose to study these decay processes as the Markovian evolution of quantum chan-
nels, which leads us to dynamical semigroups of superchannels. A superchannel is a linear map that maps quantum channels to quantum
channels while satisfying suitable consistency relations. If the input and output quantum channels act on the same space, then we can con-
sider dynamical semigroups of superchannels. No useful constructive characterization of the generators of such semigroups is known. We
characterize these generators in two ways: First, we give an efficiently checkable criterion for whether a given map generates a dynamical
semigroup of superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the
Gorini-Kossakowski-Lindblad-Sudarshan form in the case of quantum channels. To derive the normal form, we exploit the relation between
superchannels and semicausal completely positive maps, reducing the problem to finding a normal form for the generators of semigroups
of semicausal completely positive maps. We derive a normal for these generators using a novel technique, which applies also to infinite-
dimensional systems. Our work paves the way for a thorough investigation of semigroups of superchannels: Numerical studies become feasible
because admissible generators can now be explicitly generated and checked. Analytic properties of the corresponding evolution equations are
now accessible via our normal form.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070635

I. INTRODUCTION AND MOTIVATION
Anybody who has ever owned an electronic device knows that these devices have a finite lifespan after which they stop working properly.

At least from a consumer perspective, a long lifespan is a desirable property for such devices. Thus, it is important for an engineer to know
which kind of decay processes can affect a device in order to suppress them by an appropriate design. Certainly, these considerations will
also become important for the design of quantum devices. We, therefore, propose to systematically study the decay processes that quantum
devices can be subject to.

In this work, we take a first step in this direction by deriving the general form of linear time-homogeneous master equations that govern
how quantum channels behave when inserted into a circuit board at different points in time. This leads to the study of dynamical semigroups
of superchannels. Here, superchannels are linear transformations between quantum channels.1

Let us consider a concrete example (see Fig. 1). Suppose we are trying to estimate the optical transmissivity of some material (M), which
we assume to depend on the polarization of the incident light. A simple approach is to send photons from a light source (S) through the
material and to count how many photons arrive at the detector (D). We model the material by a quantum channel TM , acting on the states of
photons described as three-level systems, with the levels corresponding to vacuum, horizontal, and vertical polarization. In an idealized world,
with a perfect vacuum in the regions between the source, the material, and the detector, we can infer the transmissivity from the measurement
statistics of the state TM(σ), where σ is the state of the photon emitted from the source. However, in a more realistic scenario, even though we
might have created an (almost) perfect vacuum between the devices at construction time, some particles are leaked into that region over time.
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FIG. 1. Estimating the transmissivity of a material under the influence of an influx of particles into the regions between the components.

FIG. 2. If the particle density is low, then the incident photon interacts with the particles in the region sequentially and independently. The effect of a single interaction can
be described by a channel ΔQ. Hence, the state after the first interaction is ΔQ(σ), the state after the second interaction is ΔQ(ΔQ(σ)), and so forth. The number of
interactions is given by the product of the particle density δ and the volume V . Hence, the effect of an region with fixed volume is described by the channel Qδ = (ΔQ)δV . It
follows that if δ = δ1 + δ2, then Qδ1+δ2

= (ΔQ)δ1V(ΔQ)δ2V = Qδ1
○ Qδ2

. The semigroup property for real δ can then be obtained in the continuum limit.

Then, interactions between the photons and these particles might occur, causing absorption or a change in polarization. Hence, the situation
is no longer described accurately by TM alone but also requires a description of the particle-filled regions.

To find such a description, we argue that the effect of particles in some region (here, either between S and M, or M and D) can be
modeled by a quantum dynamical semigroup, parameterized by the particle density δ. If the particle density is reasonably low and Qδ is the
quantum channel describing the effect of the particles on the incident light at a given δ, then, as explained in Fig. 2, Qδ satisfies the semigroup
property Qδ1+δ2 = Qδ1 ○Qδ2 . Furthermore, if there are no particles, then there should be no effect. Hence, Q0 = id. After adding continuity in
the parameter δ as a further natural assumption, the family {Qδ}δ≥0 forms a quantum dynamical semigroup. That is, we can write Qδ = eLδ

for some generator L in Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)-form.
If we assume in our example that particles of type A are leaked into the region between S and M at a rate γA and that particles of type

B are leaked into the region between M and D at a rate γB, then the overall channel describing the transformation that emitted photons
undergo at time t is given by

Ŝt(TM) = eγBLBt ○ TM ○ eγALAt ,

where LA and LB are the generators of the dynamical semigroups describing the effect of the particles in the respective regions.
We note that at any fixed time, Ŝt interpreted as a map on quantum channels is a superchannel written in “circuit”-form. This means

that Ŝt describes a transformation of quantum channels implemented via pre- and post-processing. Furthermore, Ŝt(TM) can be determined
by solving the time-homogenous master equation

d
dt

T(t) = L̂(T(t)),

where L̂(T) = γALA ○ T + γBT ○ LB, with the initial condition T(0) = TM . In other words, we have

Ŝt = eL̂ t ,

and thus, the family {Ŝt}t≥0 forms a dynamical semigroup of superchannels.
By inductive reasoning, we, thus, arrive at our central physical hypothesis: Decay-processes of quantum devices with some sort of influx

are well described by dynamical semigroups of superchannels. It follows that such decay-processes can be understood by characterizing
dynamical semigroups of superchannels. Such a characterization is the main goal of our work.

In particular, we aim to understand dynamical semigroups of superchannels in terms of their generators. We characterize these genera-
tors fully by providing two results: First, we give an efficiently checkable criterion for whether a given map generates a dynamical semigroup of
superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the GKLS form
in the case of quantum channels. Interestingly, we find that the most general form of dynamical semigroups of superchannels goes beyond the
simple introductory example above.

We arrive at these results through a path (see Fig. 3) that also illuminates the connection to the classical case. We start by studying dynam-
ical semigroups of classical superchannels, which (analogously to quantum superchannels being transformations between quantum channels)
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FIG. 3. Schematic of the concepts studied in this work.

are transformations between stochastic matrices. We do so by establishing a one-to-one correspondence between classical superchannels and
certain classical semicausal channels, that is, stochastic matrices on a bipartite system (AB) that do not allow for communication from B to A
(see Definition IV.2). We can then obtain a full characterization of the generators of semigroups of classical superchannels by characterizing
generators of semigroups of classical semicausal maps first and then translating the results back to the level of superchannels. The study of
(dynamical semigroups of) classical superchannels and classical semicausal channels is the content of Sec. IV.

Armed with the intuition obtained from the classical case, we then go on to study the quantum case. We start by characterizing the
generators of semigroups of semicausal2 completely positive maps (CP-maps)—our main technical result and one of independent inter-
est. This characterization can be obtained from the classical case by a “quantization”-procedure that allows us to see exactly which features
of semigroups of semicausal CP-maps are “fully quantum.” Dynamical semigroups of semicausal CP-maps are discussed Sec. V B. Finally,
in Sec. V C, we use the one-to-one correspondence (via the quantum Choi–Jamiołkowski isomorphism) between certain semicausal CP-
maps and quantum superchannels to obtain a full characterization of the generators of semigroups of quantum superchannels. While
the classical section (Sec. IV) and the quantum section (Sec. V) are heuristically related, they are logically independent and can be read
independently.

This work is structured as follows: In the remainder of this section, we discuss results related to ours. Section II contains an overview
over our main results. In Sec. III, we recall relevant notions from functional analysis and quantum information, as well as some notation. The
(logically) independent sections (Secs. IV and V) comprise the main body of our paper, containing complete statements and proofs of our
results on dynamical semigroups of superchannels and semicausal channels. We study the classical case in Sec. IV and the quantum case in
Sec. V. Finally, we conclude with a summary and an outlook to future research in Sec. VI.

A. Related work
The study of quantum superchannels goes back to Ref. 1 and has since evolved to the study of higher-order quantum maps.3–5 A peculiar

feature of higher-order quantum theory is that it allows for indefinite causal order.6,7 However, it was recently discovered that the causal order
is preserved under (certain) continuous evolutions.8,9 It, therefore, seems interesting to study continuous evolutions of higher-order quantum
maps systematically. Our work can be seen as an initial step into his direction.

The study of (semi-)causal and (semi-)localizable quantum channels goes back to Ref. 2. By proving the equivalence of semicausality and
semilocalizability for quantum channels, the authors of Ref. 10 resolved a conjecture raised in Ref. 2 (and attributed to DiVincenzo). Later,
the authors of Ref. 11 provided an alternative proof for this equivalence and further investigated causal and local quantum operations.

II. RESULTS
We give an overview over our answers to the questions identified in Sec. I. In our first result, we identify a set of constraints that a linear

map satisfies if and only if it generates a semigroup of quantum superchannels.

Result 1.1 (Lemma V.17—informal). Checking whether a linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semi-
group of quantum superchannels can be phrased as a semidefinite constraint satisfaction problem.

Therefore, we can efficiently check whether a given linear map is a valid generator of a semigroup of quantum superchannels. We can
even solve optimization problems over such generators in terms of semidefinite programs. Thereby, this first characterization of generators
of semigroups of quantum superchannels facilitates working with them computationally.

As our second result, we determine a normal form for generators of semigroups of quantum superchannels. Similar to the GKLS-form, we
decompose the generator into a “dissipative part” and a “Hamiltonian part,” where the latter generates a semigroup of invertible superchannels
such that the inverse is a superchannel as well.
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Result 1.2 (Theorem V.18—informal). A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of quantum
superchannels if and only if it can be written as L̂(T) = D̂(T) + Ĥ(T), where the “Hamiltonian part” is of the form

Ĥ(T)(ρ) = −i[HB, T(ρ)] − iT([HA, ρ]),

with local Hamiltonians HB and HA, and where the “dissipative part” is of the form D̂(T)(ρ) = trE[D̂ ′(T)(ρ)], where

D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (1a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (1b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)), B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†], (1c)

with unitary U and arbitrary A and B.

The “dissipative part” consists of three terms: Term (1a) itself generates a semigroup of superchannels (for B = 0), with the interpretation
that the transformed channel [Ŝt(T)] arises due to the stochastic application of T ↦ trE[U(T ⊗ idE)(A(ρ⊗ σ)A†)U†] at different points in
time (Dyson series expansion). Term (1b) itself generates a semigroup of superchannels (for A = 0) of the form Ŝt(T) = eLBt ○ T, where LB is
a generator of a quantum dynamical semigroup (and hence in GKLS-form). Term (1c) is a “superposition” term, which is harder to interpret.
It will become apparent from the path taken via the “quantization” of semicausal semigroups that this term is a pure quantum feature with
no classical analog. Therefore, the presence of (1c) can be regarded as one of our main findings. It is also worth noting that the normal form
in Result 1.2 is more general than the form of the generator we found in our introductory example. Hence, nature allows for more general
decay-processes than the simple ones with an independent influx of particles before and after the target object. We also complement this
structural result by an algorithm that determines the operators U, A, B, HA, and HB if the conditions in Result 1.1 are met.

The proof of these results relies on the relation (via the Choi–Jamiołkowski isomorphism) between superchannels and semicausal
CP-maps. Our next findings—and from a technical standpoint our main contributions—are the corresponding results for semigroups of
semicausal CP-maps.

Result 2.1 (Lemma V.5—informal). Checking whether a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A
semicausal CP-maps can be phrased as a semidefinite constraint satisfaction problem for its Choi-matrix.

Based on this insight, we can efficiently check whether a given linear map is a valid generator of a semigroup of semicausal CP-maps.
Since semigroups of semicausal CP-maps are, in particular, semigroups of CP-maps, our normal form for generators giving rise to

semigroups of semicausal CP-maps is a refining of the GKLS-form.

Result 2.2 (Theorem V.6—informal). A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A semicausal CP-
maps (in the Heisenberg picture) if and only if it can be written as L(X) = Φ(X) − K†X − XK, where the CP part Φ is of the form

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),

with a unitary U ∈ B(HE ⊗HB;HB ⊗HE) and arbitrary A ∈ B(HA;HA ⊗HE) and B ∈ B(HB;HB ⊗HE), and the K in the non-CP part is of
the form

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) +
1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB,

with a self-adjoint HB and an arbitrary KA.

This characterization has both computational and analytical implications: On the one hand, it provides a recipe for describing semicausal
GKLS generators in numerical implementations. On the other hand, the constructive characterization of semicausal GKLS generators makes
a more detailed analysis of their (e.g., spectral) properties tractable. It is also worth noting that in Result 2.2, we can allow for (separable)
infinite-dimensional spaces. In the finite-dimensional case, we also provide an algorithm to compute the operators U, A, B, KA, and HB, if the
conditions of Result 2.1 are met.

Let us now turn to the corresponding results in the classical case. Here, instead of looking at (semigroups of) CP-maps and quantum
channels, we look at (entry-wise) non-negative matrices and row-stochastic matrices (see Secs. III and IV for details) that we assume to act on
RX for (finite) alphabets X ∈ {A,B,E}.
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The following result is the classical analog of Result 2.2:

Result 3 (Corollary IV.8—informal). A linear map Q : RA ⊗RB → RA ⊗RB generates a semigroup of (Heisenberg) B→/ A semicausal
non-negative matrices if and only if it can be written as

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i),

with a row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA, and maps B(i) ∈ B(RB)
that generate semigroups of row-stochastic matrices.

We will discuss in detail how Result 2.2 arises as the “quantization” of Result 3 in the paragraph following the Proof of Lemma V.5.
Here, we highlight that in both the quantum and the classical case, the generators of semicausal semigroups are constructed from two basic
building blocks. In the quantum case, these are a B→/ A semicausal CP-map Φsc, with Φsc(X) = V†

sc(X ⊗ 𝟙E)Vsc and Vsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and a GKLS generator of the form idA ⊗ B̂. In the classical case, they are a B→/ A semicausal non-negative map Φsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and operators of the form ∣ai⟩⟨ai∣⊗ B(i), where B(i) generates a semigroup of row-stochastic maps. The difference between the quantum
case and the classical case then lies in the way the general form is constructed from the building blocks. While we simply take convex combi-
nations of the building-blocks in the classical case, we have to take superpositions of the building-blocks, by which we mean that we need to
combine the corresponding Strinespring operators, in the quantum case.

As our last result, we present the normal form for generators of semigroups of classical superchannels.

Result 4. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical superchannels if and only if it can be written as

Q̂(M) = U(M ⊗ 𝟙E)A −
∣A∣

∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ +

∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣,

with a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA, and a collection of
generators of semigroups of column-stochastic matrices B(i) ∈ B(RB).

As in the quantum case, we have two kinds of evolutions: a stochastic application of M ↦ U(M ⊗ 𝟙E)A at different points in time and a
conditioned post-processing evolution of the form∑ie

B(i)tM∣ai⟩⟨ai∣. Note that there are no “superposition” terms, such as (1c).

III. NOTATION AND PRELIMINARIES
In this section, we review basic notions from functional analysis, quantum information theory, and the theory of dynamical semigroups.

We also fix our notation for these settings as well as for a classical counterpart of the quantum setting.

A. Functional analysis
Throughout this paper, H (with some subscript) denotes a (in general, infinite-dimensional) separable complex Hilbert space. Whenever

H is assumed to be finite-dimensional, we explicitly state this assumption. We denote the Banach space of bounded linear operators with
domain HA and codomain HB, equipped with the operator norm, by B(HA;HB) and write B(H) for B(H;H). For X ∈ B(HA;HB), the
adjoint X† ∈ B(HB;HA) of X is the unique linear operator such that ⟨ψB∣XψA⟩ = ⟨X†ψB∣ψA⟩ for all ∣ψA⟩ ∈ HA and all ∣ψB⟩ ∈ HB. Here, and
throughout this paper, we use the standard Dirac notation.

An operator Y ∈ B(H) is called self-adjoint if Y† = Y . A self-adjoint Y ∈ B(H) is called positive semidefinite, denoted by Y ≥ 0, if there
exists an operator Z ∈ B(H) such that Y = Z†Z. If Y is positive semidefinite, then there exists a unique positive semidefinite operator

√
Y

such that Y =
√

Y
√

Y (Ref. 12, p. 196). The operator
√

Y is called the square-root of Y . The absolute value ∣Y ∣ ∈ B(H) of Y is defined by
∣Y ∣ =

√
Y†Y .

We define the set of trace-class operators S1(HA;HB) = {ρ ∈ B(HA;HB) ∣ tr[∣ρ∣] <∞}, which becomes a Banach space when endowed
with the norm ∥ρ∥1 ∶= tr[∣ρ∣]. We write S1(H) for S1(H;H). The set S1(HA;HB) satisfies the two-sided∗-ideal property: If ρ ∈ S1(HA;HB)
and Y ∈ B(HA;HB), then ρ† ∈ S1(HB;HA), ρ†Y ∈ S1(HA), and Yρ† ∈ S1(HB).

Besides the norm topology, we will use the strong operator topology and the ultraweak topology. The strong operator topology is the
smallest topology on B(HA;HB) such that for all ∣ψA⟩ ∈ HA, the map B(HA;HB) ∋ Y ↦ Y ∣ψA⟩ ∈ HB is continuous, where HB is equipped
with the norm topology. The ultraweak topology on B(HA;HB) is the smallest topology such that the map B(HA;HB) ∋ Y ↦ tr[ρ†Y] ∈ C is
continuous for all ρ ∈ S1(HA;HB). Since HA and HB are separable, so is S1(HB;HA). Hence, the sequential Banach Alaoglu theorem implies
that every bounded sequence in B(HA;HB) has an ultraweakly convergent subsequence. Here, we view B(HA;HB) as the continuous dual of
S1(HB;HA). The aforementioned results can be found in many books, e.g., Ref. 12 (ch. VI.6), however, usually only for the case HA = HB.
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The general results stated above can be obtained from this case by considering B(HA;HB) and S1(HA;HB) as subspaces of B(HA ⊕HB) and
S1(HA ⊕HB), respectively.

An operator V ∈ B(HA;HB) is called an isometry if ∥V ∣ψA⟩∥ = ∥∣ψA⟩∥ for all ∣ψA⟩ ∈ HA. The (possibly empty) set of unitaries, the
surjective isometries, is denoted by U(HA;HB), and we write U(H) for U(H;H). As a special notation, if H ′

A and H ′
B are closed linear

subspaces of HA and HB, with (canonical) isometric embeddings 𝟙A′→A ∈ B(H ′
A;HA) and 𝟙B′→B ∈ B(H ′

B;HB), respectively, then we will
write UP(H ′

A;H ′
B) = {𝟙B′→BU𝟙†

A′→A ∈ B(HA;HB) ∣U ∈ U(H ′
A;H ′

B)} and UP(H) for UP(H;H). That is, this is the set of partial isometries.

B. Flip operator, partial trace, complete positivity, and duality
The flip operator FA;B ∈ B(HA ⊗HB;HB ⊗HA) is the unique operator satisfying FA;B(∣ψA⟩⊗ ∣ψB⟩) = ∣ψB⟩⊗ ∣ψA⟩ for all ∣ψA⟩ ∈ HA and

all ∣ψB⟩ ∈ HB.
The partial trace with respect to the space HA is the unique linear map trA : S1(HA ⊗HB;HA ⊗HC)→ S1(HB;HC) that satisfies

tr[XtrA[ρ]] = tr[(𝟙A ⊗ X)ρ] for all ρ ∈ S1(HA ⊗HB) and all X ∈ B(HC;HB). If the spaces involved have subscripts, the partial trace will
always be denoted with the corresponding subscript. The partial trace with respect to ρ ∈ S1(HA) is the unique linear map trρ : B(HA
⊗HB;HA ⊗HC)→ B(HB;HC) that satisfies tr[σtrρ[X]] = tr[(ρ⊗ σ)X] for all σ ∈ S1(HC;HB) and all X ∈ B(HA ⊗HB;HA ⊗HC). Proofs
of existence and uniqueness can be found in Ref. 13 (Theorem 2.28 and Theorem 2.30), where we used again the observation that the results
above follow from the usual ones for HB = HC, by looking at the operators on HA ⊗ (HB ⊕HC).

Let T ∈ B(B(HB);B(HA)). The map T is called positive if T(XB) is positive semidefinite whenever XB ∈ B(HB) is positive semidefi-
nite. For n ∈ N0, the map Tn : B(Cn ⊗HB)→ B(Cn ⊗HA) is uniquely defined by the requirement that Tn(Xn ⊗ XB) = Xn ⊗ T(XB) for all
Xn ∈ B(Cn) and all XB ∈ B(HB). The map T is completely positive (CP) if the map Tn is positive for all n ∈ N0. A CP-map T is called nor-
mal if T is continuous when B(HA) and B(HB) are both equipped with the ultraweak topology. We denote the set of normal CP-maps by
CPσ(HB;HA) and write CPσ(H) for CPσ(H;H). By the Stinespring dilation theorem (in its form for normal CP-maps), T is a normal CP-
map if and only if there exist a (separable) Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that for all XB ∈ B(HB), we have
T(XB) = V†(XB ⊗ 𝟙E)V . Furthermore, the Stinespring dilation can be chosen to be minimal, that is, the pair (V ,HE) can be chosen such that
span{(XB ⊗ 𝟙E)V ∣ψA⟩ ∣XB ∈ B(HB), ∣ψA⟩ ∈ HA} is norm-dense in HB ⊗HE. Furthermore, if (V′,H ′

E) is another Stinespring dilation, then
there exists an isometry U ∈ B(HE;H ′

E) such that V′ = (𝟙B ⊗U)V . Another equivalent characterization is the so-called Kraus form: T is a
normal CP-map if and only if there exists a countable set of operators {Li}i ⊂ B(HA;HB), the Kraus operators, such that for all XB ∈ B(HB),
we have T(XB) = ∑iL

†
i XBLi, where the series converges in the strong operator topology. One can obtain Kraus operators from a Stinespring

dilation (V ,HE) by choosing an orthonormal basis {∣ei⟩}i of HE and defining Li = (𝟙B ⊗ ⟨ei∣)V . A map T is unital if T(𝟙B) = 𝟙A, and a unital
normal CP-map is called a Heisenberg (quantum) channel.

Let S ∈ B(S1(HA);S1(HB)). The dual map S∗ ∈ B(B(HB);B(HA)) is the unique linear map that satisfies tr[X†
BS(ρ)] = tr[(S∗(XB))

†ρ]
for all XB ∈ B(HB) and all ρ ∈ S1(HA). We call S the Schrödinger picture map and S∗ the Heisenberg picture map. The map S is called com-
pletely positive if S∗ is completely positive in the sense defined above. In that case, S∗ is automatically normal. In fact, T is a normal CP-map
if and only if there exists S ∈ B(B(HA);B(HB)) such that S∗ = T. It follows that S is completely positive if and only if there exist a separable
Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that S(ρ) = trE[VρV†] for all ρ ∈ S1(HA). Furthermore, S is completely positive
if and only if there exist a countable set of operators {Li}i ⊂ B(HA;HB) such that S(ρ) = ∑iLiρL†

i and the series converges in trace-norm. A
map S is trace-preserving if tr[S(ρA)] = tr[ρA] for all ρA ∈ S1(HA). A trace-preserving CP-map is called a (quantum) channel. The facts in
this section are contained or follow directly from the results in Refs. 14 and 15.

C. Choi–Jamiołkowski isomorphism, partial transposition
In this section, let HA, HB, and HC be finite-dimensional Hilbert spaces with fixed orthonormal bases {∣ai⟩}i, {∣bj⟩}j, and {∣ck⟩}k,

respectively. The transpose (with respect to {∣ai⟩}i and {∣bj⟩}j) of an operator X ∈ B(HA;HB) is the unique linear operator XT ∈ B(HB;HA)
such that ⟨bj∣Xai⟩ = ⟨ai∣XTbj⟩ for all elements of the orthonormal bases. The partial transposition (with respect to {∣ai⟩}i) of an
operator X ∈ B(HA ⊗HB;HA ⊗HC) is the unique linear operator XTA ∈ B(HA ⊗HB;HA ⊗HC) such that (⟨ai∣⊗ 𝟙C)X(∣aj⟩⊗ 𝟙B)
= (⟨aj∣⊗ 𝟙C)XTA(∣ai⟩⊗ 𝟙B) for all elements of the orthonormal basis.

The (quantum) Choi–Jamiołkowski isomorphism,16,17 defined with respect to an orthonormal basis {∣ai⟩}i of HA, is the bijective lin-
ear map CA;B : B(B(HA);B(HB))→ B(HA ⊗HB), CA;B(T) = (idA ⊗ T)(∣Ω⟩⟨Ω∣), and its inverse is given by C−1

A;B(τ)(ρ) = trA[(ρT ⊗ 𝟙)τ],
where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. A map S ∈ B(B(HA);B(HB)) is completely positive if and only if CA;B(S) ≥ 0; S is trace-preserving if and
only if trB[CA;B(S)] = 𝟙A, and we have the identity trA[CA;B(S)] = S(𝟙A). We will occasionally call elements of the image of CA;B
Choi matrices.

D. Non-negative matrices and duality
As we provide characterizations for both the quantum and the classical case, we now also introduce the notation and definitions required

for the latter. With a classical system A, we associate a finite alphabet A = {a1, a2, . . . , a∣A∣} and a “state-space” RA, with the orthonormal basis
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{∣ai⟩}∣A∣i=1. We define by ∣1A⟩ ∶= ∑ i∣ai⟩ the all-one-vector. A vector ∣x⟩ ∈ RA is called non-negative if ⟨a∣x⟩ ≥ 0 for all a ∈ A. A linear operator
M ∈ B(RA;RB) is called non-negative if M∣x⟩ is non-negative whenever ∣x⟩ is non-negative (equivalently, all matrix elements are non-
negative). A non-negative M is called column-stochastic if ⟨1B∣M = ⟨1A∣, column-sub-stochastic if there exists a non-negative P such that
M + P is column-stochastic, row-stochastic if M∣1A⟩ = ∣1B⟩, and row-sub-stochastic if there exists a non-negative P such that M + P is row-
stochastic. Given ∣x⟩ or ⟨x∣, we denote by diag(∣x⟩) = diag(⟨x∣) the diagonal matrix with the components of x on the diagonal. Finally, we
will use the “classical Choi–Jamiołkowski isomorphism” (also known as vectorization), which is a convenient notation to make the con-
nection to the quantum case more transparent. The classical Choi–Jamiołkowski isomorphism, defined with respect to {∣ai⟩}i, is the linear
map CC

A;B : B(RA;RB)→ B(RA ⊗RB) defined by CC
A;B(M) = (𝟙A ⊗M)∣Ω⟩, where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. The inverse (CC

A;B)−1 is then given by
(CC

A;B)−1(∣x⟩) = (⟨Ω∣⊗ 𝟙B)(𝟙A ⊗ ∣x⟩)We will sometimes refer to elements of the range of CC
A;B as Choi vectors.

E. Dynamical semigroups
Let X be a Banach space. A family of operators {Tt}t≥0, with Tt ∈ B(X) for all t ≥ 0, is called a norm-continuous one-parameter

semigroup on X or, short, dynamical semigroup if T0 = 𝟙, Ts+t = TsTt for all t, s ≥ 0 and the map R≥0 ∋ t ↦ Tt is norm-continuous. Norm-
continuous dynamical semigroups are automatically differentiable and have bounded generators, that is, there exists L ∈ B(X) such that
Tt = etL for all t ≥ 0 and L = d

dt ∣t=0+
Tt (Ref. 18, Theorem I.3.7).

Lindblad19 proved that Tt ∈ CPσ(H) for all t ≥ 0 if and only if there exist Φ ∈ CPσ(H) and K ∈ B(H) such that Tt = etL, with L(X)
= Φ(X) − K†X − XK. In this case, we refer to {Tt}t≥0 as a CP semigroup. We call the corresponding form of the generator L the GKLS form19,20

and Φ its CP part. If H is finite-dimensional, then Tt = etL ∈ CPσ(H) for all t ≥ 0 if and only if the operator L ∶= CA;B = (id⊗ L)(∣Ω⟩⟨Ω∣) is
self-adjoint and P�LP� ≥ 0, where ∣Ω⟩ = ∑ i∣ai⟩⊗ ∣ai⟩ for some orthonormal basis {ai} of H and P� ∈ B(H⊗H) is the orthogonal projection
onto the orthogonal complement of {∣Ω⟩}.21,22 The corresponding classical result is as follows: {Tt}t≥0 ⊆ B(RA) is a dynamical semigroup of
non-negative linear maps if and only if there exist a non-negative linear map Φ ∈ B(RA) and a diagonal map K ∈ B(RA) (with respect to the
basis orthogonal basis {∣ai⟩}i) such that the generator L has the form Φ − K.23

IV. THE CLASSICAL CASE
Before studying the quantum scenario, we consider the classical version of our main question. That is, we study continuous semigroups

of classical superchannels and their generators. On the one hand, this allows us to develop an intuition that we can build upon for the quantum
case. On the other hand, a comparison between the classical and the quantum case elucidates which features of the latter are actually quantum.
For the purpose of this section, A, B, and E denote finite alphabets as in Subsection III D.

A classical superchannel is a map that maps classical channels, i.e., stochastic matrices, to classical channels while preserving the prob-
abilistic structure of the classical theory. To achieve the latter requirement, we require that a classical superchannel is a linear map and that
probabilistic transformations, i.e., sub-stochastic matrices, are mapped to probabilistic transformations. Expressed more formally, we have
the following definition:

Definition IV.1 (classical superchannels). A linear map Ŝ : B(RA;RB)→ B(RA;RB) is called a classical superchannel if Ŝ(M)
∈ B(RA;RB) is column sub-stochastic whenever M ∈ B(RA;RB) is column sub-stochastic and Ŝ(M) ∈ B(RA;RB) is column stochastic
whenever M ∈ B(RA;RB) is column stochastic.

A related concept is that of a classical semicausal channel, which is a stochastic matrix on a bipartite space A × B such that no
communication from B to A is allowed. We formalize this as follows:

Definition IV.2 (classical semicausality). An operator M ∈ B(RA ⊗RB) is called column B→/ A semicausal if there exists MA ∈ B(RA)
such that (𝟙A ⊗ ⟨1B∣)M =MA(𝟙A ⊗ ⟨1B∣).

Similarly, N ∈ B(RA ⊗RB) is called row B→/ A semicausal if there exists NA ∈ B(RA) such that N(𝟙A ⊗ ∣1B⟩) = NA ⊗ ∣1B⟩.

Clearly, M is column B→/ A semicausal if and only if MT is row B→/ A semicausal. To emphasize the analogy to the quantum case, we will
often refer to a column B→/ A semicausal map as a Schrödinger B→/ A semicausal map and to a row B→/ A semicausal map as a Heisenberg
B→/ A semicausal map. In both cases, the maps MA and NA will be called the reduced maps.

The structure of this section is as follows: We start by establishing the connection between classical superchannels and classical non-
negative semicausal maps, followed by a characterization of classical non-negative semicausal maps as a composition of known objects; such
a characterization is known in the quantum case as the equivalence between semicausality and semilocalizability. We then turn to the study of
the generators of semigroups of semicausal and non-negative maps and finally use the correspondence between superchannels and semicausal
channels to obtain the corresponding results for the generators of semigroups of superchannels.

A. Correspondence between classical superchannels and semicausal non-negative linear maps
We first show, with a proof inspired by the one given in Ref. 1 for the analogous correspondence in the quantum case, that we can

understand classical superchannels in terms of classical semicausal channels. To concisely state this correspondence, we use the classical
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version of the Choi–Jamiołkowski isomorphism. Let us mention here once again that we assume all alphabets (A,B, . . . ) to be finite for our
treatment of the classical case.

Theorem IV.3. Let Ŝ : B(RA;RB)→ B(RA;RB) be a linear map and define S ∈ B(RA ⊗RB) via S = CC
A;B ○ Ŝ ○ (CC

A;B)−1. Then, Ŝ is a
classical superchannel if and only if S is non-negative and (Schrödinger B→/ A) semicausal such that the reduced map SA satisfies SA∣1A⟩ = ∣1A⟩.
In this case, SA is automatically non-negative.

Proof. We first show the “if”-direction, i.e., that if S is non-negative and (Schrödinger B→/ A) semicausal, then Ŝ = (CC
A;B)−1 ○ S ○ CC

A;B
is a superchannel. Suppose M is a non-negative matrix. Then, Ŝ(M) is non-negative, since CC

A;B maps non-negative matrices to non-negative
vectors, S maps non-negative vectors to non-negative vectors, and (CC

A;B)−1 maps non-negative vectors to non-negative matrices.
Furthermore, if M is column stochastic, then

⟨1B∣Ŝ(M) = ⟨1B∣(CC
A;B)

−1 ○ S ○ CC
A;B(M)

= (⟨Ω∣⊗ ⟨1B∣)(𝟙A ⊗ S(CC
A;B(M)))

= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ ⟨1B∣)CC
A;B(M)))

= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ (⟨1B∣M))∣Ω⟩))
= ⟨Ω∣(𝟙A ⊗ SA∣1A⟩)
= ⟨Ω∣(𝟙A ⊗ ∣1A⟩)
= ⟨1A∣,

so Ŝ(M) is stochastic. In the preceding calculation, we used that S is semicausal in the third line, that M is stochastic in the fifth line, and that
SA∣1A⟩ = ∣1A⟩ in the sixth line.

Now suppose that M is sub-stochastic such that M +Q is stochastic, with Q being non-negative. Then, Ŝ(M +Q) = Ŝ(M) + Ŝ(Q) is
stochastic, and since Ŝ(Q) is non-negative, Ŝ(M) is sub-stochastic. This proves that Ŝ is a superchannel. The claim about the non-negativity
of SA now follows directly from the semicausality condition.

For the converse, suppose Ŝ is a superchannel. Since for all a ∈ A and all b ∈ B, the matrix ∣b⟩⟨a∣ is sub-stochastic, it follows by linearity
of Ŝ that Ŝ(M) is non-negative whenever M is non-negative. Thus, since (CC

A;B)−1 maps non-negative vectors to non-negative matrices, Ŝ
maps non-negative matrices to non-negative matrices, and CC

A;B maps non-negative matrices to non-negative vectors, it follows that S is
non-negative.

Next, we want to show that S is Schrödinger B→/ A semicausal. Since Ŝ is a superchannel, S maps Choi vectors of stochastic matrices to
Choi vectors of stochastic matrices, that is, (𝟙A ⊗ ⟨1B∣)S∣x⟩ = ∣1A⟩ for all non-negative vectors ∣x⟩ ∈ RA ⊗RB that satisfy (𝟙A ⊗ ⟨1B∣)∣x⟩ = ∣1A⟩.
As a tool, we define the set of scaled differences of Choi vectors of stochastic matrices by

C0 ∶= {λ(∣p⟩ − ∣n⟩) ∣ λ ∈ R; ∣p⟩, ∣n⟩ ∈ RA ⊗RB non − negative, with (𝟙A ⊗ ⟨1B∣)∣p⟩ = (𝟙A ⊗ ⟨1B∣)∣n⟩ = ∣1A⟩}. (2)

We claim that
C0 = C′0 ∶= {∣x′⟩ ∈ RA ⊗RB ∣ (𝟙A ⊗ ⟨1B∣)∣x′⟩ = 0}.

To see this, first note that C0 ⊆ C′0 follows directly from the definition. For the other inclusion, C0 ⊇ C′0, we decompose ∣x′⟩ ∈ C′0 as ∣x′⟩
= ∣p′⟩ − ∣n′⟩ for two non-negative vectors ∣p′⟩, ∣n′⟩ ∈ RA ⊗RB. It follows that (𝟙A ⊗ ⟨1B∣)∣p′⟩ = (𝟙A ⊗ ⟨1B∣)∣n′⟩. Furthermore, for ε > 0 small
enough, we have that ∣y′⟩ ∶= ∣1A⟩ − ε(𝟙A ⊗ ⟨1B∣)∣p′⟩ is non-negative. However, for any non-negative unit ∣v⟩ ∈ RB, with ⟨1B∣v⟩ = 1, the vectors
∣p⟩ ∶= ε∣p′⟩ + ∣y′⟩⊗ ∣v⟩ and ∣n⟩ ∶= ε∣n′⟩ + ∣y′⟩⊗ ∣v⟩ are Choi vectors of stochastic matrices. Hence, ∣x′⟩ = 1

ε (∣p⟩ − ∣n⟩) ∈ C0.
We define P� ∈ B(RA ⊗RB) by P�∣x⟩ = 1

∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩ and P ∶= 𝟙AB − P�. Then, since (𝟙A ⊗ ⟨1B∣)P∣x⟩ = (𝟙A ⊗ ⟨1B∣)∣x⟩
− (𝟙A ⊗ ⟨1B∣)∣x⟩ = 0, we have that P∣x⟩ ∈ C0 for all ∣x⟩ ∈ RA ⊗RB. We define SA ∈ B(RA) by SA∣xA⟩ = 1

∣B∣(𝟙A ⊗ ⟨1B∣)P�S(∣xA⟩⊗ ∣1B⟩)
= 1
∣B∣(𝟙A ⊗ ⟨1B∣)S(∣xA⟩⊗ ∣1B⟩) and calculate

(𝟙A ⊗ ⟨1B∣)S∣x⟩ = (𝟙A ⊗ ⟨1B∣)S(P∣x⟩) + (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)
= (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)

= (𝟙A ⊗ ⟨1B∣)S(
1
∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩)

= SA((𝟙A ⊗ ⟨1B∣)∣x⟩),

where we used in the second line that C0 is invariant under S, a fact that follows directly from (2). This calculation exactly shows that S is
Schödinger A→/ B semicausal.
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It remains to show that SA∣1A⟩ = ∣1A⟩. This follows easily, since

SA∣1A⟩ =
1
∣B∣ (𝟙A ⊗ ⟨1B∣)S(∣1A⟩⊗ ∣1B⟩)

= 1
∣B∣ (𝟙A ⊗ ⟨1B∣)CC

A;B ○ Ŝ ○ (CC
A;B)−1(∣1A⟩⊗ ∣1B⟩)

= 𝟙A ⊗ [⟨1B∣Ŝ(
1
∣B∣ ∣1B⟩⟨1A∣)]∣Ω⟩

= (𝟙A ⊗ ⟨1A∣)∣Ω⟩
= ∣1A⟩,

where we used that 1
∣B∣ ∣1B⟩⟨1A∣ is stochastic and that thus Ŝ( 1

∣B∣ ∣1B⟩⟨1A∣) is stochastic. ◻

In summary, Theorem IV.3 tells us that, via the classical Choi–Jamiołkowski isomorphism, we can view classical superchannels
equivalently also as suitably normalized semicausal non-negative maps.

B. Relation between classical semicausality and semilocalizability
The goal of this section is to get a better understanding of the structure of semicausal maps. For non-negative semicausal maps, we have

the following structure theorem:

Theorem IV.4. A non-negative map N ∈ B(RA ⊗RB) is row B→/ A semicausal if and only if there exist a (finite) alphabet E, a (non-
negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), and a non-negative matrix A ∈ B(RA ⊗RE;RA) such that

N = (A⊗ 𝟙B)(𝟙A ⊗U). (3)

In that case, we can choose ∣E∣ = ∣A∣2.

Borrowing the terminology from the quantum case,2,10 the preceding theorem tells us that non-negative semicausal maps are
semilocalizable. We formally define the latter notion for the classical case as follows:

Definition IV.5. A non-negative map N ∈ B(RA ⊗RB) is called Heisenberg B→/ A semilocalizable if it can be written in the form of
Eq. (3).

Similarly, a non-negative map M ∈ B(RA ⊗RB) is called Schrödinger B→/ A semilocalizable if it can be written as M = (𝟙A ⊗U)(A⊗ 𝟙B)
for a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB) and a non-negative matrix A ∈ B(RA;RA ⊗RE).

The requirement that U is stochastic and A is non-negative in the decomposition above is essential. In fact, if one drops these
requirements, then a decomposition M = (𝟙A ⊗U)(A⊗ 𝟙B) can be found for any matrix M ∈ B(RA ⊗RB).

Due to Theorem IV.4, a non-negative Schrödinger B→/ A semicausal and column-stochastic map M admits an operational interpretation.
First, note that if M is not only semicausal but also stochastic, then also the matrix A in Eq. (3) is stochastic. Thus, the interpretation of the
decomposition is as follows: First, Alice applies some probabilistic operation (A) to the composite system A × E. Then, she transmits the
E-part to Bob, who now applies a stochastic operation (U) to his part of the system.

Given this interpretation, the idea behind the construction in the Proof of Theorem IV.4 is that Alice first looks the input of system A
and generates the output of system A according to the distribution given by the matrix NA. Then, she copies the input as well as her generated
output and sends this information to Bob, who is then able to complete the operation by generating an output conditional on his input and
the information he got from Alice. Given that this construction requires copying, it might be considered surprising that a quantum analog is
true nevertheless.10

Proof (Theorem IV.4). If N is Schrödinger B→/ A semilocalizable, then

N(𝟙A ⊗ ∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗U∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗ ∣1EB⟩) = (A(𝟙A ⊗ ∣1E⟩))⊗ ∣1B⟩.

Hence, N is row B→/ A semicausal.
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Conversely, if N is row B→/ A semicausal, we choose E ∶= A ×A and define

A ∶=∑
i,j,k
⟨aj∣NAak⟩ ∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣,

U ∶= ∑
m,n,r,s

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩⟨bs∣ +

⎡⎢⎢⎢⎢⎢⎢⎣
∑
m,n

⟨an ∣NAam⟩=0

∣am ⊗ an⟩

⎤⎥⎥⎥⎥⎥⎥⎦

⊗ 𝟙B.
(4)

To show that N = (A⊗ 𝟙B)(𝟙A ⊗U), we calculate

(A⊗ 𝟙B)(𝟙A ⊗U) = ∑
i,j,k

m,n,r,s
⟨an ∣NAam⟩≠0

⟨aj∣NAak⟩⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

[(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an ⊗ br⟩⟨bs∣)]

+ ∑
i,j,k
m,n

⟨an ∣NAam⟩=0

⟨aj∣NAak⟩(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an⟩⊗ 𝟙B)

= ∑
i,j,k,r,s

⟨aj ∣NAak⟩≠0

⟨aj∣NAak⟩⟨aj ⊗ br ∣N ak ⊗ bs⟩
⟨aj∣NAak⟩

∣aj⟩⟨ak∣⊗ ∣br⟩⟨bs∣

+ ∑
i,j,k

⟨aj ∣NAak⟩=0

⟨aj∣NAak⟩∣aj⟩⟨ak∣⊗ 𝟙B

= N.

For the last step, observe that the second sum vanishes and that one can drop the constraint that ⟨aj∣NAak⟩ ≠ 0 in the first sum (after
cancellation) because ⟨aj ⊗ br ∣N ak ⊗ bs⟩ = 0 if ⟨aj∣NAak⟩ = 0. To see this last claim, note that, since N is non-negative and semicausal, we
have

0 ≤ ⟨aj ⊗ br ∣N ak ⊗ bs⟩ ≤ ⟨aj ⊗ br ∣N ak ⊗ 1B⟩ = ⟨aj∣NAak⟩⟨br ∣1B⟩ = 0.

It is clear that A and U are non-negative since N and, thus, also NA are non-negative by assumption. It remains to show that U is row-
stochastic. We have

U∣1B⟩ = ∑
m,n,r,s

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∑
m,n,r

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ 1B⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∑
m,n,r

⟨an ∣NAam⟩≠0

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∣1EB⟩,

where we used the condition that N is semicausal to obtain the third line. This finishes the proof. ◻

Remark IV.6. Theorem IV.4 can be extended to weak − ∗ continuous non-negative maps on the Banach space of bounded real sequences,
but this requires extra care and does not yield additional insight beyond the previous proof.

C. Generators of semigroups of classical semicausal non-negative maps
The main goal of this section is to establish a structure theorem for the generators of semigroups of non-negative semicausal maps. First,

recall that a (norm)-continuous semigroup {Nt}t≥0 ⊆ B(R
A ⊗RB) has a generator Q ∈ B(RA ⊗RB) such that Nt = etQ. A classical result states

that Nt is non-negative for all t ≥ 0 if and only if the generator Q can be written in the form Q = Φ − K, where Φ is non-negative and K is
a diagonal matrix with respect to the canonical basis.24 A second, crucial observation is that Nt is Heisenberg B→/ A semicausal for all t ≥ 0
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if and only if Q is Heisenberg B→/ A semicausal. To see this, let us first show that the reduced maps {NA
t }t≥0

also form a norm-continuous
semigroup of non-negative maps. Since non-negativity is clear, we derive the semigroup properties (NA

0 = 𝟙A, NA
t+s = NA

t NA
s , and continuity)

from the corresponding ones of {Nt}t≥0,

NA
0 = (𝟙A ⊗ ⟨b1∣)(NA

0 ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)N0(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩) = 𝟙A,

NA
t+s = (𝟙A ⊗ ⟨b1∣)(NA

t+s ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)Nt+s(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)NtNs(𝟙A ⊗ ∣1B⟩)
= (𝟙A ⊗ ⟨b1∣)Nt(𝟙A ⊗ ∣1B⟩)NA

s = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩)NA
t NA

s = NA
t NA

s ,

∥NA
t −NA

s ∥ = sup
∥x∥∞=1

∥(NA
t −NA

s )∣x⟩∥∞ = sup
∥x∥∞=1

∥((NA
t −NA

s )∣x⟩)⊗ ∣1B⟩∥
∞
= sup
∥x∥∞=1

∥(Nt −Ns)(∣x⟩⊗ ∣1B⟩)∥∞

≤ sup
∥y∥∞=1

∥(Nt −Ns)∣y⟩∥ = ∥Nt −Ns∥.

Thus, we conclude that NA
t = etQA

for some generator QA ∈ B(RA). We further have

Q(𝟙A ⊗ ∣1B⟩) =
d
dt
∣
t=0

Nt(𝟙A ⊗ ∣1B⟩)

= d
dt
∣
t=0
(𝟙A ⊗ ∣1B⟩)NA

t

= (𝟙A ⊗ ∣1B⟩)QA.

Thus, Q is semicausal if Nt is semicausal for all t ≥ 0. Conversely, if Q is semicausal, then Nt is semicausal, since

Nt(𝟙A ⊗ ∣1B⟩) = etQ(𝟙A ⊗ ∣1B⟩)

=
∞

∑
k=0

tk

k!
Qk(𝟙A ⊗ ∣1B⟩)

=
∞

∑
k=0

tk

k!
(𝟙A ⊗ ∣1B⟩)(QA)k

= (𝟙A ⊗ ∣1B⟩)etQA

.

Therefore, our task reduces to characterizing semicausal maps of the form Q = Φ − K. Let us first remark that it is straight-forward to check
(numerically) whether a given map satisfies these two conditions: We just need to check for non-negativity of the off-diagonal elements
and whether (𝟙A ⊗ ⟨b∣)Q∣ai ⊗ 1B⟩ = 0 for all ai ∈ A and all b ∈ {∣1B⟩}�. That is, semicausality can be checked in terms of ∣A∣(∣B∣ − 1) linear
equations and ∣A∣∣B∣(∣A∣∣B∣ − 1) linear inequalities. Thus, a desirable result would be a normal form for all Heisenberg B→/ A semicausal
generators Q, which allows for generating such maps rather than checking whether a given maps is of the desired form. The main result of
this section is exactly such a normal form.

To understand our normal form below, note that there are two natural ways of constructing a generator (remember that the matrix
elements are interpreted as transition rates) that does not transmit information from system B to system A. First, we can leave system A
unchanged and have transitions only on system B. The most basic form of such a map is ∣ai⟩⟨ai∣⊗ B(i) for some 1 ≤ i ≤ ∣A∣ and for some
B(i) ∈ B(RB) that is itself a valid generator of a semigroup of row-stochastic maps. That means that B(i) = Φ(i) − diag(Φ(i)∣1B⟩) for some non-
negative matrix Φ(i) ∈ B(RB). Second, if we want to act non-trivially on system A, we can make both the two parts of a generator Q = Φ − K,
the non-negative partΦ ∈ B(RA ⊗RB) and the diagonal part K ∈ B(RA ⊗RB), semicausal separately. Such a map has the formΦsc − KA ⊗ 𝟙B,
where Φsc is semicausal non-negative and KA ∈ B(RA) is diagonal. The fact that (convex) combinations of these basic building blocks already
give rise to the most general form of semicausal generators for semigroups of non-negative bounded linear maps is the content of our next
theorem, which establishes the desired normal form.

Theorem IV.7 (generators of classical semigroups of semicausal non-negative maps). A map Q ∈ B(RA ⊗RB) is the generator of a
(norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative linear maps if and only if there exist a non-negative Heisenberg
B→/ A semicausal map Φsc ∈ B(RA ⊗RB), a diagonal map KA ∈ B(RA ⊗RB), and linear maps B(i) ∈ B(RB) that generate (norm-continuous)
semigroups of row-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = Φsc − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, Φsc can be chosen “block-off-diagonal,” i.e., Φsc = ∑i≠j∣ai⟩⟨aj∣⊗Φ(ij)sc for some collection of (non-negative) maps Φ(ij)sc ∈ B(RB).
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Proof. It is straight-forward to check that a generator Q of the given form has non-negative off-diagonal entries with respect to the
standard basis and is Heisenberg B→/ A semicausal. By the above discussion, this means that such a generator indeed gives rise to a semigroup
of semicausal non-negative maps.

We prove the converse. Suppose Q is the generator of a semigroup of non-negative linear maps. Then, we can expand it as
Q = ∑∣A∣i, j=1∣ai⟩⟨aj∣⊗Q(ij), where the operators Q(ij) ∈ B(RB) are non-negative for i ≠ j and of the form of a generator of a non-negative
semigroup (i.e., non-negative minus diagonal) for i = j. This decomposition, together with semicausality, implies that for all 1 ≤ i, j ≤ ∣A∣,

Q(ij)∣1B⟩ = (⟨ai∣⊗ 1B)Q(∣aj⟩⊗ ∣1B⟩) = ⟨ai∣QA∣aj⟩ ⋅ ∣1B⟩.

In other words, ∣1B⟩ is an eigenvector of every Q(ij), with the corresponding eigenvalue λ(ij) = ⟨ai∣QA∣aj⟩. Hence, if we define B(i) ∈ B(RB)
as B(i) ∶= Q(ii) − λ(ii)𝟙B, then Bi generates a semigroup of non-negative maps (since Q(ij) does and λ(ii)𝟙B is diagonal) and satisfies (by
construction) B(i)∣1B⟩ = 0. Hence, B(i) generates a semigroup of row-stochastic maps.

With this notation, we can rewrite Q as

Q =∑
i≠j
∣ai⟩⟨aj∣⊗Q(ij)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:Φsc

−
∣A∣

∑
i=1
− λ(ii)∣ai⟩⟨ai∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:KA

⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

Note that Φsc is semicausal, since it can be written as the linear combination of the three semicausal maps Q, KA ⊗ 𝟙B, and ∑ i∣ai⟩⟨ai∣⊗ B(i).
Thus, we have reached the claimed form. ◻

By applying Theorem IV.4, we can further expand the Φ part.

Corollary IV.8. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative
matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
(row-)stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

One should also note that with the notation of Corollary IV.8, the reduced map is given by QA = (A(𝟙A ⊗ ∣1B⟩)) − KA. Hence, the reduced
dynamics only depends on the operators A and KA. Further note that if we require the semigroup to consist of non-negative semicausal
maps that are also row-stochastic, then we obtain the additional requirement that KA∣1A⟩ = A∣1AE⟩, which completely determines KA. For
completeness and later use, we write down the form of the generators non-negative semigroups that are Schrödinger B→/ A semicausal.

Corollary IV.9. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Schrödinger B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative
matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
column-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (𝟙A ⊗U)(A⊗ 𝟙B) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

Similar to the row-stochastic case, B(i) generates a semigroup of column-stochastic maps if and only if B(i) = Φ(i) − diag(⟨1B∣Φ(i)) for
some non-negative matrix Φ(i) ∈ B(RB).

D. Generators of semigroups of classical superchannels
We finally turn to semigroups of classical superchannels, that is, a collection of classical superchannels {Ŝt}t≥0

, such that Ŝ0 = id,
Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous (with respect to any and, thus, all of the equivalent norms in finite dimensions). To formu-
late a technically slightly stronger result, we call a linear map Ŝ a preselecting supermap if CC

A;B ○ Ŝ ○ (CC
A;B)−1 is a non-negative Schrödinger
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B→/ A semicausal map. Theorem IV.3 then tells us that a superchannel is a special preselecting supermap. The result of this section is the
following theorem:

Theorem IV.10. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical preselecting supermaps if and only if there
exist a (finite) alphabet E, a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix
KA ∈ B(RA), and a collection of generators of semigroups of column-stochastic matrices B(i) ∈ B(RB) such that

Q̂(M) = U(M ⊗ 𝟙E)A −MKA +
∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣. (5)

Furthermore, Q̂ generates a semigroup of classical superchannels if and only if Q̂ generates a semigroup of preselecting supermaps and ⟨ai∣KAai⟩
= ⟨1AE∣Aai⟩ for all 1 ≤ i ≤ ∣A∣. In this case, Q̂ is given by

Q̂(M) = U(M ⊗ 𝟙E)A −
∣A∣

∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ +

∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣. (6)

Proof. The main idea is to relate the generators of superchannels to those of semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem IV.3 for superchannels. For a generator Q̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

Q̂ = d
dt
∣
t=0

Ŝt = (CC
A;B)−1 d

dt
∣
t=0
[CC

A;B ○ Ŝt ○ (CC
A;B)−1]CC

A;B.

Thus, Q̂ generates a semigroup of preselecting supermaps if and only if Q̂ can be written as Q̂ = (CC
A;B)−1 ○Q ○ CC

A;B for some generator Q of a
semigroup of non-negative Schrödinger B→/ A semicausal maps. Thus, to prove the first part of our theorem, we simply take the normal form
in Corollary IV.9 and compute the similarity transformation above.

For ∣Ω⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ RA ⊗RA and an operator XA ∈ B(RA), the well-known identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A ⊗ XT
A)∣Ω⟩ can be proven

by a direct calculation. Similarly, it is easy to show that for XA ∈ B(RA;RA ⊗RE), the slightly more general identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A

⊗ FA;EXTA
A )∣Ω⟩ holds, where FA;E is the flip operator that exchanges systems A and E. We use these two identities in the following calculations.

For Ã ∈ B(RA;RA ⊗RE) and Ũ ∈ B(RE ⊗RB;RB), we have, for any M ∈ B(RA;RB),

(CC
A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)CC

A;B(M) = (CC
A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(Ã⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(𝟙A ⊗ FA;EÃ TA)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)FA;EÃ TA))∣Ω⟩

= (CC
A;B)−1

C
C
A;B(Ũ(𝟙E ⊗M)FA;EÃ TA)

= Ũ(𝟙E ⊗M)FA;EÃ TA

= (ŨFB;E)(M ⊗ 𝟙E)Ã TA.

For K̃A ∈ B(RA), we get, for any M ∈ B(RA;RB),

(CC
A;B)−1(KA ⊗ 𝟙B)CC

A;B(M) = (CC
A;B)−1(K̃A ⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗M)(K̃A ⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗M)(𝟙A ⊗ K̃T

A)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗MK̃T
A)∣Ω⟩

= (CC
A;B)−1

C
C
A;B(MK̃T

A)
=MK̃T

A.

Finally, for an operator B̃ (i) ∈ B(RB) and for any 1 ≤ i ≤ ∣A∣, we have, for any M ∈ B(RA;RB),
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(CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))CC

A;B(M) = (CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(∣ai⟩⟨ai∣⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(𝟙A ⊗ ∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1

C
C
A;B(B(i)M∣ai⟩⟨ai∣)

= B(i)M∣ai⟩⟨ai∣.

Applying the results of these calculations term by term to the normal form in Corollary IV.9 yields the first claim, where we defined A = Ã TA ,
U = ŨFB;E, KA = K̃T

A, and B(i) = B̃ (i).
If the semigroup {Ŝt}t≥0 consists of superchannels, that is, preselecting maps such that (by Theorem IV.3) the reduced maps SA

t of the
semigroup of semicausal maps St ∶= CC

A;B ○ Ŝt ○ (CC
A;B)−1 (which are defined by the requirement that (𝟙A ⊗ ∣1B⟩)St = SA

t (𝟙A ⊗ ∣1B⟩)) satisfy
SA

t ∣1A⟩ = ∣1A⟩, then differentiating this relation yields

QA∣1A⟩ =
d
dt
∣
t=0

SA
t ∣1A⟩ =

d
dt
∣
t=0
∣1A⟩ = 0.

We conclude that Q̂ generates a semigroup of superchannels if and only if Q generates a semigroup of semicausal maps and QA∣1A⟩ = 0. We
obtain directly from Corollary IV.9 that QA = (𝟙A ⊗ ∣1E⟩)Ã − K̃A. It follows that

⟨ai1E∣Ã1A⟩ = ⟨ai1E∣ATA 1A⟩ = ⟨1AE∣Aai⟩ = ⟨ai∣K̃A1A⟩ = ⟨ai∣KAai⟩, (7)

where we used that K̃A = KA is diagonal in the last step. This is the condition claimed in the theorem. Finally, (6) is obtained by combining
this condition with (5). ◻

V. THE QUANTUM CASE
We now turn to the quantum case. As introduced and described in more detail in Ref. 1, a quantum superchannel is a map that maps

quantum channels to quantum channels while preserving the probabilistic structure of the theory. To achieve the latter, it is usually required
that a quantum superchannel is a linear map and that probabilistic transformations, i.e., trace non-increasing CP-maps, should be mapped
to probabilistic transformations even if we add an innocent bystander. When dealing with superchannels, we will restrict ourselves to the
finite-dimensional case and leave the infinite-dimensional case25 for future work. We follow1 and define superchannels as follows:

Definition V.1 (superchannels). A linear map Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) is called a superchannel if for all n ∈ N the
map Ŝn = idB(S1(Cn)) ⊗ Ŝ satisfies that Ŝn(T) is a probabilistic transformation whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a probabilistic
transformation and that Ŝn(T) is a quantum channel whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a quantum channel.

A related concept is that of a semicausal quantum channel, which is a quantum channel on a bipartite space HA ⊗HB such that no
communication from B to A is allowed. Following Refs 2 and 10, we formalize this as follows:

Definition V.2 (semicausality). A bounded linear map L∗ : S1(HA ⊗HB)→ S1(HA ⊗HB) is called Schrödinger B→/ A semicausal if
there exists LA

∗ : S1(HA)→ S1(HA) such that trB[L∗(ρ)] = LA
∗(trB[ρ]), for all ρ ∈ S1(HA ⊗HB). Similarly, L : B(HA ⊗HB)→ B(HA ⊗HB)

is called Heisenberg B→/ A semicausal if there exists LA : B(HA)→ B(HA) such that L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B for all XA ∈ B(HA).

The map L∗ is Schrödinger B→/ A semicausal if and only if the dual map L ∶= L∗∗ is normal and Heisenberg B→/ A semicausal. We will
often omit the Schrödinger or Heisenberg attribute if it is clear from the context. This section is structured analogously to the section about
the classical case. In particular, we will start by reminding the reader of the connection between semicausal maps and superchannels as well
as the characterization of semicausal CP-maps in terms of semilocalizable maps, as schematically shown in Fig. 4. We then turn to the study
of the generators of semigroups of semicausal CP-maps and finally use the correspondence between superchannels and semicausal channels
to obtain the corresponding results of the generators of semigroups of superchannels.

A. Superchannels, semicausal channels, and semilocalizable channels
We first state the characterization of superchannels in terms of semicausal maps, obtained in Ref. 1.

Theorem V.3. For finite-dimensional spaces HA and HB, let Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) be a linear map and define
S = CA;B ○ Ŝ ○ C−1

A;B. Then, Ŝ is a superchannel if and only if S is CP and Schrödinger B→/ A semicausal such that the reduced map SA satisfies
SA(𝟙A) = 𝟙A.
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FIG. 4. Visualization of the relation between the notions of superchannels, semicausal maps, and semilocalizable maps. Superchannels and semicausal maps are related
via a similarity transform with the Choi–Jamiołkowski isomorphism. Schrödinger B→/ A semicausal maps are those maps whose output, after tracing out system 4, does not
depend on input 2 (ρ or ρ̃). Semicausal maps are precisely those maps that allow for one-way communication only. This is called semilocalizability.

The next result is due to Eggeling, Schlingemann, and Werner,10 who proved it in the finite-dimensional setting. The following form,
which is a generalization of Ref. 10 to the infinite-dimensional case and which has previously been shown in (Ref. 26, Theorem 4), can be
obtained from our main result (Theorem V.6) by setting K = 0.

Theorem V.4. A map Φ ∈ CPσ(HA ⊗HB) is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a
unitary operator U ∈ U(HE ⊗HB;HB ⊗HE), and an arbitrary operator A ∈ B(HA;HA ⊗HE) such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B). (8)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

We call a normal CP-map Φ ∈ CPσ(HA ⊗HB) semilocalizable if its Stinespring dilation can be written in the form of Eq. (8). With that
nomenclature, the above theorem is exactly the quantum analog of Theorem IV.4.

B. Generators of semigroups of semicausal CP maps
The main goal of this section is to establish a structure theorem for the generators of semigroups of semicausal CP-maps, the proof-

structure of which is highlighted in Fig. 5. This is our main technical contribution. To get started, recall that a generator L ∈ B(B(HA ⊗HB))
generates a norm-continuous semigroup {Tt}t≥0 ⊆ CPσ(HA ⊗HB) of CP-maps (i.e., Tt = etL) if and only if L can be written in GKLS-form,
i.e., if and only if there exist Φ ∈ CPσ(HA ⊗HB) and K ∈ B(HA ⊗HB) such that

L(X) = Φ(X) − K†X − XK, X ∈ B(HA ⊗HB). (9)

As in the classical case, we continue by showing that Tt is Heisenberg B→/ A semicausal for all t ≥ 0 if and only if L is Heisenberg B→/ A
semicausal. We start by showing that the family of reduced maps {TA

t }t≥0 also forms a norm-continuous semigroup of normal CP-maps. That
TA

t is normal and CP follows, since for any density operator ρB ∈ S1(HB), we have

TA
t = trρB ○ Tt ○D,

where D ∈ CPσ(HA;HA ⊗HB) is defined by D(XA) = XA ⊗ 𝟙B. Hence, TA
t is a normal CP-map as composition of normal CP-maps. It remains

to check the semigroup properties (TA
0 = idA, TA

t+s = TA
t TA

s , and norm-continuity). We have

TA
0 (XA) = trρB[T0(XA ⊗ 𝟙B)] = trρB[XA ⊗ 𝟙B] = XA,

TA
t+s(XA) = trρB[Tt+s(XA ⊗ 𝟙B)] = trρB[Tt(Ts(XA ⊗ 𝟙B))] = trρB[Tt(TA

s (XA)⊗ 𝟙B)] = trρB[(TA
t TA

s (XA))⊗ 𝟙B] = TA
t TA

s (XA),
∥TA

t − TA
s ∥ = sup

∥XA∥B(HA)=1
∥TA

t (XA) − TA
s (XA)∥B(HA)

= sup
∥XA∥B(HA)=1

∥(TA
t (XA) − TA

s (XA))⊗ 𝟙B∥B(HA⊗HB)

= sup
∥XA∥B(HA)=1

∥Tt(XA ⊗ 𝟙B) − Ts(XA ⊗ 𝟙B)∥B(HA⊗HB)
≤ sup
∥X∥B(HA⊗HB)=1

∥Tt(X) − Ts(X)∥B(HA⊗HB)
= ∥Tt − Ts∥.
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FIG. 5. Overview of the proof structure leading to the normal form for semicausal Lindblad generators (Theorem V.6). We first observe that semicausality of the CP semigroup
is equivalent to semicausality of the corresponding GKLS generator L. The insight is then that we can construct a CP-map Φ0 that is closely related to the CP-part of L
and that is semicausal (Lemma V.13). From the semilocalizable form of Φ0, we then obtain an explicit form for the CP-part of L. This, together with the observation that a
semicausal non-CP part has to have a local form, yields the desired normal form.

Thus, we conclude that TA
t = etLA

for some generator LA ∈ B(B(HA)) of normal CP-maps. We further have

L(XA ⊗ 𝟙B) =
d
dt
∣
t=0

Tt(XA ⊗ 𝟙B) =
d
dt
∣
t=0

TA
t (XA)⊗ 𝟙B = LA(XA)⊗ 𝟙B.

Thus, L is semicausal if Tt is semicausal for all t ≥ 0. Conversely, if L is semicausal, then Tt is semicausal for all t ≥ 0, since

Tt(XA ⊗ 𝟙B) = etL(XA ⊗ 𝟙B)

=
∞

∑
k=0

tk

k!
Lk(XA ⊗ 𝟙B)

=
∞

∑
k=0

tk

k!
(LA)k(XA)⊗ 𝟙B

= etLA

(XA)⊗ 𝟙B.

Therefore, our task reduces to characterizing semicausal maps in the GKLS-form, i.e., we want to determine the corresponding Φ and K. Our
main result (Theorem V.6) is a normal form, which allows us to list all semicausal generators L.

Before we delve into this, we treat the inverse question: Given some L ∈ B(B(HA ⊗HB)), is it a semicausal generator? A computa-
tionally efficiently chackable criterion can be constructed via the Choi–Jamiołkowski isomorphism. If HA and HB are finite-dimensional
and L ∈ B(B(HA ⊗HB)) is given, then we define L = CAB;AB(L) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where the Choi–Jamiołkowski isomor-
phism is defined with respect to the orthogonal bases {∣ai⟩}dim(H A)

i=1 and {∣bj⟩}dim(H B)

j=1 of HA and HB, respectively, and where the spaces
HA1 = HA2 = HA and HB1 = HB2 = HB are introduced for notational convenience. Furthermore, define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) to
be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩.

Lemma V.5. A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Heisenberg B→/ A semicausal CP-maps if
and only if

● L is self-adjoint and P�LP� ≥ 0, and
● trB1[L] = LA ⊗ 𝟙B2 for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).

The generated semigroup is unital (i.e., Tt(𝟙AB) = 𝟙AB for t ≥ 0) if and only if trA1[LA] = 0.
Furthermore, a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Schrödinger B→/ A semicausal CP-maps if

and only if
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● L is self-adjoint and P�LP� ≥ 0 and
● (FA1 ;B1 ⊗ 𝟙A2)trB2[L](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ LA for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).

The generated semigroup is trace-preserving (i.e., tr[Tt(ρ)] = tr[ρ] for ρ ∈ B(HA ⊗HB) and t ≥ 0) if and only if trA2[LA] = 0.

Thus, checking whether a map L is the generator of a semigroup of semicausal CP-maps reduces to checking several semidefinite
constraints. In particular, the problem to optimize over all semicausal generators is a semidefinite program.

Proof. It is known (see, e.g., the appendix in Ref. 21) that L generates a semigroup of CP-maps if and only if L is self-adjoint and
P�LP� ≥ 0. This criterion goes by the name of conditional complete positivity.22 Thus, it remains to translate the other criteria to the level of
Choi–Jamiołkowski operators. If L is Heisenberg B→/ A semicausal, then

trB1[L] = trB1[(idA1B1 ⊗ L)(∣Ω⟩⟨Ω∣)]
= (idA1 ⊗ L)(∣ΩA⟩⟨ΩA∣⊗ 𝟙B2)
= (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣)⊗ 𝟙B2

= LA ⊗ 𝟙B2 ,

where we defined ∣ΩA⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and LA = (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣). Conversely, if trB1[L] = LA ⊗ 𝟙B2 , define LA

= C−1
A;A(LA). Then,

L(XA ⊗ 𝟙B1) = trA1B1[((XT
A ⊗ 𝟙B1)⊗ 𝟙A2B2)L]

= trA1[(XT
A ⊗ 𝟙A2B2)trB1[L]]

= trA1[(XT
A ⊗ 𝟙A2B2)(LA ⊗ 𝟙B2)]

= trA1[(XT
A ⊗ 𝟙A2)LA]⊗ 𝟙B2

= C−1
A;A(LA)(XA)⊗ 𝟙B2

= LA(XA)⊗ 𝟙B.

Finally, it is known that a semigroup of CP-maps is unital if and only if L(𝟙A2B2) = 0. However, this is equivalent to our criterion, since a
simple calculation shows that

trA1B1[L] = L(𝟙A2B2).

This finishes the proof for the Heisenberg picture case. The Schrödinger case can be proven along similar lines or be obtained directly from
the Heisenberg case via the identity CAB;AB(L∗) = FA1B1 ;A2B2[CAB;AB(L)]TFA1B1 ;A2B2 . ◻

Let us now return to the main goal of this section: finding a normal form for semicausal generators in GKLS-form. We motivate (and
interpret) our normal form as the “quantization” of the normal form for generators of classical semicausal semigroups (Theorem IV.7). In the
classical case, the normal form had two building blocks: an operator of the form Q1 = Φsc − KA ⊗ 𝟙B, whereΦsc is non-negative and semicausal,
and an operator of the form Q2 = ∑∣A∣i=1∣ai⟩⟨ai∣⊗ B(i), where the B(i)’s are generators of row-stochastic maps, (i.e., B(i) generates a non-negative
semigroup and B(i)∣1B⟩ = 0). It is straightforward to guess a quantum analog for the first building block: a generator L1 ∈ B(B(HA ⊗HB))
defined by

L1(X) = Φsc(X) − (KA ⊗ 𝟙B)†X − X(KA ⊗ 𝟙B), (10)

where Φsc ∈ CPσ(HA ⊗HB), given in the Stinespring form by Φsc(X) = V†
sc(X ⊗ 𝟙E)Vsc, is semicausal. One readily verifies that L1 defines a

semicausal generator. To “quantize” the second building block, note that Q2 does not induce any change on system A. Indeed, since

etQ2(𝟙A ⊗ ∣1B⟩) =
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ (etB(i)

∣1B⟩) =
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ ∣1B⟩ = 𝟙A ⊗ ∣1B⟩, (11)

the generated semigroup looks like the identity on system A. In the quantum case, semigroups that do not induce any change on system A are
more restricted, since any information-gain about system A inevitably disturbs system A—so there can be no conditioning as in the classical
case. Indeed, if one requires that Tt ∈ CPσ(HA ⊗HB) satisfies the quantum analog of Eq. (11), namely,
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Tt(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (12)

for all XA ∈ B(HA), then Tt = idA ⊗Θt for some unital map Θt ∈ CPσ(HB) (see Appendix B for a proof). Differentiation of Tt = idA ⊗Θt at
t = 0 now implies that the generator of a semigroup of CP-maps that satisfy (12) are of the form idA ⊗ B̂, where B̂ generates a semigroup of
unital CP-maps [i.e., B̂(𝟙B) = 0]. To conclude, the two building blocks are operators of the form of L1 in Eq. (10) and maps L2 of the form

L2(X) = (𝟙A ⊗ B)†(X ⊗ 𝟙E)(𝟙A ⊗ B) − 1
2
{𝟙A ⊗ B†B , X} + i[𝟙A ⊗HB , X],

with B ∈ B(HB;HB ⊗HE) and a self-adjoint HB ∈ B(HB).
In the classical case, we obtained the normal form (Theorem IV.7) by taking a convex combination of the basic building blocks. This

corresponds to probabilistically choosing one or the other. In quantum theory, there is a more general concept: superposition. To account for
this, we construct our normal form not as a convex combination of the maps L1 and L2 but by taking a linear combination (superposition) of
the Stinespring operators V sc and 𝟙A ⊗ B as the Stinespring operator of the CP-part of the GKLS-form (note here that the coefficients can be
absorbed into V sc and 𝟙A ⊗ B, respectively). This means that if L is given by Eq. (9) withΦ(X) = V†(X ⊗ 𝟙E)V , then we take V = Vsc + 𝟙A ⊗ B.
It turns out that K can then be chosen such that L becomes semicausal. Also note that we can further decompose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), as
in Theorem V.4.

Our main technical result is that the heuristics employed in the “quantization” procedure above is sound, i.e., that the generators
constructed in that way are the only semicausal generators in the GKLS-form.

Theorem V.6. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) = Φ(X) − K†X − XK, with Φ ∈ CPσ(HA ⊗HB) and K
∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a unitary U ∈ U(HE
⊗HB;HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary operators A ∈ B(HA;HA ⊗HE), B ∈ B(HB;HB ⊗HE), and KA ∈ B(HA)
such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B), (13a)

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) +
1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB. (13b)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

Remark V.7. Note that the characterization in Theorem V.6 is for generators of Heisenberg B→/ A semicausal dynamical semigroups. There
are two special cases of interest: First, if we want the dynamical semigroup to be unital, then we need to further impose L(𝟙A ⊗ 𝟙B) = 0 in the
normal form above, which is equivalent to A†A = KA + K†

A—a constraint that also appears in the usual Linblad form. Second, if the dynamical
semigroup corresponds (in the sense of Theorem V.3) to a semigroup of superchannels, then we additionally require that the reduced generator
satisfies LA

∗(𝟙A) = 0. We will use this in the “translation step” in Theorem V.18.

Remark V.8. In the finite-dimensional case, the Proof of Theorem V.6 is constructive. In Appendix C, we discuss in detail how to obtain the
operators A, U, KA, B, and HB starting from the conditions in Lemma V.5.

The remainder of this section is devoted to the Proof of Theorem V.6, whose structure is highlighted in Fig. 5.
We begin with a technical observation about certain Haar integrals.

Lemma V.9. Let Hn be an n-dimensional subspace of HA with orthogonal projection Pn ∈ B(HA), and let V ∈ B(HA ⊗HB;HA ⊗HC).
Then,

∫
UP(Hn)

(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU = Pn ⊗
1
n

trPn[V], (14)

where the integration is with respect to the Haar measure on UP(Hn). It follows that ∥Pn ⊗ 1
n trPn[V]∥ ≤ ∥V∥. Furthermore, if H is separable

infinite-dimensional, with orthonormal basis {∣ei⟩}i∈N and Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}, then there exist B ∈ B(HB;HC) and an ultraweakly
convergent subsequence of (Pn ⊗ 1

n trPn[V])n∈N
with the limit 𝟙A ⊗ B.

Proof. To calculate the integral, we employ the Weingarten formula,27–29 which for the relevant case reads

∫
UP(Hn)

Ui jU†
j ′ i′ dU = 1

n
δi i′δj j ′ ,
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where U ij = ⟨ fi∣Uf j⟩ and U†
j ′ i′ = ⟨ fj ′ ∣U† fi′⟩ for some orthonormal basis {∣ f1⟩, ∣ f2⟩, . . . , ∣ fn⟩} of Hn. A basis expansion then yields

∫
UP(Hn)

(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU =
n

∑
i,j,i′ ,j ′=1

[∣ fi⟩⟨ fi′ ∣⊗ ((⟨ fj∣⊗ 𝟙C)V (∣ fj ′⟩⊗ 𝟙B))∫
UP(Hn)

Ui jU†
j ′ i′ dU] = Pn ⊗

1
n

trPn[V].

For the second claim, we note that a standard estimate of the integral yields ∥ 1
n trPn[V]∥ = ∥Pn ⊗ 1

n trPn[V]∥ ≤ ∥V∥. Thus, the sequence
( 1

n trPn[V])n∈N
is bounded and hence, by Banach–Alaoglu, has an ultraweakly convergent subsequence, whose limit we call B. The claim

then follows by observing that under the separability assumption, (Pn)n∈N converges ultraweakly to 𝟙A and that the tensor product of two
ultraweakly convergent sequences converges ultraweakly. ◻

As a first step toward our main result, we provide a characterization of those semicausal Lindblad generators that can be written with the
vanishing CP part.

Lemma V.10. Let L : B(HA ⊗HB)→ B(HA ⊗HB), L(X) ∶= −K†X − XK, with K ∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semi-
causal if and only if there exist KA ∈ B(HA) and a self-adjoint HB ∈ B(HB), with K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB.

Proof. If K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB, then L(XA ⊗ 𝟙B) = (−K†
AXA − KAXA)⊗ 𝟙B + XA ⊗ (iHB − iHB) = (−K†

AXA − XAKA)⊗ 𝟙B. Hence, L
is semicausal. Conversely, suppose L is semicausal with L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B. Let Hn be an n-dimensional subspace of HA and
U∈ UP(Hn). Then,

(L(U ⊗ 𝟙B))(U† ⊗ 𝟙B) = −K†(Pn ⊗ 𝟙B) − (U ⊗ 𝟙B)K(U† ⊗ 𝟙B) = (LA(U)U†)⊗ 𝟙B,

where Pn ∈ B(HA) is the orthogonal projection onto Hn. We integrate both sides with respect to the Haar measure on UP(Hn). Lemma V.9
and some rearrangement and taking the conjugate yields

(Pn ⊗ 𝟙B)K = −Pn ⊗
1
n

trPn[K†] − LA
n ⊗ 𝟙B (15)

for some operator LA
n ∈ B(HA). If HA is finite-dimensional, we can take Hn = HA so that Pn = 𝟙A. Hence, K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B, with

B = 1
n trA[K†] and K̃A = LA

n . If HA is separable infinite-dimensional, we obtain the same result via a limiting procedure n→∞ as follows:
Let {∣ei⟩}i∈N be an orthonormal basis of HA and set Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}. Then, the second part of Lemma V.9 allows us to pass to
a subsequence of (Pn ⊗ 1

n trPn[K†])
n∈N

that converges ultraweakly to a limit 𝟙A ⊗ B. The corresponding subsequence of ((Pn ⊗ 𝟙B)K)n∈N

converges ultraweakly to K, and hence, that subsequence of (LA
n ⊗ 𝟙B)n∈N

converges ultraweakly to a limit K̃A ⊗ 𝟙B. That is, we get
K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B. Therefore,

0 = L(XA ⊗ 𝟙B) − L(XA ⊗ 𝟙B) = (LA(XA) − K̃†
AXA − XAK̃A)⊗ 𝟙B − XA ⊗ (B + B†),

which can only be true for all XA if B + B† is proportional to 𝟙B. Since B + B† is self-adjoint, we have B + B† = 2r𝟙B for some r ∈ R. We can
then set iHB ∶= r𝟙B − B and KA ∶= −K̃A − r𝟙 so that HB is self-adjoint and K = KA ⊗ 𝟙 + 𝟙⊗ iHB. ◻

If we had restricted our attention to Hamiltonian generators and unitary groups in finite dimensions, an analog of this lemma would
have already followed from the fact that semicausal unitaries are tensor products, which was proved in Ref. 2 (and reproved in Ref. 11).

As another technical ingredient, the following lemma establishes a closedness property of the set of semicausal maps:

Lemma V.11. Let (Vm)m∈N and (Wn)n∈N be ultraweakly convergent sequences in B(HA ⊗HB;HA ⊗HB ⊗HE), with limits V and W.
Suppose that for all m, n ∈ N, the map Φm,n : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm,n(X) = V†

m(X ⊗ 𝟙E)Wn, is Heisenberg B→/ A
semicausal. Then, the map Φ : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φ(V) = V†(X ⊗ 𝟙E)W, is also Heisenberg B→/ A semicausal.

Proof. For XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), we have that ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB), since the trace-class

operators are an ideal in the bounded operators. Hence, by definition of the ultraweak topology,

tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W] = lim

n→∞
tr[ρV†

m(XA ⊗ 𝟙B ⊗ 𝟙E)Wn] = lim
n→∞

tr[ρ (ΦA
m,n(XA)⊗ 𝟙B)].

Since tr[ρΦA
m,n(XA)⊗ 𝟙B] converges as n→∞ for every ρ ∈ S1(HA ⊗HB), the sequence (ΦA

m,n(XA)⊗ 𝟙B)n∈N
converges ultraweakly.30 We

call the limit ΦA
m(XA)⊗ 𝟙B. It is then easy to see that ΦA

m(XA), viewed as a map on B(HA), is linear and continuous. This tells us that
the map Φm : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm(X) = V†

m(X ⊗ 𝟙E)W, is semicausal for all m ∈ N. Furthermore, we have that
ρ† W†(X†

A ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB) for all XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), and thus,
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tr[ρV†(XA ⊗ 𝟙B ⊗ 𝟙E)W] = tr[ρ†W†(X†
A ⊗ 𝟙B ⊗ 𝟙E)V] = lim

m→∞
tr[ρ†W†(X†

A ⊗ 𝟙B ⊗ 𝟙E)Vm] = lim
m→∞

tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W]

= lim
m→∞

tr[ρ (ΦA
m(XA)⊗ 𝟙E)].

Repeating the argument above then shows that Φ is semicausal. ◻

As a final preparatory step, we observe that, given a semicausal Lindblad generator, we can use its CP part to define a family of semicausal
CP-maps.

Lemma V.12. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB
⊗HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then the map SY ,Z : B(HA ⊗HB)→ B(HA ⊗HB), defined by

SY ,Z(X) = [V(Z ⊗ 𝟙B) − (Z ⊗ 𝟙B ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [V(Y ⊗ 𝟙B) − (Y ⊗ 𝟙B ⊗ 𝟙E)V],

is Heisenberg B→/ A semicausal for every Y , Z ∈ B(HA).

Proof. For every M ∈ B(HA ⊗HB), we define the map ΨM : B(HA ⊗HB)→ B(HA ⊗HB) by

ΨM(X) = L(M†XM) −M†L(XM) − L(M†X)M +M†L(X)M
= [(M ⊗ 𝟙E)V − VM]†(X ⊗ 𝟙E)[(M ⊗ 𝟙E)V − VM].

This map has already been used, for a different purpose, in Lindblad’s original work [Ref. 19, Eq. (5.1)]. It follows from the semicausality of L
that if we choose M =MA ⊗ 𝟙B for some MA ∈ B(HA), then ΨM is semicausal. Furthermore, a calculation shows that

1
4

3

∑
k=0

ikΨM+ikN(X) = [VN − (N ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [VM − (M ⊗ 𝟙E)V].

By choosing N = Z ⊗ 𝟙B and M = Y ⊗ 𝟙B, it follows that SY ,Z is the linear combination of four semicausal maps and, hence, is itself
semicausal. ◻

We now combine this lemma with an integration over the Haar measure to obtain the key lemma in our proof.

Lemma V.13. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB ⊗
HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then there exists B ∈ B(HB;HB ⊗HE) such that the map S : B(HA ⊗HB)
→ B(HA ⊗HB), defined by

S(X) = [V − 𝟙A ⊗ B]†(X ⊗ 𝟙E)[V − 𝟙A ⊗ B],

is also Heisenberg B→/ A semicausal.
Furthermore, if HA is finite-dimensional, then we can choose B = trA[V]/dim(HA).

Proof. Let Hn and Hm be n and m dimensional subspaces of HA with respective orthogonal projections Pn ∈ B(HA) and Pm ∈ B(HA).
Since for every U∈ UP(Hn) and W∈ UP(Hm), the map SU,W , defined in Lemma V.12, is semicausal and also the map S : B(HA ⊗HB)
→ B(HA ⊗HB), defined by

S(X) ∶= ∫
UP(Hn)

∫
UP(Hm)

(U ⊗ 𝟙B)SU,W(X)(W† ⊗ 𝟙B) dWdU,

is semicausal. Writing out the definition of SU,W yields

S(X) = [V(Pn ⊗ 𝟙B) − ∫
U P(H n)

(U ⊗ 𝟙B ⊗ 𝟙E)V(U† ⊗ 𝟙E)dU]
†
(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − ∫

UP(Hm)
(W ⊗ 𝟙B ⊗ 𝟙E)V(W† ⊗ 𝟙B)dW]

= [V(Pn ⊗ 𝟙B) − Pn ⊗
1
n

trPn[V]]
†
(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − Pm ⊗

1
m

trPm[V]],

where the last line was obtained by using Lemma V.9. If HA is finite-dimensional, we can choose Hn = Hm = HA so that
Pn = Pm = 𝟙A and obtain the desired result immediately. If HA is separable infinite-dimensional and {∣ei⟩}i∈N is an orthonormal basis
and Hk ∶= span{∣e1⟩, ∣e2⟩, . . . , ∣ek⟩}, then by Lemma V.9, the sequence (Pk ⊗ 1

k trPk[V])k∈N
has an ultraweakly convergent subsequence

with a limit 𝟙A ⊗ B, where B ∈ B(HB;HB ⊗HE). Furthermore, since (Pk)k∈N converges ultraweakly to 𝟙A, we have that the sequence
(V(Pk ⊗ 𝟙B) − Pk ⊗ 1

k trPk[V])k∈N
has a subsequence that converges ultraweakly to V − 𝟙A ⊗ B. Hence, by passing to subsequences, we can

apply Lemma V.11, which yields that S is semicausal. ◻
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Remark V.14. The previous two lemmas are at the heart of our result. They illustrate a (to the best of our knowledge) novel technique that
allows to characterize GKLS generators with a certain constraint if this constraint is well understood for completely positive maps. It seems useful
to develop this method more generally, but this is beyond the scope of the present work.

With these tools at hand, we can now prove our main result.

Proof (Theorem V.6). A straightforward calculation shows that L, defined via (22a) and (22b), is semicausal. To prove the converse,
note that by the Stinespring dilation theorem, there exist a separable Hilbert space H̃E and Ṽ ∈ B(HA ⊗HB;HA ⊗HB ⊗ H̃E) such that
Φ(X) = Ṽ †(X ⊗ 𝟙E)Ṽ . It is well known [see, e.g., Ref. 31 (Theorems 2.1 and 2.2)] that if HA and HB are finite-dimensional with dimen-
sions dA and dB, then H̃E can be chosen such that dim(H̃E) ≤ (dAdB)2. By Lemma V.13, there exists B̃ ∈ B(HB;HB ⊗ H̃E) such that the map
Φ0 ∈ CPσ(HA ⊗HB), defined by Φ0(X) = [Ṽ − 𝟙A ⊗ B̃]†(X ⊗ 𝟙E)[Ṽ − 𝟙A ⊗ B̃], is semicausal. We define Vsc = Ṽ − 𝟙⊗ B̃ and obtain

Φ(XA ⊗ 𝟙B) = Φ0(XA ⊗ 𝟙B) + κ†(XA ⊗ 𝟙B) + (XA ⊗ 𝟙B)κ,

where κ = (𝟙A ⊗ B̃ †)Vsc + 1
2(𝟙A ⊗ B̃ †B̃). Since L and Φ0 are semicausal, we can write L(XA ⊗ 𝟙) = LA(XA)⊗ 𝟙B and Φ0(XA ⊗ 𝟙B)

= ΦA
0 (XA)⊗ 𝟙B for all XA ∈ B(HA). Hence,

L(XA ⊗ 𝟙B) −Φ0(XA ⊗ 𝟙B) = (LA(XA) −ΦA
0 (XA))⊗ 𝟙B = −(K − κ)†(XA ⊗ 𝟙B) − (XA ⊗ 𝟙B)(K − κ). (16)

It follows that the map defined by X ↦ −(K − κ)†X − X(K − κ) is semicausal. Thus, Lemma V.10 implies that there exist KA ∈ B(HA) and a
self-adjoint HB ∈ B(HB) such that K − κ = KA ⊗ 𝟙 + 𝟙⊗ iHB.

What we have achieved so far is that Ṽ = Vsc + 𝟙⊗ B̃ and K = (𝟙A ⊗ B̃ †)Vsc + 1
2𝟙⊗ B̃ †B̃ + KA ⊗ 𝟙 + 𝟙⊗ iHB. Hence, if we can decom-

pose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), then we are basically done. However, this decomposition is given (up to details) by the equivalence between
semicausal and semilocalizable channels.10 Since the conclusion in Ref. 10 was in the finite-dimensional setting, we will repeat the argu-
ment here, showing that it goes through also for infinite-dimensional spaces while paying special attention to the dimensions of the spaces
involved. Since Φ0 ∈ CPσ(HA ⊗HB) and Φ0(XA ⊗ 𝟙B) = ΦA

0 (XA)⊗ 𝟙B, we also have ΦA
0 ∈ CPσ(HA). By the Stinespring dilation theorem

(for normal CP-maps), there exist a separable Hilbert space HF and W ∈ B(HA;HA ⊗HF) such that ΦA
0 (XA) =W†(XA ⊗ 𝟙F)W and such

that span{(XA ⊗ 𝟙F)W∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA} is dense in HA ⊗HF . The last condition is called the minimality condition. We then get

V†
sc(XA ⊗ 𝟙B ⊗ 𝟙Ẽ)Vsc = (W ⊗ 𝟙B)†(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B).

Clearly, span{(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B)∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA ⊗HB} is dense in HA ⊗HF ⊗HB. Thus, by minimality, there exists an
isometry Ũ ∈ B(HF ⊗HB;HB ⊗ H̃E) such that Vsc = (𝟙A ⊗ Ũ)(W ⊗ 𝟙B). In the finite-dimensional case, the fact that Ũ is an isometry then
implies that dim(HF) ≤ dim(H̃E) such that we can think of HF as a subspace of H̃E. Thus, Ũ can be extended to a unitary operator
ˆ̃U ∈ U(H̃E ⊗HB;HB ⊗ H̃E). Then, defining HE = H̃E, U = ˆ̃U, B = B̃, and A =W proves the claim in this case. In the infinite-dimensional
case, we can take HE = HF ⊕ H̃E. We can now view both H̃E ⊗HB and HF ⊗HB as closed subspaces of HE ⊗HB. Then, (Ũ (H F ⊗H B))

�

and (H F ⊗H B)� are isomorphic. Hence, Ũ can be extended to a unitary operator ˆ̃U ∈ U(HE ⊗HB;HB ⊗HE). We finish the proof by defin-
ing U = ˆ̃U, B = (𝟙B ⊗ 𝟙Ẽ→E)B̃, and A = (𝟙A ⊗ 𝟙F→E)W, where 𝟙Ẽ→E and 𝟙F→E denote the isometric embeddings of H̃E and HF into HE,
respectively. ◻

As a first consequence, we obtain the analogous theorem for semigroups of Schrödinger B→/ A semicausal CP-maps.

Corollary V.15. Let L : S1(HA ⊗HB)→ S1(HA ⊗HB) be defined by L(ρ) = ΦS(ρ) − Kρ − ρK†, where ΦS ∈ CPS(HA ⊗HB), with
ΦS(ρ) = trE[VρV†] and K ∈ B(HA ⊗HB). Then, L is Schrödinger B→/ A semicausal if and only if K, V , and HE can be chosen as in (22a)
and (22b).

As a further corollary, we translate the results above to the familiar representation in terms of jump-operators (by going from Stinespring
to Kraus).

Corollary V.16. A map L : S1(HA ⊗HB)→ S1(HA ⊗HB) generates a (trace-)norm-continuous semigroup of trace-preserving
Schrödinger B→/ A semicausal CP-maps if and only if there exist {ϕj}j ⊂ B(HA ⊗HB), {Bj}j ⊂ B(HB), HA ∈ B(HA), and HB ∈ B(HB) such
that {ϕj}j is a set of Kraus operators of a Schrödinger B→/ A semicausal CP-map and {Bj}j is a set of Kraus operators of some CP-map such that

L(ρ) = −i[HA ⊗ 𝟙B + 𝟙A ⊗HB , ρ]

+∑
j
(ϕj + 𝟙A ⊗ Bj)ρ(ϕj + 𝟙A ⊗ Bj)† −

1
2
{𝟙A ⊗ B†

j Bj + ϕ†
j ϕj , ρ} − (𝟙A ⊗ B†

j )ϕjρ − ρϕ†
j (𝟙A ⊗ Bj).

J. Math. Phys. 63, 072204 (2022); doi: 10.1063/5.0070635 63, 072204-21

© Author(s) 2022

 16 April 2024 08:54:18

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proof. A simple calculation by defining the Kraus operators as (𝟙AB ⊗ ∣ei⟩)V , with {∣ej⟩}j being an orthonormal basis of HE and V given
by Theorem V.6. ◻

We conclude this section about semicausal semigroups with an example that uses our normal form in full generality.

Example. We consider the scenario of two 2-level atoms that can interact according to the processes specified in Fig. 6. We can describe
this process either via a dilation (as in Theorem V.6) or via the Kraus operators (as in Corollary V.16). In the dilation picture, we introduce an
auxiliary Hilbert space HE ∶= H1 ⊗H2, where Hi is for the ith photon. Then, the process is described by V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),
with

A ∈ B(HA;HA ⊗HE), A = ∣0⟩⟨1∣A ⊗ ∣11⟩E,
B ∈ B(HB;HB ⊗HE), B = ∣10⟩E ⊗ ∣0⟩⟨1∣B,

U ∈ U(HE ⊗HB;HB ⊗HE), U = FE;B(𝟙H1 ⊗ Ũ),

where Ũ ∈ U(H2 ⊗HB) is determined by

Ũ∣00⟩H2B = ∣00⟩H2B, Ũ∣10⟩H2B = ∣01⟩H2B, Ũ∣11⟩H2B = ∣11⟩H2B.

The crucial feature of this example is that the CP-part of the generator (trE[V ⋅ V†]) cannot be written as a convex combination of the two
building blocks (Φsc and idA ⊗ B̂). As mentioned also in the quantization procedure before, this is a pure quantum feature and stems from the
fact that it cannot be determined if a photon arriving at the detector D1 came from B or A. Hence, the system remains in a superposition state.

We can also look at the usual representation via jump operators. This can be achieved by switching from dilations to Kraus operators.
We obtain the two jump-operators

L1 ∶= Le ⊗ La
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=:ϕ1

+ 𝟙A ⊗ Le
®
B1

, L2 ∶= Le ⊗ ∣1⟩⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:ϕ2

,

where Le = ∣0⟩⟨1∣ and La = L†
e describe emission and absorption of a photon, respectively. Thus, the usual Lindblad equation reads

dρ
dt
= (Le ⊗ La + 𝟙A ⊗ Le)ρ(Le ⊗ La + 𝟙A ⊗ Le) + (𝟙A ⊗ Le)ρ(𝟙A ⊗ Le) −

1
2
{𝟙A ⊗ L†

e Le + L†
e Le ⊗ 𝟙B , ρ}.

It is also possible and instructive to consider the reduced dynamics on system A, which can also be described by a Lindblad equation, since B
does not communicate to A (this is not true otherwise),

dρA

dt
= LeρAL†

e −
1
2
{L†

e Le , ρA},

where ρA(t) = trB[ρ(t)]. Not surprisingly (given our model), this describes an atom emitting photons.

C. Generators of semigroups of quantum superchannels
We finally turn to semigroups of quantum superchannels (on finite-dimensional spaces), that is, a collection of quantum superchannels

{Ŝt}t≥0 ⊆ B(B(B(HA);B(HB))), such that Ŝ0 = id, Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous [with respect to any and, thus, all of the
equivalent norms on the finite-dimensional space B(B(B(HA);B(HB)))]. To formulate a technically slightly stronger result, we call a map
Ŝ ∈ B(B(B(HA);B(HB))) a preselecting supermap if CA;B ○ Ŝ ○ C−1

A;B is a Schrödinger B→/ A semicausal CP-map. Theorem V.3 then tells us
that a superchannel is a special preselecting supermap. Again, as for semicausal CP-maps, we characterize the generators of semigroups of
preselecting supermaps and superchannels in two ways: First, we answer how to determine if a given map L̂ ∈ B(B(B(HA);B(HB))) is such
a generator. Second, we provide a normal form for all generators.

The answer to the first question is really a corollary of Lemma V.5 together with Theorem V.3. To this end, define
L̂ ∶= CAB;AB(CA;B ○ L̂ ○ C−1

A;B) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where we fix some orthonormal bases {∣ai⟩}dim(H A)

i=1 and {∣bj⟩}dim(H B)

j=1 of HA and

HB such that CA;B is defined with respect to {∣ai⟩}dim(H A)

i=1 and CAB;AB is defined with respect to the product of the two bases. Furthermore, we
introduced the spaces HA1 = HA2 = HA and HB1 = HB2 = HA for notational convenience. Finally, we define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2)
to be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩. We then have the following
lemma:

Lemma V.17. A linear map L̂ ∈ B(B(B(HA);B(HB))) generates a semigroup of quantum superchannels if and only if

● L̂ is self-adjoint and P�L̂P� ≥ 0,
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FIG. 6. Systems A and B describe 2-level systems, respectively. The allowed interactions are infinitesimally described as follows: If A is in its excited state, it can emit a
photon. Through parametric down-conversion, the photon is converted into two photons (of lower energy). One of those two photons, k1, is sent to a detector D1. The other,
k2, is sent to B. If B is in its ground state, it absorbs k2. If B is in its excited state, it cannot absorb k2, so k2 passes through B and travels to a detector D2. Additionally, in this
case, B can emit a photon, indistinguishable from k1, to D1.

● (FA1 ;B1 ⊗ 𝟙A2)trB2[L̂](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ L̂A for some (then necessarily self-adjoint) L̂A ∈ B(HA1 ⊗HA2), and
● trA1[L̂A] = 0.L̂ is preselecting if and only if the first two conditions hold.

Proof. Theorem V.3 tells us that {Ŝt}t≥0 forming a semigroup of superchannels is eqiuvalent to St = CA;B ○ Ŝt ○ C−1
A;B forming a semigroup

of Schrödinger B→/ A semicausal CP-maps and that the reduced map SA
t satisfies SA

t (𝟙A) = 𝟙A. By Lemma V.5, the semicausal semigroup
property is equivalent to the first two conditions in the statement. This proves the claim about preselecting L̂.

By differentiation, it follows that SA
t (𝟙A) = 𝟙A is satisfied if and only if LA, the generator of {SA

t }t≥0, satisfies LA(𝟙A) = 0. However, since
trA1[L̂A] = LA(𝟙A), the claim follows. ◻

We finally turn to a normal form for generators of semigroups of preselecting supermaps and superchannels.

Theorem V.18. A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of hyper-preselecting supermaps if and
only if there exist a Hilbert space HE, a state σ ∈ B(HE), a unitary U ∈ U(HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary opera-
tors A ∈ B(HA ⊗HE), B ∈ B(HB ⊗HE), and KA ∈ B(HA) such that L̂ acts on T ∈ B(B(HA);B(HB)) as L̂(T) = Φ̂(T) − κ̂L(T) − κ̂R(T) with

Φ̂(T)(ρ) = trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]

+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†],
(17)

κ̂L(T)(ρ) = trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] +
1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ), (18a)

κ̂R(T)(ρ) = trE[(T ⊗ idE)((ρ⊗ σ)A†) U†B] + 1
2

trE[(T ⊗ idE)(ρ⊗ σ)B†B] + T(ρK†
A) − T(ρ) iHB. (18b)

We can choose σ to be pure and HE with dim(HE) ≤ (dAdB)2, where dA and dB are the dimensions of HA and HB, respectively. Furthermore, L̂
generates a semigroup of superchannels if and only if L̂ generates a semigroup of preselecting supermaps and trσ[A†A] = KA + K†

A. In that case,
we can split L̂ into a dissipative part D̂ and a “Hamiltonian” part Ĥ, i.e., a part that generates a (semi-)group of invertible superchannels whose
inverses are superchannels as well. We have L̂(T) = D̂(T) + Ĥ(T), with

D̂(T)(ρ) = trE[D̂ ′(T)(ρ)] and Ĥ(T)(ρ) = −i[HB , T(ρ)] − iT([HA , ρ]),

where HA is the imaginary part of KA, where
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D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (19a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (19b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)) , B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†] (19c)

and where [⋅, ⋅] and {⋅, ⋅} denote the commutator and anticommutator, respectively.

Remark V.19. Similar to Theorem V.6, the Proof of Theorem V.18 is constructive. In Appendix D, we discuss in detail how to obtain the
operators A, U, KA, B, HA, and HB starting from the conditions in Theorem V.17.

As in the classical case, the proof strategy is to use the relation between superchannels and semicausal channels and Theorem V.6. As
this translation process is more involved than in the classical case, we need two auxiliary lemmas.

Lemma V.20. Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)], (20)

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V
†
R], (21)

with VL = LBFB;C, VR = RBFB;C, and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻

Lemma V.21. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].

Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻

We are finally ready to prove Theorem V.18

Proof (Theorem V.18). The idea is to relate the generators of superchannels to semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem V.3 for superchannels. For a generator L̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

L̂ = C−1
A;B ○

d
dt
∣
t=0
[CA;B ○ Ŝt ○ C−1

A;B] ○ CA;B.

Thus, L̂ generates a semigroup of preselecting supermaps if and only if L̂ can be written as L̂ = C−1
A;B ○ L ○ CA;B for some generator L of a semi-

group of Schrödinger B→/ A semicausal CP-maps. Thus, to prove the first part of our theorem, we can take the normal form in Corollary
V.15 and compute the similarity transformation above. We now execute this in detail. To start with, Corollary V.15 tells us that L(ρ)
= ΦS(ρ) − Kρ − ρK†, where

ΦS(ρ) = trE[VρV†], with V = (𝟙A ⊗ Ũ)(Ã⊗ 𝟙B) + (𝟙A ⊗ B̃), (22a)

K = (𝟙A ⊗ B̃ †Ũ)(Ã⊗ 𝟙B) +
1
2
𝟙A ⊗ B̃ †B̃ + K̃A ⊗ 𝟙B + 𝟙A ⊗ iH̃B, (22b)

for some unitary Ũ ∈ U(HE ⊗HB;HB ⊗HE), some self-adjoint H̃B ∈ B(HB), and some operators Ã ∈ B(HA;HA ⊗HE), B̃ ∈ B(HB;HB
⊗HE), and K̃A ∈ B(HA). In order to apply Lemma V.20, we fix a unit vector ∣ξ⟩ ∈ HE and define ΞA ∶= 𝟙A ⊗ ∣ξ⟩ ∈ B(HA;HA ⊗HE) and
ΞB ∶= ∣ξ⟩⊗ 𝟙B ∈ B(HB;HE ⊗HB) so that 𝟙A ⊗ B̃ = (𝟙A ⊗ B̃Ξ†

B)(ΞA ⊗ 𝟙B). We can then write

ΦS(ρ) = trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)] + trE[(𝟙A ⊗ B̃Ξ†
B)(ΞA ⊗ 𝟙B)ρ(Ξ†

A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)]

+ trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)] + trE[(𝟙A ⊗ B̃Ξ†

B)(ΞA ⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)],
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which is an expression suitable for a term by term application of Lemma V.20. Doing so yields

Φ̂(T)(ρ) ∶= (C−1
A;B ○ΦS ○ CA;B)(T)(ρ)

= trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]

+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†],

where we defined U ∶= ŨFB;E, B ∶= B̃Ξ†
BFB;E, A ∶= Ã TAΞ†

A, and σ ∶= ∣ξ⟩⟨ξ∣. This proves Eq. (17). Similarly, upon defining κL(ρ) ∶= Kρ, we can
write32

κL(ρ) = trE[(𝟙A ⊗ FE;BΞBB̃ †Ũ)(Ã⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)] + trE[(𝟙A ⊗ FE;BΞBB̃ †B̃Ξ†

B)(ΞA ⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)]

+ trC[(𝟙A ⊗ 𝟙B)(K̃A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)] + trC[(𝟙A ⊗ iHB)(𝟙A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)]

and apply Lemma V.20 term by term, which yields

κ̂L(T)(ρ) ∶= (C−1
A;B ○ κL ○ CA;B)(T)(ρ)

= trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] +
1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ),

where U, A, and B are defined as above and KA ∶= (K̃ A)T and HB ∶= H̃B. An analogous calculation with κR(ρ) ∶= ρK† and κ̂R(T) ∶= (C−1
A;B ○

κR ○ CA;B)(T) finishes the proof of the first part, since the claim about the dimension of HE follows form the corresponding statements in
Theorem V.6.

To prove the second part, first remember that we have observed above that Theorem V.3 implies that L is Schrödinger B→/ A semi-
causal, with trB[L(ρ)] = LA(trB[ρ]). Furthermore, if we write St = CA;B ○ Ŝt ○ C−1

A;B, then Theorem V.3 implies that St is Schrödinger B→/ A
semicausal for all t ≥ 0, with trB[St(ρ)] = SA

t (trB[ρ]), and also SA
t (𝟙A) = 𝟙A holds. Differentiating that expression at t = 0 yields the equivalent

condition LA(𝟙A) = 0. Hence, our goal is to incorporate the last condition into the form of (22). To do so, we determine LA by calculating
trB[L(ρ)], where L is in the form of (22). We obtain trB[L(ρ)] = trE[Ã trB[ρ] Ã †] − K̃AtrB[ρ] − trB[ρ]K̃†

A. Thus, the condition LA(𝟙) = 0 holds
if and only if trE[ÃÃ †] = K̃A + K̃†

A. Transposing both sides of this equation and using that the definition of A implies that Ã = ATAΞA yield

(trE[ATA(𝟙A ⊗ σ)(A†)TA])T = KA + K†
A. However, the left-hand side is, by Lemma V.21, equal to trσ[A†A]. This proves the claim that L̂ gen-

erates a semigroup of superchannels if and only if L̂ is hyper-preselecting and trσ[A†A] = KA + K†
A. Finally, defining HA ∶= 1

2i(KA − K†
A) and a

few rearrangements lead to (19). ◻

VI. CONCLUSION
A. Summary

The underlying question of this work is as follows: How can we mathematically characterize the processes that describe the aging of
quantum devices? We have argued that, under a Markovianity assumption, such processes can be modeled by continuous semigroups of
quantum superchannels. Therefore, the goal of this work was to provide a full characterization of such semigroups of superchannels.

We have derived such a general characterization in terms of the generators of these semigroups. Crucially, we have exploited that super-
channels correspond to certain semicausal maps and that, therefore, it suffices to characterize generators of semigroups of semicausal maps.
We have demonstrated both an efficient procedure for checking whether a given generator is indeed a valid semicausal GKLS generator and
a complete characterization of such valid semicausal GKLS generators. The latter is constructive in the sense that it can be used to describe
parametrizations of these generators. Aside from the theoretical relevance of these results, they will be valuable in studying properties of these
generators numerically. Finally, we have translated these results back to the level of superchannels, thus answering our initial question.

We have also posed and answered the classical counterpart of the above question. That is, we have characterized the generators semi-
groups of classical superchannels and of semicausal non-negative maps. These results for the classical case might be of independent interest.
From the perspective of quantum information theory, they provide a comparison helpful to understand and interpret the characterizations in
the quantum case.

B. Outlook and open questions
We conclude by presenting some open questions raised by our work. First, in our proof of the characterization of semicausal GKLS

generators, we have described a procedure for constructing a semicausal CP-map associated with such a generator. We believe that this
method can be applied to a wide range of problems. Determining the exact scope of this method is currently work in progress.

Second, there is a wealth of results on the spectral properties of quantum channels and, in particular, semigroups of quantum channels.
With the explicit form of generators of semigroups of superchannels now known, we can conduct analogous studies for semigroups of quan-
tum superchannels. Understanding such spectral properties, and potentially how they differ from the properties in the scenario of quantum
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channels, would, in particular, lead to a better understanding of the asymptotic behavior of semigroups of superchannels, e.g., with respect to
entropy production,33,34 the thermodynamics of quantum channels,35 or entanglement-breaking properties.36

A further natural question would be a quantum superchannel analog of the Markovianity problem: When can a quantum superchannel
Ŝ be written as eL̂ for some L̂ that generates a semigroup of superchannels? Several works have investigated the Markovianity problem for
quantum channels21,37–39 and a divisibility variant of this question, both for quantum channels and for stochastic matrices.40–42 It would be
interesting to see how these results translate to quantum or classical superchannels. Similarly, we can now ask questions of reachability along
Markovian paths. Yet another question aiming at understanding Markovianity is as follows: If we consider master equations arising from a
Markovianity assumption on the underlying process formalized not via semigroups of channels but instead via semigroups of superchannels,
what are the associated classes of (time-dependent) generators and corresponding CPTP evolutions?

Two related directions, both of which will lead to a better understanding of Markovian structures in higher order quantum operations,
are as follows: support our mathematical characterization of the generators of semigroups of superchannels by a physical interpretation,
similar to the Monte Carlo wave function interpretation of Lindblad generators of quantum channels, and extend our characterization from
superchannels to general higher order maps.

This work has focused on generators of general semigroups of superchannels, without further restrictions. For quantum channels and
their Lindblad generators, there exists a well-developed theory of locality, at the center of which are Lieb–Robinson bounds.43 If we put locality
restrictions on generators of superchannels, how do these translate to the generated superchannels?

Finally, an important conceptual direction for future work is to identify further applications of our theory of dynamical semigroups
of superchannels. In the Introduction, we gave a physical meaning to semigroups of superchannels by relating them to the decay process
of quantum devices. This, however, is only one possible interpretation. For example, semigroups of superchannels might also describe a
manufacturing process, where a quantum device is created layer-by-layer. We hope that other use-cases will be found in the future.
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APPENDIX A: PROOF OF LEMMAS V.20 AND V.21

In this appendix, we provide a complete proof of Lemmas V.20 and V.21.

Lemma A.1 (restatement of Lemma V.20). Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)],

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V
†
R],

with VL = LBFB;C, VR = RBFB;C and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. Let {∣ei⟩}i be the orthonormal basis of HA with respet to which the Choi–Jamiołkowski isomorphism is defined. Let {∣cn⟩}n be an
orthonormal basis of HC. Then, the formal calculation, which is an algebraic version of drawing the corresponding tensor-network pictures,
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can be executed as follows:

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trA[(ρT ⊗ 𝟙B) trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)CA;B(T)(R†

A ⊗ 𝟙B)(𝟙A ⊗ R†
B)]]

= trE[LB trA[(ρT ⊗ 𝟙C ⊗ 𝟙B)(LA ⊗ 𝟙B)CA;B(T)(R†
A ⊗ 𝟙B)]R†

B]

=∑
i,j

trE[LB (trA[(ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†
A]⊗ T( ∣ei⟩⟨ej∣)R†

B]

= ∑
i,j,k,m,n

⟨ek cn∣((ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†
A) ek cm⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†

B]

= ∑
i,j,m,n
⟨ei∣(LT

A(ρ⊗ ∣cn⟩⟨cm∣)RA) ej⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†
B]

=∑
m,n

trE[LB (∣cn⟩⟨cm∣⊗ T(LT
A(ρ⊗ ∣cn⟩⟨cm∣)RA))R†

B]

= trE

⎡⎢⎢⎢⎢⎣
LBFB;C(T ⊗ idC)

⎛
⎝
[∑

n
(𝟙A ⊗ ∣cn⟩)LT

A(𝟙A ⊗ ∣cn⟩)] ρ [∑
m
(𝟙A ⊗ ∣cm⟩)RT

A(𝟙A ⊗ ∣cm⟩)]
†⎞
⎠
FB;CR†

B

⎤⎥⎥⎥⎥⎦
= trE[VL(T ⊗ idC)(WLρW†

R)V
†
R].

◻

Lemma A.2. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].

Proof. Let {∣ai⟩}i be the orthonormal basis with respect to which the transposition is taken. Using the general identity tr[MT] = tr[M],
the definition of the trace with respect to a trace-class operator, and the cyclicity of the trace, we obtain, for every σ ∈ S1(HA),

tr[σtrρ[XY]T] = tr[σT trρ[XY]]

= tr[(σT ⊗ ρ)XY]

=∑
i,j,k

tr[(⟨ai∣⊗ 𝟙B)(σT ⊗ ρ)(∣aj⟩⟨aj∣⊗ 𝟙B)X(∣ak⟩⟨ak∣⊗ 𝟙C)Y(∣ai⟩⊗ 𝟙B)]

=∑
i,j,k

tr[(⟨aj∣⊗ 𝟙B)(σ ⊗ ρ)(∣ai⟩⟨ak∣⊗ 𝟙B)XTA(∣aj⟩⟨ai∣⊗ 𝟙C)YTA(∣ak⟩⊗ 𝟙B)]

=∑
k

tr
⎡⎢⎢⎢⎢⎣
ρ(⟨ak∣⊗ 𝟙B)XTA

⎛
⎝
⎛
⎝∑i,j
⟨aj∣σ ai⟩∣ai⟩⟨aj∣

⎞
⎠
⊗ 𝟙C
⎞
⎠

YTA(∣ak⟩⊗ 𝟙B)
⎤⎥⎥⎥⎥⎦

= tr[(𝟙A ⊗ ρ)XTA(σ ⊗ 𝟙C)YTA]

= tr[σtrC[YTA(𝟙A ⊗ ρ)XTA]].

This proves the claim. ◻

APPENDIX B: NO INFORMATION WITHOUT DISTURBANCE

Here, we prove a “no information without disturbance”-like lemma that yielded a useful interpretation in the main text.

Lemma B.1. Let T ∈ CPσ(HA ⊗HB) be such that

T(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (B1)

for all XA ∈ B(HA). Then, T(X) = (𝟙A ⊗W†)(X ⊗ 𝟙E)(𝟙A ⊗W) for all X ∈ B(HA ⊗HB) and some isometry W ∈ B(HB;HB ⊗HE), where
HE is some Hilbert space.

Proof. This claim follows from the uniqueness of the minimal Stinespring dilation in the same way as the “semicausal = semilocalizable”
theorem. Write Eq. (B1) in the Stinespring form as

V†(XA ⊗ 𝟙B ⊗ 𝟙E)V = XA ⊗ 𝟙B
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for some V ∈ B(HA ⊗HB;HA ⊗HB ⊗HC). Then, V and 𝟙AB are the Stinespring operators of the same CP-map (XA ↦ XA ⊗ 𝟙B) and the
latter clearly belongs to a minimal dilation. Thus, there exists an isometry W ∈ B(HB;HB ⊗HE) such that V = (𝟙A ⊗W)𝟙AB. This is the
claim. ◻

Note that the lemma above is just a formulation of the “obvious” fact that if system A undergoes a closed system evolution (idA), then
there is no interaction with an external system B.

APPENDIX C: CONSTRUCTIVE APPROACH TO THEOREM V.6

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, KA, and HB in Theorem
V.6 if the conditions of Lemma V.5 are met.

Since it is important for an actual implementation on a computer, let us be very precise about notation. We introduce indexed copies
of HA and HB, i.e., HA0 = HA1 = HA2 = HA and HB0 = HB1 = HB2 = HB. Furthermore, we fix orthonormal bases {∣ai⟩}dA

i=1 and {∣bi⟩}dB
i=1 of

HA and HB, respectively. We use the symbol Ω with some subscript to denote the maximally entangled state on various systems. For
example, ∣ΩA1 ;A2⟩ ∶= ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and ∣ΩA1B1 ;A2B2⟩ = ∑i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩ ∈ HA1 ⊗HB1 ⊗HA2 ⊗HB2 . We further reserve
P ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) for the orthogonal projection onto span{∣ΩA1B1 ;A2B2⟩} (i.e., P = (dAdB)−1∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣) and take
P� = 𝟙A1B1A2B2 − P.

Now, let L ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) be given as in Lemma V.5, then we can compute the operators A, U, B, KA, and HB via the
following 15 steps:

1. Compute τ = P�LP�.
2. Compute V = (𝟙A0B0 ⊗

√
τ)(∣ΩA0B0 ;A1B1⟩⊗ 𝟙A2B2).

3. Define HE ∶= HA1 ⊗HB1 ⊗HA2 ⊗HB2 so that V ∈ B(HA ⊗HB;HA ⊗HB ⊗HE) (identification).
4. Compute B = 1

dA
trA[V].

5. Compute Vsc = V − 𝟙A ⊗ B.
6. Compute τsc = (𝟙A1B1 ⊗ Vsc)†(∣ΩA1B1 ;AB⟩⟨ΩA1B1 ;AB∣⊗ 𝟙E)(𝟙A1B1 ⊗ Vsc) ∈ B(HA1 ⊗HB1 ⊗HA ⊗HB).
7. Choose any unit vector ∣β⟩ ∈ HB.
8. Compute τA

sc = (𝟙A1A2 ⊗ ⟨β∣)trB1[τsc](𝟙A1A2 ⊗ ∣β⟩).
9. Compute HF = range(

√
τA

sc) so that
√
τA

sc ∈ B(HA1 ⊗HA2 ;HF) is surjective.
10. Compute A = (𝟙A0 ⊗

√
τA

sc)(∣ΩA0 ;A1⟩⊗ 𝟙A2).
11. Compute U as the solution of the system of linear equations M(U) = Vsc, where the d2

Ad2
BdE × dFd2

BdE-matrix M : B(HF ⊗HB;HB
⊗HE)→ B(HA ⊗HB;HA ⊗HB ⊗HE) is defined by M(U) = (𝟙A ⊗U)(A⊗ 𝟙B). Clearly, we must first represent M with respect to
some basis.

12. Compute K = −trA1B1[PLP� + 1
2 tr[PL]P], where we identify HA2 ⊗HB2 = HA ⊗HB so that K ∈ B(HA ⊗HB).

13. Compute Ksc = K − (𝟙A ⊗ B†)Vsc − 1
2𝟙A ⊗ B†B.

14. Compute KA = 1
dB

trB[Ksc].
15. Compute HB = −i

dA
trA[Ksc − KA ⊗ 𝟙B].

Note that the procedure above computes an isometry U ∈ B(HF ⊗HB;HB ⊗HE), which can then be extended to a unitary, if necessary. In
that case, we also have to embed HF into HE and redefine A accordingly. More precisely, we need to execute the following additional steps:

16. Compute 𝟙F→E = 𝟙A1 ⊗ ∣β⟩B1 ⊗ 𝟙A2 ⊗ ∣β⟩B2 .
17. Redefine A← (𝟙A0 ⊗ 𝟙F→E)A.
18. Extend U via the following steps:

(a) Compute Û = U(𝟙†
F→E ⊗ 𝟙B).

(b) Compute an orthonormal basis {∣ f �i ⟩}N
i=1 of range(𝟙EB − Û †Û).

(c) Compute an orthonormal basis {∣r�i ⟩}N
i=1 of range(𝟙BE − ÛÛ †).

(d) Redefine U ← Û +∑N
i=1∣r�i ⟩⟨ f �i ∣.

Let us comment on why the steps above give the right result. In general, we have

L = P�LP� + PLP� + P�LP + PLP = τ + (PLP� + 1
2

tr[PL]P) + (P�LP + 1
2

tr[PL]P).

Thus, the maps Φ and K appearing in the GKLS-form in Theorem V.6 can be extracted from the previous equation by applying the inverse of
the Choi–Jamiołkowski isomorphism. One readily obtains Φ = C−1

AB;AB ○ τ and K = −trA1B1[PLP� + 1
2 tr[PL]P].
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● Step 2 computes the Stinespring dilation of a CP-map whose Choi–Jamiołkowski operator is τ. A direct computation shows that
τ = (𝟙A1B1 ⊗ V)†(∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣⊗ 𝟙E)(𝟙A1B1 ⊗ V).

● Step 4 computes the operator B in the representation. In the Proof of Theorem V.6, B was obtained from B̃, which, in turn, was
obtained from V and Lemma V.13. In the finite-dimensional setting, Lemma V.13 constructs B exactly as is written down above.

● Steps 6, 7, and 8 define τsc as the Choi–Jamiołkowski operator of a CP-map with the Stinespring operator V sc. Thus, according to the
Proof of Theorem V.6, τ is the Choi–Jamiołkowski of a Heisenberg B→/ A semicausal map. Semicausality is expressed on the level
of Choi–Jamiołkowski operators by the existence of an operator τA

sc such that trB1[τsc] = τA
sc ⊗ 𝟙B2 (compare with the Proof of Lemma

V.5). Using this relation makes clear that step 8 extracts τA
sc from τsc and that the result is independent of the choice of ∣β⟩.

● Step 10 defines A as the Stinespring dilation of the (reduced) map whose Choi–Jamiołkowski operator is τA
sc. The dilation constructed

in this way is minimal. This is exactly the way in which the operator W = A was constructed in the Proof of Theorem V.6.
● Step 11 obtains U by solving the defining relation (for Ũ) in the Proof of Theorem V.6. One might wonder why the solution to

this system of equations is unique (even though M is not a square matrix). Uniqueness follows from the minimality of A⊗ 𝟙B,
that is, vectors of the form (XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩ span HA ⊗HB ⊗HE. In detail, if U and U′ satisfy M(U) =M(U′), then
0 = (𝟙A ⊗ (U −U′))(A⊗ 𝟙B) and hence 0 = (𝟙A ⊗ (U −U′))(XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩. By linearity, this implies U −U′ = 0.

● Step 12 computes the operator K in the GKLS-form according to the discussion above.
● Step 13 defines an operator Ksc, which according the statement of Theorem V.6 and also due to the discussion below Eq. (16) is of the

form KA ⊗ 𝟙B + 𝟙A ⊗ iHB.
● Steps 14 and 15 extract KA and HB from Ksc. Note that such a decomposition is not unique, since for any λ ∈ R, the transformation

KA → KA + iλ𝟙A, HB → HB − λ𝟙B leaves Ksc invariant. This transformation, however, allows us to choose HB traceless. In that case,
steps 14 and 15 determine KA and HB.

APPENDIX D: CONSTRUCTIVE APPROACH TO THEOREM V.18

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, HA, and HB in Theorem
V.18 if the conditions of Lemma V.17 are met. We use the notation from Appendix C.

Given the operator L̂ ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) as in Lemma V.17, then we can compute the operators A, U, B, HA, and HB via the
following eight steps:

1. Apply steps 1–18 in the protocol in Appendix C to L̂. This yields HE = HA1 ⊗HB1 ⊗HA2 ⊗HB2 , Ã ∈ B(HA2 ;HA0 ⊗HE), Ũ ∈ B(HE
⊗HB;HB ⊗HE), K̃A ∈ B(HA), and H̃B ∈ B(HB).

2. Choose any unit vector ∣ξ⟩ ∈ HE.
3. Compute σ = ∣ξ⟩⟨ξ∣.
4. Compute A = (𝟙A−1 ⊗ 𝟙E ⊗ ⟨ΩA0 ;A3 ∣)(𝟙A−1 ⊗ FA0 ;EÃ⊗ 𝟙A3)(∣ΩA−1 ;A2⟩⊗ 𝟙A3 ⊗ ⟨ξ∣).
5. Compute B = B̃(𝟙B ⊗ ⟨ξ∣).
6. Compute U = ŨFB;E.
7. Set HB = H̃B.
8. Calculate HA = 1

2i(K̃
T
A − K̃†T

A ), where the transposition is with respect to the {∣ai⟩} basis defined in Appendix C.

Let us comment on why the steps above yield the right result:

● Step 1 can be executed, since the assumptions of Lemma V.5 are the first two assumptions in Lemma V.17.
● Steps 2 and 3 define σ as in the Proof of Theorem V.18.
● Step 4 is a more explicit expression for Ã TAΞ†

A in the Proof of Theorem V.18.
● Steps 5, 6, and 7 are exactly the definitions of B, U, and HB, respectively, in the Proof of Theorem V.18.
● For step 8, we note that the condition trA1[L̂A] = 0 implies LA(𝟙) = 0 so that we can follow the last few sentences in the Proof of

Theorem V.18.
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