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ABSTRACT

We analyze the influence of multiplayer interactions and network adaptation on the stability of equilibrium points in evolutionary games.
We consider the Snowdrift game on simplicial complexes. In particular, we consider as a starting point the extension from only two-player
interactions to coexistence of two- and three-player interactions. The state of the system and the topology of the interactions are both adaptive
through best-response strategies of nodes and rewiring strategies of edges, respectively. We derive a closed set of low-dimensional differential
equations using pairwise moment closure, which yields an approximation of the lower moments of the system. We numerically confirm the
validity of these moment equations. Moreover, we demonstrate that the stability of the fixed points remains unchanged for the considered
adaption process. This stability result indicates that rational best-response strategies in games are very difficult to destabilize, even if higher-
order multiplayer interactions are taken into account.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078863

Social systems are characterized by complex networks with inter-
actions of two or more agents (e.g., individuals, group represen-
tatives, companies). In game theoretic models of these systems,
agents get a payoff depending on their chosen action and their
neighbors’ actions. This article extends the well-established class
of adaptive two-player games on networks, where the state of
the system and the topology of the network change over time,
to three-player games on adaptive simplicial complexes. As an
example, the Snowdrift game with rational adaption rules is con-
sidered. We study the network using direct simulations as well
as moment closure, leading to a low-dimensional differential
equation. We obtain a stable equilibrium state with coexistence
of cooperation and defection, which is remarkably robust across
very large ranges of parameters.

I. INTRODUCTION

Complex networks are a well-established tool for the descrip-
tion of dynamical processes with interaction between adjacent
nodes/agents. In many real world systems, however, interactions of

more than two nodes take place and have an important impact on
the dynamics of the system,1 such as transmission of diseases from
one infected to many others, social science,2 biological systems,3

neuroscience,4,5 and many more. Here, we are interested in the
influence of polyadic (also known as higher-order6) interactions in
the context of game theory. So far, these multi-player interactions
have been considered on fixed hypergraphs, where the structure or
topology remains constant.7–9 In contrast, adaptive coevolutionary
networks10,11 have been successfully applied to many model systems
with two-node interactions, e.g., in neural processing,12 epidemic
spreading,13 opinion forming,14 and evolutionary social games.15–21

In all of these systems, the network topology changes due to adding,
deleting, or rewiring of two-player edges. Evolutionary social games
are often characterized by a social dilemma, in which the global pay-
off is not maximal, if individuals optimize their own payoff, as in the
prisoner’s dilemma or the Snowdrift game.

Much less is known about adaptive multiplayer games on
hypergraphs, where both the hypergraph and the state of the nodes
evolve with time. In such systems, the games are not restricted
to two-player interactions, governed by usual edges in networks,
but also extend to three (or more) player interactions, governed
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by higher-dimensional hyperedges. Recently, an extension of the
voter model to adaptive simplicial complexes has shown that mul-
tiplayer peer pressure interaction can lead to stronger polarization
of opinions than expected from classical two-node interactions.22,23

In fact, it is understood that polyadic, higher-order coupling for
static topologies can already lead to important new effects in many
dynamical process; see, e.g., Refs. 24–29. Hence, combining the pre-
viously mentioned directions, it becomes a natural question as to
how evolutionary social games behave with additional higher-order
interactions of more than two players and adaptive topology of the
system.

Multiplayer games without adaptivity have been studied as a
model class for quite some time. For example, in the multiplayer
Snowdrift game, the density of cooperators drops in a replica-
tor dynamics with the number of players and the cost-to-benefit
ratio,30 there are multiplayer extensions that are equivalent to a
generalized public goods game,31 and spatial extensions have been
investigated.32–34 Yet, it remains unclear how adaptivity of the topol-
ogy influences the dynamics of multiplayer games; therefore, we
have to start from basic models.

In this work, we define the adaptive simplicial Snowdrift game
by combining explicit three-player interactions with the Snowdrift
game on an adaptive simplicial complex. We are interested in the
question if multiplayer interactions that increase the individual pay-
off, such as best response and rewiring, can destabilize the steady
states of the system. To study this question, we combine analytical
and numerical techniques. On the analytical level, we derive low-
dimensional moment equations for the lowest moments and their
closures based on pairwise approximation. Numerically, we study
the dynamics by direct simulation. We observe good agreement with
the time evolution of the moments in both approaches. Second,
we analyze the steady states of the moment equations. It turns out
that the stability properties of the main attracting steady state are
robust under adding polyadic, higher-order interactions beyond the
classical two-player scenario. In particular, the more classical adap-
tive Snowdrift model with only two-player interactions behaves very
similar to the variant with additional three-player interactions over
large robust parameter ranges. One possible interpretation of this
result is that as long as agents behave in a sufficiently rational way,
polyadic interactions between them do not destroy the stability of
the system. Finally, we numerically evaluate how introducing some
partial irrational behavior of the agents could destabilize the system.
Even in this case, it is very difficult to find instabilities.

There are two important conclusions that can be drawn from
these results. First, one may conjecture that many large-scale sta-
ble economic systems remain stable even if very complex polyadic
interactions are considered as long as the rules the players follow
are sufficiently rational. Second, although it has been shown that
higher-order multiplayer interactions can change dynamics in sev-
eral examples for certain parameters, it should be acknowledged that
there are also many cases, where the system dynamics can be very
robust to adding such interactions between nodes.

This paper is structured as follows. In Sec. II, we introduce
the adaptive simplicial Snowdrift model. In Sec. III, we specify the
full moment equations for the system and their closure, with a
detailed derivation given in Appendixes A and B and present numer-
ical results from simulation. The stability of equilibria of the closed

moment equations is analyzed in Sec. IV. This paper is summarized
in Sec. V.

II. ADAPTIVE SIMPLICIAL SNOWDRIFT GAME

A. Multiplayer Snowdrift game

The Snowdrift game is a famous example for a game with a
social dilemma.35,36 In this game, the players may or may not con-
tribute to some task with a total cost c and a common benefit b. The
cost c is split even among all the cooperators (strategy C), but each
player, also the defectors (strategy D), get the same benefit, as long
as the task is done. This leads to the most commonly used payoff
matrix of the two-player Snowdrift game,32

P =
C D

C
D

(

b − c
2

b − c
b 0

)

, (1)

where the cost c is split among the cooperators, while there is
a benefit b if there is at least one cooperator. We assume that
the benefit exceeds the cost, b > c > 0, since otherwise defection
becomes the single dominating strategy;32 i.e., for high costs, b
< c < 2b, the system is equivalent to the prisoner’s dilemma. Choos-
ing b > c implies P(D, C) > P(C, C) > P(C, D) > P(D, D), which is
the defining property of Snowdrift games.32 First, this implies that
there is no dominated action and that there are two pure Nash
equilibria, (C, D) and (D, C), where deviation leads to smaller pay-
offs. Second, both strategies can invade a population of opposite
players such that there is a mixed evolutionary stable state with a
fraction pC = 1 − c

2b−c
of cooperating players.32 However, for all pC

< 1, the total payoff is smaller than in populations with only coop-
erators since p2

C(b − c/2) + pC(1 − pC)(b + b − c) + (1 − pC)2 · 0
= pC(2 − pC)(b − c/2) ≤ b − c/2. Therefore, the Snowdrift game is
a so-called social dilemma,32 where maximizing individual payoffs
does not maximize the payoff for the whole society.

There are several ways to extend the Snowdrift game to a mul-
tiplayer game.30,32–34 We consider the following payoff functions for
L players, which are defined for cooperating (C) and defecting (D)
players as30

PC(nC) =
{

0 for nC = 0,

b − c
nC

for nC ∈ [1, L],
(2)

PD(nC) =
{

0 for nC = 0,

b for nC ∈ [1, L − 1],
(3)

where 0 ≤ nC ≤ L is the number of cooperating players C. Here,
the total cost c of completing the task is shared equally among
all cooperating players. For L = 2, the payoff matrix in Eq. (1) is
recovered.

The properties of the multiplayer Snowdrift game are simi-
lar to the two-player game. There are no dominated actions. Best
response against all-defecting opponents is to choose cooperation
since the payoff increases, PC(nC = 1) = b − c > 0 = PD(nC = 0).
On the other hand, if there are already l ≥ 1 cooperating oppo-
nents, best response is to choose defection because PD(nC = l)
= b > b − c

l+1
= PC(nC = l + 1) ∀l ∈ [1, L − 1]. Again, this implies
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that all pure strategy profiles, in which exactly one player cooperates,
nC = 1, are pure Nash equilibria and that there is some mixed evolu-
tionary stable strategy. Note that in general, multiplayer games with
L > 2 are not reducible to multiple two-player encounters.24

B. Adaptive networks

We start by defining a model class for evolutionary dynam-
ics of the Snowdrift game on adaptive hypergraphs. A hypergraph
G = (N , E) with up to d-player interactions consists of a discrete

set of nodes N and a set of (hyper)edges E =
⋃d

n=2 En connecting
the nodes. Here, En ⊂ N n is the set of n-dimensional hyperedges.
The nodes i ∈ N represent individual players, and we assign a
state (or label) X : N → A to each node, which for the Snowdrift
game is either cooperation or defection, X(i) ∈ {C, D}. In ordinary
graphs, only edges e = (i, j) ∈ E2 are present and represent possi-
ble two-player interactions between the corresponding nodes. In
hypergraphs also higher-dimensional edges are allowed, e.g., three-
node hyperedges s = (i, j, k). Thus, this framework naturally allows
one to generalize two-player games on ordinary networks/graphs to
multiplayer games on hypergraphs.

This framework allows for two different possibilities for coevo-
lutionary (also known as adaptive) network dynamics.37 The first is
the evolution of the node state, while the set of edges remains con-
stant. The second is the evolution of the set of edges through creation
and deletion, while the state of nodes remains unchanged. These two
types are called dynamic on and of the network, respectively, and in
adaptive networks, both dynamics take place.11

In this work, we restrict the class of hypergraphs to simplicial
complexes to keep the analytical complexity of the models more
tractable, but our approach will be extended in future work. From
the viewpoint of applications, the simplicial complex restriction is
applicable to systems, in which interaction of more than two agents
implies that each subset of these agents also interacts with each
other, e.g., in friendship groups.

A simplicial complex S is a set of simplices with

(i) s ∈ S ⇒ ∂s ⊂ S and
(ii) for simplices s1, s2 ∈ S , the intersection satisfies s1 ∩ s2 = ∅ or

s1 ∩ s2 ∈ ∂s1, ∂s2,

where ∂s is the set of faces of simplex s. Thus, the first condition
means that every face of simplices in S is again in S . A simplicial
k-complex is a simplicial complex S with dim(S) := sups∈S dim(s)
= k; i.e., the maximal dimension of simplices in S is k and there is
at least one such simplex. The first step to a generalized multiplayer
Snowdrift game is to include interactions of three players.1,38 This
means that the coevolutionary network dynamics is realized on a
simplicial two-complex consisting of nodes i ∈ N , edges (i, j) ∈ E2,
and simplicial triangles (i, j, k) ∈ E3. The corresponding hypergraph
is then given by G = (N , E2 ∪ E3). As before, the nodes correspond
to the agents, while the edges and triangles represent two-player
and three-player interactions, respectively. Let us remark that in
ordinary graphs, one usually calls a set of three nodes i, j, k ∈ N a tri-
angle if each is connected to the others directly, {(i, j), (j, k), (k, i)} ⊂
E . In contrast, a simplicial triangle is a tuple (i, j, k) ∈ E3. For sim-
plicity and better distinction, we will call the elements of E3 just
simplex in the following and leave the term triangle for the case of

three pairwise connected nodes. Note that within a simplicial com-
plex, each simplex (i, j, k) ∈ E3 implies the existence of the triangle
{(i, j), (j, k), and (k, i)} since each face of (i, j, k) must be contained,
but not vice versa.

The state X(i) ∈ {C, D} of the nodes i ∈ N is used to label the
elements of the graph as follows. First, we identify C with label 0
and D with label 1 such that 0-nodes are cooperating and 1-nodes
are defecting. The number of C-nodes in the simplicial complex is
n0, while the number of D-nodes is called n1. Together, they satisfy
N := |N | = n0 + n1.

Similarly, the edges are classified into 00-, 01-, and 11-edges.
Again, the number of xy-edges is denoted nxy, and they are counted

as nxy =
∑N

i,j=1 AjiδX(i),xδX(j),y, where Aji = 1 if (j, i) ∈ E2 and zero

else and δa,b is the Kronecker delta. Under the dynamics we spec-
ify below, the total number of edges will satisfy a conservation
law M := |E2| = n00 + n01 + n10 + n11 = n00 + 2n01 + n11 = kdegN,
where kdeg is the average degree of nodes in the network.

The simplices are characterized by their number of defect-
ing nodes, and we call s = (i, j, k) ∈ E3 a simplex of type I if it
contains exactly I defecting nodes; i.e., X(i) + X(j) + X(k) = I. The
set of all I-type simplices is denoted by SI. Similarly, triangles
{(i, j), (j, k), (k, l)} ⊂ E are of type I if they consist of exactly I
defecting nodes.

In general, dynamical systems on adaptive networks (or hyper-
graphs) are characterized by dynamics on the network, i.e., update
rules of node status, and dynamics of the network, i.e., creation or
deletion of nodes, edges, or simplices. Assuming a fixed set of nodes
N , this means that their dynamics takes place on a time-dependent
simplicial hypergraph. In the following, we specify a set of dynamical
rules, which define the adaptive simplicial Snowdrift game.

C. Adaptive simplicial Snowdrift model

The adaptive simplicial Snowdrift model is based on the adap-
tive simplex voter model.22,23 We consider the generalization to
two-simplices, i.e., additional three-player interactions, which often
is sufficient for interesting dynamics, such as de-stabilization.24–29

We assume that each player has perfect knowledge about the cur-
rently chosen actions of the other players. Based on the structure of
the simplicial two-complex, we consider three different update rules
on the node status and the set of edges. For all operations, one spe-
cific node i ∈ N (corresponding to a player) is selected. This player
faces either one opponent along an edge (i, j) ∈ E2 or two oppo-
nents through a simplex (i, j, k) ∈ E3 if this exists. The considered
strategies are rewiring, best response on edge, and best response on
simplex.

Rewiring is a dynamic of the network topology and changes
the simplicial complex. This is well established for networks with
only two-player interactions.10–21 The selected player i removes the
currently chosen edge (i, j) and establishes a new edge (i, k) with uni-
form probability to some other player k with node status X(k) = C;
see Fig. 1(a). Rewiring from D to C strictly increases the payoff
for player i since P(X(i), C) > P(X(i), D) for X(i) ∈ {C, D}. If the
removed edge (i, j) was part of a simplex (i, j, m), then this simplex
is removed as well, and in order to keep the number of simplices
constant, a new simplex is created on top of one existing triangle.
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FIG. 1. Sketch of dynamical rules of evolution between cooperating (white) and
defecting (black) nodes. (a) Rewiring from D to C neighbors. (b) Best response
on edges. (c) Best response on simplices. In all cases, the left node (blue border)
takes the considered action. Configurations without change are not shown.

Hence, this action directly influences the types of existing edges and
simplices in the simplicial hypergraph.

Best response describes a change of node states and thus is
a dynamic on the network. In best response on edges, the selected
player i adjusts its own action to the best response against the cho-
sen opponent’s action in a two-player Snowdrift game. Here, best
response to each action is the opposite action; see Sec. II A. In par-
ticular, if the opposing action is C (D), the state of the selected player
becomes X(i) = D (X(i) = C); see Fig. 1(b). In best response on sim-
plices, the selected player i adjusts its own action to the best response
against the two opponents on a simplex (i, j, k) for the three-player
Snowdrift game. This means that if one of the opponents coop-
erates, C ∈ {X(j), X(k)}, the selected player chooses to defect and
the state becomes X(i) = D. On the other hand, if both opponents
defect, X(j) = X(k) = D, the selected player chooses cooperation,
X(i) = C; see Fig. 1(c). Thus, if the state X(i) is different from the
best-response action, it changes, and otherwise, it stays constant. If
it changes, not only the label of the chosen node changes, but also
the types of all edges and all simplices, which this node is part of.
Note that best-response strategies consider the optimal choice of a
single agent based on knowledge of the opponents’ strategy and is
thus one of the simplest non-trivial update rules. A more elaborate
approach would be to consider so-called Fermi-update rules15,18,39

where a probability to adapt the neighbors’ strategy is given based
on the current payoffs of the respective agents.

Based on these three operations, the evolution of the multi-
player Snowdrift game on an adaptive simplicial complex is modeled
as follows. Let G = (N , E2 ∪ E3) be a simplicial complex as defined
above. We define the probability ρ ∈ [0, 1] to execute best response
on simplices and the probability φ ∈ [0, 1] to execute rewiring of
edges in E2. First, an edge (i, j) ∈ E2 is randomly chosen in the
network.40 The first node in the edge performs the following oper-
ations. If the chosen edge (i, j) is not part of any simplex, then with

probability φ rewiring and with probability 1 − φ, best response on
edges is executed by the chosen node i. On the other hand, if the
chosen edge is part of at least one simplex with probability ρ, best
response in simplices is executed by the chosen node i, and with
probability 1 − ρ, an operation on the edge (i, j) is executed. In
the first case, one simplex is chosen uniformly from all simplices
of which the edge is part of and node i performs best response on
this simplex. In the second case, the edge operation is again either
rewiring of (i, j) with probability φ or best response on the edge (i, j)
with probability 1 − φ.

III. MOMENT EQUATIONS

In order to analyze the dynamics of the system, we derive a
set of moment equations for the lowest moments n0, n00, and n11.
The other lowest moments follow from the conservation rule for
nodes, N = n0 + n1, and for edges, M = n00 + 2n01 + n11. For an
intuitive understanding, first, we consider the system with only two-
player interactions. Second, we present the corresponding moment
equations for the adaptive three-player Snowdrift game, derived in
detail in Appendix A. The resulting moment equations depend on
higher-order moments, such as the distribution of triples, triangles,
and simplices.

A. Adaptive two-player game

First, we consider the proposed model, including only two-
player interactions. For this, let G = (N , E2) be a graph with nodes
N and edges E2. First, an edge (i, j) ⊂ E2 is chosen at random.
With probability φ, the node i rewires to a cooperating node. With
probability 1 − φ, it performs best response on the chosen edge.

The number of 0-nodes n0 increases (decreases) due to best
response on 00-edges (11-edges), which implies

d
dt

n0 = − n00
M

(1 − φ)
︸ ︷︷ ︸

b.r. 00-edge

+ n11
M

(1 − φ)
︸ ︷︷ ︸

b.r. 11-edge

. (4)

Here, n00/M and n11/M are the probabilities that the initial edge is
of type 00 and 11, respectively, while 1 − φ is the probability of best
response.

The number of 00-edges n00 increases due to rewiring when
the initial edge is a 01-edge. Note that each 00-edge is counted
twice, giving a factor of 2. Furthermore, it decreases (increases) if
best response takes place on a 00-edge (11-edge). For a 00-edge, we
have to consider the direct contribution from the edge itself plus all
additional 0-type neighbors. For this, we define the excess degree

E(0,0)
0 (1) as the expected number of 0-type neighbors to a 0-type

node being already connected to 1 other 0-node; see Appendix B 1.
The total contribution of 00-edges is then given by the probabil-
ity n00

M
(1 − φ) to perform best response on any 00-edge multiplied

with 1 + E(0,0)
0 (1), where the +1 accounts for the direct contribution

of the 00-edge itself. Similarly, best response on 11-edges leads to
n11
M

(1 − φ) multiplied with the excess degree E(1,0)
1 (1), which is the

expected number of 0-type neighbors to a 1-type node being already
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connected to one 1-type node. This leads to

d
dt

n00 = 2







n01
M

φ
︸︷︷︸

rew. 01

− n00
M

(1 − φ)

(

1 + E(0,0)
0 (1)

)

︸ ︷︷ ︸

b.r. 00-edge

+ n11
M

(1 − φ)E(1,0)
1 (1)

︸ ︷︷ ︸

b.r. 11-edge







.

(5)

Pairwise approximation gives E(0,0)
0 (1) ≈ n00

n0
and E(1,0)

1 (1)

≈ n01
n1

, see Appendix B 1, such that we obtain the pairwise closed
equation

d
dt

n00 = 2
[

n01
M

φ − n00
M

(1 − φ)

(

1 + n00
n0

)

+ n11
M

(1 − φ)
n01
n1

]

. (6)

Finally, the number n11 of 11-edges decreases due to rewiring
of 11-edges, while best response increases (decreases) n11 when
taking place on a 00-edge (11-edge). The corresponding contri-
butions of best response on edges are given by the probabilities
n00
M

(1 − φ) and n11
M

(1 − φ) multiplied, respectively, with the excess

degrees E(0,1)
0 (1) and 1 + E(1,1)

1 (1). The full contribution to n11 is
then

d
dt

n11 = 2






− n11

M
φ

︸ ︷︷ ︸

rew. 11

+ n00
M

(1 − φ)E(0,1)
0 (1)

︸ ︷︷ ︸

b.r. 00-edge

− n11
M

(1 − φ)

(

1 + E(1,1)
1 (1)

)

︸ ︷︷ ︸

b.r. 11-edge







.

(7)

Pairwise approximation of the excess degrees, E(0,1)
0 (1) ≈ n01

n0
and

E(1,1)
1 (1) ≈ n11

n1
, see Appendix B 1, gives

d
dt

n11 = 2
[

− n11
M

+ n00
M

(1 − φ)
n01
n0

− n11
M

(1 − φ)
n11
n1

]

. (8)

B. Adaptive three-player game

Three-player interactions take place on simplices. This leads
to modifications of the existing terms of the two-player model and
additional multiplayer terms. Most importantly, the probability to
perform an action on simplices plays a crucial role. For xy-edges,

it is given by the probability P
xy
any that the edge is part of any sim-

plex multiplied with the probability ρ to take such a simplex action,
ρP

xy
any.

The number of cooperating nodes changes due to best response
on edges and on simplices. Best response on 00-edges decreases n0

by one, while best response on 11-edges increases n0 by one. The
corresponding probabilities are modified in comparison with the
two-player game by a factor (1 − ρP00

any) and (1 − ρP11
any), respec-

tively. For details, see Appendix A. Best response on simplices
decreases the number of cooperators n0 when the initial node coop-
erates, and there is at least one other cooperator. Similarly, best
response on simplices increases the number of cooperators if the
action takes place within a fully defecting simplex of type S3. This
can be expressed in terms of probabilities P

xy

Sj
for an xy-type edge to

be part of a simplex of type j, conditioned it is part of any simplex;
for a full derivation, see Appendix A. Altogether, the number n0 of
cooperators changes according to

d
dt

n0 = − n00
M

(

1 − ρP00
any

)

(1 − φ) + n11
M

(

1 − ρP11
any

)

(1 − φ)
︸ ︷︷ ︸

b.r. on 00 and 11-edges

− n00
M

P00
anyρ

(

P00
S0

+ P00
S1

)

︸ ︷︷ ︸

b.r. 00-edge in S0 and S1

− n01
M

P01
anyρP01

S1
︸ ︷︷ ︸

b.r. 01-edge in S1

+ n11
M

P11
anyρP11

S3
.

︸ ︷︷ ︸

b.r. 11-edge in S3

(9)

The number of 00-edges changes due to rewiring and best
response. The contribution from rewiring of edges is similar to the
two-player game with an additional factor (1 − ρP01

any) for not taking

a simplex action. The contribution from best response on 00- and
11-edges is again given by the direct contribution (for the 00-edge)

and the corresponding excess factors, 1 + E(0,0)
0 (1) and E(1,0)

1 (1); see
Sec. III A and Appendix B 1. Similarly, best response on simplices
contributes directly to n00 for S0 and S1 and indirectly from adjacent
nodes outside of the considered simplex. For this, the simplex-excess

degree E
j

Sx
(z) is defined as the expected number of z-type neigh-

bors of an x-type node, which is part of a simplex of type j, i.e.,
which contains j defecting nodes. Adding all contributions leads to
the following moment equation for n00, for a detailed derivation, see
Appendix A:

d
dt

n00 = 2







n01
M

(

1 − ρP01
any

)

φ
︸ ︷︷ ︸

rew. 01-edges

− n00
M

(

1 − ρP00
any

)

(1 − φ)

(

1 + E(0,0)
1 (0)

)

︸ ︷︷ ︸

b.r. 00-edges

+ n11
M

(

1 − ρP11
any

)

(1 − φ)E(1,1)
1 (0)

︸ ︷︷ ︸

b.r. 11-edges

− n00
M

P00
anyρ

(

2P00
S0

+ P00
S1

)

︸ ︷︷ ︸

b.r. 00-edge in S0 and S1(direct)

− n01
M

P01
anyρ P01

S1
︸ ︷︷ ︸

b.r. 01-edge in S1(direct)

− n00
M

P00
anyρ

[

P00
S0

E0
S0

(0) + P00
S1

E0
S1

(0)
]

︸ ︷︷ ︸

b.r. 00-edge in S0 and S1(indirect)

− n01
M

P01
anyρ P01

S1
E0
S1

(0)
︸ ︷︷ ︸

b.r. 01-edge in S1(indirect)

+ n11
M

P11
anyρ P11

S3
E1
S3

(0)
︸ ︷︷ ︸

b.r. 11-edge in S3(indirect)







. (10)

Finally, the number of 11-nodes also changes according to rewiring and best response with a full derivation in Appendix A. Rewiring and best
response on edges gives similar contributions as in the two-player game; see Sec. III A. Similarly to n00, best response on simplices contributes
directly within simplices of type S1 and S3, and indirectly from adjacent nodes outside of the simplex, expressed in terms of simplex-excess

degrees E
j

Sx
(z). This leads to
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d
dt

n11 = 2







− n11
M

(

1 − ρP11
any

)

φ
︸ ︷︷ ︸

rew. 11-edges

+ n00
M

(

1 − ρP00
any

)

(1 − φ)E(0,0)
1 (1)

︸ ︷︷ ︸

b.r. 00-edges

− n11
M

(

1 − ρP11
any

)

(1 − φ)

(

1 + E(1,1)
1 (1)

)

︸ ︷︷ ︸

b.r. 11-edges

+ n00
M

P00
anyρ P00

S1
︸ ︷︷ ︸

b.r. 00-edge in S1(direct)

+ n01
M

P01
anyρ P01

S1
︸ ︷︷ ︸

b.r. 01-edge in S1(direct)

− 2 n11
M

P11
anyρ P11

S3
︸ ︷︷ ︸

b.r. 11-edge in S3(direct)

+ n00
M

P00
anyρ

[

P00
S0

E0
S0

(1) + P00
S1

E1
S0

(1)
]

︸ ︷︷ ︸

b.r. 00-edge in S1(indirect)

+ n01
M

P01
anyρ P01

S1
E1
S0

(1)
︸ ︷︷ ︸

b.r. 01-edge in S1(indirect)

− n11
M

P11
anyρ P11

S3
E3
S1

(1)
︸ ︷︷ ︸

b.r. 11-edge in S1(indirect)







. (11)

C. Closed moment system

We consider pairwise approximation to close Eqs. (9)–(11).
Such closure methods are well established in epidemiology and
dynamics on two-player networks.41–44 Therefore, we approximate
the excess degrees, i.e., the expected numbers of neighbors of type

z for x-type nodes with j = 1 neighbor of type y as E
(x,y)
1 (z) ≈ nzxy

nxy

≈ nxynyz

nynxy
≈ nyz

ny
; see detailed derivation in Appendix B. The excess

degrees for nodes within simplices are approximated with E0
S0

(1)

≈ E(0,0)
1 (1), E1

S0
(1) ≈ E(0,1)

1 (1), and E3
S1

(1) ≈ E(1,1)
1 (1); see

Appendix B. Detailed approximations for the probabilities P
xy
any and

P
xy

Sz
are also given in Appendix B. Furthermore, by definition, we

have P00
S0

+ P00
S1

= 1 since 00-type edges, which are part of any sim-
plex, must be either within S0 or S1. Applying these approximations
to the moment equations leads to the following closed system of
equations for the lowest moments:

d
dt

n0 = − n00
M

[(

1 − ρP00
any

)

(1 − φ) + ρP00
any

]

+ n11
M

[(

1 − ρP11
any

)

(1 − φ) + P11
anyρP11

S3

]

− n01
M

P01
anyρP01

S1
, (12)

d
dt

n00 = 2
[

n01
M

(

1 − ρP01
any

)

φ − n00
M

(

1 − ρP00
any

)

(1 − φ)

(

1 + n00
n0

)

+ n11
M

(

1 − ρP11
any

)

(1 − φ)
n01
n1

− n00
M

P00
anyρ

(

1 + P00
S0

+ n00
n0

)

− n01
M

P01
anyρ P01

S1

(

1 + n00
n0

)

+ n11
M

P11
anyρ P11

S3

n01
n1

]

, (13)

d
dt

n11 = 2
[

− n11
M

(

1 − ρP11
any

)

+ n00
M

(

1 − ρP00
any

)

(1 − φ)
n01
n0

− n11
M

(

1 − ρP11
any

)

(1 − φ)
n11
n1

+ n00
M

P00
anyρ

(

1 − P00
S0

+ n01
n0

)

+ n01
M

P01
anyρ P01

S1

(

1 + n01
n0

)

− n11
M

P11
anyρ P11

S3

(

2 + n11
n1

)]

. (14)

Each term represents one of the considered actions in the adap-
tive simplicial Snowdrift game, as specified in Eqs. (9)–(11), with its
corresponding implications on the numbers of labeled nodes and
edges. However, even in their closed form, a complete analytical
treatment is not likely to work. Instead, the expected time evolution
of the lowest moments from Eqs. (12)–(14) is evaluated numerically.
In the following sections, we compare this to full direct simulations
of the adaptive Snowdrift game on simplicial complexes. Note that
setting ρ = 0 leads to the closed moment equations of the adaptive
two-player game; see Sec. III A.

D. Numerical results

The closed moment equations and the approximations of
subgraphs, excess degrees, and probabilities used therein from
Appendix B are compared in this section with numerical simulations

on simplicial complexes. For the simulations, we consider random
Erdoső–Rényi graphs45,46 as initial networks, on top of which we
add a specific number of simplices in order to get a simplicial com-
plex. Note that this is just one exemplary ensemble, even though
the system could be applied to any simplicial complex. We find
similar results for the uniform ensemble G(N, M̃) and the binomial
ensemble G(N, p).

Graphs in G(N, M̃) consist of N nodes and exactly M̃ undi-
rected edges (such that the total number of edges is |E2| = M
= 2M̃). Here, we choose M̃ = µN such that the average degree
of each node is kdeg = 2µ. Graphs in G(N, p) consist of N nodes,
and each of the possible N(N − 1)/2 undirected edges is indepen-
dently drawn with probability p. Here, we obtain the same total

number of edges M = kdegN on average by choosing p = kdeg

N−1
. In

order to create a simplicial complex, we assign a fraction σ of all
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existing triangles as simplices in E3. The expected number of trian-

gles in G(N, p) is given by E [|T|] =
(

N

3

)

p3. This asymptotically also

holds for G(N, M̃) with N → ∞ and M
N(N−1)

= p such that we expect

E [|T|] = N(N−1)(N−2)
6

kdeg
3

(N−1)3
= 1

6
kdeg

3 N2−2N
N2−2N+1

≈ 1
6
kdeg

3.

In the following, numerical results are presented for the uni-
form ensemble only, and equivalent results are obtained for the
binomial ensemble. We choose N = 1000 nodes, M = 38 000 edges
(such that the average degree is kdeg = 38), and σ = 0.5. For the
chosen parameters, we get approximately 9000 triangles and 4500
simplices (each counted six times). The probability that a ran-
dom edge is part of at least one simplex is approximately P ≈ 1

−
(

1 − 6
M

)σE[|T|]
, which gives P ≈ 0.5 for the chosen parameters.

Furthermore, we consider the probabilities for action on a simplex
and for rewiring of edges as ρ = 0.5 and φ = 0.5, respectively.

The results for the lowest moments nx and nxy are illustrated
in Fig. 2 for five different realizations of the initial network (blue
lines). The simulation is compared to the evolution with the closed
moment equations (black lines). We observe that within t = 10 000
time steps, the closed moment equations converge to a steady state.
The simulation shows oscillations that are in the range of the steady
state of the closed moment equations. However, there are larger
deviations for the number n00 and n11 of 00-edges and 11-edges.

Nevertheless, the closed moment equations are a good approx-
imation to the time evolution of the number of nodes and edges
within the adaptive simplicial Snowdrift model. Both simulation and
closed system show, in general, the same trends, and the oscillations
of the number of nodes and edges in the simulation are close to the
non-trivial steady state of the closed moment equations. We account
the observed differences to the strong simplifications made in the
closure approximations; see Appendix B.

Note that the number of simplices remains constant within
each of the realizations (not shown) because due to σ = 0.5, there
are initially enough triangles left to compensate a potential destruc-
tion of simplices by rewiring. For different realizations, however,
this number can be different due to the probabilistic number of
initial triangles and the proportional dependence of the correspond-
ing simplices. For the corresponding time evolution of the different
number of simplex types, see Fig. 9 in Appendix B 2 b.

Moreover, similar good agreement between numerical simu-
lation and moment equations has been checked with additional
simulations for different numbers of nodes, edges, and simplices,
probabilities for actions on nodes or simplices, and initial binomial
random graph G(N, p).

In Fig. 3, we illustrate how the adaptive simplicial Snow-
drift model depends on the probability ρ to choose an action on
simplices. For this, the time dependence of the lowest moments
n0, n00, and n11 is illustrated for different values of ρ as
specified in the figure (blue colored lines). This is compared to the
corresponding solution of the closed moment equations
(gray colored lines). We observe that for all ρ, the lowest moments
quickly approach an equilibrium, around which there are fluctua-
tions in the simulations. The observed steady states for the moment
equations suggest monotone dependence on the parameter ρ. For
example, the fraction of cooperators in the equilibrium f0 = n0/N
decreases from f0

∗ = 1/2 (with zero multiplayer interactions) to

(a)

(b)

(c)

(d)

(e)

FIG. 2. Numerical simulations of the adaptive simplicial Snowdrift model com-
pared to closed moment equations [Eqs. (12)–(14)] on random uniform networks
with N = 1000 and µ = 19. A fraction σ = 0.5 of triangles are initially consid-
ered simplices. Illustrated is the time evolution of the fractions of (a) cooperators
n0/N, (b) defectors n1/N, (c) 00-edges n00/M, (d) 01-edges n01/M, and (e)
11-edges n11/M for the simulation (blue lines). Different realizations imply a dif-
ferent number of initial simplices, leading to different corresponding solutions of
the closed moment equations (black lines). Other parameters are φ = 0.5 and
ρ = 0.5.
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(a)

(b)

(c)

FIG. 3. Dependence of an adaptive simplicial Snowdrift model on the probability
of choosing an action on the simplex ρ. Shown are numerical simulations (col-
ored lines) compared to closed moment equations [Eqs. (12)–(14)] (gray lines)
with same parameters as in Fig. 2 and with ρ as specified. Illustrated is the time
evolution of the fractions of (a) cooperators n0/N, (b) 00-edges n00/M, and (c)
11-edges n11/M.

approximately f0
∗ = 1/3 (with many multiplayer interactions). This

means that increasing the influence of these multiplayer interactions
by increasing ρ does not lead to a change in stability or a bifurcation.
In contrast, the observed non-trivial steady states seem to be sta-
ble for the simplicial Snowdrift game, even when certain irrational
perturbations are considered, as discussed in Sec. IV.

IV. STABILITY ANALYSIS

The closed moment equations that describe the evolution of
the adaptive simplicial Snowdrift game cannot be examined com-
pletely analytically. However, it is possible to analyze steady states
and their local stability for the different operations, rewiring, best
response on edge, and best response in simplices, separately. For
this purpose, we consider the fractions of labeled nodes and edges f0
= n0

N
, f1 = n1

N
= 1 − f0, f00 = n00

M
, f11 = n11

M
, and f01 = n01

M
= 1

2

(1 − f00 − f11) and rewrite the closed moment equations accordingly.

A. Rewiring

The dynamics of rewiring can be extracted from the closed
moment equations (12)–(14) by choosing φ = 1, ρ = 0 or φ

= 1, S = 0. Therefore, the corresponding dynamics of the adaptive
network in relative variables is given by

d
dt

f0 = 0,

d
dt

f00 =
1 − f00 − f11

M
,

d
dt

f11 = −2
f11

M
.

(15)

This system has a line of steady states
{

(f ∗
0 , f ∗

00, f
∗
11) = (f ∗

0 , 1, 0)|
f ∗
0 ∈ (0, 1]

}

. Here, f ∗
0 = 0 is excluded because without 0-nodes, there

are no 00-edges, which contradicts f ∗
00 = 1 in the steady state. Note

that in the derivation of the moment equations, Appendix A, it is
assumed that there always are enough 0-nodes, to which the selected
edge can be rewired. In networks with a small fraction of 0-nodes
but with high node degrees µ, this assumption will be violated and
Eq. (15) cannot be applied.

The second and third equations in Eq. (15) are independent of
f0, which allows one to reduce the system to the f00 and f11 variables.
The Jacobian of the right-hand side of the reduced system is given
by

J(f00, f11) =
1

M

(

−1 −1
0 −2

)

, (16)

which has two negative real eigenvalues λ1 = − 1
M

and λ2 = − 2
M

.
Therefore, the steady state is locally asymptotically stable in this
reduced system. Since the fraction of cooperators f0 is always con-
stant in the system, the line of steady states defined above is stable in
the system with only rewiring.

B. Best response on edges

For the parameter choices φ = 0, ρ = 0 or φ = 0, S = 0 in the
closed moment equations (12)–(14), only best response on edges
occurs in the adaptive network. In terms of f0, f00, f11 ∈ [0, 1], this is
given by

d
dt

f0 = −
f00

N
+

f11

N
,

d
dt

f00 = −2
f00

M
− 2

f00
2

Nf0
+

f11(1 − f00 − f11)

N(1 − f0)
,

d
dt

f11 = −2
f11

M
+

f00(1 − f00 − f11)

Nf0
−

2f11
2

N(1 − f0)
.

(17)

For N, M 6= 0, this system has a line of trivial steady states
{

(f0
∗, f00

∗, f11
∗
) = (f0

∗, 0, 0) | f0
∗ ∈ (0, 1)

}

. The cases f0
∗ = 0 and

f0
∗ = 1 are excluded since this contradicts f00 = 0 and f11 = 0. Note

that depending on f0
∗, there might not be enough possible 01-edges

in simulations on some finite network. The Jacobian in one of the
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steady state points (f0
∗, f00

∗, f11
∗
) = (f0

∗, 0, 0) is given by

J(f ∗
0 ) =






0 − 1
N

1
N

0 − 2
M

1
N(1−f0

∗)

0 1
Nf0

∗ − 2
M




 , (18)

with eigenvalues λ0 = 0 and λ2,3 = − 2
M

± 1

N
√

f0
∗(1−f0

∗)
. The second

eigenvalue becomes positive for all f0
∗ if M

N
>

√
2, i.e., if the average

degree µ > 1/
√

2. This is satisfied for realistic networks. The Hart-
man–Grobman theorem implies that under this condition, each of
the trivial steady states is unstable.

Furthermore, the system Eq. (17) has a non-trivial steady state
(f0

∗, f00
∗, f11

∗
) =

(
1
2
, 1

4
[1 − N

M
], 1

4
[1 − N

M
]
)

. Therefore, if the number
of edges M is sufficiently high relative to the number of nodes N,
this steady state corresponds to the state in which all node labels
and edges are uniformly distributed, i.e., (f0

∗, f00
∗, f11

∗
) →

(
1
2
, 1

4
, 1

4

)

for N/M → 0. Calculating the eigenvalues and applying the Hart-
man–Grobman theorem reveals that this steady state is asymptot-
ically stable for µ = M

N
> 1, which is fulfilled for all reasonable

networks. For large M, this can be seen as the realization of the only
mixed Nash equilibrium of the two-player Snowdrift game globally
in the network, where both players select either of the two actions C
and D with the same probability 1/2.

C. Best response in simplices

Choosing ρ = 1 and a large number S of simplices implies that
every edge is part of at least one simplex in Eqs. (12)–(14). Thus, only
best response in simplices is executed in the adaptive network. In
particular, here, we assume that P

xy
any = 1 for all xy-edges and apply

pair approximation for the probabilities of xy-edges to be part of spe-
cific simplex types P

xy

Si
; see Appendix B 2. This leads to the following

system in terms of f0, f00, f11 ∈ [0, 1]:

d
dt

f0 = −
f00

N
−

f01

N

f00f1

f00f1 + f11f0
+

f11

N

f11
2f0

3f01
2f1 + f11

2f0
,

d
dt

f00 = −2
f00

M

(

f00
2f1

f00
2f1 + 3f01

2f0
+ 1

)

−
2f00

2

Nf0
− 2

(
f01

M
+

f00f01

Nf0

)
f00f1

f00f1 + f11f0
+ 2

f01f11

Nf1

f11
2f0

3f01
2f1 + f11

2f0
,

d
dt

f11 = +2
f00

M

3f01
2f0

f00
2f1 + 3f01

2f0
+ 2

f00f01

Nf0
+ 2

(

f01

M
+

f01
2

Nf0

)

f00f1

f00f1 + f11f0
− 2

(

2f11

M
+

f11
2

Nf1

)

f11
2f0

3f01
2f1 + f11

2f0
.

(19)

Again, we find a line of trivial steady states for best response
in simplices, {(f0 ∗, f00

∗, f11
∗
) = (f0

∗, 0, 0)|f0 ∗ ∈ (0, 1)}, which are the
same as for best response on edges. Further steady states can only be
computed implicitly by the usage of mathematical software. In order
to analyze the dynamics of best response in simplices besides the
trivial steady states, we assume in the following that P

xy

Si
= 1

2
for all

possible edge and simplex types. This is equivalent to the assumption
that the simplex types are uniformly distributed within all simplices;
i.e., their total amount is the same |S0| = |S1| = |S2| = |S3|. The
resulting system in terms of f0, f00, f11 ∈ (0, 1) is given by

d
dt

f0 = −
f00

N
−

1

2

f01

N
+

1

2

f11

N
,

d
dt

f00 = −3
f00

M
−

2f00
2

Nf0
−

f01

M
−

f00f01

Nf0
+

f01f11

Nf1
,

d
dt

f11 =
f00

M
+ 2

f00f01

Nf0
+

f01

M
+

f01
2

Nf0
− 2

f11

M
−

f11
2

Nf1
.

(20)

For this simplified system, we find the nontrivial steady state

(f0
∗, f00

∗, f11
∗
) =

(

1
3
,

2µ−2+
√

4µ2+2µ+4

9µ
− 1

3
,

2µ−2+
√

4µ2+2µ+4

9µ

)

with

µ

= M
N

. Again, f0
∗ = 1

3
corresponds to the fraction of cooperators C

in the Nash equilibrium of a three-player Snowdrift game, which is

consistent with the assumption of an initial uniform distribution of
labels, edges, and simplices.

D. Numerical analysis with MatCont

We perform a numerical stability and bifurcation analysis of
the adaptive simplicial Snowdrift model with the help of the software
tool MatCont47 as described in Appendix C. The numerical analy-
sis confirms the analytical results of the equations for rewiring, best
response on edges, and best response in simplices separately. Fur-
thermore, the analysis in MatCont indicates that the closed moment
equations, Eqs. (12)–(14), of the full adaptive simplex Snowdrift
model have a non-trivial steady state, which is asymptotically sta-
ble for all reasonable parameter choices φ ∈ [0, 1], ρ ∈ [0, 1], N > 3,
µ > 1, and σ ∈ [0, 1].

An exemplary parameter diagram is shown in Fig. 4 as a func-
tion of ρ and for different parameters φ. The fractions of cooperators
and 00-edges in the equilibrium are shown in panels (a) and (b),
while the real parts of the corresponding eigenvalues are shown in
(c). Apparently, all eigenvalues are below zero such that the steady
states are stable for all parameters. Yet, we observe that the eigenval-
ues are relatively close to zero so that the stability is relatively weak,
which does allow after a perturbation for an extended duration of
phases away from the steady state.
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(a)

(b)

(c)

FIG. 4. Stability analysis with MatCont. Shown are (a) the fraction of cooperators
f0

∗ and (b) the fraction of 00-edges f00
∗ as a function of ρ in the equilibrium of

the moment system with N = 1000,µ = 20, and σ = 0.5 for different values of
φ. In (c), the corresponding, numerically obtained real parts of the eigenvalues λi

are illustrated, which are smaller than zero for all ρ.

E. Robustness

Furthermore, we are interested how robust the presented
adaptive simplicial Snowdrift model is against the introduction of
irrational actions of players. An action is called irrational if the pay-
off of the selected player is decreasing (or at least not increasing).
For example, rewiring from cooperating C to defecting D-nodes
leads to smaller payoff. Here, we consider irrational replacements
for the best-response simplex action in order to understand the effect
of multiplayer interactions on the stability of the system. For this, we
define the probability α ∈ [0, 1] to replace the simplex action that is
replaced with one of the following irrational strategies. In particu-
lar, for α = 0, the original adaptive simplicial Snowdrift model is
obtained, and for α = 1, all best-response actions on simplices are
replaced.

For this, we consider (i) the all-defecting strategy, (ii) the worst
response strategy, where the opposite of best response in simplices
is considered, (iii) the all-cooperating strategy, (iv) the adaption
to the majority action within the simplex, (v) copying the neigh-
bors’ action, (vi) always changing the action, (vii)–(ix) increasing the
number of 00-, 01-, or 11-edges, and (x)–(xii) decreasing the num-
ber of 00-, 01-, or 11-edges, respectively. Each of these extensions

leads to additional terms in the moment equations, which are pro-
portional to α and depend on the considered action (i)–(xii). We
consider the resulting closed moment equations using the approx-
imations of Appendix B. The numerical bifurcation analysis of
these extended models is performed in MatCont, see Appendix C,
for parameters N ∈ [3, 106], M = µN with µ ∈ (1, N(N − 1)), φ

∈ (0, 1), ρ ∈ (0, 1), σ ∈ (0, 1), and α ∈ (0, 1). The results (not
shown) suggest that the non-trivial steady state remains stable for
all reasonable parameter choices and is only shifted under variation
of α. Yet, the same transient excursions due to weakly stable eigen-
values can be possible as discussed above. Hence, we conclude that
the dynamics of the adaptive simplicial Snowdrift model is stable,
even if the multiplayer interactions are perturbed.

V. SUMMARY AND OUTLOOK

We propose a multiplayer Snowdrift model on adaptive sim-
plicial complexes. This model contains rewiring rules, changing the
topology, and best-response rules, changing the state of the system.
For the lowest moments, the number of cooperators n0 and the num-
ber of edges between cooperators n00 and between defectors n11, we
derive moment equations based on the dynamical rules of adaption.
Based on the structure of simplicial complexes, we derive closure
relations with pairwise approximation, relying on the numbers of
labeled nodes and edges only. We confirm by numerical comparison
that the corresponding closed system leads to a good approximation
of the system, even though only the lowest moments are considered.
Since the closed system is analytically not fully solvable, we show
for specific limiting subsystems, where only one of the considered
actions takes place, that the non-trivial steady state is stable for rea-
sonable hypergraphs as long as (sufficient) rationality governs the
dynamics. These results are further supported with numerical stabil-
ity analysis of the full system, including direct numerical simulations
of the full hypergraph dynamics as well as numerical continuation
calculations for the reduced moment equations.

In total, we observe quite surprising robustness of non-trivial
steady states of adaptive multiplayer games, which we attribute
to sufficient rational behavior for each player. Furthermore, even
considering some irrational, multiplayer update rules does not de-
stabilize the non-trivial steady state. We expect this stability to
prevail if rational higher-order interactions of more than three play-
ers are considered and also if multiple agents are updated with a best
response in each step.

This suggests two interesting conclusions: (a) Complex socio-
economic systems with many agents and higher-order multiplayer
interactions might be quite robust, at least if each player/agent has
access to enough information to make sufficiently rational deci-
sions and perturbations from the steady states are sufficiently small.
(b) Although several examples of de-stabilization of network
dynamical systems by such higher-order interactions have been
found,26,29 one should not overlook the possibility that the stability
of systems with multiplayer interactions could often reduce to more
classical systems with pairwise interactions. Both conclusions are
somewhat re-assuring as there are (i) indeed long periods of socio-
economic stability in data and (ii) we can still hope to rely on results
for more classical pairwise models for certain modeling situations.
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Of course, we emphasize that our study is only a step toward
a deeper understanding of coevolutionary adaptivity in models
with higher-order, multiplayer interactions. Many open questions
remain, and we mention a few natural ones. From a structural
perspective, it would be important to generalize our results from
simplicial complexes to more general hypergraphs. A similar remark
applies to the derivation of more detailed sequences of moment
equations going beyond second-order moments. Unfortunately,
both generalizations become quite involved as the combinatorial
complexity increases quickly when higher-order moments or non-
homogeneous degree distributions are considered.41–44 Thus, devel-
oping an efficient mathematical scheme to algorithmically generate
moment equations for hypergraphs would be very desirable.

From the viewpoint of applications, one could investigate other
multiplayer games. In fact, we have also cross-validated our results
in variants of the prisoner’s dilemma48 with similar results and con-
clusions. Yet, there could be many other multiplayer games arising
in various fields, where adaptivity might have a different impact. In
this regard, it would also be interesting to develop a more precise
quantifier as to how adaptivity and the amount of rational agent
behavior influence stability or can induce bifurcations in behavioral
socio-economic systems. One possible direction is the generaliza-
tion to Fermi-update rules considering individual payoffs instead of
rational best response.15,18,39 In order to understand the limitations
of the considered closures, one could generalize evolutionary mul-
tiplayer games with multiple strategies,24 where pairwise interaction
fails to describe the dynamics, to adaptive simplicial complexes or
hypergraphs.
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APPENDIX A: DERIVATION OF MOMENT EQUATIONS

In this section, we derive moment equations for the adaptive
simplicial Snowdrift model. We are particularly interested in the
lowest moments, i.e., the expected numbers n0 and n1 of C and
D-nodes, as well as the expected numbers of edges n00, n01, and n11.
Recall that we consider a fixed total number of nodes N = n0 + n1

and a fixed number of edges M = n00 + 2n01 + n11. Therefore, it is
sufficient to derive moment equations for n0, n00, and n11.

1. Evolution of n0

The number of cooperating nodes n0 changes due to best
response on edges and best response on simplices. Let P

xy
any be the

probability that a randomly chosen edge (i, j) ∈ E of type xy, i.e.,
X(i) = x, X(j) = y, is part of at least one simplex and P

xy
no be the

probability that it is not part of any simplex.

a. Best response on edges. The number of C nodes increases by
one for best response on 11-edges and decreases by one for best
response on 00-edges. Based on the proposed dynamics, the prob-
ability to take an action on edges is given by the probability to be
not in any simplex P

xy
no plus the probability to be in any simplex P

xy
any

times the probability of not taking a simplex action (1 − ρ), which
gives P

xy
no + (1 − ρ)P

xy
any = 1 − ρP

xy
any, where P

xy
no + P

xy
any = 1 has been

used. This leads to the following contributions to d
dt

n0:

a−
0 =

n00

M

(

1 − ρP00
any

)

(1 − φ),

a+
0 =

n11

M

(

1 − ρP11
any

)

(1 − φ),

(A1)

where n00/M and n11/M are the probabilities that the chosen edge
is of type 00 and 11, respectively. The other factors account for the
probability to perform best response on edges.

b. Best response on simplices. For best response in simplices, we
define P

xy

Sd
the probability that an edge of type xy is part of a sim-

plex with d defecting nodes, conditioned that it is part of at least one
simplex. Best response on simplices decreases the number of coop-
erating nodes if the selected node is in state C and at least one other
node is cooperating. Similarly, it increases the number of C nodes
if all nodes are defecting. This gives the following contributions to
d
dt

n0:

b−
0 =

n00

M
P00

anyρ
(

P00
S0

+ P00
S1

)

+
n01

M
P01

anyρP01
S1

,

b+
0 =

n11

M
P11

anyρP11
S3

.

(A2)

Note that n01/M is the probability to select an edge, which goes from
a 0-type edge to a 1-type edge. Since we consider undirected graphs,
both types of edges, 01 and 10, exist in E2 for each such pair of con-
nected nodes. Since we perform the best response on the first node
of the selected edge, it is necessary to distinguish 01 from 10 edges.
However, since n01 = n10, the probabilities to select either are the
same.

c. Resulting equation for n0. Altogether, the evolution of the
number of cooperating 0-nodes in the adaptive simplex Snowdrift
model is governed by the differential equation d

dt
n0 = −a−

0 + a+
0

− b−
0 + b+

0 , which is equivalent to Eq. (9).

2. Evolution of n00

The number of 00-edges n00 changes directly due to rewiring,
as well as directly and indirectly due to best response on edges and
simplices.
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a. Rewiring. The number of 00-edges increases if a 01-edge is
rewired to a 00-edge. We do not consider the opposite direction
since this would decrease the payoff. Respecting the probability to
choose rewiring of edges (either in or outside of any simplex), we
obtain the following contribution to d

dt
n00:

a+
00 =

n01

M

(

1 − ρP01
any

)

φ, (A3)

where again, it is respected that only 01-edges rewire to 00 edges, but
not 10-edges, since in the latter case, the first node that performs the
action is already connected to a 0-type node. Note for each rewired
edge, the number of both 01 and 10-edges decreases by one and the
number of 00-edges increases by 2 such that the total contribution is
2a+

00.

b. Best response on edges. The change in the number of cooper-
ating nodes n0 also influences the number of 00-edges. In particular,
if a cooperating node changes from C to D, all its adjacent 00-edges
to other C-nodes become 01-edges. The contribution to n00 from the
switching node comes from its other neighbors of type 0. For this,

let E
(x,y)
n (z) be the expected number of z-type neighbors for a node i

with type X(i) = x, which is already connected to n nodes j with type
X(j) = y. Together with the probability of best response on edges,
this gives the total number of added or removed n00 connections.
Altogether, this leads to

b−
00 = −a−

0

(

1 + E(0,0)
1 (0)

)

, b+
00 = a+

0 E(1,1)
1 (0), (A4)

accounting for both direct and indirect contributions.

c. Best response in simplices. Best response in simplices also
changes the number of 00-edges directly and indirectly. If the sim-
plex is S0, two 00-edges are destroyed due to best response. For S1

simplices, changing the node state from 0 to 1 destroys one 00-edge
in each case. Note that within the simplex, best response does not
create new 00-edges. This implies the contribution

c−
00 =

n00

M
P00

anyρ
(

2P00
S0

+ P00
S1

)

+
n01

M
P01

anyρP01
S1

. (A5)

The indirect influence comes from the changes of edge types
outside of the simplex due to the change of the node state within
the simplex. For this, the simplex-excess degree Ex

Sn
(y) is defined23

as the expected number of additional neighbors j with type X(j) = y
of a node with type X(i) = x given that it is part of a simplex of type
n. In particular, the x-node is within the simplex already connected
to n − δx1 neighbors of type 1, where δij is the Kronecker delta and
3 − n + δx1 neighbors of type 0. With this, the indirect contributions
to the change of 00-type edges can easily be written in terms of the
probabilities for best response in the specific simplices multiplied
with the expected number of additional 0-type neighbors. We end
with

d−
00 =

n00

M
P00

anyρ
[

P00
S0

E0
S0

(0) + P00
S1

E0
S1

(0)
]

(A6)

+
n01

M
P01

anyρ P01
S1

E0
S1

(0), (A7)

d+
00 =

n11

M
P11

anyρ P11
S3

E1
S3

(0). (A8)

d. Resulting equation for n00. Altogether, the evolution
of the number of 00-nodes in the adaptive simplex Snow-
drift model is governed by the differential equation d

dt
n00

= 2
(

a+
00 − b−

00 + b+
00 − c−

00 − d−
00 + d+

00

)

, where the factor of 2
reflects the double counting of undirected edges. Altogether, the
change in the number of 00-edges in the adaptive simplicial Snow-
drift model is given by Eq. (10).

3. Evolution of n11

Similar as for n00, the number of 11-edges changes due to
rewiring and due to best response on edges and simplices, directly
and indirectly. Therefore, the derivation follows analogously. Sum-
ming up direct and indirect contributions leads to the differential
equation in Eq. (11).

We emphasize that these three equations for the lowest
moments depend on higher-order moments, such as the distribu-
tion of triples through the excess degrees and the distribution of
simplices of different types.

APPENDIX B: MOMENT-CLOSURE APPROXIMATIONS

In the following, the moment equations are closed at the level
of triples such that the right-hand side of the ODEs depends on
the lowest moments n0, n1, n00, n01, n11, only. This means that the
full information on the network structure and the simplex distri-
bution is reduced to information on the pairs.11,41–44 Note that we
focus on structural configurations of pairs, which is different from
approaches where three-player interactions are modeled by effective
two-player interactions. We consider a system with a fixed num-
ber of nodes N = n0 + n1, a fixed number of edges M = n00 + 2n01

+ n11, and also a fixed number of simplices S.

1. Approximation of excess degrees

a. Approximation of E(a,b)
1 (c). By definition, the excess degree

E(a,b)
1 (c) is the expected number of c-type neighbors of an a-type

node, which already has one b-type neighbor; see Fig. 5(a). Thus,
it is equivalent to the expected number of cab-triplets containing the
ab-edge. Let nabc be the number of triplets with states X(i) = a, X(j)

= b, and X(k) = c; i.e., nabc =
∑N

i,j,k=1 AkjAjiδX(i),aδX(j),bδX(k),c. Note

that symmetry implies n001 = n100 and n011 = n110. The expected
number of cab-triplets ncab is approximately given by the number
of ab-edges multiplied with the expected number of c-neighbors of
a. Therefore, we have

E(b,c)
a (1) ≈

ncab

nab

. (B1)

Furthermore, the numbers of triplets ncab are approximated in
terms of pairs and nodes as follows. The proportion of edges from
a-type to b-type nodes is given by the number of ab-edges divided
by the total number of edges starting at a, which is approximately
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FIG. 5. Illustration of excess degrees (a) E
(y,z)
x (j) and (b) E

j
Sx

(z).

kdegna. Thus, we have
nab

kdegna
. The probability for two neighbors of

some a type node to be of type c and b, respectively, is thus approxi-
mately

ncanab

kdeg(kdeg−1)n2
a
. For the total number of cab-triplets, we have to

multiply this with the possible number of ways to choose the neigh-
bors, which is kdeg(kdeg − 1), and with the total number of a-nodes,
and we get

ncab ≈
ncanab

na

(B2)

such that

E(0,0)
1 (0) ≈

n00

n0

, E(1,1)
1 (0) ≈

n01

n1

,

E(0,0)
1 (1) ≈

n01

n0

, E(1,1)
1 (1) ≈

n11

n1

.

(B3)

We emphasize that for this pair approximation of the triplets,
the approximative excess degrees of a-type nodes are independent
on the number of already connected b-nodes and, therefore, are
simply given by the expected number of c-node neighbors.

Note that n0 = 0 also implies n00 = 0 and n01 = 0, and the
terms containing the excess degrees do not contribute. For illustra-
tion of the agreement of the closure with simulation, see Fig. 6.

b. Approximation of Ea
Si

(c). The simplex-excess degree Ea
Si

(c) is
the expected number of c-type-neighbors of an a-node within a sim-
plex of type i; see Fig. 5(b). In order to apply pair approximation we

(a) E
(0,0)
1 (0) (b) E

(1,1)
1 (0)

(c) E
(0,0)
1 (1) (d) E

(1,1)
1 (1)

FIG. 6. Approximation of excess degrees E
(b,c)
a (j) for the same simulation as

in Fig. 2. Shown are values directly obtained from simulation (blue lines), com-
pared to the approximations in Eq. (B3) using nx and nxy from simulation (orange
dashed lines) and from the closedmoment equations (black lines). The agreement
of the approximation in Eq. (B3) with the simulation is very good, in particular, if
the current values of the lowest moments are used. Differences to the closed
moment result are of similar kind as in Fig. 2. Interestingly, we find that E

(0,1)
0 (0)

≈ E
(1,1)
1 (0) − 1 and E

(0,1)
0 (1) ≈ E

(1,1)
1 (1) + 1. This means that the expected

number of 0-type neighbors is similar for 0-type and 1-type nodes and similar for
the number of 1-type neighbors. The proposed closure is, therefore, only justified
for large average degrees kdeg when this difference of ±1 becomes negligible.

notice that an a-type node within a simplex of type i is already con-
nected to i − δa,1 neighbors of type 1. For example, if a = 0, i = 0,

we have E0
S0

(0) ≈ E(0,0)
2 (0) and E0

S0
(1) ≈ E(0,0)

2 (1). Similarly, E1
S3

(0)

≈ E(1,1)
2 (0) and E1

S3
(1) ≈ E(1,1)

2 (1). If the average degree kdeg in the

network is large, these excess degrees are approximately E(a,b)
2 (c)

≈ E(a,b)
1 (c). If a = 0 and i = 1, the a-node is already connected to

one neighbor of type 0 and one neighbor of type 1. Therefore, we can

approximate E0
S1

(0) ≈ E(0,0)
1 (0) but also E0

S1
(0) ≈ E(0,1)

1 (0). In pair
approximation, both quantities are the same. Similarly, we obtain

E0
S1

(1) ≈ E(0,0)
1 (1) ≈ E(0,1)

0 (1).
Thus, for large node degrees kdeg, the approximations in

Eq. (B3) from Subsection 1 a of Appendix B are applied. We illus-
trate the time dependence of the simplex-excess degrees in Fig. 7,
comparing values from the simulation (colored lines) to the corre-
sponding results from the moment-closure system (black lines).

2. Approximation of probabilities

a. Approximation of P
xy
any. First, we consider the probability that

a 01-edge is not part of any simplex. Intuitively, only simplices in S1

andS2 contain 01-edges, and there are for each type exactly two such
edges. Thus, a randomly drawn 01-edge e01 ∈ E is part of a specific
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(a) E
0
S0

(0) (b) E
0
S0

(1)

(c) E
0
S1

(0) (d) E
0
S1

(1)

(e) E
1
S3

(0) (f) E
1
S3

(1)

FIG. 7. Approximation of simplex-excess degreesE
j
Sx

(y) for the same simulation
as in Fig. 2. Shown are values directly obtained from simulation (blue lines), com-
pared to the approximations in Eq. (B3) using nx and nxy from simulation (orange
dashed lines) and from the closed moment equations (black lines).

simplex s∗ ∈ S1 ∪ S2 with probability

P(e01 ∈ s∗) =
2

n01

(B4)

because s∗ contains two out of all n01 edges of type 01. Furthermore,
we note that if the 01-edge is part of s∗ = (i, j, k) ∈ S , then it is also
part of any permutative simplex, e.g., s̃ = (j, i, k) ∈ S , which is of the
same type. This means that each 3! = 6 simplices are equivalent. Let

S̃i := Si|' be the set of all unique simplices defined by this equiva-

lence condition; i.e., |S̃i| = |Si|/6. The probability that the 01-edge
is not part of any simplex is thus given by

P01
no = P(e01 /∈ s∗ ∀s∗ ∈ S1 ∪ S2)

≈
∏

s∗∈S̃1∪S̃2

P(e01 /∈ s∗)

=
(

1 −
2

n01

)(|S1|+|S2|)/6

, (B5)

where the approximation assumes that the simplices in S̃i are
independent.

Second, edges of 00-type can only be part of simplices in S0

and S1. Recall that s ∈ S0 contains three 0-nodes and three 00-edges
counted twice, while s ∈ S1 contains exactly one 00 edge counted
twice. Thus, a randomly drawn 00-edge e00 ∈ E is part of a simplex
s∗0 ∈ S0 with probability

P(e00 ∈ s∗0) =
6

n00

(B6)

and is part of a simplex s∗1 ∈ S1 with probability

P(e00 ∈ s∗1) =
2

n00

. (B7)

The probability that e00 is not part of any simplex is thus

P00
no = P(e00 /∈ s0 ∀s0 ∈ S0 ∧ e00 /∈ s1 ∀s1 ∈ S1)

≈
∏

s0∈S̃0

P(e00 /∈ s0) ·
∏

s1∈S̃1

P(e00 /∈ s1)

=
(

1 −
6

n00

)|S0|/6 (

1 −
2

n00

)|S1|/6

. (B8)

Analogously, one derives the approximations

P11
no ≈

(

1 −
2

n11

)|S2|/6 (

1 −
6

n11

)|S3|/6

. (B9)

Altogether, this approximates the probabilities of some edge exy

of type xy to be part of any simplex,

Pxy
any = 1 − Pxy

no, (B10)

with approximations for P
xy
no as given above. Suitable approxima-

tions for the numbers of simplices |Si| are given at the end of this
section.

For a comparison of these approximative probabilities for the
three edge types with the numerical simulation, see Figs. 8(a)–8(c).

b. Approximation of P
xy

Si
. Recall that P

xy

Si
is the probability that

an xy-type edge is in a specific type i ∈ {0, 1, 2, 3} of simplex, con-
ditioned on the event that the edge is part of at least one simplex.
Considering the possible type of simplices that a specific edge can be
part of, these probabilities are given by

P00
S0

=
|S0|

|S0| + |S1|
, P00

S1
=

|S1|
|S0| + |S1|

,

P01
S1

=
|S1|

|S1| + |S2|
, P01

S2
=

|S2|
|S1| + |S2|

,

P11
S2

=
|S2|

|S2| + |S3|
, P11

S3
=

|S3|
|S2| + |S3|

.

(B11)

These approximated probabilities are compared to the values from
numerical simulation in Figs. 8(d)–8(f), where the following approx-
imations for the numbers of simplices are considered.

c. Approximation of |Si|. For a simplicial complex as consid-
ered in this paper, it is possible to approximate the number of
simplices with the numbers of labeled edges in E2. We assume that
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(a) P
00
any (d) P

00
S0

(b) P
01
any (e) P

01
S1

(c) P
11
any (f) P

11
S3

FIG. 8. Approximation of probabilities for the same simulation as in Fig. 2. Shown
are values directly obtained from simulation (blue lines), compared to the approx-
imations for P

xy
any in Eq. (B10) and for P

xy
Si

in Eq. (B11) using nx and nxy from

simulation (orange dashed lines) and from the closed moment equations (black
lines). The most significant deviations between approximation and numerical val-
ues are observed for P00

any, for which the approximation is considerably larger.

This is reasonable to expect since new 00-edges are created due to rewiring of
01-edges, without simultaneously increasing the number of adjacent simplices.
For the corresponding numbers of simplices, see Fig. 9.

the simplices are distributed proportional to the triangles in the
network,

|Si| ≈ S · P(t ∈ Ti), i ∈ {0, 1, 2, 3}, (B12)

where S is the number of simplices, t some triangle, and Ti the set of
all triangles of type i in the network. The number of simplices S is
constant in our model. If a simplex is destroyed due to rewiring, a
new simplex is added to the set of triangles. We want to express the
probabilities that some triangle t is of type i ∈ {0, 1, 2, 3},

P(t ∈ Ti) =
|Ti|
T

, (B13)

in terms of the nodes and edges, where T =
∑

i |Ti|.
For this, we consider a triangle tabc with three nodes of status

a, b, c as an abc-subgraph, where the a and c node are connected. For
example, the number of 000-triangles is approximated as the num-
ber n000 of 000-triples, multiplied with the probability that the outer
0-type nodes are connected, which approximately is n00/n0

2. This
approximation becomes better for large average node degrees kdeg.

(a) |T0| (b) |S0|

(c) |T1| (d) |S1|

(e) |T2| (f) |S2|

(g) |T3| (h)|S3|

FIG. 9. Approximation of numbers of triangles and simplices of different types for
the same simulation as in Fig. 2. Shown are values directly obtained from sim-
ulation (blue lines) compared to the approximations for |Ti | in Eqs. (B14)–(B17)
and for |Si | in Eq. (B19) using nx and nxy from simulation (orange dashed lines)
and from the closed moment equations (black lines). The most significant devi-
ations between approximation and numerical values are observed for |T2|, for
which the approximation (orange line) is considerably smaller. This is reasonable
to expect since simplices (and thus triangles) of type 2 are not destroyed by best
response in simplices, which is not covered by uniformity assumptions and pair
approximation.

Altogether, this leads to

|T0| ≈ n000

n00

n0
2

≈
n00

3

n0
3

. (B14)

For triangles of type 1, we have to take into account the con-
tributions from 001-triples, 010-triples, and 100-triples. The 001-
triples contribute with n001 multiplied with the probability that
the outer 0-node and 1-node are connected, which approximately
is n01/(n0n1) and the same contribution comes from 100-triples.
The 010-triples contribute with n010 multiplied with the probabil-
ity that the outer 0-type nodes are connected, which approximately
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is n00/n0
2. Altogether, we have

|T1| ≈ 2n001

n01

n0n1

+ n010

n00

n0
2

≈ 3
n00n01

2

n0
2n1

. (B15)

A similar argumentation leads to the following approximations for
the number of type-2 and type-3 triangles:

|T2| ≈ 2n011

n01

n0n1

+ n101

n11

n1
2

≈ 3
n11n01

2

n0n1
2

, (B16)

|T3| ≈ n111

n11

n1
2

≈
n11

3

n1
3

. (B17)

These approximations are inserted into Eq. (B12), and we
obtain with |Si| ≈ S|Ti|

T
and

T ≈
n00

3

n0
3

+ 3
n00n01

2

n0
2n1

+ 3
n11n01

2

n0n1
2

+
n11

3

n1
3

=
n00

3n1
3 + 3n0n1

2n00n01
2 + 3n0

2n1n11n01
2 + n0

3n11
3

n0
3n1

3
(B18)

the following approximations for the different types of simplices:

|S0| ≈
S · n00

3n1
3

n00
3n1

3 + 3n00n01
2n0n1

2 + 3n11n01
2n0

2n1 + n11
3n0

3
,

|S1| ≈
S · 3n00n01

2n0n1
2

n00
3n1

3 + 3n00n01
2n0n1

2 + 3n11n01
2n0

2n1 + n11
3n0

3
,

|S2| ≈
S · 3n11n01

2n0
2n1

n00
3n1

3 + 3n00n01
2n0n1

2 + 3n11n01
2n0

2n1 + n11
3n0

3
,

|S3| ≈
S · n11

3n0
3

n00
3n1

3 + 3n00n01
2n0n1

2 + 3n11n01
2n0

2n1 + n11
3n0

3
.

(B19)

Note that for these equations, we assume that n0,1 6= 0 and n00,01,11

6= 0. Let us emphasize that due to rewiring of edges, the actual num-
ber of triangles T and also its approximation are not constant in
time. However, the considered approximations for the numbers of
simplices satisfy

∑3
i=0 |Si| = S for all times. The approximations for

the number of triangles and simplices are illustrated in Fig. 9. For
the specific probabilities P

xy

Si
that are used in the closed moment

equations, we get

P00
S0

≈
n00

2n1

n00
2n1 + 3n01

2n0

,

P01
S1

≈
n00n1

n00n1 + n11n0

,

P11
S3

=
n11

2n0

3n01
2n1 + n11

2n0

.

(B20)

APPENDIX C: STABILITY ANALYSIS WITH MATCONT

MatCont is a Matlab software project for the numerical con-
tinuation and bifurcation study of continuous and discrete param-
eterized dynamical systems.47 In MatCont, the adaptive simplicial
Snowdrift model is implemented via its closed moment equations
in terms of relative variables. This is done for the system of closed

moment equations, Sec. III C, and also separately for the simplified
parameter choices from Sec. IV.

For the simulations of the closed moment equations, initial
values are selected on a grid like from the admissible range or in
small neighborhoods around already known steady states. The anal-
ysis allows one to make statements about the local and also global
stability. Furthermore, for the bifurcation analysis, we consider ini-
tial conditions at a steady state for a specific choice of parameters.
This is followed by parameter variation, where one of the param-
eters changes while the others remain constant. The real parts of
the eigenvalues of the Jacobian of the system reveal the stability
of the steady state, and MatCont, therefore, detects possible bifur-
cations. This procedure is done for several steady states, choosing
values of φ and ρ on a grid in [0, 1]2. These parameters control the
strength of influence of the three different adaptive operations. We
also consider different parameters N, µ with M = 2µN and σ with
S = σE(T) ∈ N>0, which determine the properties of the underlying
network.
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