
Application of Machine Learning Algorithms to
Metadynamics for the Elucidation of the Binding Modes
and Free Energy Landscape of Drug/Target Interactions: a
Case Study
Gohar Ali Siddiqui+,[a] Julia A. Stebani+,[b] Darren Wragg,[b] Phaedon-Stelios Koutsourelakis,[c]

Angela Casini,*[b] and Alessio Gagliardi*[a]

In the context of drug discovery, computational methods were
able to accelerate the challenging process of designing and
optimizing a new drug candidate. Amongst the possible atom-
istic simulation approaches, metadynamics (metaD) has proven
very powerful. However, the choice of collective variables (CVs)
is not trivial for complex systems. To automate the process of

CVs identification, two different machine learning algorithms
were applied in this study, namely DeepLDA and Autoencoder,
to the metaD simulation of a well-researched drug/target
complex, consisting in a pharmacologically relevant non-canon-
ical DNA secondary structure (G-quadruplex) and a metallodrug
acting as its stabilizer, as well as solvent molecules.

Introduction

Contemporary drug discovery processes start commonly with
identifying and validating a biologically relevant target that can
be modulated with drug molecules. In this context, computa-
tional approaches can accelerate the challenging process of
designing and optimizing a new drug candidate.[1] Amongst the
possible methods, molecular dynamics (MD) is an essential tool
to study phenomena in chemical systems at the atomistic level.
This is also true for biological systems, including drug/target
interactions,[2] where the temporal and spatial resolution
provided by the methods is crucial to understand emergent
phenomena at macro scale. However, as soon as the underlying

phenomena being studied happens at a time scale longer than
a few nanoseconds, the sampling becomes rare.[3] Some tailored
computational architectures are able to achieve millisecond
scale,[4] but these are special cases and generally achievable
timescales remain in the microsecond regime. One of the
approaches used to alleviate this limitation is through enhanc-
ing the sampling of the configuration space by biasing the
simulation.[5] Amongst the enhanced sampling methods, free-
energy perturbation,[6] umbrella sampling,[7] replica exchange,[8]

metadynamics,[9] steered MD,[10] accelerated MD,[11]

milestoning,[12] transition-path sampling,[13] and their many
possible combinations, are now widely used. Metadynamics-
(metaD)-based methods include a broad family of enhanced
sampling techniques enabling fast exploration of the under-
lying free-energy landscape of rare events. To this aim, a set of
order parameters, usually referred to as collective variables
(CVs), is used to approximate the actual reaction coordinate of
the process.[14] Starting with the work of Gervasio et al.,[15] in
recent years, metaD approaches have been applied to a number
of ligand-target complexes, demonstrating its ability to charac-
terize binding and unbinding paths, to treat conformation
flexibility, and to compute free-energy profiles.[16]

Despite the availability of metaD based methods,[9,17] the
prerequisite for efficient exploration of CV space is the knowl-
edge of “good” CVs.[5,18] To select a number of hand-picked CVs
require deep chemical intuition about the system dynamics and
becomes increasingly difficult for complex (biological) systems.
To automate this process, a number of procedures have been
developed,[19] many of them based on machine learning (ML)
approaches.[18a,20] Some methods like Deep Linear Discriminant
Analysis (Deep-LDA)[18a] are actually focused on sampling the
transitions between different metastable basins rather than
finding the ideal CVs. To achieve this, a set of informed CVs are
used as input to a non-linear model (e.g. a Neural Network), a
lower-dimensional output of which is used in a Linear
Discriminant Analysis (LDA) to get maximum discrimination
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between two known energy minima. The system is then
constrained to transit between the known minima, resulting in
a dense sampling of the transition states between them, and
enabling monitoring the influence of additional effects (e.g.
water) on state transitions. In this regard, a prior knowledge of
the metastable states and relevant CVs is crucial.

On the other hand, deep neural network architectures like
Autoencoders[21] have been shown to be able to obtain a good
set of CVs[22] using general coordinates of a system. This kind of
network is used typically in dimensionality reduction schemes
and does not require prior selection of CVs. The training loss is
the error in the ability of the network to represent the
configurational state of a system (defined by the general
coordinates, that can be also basic atomic distances) in a lower
dimensional space. This can then be used to accelerate the
dynamics and/or explore the configurational space further. The
advantage is that the Autoencoder is able to study systems
without any prior chemical intuition, and searching for undis-
covered states. In this work, we want to introduce these
approaches and compare the two methods.

Recently, Rizzi et al.[23] used Deep-LDA to investigate the
non-covalent interactions between a calixarene host and
various guest molecules, selected as a model of more complex
protein-ligand interactions. Most importantly, the role of water
molecules was taken into account to identify the CVs and
calculate the binding free energies. In our study, we first aim at
applying both Deep-LDA and Autoencoder algorithms to the
investigation of a complex biological system to give a
comparison of the results obtained from both the methods. In
general, the Autoencoder approach is more general, based on
only basic coordinates of the system and does not require any
prior knowledge of the system or the energy landscape.
Nevertheless, it comes up with a set of CVs that accelerate the
sampling of configuration space. Although, this approach is
computationally more demanding than Deep-LDA, in a scenario
where no prior knowledge is available, it can infer a faster and
more accurate enhanced sampling run, as well as constraints, to
sample the system more efficiently and with less predefined
bias when selecting CVs.

Here, to test and compare the aforementioned methods, a
well-researched (preclinical)-drug/target complex has been
chosen, constituted by a pharmacologically relevant non-canon-
ical DNA secondary structure (G-quadruplex) and a small
molecule acting as its stabilizer. G-quadruplexes (G4 s) are
secondary DNA structures formed in guanine rich sequences
self-assembled by Hoogsteen-type hydrogen bonds and have
been identified in human telomeres and promoter regions of
many genes, where they regulate telomere homeostasis, gene
transcription and DNA replication.[24] Stabilization of G4 s by
small molecules has been shown to induce anticancer effects
due to the resulting inhibition of telomere extensions or
oncogene expression.[25]

In details, the organometallic gold complex ([Au(9-meth-
ylcaffein-8-ylidene)2]

+) (AuTMX2)
[26] was selected as the stabil-

izer, and the oncogene promoter DNA G4 sequence cKIT1 (pdb
4WO2)[27] was the nucleic acid target. Previous metadynamics
(metaD) studies have been applied by us on this ligand/G4

system and enabled the assessment of the binding modes and
free-energy landscape of the AuTMX2/cKIT1 non-covalent
adduct.[28] Notably, the theoretical results were validated by
experimental assays and provided an accurate estimate of the
absolute gold compound/DNA binding free energy. The in silico
results revealed two ligand binding modes for AuTMX2 on the
G4 structure: one more thermodynamically favoured, which
corresponds to AuTMX2 interaction with the top of the guanine
tetrad, and the other one with the compound interacting with
both the top of the tetrad and a flanking base.[28] These results
were in agreement with previously reported X-ray diffraction
(XRD) studies on the gold compound’s adduct with another G4
model.[29]

Results and Discussion

Initially, we aimed at reproducing the previously obtained free
energy values and binding modes with the help of the Deep-
LDA-generated CV (sw). Therefore, two states of the AuTMX2/
cKIT1 adduct were defined, namely bound (B, AuTMX2 interact-
ing with the purine bases of the uppermost G4 tetrad) and
unbound (U, AuTMX2 and cKIT1 not interacting at a distance
beyond 2 nm) states.

The strategy for obtaining the binding free energy values,
using Deep-LDA to determine the CVs, includes three main
steps: i) generation of a number of descriptors, namely water
coordination values for the solvation descriptors, to discriminate
between B and U states (Figure 1A-a); ii) Deep-LDA deep neural
network (DNN) in order to identify the optimal non linear
discriminant function sw of the descriptors above (Figure 1A-b));
iii) metaD calculations using sw as abstract CV and the distance
between K+ and Au+ ions (dK-Au) as geometric CV, from which
free energy surfaces (FES) are calculated (Figure 1A-c, see
experimental for details). Following these steps, starting from
the B and U states, 12 water solvation descriptors were defined:
some of them cantered on the carbon atoms of the AuTMX2

caffeine ligands’ and covering the area around them (L1� L4,
Figure 1A-a), and others located in the area on top of the G4’s
uppermost tetrad (V1� V8, Figure 1A-a). This choice is based on
our interest in capturing the role of water in the AuTMX2/cKIT1
binding process. Starting from a full inclusion of 100% of all
water atoms present (ca. 32000), Deep-LDA could find a
projection of the latent space that was able to separate the
states B and U satisfactorily (Figure S4).

To check its robustness and to assess simplifications of the
method for a reduction of overall computational time, calcu-
lations were also performed with the inclusion of lower
amounts of water, i. e. only ca. 40% (ca. 13200), 50% (ca. 16200)
and 60% (ca. 19500) of all water molecules, respectively (see
Figures S1–S4). To favour multiple binding events in short
timescales, a funnel restraint was added on top of the G4
topmost tetrad, to retain AuTMX2 close to the DNA.[30] This
funnel was constructed with an inner radius rcyl=2 Å, opening
up as a cone onto the cKIT1 tetrad (see Experimental for
details). The obtained average free energy results are summar-
ized in Figure 2 and the corresponding free energy surface (FES)
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for the 100% water run is also shown. When all 100% water
molecules were considered, our values show a slightly weaker,
but very similar stabilization of the cKIT1 DNA (Figure 2A� B,
ΔG= � 37.0�11.9 kJ/mol) in comparison to previous metaD
reports (ΔG= � 45�3 kJ/mol).[28]

It should be noted that free energy values reported in
Figure 2B were obtained by averaging the ΔG values of the
most stable identified binding states in each run (see below).
Further runs including 40%, 50% and 60% water during the
calculations rendered binding free energy values of ΔG=

� 46.9�2.3 kJ/mol, � 41.6�8.0 kJ/mol and -51.9�2.7 kJ/mol,
respectively (Figure 2B). All values are close to each other and
in accordance to the previously performed metaD studies,
proving the validity, as well as the robustness of the method
and the resulting CV sw.

The simulations originally obtained by metaD using the two
empirical CVs rendered two main states of interaction between
AuTMX2 and cKIT1.[28] The most stable state (state I) corre-
sponded to π-π interactions between AuTMX2 and the guanine
bases (G2, G6 and/or G10) of the topmost tetrad. The second
state involved π-π interactions between AuTMX2 with guanines

(G10 or G6) located on top of the upper tetrad, as well as on
top of the flanking adenine base A1 (state II).[28]

As metaD explores the whole energy surface of an
interaction, rather than just one minimum, multiple metastable
positions can also be observed in addition to the global
minimum. In the present study, similar binding states were
found across the different simulation setups for our runs
applying the CVs of our ML-based approach ((sw) and the
distance CV (dK-Au)) (Figure 2 and Figures S4–S7). Specifically, the
two states could be identified as the most recurring and stable
conformations during our simulations, with a slight preference
for state II over state I as most stable state. These results could
also be reproduced consistently for runs with lower amounts of
water (40% to 60%). Interestingly, and in contrast to previous
findings,[28] state II was observed with a certain frequency as
the one being marginally lower in energy (� 42.6�9.7 kJ/mol,
averaged over all observed (metastable) states and setups,
compared to � 38.1�12.4 kJ/mol for state I). This result can be
explained as state II features a three-fold stack, based on π-π-
interactions of AuTMX2 with A1, and of A1 with G2 and/or G13
located underneath. The (meta� )stable states for each simu-

Figure 1. A) Schematic three-step process of the Deep-LDA based simulation: a) Input generation: Setup of virtual atoms on the Au(I) compound AuTMX2
(L1� L4, black points), and on top of the upper tetrad of cKIT1 for water coordination (V1� V8, for better visibility, only the inner sphere radius r0 is displayed for
the arrangement of virtual atoms in the z-direction). b) Deep-LDA: Taking the descriptor values as input, Deep-LDA finds the projection of features that
maximizes the separation between the bound (B) and unbound (U) states sw. c) metaD: 3-dimensional free energy surface plot, generated from the final
simulation using the Deep-LDA CV (sw) and a distance CV (dK-Au) as simulation bias. The global energy minimum (dark blue) corresponds to the bound state B.
AuTMX2 and water are shown in balls and sticks, the cKIT1 DNA is represented as sticks with ribbon. B) Schematic representation of Autoencoder method: a)
Input generation: Inputs of the Autoencoder are all the distances between the heavy atoms of AuTMX2 and the residues of cKIT1 and a grid of virtual atoms
placed around the host molecule as solvation descriptors. b) Autoencoder network: The network is trained using unlabeled data from unbiased simulations
with mean square error between the input and output as loss function c) OPES: On-the-fly probability enhanced sampling is performed using the latent space
of the trained Autoencoder as CVs. A free energy surface of CVs can be calculated, and eventually, through the process of reweighting, binding energy of the
AuTMX2 interacting with cKIT1 can be approximated.
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lation setup can be found in the Supporting Information
(Figures S4–S7 and Tables S1).

Afterwards, to assess the Autoencoder approach, training
data based on an unbiased MD simulation of 4 ns, initialized
starting from the unbound state of the ligand, were obtained.
The sampling included from the beginning a solvation sphere
around the DNA host molecule to include the water effect,
effectively equivalent to include the solvent in the simulation.
The input to the Autoencoder is a one-dimensional vector
containing all the distances between the residues of the host

and the heavy atoms of the ligand as well as a 3×3×4 grid of
solvation descriptors uniformly distributed around the G4
molecule (Figure 1B-a). A total of 1236 descriptors are fed into a
deep Autoencoder network and trained to minimize the mean
square error between the input and the output. The system
learns to distinguish the configurations along the distance
between the cKIT1 structure and AuTMX2 (Figure S8). This is the
first indication that the exploration of CV space will result in the
exploration of bound and the unbound minima.

Figure 2. A) Free Energy Surface (FES) of the interactions between AuTMX2 and cKIT1 calculated applying Deep-LDA-based metaD considering 100% water
inclusion. CVs include the distance dK-Au CV (nm) and the ML-based water coordination CV sw. The main binding poses (state I and II) of AuTMX2 interacting
with cKIT1 are shown. For each binding state, also the top view of the uppermost G4 tetrad is depicted with specific nucleobase residues highlighted. cKIT1 is
shown in sticks representation with green backbone ribbon. AuTMX2 is shown as balls and sticks. The chemical structures were created using the Molecular
Operating Environment (MOE) software. B) Free energy values (ΔG) of the most stable states for the AuTMX2/cKIT1 adduct obtained by different methods,
including experimental data (DNA melting assay) or metaD approaches using empirically determined CVs, and ML-based approaches (Deep-LDA/
Autoencoder), to obtain mean binding free energy values. n states the number of individual runs performed for calculating the average ΔG. The values are
corrected for the presence of the funnel potential (SI Equation (2)). [a] Taken from reference [28].
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We have tested the Autoencoder in two scenarios: the first
where a similar funnel potential as in the Deep-LDA simulation
was added, and the second, where this constraint was removed.
The first set of simulations was performed for the sake of
comparison with the Deep-LDA results in order to test if the
Autoencoder recovers similar binding sites and energies. The
evaluation of the distance between AuTMX2 and cKIT1 during
the simulations (Figure S9) show that the bound and the
unbound states are visited multiple times which is crucial to get
the correct statistics for the free energy calculations. Of note,
the plots for the CVs (Figure S9) show that only a part of the
whole CV space is explored during these simulations with the
funnel potential, indicating that the same model has the
capability to explore more configurations once the latter is
removed.

The free energy surface with the funnel potential shows 4
different minima (Figure S10), where AuTMX2 interacts with the
top tetrad of the cKIT1 in similar poses as those identified by
the DeepLDA approach. The implication is that even if the CVs
obtained by the Autoencoder are different in the two methods,
the quality of the sampling is the same and they recover similar
minima. In particular, the use of the same constraint in the two
cases assures that both are sampling in the same portion of the
configuration space. However, the Autoencoder started from
more general coordinates showing a better generalization
compared to Deep-LDA.

To assess the capability of the Autoencoder to identify
correct CVs even when no information on the dynamic of the
system is available, another simulation was conducted where

the funnel potential was removed giving complete generality to
the algorithm in sampling the configuration space (Figure S11).
The resulting free energy surface from the 80 ns run is shown in
Figure 3. The two free energy minima correspond to interac-
tions of AuTMX2 with the top tetrad bases G6 and G13 (ΔG300=

� 49.9 KJ/mol) (state I) while the other minima actually show a
different binding site at the bottom of cKIT1, where AuTMX2 is
interacting with the G18 residue (ΔG300= � 43.4 KJ/mol) (state
III) (Figure 2B). State I is the one previously identified with the
Deep-LDA and the simulation of the Autoencoder with the
funnel. It represents a “collection” of very similar local minima
which are not showed separately for clarity.

More interesting is the new state III, featuring a local
minimum due to the π-interaction of the gold compound with
the G18 residue. It represents the capability of the Autoen-
coder’s CVs to explore unseen configurations starting from very
general coordinates of the system. This new binding state can
be observed by relaxing external constraints in the sampling
region and CV selection. Obviously, this comes at the cost of a
longer simulation to train the algorithm (80 ns versus 30 ns
with the funnel).

Overall, the Autoencoder showed the same kind of π-π
interaction between AuTMX2 and cKIT1 as detected by the
Deep-LDA. However, another key binding site (state III) was also
identified, which was not detectable even via classical XRD
studies,[29] thus, corroborating the idea that data driven
methods could favour the identification of alternative drug
binding domains on even more elusive pharmacological targets.
The insert on the right of Figure 3 shows a 3D map of the log

Figure 3. Free Energy Surface (FES) of interactions between AuTMX2 and cKIT1 using Autoencoder CVs to accelerate the sampling. No funnel potential applied.
For state I, also the top view of the uppermost G4 tetrad is shown with specific nucleobase residues highlighted. cKIT1 is shown in sticks representation with
green backbone ribbon. AuTMX2 is shown as balls and sticks. The chemical structures were created using the Molecular Operating Environment (MOE)
software.
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probabilities of discovering the AuTMX2 around cKIT1 in
trajectories through the Autoencoder method, showing that
only the input of general coordinates of the system results in
calculation of a map of possible binding sites around the host.
These potential binding sites can then be further studied by
constraining the system in the proximity of a minimum and
collecting more precise statistics through a secondary enhanced
sampling run with funnel dynamics like in Deep-LDA.

Conclusions

In conclusion, we have reported here on an integrated ML
approach to optimize the choice of the CVs for metaD enabling
the investigation of a model (preclinical)-drug/target complex
at a molecular level. The obtained results show that both of the
selected algorithms – Deep-LDA and Autoencoder – have the
capability to handle the large system and provide consistent
results in terms of binding modes and free energies. The
Autoencoder is more general but more expensive, due to the
large training set. Deep-LDA is usually cheaper in this respect
but requires more prior knowledge of the system. The
Autoencoder showed the capability, starting from more basic
coordinates (atomic distances, simple spatial grid to include the
effect of the solvent), of deducing chemically relevant CVs.
More importantly, it demonstrated the ability to test different
constraints in order to have a better picture of possible minima
in the host–guest system.

However, both methods rely on appropriate initialization of
the initial time trajectories for sampling which is based on some
chemical intuition. Thus, even if the Autoencoder can start from
more general coordinates, still a preliminary decision concern-
ing the training data has to be made. We also envision a
hierarchical framework where an Autoencoder-based approach
sits on top of Deep-LDA to study systems without any prior
knowledge using only structural information. The information
obtained from this can then be further used, if required, in
Deep-LDA to perform informed exploration of transition states.

A third level in the hierarchy would be one in which a data-
driven method samples the training data assuming some
“thermodynamic constraint” i. e., the sampled data reproduce a
Maxwell-Boltzmann distribution. Similar methods are under
investigation[31] and can easily be integrated within our
hierarchical concept to make the CV selection more and more
unbiased.

Overall, our work paves the way to key applications of ML in
drug discovery enriching the toolbox of methods available for
computer-aided drug design (CADD), beyond quantitative
structure-activity relationship (QSAR) analysis, virtual screening
and de novo drug design.[32] Specifically, data-driven methods
will boost the unbiased elucidation of target-ligand interactions
at an atomic level, thus, improving the drug design strategy.
Furthermore, our approach enables the inclusion of water
molecules in the binding process, affecting also the target
structure and ligand solvation. In the future, this data-driven
approach can overcome most of the current limitations in the
use of atomistic simulations to study noncovalent interactions

beyond drug/target interactions; for example, in the character-
ization of the host guest-chemistry of supramolecular materials
in different environments.
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