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Abstract

Adipocytes are critical regulators of metabolism and energy bal-
ance. While white adipocyte dysfunction is a hallmark of obesity-
associated disorders, thermogenic adipocytes are linked to cardio-
metabolic health. As adipocytes dynamically adapt to environmen-
tal cues by functionally switching between white and thermogenic
phenotypes, a molecular understanding of this plasticity could help
improving metabolism. Here, we show that the lncRNA Apoptosis
associated transcript in bladder cancer (AATBC) is a human-specific
regulator of adipocyte plasticity. Comparing transcriptional pro-
files of human adipose tissues and cultured adipocytes we discov-
ered that AATBC was enriched in thermogenic conditions. Using
primary and immortalized human adipocytes we found that AATBC
enhanced the thermogenic phenotype, which was linked to
increased respiration and a more fragmented mitochondrial net-
work. Expression of AATBC in adipose tissue of mice led to lower
plasma leptin levels. Interestingly, this association was also pre-
sent in human subjects, as AATBC in adipose tissue was inversely
correlated with plasma leptin levels, BMI, and other measures of
metabolic health. In conclusion, AATBC is a novel obesity-linked

regulator of adipocyte plasticity and mitochondrial function in
humans.
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Introduction

Adipocytes are critical regulators of energy metabolism and nutrient

homeostasis, and their dysfunction is tightly linked to metabolic dis-

orders. While in humans, metabolic disease is mainly associated

with white adipocytes, thermogenic adipocytes in brown adipose tis-

sue (BAT) are associated with metabolic health (van Marken Lich-

tenbelt et al, 2009; Chondronikola et al, 2014; Leitner et al, 2017; U

Din et al, 2018). These cells are diverse in nature and display high

phenotypic plasticity (Bartelt & Heeren, 2014). Their primary
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function is non-shivering thermogenesis (NST), mediated by Uncou-

pling protein 1 (UCP1) and UCP1-independent futile cycling mecha-

nisms (de Meis, 2001; Ukropec et al, 2006; Anunciado-Koza

et al, 2008; Keipert et al, 2017; Tajima et al, 2020). When humans

are subjected to cold, thermogenic adipocytes increase their meta-

bolic activity, and if the exposure is sustained, thermogenic adipo-

cytes are also recruited in white adipose tissue (WAT), an adaptive

phenomenon referred to as adipose tissue browning (van Marken

Lichtenbelt et al, 2009; Virtanen et al, 2009), or, conversely, adipose

tissue whitening (Shimizu & Walsh, 2015). In mice, thermoneu-

trality is ca. 30°C (Cannon & Nedergaard, 2011), but humans are

thermoneutral at much lower temperatures and, therefore, humans

only display limited thermogenic activity (de Jong et al, 2019). How-

ever, in colder regions, people display marked NST (van Marken

Lichtenbelt et al, 2009), indicating that the environmental tempera-

ture are major determinant of BAT activity. Furthermore, activating

BAT has remarkable benefits for metabolic health in mouse models

of metabolic disorders (Bartelt et al, 2011, 2017; Berbee et al, 2015),

but also, in the general population, BAT is linked to better cardio-

metabolic health (Becher et al, 2021). Understanding the molecular

switches regulating thermogenic plasticity in adipocytes might help

to develop novel therapies for treating obesity-associated metabolic

disorders (Giroud et al, 2022).

Key aspects of thermogenic plasticity include facilitating an

increase of mitochondrial respiration in response to cold, and con-

versely, directing the involution of mitochondrial capacity when the

adipocytes return to a non-thermogenic state at thermoneutrality. In

most cells, a fragmented mitochondrial network is associated with

stress, whereas fused mitochondria are thought to display enhanced

respiration (Giacomello et al, 2020). In the case of adipocytes, mito-

chondrial dynamics are largely regulated by nutrient availability

and depend on the thermogenic status of the adipocyte (Quiros

et al, 2012; Pisani et al, 2018; Dai & Jiang, 2019; Ruan et al, 2020).

The interplay of molecules governing these mitochondrial adapta-

tions are complex and involve a large panel of transcriptional and

posttranslational regulators, for example peroxisome proliferator-

activated receptor co-activator 1-alpha (PGC1a) (Puigserver

et al, 1998), Nuclear factor erythroid-2, like-1 (NFE2L1, also known

as NRF1 or TCF11; Bartelt et al, 2018), Mitofusin-1 and -2 (MFN1

and MFN2; Wikstrom et al, 2014;Boutant et al, 2017; Mahdaviani

et al, 2017), OPA1 mitochondrial dynamin like GTPase (OPA1;

Rogne et al, 2018; Pereira et al, 2021) as well as dynamin 1 like

(DNM1L, also known as DRP1; Pisani et al, 2018). For example,

adipocyte-specific Mfn2-deficient mice display blunted mitochon-

drial fusion and impaired adaptative thermogenesis (Boutant

et al, 2017; Mahdaviani et al, 2017). In human adipocytes, it has

been shown previously that an acute activation of thermogenic adi-

pocytes involves fission of the mitochondrial network for enhanced

respiration (Wikstrom et al, 2014; Pisani et al, 2018).

In addition to these transcriptional and posttranslational mecha-

nisms, non-coding RNAs and especially long non-coding RNAs

(lncRNAs) have emerged as potential regulators of adipocyte func-

tion (Lo et al, 2018; Schmidt et al, 2018; Dallner et al, 2019; Sun &

Lin, 2019; Zhang et al, 2021). The number of lncRNAs in the

genome is correlated with organism complexity, they are highly

tissue-specific, and their sequence is only poorly conserved between

species (Eisenberg & Levanon, 2013). Typically, lncRNAs are longer

than 200 nucleotides and bind to many types of molecules including

RNA, DNA, amino acids, and proteins (Kazimierczyk et al, 2020). In

addition to their interactome, their cellular localization also defines

their function. For example, when localized to the nucleus, lncRNA

impact transcriptional control, genomic imprinting, and chromatin

condensation (MacDonald & Mann, 2020). Furthermore, in the

cytoplasm, lncRNAs are decoys for mRNA translation and miRNA

function, thus affecting mRNA turnover (Statello et al, 2021). The

study of lncRNAs in metabolism is an emerging field. In adipocytes,

lncRNA have been linked to adipogenesis (Zhang et al, 2021). For

example, Brown fat lncRNA 1 (Blnc1) and brown adipose tissue–

enriched lncRNA 10 (lncBATE10) promote the development of ther-

mogenic adipocytes through the regulation of Early B Cell Factor 2

(EBF2) and PGC1a, respectively (Alvarez-Dominguez et al, 2015;

Zhao et al, 2015; Bai et al, 2017). CCCTC-binding factor (zinc finger

protein)-like, opposite strand (Ctcflos) was described as a regulator

of browning via regulation of PR/SET Domain 16 (PRDM16) splicing

(Bast-Habersbrunner et al, 2021). However, most of these lncRNAs

are specific to mice and are not found in humans. One study found

318 lncRNAs conserved in humans and mice (Ding et al, 2018). To

the best of our knowledge, LINC00473 is so far the only non-

conserved, human lncRNA implicated in the regulation of thermo-

genic adipocytes (Tran et al, 2020).

In the current study, we set out to discover new lncRNAs specific

to human adipocytes and linked to NST and obesity. Based on a

transcriptional comparative analysis between human WAT and BAT

as well as adrenergic stimulation of different models of cultured

human adipocytes, we show that the lncRNA Apoptosis associated

transcript in bladder cancer (AATBC) (Zhao et al, 2015; Tang

et al, 2020; Wang et al, 2021; Yan et al, 2021), regulates thermo-

genic plasticity of adipocytes by stimulating mitochondrial dynamics

and respiration, and is linked to human obesity.

Results

Identification of AATBC as a human lncRNA linked to NST in vivo
and in vitro

Investigating the phenotypic signatures of different adipose depots

in humans as well as isolated adipocytes offers the opportunity to

unravel novel lncRNAs implicated in the control of thermogenic

plasticity. Therefore, we performed a combined RNAseq analysis of

three different human models. We compared lncRNA expression

profiles of (i) WAT and BAT ex vivo, (ii) differentiated human pri-

mary adipose-derived stem (hpAS) cells treated with norepinephrine

(NE) and (iii) human adipose derived stem (hMADS) cells treated

with forskolin (Fig 1A). To confirm the induction of the thermogenic

phenotype, we quantified UCP1 mRNA expression in all samples

(Fig 1C–E). Other thermogenic markers such as citrate synthase

(CS), cell death inducing DFFA like effector A (CIDEA), peroxisome

proliferator-activated receptor gamma coactivator 1-a (PPARGC1A)

and adipose markers such as peroxisome proliferator-activated

receptor-c (PPARG), perilipin 1 (PLIN1) and fatty acid binding pro-

tein 4 (FABP4) were quantified for quality control purposes (Appen-

dix Fig S1G–X). After rigorous filtering (Appendix Fig S1A–D), we

found 368 lncRNAs to be differentially regulated in WAT vs BAT,

105 lncRNAs in hpAS treated with NE compared to control cells,

and 116 lncRNAs in hMADS stimulated with forskolin compared to
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control cells, respectively. Out of these differentially regulated set of

lncRNAs, 25 candidates were regulated in the same fashion under

all three conditions (Fig 1B). Among these, we found that the major-

ity of lncRNAs had higher expression levels under thermogenic con-

ditions (Fig 1F and Appendix Fig S1E and F). Interestingly, among

the lncRNAs with unknown function in adipocytes, the lncRNA

AATBC was one of the most prominent candidates, which was con-

sistently upregulated in all three models of stimulated thermogene-

sis. Of note, we found that LNC00473 was consistently upregulated,

which is in agreement with a previous study on human lncRNAs

(Tran et al, 2020). These findings indicate that our stratification

strategy was valid. (Fig 1F–L and Appendix Fig S1E and F). In sum-

mary, the thermogenic phenotype of adipocytes is characterized by

an induction of lncRNA transcription. In the pool of upregulated

lncRNAs, AATBC is consistently associated with increased thermo-

genesis in human adipose tissue and cultured adipocyte models.

AATBC is a nuclear lncRNA induced by thermogenic activation
and differentiation

As AATBC matched the candidate profile for a lncRNA associated

with thermogenic features, we further explored the nature and regu-

lation of AATBC expression in our in vitro models of human adipo-

cytes. Confirming the results of the initial RNASeq screening,

AATBC expression was higher in primary human brown adipocytes

treated with NE (Fig 2A and B). As adipocyte browning is also

induced by chronic PPARc activation (Petrovic et al, 2010), we

treated hSVF with the PPARc agonist rosiglitazone during the differ-

entiation (Appendix Fig S2A–C). Also, in this distinct model of adipo-

cyte browning AATBC expression was higher under thermogenic

conditions compared to controls cells differentiated to classical white

adipocytes (Fig 2C). Using adipose tissue fractionation, we found

that AATBC was expressed at higher levels in differentiated adipo-

cytes compared to SVF cells (Fig 2D). Also, in hMADS cells we

observed higher levels of AATBC in the respective models of thermo-

genic and regular differentiation (Fig 2E and F). UCP1, PLIN1, and

FABP4 expression levels as well as lipid content served as validation

markers for the thermogenic and regular differentiation, respectively

(Appendix Fig S2D–N). Next to expression levels, the localization of

lncRNAs is very important for understanding their function. To this

end, we separated nuclear and cytoplasmic RNA from differentiated

thermogenic hMADS cells (Fig 2J and K) and found that AATBC was

enriched in the nuclear fraction (Fig 2I). The finding that AATBC is a

nuclear lncRNA was corroborated by in situ hybridization of AATBC

(RNAscope�) in the same hMADS cells. There, endogenous expres-

sion of AATBC was detected in the nucleus. (Fig 2L). This observa-

tion was confirmed by overexpression of AATBC, after which in

most cells AATBC was found in the nucleus (Fig 2M). In summary,

our data demonstrate that AATBC is a nuclear lncRNA and is

induced by thermogenic activation and differentiation.

Modulation of AATBC expression regulates mitochondrial
oxygen consumption

To investigate the biological significance of AATBC we performed

loss and gain-of-function experiments in human adipocytes. We

used anti-sense oligonucleotide (ASO)-mediated knockdown of

AATBC in hMADS cells under thermogenic conditions, where other-

wise AATBC expression is high, and adenoviral over-expression of

AATBC in regular hMADS cells, where otherwise AATBC expression

is low (Fig 3A). Using two independent ASOs we found that AATBC

silencing led to lower UCP1 expression (Fig 3B and C). These obser-

vations were confirmed in primary cells derived from hSVF (Appen-

dix Fig S3A and B). Similarly, an alternative approach using siRNA

◀ Figure 1. Identification of the lncRNA AATBC linked to thermogenesis in humans.

A Experimental outline.
B Venn diagram of regulated lncRNA.
C–E UCP1 expression in (C) human brown and white adipose tissue, (D) human primary adipocytes treated with 1 lM norepinephrine for 6 h and (E) hMADS cells

treated at day 15 of differentiation with 1 lM forskolin for 6 h (C: n = 5 patients, D: n = 5 replicates, E: n = 1 replicate).
F Heatmap of the differential expression of lncRNAs (n = 1–3 replicates).
G–L Expression of AATBC and LINC00473 (G, H: n = 5 subjects; I, J: n = 5 replicates; K, L: n = 1 replicate).

▸Figure 2. AATBC is associated with adipocyte browning and found in the nucleus.

A, B AATBC expression in (A) white or (B) brown human stromal-vascular fraction (hSVF) cells treated with 1 lM norepinephrine for 6 h (n = 5 technical replicates from
3 biological experiments).

C AATBC expression in hSVF differentiated to a white and thermogenic phenotype (n = 7 technical replicates from three biological experiments).
D AATBC expression in the SVF, adipocyte fraction (AF) and total fraction (TF) of human white adipose tissue (n = 9 technical replicates from three biological

experiments).
E, F AATBC expression in (E) white or (F) thermogenic human mesenchymal adipose stem (hMADS) cells treated with 1 lM norepinephrine for 6 h (n = 9 technical

replicates from three biological experiments).
G AATBC expression in hMADS cells differentiated to a white and thermogenic phenotype (n = 9 technical replicates from three biological experiments).
H AATBC expression in undifferentiated and differentiated hMADS cells (n = 12 technical replicates from three biological experiments).
I–K Expression of AATBC, 12S and U1 mRNA in the nucleus and cytosol of thermogenic hMADS cells (n = 8 technical replicates from three biological experiments).
L, M In situ hybridization (RNAScope®) of AATBC in thermogenic hMADS cells at (L) untreated conditions and (M) in thermogenic hMADS treated with adenovirus (AV)-

mediated overexpression (OE) of AATBC (or control AV) (representative images from three independent experiments) (M). Scale bars: 20 lm and 5 lm for the magni-
fied images.

Data information: Statistical significance *P < 0.05 by 2-tailed, unpaired Student’s T-test (A, C–K) or 2-way ANOVA followed by Tukey’s test (B) Data are
presented � s.e.m.
Source data are available online for this figure.
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against AATBC led to similar results in hMADS cells (Appendix

Fig S3E and F). As changes in UCP1 levels might indicate altered

mitochondrial function, we assessed the bioenergetic profiles of

hMADS with silenced AATBC and control cells. We found that

silencing of AABTC diminished basal, isoproterenol-stimulated,

uncoupled respiration as well as lower spare mitochondrial capacity

(Fig 3D–H). Taken together, this data set indicates that loss of

AATBC disrupts the thermogenic function of adipocytes. In the com-

plementary approach, we found that after overexpression of AATBC

UCP1 expression remained unchanged (Fig 3I and J). Yet we

observed higher basal respiration and higher spare mitochondrial

capacity compared to control cells. However, isoproterenol-

stimulated respiration and proton leak remained unchanged, which

is in line with the unchanged UCP1 expression (Fig 3K–O). Of note,

PLIN1 and FABP4 expression levels were largely unchanged, indicat-

ing that manipulation of AATBC did not interfere with adipogenesis

per se (Appendix Fig S3C, D and G–L). Next, we investigated if the

manipulation of AATBC function is linked to any transcriptional

changes that could explain the mitochondrial phenotype. We

silenced AATBC in thermogenic hMADS using siRNA and performed

RNASeq. We found that despite a marked reduction in AATBC

levels, the effect on global gene regulation was minor and only few

genes were impacted by the loss of AATBC without any clear out-

come (Appendix Fig S4A–C). We also performed a transcriptomic

analysis of regular hMADS overexpressing AATBC and found lipid

and triglyceride metabolism pathways to be regulated (Appendix

Fig S4D–F). Regardless of these observations, the transcriptomic

changes upon of AATBC manipulation were not immediately linked

to mitochondrial function, potentially indicating the AATBC exerts

its effects largely via posttranscriptional mechanisms.

Modulation of AATBC expression regulates mitochondrial
dynamics

Considering that AATBC had only minor impact on the transcrip-

tome of thermogenic adipocytes, we hypothesized that the mito-

chondrial phenotype is manifested at the posttranslational level.

First, we quantified mitochondria DNA, but neither inhibition nor

overexpression of AATBC led to altered mitochondrial DNA levels,

suggesting that the number of mitochondria was unchanged under

these conditions (Appendix Fig S5A and B). Next, we investigated

mitochondrial dynamics, as mitochondrial fission and fusion events

regulate mitochondrial respiration (Quiros et al, 2012; Thaher

et al, 2018). Using TOM20 immunostaining, we found that silencing

of AATBC in thermogenic hMADS was associated with higher num-

bers and length of mitochondrial branches as well as more mito-

chondrial junctions per cell area compared to control cells (Fig 4A–

D). These observations illustrate a link between AATBC, mitochon-

drial network connectivity, and increased thermogenic function. As

mitochondrial fusion is mediated in part by OPA1 and MFN2, we

evaluated their protein levels. We found that compared to control

cells the levels of both proteins were higher in hMADS cells upon

knockdown of AATBC (Fig 4E–G), indicating a shift in mitochon-

drial dynamics towards fusion. We also measured protein levels of

the different OXPHOS complexes, which remained unchanged

(Fig 4H). Complementary to this data set, overexpression of AATBC

was associated with less mitochondrial connectivity (Fig 4I–L) and

lower OPA1 but unchanged MFN2 and OXPHOS levels compared to

control-infected cells (Fig 4M–P). In summary, these data demon-

strate that modulation of AATBC expression regulates mitochondrial

dynamics.

◀ Figure 3. AATBC is a regulator of mitochondrial function.

A Experimental outline.
B, C Expression of AATBC and UCP1 during anti-sense oligonucleotide (ASO)-mediated knockdown of AATBC (n = 9–15 technical replicates from five biological

experiments).
D–H Oxygen consumption rate (OCR) during ASO-mediated knockdown of AATBC visualized as (H) trace or cumulative at (D) baseline measurement, (E) isoproterenol-

induced OCR, (F) oligomycin (Oligo) induced proton leak or (G) carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP)-induced maximal respiration (D–G:
n = 10 technical replicates from a representative experiment, H: representative trace).

I, J Expression of AATBC and UCP1 during adenovirus (AV)-mediated overexpression of AATBC (n = 8 technical replicates from three biological experiments).
K–O OCR during ASO-mediated knockdown of AATBC visualized as (O) trace or cumulative at (K) baseline measurement, (L) isoproterenol-induced OCR, (M) OCR after

oligomycin (Oligo) or (N) FCCP-induced maximal respiration (K–N: n = 27 technical replicates, O: representative trace).

Data information: Statistical significance *P < 0.05 by 2-way ANOVA followed by Tukey’s test (B–G) or 2-tailed unpaired Student’s T-test (I–N). Data are
presented � s.e.m.

▸Figure 4. AATBC modulates mitochondrial dynamics by promoting fission.

A TOMM20 staining and image analysis of white hMADS cells (representative image of three independent experiments, scale bar: 10 lm).
B–D Quantification of (B) length of mitochondrial branches, (C) junctions per cell area, and (D) branches per cell area (n = 24 cells observed).
E–G Immunoblot of OPA1, MFN2, and b-tubulin and the respective quantification normalized to b-Tubulin levels (E: representative immunoblot; F, G: n = 15 technical

replicates replicates from five biological experiments).
H Immunoblot of OXPHOS complexes.
I TOMM20 staining and image analysis of white hMADS cells (representative image of three independent experiments, scale bar: 10 lm).
J–L Quantification of (K) length of mitochondrial branches, (L) junctions per cell area and (M) branches per cell area (n = 24 cells observed).
M–O Immunoblot of OPA1, MFN2, and b-Tubulin and the respective quantification normalized to b-Tubulin levels (M: representative immunoblot; N: n = 15 technical

replicates from five biological experiments; O: n = 6 technical replicates from three biological experiments).
P Immunoblot of OXPHOS complexes.

Data information: Statistical significance *P < 0.05 by 2-tailed unpaired Student’s T-test (B–D, F, G, J–L, N, O). Data are presented � s.e.m.
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Expressing human AATBC in mice impacts plasma leptin and
triglyceride levels

AATBC is specific to humans, which complicates preclinical in vivo

investigations in mouse models of metabolic disorders. Regardless,

in a first attempt to overcome this obstacle we expressed AATBC in

adipose tissue by surgically guided injection of adenovirus (AV)

directly into interscapular BAT and inguinal subcutaneous (SCAT)

adipose tissue of lean wild-type mice and subsequently performed

several metabolic analyses (Fig 5A). In mice that received AATBC-

AV, we found marked, localized expression of AATBC lncRNA

levels in both BAT and SCAT while in GWAT and liver only minor

expression was detectable compared to control injected mice

(Fig 5B). While body weight, glucose, and insulin tolerance as well

as plasma insulin and adiponectin levels remained unchanged, we

observed lower leptin levels (Fig 5C–I). In addition, in mice expres-

sing AATBC, we found higher plasma triglycerides while non-esteri-

fied fatty acids levels were unaltered (Fig 5J and K). However, the

gene expression levels of Ucp1 were unaffected (Fig 5L), indicating

that the treatment has little to no deleterious effects. In line with the

lower plasma leptin levels, also gene expression of leptin (Lep) was

reduced in scWAT (Fig 5M). In conclusion, our

proof-of-concept experiment shows AATBC expression in mouse

adipose tissue influences systemic metabolism in vivo. Regarding

mitochondrial dynamics, we were able to reproduce the in vitro

finding of a reduction of OPA1 protein levels (Fig 5N).

AATBC is a novel obesity linked human lncRNA

To further corroborate the importance of adipocyte AATBC in sys-

temic metabolism, we investigated the correlation of AATBC with

different metabolic parameters in human obesity. Using cross sec-

tional studies with subjects presenting a broad range of body mass

index (BMI), we analyzed gene expression of AATBC by qPCR. In

two independent cohorts, we found that AATBC was expressed at

higher levels in visceral (vis)WAT compared to scWAT (Fig 6A and

B). Furthermore, the expression of AATBC was lower in visWAT of

obese female subjects compared to lean controls (Fig 6B, D and E),

an effect not found in scWAT (Fig 6C and F). In another separate

cohort that included mainly obese subjects we were able to perform

more in-depth analyses as in addition to anthropomorphic and

plasma parameters, RNAseq data from adipose tissue samples was

available. We found that AATBC was positively regulated with age

and negatively regulated with body weight, body fat and the hip-

waist ratio in visWAT of both females and males. Similar to our

observation in mice, plasma levels of leptin were inversely corre-

lated with AATBC, whereas adiponectin levels showed no correla-

tion (Fig 6G–L). In line with our previous observations, we found

that AATBC was positively correlated with thermogenic markers

such as UCP1 and PPARG1A (Fig 7A, B, D and E) and negatively cor-

related with the expression of genes coding for ADIPOQ, LEP, FABP4

and PPARG (Fig 7C, F and G–L). These gene expression correlations

were also found in scWAT but in the absence of correlations with

the metabolic parameters (Appendix Figs S6 and S7). In summary,

adipose AATBC is inversely linked to excess adipose tissue and lep-

tin levels as well as correlates with thermogenic markers in

humans.

Discussion

Adipocyte plasticity is a key component for the adaptation of metab-

olism to environmental cues. Thus, the functional features of the

adipocyte are matched to the metabolic needs of the organism. This

is especially prominent during the adaptation to cold, during which

adipocytes adopt a more thermogenic phenotype, or, conversely,

when temperature increases or other conditions of positive energy

balance such as high-fat diet-induced obesity. If the energy balance

◀ Figure 5. Expression of human AATBC in mouse adipose tissue impacts metabolism.

A Experimental outline.
B Expression of AATBC in adipose tissue depots and liver after injection of AV_GFP or AV_AATBC in brown adipose tissue (BAT) and subcutaneous adipose tissue

(scWAT).
C Body weight.
D Glucose tolerance test (GTT).
E Insulin tolerance test (ITT).
F–K Plasma levels of metabolic parameters.
L, M Ucp1 and Lep gene expression in adipose tissue.
B–M n = 12 animals per group.
N Immunoblot of OPA1, UCP1, and b-Tubulin of BAT after the specified injections.

Data information: Statistical significance *P < 0.05 by 2-way ANOVA followed by Tukey’s test (B, L, M) or 2-tailed unpaired Student’s T-test (C, F–K). Data are
presented � s.e.m.

▸Figure 6. AATBC is linked to obesity and leptin levels in humans.

A–C AATBC expression in visceral (visWAT) and subcutaneous (scWAT) white adipose tissue grouped by (A) sex (B, C) and body mass index (BMI) (n = 318).
D–F AATBC expression in visWAT and scWAT of (A) male and female subjects (B, C) lean and obese subjects (n = 96 patients).
G, H Correlation matrix of AATBC in visWAT of (G) female and (H) male subjects and metabolic parameters (females: n = 627, males: n = 293).
I–L AATBC expression in visWAT of males and females correlated with (I, J) adiponectin and (K, L) leptin plasma levels (I: loge(S) = 11.02, P = 0.906, qSpearman = 0.01,

CI95% [�0.22, 0.25], npairs = 72, J: loge(S) = 8.91, P = 0.465, qSpearman = 0.12, CI95% [�0.22, 0.44], npairs = 37, K: loge(S) = 15.16, P = 0.001, qSpearman = �0.21, CI95%
[�0.32, �0.09], npairs = 267, L: loge(S) = 12.80, P = 0.011, qSpearman = �0.23, CI95% [�0.40, �0.05], npairs = 121).

Data information: Statistical significance *P < 0.05 by 2-way ANOVA followed by Tukey’s test (A–F). Data is presented with a box containing the 25–75% interval around
the median value with whiskers representing the minimum and maximum value.
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Figure 7. AATBC correlates with markers of metabolic health in visceral adipose tissue.

A–L AATBC expression correlated with gene expression of the thermogenic markers PPARGC1A and UCP1 and the obesity-related genes ADIPOQ, FABP4, LEP and PPARG in
visceral adipose tissue of (A–C, G–I) females (n = 627) and (D–F, J–L) males (n = 293) (A: loge(S) = 16.47, P = 9.09e�78, qSpearman = 0.65, CI95% [0.61, 0.70]; B: loge(S) =
16.63, P = 1.37e�60, qSpearman = 0.59, CI95% [0.54, 0.64]; C: loge(S) = 17.94, P = 3.85e�43, qSpearman = �0.51, CI95% [�0.54, �0.45]; D: loge(S) = 14.30, P = 1.04e�31,
qSpearman = 0.61, CI95% [0.53, 0.68]; E: loge(S) = 14.23, P = 7.55e�35, qSpearman = 0.64, CI95% [0.56, 0.70]; F: loge(S) = 15.71, P = 6.3e�28, qSpearman = �0.58, CI95% [�0.65,
�0.50]; G: loge(S) = 17.85, P = 4.95e�22, qSpearman = �0.37, CI95% [�0.44, �0.30]; H: loge(S) = 17.89, P = 6.46e�29, qSpearman = �0.43, CI95% [�0.49, �0.36]; I: loge(S) =
17.99, P = 7.06e�60, qSpearman = �0.59, CI95% [�0.64, �0.53]; J: loge(S) = 15.67, P = 1.1e�21, qSpearman = �0.52, CI95% [�0.60, �0.43]; K: loge(S) = 15.65, P = 1.81e�19,
qSpearman = �0.49, CI95% [�0.58, �0.40]; L: loge(S) = 15.78, P = 2.37e�43, qSpearman = �0.69, CI95% [�0.75, �0.63]).
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is positive, whitening prevails over browning and the adipocytes

undergo significant morphological and functional remodeling. Here,

we show that the obesity-linked lncRNA AATBC is a regulator of

adipocyte plasticity that enhances mitochondrial function in human

adipocytes.

Mechanistic metabolic studies in humans are challenging and are

further complicated if the gene of interest is absent in mice. To over-

come these obstacles, we took advantage of hMADS cells which are

a representative model of human adipocytes with the potential to

switch between white and thermogenic phenotypes and confirmed

our findings in primary cells isolated from human WAT and BAT.

We demonstrate that in cultured human adipocytes, AATBC stimu-

lates mitochondrial fission, oxygen consumption, and induces the

expression of several markers of browning. Its nuclear localization

suggests that AATBC exerts its effects by modulation of transcrip-

tional events, but the outcomes of both loss and gain of AATBC

function experiments on the global transcriptome were marginal

and not linked to changes in genes that would explain the effects of

AATBC on mitochondrial function (Chen, 2016). Therefore, a non-

transcriptional function for AATBC seems more likely. Indeed,

lncRNAs can shuttle out of the nucleus and, for example, LNC00473

has been shown to physically present at the lipid droplet-

mitochondrial interface (Tran et al, 2020). However, we did not

observe such a behavior for AATBC, as it remained strictly nuclear.

Likewise, lipolysis is a key feature of adipocyte function and we

found that AATBC influences lipolysis both in vitro and in vivo. These

functional effects were also mirrored in our adipocyte transcriptomic

analysis of inhibition and overexpression of AATBC, potentially indi-

cating that AATBC might have a dual role the regulation of adipocyte

function. Lipolysis and mitochondrial function are two important pil-

lars of adipocyte plasticity that are rapidly regulated but also change

during chronic adaptations to cold or high-fat diet feeding (Weir

et al, 2018; Dai & Jiang, 2019). To investigate if AATBC is sufficient to

alter adipocyte function in vivo, we expressed AATBC by a viral strat-

egy in mice where AATBC is naturally absent. We found that AATBC

expression altered plasma triglyceride and leptin levels, two important

systemic parameters of adipocyte function. One could argue that

expressing AATBC in mouse adipocyte might be artificial, as AATBC

is a human lncRNA and could be non-functional in a mouse cell.

However, it has been shown that expressing human lncRNAs in mice

is useful for investigating lncRNA function (Ruan et al, 2020) and we

did not observe any adverse side effects in mice expressing AATBC.

While more work is certainly needed to study the role of AATBC in

non-shivering thermogenesis and/or obesity, ideally using a stable

transgenic mouse model, our work here indicates that adipocyte

AATBC plays role in systemic metabolism.

We investigated the expression pattern of AATBC in adipose tis-

sue in three separate human cohorts. As inter-individual variation is

bigger in humans than in mice, one needs to keep in mind the limi-

tations of human correlation studies. Confounding factors in our

obese patients could be comorbidities and medication. Therefore,

we used big cohort sizes to level out such influences. In humans,

adipose AATBC expression is correlated with a thermogenic pheno-

type. This was also reflected in human primary adipocytes and

hMADS cells. Regardless, AATBC is more expressed in visWAT

compared to scWAT both in lean and obese patients, which is in

line with the observation of an inverted pattern of thermogenic gene

expression in those adipose depots of humans compared to mice

(Zuriaga et al, 2017). In line with this notion, AATBC expression

was correlated inversely with parameters of obesity and plasma lep-

tin levels. Also, in our mouse model plasma leptin levels were

inversely correlated with AATBC expression but we do not expect

the range of the observed changes in plasma leptin levels to immedi-

ately affect satiety and body weight regulation. Mitochondrial

dynamics are equally important for proper white adipocyte function,

as patients with mutations in MFN2 display a fragmented mitochon-

drial network, excess adiposity, and paradoxical suppression of lep-

tin expression (Rocha et al, 2017). In general, proper mitochondrial

dynamics are critical for maintaining a healthy pool of mitochondria

and efficient mitophagy (Liesa & Shirihai, 2013). To this end, it will

be intriguing to study the role of AATBC in obesity-induced mito-

chondrial dysfunction, in adipocyte and potentially also other cell

types as AATBC expression is not restricted to adipocytes. In conclu-

sion, our study identifies AATBC as a novel lncRNA linked to adipo-

cyte function and obesity with the potential to manipulate

mitochondrial function and thermogenic plasticity in humans.

Materials and Methods

Cell culture

Human SVF (RNAseq screening, Fig 1)
Human primary adipose-derived stem cells (hpASCs) were isolated

and stimulated as previously described (Higareda-Almaraz

et al, 2018). In brief, subcutaneous lipoaspirates from healthy

female donors (n = 4) were thawed, cultivated in EGM-2 Medium

(Lonza), and used after 1–3 passages. 2 days after the cells reached

confluency (= day 0), adipocyte differentiation was induced with

the following medium (DMEM/Ham’s F12 [50:50]; supplemented

with 5 mM HEPES, 2 mM L-glutamine, 100 lg/ml normocin,

860 nM insulin, 10 lg/ml apo-transferrin, 100 nM rosiglitazone,

0.2 nM triiodothyronin) supplemented with 100 lM 3-isobutyl-1-

methylxanthine (IBMX), and 1 lM dexamethasone (Dex). At day 7

of differentiation, supplementation with insulin was stopped. At day

9 of differentiation, the differentiated adipocytes were stimulated

with 1 lM norepinephrine (NE; dissolved in 10 mM HCl) or vehicle

(VE, 10 mM HCl) for 3 h.

hMADS cells
Human multipotent adipose derived stem (hMADS) cells were cul-

tured as previously described (Giroud et al, 2021). Briefly, cells were

kept until confluency in proliferation medium (Dulbecco’s Modified

Eagle’s Medium [DMEM]), (Lonza, Switzerland # BE12-707F)

supplemented with 10% FBS (Sigma, Germany), 10 mmol/l 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Gibco, Ger-

many #15630056), 2.5 ng/ml human fibroblast growth factor-basic

(hFGF2) (PeproTech, Germany #100-18B), 50 mg/ml penicillin, and

50 mg/ml streptomycin (Gibco, Germany #15140122), followed by

48 h of incubation without hFGF2. The induction of the differentia-

tion towards adipocytes was started (d0) using a cocktail of DMEM/

Ham’s F12 (Lonza, Switzerland # BE12-615F) supplemented with

10 mg/ml apo-transferrin (Sigma, Germany # T1428), 10 nM insulin

(Sigma, Germany # I 9278), 100 nM rosiglitazone (Cayman, Ger-

many #71740), 0.2 nM triiodothyronine (T3) (Sigma, Germany

#6893-02-3), 1 mmol/l dexamethasone (DEX) (Sigma, Germany #
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D4902), 1 mM 3-isobutyl-1-methylxanthine (IBMX) (Sigma, Ger-

many #28822-58-4). After 48 h the induction medium was replaced

by the differentiation medium containing DMEM/Ham’s F12,

10 mg/ml transferrin, 10 nM insulin, 0.2 nM triiodothyronine and

1 lM rosiglitazone. Until day 9, the medium was changed every

other days. At day 9, thermogenic (referred to as “Thermo”) differ-

entiated hMADS cells were obtained with chronic rosiglitazone

treatment until day of completion of the experiment (d14) whereas

a whiter phenotype was achieved by removal of rosiglitazone

(referred to as “White”).

Human SVF purification and differentiation
Human stromal vascular fraction was purified from subcutaneous

adipose tissue from patients undergoing abdominoplasty. The study

was approved by the ethical committee (vote no. 300/16) of the Uni-

versity of Ulm after written informed consent. Minced tissue was

chemically digested using collagenase (Sigma, Germany

#11088793001) in BSA (Sigma, Germany #A8806-5G) media (ratio

1:3) for 30–45 min until the digestion was stopped by the addition

of FBS (Sigma, Germany) at a 10% v/v ratio. To purify primary adi-

pocytes from of the digested tissue, the mixture was first filtered

consecutively through 100, 70 and 48 lm meshes and then centrifu-

gated to finally separate the primary adipocytes in the pellet from

the supernatant. Cells were plated and treated like hMADS cells.

Human SVF purification and differentiation (refers to Fig 2A and B)
Preadipocytes isolated from the supraclavicular and abdominal sub-

cutaneous region were cultured, differentiated, and stimulated as

previously described (Jespersen et al, 2013). RNA was extracted

from adipocytes using the TRIzol method. RNA sequencing was

performed by BGI (Hong Kong) using 1,000 ng RNA for the TruSeq

cDNA library construction (Illumina). 3Gb data was generated per

sample on a HiSeq 2000 sequencer (Illumina) and a 91-paired end

sequencing strategy was used. Read quality was assessed using

FastQC (http://www.bioinformatics.babraham.ac.uk) and the fol-

lowing pre-processing steps where performed using the Fastx toolkit

(http://hannonlab.cshl.edu) and PRINSEQ: 7 nt were clipped off

from the 50-end of every read (Schmieder & Edwards, 2011). The

reads were then filtered to remove all N-reads. The 30-ends were

then trimmed, and the reads filtered to minimum Q25 and 50 bp

length. Reads were then mapped with tophat2 to the human genome

GRCh38 Ensembl release 77. Read counts were imported into R, and

DESeq2 was used for identifying differential expression.

Modulation of gene expression

The expression of AATBC was modulated in vitro using antisense

oligonucleotide-mediated knockdown (ASO, Exiqon, #634048-6,

#634048-4), siRNA-mediated knockdown (Lincode Human AATBC

[Horizon Discovery, #284837]) and adenovirus (AV) mediated overex-

pression (VectorBuilder, #AVM (VB150925-10024) + GFP). White

hMADS were transfected at day 12 of differentiation with 30 nmol of

siRNA or ASO at day 10 using LipofectamineTM RNAiMAX transfection

reagent (Thermo Scientific, #13778075) according to the manufac-

turer’s protocol. For overexpression, white hMADS cells were infected

with 200 particles of virus per cell. 24 h later, the transfection medium

was removed and replaced by the suitable differentiation medium.

48 h after transfection cells were harvested.

Nuclear RNA extraction

Nuclear RNA was purified using a Cytoplasmic & Nuclear RNA Puri-

fication Kit (Norgen, Canada # 21000) according to the manufac-

turer’s instructions. cDNA was synthesized with MaximaTM H

Master Mix 5× (Thermo Fisher Scientific, #M1661), followed by

qPCR according to the PowerUpTM SYBR Green technology (Applied

Biosystems, #A25741).

Immunoblot

Protein expression was investigated using Western blot as described

previously (Giroud et al, 2021). Cells were lysed in RIPA buffer

(150 mM NaCl, 5 mM EDTA, 50 mM Tris pH 8, 0.1% w/v SDS, 1%

w/v IGEPAL� CA-630, 0.5% w/v sodium deoxycholate) containing

protease inhibitors (Sigma) in a 1:100 v/v ratio. Protein concentra-

tions of the lysates were determined using Pierce BCA Protein Assay

(Thermo Scientific) following the manufacturer’s protocol. 30 lg of

total protein were loaded per well on BoltTM 4–12% Bis-Tris gels

(Thermo Scientific, #NW04120BOX) and blotted on a 0.2 lm PVDF

membrane (Bio-Rad, #1704156) using the Trans-Blot� TurboTM sys-

tem. Membranes were incubated in primary antibodies at a dilution

of 1:1,000 v/v in ROTI-Block (Roth, Germany #A151.1) after

blocking in ROTI-Block. Secondary antibody (concentration of

1:10,000 v/v in ROTI-Block) incubation was performed for 1 h at

room temperature. All antibodies used are shown in Table 1. After

antibody incubation membranes were washed 4× for 10 min in TBS-

T (Tween 0.1%). Bands were detected using a Chemidoc MP System

(Bio-Rad, #1704156).

Gene expression analysis

RNA of cells and tissues were extracted using TRIzol (Invitrogen,

#15596026) and NucleoSpin� RNA kit (Macherey-Nagel,

#740955.250) according to the manufacturer’s instruction. cDNA

was synthesized with MaximaTM H Master Mix 5× (Thermo Scien-

tific, #M1661), followed by qPCR according to the PowerUpTM SYBR

Green technology (Applied Biosystems, #A25741) using the primers

listed in Table 2. Gene expression was calculated using the DDCt-
method normalized to the housekeeping gene indicated in the

respective figure.

Oil-Red-O staining

Cells were fixed using 8% paraformaldehyde (Sigma). After washing

with 60% isopropanol cells were stained with a 60/40 v/v mixture

of ORO (Sigma) and H2O for 10 min at room temperature. After

Table 1. Antibodies.

Mfn2 ab56889 (Abcam)

OXPHOS ab110413 (Abcam)

Opa1 ab42364 (Abcam)

b-tubulin 2146S (Cell Signaling Technology)

TOMM20 ab78547 (Abcam)

Anti-rabbit IgG 7074S (Cell Signaling Technology)

Anti-mouse IgG 7076S (Cell Signaling Technology)
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washing imaging was performed. Quantification of the staining was

performed after elution of the dye using 100% isopropanol and mea-

surement of absorbance at 500 nm.

Analysis of mitochondrial respiration

To assess mitochondrial respiration a Seahorse XFe24 device (Agilent

# 102238-100, S7801A) was used. hMADS cells were seeded differenti-

ated and transfected or transduced at day 12 as described above. Oxy-

gen consumption rate was determined during a Mito Stress Test (All

Sigma-Aldrich: 1 lM Oligomycin-A [#75351], 1.2 lM FCCP [#C2920],

2 lM Rotenone [#R8875], 2 lM Antimycin A [#A8674]) with addi-

tional treatment with Isoproterenol (100 nM, #I5627-5G).

Quantification of mitochondrial DNA

To assess cellular mitochondrial amount, DNA was extracted using

a DNA Extraction Kit (Macherey-Nagel, #740952.50) and used for

qPCR as described before (Giroud et al, 2016). The expression of the

mitochondrial gene NADH was normalized to the single copy

nuclear gene LPL.

In situ hybridization—RNAscope®

To visualize the intracellular localization of ATTBC, we used the

RNAscope� Multiplex Fluorescent Reagent Kit v2- Hs (ACD Bio,

#323135). Undifferentiated hMADS cells were seeded on coverslips

in 24-well tissue culture dishes, grown to confluence and differenti-

ated into thermogenic adipocytes for 12 days (see hMADS cells dif-

ferentiation). In situ hybridization was performed according to the

manufacturer’s protocol (Advanced Cell Diagnostics), using a probe

designed to specifically detect human AATBC (RNAscope� Probe

Hs-AATBC [Advanced Cell Diagnostics, #519681]), in combination

with the Opal 620 Fluorophore Reagent (Akoya Biosciences). Cells

were visualized on a Leica TCS SP5 confocal microscope (Leica,

Germany). Images were acquired for all conditions as z-stacks

(steps of 0.5 lm along the z axis) with a glycerol-based immersion

fluid-immersed 63× objective. Acquisition parameters were kept

consistent for all images. The same image processing was performed

using ImageJ (FIJI) software for the different conditions.

Mitochondria 3D reconstruction and morphometric analysis

Immunofluorescence was performed at day 14 of differentiation as pre-

viously described (Pisani et al, 2018). To visualize the mitochondrial

network TOMM20 antibody (Abcam, #ab78547, 1:1,000 v/v) was

used followed by incubation with a fluorescent antibody (molecular

probes, A-21429, 1:1,000 v/v). Immunofluorescent samples were ana-

lyzed using a Laser Scanning Confocal Microscope (Olympus Fluoview

1200, Olympus, Tokyo, Japan) equipped with an Olympus UPlanSApo

60 × 1.35 and an UplanSApo 40 × 1.25Sil Oil immersion objective

(Olympus, Tokyo, Japan) at a resolution of app. 100 lm/pixel (60×)

and 600 nm step size. For mitochondrial 3D reconstruction, images

were deconvolved using the FIJI plugins point spread function (PSF)

generator (Kirshner et al, 2013) and DeconvolutionLab (Sage

et al, 2017). Z-step was set to 0.6 lm and a PSF algorithm (Born &

Wolf 3D Optical model) was used for PSF generation, as previously

described (Seitz et al, 2019). The generated PSF and a 3D deconvolu-

tion algorithm (Richardson-Lucy with TV regularization) were applied

to microscopic images using DeconvolutionLab. From the decon-

volved 2D and 3D binary images (8-bit images), mitochondrial net-

work was determined by generating a skeleton of the images using the

Fiji plugin Skeletonize3D and analyzed using the plugin AnalyzeSke-

leton (2D/3D). This plugin tags all pixel/voxels in a skeleton image

and then counts the junctions and branches of the mitochondrial net-

work and measures their average length. For mitochondrial network

analysis, minimum of 20 cells were analyzed.

Mouse experiments

Animal experiments were performed in accordance with German

animal welfare legislation and approved by the state ethics commit-

tee and government of Upper Bavaria (no. ROB-55.2-2532.Vet_02-

17-125). We followed the ARRIVE guidelines (Percie du Sert

et al, 2020). Mice were group-housed at 22°C with a 12 h dark–light

cycle in the animal facility of Helmholtz Center Munich. 9-week-old

male C57BL/6J mice were purchased from Janvier Labs and accli-

matized in the Helmholtz center facility for 3 weeks. Induction of

anesthesia was performed using 4% isoflurane and upheld by inha-

lation of 2% isoflurane. Incisions were made over the intrascapular

Table 2. Primers.

h_PLIN1_F ACCCCCCTGAAAAGATTGCTT

h_PLIN1_R GATGGGAACGCTGATGCTGTT

h_TBP_F ACGCCAGCTTCGGAGAGTTC

h_TBP_R CAAACCGCTTGGGATTATATTCG

h_UCP1_F CTGGACACGGCCAAAGTC

h_UCP1_R GGACACCTTTATACCTAATAACACTGG

m_Ucp1_F AGGCTTCCAGTACCATTAGGT

m_Ucp1_R CTGAGTGAGGCAAAGCTGATTT

m_Tbp_F AGAACAATCCAGACTAGCAGCA

m_Tbp_R GGGAACTTCACATCACAGCTC

m_Adipoq_F GGAGAGAAAGGAGATGCAGGT

m_Adipoq_R CTTTCCTGCCAGGGGTTC

h_ADIPOQ_F GCTGGTCTGAAACTCCTGACA

h_ADIPOQ_R CGGGCAGAGCTAATAGCAGTA

h_AATBC_F ACCGGGCAAATCTGAAACCA

h_AATBC_R CGTTGATAACCGGCCTTCCT

h_12S_F CCTGGTCATGAACAAGCAATACC

h_12S_R GTGTCTGGCTAGTGAGGACTG

h_U1_F ATACTTACCTGGCAGGGGAG

h_U1_R CAGGGGAAAGCGCGAACGCA

h_FABP4_F CCTTTAAAAATACTGAGATTTCCTTCA

h_FABP4_R GGACACCCCCATCTAAGGTT

h_NADH_F GAGCGATGGTGAGAGCTAAGGT

h_NADH_R CCCTAAAACCCGCCACATCT

m_Lep_F CAGGATCAATGACATTTCACACA

m_Lep_R GCTGGTGAGGACCTGTTGAT

h_LPL_F TTCTGGATTCCAATGCTTCGA

h_LPL_R CGAGTCGTCTTTCTCCTGATGAT
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brown adipose tissue and inguinal adipose tissue. Injections of 25 ll
containing 4 × 107 viral particles of AV_AATBC or control were

performed into each lobe of the tissues in a randomized fashion.

Experiments were performed not blinded. Exclusion criteria were

suboptimal surgical recovery. For glucose tolerance test (GTT),

performed at day 7 and insulin tolerance test (ITT), performed at

day 14, mice were fasted for 6 h after which they received intraperi-

toneal injections of glucose (3 g/kg for GTT) and insulin (0.7 U/kg

for ITT). Blood glucose was measured from the tail vein at 15, 30,

60, 90, and 120 min after injection. After 12 days mice were eutha-

nized using cervical dislocation and necropsy was performed.

Plasma was analyzed for metabolic parameters including adipo-

nectin, triglycerides, and non-esterified fatty acids using a serum

analyzer (AU480 Beckman Coulter). Plasma levels of leptin and

insulin were assessed using ELISAs according to the manufacturer’s

instructions (R&D Systems, #MOB00B & Crystal Chem, #90082,

respectively).

Human data

Human adipose tissue samples (RNAseq screening, refers to Fig 1)
Human BAT and WAT were removed from the same incision site in

the supraclavicular localization, BAT being fluorodeoxyglucose-

positron emission tomography (FDG-PET)-positive scan sites and

WAT being not. The Study protocol was approved by the ethics

committee of the Hospital District of Southwestern Finland, and sub-

jects provided written informed consent following the committee’s

instructions. The study was conducted according to the principles of

the Declaration of Helsinki. All potential subjects who donated BAT

were screened for metabolic status, and only those with normal glu-

cose tolerance and normal cardiovascular status (as assessed based

on electrocardiograms and measured blood pressure) were included.

The age range of the subjects was 23–49 years. We studied a group

of five healthy volunteers (three females, two males).

Human samples (RNAseq, refers to Figs 6 and 7)
The acquisition of human data from cohorts 1 and 2 has been previ-

ously described (Giroud et al, 2021). Briefly, cohort 1 includes 318

individuals (249 female individuals, 69 male individuals; BMI range:

21.9–97.3 kg/m2, age range: 19–75 years) undergoing elective lapa-

roscopic surgery during which subcutaneous (scWAT) and visceral,

omental (visWAT) adipose depots were obtained. Cohort 2 and 3

are from the Leipzig Obesity Biobank. Cohort 2 includes 96 individ-

uals (23 lean female individuals, mean age 43.3 � 7.4 years, mean

BMI 23.7 � 1.3 kg/m2, 48 obese female individuals, mean age

42.9 � 8.3 years, mean BMI 45.9 � 6.1 kg/m2, 9 lean male individ-

uals, mean age 44.7 � 7.1 years, mean BMI 22.3 � 1.8 kg/m2, and

16 obese male individuals, mean age 42.2 � 7.6 years, mean BMI

44.9 � 5.2 kg/m2). Cohort 3 comprises 1,415 individuals, with

visWAT samples collected from 920 individuals (female lean

[n = 45, mean age 62.1 � 13.7 years, mean BMI 24.4 � 2.9 kg/

m2], female obese [n = 582, mean age 46.1 � 11.8 years, mean

BMI 48.5 � 8.5 kg/m2], male lean [n = 44, mean age

61.4 � 15.7 years, mean BMI 24.9 � 3.5 kg/m2], and male obese

[n = 249, mean age 48.2 � 11.7 years, mean BMI 49.1 � 8.5 kg/

m2]) and scWAT samples taken from 814 individuals (female lean

[n = 33, mean age 63.8 � 12.9 years, mean BMI 24.7 � 2.8 kg/

m2], female obese [n = 545, mean age 46.7 � 12.0 years, mean BMI

48.3 � 9.2 kg/m2], male lean [n = 25, mean age 65.6 � 14.3 years,

mean BMI 25.5 � 2.6 kg/m2], and male obese [n = 211, mean age

48.09 � 12.4 years, mean BMI 49.5 � 8.0 kg/m2]). Patients were

classified as lean when their BMI was < 30 kg/m2. For cohort 3,

human single-end and rRNA-depleted RNA-seq data were prepared

with a SMARTseq protocol (Picelli et al, 2014; Song et al, 2018). In

brief, RNA was enriched and reverse transcribed by Oligo(dT) and

TSO primers. cDNA was amplified by ISPCR primers and processed

with Tn5 using Nextera DNA Flex kit. All libraries were sequenced

on an Novaseq 6000 instrument at Functional Genomics Center

Zurich (FGCZ). Approval for all three studies was obtained from the

Ethics Committee of the University of Leipzig (approval no: 159-12-

21052012) before the study and acquisition was performed in accor-

dance with the declaration of Helsinki.

Bioinformatic analysis

Bioinformatic analysis (RNAseq screening, refers to Fig 1)
RNA quality was assessed using BioAnalyzer 2100 (Agilent); all

samples had RIN values ≥ 8.5. 4 lg total RNA per sample were used

for the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina) to

generate cDNA libraries according to the manufacturer’s protocol.

Single read sequencing was carried out using Illumina/Solexa HiSeq

2000. High-throughput sequencing was conducted by the Biomedi-

cal Sequencing Facility, Vienna. RNAseq alignment, long non-

coding quantification and differential expression analysis were

performed as follows: Raw sequencing reads were aligned against

the human hg38 genome using STAR aligner with default parame-

ters (Dobin & Gingeras, 2015). The mapped reads were assigned to

genes using featureCount from the Bioconductor package Rsubread

(Liao et al, 2014). All annotated lncRNAs were quantified across

each condition, using hg38 annotation. Normalization and differen-

tial expression analysis were performed using the R/Bioconductor

package DESeq2 (Love et al, 2014). Significance was assumed for an

adjusted P-value < 0.01. Data of the hpAS treated with norepineph-

rine are publicly available sequencing data (Tran et al, 2020).

Bioinformatic analysis (RNAseq human cohort 3, refers to Figs 6
and 7)
Adapters and low quality bases of raw reads were trimmed using

fastp v0.20.0 (Chen et al, 2018). Only reads with a minimum read

length of 18 nts and which surpass a quality cut-off of 20 were kept.

The remaining reads were aligned against the human (GRCh38.p13)

genome from GENCODE (Frankish et al, 2019) applying the STAR

alignment algorithm v2.7.4a (Dobin et al, 2013), allowing 50 multi-

ple alignments per read. Standard pre- and post-mapping quality

control was computed using FASTQC v.0.11.4 (https://www.

bioinformatics.babraham.ac.uk). Gene counts were conducted with

featureCounts v2.0.1 (https://subread.sourceforge.net) where multi-

ple mapped reads were fractionally counted. Count data were homo-

scedastic normalized with respect to library size using the variance

stabilizing transformation from DESeq2 v1.32.0 (Love et al, 2014).

Correlation analyses were computed using the psych R package

v2.1.6 with the spearman correlation coefficient and confidence

intervals of 0.05. P-values were adjusted using the Holm’s method

(http://www.jstor.org/stable/4615733). Visualization of correlation

analysis was performed with the corrplot v0.90 and ggstatsplot

v0.8.0 R packages under R version 4.1.
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Statistics

Data is presented as mean � standard error of mean (s.e.m.). Stu-

dent’s t-test and 2-way ANOVA were used as indicated in the figure

legends and performed using GraphPad Prism 9.0 and R 4.1.0. No

sample size calculation was performed. In vitro experiments were

performed at least 3 times and pooled where possible. Differences

were deemed significant with a P-value < 0.05 and indicated by an

asterisk.

Data availability

The RNAseq data of human adipose tissue have been deposited at the

GEO repository accession number GSE239673 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE236966). Human primary

cells RNAseq have been published previously (Tran et al, 2020). The

human obesity datasets of the Leipzig Obesity BioBank (Figs 6 and 7)

are not publicly available due to concerns regarding participant/

patient anonymity. Requests to access the datasets should be directed

to Matthias Bl€uher. RNAseq data of the AATBC manipulation have

been deposited at the GEO repository, accession number GSE236966

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE236966).

Expanded View for this article is available online.
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