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Abstract
Every human needs sufficient, safe, and nutritious food to live an active and
healthy life. Climate change, especially more frequent extreme climate events,
increasingly affects crop yields. Unpredictable losses in crop production pose a
high risk to our food systems, thus threatening agricultural producers and con-
sumers worldwide. This study analyzes the effect of climate change on wheat,
maize, and barley yield anomalies for the major producing countries in the
EU. Applying the Random Forest machine learning model, climate indicators,
comprising mean and extreme climate conditions, explain 18% of crop yield
anomalies across crops and countries from 1961 to 2020. The predictive power
of climate indicators is highest for maize with 24%, followed by barley with 22%
and wheat with 3%. However, mean climate indicators are stronger associated
with crop yield anomalies than extreme climate indicators. Temperature- and
soil moisture–related indicators are more important than precipitation-related
indicators. The results reveal a nonlinear relationship between climate indicators
and crop yields. Thresholds lead to a sharp decrease or increase in crop yields.
Under SSP3-7.0, rising temperatures tend to increase crop yield losses until 2100
without effective adaptation measures. The impact of changing soil moisture–
related indicators depends on crop and country. Our study discusses adaptation
strategies but also emphasizes the relevance of global mitigation efforts to reduce
climate-induced crop risk and to improve our food system’s resilience.
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1 INTRODUCTION

Every human needs sufficient, safe, and nutritious food
to meet dietary needs and food preferences for an active
and healthy life (FAO, 1996). Climate change, in particular
increasing temperatures, changing precipitation patterns,
andmore frequent extreme events, increasingly affect crop
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yields in Europe (Ben-Ari et al., 2018; Hernandez-Barrera
et al., 2017; Mbow et al., 2019; Nguyen et al., 2018). The
extreme drought of August 2022 in the European Union
(EU) is estimated to have caused a reduction in maize,
soybean, and sunflower yield of −16%, −15%, and −12%,
respectively, compared to the 5-year average (Baruth et al.,
2022). In the summer of 2018, 40% of the crop areas
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in Northern and Eastern Europe recorded yields below
the 10th percentile for winter wheat and barley (Beil-
louin et al., 2020). Globalized connected trade markets
create structural vulnerabilities amplified by crop pro-
duction shocks (Burkholz et al., 2019; Rivington et al.,
2015). Changes in crop production, storage, and consump-
tion increased global wheat prices by more than 100% in
2007/2008 and 50% in 2010/2011 (Headey, 2011; Schewe
et al., 2017). Rising costs for staple crops limit access to food
for basic needs (Wheeler et al., 2013). Disruptions in Euro-
pean wheat production due to weather-related shocks or
other events result in absolute reductions inwheat exports.
Consequently, the least developed countries experience
significant import losses in staple foods and supply short-
ages due to their high dependence on globally connected
trade networks (Puma et al., 2015; Burkholz et al., 2019).
However, not every climate extreme leads to a crop failure;
often, a combination of extreme and moderate values in
different climate indicators leads to crop reduction (Beil-
louin et al., 2020; Ben-Ari et al., 2018; Kolář et al., 2014).
The factors leading to crop failure are often multivariate
and highly interrelated (Frank et al., 2015). Understand-
ing the drivers of crop yield anomalies helps to predict and
mitigate crop failures (Lipper et al., 2014).
Previous studies investigated the impacts of climate

indicators on crop yield anomalies, mainly focusing on
wheat and maize. For wheat in Europe, climate indica-
tors explain 28% to 63% of the variance in yield anomalies
(Vogel et al., 2019; Beillouin et al., 2020; Ray et al., 2015;
Frieler et al., 2017). For maize, climate conditions pre-
dict between 25% and 68% of crop yield anomalies (Vogel
et al., 2019; Beillouin et al., 2020; Ray et al., 2015; Frieler
et al., 2017). In terms of indicators, previous studies found
that unusually warm and cold temperatures and deficit
or excess precipitation adversely affect wheat and maize
yields across European countries (Vogel et al., 2019; Beil-
louin et al., 2020; Lüttger et al., 2018; Hernandez-Barrera
et al., 2017; Hlavinka et al., 2009; Kristensen et al., 2011).
The relationship is nonlinear, with threshold values lead-
ing to a sharp decrease in crop yields (Schlenker et al.,
2009; Troy et al., 2015). To our knowledge, only one study
has investigated the predictability of barley yields (Beil-
louin et al., 2020), which is the third most-produced crop
in the EU (FAO, 2021). Moreover, most studies focused
mainly on temperature and precipitation (Vogel et al.,
2019; Frieler et al., 2017; Ray et al., 2015), neglecting soil
moisture, which can have a significant influence on the
growth of the crops (Vogel et al., 2019; Ray et al., 2019).
Moreover, as far as we know, only two studies inves-
tigated how the indicators impacting crop growth will
develop until 2100 given the shared socioeconomic path-
ways (SSP) (Ben-Ari et al., 2018; Hernandez-Barrera et al.,
2017).

This research analyzes the effects of climate indicators
on crop yield anomalies in the EU by focusing on three
research questions:

1. What is the influence of changes in climate means and
extremes on crop yield?

2. What are the most important climate indicators, and
how do they influence crop yield?

3. What effect on crop yield anomaly can be expected in
the future under the SSP3-7.0?

In our research, we focus on the three most produced
crops in the EU: wheat, maize, and barley (FAO, 2021).
For each crop, we consider the five major producing coun-
tries in the EU: France (FR), Germany (DE), Poland (PL),
Spain (ES), and Romania (RO) for wheat; France, Roma-
nia, Hungary (HU), Italy (IT), and Poland for maize; and
Spain, Germany, France, Denmark (DK), and Poland for
barley at the national level. Figure 1 provides an overview
of the research domain.
We use climate indicators as input to the RandomForest

regressor (Breiman, 2001) and train the model to predict
the crop yields for 1961 to 2020. We investigate which
climate indicators are most relevant for the crops and
countries showing explanatory power. We further analyze
how the most important indicators develop given the SSP3
that is simulating the climate given Representative Con-
centration Pathway (RCP) 7.0 (radiative forcing of 7W⋅m−2

by 2100) (O’Neill et al., 2014) and qualitatively estimate the
possible impact on future crop yields.
This research contributes to the Sustainable Develop-

ment Goals (SDGs) defined by the United Nations (UN) as
a call to action for peace and prosperity. The study qualita-
tively investigates the possible impact of climate change on
the most important crops in the EU, thereby contributing
to SDG No. 2 to end hunger.

2 MATERIALS ANDMETHODS

An overview of the used data sets and the applied method-
ology is provided in Figure 2. In the following, we intro-
duce the data sets, the used data processing techniques,
and the analysis methods.

2.1 Data

Regarding agricultural data, we use the crop and live-
stock data set provided by the UN’s Food and Agriculture
Organization (FAO). The data are present at the national
level from 1961 to 2020 for wheat, maize, and barley (FAO,
2021). We follow previous studies that also used the FAO
(2021) data (FAO, 2021) to analyze the impact of climate
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F IGURE 1 Geographical scope of the study: in green, the top five producers of wheat (left), maize (central), and barley (right) are shown.

F IGURE 2 Method overview.

indicators on crop yields (Frieler et al., 2017; Lobell et al.,
2007; Matiu et al., 2017). We use the crop area data pro-
vided by the European Commission Joint Research Centre
(European Commission JRC, 2017), which includes the
weight ratio ofwheat,maize, and barley areas at 25-kmgrid
resolution for the EU from 1975 to 2017. Data for the miss-
ing years were filled by interpolation and extrapolation of
the nearest value along the time axis. The more compre-
hensive data set improves mean model performance from
an average of 6% to 18% (compare Supporting Information
Table S2). Regarding planting start and harvesting end for
wheat, maize, and barley, we follow the definition by Sacks
et al. (2010). The growing season dates are defined at the
national level around 2000.
For climatological data, we use the fifth generation

of the European Reanalysis 5 (ERA5), provided by the

European Centre for Medium-Range Weather Forecasts
Copernicus Climate Change Service (2019). ERA5 is pro-
duced by combining large amounts of historical observa-
tions into global estimates using advanced modeling and
data assimilation systems (Copernicus Climate Change
Service, 2022a). The climate data are stored on single
levels in a regular latitude–longitude grid with a 30-km
resolution. The selected subregion for our analysis lies
within the boundaries of 31◦North, 30◦East, 35◦South, and
−13◦West. Since crop yield data are provided from 1961
to 2020, the same time frame is chosen for ERA5. ERA5
includes temperature-, precipitation-, and soil moisture–
related data.
In addition to the historical climate data, the global

Climate Model Intercomparison Project 6 (CMIP6) data
combine eight climate projections until 2100 (Copernicus
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Climate Change Service, 2022b). We chose climate pro-
jections from five climate models from 2021 to 2100 to
calculate the average temperature-, precipitation- and
soil-related climate indicators (ECMWF, 2022): (1) Beijing
Climate Center Climate System Model Medium Resolu-
tion (BCC-CSM2-MR), (2) Centre National de Recherches
Meteorologiques Climate Model Version 6 (CNRM-CM6-
1), (3) Australian Community Climate and Earth System
Simulator Climate Model Version 2 (ACCESS-CM2), (4)
Meteorological Research Institute Earth System Model
Version 2.0 (MRI-ESM2-0), and (5) Community Earth Sys-
temModel 2 (CESM2). The models were selected based on
their availability of all three scenarios, SSP1-2.6, SSP2-4.5,
and SSP3-7.0, along with the relevant variables essential
for our analysis. Given the consistency of trends across
all three scenarios (compare Supporting Information
Figure S1), we focus on the strongest trend, SSP3-7.0, in
the subsequent analysis. The global climate projections
follow the SSP3-7.0 (ECMWF, 2022): SSP3 refers to high
socioeconomic mitigation and adaptation challenges
under a projected RCP 7.0. RCP 7.0 refers to a radiative
forcing of 7.0 W⋅m−2 by 2100 and is expected to increase
the global surface temperature by 3.6◦C until 2100 (IPCC,
2021). The projection is a regular latitude–longitude grid
whose nominal resolutions depend on the climate model.
We use that same subregion with the boundaries of
31◦North, 30◦East, 35◦South, and −13◦West.

2.2 Data processing

We calculated the crop yield anomalies for each crop
and country from 1960 to 2020 (FAO, 2021). Technologi-
cal progress has been a dominating factor for crop yields
in the past years, so we detrended the yield to remove the
effect (Levers et al., 2016; Huang et al., 2002). Following a
recent study on crop yield prediction (Vogel et al., 2019),
we applied the Singular Spectrum Analysis (SSA) that
decomposes the crop yield time series and reconstructs the
technological trend (Goljandina et al., 2013).
We selected temperature-, precipitation- and soil

moisture-related climate indicators representing mean
and extreme conditions, as shown in Table 1, based on
existing literature (Vogel et al., 2019; Frieler et al., 2017;
Ray et al., 2015; Beillouin et al., 2020; Lüttger et al.,
2018). We calculated the climate indicators for each crop
and country from 1960 to 2020 based on the ERA5 data
(Copernicus Climate Change Service, 2019), CMIP6 data
(Copernicus Climate Change Service, 2022a), growing
season dates (Sacks et al., 2010), and crop areas (European
Commission JRC, 2017).
The growing season for each crop and country (Sacks

et al., 2010) was defined as the period from the month of

the first planting day to the month of the last harvest day
(compare Supporting Information Table S1). While maize
has only one growing season, Sacks et al. (2010) clearly sug-
gested that wheat is cultivated as a winter crop in France,
Germany, Poland, Spain, and Romania. Barley is primar-
ily grown as a winter crop in Spain and France, while it
serves as a spring crop in Denmark. Since no data were
available for barley and maize in Poland, the crop growing
season from the geographically closest country was cho-
sen. According to Sacks et al. (2010), barley can be a winter
or spring crop in Germany and Poland. According to the
major share of cultivated areas, winter barley dominates
in Germany (BMEL, 2021) and spring barley in Poland
(Statistics Poland, 2021).
The cultivation area for each crop and countrywas deter-

mined based on the data from the European Commission
JRC (2017). The climate data were reprojected to match
the resolution, projection, and region of the crop area data
by nearest neighbor resampling. As suggested by existing
research (Frieler et al., 2017; Ray et al., 2015; Lobell et al.,
2007), each climate indicator was defined for each grid
point and each growing season. We only considered cli-
mate data that fell into the crop-growing season. Then, the
crop-area weighted average of all climate indicators was
taken for each country and each growing season. Only grid
points where the crop is grown were included.

2.3 Random Forest model and 𝑹𝟐 score

The Random Forest regressor (Breiman, 2001) was applied
to predict crop yield anomalies for each crop and coun-
try. We follow previous studies that suggest using Random
Forest to predict crop yields with climate indicators (Vogel
et al., 2019; Beillouin et al., 2020; Feng et al., 2018; Hoffman
et al., 2018; Leng et al., 2020; Jeong et al., 2016). Addition-
ally, we compared the performance of the Random Forest
to other widely used methods of multiple linear regres-
sion (Pedregos et al., 2011) and support vector machine
(Platt, 1999). The results for RandomForest proved to show
higher overall accuracy, which aligns with previous liter-
ature (Vogel et al., 2019; Leng et al., 2020; Jeong et al.,
2016)
We used the 𝑅2 score as a skill metric to estimate the

influence of climate indicators on crop yields. 𝑅2 score or
the coefficient of determination represents the proportion
of variance of climate anomalies that the climate indica-
tors can explain in the Random Forest model. We applied
fivefold cross-validation to ensure the robustness of our
results. Since a negative 𝑅2 score implies that the predicted
crop yields perform worse than taking the average of all
crop yields, only crops and countries with a positive 𝑅2
were considered.
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TABLE 1 Climate indicator overview.

Category Climate indicator Abbreviation Unit Description
Mean temp. Mean temp. mean t2m K Monthly mean temp. during the growing

season
Extr. temp. Min. temp. min t2m K Monthly min. temp. during the growing

season
Extr. temp. Max. temp. max t2m K Monthly max. temp. during the growing

season
Extr. temp. Cold night frequency tn10p Days Number of days with daily min. temp.

below the 10th percentile in a 5-day
window during the growing season

Extr. temp. Warm day frequency tx90p Days Number of days with daily max. temp. over
the 90th percentile in a 5-day window
during the growing season

Mean precip. Mean precip. mean tp mm (day−1) Monthly mean precip. during the growing
season

Extr. precip. Max. 5-day precip. rx5day mm Max. 5-day precip. during the growing
season

Extr. precip. Max. consec. dry days cdd Days Max. number of consecutive days with less
than 1 mm precip. per day

Mean precip. Mean soil moisture (0–7cm) mean swvl1 m3 m−3 Monthly mean soil moisture during
growing

Note: Temp. for temperature, precip. for precipitation, extr. for extreme, min. for minimum, max. for maximium, consec. for consecutive.

The Random Forest was used to estimate the 𝑅2 score,
including all climate indicators. In a second run, only the
mean climate indicators were included in calculating the
𝑅
2 score. As suggested by previous studies (Vogel et al.,

2019; Lei et al., 2017), the difference between the 𝑅2 score
of all climate indicators and the 𝑅2 score of only mean cli-
mate indicators can be interpreted as an indication of the
relative influence of extreme indicators.

2.4 Variable importance and partial
dependence plots

Climate indicator importance is computed as the mean
decrease in impurity (Louppe, 2014) for each crop and
country. We calculate the average importance across all
cross-validation splits. A higher value implies a greater
contribution of the selected variable to the prediction func-
tion. Previous research promoted the ranking of individual
climate indicators according to their relative importance,
in particular, to identify the significance of less studied cli-
mate indicators, such as precipitation extremes and mean
soil moisture (Vogel et al., 2019; Jeong et al., 2016; Beillouin
et al., 2020; Hoffman et al., 2018).
Partial dependence plots visualize the functional rela-

tionship between a predictor variable and the response
variable, marginalizing over the values of all other input
features (Hastie et al., 2008). We calculated the aver-
age partial dependence plot across all cross-validation

splits. Visualizing partial dependence plots helps to under-
stand functional relationships between climate predictors
and crop yields (Vogel et al., 2019; Jeong et al., 2016;
Beillouin et al., 2020) and to discover linear or nonlin-
ear responses between climate indicators and crop yield
anomalies (Hoffman et al., 2018).

3 RESULTS

3.1 Mean and extreme climate
indicators explain, on average, 𝟏𝟖% of the
variance of crop yield anomalies in Europe

Weapplied theRandomForest regressor to predict the crop
yield anomaly. It allowed us to estimate the influence of
changes in climate indicators on crop yields. Not all crop-
growing countries show a significant influence of climate
indicators on crop yield anomalies, as indicated by a nega-
tive 𝑅2 score. The Random Forest model has no predictive
capacity for wheat in France, Poland, and Spain; maize in
Romania, Hungary, and Poland; and Barley in Denmark.
Therefore, these crops and countries were excluded from
further analysis. Averaged over all countries with signifi-
cant relationships, our model explains one-fifth (18%) of
the variance of crop yield anomalies across all crops using
the data from 1961 to 2020 in Europe. The 𝑅2 score ranges
between 2% and 43%, depending on crop and region, as
shown in Figure 3. The most accurate Random Forest
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F IGURE 3 𝑅
2 score all vs. mean climate indicators 1961–2020: (a) explained variance (𝑅2 score) for crop and country based on the

Random Forest model that includes all climate indicators (light blue) and only mean climate indicators (dark blue), 5- to 95-percentile range
of the 𝑅2 score, including all climate indicators highlighted by the gray line; (b) contribution of extreme indicators calculated as the difference
between the 𝑅2 score of the Random Forest model with all climate indicators and only mean climate indicators (red).

model is obtained for maize in France with an 𝑅
2 score

of 43%, followed by barley in Poland with 32%, and barley
in Spain with 31%. On average, maize yield anomalies are
explained by 24%, followed by barley with 22% and wheat
with 3%.

3.2 Extreme climate indicators explain,
on average, 𝟓% of the variance of crop yield
anomalies in Europe

As a next step, we assessed the influence of mean and
extreme climate indicators on crop yield anomalies. There-
fore, we trained the Random Forest regressor considering
all climate indicators and only mean climate indicators.
The difference between the training results indicates the
relative influence of extreme indicators. Only mean cli-
mate indicators predict, on average, 12% of the variance of
crop yield anomalies from 1961 until 2020 in Europe. The
Random Forest model based only on mean climate indica-
tors explains between 5% and 36% of the yield anomalies
depending on the crop and region. The 𝑅2 score decreases
by 5% on average, as shown in Figure 3. Extreme cli-
mate conditions have the largest influences on barley in
Poland and barley in France since the explained variance
decreases by 7% and 3%, respectively. However, Figure 3
indicates that the obtained differences are within the error
bars, which limits the significance of extreme events. In

contrast, extreme climate indicators do not contribute
to a higher 𝑅2 score for wheat in Germany and barley
in Spain.

3.3 Temperature- and soil
moisture–related climate indicators have
the highest predictive capacity for crop
yields

The ranking of climate indicators measured by the mean
decrease in impurity was used to compare the relative
importance of climate indicators. The most important cli-
mate variable for each crop and country is temperature
or soil moisture, as shown in Figure 4. Across all crops
and countries, 42% of the top three climate indicators are
related to temperature, 33% to soil moisture, and 25% to
precipitation. Our analysis suggests that temperature- and
soil moisture–related indicators are more important than
precipitation-related indicators in predicting crop yield.
Only 17% of climate indicators represent extreme climate
indicators, whereas the remaining 83% are mean climate
indicators. Thus, mean climate indicators are more impor-
tant than extreme climate indicators for predicting crop
yields. No single climate indicator explains a fractionmore
than one-third of anomalies in yield across crops and coun-
tries. Mean soil moisture in July obtains the maximum
variance explained with 28%, for wheat in France.
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F IGURE 4 Most important climate indicators 1961–2020: mean decrease in impurity for three most important indicators for each crop
and country where a positive 𝑅2 score is found. The number after the variable name indicates the month in numerical writing (January—01,
etc.).

F IGURE 5 Partial dependence most important climate indicators 1961–2020: partial dependence plots highlight the function
relationship between crop yields and the most important climate indicators for each crop and country, (a) climate indicators related to
temperature and (b) climate indicators related to soil moisture.

3.4 Temperature and soil moisture
extremes can promote and harm crop
yields revealing a nonlinear relationship

Partial dependence plots of the most important climate
indicators visualize the functional relationship with crop
yields and, thus, indicate the correlation between each
climate indicator and crop yields. The partial dependence
plots for each crop and country’s most important climate
indicator are shown in Figure 5. We find negative impacts
on crop yields from increased temperatures for wheat

in Germany, wheat in Romania, and maize in Italy for
June, May, and August, respectively. However, for barley
in France, an increase in temperatures in October is pos-
itively correlated with crop yields. For maize in France in
May, barley in Spain in June, and barley in Poland in July,
dryer upper soil layers decrease crop yields. Excess soil
moisture is also negatively correlated with crop yields, for
example, for barley in Germany in November. Our anal-
ysis also reveals a nonlinear relationship between climate
indicators and crop yields: the partial dependence plots for
temperature and soil moisture show threshold-like values
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F IGURE 6 Climate projections most important climate indicator 2021–2100: projected development of the most important climate
indicator for each crop and country from 2021 until 2100 under SSP3-7.0. The blue line shows the linear trend for each climate indicator.

that lead to a sharp decrease or increase in crop yields
when exceeded, as shown in Figure 5. For example, for
wheat inGermany, crop yields decrease sharply if themean
temperature in June drops below approximately 290.4 𝐾.

3.5 Increased heat and drought stress
under SSP3-7.0 might fuel an increase in
crop losses until 2100

We continue the analysis of the most important climate
indicator for each crop and country by calculating the pro-
jected anomalies from 2020 to 2100 under the SSP3-7.0
scenario. The possible future climate developments allow
us to estimate the influence on crop yields. A positive trend
can be observed in all temperature-related indicators from
2021 to 2100, as shown in Figure 6. Warmer temperatures
imply that crops are exposed to more heat stress in the
future, although warmer temperatures in the fall seasons
could lead to stronger crop growth. Soil moisture–related
indicators tend to decrease until 2100 under scenario SSP3-
7.0, and thus the drought stress to which crops are exposed
might increase.
Table 2 shows the correlations between climate indica-

tors and crop yields derived from the partial dependence
plots, projected future developments of climate indicators,
and their expected impact on crop yields until 2100. Since
temperatures are expected to rise, countries that showed
a negative correlation between warmer temperatures and

crop yields from 1961 to 2020 might experience yield losses
more frequently in the future, for example, wheat in Ger-
many, wheat in Romania, and maize in Italy. In contrast,
increasing temperatures reduce the risk of cold tempera-
tures until 2100 under SSP3-7.0, for instance, for barley
in France in October, and might lead to yield gains. The
most important climate indicator for maize in France,
barley in Spain, and barley in Poland, the mean soil mois-
ture in spring and summer, is negatively correlated with
crop yields. Since the average soil moisture is expected to
decrease until 2100 under SSP3-7.0 and, thus, might fall
below the threshold more often, crop losses could become
more frequent in the future. However, for barley in Ger-
many, the risk of excess soil moisture is decreasing until
2100 under SSP3-7.0 and might lead to yield gains.

4 DISCUSSION

4.1 Crop yield explained by climate
indicators

All climate indicators predict, on average, 18% of the Euro-
pean yield anomalies from 1961 to 2020. Our research
highlights that maize yield anomalies are explained by
24%, followed by barley with 22%, and wheat with 3%. The
explained variances presented here are lower than other
studies: for maize in Europe, Vogel et al. (2019) found an
𝑅
2 score of 47%, Beillouin et al. (2020) of greater than 25%,
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TABLE 2 Expected crop yield impact under SSP3-7.0 for the most important climate indicators of each crop and country.

Crop Country

Climate
indicator
(CI)

CI
condition
1961–2020

Impact on
crop yields
(CY)
1961–2020

Trend in CI
SSP3-7.0
2021–2100

Expected CY
impact under
SSP3-7.0 by
2100

Wheat DE mean t2m
06

Heat Loss Increase Loss

Wheat RO mean t2m
05

Heat Loss Increase Loss

Maize IT mean t2m
08

Heat Loss Increase Loss

Barley FR max t2m 10 Heat Gain Increase Gain
Maize FR mean swvl1

07
Deficit Loss Decrease Loss

Barley ES mean swvl1
05

Deficit Loss Decrease Loss

Barley DE mean swvl1
11

Excess Loss Decrease Gain

Barley PL mean swvl1
06

Deficit Loss Decrease Loss

and Ray et al. (2015) of 41%. For barley in Europe, Beil-
louin et al. (2020) reported an explained variance of 26%.
For winter wheat in Europe, Beillouin et al. (2020) and
Ray et al. (2015) showed that climate indicators can explain
43% and 36% of crop yield anomaly, respectively. However,
research by Vogel et al. (2019) showed that climate indica-
tors only described an insignificant proportion of observed
variations in wheat crop yields, likely due to the compara-
tively long growing season. We show that extreme climate
indicators contribute approximately one-third to crop yield
anomalies across countries, compared to a fraction ofmore
than half reported by Vogel et al. (2019).
The reported explanatory power of climate indicators

also depends on the selected study design andmethod. The
availability of crop yield data at a higher resolution than
the country level could be one explanation for the higher
𝑅
2 scores achieved by other studies (Beillouin et al., 2020;

Ray et al., 2015; Vogel et al., 2019). Our researchneglects the
impact of local climate on crop yields since the FAO (2021)
crop yield data are only available at the national level.
Higher resolution data would also increase the training
data size for each country. Finally, an analysis with sub-
national crop yield data might improve the performance
of the Random Forest model.
Eighty-two percent of anomalies in crop yield across

crops and countries remain unexplained, highlighting the
influence of other factors, such as pests and pathogens,
crop management practices, and socioeconomic circum-
stances that influence crop yield (Beillouin et al., 2020;
Ray et al., 2015; Vogel et al., 2019). Changes in climate
favor large-scale pest and pathogen outbreaks that exac-

erbate yield losses (Gregory et al., 2009; Deutsch et al.,
2018; Bebber et al., 2013). Furthermore, crop manage-
ment, including fertilizer use, tillage, irrigation, and choice
of crop types, can explain another fraction of crop yield
anomaly (Mueller et al., 2012; Smith et al., 2007; Vogel
et al., 2019; Frieler et al., 2017; Hatfield et al., 2015; Olesen
et al., 2011). The inclusion of the factors has been shown
to improve model performance (Juroszek and von Tiede-
mann, 2013). Other economic factors, such as energy and
fertilizer prices, also impact the cultivation of crops (Gobin
et al., 2010; Tokgoz, 2009). Atmospheric gasses, including
CO2 (Deryng et al., 2014) or ozone (Tai, 2017; Emberson
et al., 2018), also interact with crop yields, emphasizing
their inclusion in forthcoming crop growth models.

4.2 Importance of climate indicators for
anomalies in crop yields

We analyzed the three most important climate indica-
tors explaining crop yield anomalies for each crop and
country. Our research emphasizes that 42% of the cli-
mate indicators are related to temperature, 33% to soil
moisture, and 25% to precipitation. Previous studies con-
firm the importance of temperature-related climate indi-
cators: temperature-related indicators correlate stronger
with crop yield anomalies than precipitation-related indi-
cators for spring wheat (Vogel et al., 2019), maize (Vogel
et al., 2019; Lobell et al., 2007), and barley (Lobell et al.,
2007). Furthermore, Beillouin et al. (2020) found that tem-
perature and precipitation explain a higher fraction of
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anomalies in crop yields than soil moisture across crops
in Europe.
Confirming Beillouin et al. (2020), no single mean or

extreme climate indicator alone explains a large fraction
of yield anomaly across crops and countries. This finding
indicates that compound extreme weather events, instead
of single climate indicators, might explain crop losses in
Europe, as shown by previous studies (Beillouin et al.,
2020; Ben-Ari et al., 2018; Kolář et al., 2014).
Vogel et al. (2019), Beillouin et al. (2020), Lüttger et al.

(2018), Hernandez-Barrera et al. (2017), Hlavinka et al.
(2009), and Kristensen et al. (2011) found that unusually
warm and cold temperatures adversely affect wheat and
maize yields across European countries. Our study con-
firms that the relationship exists not only for wheat and
maize across European countries but also for barley. In
addition, we also found that extreme soil moisture values
can harm crop yields.
Our study shows a nonlinear relationship between

Europe’s most important climate indicators related to tem-
perature and soil moisture and crop yields for wheat,
maize, and barley. The finding confirms previous studies
from the United States and Denmark: Troy et al. (2015)
and Schlenker et al. (2009) describe the nonlinear and
threshold-type relationships between precipitation- and
temperature-related climate indicators and crop yields for
the United States. In addition, Kristensen et al. (2011)
found a nonlinear relationship between mean winter tem-
perature and wheat yields in Denmark. Not only do
threshold values for temperature and precipitation lead to
a sharp decrease or increase in crop yields, but also for soil
moisture. However, since our data only include a few sam-
ples for extreme values of each climate indicator, the exact
threshold values have to be investigated in future studies.

4.3 Implications for agricultural
adaptation strategies

Our results highlight that changes in climate indicators
can lead to decreases in crop yields but, under cer-
tain circumstances, also promote crop productivity under
scenario SSP3-7.0 until 2100. According to the Intergov-
ernmental Panel on Climate Change, food security will
increasingly be affected by projected climate change in
the future (Mbow et al., 2019). For example, wheat yields
are expected to decrease in France and Spain under the
future climate projection scenario RCP 8.5 (Ben-Ari et al.,
2018; Hernandez-Barrera et al., 2017). However, farmers
across Europe are already adapting to climate change.
For example, Mbow et al. (2019) and Olesen et al. (2011)
already observed changes in sowing and harvesting dates
in Europe.

Our research underlines the importance of efficient
adaptation strategies for farmers. Since crop management
practices also explain a fraction of anomalies in crop yields,
adaptation strategies have the potential to reduce the cli-
mate risks for crops and improve the resilience of our
food system: crop breeding, including new genetic strate-
gies, provides opportunities for improving crop yields that
are resistant to precipitation, heat waves, other weather
extremes, and shifts in pests and pathogens (Bailey-Serres
et al., 2019;Olesen et al., 2011). Also, selecting themost suit-
able crop type and growing season start for a location can
ensuremore stable crop yields (Hatfield et al., 2015; Olesen
et al., 2011). Several studies showed that irrigation miti-
gates water stress effects and high-temperature extremes
(Frieler et al., 2017; Vogel et al., 2019; Troy et al., 2015).
However, water availability poses a long-term challenge,
particularly in Southern Europe, and thus, increases the
need for more efficient water management systems (Ole-
sen et al., 2011; Iglesias et al., 2015). Besides adaptation
practices, mitigation efforts of the agriculture sector can
also contribute to reducing the climate-induced crop risk
and, thus, ensure food security in the future.

5 CONCLUSION

In this study, we analyzed the historical and future impacts
of mean and extreme climate conditions on wheat, maize,
and barley crop yields in Europe using a Random Forest
model. Our results underline the importance of consid-
ering the impacts of changing mean and extreme climate
conditions on crop production and adapting agriculture to
climate change to meet food demands in the future. The
major conclusions are as follows:

1. Climate indicators, comprising mean and extreme cli-
mate conditions, explain 18% of the variance of crop
yield anomalies across crops and EU countries from
1961 to 2020. Of those, extreme climate indicators con-
tribute, on average, 58% to the variance of crop yield
anomalies.

2. Temperature- and soil moisture–related climate indica-
tors have the highest predictive capacity for crop yields.
Temperature and soil moisture extremes can promote
and harm crop yields.

3. Increased heat and drought stress under SSP3-7.0might
fuel crop losses until 2100.

The insights into the impact of climate change on crop
yields for each crop and country could be helpful for
all stakeholders involved in developing effective adapta-
tion strategies, including farmers, agricultural businesses,
and policymakers.
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A high degree of uncertainty remains in predicting
crop yield anomalies. Thus, studies’ accuracy can be sig-
nificantly increased by developing public high-resolution
subnational geospatial yield data. It could improve the pre-
dicting model performance and provide detailed insights
about regional differences. An analysis of the impact of cli-
mate change on anomalies in crop yield at the local level
would also support more effective decision making for
stakeholders from governmental and private institutions
concerned with agriculture. To further improve predic-
tions, we suggest including factors such as the usage of
pests and pathogens, crop management practices, and
socioeconomic conditions.
Ultimately, future research on the impact of climate

change on anomalies in crop yield provides the founda-
tion for the SDGs to create a sustainable food system that
delivers food security andnutrition for allwithout harming
future generations’ economic, social, and environmental
bases (Nguyen et al., 2018).
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