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Abstract: Over the last decade, flexible alternating current transmission systems (FACTS) have been
crucial in ensuring optimal power distribution within modern power systems. A vital component of
FACTS devices is the distribution static compensator (DSTATCOM), which is essential for maintaining
a reliable power supply. It is commonly used for reactive power compensation, voltage regulation,
and harmonic reduction. Determining the appropriate size and placement of DSTATCOMs is vital to
ensuring their efficiency. This study introduces the improved gray wolf optimizer (I-GWO), a refined
version of the classical gray wolf optimization (GWO) method. The I-GWO incorporates a dimension
learning-based hunting (DLH) strategy to preserve population diversity, balance exploration and
exploitation, and prevent the premature convergence of classical GWO. In this research, the I-GWO
was applied to determine the optimum allocation and sizing of the DSTATCOMs, considering
system constraints, including those presented by the intermittent and stochastic nature of the load
and renewable energy resources, specifically wind and solar energy. The suggested approach was
successfully tested on 33-, 69-, and 85-bus distribution systems and then compared with existing
studies. The results demonstrated the I-GWO-based approach’s superiority in terms of reducing
power losses, improving voltage profiles, and enhancing voltage stability.

Keywords: DSTATCOM; I-GWO; optimization; radial distribution system; power losses; voltage
stability; energy resources; uncertainty; total annual cost savings

1. Introduction

Load growth in distribution systems can lead to increased power losses, a reduced
voltage profile, financial losses for utility companies, and voltage stability problems. Voltage
instability, if not addressed, may eventually lead to system collapse. One solution that has
been proposed is shunt compensation [1,2], which involves using devices such as capacitors
and inductors to balance the reactive power in the system. However, shunt compensation
can also lead to resonance problems.

The distribution static compensator (DSTATCOM) has emerged as a vital solution for
power distribution systems. It was initially designed to address transient anomalies- such
as voltage sags, swells, and other disturbances within the distribution network. Modern
applications have tapped into the DSTATCOM’s steady-state operations capabilities to
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reduce power losses, enhance voltage stability, and improve voltage profiles. Compared
with conventional capacitor compensators, the DSTATCOM offers superior flexibility
by providing lagging and leading reactive power. It responds instantly to disturbances,
delivering rapid voltage regulation and continuous reactive power support. Beyond
these benefits, the DSTATCOM can also mitigate harmonics, elevate overall power quality,
and buttress the system voltage during faults. In contrast to capacitor banks that may
introduce resonance challenges, the DSTATCOM operates without such resonance risks. Its
compact dimensions demand minimal space, and its solid-state composition guarantees
diminished maintenance needs and a prolonged operational lifespan. However, ensuring
that the DSTATCOM is optimally sized and allocated within the radial distribution system
is imperative. Inappropriate size or placement can have negative impacts, potentially
undermining the benefits it offers.

Recently, many algorithms have been developed for the optimum allocation and
sizing of DSTATCOMs in power distribution systems. Most of these algorithms em-
ploy metaheuristic techniques. Such methods are renowned for finding global solutions,
avoiding becoming trapped in local minima, and rapidly searching large solution spaces.
Examples include the differential evolution algorithm (DEA) [3], particle swarm optimiza-
tion (PSO) [4], genetic algorithms (GA) [5], immune algorithm (IA) [6], lightning search
algorithm (LSA) [7], bat algorithm (BA) [8], bacterial foraging optimization algorithm
(BFOA) [9], and cuckoo search algorithm (CSA) [10], as well as the multi-objective sine-
cosine approach (MOSCA) and multi-objective particle swarm optimization (MOPSO),
which are both discussed in Reference [11]. Most existing research does not consider the
presence of renewable energy sources and load fluctuations. These factors introduce inter-
mittency and uncertainty, significantly impacting the load flow of the power system. The
main contributions of this study are:

• Introducing a new method for the optimal allocation and sizing of DSTATCOMs in
radial distribution systems.

• Incorporating the uncertainty associated with load fluctuations and renewable energy
generation into the DSTATCOM allocation and sizing process.

The gray wolf optimizer (GWO) [12] is a metaheuristic bio-inspired algorithm based on
gray wolves’ hunting and leadership hierarchy behavior in their natural environment. This
algorithm incorporates four main decision variables, represented by the roles of the wolves:
alpha (leader of the pack), beta (second-in-command after the leader), delta (third in order),
and omega (the lowest-ranking members of a wolf pack). The efficacy of this approach
has been proven by effectively dealing with a wide array of optimization challenges,
including domains such as engineering design, machine learning, and image processing.
Building on this foundation, a previous study [13] introduced the improved gray wolf
optimizer (I-GWO), an enhanced version of the GWO designed explicitly for solving
global optimization problems and engineering tasks. The I-GWO integrates the dimension
learning-based hunting (DLH) strategy, aiming to address the inherent limitations of the
GWO, such as insufficient population diversity, the lack of balance between exploration
and exploitation, and premature convergence.

In the present paper, the I-GWO algorithm is used to allocate optimally and to size
multiple DSTATCOMs in distribution systems, while considering the uncertainty of load
and renewable resource generation. To demonstrate its efficiency, the approach is tested on
several test systems, including the IEEE-33 bus, IEEE-69 bus, and IEEE-85 radial distribution
systems. Moreover, the developed method is compared with BFOA [9], CSA [10], LSA [7],
MOPSO, and MOSCA [11] to illustrate its superiority in terms of reducing power losses,
improving voltage profiles, and enhancing voltage stability.

The remaining sections of the present paper are structured as follows: Section 2
covers the mathematical formulation and modeling of the problem. Section 3 discusses
the modeling of renewable energy resources. Section 4 details the proposed optimization
method, I-GWO. Section 5 presents the application of I-GWO to the proposed problem.
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In Section 6, the obtained results are presented and analyzed, along with a commentary.
Lastly, our conclusions are presented in Section 7.

2. Problem Formulation
2.1. Modeling of DSTATCOM

In radial distribution systems, each receiving bus is supplied by a single sending bus.
Figure 1 illustrates a section wherein the DSTATCOM is planned to be installed:

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 29 
 

modeling of renewable energy resources. Section 4 details the proposed optimization 
method, I-GWO. Section 5 presents the application of I-GWO to the proposed problem. In 
Section 6, the obtained results are presented and analyzed, along with a commentary. 
Lastly, our conclusions are presented in Section 7. 

2. Problem Formulation 
2.1. Modeling of DSTATCOM 

In radial distribution systems, each receiving bus is supplied by a single sending bus. 
Figure 1 illustrates a section wherein the DSTATCOM is planned to be installed: 

 
Figure 1. Before installing DSTATCOM. 

The voltage value at the receiving node is computed using Kirchhoff’s voltage law 
(KVL), as follows: 

( )1 1 , 1 , 1 , 1 , 1i i i i i i i i i i i iV V r jx Iθ θ δ+ + + + + +∠ = ∠ − + ∠  (1)

where the bus voltages for nodes i  and 1i +  are represented by iV  and 1iV + , and the 
associated phase angles for these nodes are given by iθ  and 1iθ + . , 1i iI +  represents the 
current flowing from node i  to node 1i + , and its phase angle is denoted by , 1i iδ + . The 
resistance and reactance for this branch are indicated by , 1i ir +  and , 1i ix + , respectively. 

After the DSTATCOM installation, the candidate bus’s voltage profile and all other 
buses will change to a new value, as shown in Figure 2. 

 
Figure 2. After installing DSTATCOM. 

Consequently, the updated KVL equation for the compensated bus may be ex-
pressed as follows: 

( )1 1 , 1 , 1 , 1 , 1i i i i i i i i i i i i DSTATV V r jx I Iθ θ δ ψ+ + + + + +′ ′  ∠ = ∠ − + × ∠ + ∠   (2)

The DSTATCOM may generate or consume reactive power but does not contribute 
to active power in steady-state conditions. Consequently, the current injected by the 
DSTATCOM is in quadrature with the voltage of the compensated bus. This relationship 
is illustrated in the Vector Representation of Voltage and Current Phasors shown in Fig-
ure 3. The correlation can also be expressed in the following equation: 

Figure 1. Before installing DSTATCOM.

The voltage value at the receiving node is computed using Kirchhoff’s voltage law
(KVL), as follows:

Vi+1∠θi+1 = Vi∠θi − (ri,i+1 + jxi,i+1)Ii,i+1∠δi,i+1 (1)

where the bus voltages for nodes i and i + 1 are represented by Vi and Vi+1, and the
associated phase angles for these nodes are given by θi and θi+1. Ii,i+1 represents the
current flowing from node i to node i + 1, and its phase angle is denoted by δi,i+1. The
resistance and reactance for this branch are indicated by ri,i+1 and xi,i+1, respectively.

After the DSTATCOM installation, the candidate bus’s voltage profile and all other
buses will change to a new value, as shown in Figure 2.
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Figure 2. After installing DSTATCOM.

Consequently, the updated KVL equation for the compensated bus may be expressed
as follows:

V′ i+1∠θ′ i+1 = Vi∠θi − (ri,i+1 + jxi,i+1)× [Ii,i+1∠δi,i+1 + IDSTAT∠ψ] (2)

The DSTATCOM may generate or consume reactive power but does not contribute
to active power in steady-state conditions. Consequently, the current injected by the
DSTATCOM is in quadrature with the voltage of the compensated bus. This relationship is
illustrated in the Vector Representation of Voltage and Current Phasors shown in Figure 3.
The correlation can also be expressed in the following equation:

ψ = θ′ i,i+1 +
π

2
(3)
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In this study, DSTATCOM is treated as a current source. When the voltage magnitude
of the DSTATCOM is greater than that of the compensated node, the current flows toward
the node. Conversely, if the voltage magnitude of the DSTATCOM is less than the compen-
sated node’s voltage, the current flows in the opposite direction. The expression for the
injected current of the DSTATCOM is expressed as follows:

IDSTAT =

(
−jQDSTAT

VDSTAT

)∗
=

∣∣∣∣QDSTAT
VDSTAT

∣∣∣∣∠θ′ i,i+1 +
π

2
(4)

Assuming the magnitude of the DSTATCOM voltage VDSTAT to be 1.0 p.u., the only
unknown variable in Equation (4) is θ′ i,i+1. Determining its value requires substituting
Equation (4) into Equation (2). After some algebraic manipulations [14], the result is:

X1 =

K1

(
1− C2

∣∣∣QDSTAT
VDSTAT

∣∣∣)+ K2C1

∣∣∣QDSTAT
VDSTAT

∣∣∣(
1 + C2

∣∣∣QDSTAT
VDSTAT

∣∣∣)2
+ C1C2

∣∣∣QDSTAT
VDSTAT

∣∣∣2
× [ 1

V′ i+1

]
(5)

X2 =

K2

(
1 + C2

∣∣∣QDSTAT
VDSTAT

∣∣∣)+ K2C1

∣∣∣QDSTAT
VDSTAT

∣∣∣(
1 + C2

∣∣∣QDSTAT
VDSTAT

∣∣∣)2
+ C1C2

∣∣∣QDSTAT
VDSTAT

∣∣∣2
× [ 1

V′ i+1

]
(6)

where:
K1 = ℜe{V′ i,i+1∠θ′ i,i+1 − (ri,i+1 + jxi,i+1)× I′ i,i+1∠δi,i+1}
K2 = ℑm{V′ i,i+1∠θ′ i,i+1 − (ri,i+1 + jxi,i+1)× I′ i,i+1∠δi,i+1}
C1 = −ri,i+1, C2 = −xi,i+1.
The value of θ′t+1 may be determined by using either Equation (7) or Equation (8).

θ′t+1 = cos−1(X1) (7)

θ′t+1 = sin−1(X2) (8)

2.2. Voltage Stability Index (VSI)

The evaluation of static voltage stability requires the calculation of a significant metric
known as the voltage stability index (VSI), which serves as an appropriate indicator of the
proximity of the power system to voltage collapse. Various techniques exist for calculating
this index, including the VSI-index proposed in [15]. From Figure 1:

(Vi∠θi)
∗ · Ii,i+1 = Pi − jQi (9)
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Based on Equations (9) and (1), we obtain the following:

V2
i −Vi ·Vi−1 +

√(
P2

i + Q2
i
)
·
(

r2
i,i−1 + x2

i,i−1

)
= 0 (10)

The roots of Equation (10) are real if:

V2
i−1 − 4 ·

√(
P2

i + Q2
i
)
·
(

r2
i,i−1 + x2

i,i−1

)
≥ 0 (11)

Using the previous equation, the stability index for the ith bus is derived as follows:

VSIi = V4
i−1 − 4 · (Pixi,i−1 −Qiri,i−1)

2 − 4 · (Piri,i−1 + Qixi,i−1)
2 ·V2

i−1 ≥ 0 (12)

The stability threshold of this index varies from one to zero. The bus with the minimum
value is the one most sensitive to voltage collapse.

2.3. DSTATCOM-Integrated Load Flow Steps

The goal of load flow in a power system is to determine the steady-state voltages,
currents, and power flows in all branches and nodes of the system under a given set of
load and generation conditions. The classical load flow techniques, such as the Newton–
Raphson and Gauss–Seidel methods, are not well-suited for solving load flow problems in
radial distribution systems (RDS), due to the high R/X ratios inherent in these systems. In
contrast, the forward-backward sweep algorithm [16], which is based on the fundamental
principles of Kirchhoff’s laws, can be employed to determine the system’s power flow.

From Figure 1, the current flowing in the branch between nodes i and i + 1 is given by:

Ii,i+1 =
Pi − jQi
Vi∠− δi

(13)

Active and reactive losses within the branch are given by:
Pl(i,i+1) = ri,i+1

(P2
i +Q2

i )
V2

i

Ql(i,i+1) = xi,i+1
(P2

i +Q2
i )

V2
i

(14)

The active and reactive powers at the beginning of the branch are given by:{
Pi = Pi+1 + Pl(i,i+1)
Qi = Qi+1 + Ql(i,i+1)

(15)

Considering Equations (14) and (15):

Ii,i+1 =
Vi∠δi −Vi+1∠δi+1

ri,i+1 + jxi,i+1
=

Pi − jQi
Vi∠− δi

(16)

Separating the real and imaginary parts:{
ViVi+1 cos(δi+1 − δi) = V2

i − (Piri−1,i + Qixi−1,i)
ViVi+1 sin(δi+1 − δi) = Qiri−1,i − Pixi−1,i

(17)

From Equation (17):

Vi+1 =

{
V2

i − 2(Piri+1 + Qixi+1) +
(

r2
i,i+1 + x2

i,i+1

)(P2
i + Q2

i
)

V2
i

}1/2

(18)
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δi+1 = δi + tan−1

{
Qiri,i+1 − Pixi,i+1

V2
i − (Piri,i+1 + Qixi,i+1)

}
(19)

The forward-backward sweep algorithm operates through the following steps:

Step 1: Preparation—Read system data, including the system’s topology, bus characteris-
tics, branch parameters, load consumption values, and DSTATCOM data, along with its
operating constraints.
Step 2: Initialization—Assume a flat voltage profile as the starting point for the initial
voltages and set the first iteration, denoted as k, to 0.
Step 3: Nodal Current Calculation—Calculate the injected current at each load bus i using
the assumed known voltage, with the following equation:

I(k)i = conj

(
PL,i + jQL,i

V(k−1)
i

)
+

(
jBi
2

V(k−1)
i

)
(20)

Bi is the susceptance, where PL,i and QL,i are the active and reactive load demands,

and V(k−1)
i is the bus voltage at the (k− 1)th iteration.

Step 4: Adding Current Injected by the DSTATCOM—For each bus where the DSTATCOM
is connected, calculate the current it injects using Equation (4). Then, add this calculated
current to the previously injected current on the same bus.

I(k)i = I(k)i + IDSTAT (21)

Step 5: Backward Sweep—Starting with the last-ordered branch, the current J(k)i+1 flowing
between the node i and its preceding node i − 1 is determined using the BIBC (branch-
current to bus-current) matrix [16], as follows:

J(k)i,i−1 = [BIBC]×
[

I(k)i

]
(22)

Step 6: Forward Sweep—The node voltages are updated iteratively, starting from the root
bus, in accordance with the following equation:

V(k)
i+1 = V(k)

i − Zi,i+1 J(k)i,i−1 (23)

where Zi,i+1 is the series impedance of branch i, i + 1.

Step 7: Convergence Check—Repeat Step 5 and Step 6 until the difference in voltage
magnitudes between successive iterations at each node falls below a predefined tolerance
limit, as follows:

max(V(k) −V(k−1)) < ε (24)

Step 8: Displaying Results—Using the converged voltages, calculate the branch currents
with Ohm’s and Kirchhoff’s laws. Compute the active power losses in each branch and
sum them to calculate the total losses.

3. Renewable Energy Resource Modeling

The increasing usage of renewable energy sources (RESs) in modern power systems
introduces several challenges, due to the uncertainty of these sources [17,18]. The RESs can
work in standalone mode, grid-connected mode, microgrid mode, etc. [17,18].



Appl. Sci. 2024, 14, 556 7 of 27

3.1. Wind Power Generators

Unlike traditional generators, the output of wind power generators (WPG) is unpre-
dictable because of fluctuations in wind energy. Such randomness in the production of
WPG contributes to uncertainties in power flows and losses [17]. The power output, de-
noted by Pwt can be mathematically expressed as a function of wind speed in the following
way [17]:

Pwt(vs) =


0, i f vs < vcut−in or vs > vcut−out

Prated
wt ×

(
vs−vcut−in

vrated−vcut−in

)
, i f vcut−in ≤ vs ≤ vrated

Prated
wt , i f vrated ≤ vs ≤ vcut−out

(25)

where Prated
wt is the rated power of the installed WPG in (MW), vs is the wind speed, vrated

is the rated speed (m/s), vcut−in is the lowest wind speed at which the WPG will begin to
generate power, and vcut−out is the maximum wind speed at which a WPG is designed to
operate safely. When the wind speed vs is within the range of vcut−in and vrated, the power
output of the WPG increases linearly as the wind speed increases.

3.2. Solar Power Generators

Unlike wind power, solar power generators (SPG) rely on the availability and intensity
of sunlight, which varies throughout the day and is influenced by weather conditions
and geographical location. This inconsistency in solar irradiance gives rise to variations
in power output, affecting power flows, stability, and power losses in the distribution
system. The power delivered by SPG, denoted by Ppv, can be mathematically formulated
as a function of solar irradiation, as follows [17]:

Ppv(Gs) =

 Prated
pv ×

(
G2

s
GstdRc

)
i f 0 < Gs < Rc

Prated
pv ×

(
Gs

Gstd

)
i f Gs ≥ Rc

(26)

where Prated
pv is the rated power of the installed SPG in (MW), Gs is the solar irradiation in

W/m2, Gstd is the standard solar irradiance, and Rc is the irradiation threshold.

3.3. Fast Scenario Reduction Method

The data used in this work, including load levels, solar irradiance, and wind speed, are
presented in Figures 4–6 and are sourced from Reference [18]. This dataset contains hourly
values for an entire year, resulting in 8760 data points for each variable. Figure 7 presents a
focused view of the data, illustrating the variations recorded over a single day. Handling
such a large volume of data presents numerous challenges [18], and scenario reduction is
one of the techniques employed to deal with this complexity. Among the various reduction
methods available, the fast scenario reduction (FSR) method [19] is chosen in this paper for
its efficiency, reliability, and ability to select a smaller set of representative scenarios from a
large set while preserving the original set’s statistical properties. The procedure of the FSR
technique can be expressed in terms of the following steps, with the goal of reducing the
number of scenarios from Ns to N∗s .
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Step 1: Scenario Generation—Start by generating a large set of scenarios using methods
like Monte Carlo simulations, historical data, or other suitable techniques. Organize
these scenarios into a matrix, denoted as S, where each row si represents a scenario
containing the loading level LLi, the irradiance Gi, and the wind speed vi, as follows:



Appl. Sci. 2024, 14, 556 9 of 27

S =



LL1 G1 v1
...

...
...

LLi Gi vi
...

...
...

LLNs GNs vNs


← s1

← si

← sNs

(27)

Step 2: Additionally, initialize the probability of each scenario to τi = 1/Ns, where Ns
represents the total number of scenarios.

Step 3: Distance Calculation—Calculate distances between each pair of scenarios si and sj,
using an appropriate measure to form a distance matrix. In this paper, the Euclidean
distance with the 2-norm is adopted, and can be expressed as follows:

d(si, sj) =
√(

Li − Lj
)2

+
(
Gi − Gj

)2
+
(
Gi − Gj

)2 (28)

Step 4: Scenarios Merging—Identify the pair of scenarios si and sj that have the smallest
Euclidean distance, as calculated in Step 2. Merge these two scenarios into a
single representative scenario, often by taking the weighted average, based on their
probabilities. The new scenario’s values for loading, irradiance, and wind speed
can be computed as:


LLnew =

(
LLi + LLj

)
/2

Gnew =
(
Gi + Gj

)
/2

vnew =
(
vi + vj

)
/2

(29)

Also, update the probability of the merged scenario τnew = τi + τj and decrease the
number of scenarios Ns by 1.

Step 5: Termination Check—Determine if the stopping criterion has been met (e.g., by
reaching a predefined tolerance level or desired number of scenarios N∗s ); otherwise,
return to Step 2.
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In this paper, the scenario reduction process is applied to a timescale representing
the total number of hours in a year, resulting in an initial set of Ns = 8760 scenarios. The
chosen number of reduced scenarios, after applying the FSR method, is N∗s = 15. Table 1
presents the obtained scenarios, including specific details for each scenario s such as the
loading level, solar irradiance, wind speed, and their corresponding probabilities (τs).
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Table 1. Summary of reduced scenarios and probabilities.

Scenario Loading Level
(%)

Solar Irradiance
(W/m2)

Wind Speed
(m/s)

Probability
τs

1 93.310 18 5.8 0.044
2 96.237 770 13.8 0.037
3 101.527 366 6.9 0.034
4 96.254 955 10.4 0.041
5 101.270 190 11.5 0.040
6 100.379 555 6.9 0.029
7 85.263 1 6.9 0.258
8 101.718 91 6.9 0.062
9 101.425 859 10.4 0.044
10 103.318 664 9.2 0.037
11 103.181 460 10.4 0.037
12 102.005 269 10.4 0.039
13 93.310 18 5.8 0.044
14 96.237 770 13.8 0.037
15 101.527 366 6.9 0.034

4. Improved Gray Wolf Optimization

The GWO method involves an optimization algorithm that takes inspiration from the
structure and hunting behavior of wolves in nature [12,20,21]. In this algorithm, packs of
wolves represent solutions to an optimization problem. It mimics the roles of dominant
wolves (alpha, beta, and delta) in guiding the hunt, while the remaining wolves play the
role of omegas. As the iterations progress, these wolves adjust their positions based on the
guidance provided by the others, eventually leading to near-optimal solutions. GWO is
particularly effective in exploring problems ranging from engineering design to biology.

Figure 8 illustrates the hunting strategy of gray wolves. This encircling action can be
simulated using the following equations:

→
X(t + 1) =

→
Xp(t)−

→
A ·
∣∣∣∣→C →Xp(t)−

→
X
∣∣∣∣ (30)

→
A = 2

→
a × rand1 −

→
a (31)

→
C = 2× rand2 (32)

Here,
→
X is the position vector of the prey,

→
Xp is the position vector of a gray wolf,

→
A and

→
C

are coefficient vectors, and rand1, rand2 are random values in [0, 1]. The variable
→
a linearly

decreases as the algorithm progresses through iterations, as follows:

→
a = 2− t/tmax (33)

where t represents the current iteration and tmax represents the maximum number of
iterations. It is worth mentioning that every mega wolf needs to simultaneously adjust its
position in relation to the alpha, beta, and delta wolves, as described below:

→
Dα =

∣∣∣∣→C1
→
Xα(t)−

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2
→
Xβ(t)−

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3
→
Xδ(t)−

→
X
∣∣∣∣

(34)
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→
X1 =

→
Xα −

→
A1 ·

( →
Dα

)
→
X2 =

→
Xβ −

→
A2 ·

( →
Dβ

)
→
X3 =

→
Xδ −

→
A3 ·

(→
Dδ

) (35)

→
X(t + 1) =

(→
X1 +

→
X2 +

→
X3

)
/3 (36)
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It is noteworthy that both exploration and exploitation play vital roles in metaheuristic
algorithms. GWO seeks to strike a balance between these two phases. In GWO, the value of
→
a decreases with each iteration from 2 to 0, as represented by Equation (33). Concurrently,

the
→
A value is also reduced by

→
a , as demonstrated by Equation (31). For a gray wolf,

trying to minimize the
→
A value holds significance. When

→
|A| is less than 1, it prompts the

wolves to attack the prey. Conversely, when
→
|A| is greater than 1, the wolves attempt to

seek other prey. This behavior exemplifies the principles of exploration and exploitation.
In a previous study [13], the improved gray wolf optimizer (I-GWO) was introduced as
an enhanced version of the GWO for global optimization and engineering tasks. The
I-GWO incorporates the dimension learning-based hunting (DLH) strategy to overcome
the limitations of GWO, such as a lack of population diversity, the exploitation–exploration
imbalance, and premature convergence. When evaluated against benchmark tests, the
I-GWO algorithm was found to be competitive, frequently outperforming other algorithms
in terms of efficiency and applicability. For more details about the method, refer to [13].
The main code for I-GWO is hosted on MathWorks and can be accessed from the following
link [22].

5. Application of I-GWO to the Proposed Problem
5.1. Problem Formulation

The objective of the DSTATCOM placement and sizing problem considered in this
paper is the maximization of TACS while enhancing the voltage profile.
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The investment cost of the DSTATCOM per year [23] is computed as below:

ICDyear = CD
(1 + B)n × B
(1 + B)n − 1

(37)

where CD is the cost of the DSTATCOM, B is the rate of return, and n is the lifetime of the
DSTATCOM in years. In this paper: CD = 50$/kVAr, n = 1, and B = 0.1.

To calculate the total annual cost savings (TACS) [23], the overall energy loss costs
before and after the installation of the DSTATCOM must be considered, as follows:

TACS = KP

(
T × PBe f ore

TLoss

)
− KP

(
T × PA f ter

TLoss

)
−
(

ICDyear
)

(38)

where KP is the energy cost of losses and is given a value of 0.06 $/kWh. T is the annual
number of hours, equivalent to 8760 h annually, PBe f ore

TLoss and PA f ter
TLoss are the total active losses

before and after installing the DSTATCOM, respectively. The TACS in the per-unit system
can be expressed as follows:

TACS(p.u.) =
TACS

KP

(
T × PBe f ore

TLoss

) (39)

The total power losses PTLoss in the distribution system can be determined using the
following formula [11]:

PTLoss = ∑
i∈ℵbus

∑
j∈ℵbus

[
αik
(

PiPk + QiQj
)
+ βik

(
QiPk − PiQj

)]
(40)

where Pi and Qi are the active and reactive power injected at bus i, ℵbus is the set of system
buses, and αik, βik can be calculated as follows:

αik =
rik

ViVk
cos(θi − θk) (41)

βik =
rik

ViVk
sin(θi − θk) (42)

Thus, the objective function can be defined as:

max Fobj = κ × TACS(p.u.)︸ ︷︷ ︸ −(1− κ)×VD︸ ︷︷ ︸
(1) (2)

(43)

where κ is a weighting factor selected from the range [0, 1] in a manner that ensures that the
voltage profile remains within an acceptable range (±5%) and VD, the voltage deviation,
can be calculated as follows:

VD = ∑
i∈ℵbus

|1−Vi| (44)

• The first term in Equation (43) aims to maximize the TACS by minimizing both power
loss costs and DSTATCOMs costs.

• The second term in Equation (43) aims to improve the voltage profile by reducing the
voltage deviation VD.

This problem is subject to the following equality and inequality constraints:

1. Power Flow Equations: The net active and reactive powers must be equal to zero, and
the node voltage equation must be satisfied at each bus:

Pi = Pi−1 − PL.i − ri−1,i

(
P2

i−1 + Q2
i−1

)
/|Vi−1|2 ∀i ∈ ℵbus (45)
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Qi = Qi−1 −QL,i − xi−1,i

(
P2

i−1 + Q2
i−1

)
/|Vi−1|2 ∀i ∈ ℵbus (46)

V2
i = Vi ·Vi−1 +

√(
P2

i + Q2
i
)
·
(

r2
i,i−1 + x2

i,i−1

)
∀i ∈ ℵbus (47)

2. Branch flow limits: The current in each branch of the distribution system must not
surpass the maximum permissible current limit Imax, as expressed by:

∣∣Ii,j
∣∣ ≤ Imax

i,j ∀i, j ∈ ℵbranch (48)

5.2. Constraint Handling

For the first equality constraint, the convergence of the backward-forward load flow
implies that this constraint is satisfied. In contrast, the penalty function method used in [24]
is employed in this study to deal with inequality constraints (Equation (48)) as follows:

FPenalized
obj = Fobj − ∑

i,j∈ℵbranch

Ks

(
Ii,j − Ilim

i,j

)2
(49)

Vlim
i and Ilim

i,j are described as:

Ilim
i,j =


Imax
i,j i f Ii,j > Imax

i,j
Imin
i,j i f Ii,j < Imin

i,j
Ii,j i f Imin

i,j ≤ Ii,j ≤ Imax
i,j

(50)

Ks is a penalty factor. In this paper, it has been set to 10,000.

5.3. Algorithm Steps

The solution process using the proposed method, which is designed for offline imple-
mentation, can be outlined as follows:

Step 1: Initialization—Generate an initial population of gray wolves (solutions). Each
individual (wolf) corresponds to the location and size of the DSTATCOM within
the power network, as illustrated in Figure 9.
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Step 2: Evaluation—Execute the load flow analysis using the forward-backward sweep
algorithm for each search agent (wolf). Obtain the active power losses and then
calculate the fitness of each wolf in the population using Equation (49).

Step 3: Wolf Ranking—The wolves are sorted based on their fitness levels. From this
ranking, the top three wolves are identified. The fittest wolf is designated as
the alpha (α), followed by the beta (β) as the second-fittest, and the delta (δ) as
the third-fittest. All other wolves in the ranking after these three are considered
omegas (ω).

Step 4: Position Updating—Update the positions of the beta and delta wolves relative to
the alpha wolf using Equation (35) for approaching and attacking. The omegas
update their positions in relation to all three dominant wolves (alpha, beta, and
delta), according to Equation (36).

Step 5: Convergence Check—Calculate the fitness of all wolves using Equation (49), then
update their positions. Check if a stopping criterion is met, such as a maximum
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number of iterations, a minimum error requirement, or another convergence indi-
cator. If the stopping criterion is not satisfied, return to Step 2, and continue the
iterations.

Step 6: Solution Extraction—Once convergence is achieved or the stopping criterion is
met, the alpha wolf’s position represents the optimal solution (or a near-optimal
solution) to the problem.

6. Simulation Results and Discussion

The efficacy of the proposed approach was verified and then tested on standard IEEE
33-bus, 69-bus, and 85-bus test networks. The proposed I-GWO algorithm was coded in
MATLAB 9.11 and executed on an Intel Core i7-8700K (3.7 GHz, 32 GB RAM) with Microsoft
Windows 11 installed. As discussed earlier, the backward/forward sweep technique was
employed for load flow calculations. The parameters utilized in the simulation for the three
test systems can be found in Table 2.

Table 2. Parameters in the I-GWO method.

Test System 33-Bus 69-Bus 85-Bus

Number of DSTATCOMs Single Two Three Single Two Three Single Two Three

Population Size 100 200 400 200 500 800 400 800 1000
Max Iterations of I-GWO 500 1000 2000 500 1000 2000 500 1000 2000

→
a Range [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2]

Max Iteration of Load Flow 50 50 50 50 50 50 50 50 50
Tolerance of Load Flow 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

Two scenarios were considered for each tested system for the optimal allocation and
sizing of DSTATCOMs:

• Scenario (1): This scenario did not consider the presence of renewable generations and
assumed a fixed load demand.

• Scenario (2): This scenario considered the presence of renewable energies located at
predefined positions, also considering uncertain generation and load uncertainty.

6.1. Scenario (1)
6.1.1. The 33-Bus Test System

The first tested network was a 33-bus radial distribution system with 33 buses and
32 branches [25]. It operated at a base voltage of 12.66 kV, with an apparent base power of
10 MVA. Without compensation, precisely without the DSTATCOM installation in the RDS,
the active power loss was 202.68 kW, costing 106,526.61 USD/year. The minimum voltage
and VSI values were 0.91309 and 0.69511 p.u., respectively. Detailed system data can be
found in the Appendix A.

Table 3 presents the optimization results for three cases: the insertion of single, two,
and three DSTATCOMs. The optimal locations and sizes of the DSTATCOMs were deter-
mined using the I-GWO algorithm. The table shows that active power losses decreased
in all three cases. Additionally, the minimum voltage increased, and the voltage stability
index improved. The results show that the case with two DSTATCOMs offered the highest
TACS compared to the other two cases. This suggests that there is an optimal number of
DSTATCOM installations for the modeled distribution system that maximizes cost sav-
ings. Installing either fewer or more DSTATCOMs than this optimal number results in a
diminished return on investment.

In the case of two DSTATCOMs, the proposed algorithm determined the optimal sizes
to be 699.58 kVAr and 1386.89 kVAr. These were to be installed on buses 14 and 30, re-
spectively. With this configuration, there was a total cost saving of USD 19,654.05 per year.
Additionally, the total power losses were measured at 144.23 kW, equating to a significant
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reduction of 28.84% compared to the base case. It is also worth highlighting the improve-
ment in the voltage profile of the test system, as illustrated in Figure 10. Specifically, the
minimum voltage level was enhanced from 0.91309, as observed in the base case, to 0.95184
with the two DSTATCOMs in place, while the maximum voltage level remained at 1.0 p.u.
at the source bus.

Table 3. Results for the IEEE 33-bus system.

Outputs Base Case
Number of DSTATCOMs

Single Two Three

Optimal size (kVAr) and location 1850.00 (30) 699.58 (14)
1386.89 (30)

953.38 (7)
477.22 (14)

1044.78 (30)
Ploss (kW) 202.68 153.27 144.23 141.31

% Reduction in Ploss 24.37 28.84 30.28
Vmin (p.u.) 0.91309 0.93031 0.95184 0.95324

VSImin (p.u.) 0.69511 0.74904 0.82083 0.82567
Cost of loss (USD/yr) 106,526.61 80,561.00 75,806.05 74,275.08

Cost of DSTATCOMs (USD/yr) 9812.33 11,066.52 13,129.36
TACS (USD/yr) 16,153.27 19,654.05 19,121.17
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6.1.2. IEEE 69-Bus Test System

The efficacy of the I-GWO algorithm was further tested on a medium-scale radial
distribution system, specifically, the IEEE 69-bus system [26]. The capacity base for this
system was set at 1 MVA, while its voltage base was 12.66 kV. The data for the system were
obtained from [27] and can be found in Appendix B. This test system carried a total load of
3.80 MW and 2.69 MVAR. The total losses amounted to 224.99 kW, which translated to an
annual cost of 118,254.41 USD/year. Notably, the minimum voltage was observed to be
0.90919 p.u. at bus 65, and the maximum voltage was 1.0 p.u. at the source bus.

Table 4 indicates that in the case with two DSTATCOMs installed, the TACS amounts
to USD 26,683.72 per year, which is superior to the other cases. The minimum voltage
increased to 0.95144 at bus 65, as observed in Figure 11. Additionally, power losses were
reduced to 153.73 kW, representing a 31.67% reduction compared to the base case.
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Table 4. Results for the IEEE 69-bus system.

Outputs Base Case
Number of DSTATCOMs

Single Two Three

Optimal size (kVAr) and location 1850 (61) 556.34 (17)
1474.55 (61)

820.24 (9)
500.03 (17)

1351.73 (61)
Ploss (kW) 224.99 158.49 153.73 154.12

% Reduction in Ploss 29.56 31.67 31.50
Vmin (p.u.) 0.90919 0.93665 0.95144 0.95219

VSImin (p.u.) 0.68331 0.76968 0.81947 0.82205
Cost of loss (USD/yr) 118,254.41 83,301.84 80,798.93 81,006.31

Cost of DSTATCOMs (USD/yr) 9812.33 10,771.76 14,172.17
TACS (USD/yr) 25,140.24 26,683.72 23,075.93
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6.1.3. IEEE 85-Bus Test System

The 85-bus test case employed a radial distribution system consisting of a main feeder,
four sub-feeders (laterals), and 13 sub-laterals. The data for the system were obtained
from [27] and can be found in the Appendix C. The total load of the system was 2574.3 kW
and 2622.6 kVAr.

For the 85-bus radial distribution system case, as detailed in Table 5, installing three
DSTATCOMs at buses 8, 34, and 67 resulted in the most cost-effective outcome, realizing
an annual profit of USD 47,212.50. This optimal configuration substantially reduced the
total losses to 190.51 kW, marking a decline of 39.75% compared to the base case. As
illustrated in Figure 12, the voltage profile improved significantly, along with the economic
advantages and loss reductions, with the minimum voltage level elevated to 0.95304 p.u.,
while maintaining the maximum voltage level of 1.0 p.u. at the source bus. The convergence
behavior of the I-GWO algorithm for the three test systems is depicted in Figure 13.

Table 5. Results for the IEEE 85-bus system.

Outputs Base Case
Number of DSTATCOMs

Single Two Three

Optimal size (kVAr) and location 2150 (32) 2150.00 (9)
1286.23 (32)

1929.15 (8)
896.70 (34)
727.25 (67)

Ploss (kW) 316.19 229.11 200.08 190.51
% Reduction in Ploss 32.12 36.72 39.75

Vmin (p.u.) 0.87129 0.93176 0.95219 0.95304
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Table 5. Cont.

Outputs Base Case
Number of DSTATCOMs

Single Two Three

VSImin (p.u.) 0.57631 0.75373 0.82171 0.82499
Cost of loss (USD/yr) 166,189.63 120,419.81 105,163.24 100,131.51

Cost of DSTATCOMs (USD/yr) 11,403.52 18,225.65 18,845.46
TACS (USD/yr) 34,366.30 42,800.74 47,212.50
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6.2. Scenario (2)

In this scenario, the RES were located at predefined locations, and both generation and
load were uncertain. Data for the RES and their locations for each study case are provided
in the Appendices. In this paper, the scenario reduction process was applied using the
FSR method, as discussed in the previous section, to reduce the number of wind and solar
generation scenarios and loading levels to 15. Subsequently, the proposed I-GWO method
was used to find the optimal location and sizing of the DSTATCOMs, considering all these
15 scenarios.

Table 6 presents the main results obtained—such as power losses, minimum voltage,
VSI, cost of loss, cost of DSTATCOMs, and TACS—for each study case, using the developed
I-GWO method. For these cases, the number of DSTATCOMs selected was 2 for both the
33-bus and 69-bus test systems, and 3 for the 85-bus test system. Within Table 6, each study
case is represented by two columns: the first column shows metrics before the installation
of DSTATCOMs, and the second column displays metrics after their installation.
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Table 6. Effects of DSTATCOMs in the presence of renewable generation and load uncertainty.

Outputs

33-Bus 69-Bus 85-Bus

Without
DSTATCOMs

With
DSTATCOMs

Without
DSTATCOMs

With
DSTATCOMs

Without
DSTATCOMs

With
DSTATCOMs

Optimal size (kVAr) and
location

696.15 (11)
1309.73 (30)

653.78 (17)
1459.28 (61)

1133.36 (9)
1073.75 (32)
468.16 (68)

Ploss (kW) 135.84 55.17 124.08 48.74 171.75 64.66
% Reduction in Ploss 59.39 58.18 62.35

Vmin (p.u.) 0.91109 0.95211 0.92155 0.95195 0.89245 0.95098
VSImin (p.u.) 0.68904 0.81178 0.72124 0.81493 0.63436 0.79202

Cost of loss (USD/yr) 71,396.33 48,123.80 65,214.82 32,567.67 90,271.13 37,289.27
Cost of DSTATCOMs

(USD/yr) 10,639.09 11,207.57 14,189.55

TACS (USD/yr) 12,633.44 17,472.80 38,792.32

As illustrated, Table 6 reveals the significant impact of DSTATCOMs on reducing
power losses across the IEEE 33-bus, 69-bus, and 85-bus systems. Specifically, for the
33-bus system, power losses were reduced from 135.84 to 55.17, achieving a reduction
of 59.39% after installing 2 DSTATCOMs. The 69-bus system experienced a decrease in
losses from 124.08 kW to 48.74 kW, translating to a 58.18% reduction with the installation
of 2 DSTATCOMs. Lastly, the 85-bus system saw its power losses decline from 171.75 kW
to 64.66 kW, amounting to a 62.35% reduction upon the integration of 3 DSTATCOMs.
These reductions signify the pivotal role that DSTATCOMs play in enhancing the overall
efficiency and reliability of radial distribution systems.

Figures 14–16 present heatmaps that visualize voltage profiles for the three test sys-
tems, namely, 33-bus, 65-bus, and 85-bus, in the presence of renewable energies and load
uncertainty. Before the installation of DSTATCOMs, these heatmaps partially display red
areas that are indicative of low voltage levels below 0.95 p.u. Following the application
of the proposed IGWO method for DSTATCOM sizing and placement, a noticeable shift
to green can be observed in these figures. This color change signifies improved voltage
levels, closer to 1 per unit, across all 15 scenarios. The transition clearly emphasizes the ef-
fectiveness of the optimal allocation and sizing of DSTATCOMs using the proposed IGWO
method, in terms of improving voltage levels. The optimal locations for DSTATCOMs in
the tree test systems are illustrated in the one-line diagrams found in Appendix D.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 29 
 

These reductions signify the pivotal role that DSTATCOMs play in enhancing the overall 
efficiency and reliability of radial distribution systems.  

Table 6. Effects of DSTATCOMs in the presence of renewable generation and load uncertainty. 

Outputs 
33-Bus 69-Bus 85-Bus 

Without 
DSTATCOMs 

With 
DSTATCOMs

Without 
DSTATCOMs 

With 
DSTATCOMs

Without 
DSTATCOMs 

With 
DSTATCOMs 

Optimal size (kVAr) 
and location 

  696.15 (11) 
1309.73 (30) 

 653.78 (17) 
1459.28 (61) 

 
1133.36 (9) 
1073.75 (32) 
468.16 (68) 

Ploss (kW) 135.84 55.17 124.08 48.74 171.75 64.66 
% Reduction in Ploss  59.39  58.18  62.35 

Vmin (p.u.) 0.91109 0.95211 0.92155 0.95195 0.89245 0.95098 
VSImin (p.u.) 0.68904 0.81178 0.72124 0.81493 0.63436 0.79202 

Cost of loss (USD/yr) 71,396.33 48,123.80 65,214.82 32,567.67 90,271.13 37,289.27 
Cost of DSTATCOMs 

(USD/yr) 
 10,639.09  11,207.57  14,189.55 

TACS (USD/yr)  12,633.44  17,472.80  38,792.32 
 
Figures 14–16 present heatmaps that visualize voltage profiles for the three test 

systems, namely, 33-bus, 65-bus, and 85-bus, in the presence of renewable energies and 
load uncertainty. Before the installation of DSTATCOMs, these heatmaps partially dis-
play red areas that are indicative of low voltage levels below 0.95 p.u. Following the ap-
plication of the proposed IGWO method for DSTATCOM sizing and placement, a no-
ticeable shift to green can be observed in these figures. This color change signifies im-
proved voltage levels, closer to 1 per unit, across all 15 scenarios. The transition clearly 
emphasizes the effectiveness of the optimal allocation and sizing of DSTATCOMs using 
the proposed IGWO method, in terms of improving voltage levels. The optimal locations 
for DSTATCOMs in the tree test systems are illustrated in the one-line diagrams found in 
Appendix D. 

 

 
 

(a) (b) 

Figure 14. (a) Voltage profile for the IEEE 33-bus network without DSTATCOMs; (b) voltage pro-
file for the IEEE 33-bus network with DSTATCOMs. 

Figure 14. (a) Voltage profile for the IEEE 33-bus network without DSTATCOMs; (b) voltage profile
for the IEEE 33-bus network with DSTATCOMs.



Appl. Sci. 2024, 14, 556 19 of 27
Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 29 
 

 
 

(a) (b) 

Figure 15. (a) Voltage profile for the IEEE 69-bus network without DSTATCOMs; (b) voltage pro-
file for the IEEE 69-bus network with DSTATCOMs. 

  
(a) (b) 

Figure 16. (a) Voltage profile for the IEEE 85-bus network without DSTATCOMs; (b) voltage pro-
file for the IEEE 85-bus network with DSTATCOMs. 

6.3. Comparative Analysis 
The effectiveness of the proposed approach for the optimal sizing and allocation of 

DSTATCOMs in RDS is demonstrated through a comparison with other algorithms such 
as LSA [7], BFOA [9], CSA [10], MOSCA, and MOPSO, both from Reference [11]. All 
methodologies were assessed using the IEEE 33-bus and IEEE 69-bus systems based on 
installing three DSTATCOMs for a fair and consistent comparison. Notably, no method 
was identified in the literature reviewed that used the IEEE 85-bus test system. Each 
technique from the literature was aimed at the common objective of minimizing active 
power losses. It is important to mention that this comparison with these literature 
methods does not consider the presence of renewable generation sources and assumes a 
fixed load demand. 

Figure 15. (a) Voltage profile for the IEEE 69-bus network without DSTATCOMs; (b) voltage profile
for the IEEE 69-bus network with DSTATCOMs.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 29 
 

 
 

(a) (b) 

Figure 15. (a) Voltage profile for the IEEE 69-bus network without DSTATCOMs; (b) voltage pro-
file for the IEEE 69-bus network with DSTATCOMs. 

  
(a) (b) 

Figure 16. (a) Voltage profile for the IEEE 85-bus network without DSTATCOMs; (b) voltage pro-
file for the IEEE 85-bus network with DSTATCOMs. 

6.3. Comparative Analysis 
The effectiveness of the proposed approach for the optimal sizing and allocation of 

DSTATCOMs in RDS is demonstrated through a comparison with other algorithms such 
as LSA [7], BFOA [9], CSA [10], MOSCA, and MOPSO, both from Reference [11]. All 
methodologies were assessed using the IEEE 33-bus and IEEE 69-bus systems based on 
installing three DSTATCOMs for a fair and consistent comparison. Notably, no method 
was identified in the literature reviewed that used the IEEE 85-bus test system. Each 
technique from the literature was aimed at the common objective of minimizing active 
power losses. It is important to mention that this comparison with these literature 
methods does not consider the presence of renewable generation sources and assumes a 
fixed load demand. 

Figure 16. (a) Voltage profile for the IEEE 85-bus network without DSTATCOMs; (b) voltage profile
for the IEEE 85-bus network with DSTATCOMs.

6.3. Comparative Analysis

The effectiveness of the proposed approach for the optimal sizing and allocation of
DSTATCOMs in RDS is demonstrated through a comparison with other algorithms such
as LSA [7], BFOA [9], CSA [10], MOSCA, and MOPSO, both from Reference [11]. All
methodologies were assessed using the IEEE 33-bus and IEEE 69-bus systems based on
installing three DSTATCOMs for a fair and consistent comparison. Notably, no method was
identified in the literature reviewed that used the IEEE 85-bus test system. Each technique
from the literature was aimed at the common objective of minimizing active power losses.
It is important to mention that this comparison with these literature methods does not
consider the presence of renewable generation sources and assumes a fixed load demand.

Tables 7 and 8 indicate that the proposed method outperforms the other techniques
in terms of active power loss minimization, enhancement of voltage profiles, and voltage
stability.
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Table 7. Comparison of results with existing methods in the case of an IEEE 33-bus system.

Outputs BFOA
[9]

MOPSO
[11]

LSA
[7] MOSCA [11] Proposed

Approach

Optimal size
(kVAr) and

location

632.00 (12)
487.00 (28)
550.00 (31)

679.21 (16)
549.50 (29)
722.03 (30)

341 (14)
516 (24)

1013 (30)

733.41 (8)
410.26 (16)

1029.04 (30)

400.72 (13)
554.87 (24)

1089.27 (30)
Ploss (kW) 144.38 152.44 138.35 150.27 132.16
Vmin (p.u.) 0.92400 0.95120 0.93010 0.9517 0.93774

VSImin (p.u.) 0.72280 0.81600 0.74230 0.81900 0.77327

Table 8. Comparison of the results with existing methods in the case of an IEEE 69-bus system.

Outputs CSA
[10]

MOPSO
[11]

LSA
[7]

MOSCA
[11]

Proposed
Approach

Optimal size
(kVAr) and

location

350.00 (25)
230.00 (18)

1170.00 (61)

906.40 (53)
846.50 (56)

1135.30 (62)

374.00 (11)
240.00 (18)

1217.00 (61)

226.60 (25)
1078.70 (62)
226.60 (63)

632.06 (9)
281.50 (19)

1149.94 (61)
Ploss (kW) 158.85 159.42 145.16 158.75 146.02
Vmin (p.u.) 0.93010 0.93660 0.93110 0.93890 0.92984

VSImin (p.u.) 0.74280 0.77120 0.74460 0.77700 0.74753

7. Conclusions

This study proposed the utilization of the improved gray wolf optimization (I-GWO)
method to determine the optimal sizing and placement of DSTATCOMs in radial distribu-
tion systems. To address the limitations of the conventional gray wolf optimization (GWO)
method, the I-GWO incorporated a dimension learning-based hunting (DLH) strategy.
This strategy helped maintain population diversity, balance exploration and exploitation,
and prevent premature convergence. The effectiveness of this optimization approach was
verified through tests on the IEEE-33 bus, IEEE-69 bus, and 85-bus radial distribution
systems. Furthermore, this method was compared to other prevalent optimization tech-
niques, such as BFOA, CSA, LSA, MOPSO, and MOSCA. The proposed method, designed
as an offline approach, demonstrated its superiority in terms of reducing active losses and
costs. Moreover, it enhanced the voltage profile and stability and improved the quality
of the entire system. In the second phase of this study, the model considered the uncer-
tainties associated with renewable energy generation and load fluctuations. Initially, the
fast scenario reduction (FSR) method condensed wind and solar generation scenarios and
loading levels into a limited number of scenarios. Following this, the I-GWO algorithm
determined the optimum location and sizing for the DSTATCOMs, accounting for all the
scenarios identified by the FSR method, thereby demonstrating its effectiveness even under
the conditions of renewable energy and load uncertainty across various test systems.

Further Research

While this study proposes I-GWO as an offline method, it shares common limitations
with any metaheuristic, such as time consumption, especially in the case of large-scale
distribution networks. Therefore, a potential avenue for future research lies in enhancing
this approach or exploring hybridization with other optimization techniques to effectively
address these limitations.
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Appendix A

Table A1. Line data and bus data for the IEEE 33-bus system.

Bus Load at the Receiving End Branch Data

Send Receive PL (kW) QL (kVAr) R (Ω) X (Ω) Imax (A)

1 2 100 60 0.0922 0.0470 400
2 3 90 40 0.4930 0.2510 400
3 4 120 80 0.3661 0.1864 400
4 5 60 30 0.3811 0.1941 400
5 6 60 20 0.8190 0.7070 400
6 7 200 100 0.1872 0.6188 300
7 8 200 100 1.7117 1.2357 300
8 9 60 20 1.0299 0.7400 200
9 10 60 20 1.0440 0.7400 200

10 11 45 30 0.1967 0.0651 200
11 12 60 35 0.3744 0.1237 200
12 13 60 35 1.4680 1.1549 200
13 14 120 80 0.5416 0.7129 200
14 15 60 10 0.5909 0.5260 200
15 16 60 20 0.7462 0.5449 200
16 17 60 20 1.2889 1.7210 200
17 18 90 40 0.7320 0.5739 200
2 19 90 40 0.1640 0.1564 200

19 20 90 40 1.5042 1.3555 200
20 21 90 40 0.4095 0.4784 200
21 22 90 40 0.7089 0.9373 200
3 23 90 50 0.4512 0.3084 200

23 24 420 200 0.8980 0.7091 200
24 25 420 200 0.8959 0.7010 200
6 26 60 25 0.2031 0.1034 300

26 27 60 25 0.2842 0.1447 300
27 28 60 20 1.0589 0.9338 300
28 29 120 70 0.8043 0.7006 200
29 30 200 600 0.5074 0.2585 200
30 31 150 70 0.9745 0.9629 200
31 32 210 100 0.3105 0.3619 200
32 33 60 40 0.3411 0.5302 200

Table A2. Renewable resource parameters for the IEEE 33-bus system.

Type Bus Prated
wt

(MW)
vcut-in
(m/s)

vcut-out
(m/s)

vrated
(m/s)

Prated
pv

(MW)
Gstd

(W/m²)
Rc

(W/m²)

WTG 32 0.6 3 26 15
PVG 15 0.6 1000 150
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Appendix B

Table A3. Line data and bus data for the IEEE 69-bus system.

Bus Load at the Receiving End Branch Data

Send Receive PL (kW) QL (kVAr) R (Ω) X (Ω) Imax (A)

1 2 0 0 0.0005 0.0012 400
2 3 0 0 0.0005 0.0012 400
3 4 0 0 0.0015 0.0036 400
4 5 0 0 0.0251 0.0294 400
5 6 2.6 2.2 0.3660 0.1864 400
6 7 40.4 30 0.3811 0.1941 400
7 8 75 54 0.0922 0.0470 400
8 9 30 22 0.0493 0.0257 400
9 10 28 19 0.8190 0.2707 400

10 11 145 104 0.1872 0.0619 200
11 12 145 104 0.7114 0.2351 200
12 13 8 5 1.0300 0.3400 200
13 14 8 5.5 1.0440 0.3450 200
14 15 0 0 1.0580 0.3496 200
15 16 45.5 30 0.1966 0.0650 200
16 17 60 35 0.3744 0.1238 200
17 18 60 35 0.0047 0.0016 200
18 19 0 0 0.3276 0.1083 200
19 20 1 0.6 0.2106 0.0696 200
20 21 114 81 0.3416 0.1129 200
21 22 5 3.5 0.0140 0.0046 200
22 23 0 0 0.1591 0.0526 200
23 24 28 20 0.3463 0.1145 200
24 25 0 0 0.7488 0.2475 200
25 26 14 10 0.3089 0.1021 200
26 27 14 10 0.1732 0.0572 200
3 28 26 18.6 0.0044 0.0108 200

28 29 26 18.6 0.0640 0.1565 200
29 30 0 0 0.3978 0.1315 200
30 31 0 0 0.0702 0.0232 200
31 32 0 0 0.3510 0.1160 200
32 33 14 10 0.8390 0.2816 200
33 34 19.5 14 1.7080 0.5646 200
34 35 6 4 1.4740 0.4873 200
3 36 26 18.55 0.0044 0.0108 200

36 37 26 18.55 0.0640 0.1565 200
37 38 0 0 0.1053 0.1230 200
38 39 24 17 0.0304 0.0355 200
39 40 24 17 0.0018 0.0021 200
40 41 1.2 1 0.7283 0.8509 200
41 42 0 0 0.3100 0.3623 200
42 43 6 4.3 0.0410 0.0478 200
43 44 0 0 0.0092 0.0116 200
44 45 39.22 26.3 0.1089 0.1373 200
45 46 39.22 26.3 0.0009 0.0012 200
4 47 0 0 0.0034 0.0084 300

47 48 79 56.4 0.0851 0.2083 300
48 49 384.7 274 0.2898 0.7091 300
49 50 384.7 274 0.0822 0.2011 300
8 51 40.5 28.3 0.0928 0.0473 300

51 52 3.6 2.7 0.3319 0.1114 200
9 53 4.35 3.5 0.1740 0.0886 300

53 54 26.4 19 0.2030 0.1034 300
54 55 26 17.2 0.2842 0.1447 300
55 56 0 0 0.2813 0.1433 300
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Table A3. Cont.

Bus Load at the Receiving End Branch Data

Send Receive PL (kW) QL (kVAr) R (Ω) X (Ω) Imax (A)

56 57 0 0 1.5900 0.5337 300
57 58 0 0 0.7837 0.2630 300
58 59 100 72 0.3042 0.1006 300
59 60 0 0 0.3861 0.1172 300
60 61 1244 888 0.5075 0.2585 300
61 62 32 23 0.0974 0.0496 300
62 63 0 0 0.1450 0.0738 300
63 64 227 162 0.7105 0.3619 300
64 65 59 42 1.0410 0.5302 300
11 66 18 13 0.2012 0.0611 200
66 67 18 13 0.0047 0.0014 200
12 68 28 20 0.7394 0.2444 200
68 69 28 20 0.0047 0.0016 200

Table A4. Renewable resource parameters for the IEEE 69-bus system.

Type Bus Prated
wt

(MW)
vcut-in
(m/s)

vcut-out
(m/s)

vrated
(m/s)

Prated
pv

(MW)
Gstd

(W/m²)
Rc

(W/m²)

WTG 65 1.5 3 26 15
PVG 18 0.5 1000 150

Appendix C

Table A5. Line data and bus data for the IEEE 85-bus system.

Bus Load at the Receiving End Branch Data

Send Receive PL (kW) QL (kVAr) R (Ω) X (Ω) Imax (A)

1 2 0.1080 0.0750 0 0 130
2 3 0.1630 0.1120 0 0 130
3 4 0.2170 0.1490 56 57.13 130
4 5 0.1080 0.0740 0 0 130
5 6 0.4350 0.2980 35.29 36 130
6 7 0.2720 0.1860 0 0 130
7 8 1.1970 0.8200 35.29 36 130
8 9 0.1080 0.0740 0 0 130
9 10 0.5980 0.4100 0 0 130

10 11 0.5440 0.3730 56 57.13 130
11 12 0.5440 0.3730 0 0 130
12 13 0.5980 0.4100 0 0 130
13 14 0.2720 0.1860 35.29 36 130
14 15 0.3260 0.2230 35.29 36 130
2 16 0.7280 0.3020 35.29 36 130
3 17 0.4550 0.1890 112 114.26 130
5 18 0.8200 0.3400 56 57.13 130

18 19 0.6370 0.2640 56 57.13 130
19 20 0.4550 0.1890 35.29 36 130
20 21 0.8190 0.3400 35.29 36 130
21 22 1.5480 0.6420 35.29 36 130
19 23 0.1820 0.0750 56 57.13 130
7 24 0.9100 0.3780 35.29 36 130
8 25 0.4550 0.1890 35.29 36 130

25 26 0.3640 0.1510 56 57.13 130
26 27 0.5460 0.2260 0 0 130
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Table A5. Cont.

Bus Load at the Receiving End Branch Data

Send Receive PL (kW) QL (kVAr) R (Ω) X (Ω) Imax (A)

27 28 0.2730 0.1130 56 57.13 130
28 29 0.5460 0.2260 0 0 130
29 30 0.5460 0.2260 35.29 36 130
30 31 0.2730 0.1130 35.29 36 130
31 32 0.1820 0.0750 0 0 130
32 33 0.1820 0.0750 14 14.28 130
33 34 0.8190 0.3400 0 0 130
34 35 0.6370 0.2640 0 0 130
35 36 0.1820 0.0750 35.29 36 130
26 37 0.3640 0.1510 56 57.13 130
27 38 1.0020 0.4160 56 57.13 130
29 39 0.5460 0.2260 56 57.13 130
32 40 0.4550 0.1890 35.29 36 130
40 41 1.0020 0.4160 0 0 130
41 42 0.2730 0.1130 35.29 36 130
41 43 0.4550 0.1890 35.29 36 130
34 44 1.0020 0.4160 35.29 36 130
44 45 0.9110 0.3780 35.29 36 130
45 46 0.9110 0.3780 35.29 36 130
46 47 0.5460 0.2260 14 14.28 130
35 48 0.6370 0.2640 0 0 130
48 49 0.1820 0.0750 0 0 130
49 50 0.3640 0.1510 36.29 37.02 130
50 51 0.4550 0.1890 56 57.13 130
48 52 1.3660 0.5670 0 0 130
52 53 0.4550 0.1890 35.29 36 130
53 54 0.5460 0.2260 56 57.13 130
52 55 0.5460 0.2260 56 57.13 130
49 56 0.5460 0.2260 14 14.28 130
9 57 0.2730 0.1130 56 57.13 130

57 58 0.8190 0.3400 0 0 130
58 59 0.1820 0.0750 56 57.13 130
58 60 0.5460 0.2260 56 57.13 130
60 61 0.7280 0.3020 56 57.13 130
61 62 1.0020 0.4150 56 57.13 130
60 63 0.1820 0.0750 14 14.28 130
63 64 0.7280 0.3020 0 0 130
64 65 0.1820 0.0750 0 0 130
65 66 0.1820 0.0750 56 57.13 130
64 67 0.4550 0.1890 0 0 130
67 68 0.9100 0.3780 0 0 130
68 69 1.0920 0.4530 56 57.13 130
69 70 0.4550 0.1890 0 0 130
70 71 0.5460 0.2260 35.29 36 130
67 72 0.1820 0.0750 56 57.13 130
68 73 1.1840 0.4910 0 0 130
73 74 0.2730 0.1130 56 57.13 130
73 75 1.0020 0.4160 35.29 36 130
70 76 0.5460 0.2260 56 57.13 130
65 77 0.0910 0.0370 14 14.28 130
10 78 0.6370 0.2640 56 57.13 130
67 79 0.5460 0.2260 35.29 36 130
12 80 0.7280 0.3020 56 57.13 130
80 81 0.3640 0.1510 0 0 130
81 82 0.0910 0.0370 56 57.13 130
81 83 1.0920 0.4530 35.29 36 130
83 84 1.0020 0.4160 14 14.28 130
13 85 0.8190 0.3400 35.29 36 130
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Table A6. Renewable resource parameters for the IEEE 85-bus system.

Type Bus Prated
wt

(MW)
vcut-in
(m/s)

vcut-out
(m/s)

vrated
(m/s)

Prated
pv

(MW)
Gstd

(W/m²)
Rc

(W/m²)

WTG 49 1.0 3 26 15
WTG 72 1.5 3 26 15
PVG 18 0.5 1000 150

Appendix D
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