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Abstract: Most Prostate Specific Membrane Antigens (PSMAs) targeting small molecules accumulate
in the salivary glands (SGs), raising concerns about SG toxicity, especially after repeated therapies
or therapy with 225Ac-labeled ligands. SG toxicity is assessed clinically by the severity of patient-
reported xerostomia, but this parameter can be challenging to objectively quantify. Therefore, we
explored the feasibility of using SG volume as a biomarker for toxicity. In 21 patients with late-
stage metastatic resistant prostate cancer (mCRPC), the PSMA volume and ligand uptake of SG
were analyzed retrospectively before and after two cycles of 177Lu-PSMA (LuPSMA; cohort A) and
before and after one cycle of 225Ac-PSMA-617 (AcPSMA, cohort B). Mean Volume-SG in cohort
A was 59 ± 13 vs. 54 ± 16 mL (−10%, p = 0.4), and in cohort B, it was 50 ± 13 vs. 40 ± 11 mL
(−20%, p = 0.007), respectively. A statistically significant decrease in the activity concentration in
the SG was only observed in group B (SUVmean: 9.2 ± 2.8 vs. 5.3 ± 1.8, p < 0.0001; vs. A: SUVmean:
11.2 ± 3.3 vs. 11.1 ± 3.5, p = 0.8). SG volume and PSMA-ligand uptake are promising markers to
monitor the SG toxicity after a PSMA RLT.

Keywords: xerostomia; PSMA; Actinium-225-PSMA-617; mCRPC; radioligand therapy; salivary
glands; tumor sink effect

1. Introduction

The treatment of metastatic castration-resistant prostate cancer (mCRPC) remains a
major challenge. A prolonged overall survival with the radiopharmaceutical 177Lu-PSMA-
617 has been recently proven in a phase III clinical trial compared to the standard of care
(median OS 15.3 vs. 11.3 months) [1]. However, primary or secondary radioresistance
to 177Lu-PSMA (LuPSMA) limits its effect [2]. It has been proposed that targeted alpha
therapy (TAT) has the potential to overcome the radioresistance of beta emitters through
its higher linear energy transfer [3,4]. TAT has been proven to be more effective than beta
emitters in preclinical studies as it induces DNA double-strand breaks [3].
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The alpha emitter Actinium-225 (225Ac) has been recently used for the PSMA-targeted
treatment of mCRPC, and promising results have been reported using 225Ac-PSMA-617
(AcPSMA) [3–5]. However, xerostomia is a major limiting side effect for AcPSMA, which
can lead to the discontinuation of treatment [4,6]. Deterioration of salivary function is
a clinical problem described after an external beam radiation treatment [7,8] and after a
radioiodine treatment [9–11]. Its extent has been related to the absorbed dose based on the
data of external beam radiation therapy [12]. For alpha emitters, quantitative radiation
dosimetry is not trivial, given the lack of direct gamma emissions. Therefore, a quantitative
measurement of delivered dose to the salivary glands (SGs) is highly challenging. Dose
estimations can be made based on the dosimetry of LuPSMA treatment and serial PET
measurements. Salivary gland scintigraphy provides an objective measure to quantify SG
function and has been reported as a tool to assess SG function in patients with thyroid
diseases [13–16] and mCRPC [17]. Furthermore, an indirect measurement of the effects of
radiation on SG can be made, based on pre- and post-therapeutic staging scans such as
PSMA PET combined with morphological imaging.

Therefore, our aim of this retrospective analysis was to investigate the potential corre-
lates in the morphological and molecular PET imaging of clinically observed xerostomia.
Pre- and post-treatments hybrid PET imaging in patients who have undergone 225Ac-
PSMA-617 radioligand treatment (RLT) and 177Lu-PSMA-I&T RLT were compared. We
hypothesize that decreases in SG volumes and PSMA-ligand uptake (a) are dependent on
the type of radiation (alpha vs. beta) and (b) are related to xerostomia.

2. Results
2.1. Volumetric Changes in Salivary Glands before and after LuPSMA and AcPSMA RLTs

In cohort A (before vs. after LuPSMA RLT), no significant volumetric size changes
were observed: the mean Volume-SG of the SG was 59 ± 13 vs. 54 ± 16 mL (p = 0.4,
Figure 1A). Mean relative and absolute changes in Volume-SG were 10% and 5 mL.
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Figure 1. Morphological changes in SG volume based on CT/MRI quantification after 177Lu-PSMA
(A) and 225Ac-PSMA-617 (B).

In contrast, a highly significant decrease in volumes was observed in cohort B (before
vs. after AcPSMA RLT): the mean Volume-SG was 50 ± 13 mL vs. 40 ± 11 mL (p = 0.007,
Figure 1B). Mean relative and absolute changes in Volume-SG were 20% and 10 mL.

2.2. Functional Changes in PSMA-Ligand Uptake before and after LuPSMA and AcPSMA RLTs

In cohort A, no significant changes in PSMA-ligand uptake were observed: the mean
SUVmax and SUVmean were 23.8 ± 7.7 vs. 24.7 ± 8.7 (p = 0.8) and 11.0 ± 3.3 vs. 10.8 ± 3.4
(p = 0.8), respectively (Figure 2A,C). Mean relative changes in SUVmax and SUVmean were
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+3.8% and −1.8%. The mean PSMA-SGU was 757 ± 264 vs. 721 ± 316 (p = 0.7, Figure 3A).
Mean relative and absolute changes for PSMA-SGU were −5% and −30 (Figure 3A).
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In contrast, a highly significant decrease in PSMA-ligand uptake was observed in cohort
B: the mean SUVmax and SUVmean were 20.1 ± 5.4 vs. 12.3 ± 3.6 (p < 0.0001) and 9.2 ± 2.8
vs. 5.3 ± 1.8 (p < 0.0001), respectively (Figure 2B,D). Mean relative changes in SUVmax and
SUVmean were −38.8% and −42.4%. The mean PSMA-SGU was 711 ± 268 vs. 276 ± 162
(p < 0.0001). Mean relative and absolute changes for PSMA-SGU were −61% and −435
(Figure 3B).

2.3. Salivary Glands and Tumor Burden

Based on the five quartiles of pre-therapeutic whole body tumor burden, changes in the
salivary gland SUVmean and SUVmax pre- and post-AcPSMA were quantified. Statistically
significant decreases in SUVmax of the SG were measured in groups with very low, moderate,
high, and very high pre-therapeutic tumor burden (Table 1 and Figure 4). No correlation
between SUVmean of the SG and tumor burden was observed in the low and very high
groups (Table 1). In each of these five tumor burden groups, no statistically significant
changes in whole body tumor burden were observed post-AcPSMA. No significant changes
in SUVmax and SUVmean were observed in groups with very low, low, high, and very high
tumor burden patients treated with LuPSMA.
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Figure 4. SUVmax of the SG stratified by tumor burden before (pre) and after (post) 225Ac-PSMA-617
RLT and also stratified by tumor load (colors indicate groups). Group moderate, n = 3, all other
groups, n = 4.
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Table 1. Uptake characteristics of salivary glands (SUVmean and SUVmax) before and after Ac- and Lu-PSMA RLTs of patients from cohort B. Patients are stratified in
five groups based on their whole body tumor volume prior to 225Ac-PSMA RLT. Statistically significant changes are marked in bold (* p = 0.03, ** p = 0.02, *** p = 0.04,
# p = 0.01).

Whole Body
Tumor Volume Prior

to AcPSMA
Very Low Low Moderate High Very High

pre post pre post pre post pre post pre post

AcPSMA RLT

Whole body PSMA-TV (mL) 602 ± 354 431 ± 296 1393 ± 217 1456 ± 391 1848 ± 156 2370 ± 1076 3378 ± 288 3216 ± 693 4869 ± 342 4296 ± 1252

Salivary glands
SUVmean 11.7 ± 2.4 6.7 ± 2.4 * 8.1 ± 3.3 4.9 ± 1.1 11.1 ± 1.8 5.7 ± 1.6 ** 9.1 ± 2.9 4.5 ± 2.3 *** 7.8 ± 2.7 5.3 ± 1.7

SUVmax 24.8 ± 4.9 14.7 ± 4.8 * 17.7 ± 6.1 11.5 ± 2.3 22.7 ± 3.4 13.5 ± 2.9 ** 20.9 ± 5.4 8.6 ± 1.9 # 17.3 ± 5.3 12.7 ± 3.2

LuPSMA RLT

Salivary glands
SUVmean 14.9 ± 2.9 13.5 ± 2.6 11.3 ± 2.2 11.2 + 5.3 9.0 ± 2.8 11.9 ± 1.9 * 10.2 ± 2.6 8.8 ± 1.4 11.3 ± 2.8 10.3 ± 3.1

SUVmax 33.6 ± 9.8 33.4 ± 14.3 23.9 ± 4.0 23.7 ± 10.3 18.6 ± 4.1 25.4 ± 5.9 ** 21.5 ± 5.3 18.8 ± 2.9 24.5 ± 5.6 26.1 ± 12.1
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3. Discussion

In this retrospective analysis, a treatment with one cycle of AcPSMA resulted in a
significant decrease in morphological and functional surrogate parameters of salivary
glands, which were assessed with PSMA PET. In contrast, no substantial differences could
be observed after treatment with two cycles of LuPSMA in the same patients.

The deterioration of the salivary gland function is a clinically relevant side effect of
AcPSMA reported in the literature [3,6,18]. Our retrospective study is the first to present
quantitative data from imaging to potentially link it with objective measures. For the
external beam radiation treatment [7,19] of the neck, different reports on potential xeros-
tomia using imaging as a quantitative measure are available. In an MRI study including
52 patients with squamous cell carcinoma of the neck, the volume of the parotid glands
decreased by an average of 26% at 30 Gy and approx. 40% at 70 Gy [20]. In another study
with 15 head and neck cancer patients, the median parotid volume loss was 28.1% (range:
5.9–53.6%) [21]. Furthermore, in a study with 18 patients irradiated with a radiation dose of
38.1 to 64.4 Gy, a reduction of the parotid glands by approximately 35%, was observed [22].

The evaluation of delivered doses of Actinium-225 to the salivary gland remains chal-
lenging because radiation doses depend on the microscopic distribution of the radioactivity
within the tissue, which is currently unknown. Based on a dose assumption, an adminis-
tration of 10 kBq/kg of 225Ac-PSMA-617 would result in a mean salivary gland dose of
approximately 67 Gy [23]. For LuPSMA, data on the dosimetry of the salivary glands for
both LuPSMA-617 [24–26] and LuPSMA-I&T [27] exist, resulting in a dose of 8.1–21.9 Gy
to the salivary glands (after two i.v. injections of 7.4 GBq LuPSMA).

In our retrospective analysis, Volume-SG was reduced by 10% in cohort A but by 20%
in cohort B. Similarly, PSMA-SGU was reduced by −5% in cohort A but by −61% in cohort
B. These data indicate that LuPSMA has only minor effects on the salivary glands, but
AcPSMA induces profound physical and biological effects on the salivary glands. This
is in line with the clinical observation that patients treated with LuPSMA rarely report a
permanent xerostomia or request for a stop of treatment [28].

Based on the data presented here, both function (PSMA-SGU) and morphological size
(Volume-SG) of the salivary glands decreased significantly after AcPSMA RLT. Considering
the production of ca. 1 Liter/day of saliva (70% arising from the parotid, submandibular,
and sublingual glands [29]), a reduction of ca. −20% (Volume-SG) to −61% (PSMA-SG)
could hypothetically result in a daily production of ca. 390–800 mL of saliva. A range of
0.12–0.16 mL/min for salivary flow rate has been described as a critical range for patients
and defines a clinically relevant hypofunction [30]. This would translate into a critical range
of daily salivary production of approximately 172–230 mL. PSMA-SGU reduction after
AcPSMA RLT reaches close to this critical range as shown by the above calculation. In fact,
the relative morphological changes after AcPSMA RLT of the salivary glands were almost
three times lower compared to the functional changes (Volume-SG −20% vs. PSMA-SGU
−61%), and therefore, a reduction in Volume-SG may not fully explain the loss of salivary
function. In summary, PSMA-SGU seems to correlate more closely to clinically observed
xerostomia than Volume-SG and might be a more predictive parameter of salivary gland
(dys)function.

With respect to the tumor sink effect, controversial results have been reported after
LuPSMA RLT. In mCRPC patients that were visually classified based on 68Ga-PSMA uptake,
a decline in the salivary glands of 36–43% was observed [31]. Gafita et al. report a decrease
in SUVmax in patients with a very high PSMA-VOL by an average of −26.6% [32]. Werner
et al. report no correlation between salivary gland uptake and tumor volume in a study
with 50 patients using 18F-DCFPyL PET [33]. Given the already relatively high tumor
burden in our cohort, the observation of no additional tumor sink effect in the very high
PSMA-TUB group compared to the low volume group might be explainable. In the study
by Gafita et al., the patient group with a very high tumor burden had a Volume-SG of
≥1355 mL, which corresponds to the second quintile (1095–1610 mL) of our study (the very
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high tumor burden group of our study exhibited a Volume-SG of ≥4039 mL). However, a
tendency towards a tumor sink was observed (Figure 4).

Xerostomia as a result of PSMA treatment is a known side effect, which is caused by a
physiological tracer uptake [34–36]. It has been reported that xerostomia is less pronounced
after the first cycles of 177Lu-PSMA RLT and in patients with a higher tumor burden due to
the tumor sink effect [31,37,38]. Xerostomia was also described after a 131I-labeled MIP-1095
PSMA therapy as the second most common side effect after hematological toxicity [39]
with ca. 25% of the patients demonstrating a dry mouth [40]. However, xerostomia
was also reported in patients treated with other PSMA ligands at a high variability of
frequency [2,41–44]. Initial studies with 177Lu-PSMA-617 reported that 2/56 patients
showed xerostomia [45], while the frequency of grade 1 xerostomia reached up to 80%
as per a report of a prospective phase 2 trial [34]. In a recent study including 30 patients
using 177Lu-PSMA-617, CTCAE grade 2 xerostomia occurred in 17% of the patients [46].
On the other hand, the frequency of transient dry mouth symptoms in 26 patients treated
with repetitive cycles of 177Lu-PSMA was 46% [28]. In patients treated with 225Ac-PSMA-
RLT, data indicate a higher frequency and a pronounced impact on quality of life of
xerostomia, leading to the request of treatment in up to 25% of patients [6]. Interestingly,
our morphological data show that, at the initiation of the AcPSMA treatment, the salivary
glands were already reduced compared to the beginning of the LuPSMA treatment (ca.
59 vs. 50 mL, −15%), pointing to the fact that LuPSMA treatment results in a slow decrease
in salivary gland sizes.

4. Materials and Methods
4.1. Patient Population

Data of mCRPC patients who underwent PSMA PET/CT or PET/MRI before and after
177Lu-PSMA-I&T—(LuPSMA) and 225Ac-PSMA-617—(AcPSMA) RLTs were retrospectively
analyzed. Only patients who had comparable imaging data (which used similar PSMA-ligand
pre- and post-treatments) with a sufficient coverage of the parotid gland were included.

First, 21 patients (cohort B), who were treated with AcPSMA as a salvage therapy after
previous treatments (e.g., chemotherapy and the use of novel androgen receptor-targeted
therapy) and who showed disease progression after LuPSMA RLT, were included. Tumor
response and adverse events of these patients have been recently reported [6]. Second, out
of these 21 patients, 15 patients (cohort A) were identified who underwent LuPSMA at our
institution and for whom appropriate pairs of PSMA PET/CT or PET/MRI data (2 patients)
were available.

Patients’ xerostomia was graded on a three-point Likert scale (no to only mild xerostomia:
grade 1; moderate symptoms with minor effects on daily life: grade 2; and severe xerostomia
with major impacts on daily life/food or drink intake: grade 3). In total, nine patients had
grade 1 xerostomia, six patients had grade 2, and six patients had grade 3 xerostomia.

Patient and treatment details for AcPSMA and LuPSMA are given in Table 2. All
patients signed an informed consent and were treated under compassionate use after a
discussion of an interdisciplinary tumor board. The present retrospective analysis was
approved by the local ethics committee under the reference number of 115/18S.

4.2. PSMA-Ligand PET Imaging

PET/CT and PET/MRI scans were acquired using the Siemens Biograph mCT and the
Siemens Biograph mMR (Siemens Healthineers, Erlangen, Germany) in accordance with
the EANM/SNMMI guideline for PSMA-ligand PET imaging.

18F-rhPSMA7.3 was used in 13 and 7 patients before and after AcPSMA (mean:
305 ± 47 MBq) and LuPSMA (mean: 310 ± 49 MBq), respectively. 68Ga-PSMA-11 was
used in 8 and 8 patients before and after AcPSMA (mean: 121 ± 22 MBq) and LuPSMA
(mean: 106 ± 20 MBq), respectively. Only patients with the pairs of imaging sets with
the same radiotracer (18F-rhPSMA7.3 or 68Ga-PSMA-11) and imaging modality (PET/CT
or PET/MRI) were included.
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Table 2. Patient characteristics at the timepoint of initiation of 225Ac-PSMA RLT.

No.
Number (Agents) of

Previous mCRPC Lines
Prior to 225Ac-RLT

Number (Agents) of
Previous mCRPC Lines

Prior to 225Ac-RLT

Number of
LuPSMA

Cycles

Activity LuPSMA RLT
(GBq)/Cycle ECOG Score Metastases

Activity of First
AcPSMA RLT

(MBq)

1 * 4 (E, A, D, Lu) 4 2 8/7.2 0 B, LN 8
2 8 (D, C, A, C, E, C, Ra, Lu) 8 2 5.7/5.7 0 B 8
3 4 (D, E, A, Lu) 4 8 7.4/7.4/7.3/7.3/7.1/7.1/7.1/7.3 1 B, LN 8

4 * 5 (A, E, Lu, D, Cis/Eto) 5 4 7.2/7.7/7.2/7.7 1 B, LN 8
5 * 6 (D, A, Lu, C, E, Cis/Eto) 6 2 7.6/7.4 1 B, LN, Liver, Lungs 8
6 * 6 (D, Ra, E, C, A, Lu) 6 4 6.9/7.3/7.4/7.5 2 B, LN 10
7 4 (D, Ra, A, Lu) 4 5 7.5/7.3/7.5/7.8/7.7 1 B, LN 8

8 * 8 (CureVac, A + CureVac,
D, Study, C, Lu, E, A) 8 2 7.3/7.5 1 B, LN, Lungs 8

9 * 4 (A, D, Lu, E) 4 6 7.2/7.4/7.3/7.4/7.3/6.7 1 B, LN, Peritoneal 10
10 * 3 (A, E, Lu) 3 6 7.3/7.6/7.7/7.0/7.5/ 7.4 1 B, LN 10
11 7 (A, E, D, A, D, C, Lu) 7 6 8.3/7.9/8.3/7.9/7.4/7.3 1 B 8
12 6 (A, E, D, C, Lu, Cis/Eto) 6 2 8.3/7.8 1 B, LN 13

13 * 5 (E, D, A, E, Lu) 5 6 5.1/7.4/7.3/7.6/7.4/6.7 1 B, LN, Liver, Lung 11
14 * 5 (A, E, D, C, Lu) 5 1 7.9 1 B, LN, Liver, Brain 6

15 * 8 (CureVac, A, Ra, Lu, E, D,
O, C) 8 6 7.3/7.3/7.3/7.6/7.4/ 7.0 1 B, LN 10

16 * 8 (D, C, A, D, E, A, C, Lu) 8 8 7.3/7.8/7.2/7.2/7.5/7.5/7.5/7.4 0 B, LN, Lungs 12

17 * 5 (D/C, A, D/C, Carbo,
Lu) 5 4 7.3/7.6/7.2/7.3 1 LN, B, Peritoneal 9

18 3 (A, Lu, D) 3 5 3.7/3.7/5.5/5.5/4.2 1 B, LN 10
19 * 6 (D, A, E, C, Lu, C) 6 4 6.8/7.6/7.3/9.0 1 B, LN, Liver 14
20 * 5 (E, D, A, Lu, C) 5 4 8.2/7.5/6.2/7.5 1 B, LN 8
21 * 6 (A, E, D, Lu, Ra, C) 6 4 3.3/3.3/3.4/3.5 1 B 8

Abbreviations: Gs = Gleason Score, AP = alkaline phosphatase, LDH = lactate dehydrogenase, AcPSMA = 225Ac-PSMA-617, LuPSMA = 177Lu-PSMA, RLT = radioligand therapy, E =
Enzalutamide, A = Abiraterone, D = Docetaxel, Lu = 177Lu-PSMA I&T, RTx = Radiatio, C = Cabazitaxel, Ra = Ra-223-Dichloride, Cis/Eto = Cisplatin/Etoposide, Carbo = Carboplatin; I
= immune therapy, O = Olaparib, CureVac = CureVac Study, B = bones, and LN = lymph nodes. * cohort A.
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4.3. Image Analysis

The following parameters of the SG were analyzed in all patients to determine the
morphological and molecular correlates of its function: a. the morphological volume
determined with cross-sectional imaging datasets (Volume-SG), b. the total PSMA-ligand
uptake of the SG (PSMA-SGU), which is similar to the total lesion glycolysis determined
with 18F-FDG PET and represents the total PSMA activity from all tumor voxels [47], and c.
SUVmean and SUVmax of the SG. d. in patients who underwent 225Ac-PSMA-617 RLT, the
PSMA-avid tumor volume (PSMA-TV), which is similar to the metabolic tumor volume
from 18F-FDG PET, was obtained as previously proposed in [47]. All segmentations were
performed by one nuclear medicine physician. For all PET-measurements, values were not
corrected for body surface or lean body mass.

a. Volume-SG was determined in the simultaneously acquired anatomical data (CT or
MRI) of the SG. Delineation of the submandibular and parotid glands was measured
of each gland separately and on the basis of all available slices (Figure 5).
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b. PSMA-SGU was quantified before the first and after the first two cycles of LuPSMA
(cohort A) treatment and before and after the first cycle of AcPSMA (cohort B). SG was
defined as the parotid and the submandibular glands. PSMA-SGU was determined
using the in-house developed software qPSMA (with a threshold SUV of 4).

c. SUVmean and SUVmax was determined using Syngo.Via (Siemens Healthineers, Er-
langen, Germany). For SUVmean, a 3D VOI using an isocontour of 20% of the SUVmax
was used.

d. PSMA-TV was measured using qPSMA [47]. Bone lesions and soft tissue lesions were
separately segmented, and obtained results were summed up. The PSMA-ligand
uptake in normal organs was neglected before the quantification of whole-body
tumor burden.

4.4. Statistical Analysis

To assess the alterations in morphological and functional parameters of the SG after
AcPSMA and LuPSMA RLTs, means, standard deviations, and 95% confidence intervals
(95%CI) of Volume-SG, PSMA-SG, and SUVmean and SUVmax of the salivary glands, and
their relative and absolute changes were calculated for cohorts A and B.

To determine the impact of a PSMA positive tumor volume on SG changes in cohort
B, PSMA-TV was classified into five groups based on quintiles: very low (Q1: ≤20th
percentile), low (Q2: 20th–40th percentile), moderate (Q3: 40th–60th percentile), high (Q4:
60th–80th percentile), and very high (Q5: ≥80th percentile). These quintiles were compared
with functional changes in the salivary glands.
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T-tests using a two-sided unpaired T-Test with Welch correction were used to compare
means of Volume-SG, PSMA-SG, and SUVmean and SUVmax of the SG in cohorts A and B
and PSMA-TV in cohort B. A p-value of <0.05 was considered statistically significant. All
calculations were performed using GraphPad Prism version 5.00 (GraphPad Software, San
Diego, CA, USA).

5. Conclusions

Salivary gland volume and tracer uptake as measured from routine PSMA PET studies
are potential biomarker for SG toxicity and should be further evaluated in clinical trials of
PSMA radioligand therapy.

6. Limitations

One limitation of this retrospective analysis is that it includes both patients with
68Ga-PSMA11 and 18F-rhPSMA7.3, and this could potentially have an effect on the uptake
characteristics of salivary glands. However, we only investigated patients who underwent
the same radiotracer pre- and post-treatments, and an additional analysis of our data did
not show statistically significant differences in the SUVmax and SUVmean in a sub-group
analysis both before and after Lu- and Ac-PSMA-RLTs (refer to Supplementary Table S1
and Supplementary Figure S1). Notably, limiting the investigation to only one radiotracer
would have substantially reduced the number of suitable patients. Moreover, the direct
measurements of the salivary gland function, e.g., using salivary scintigraphy, were not
available for analysis in this retrospective analysis.
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