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Abstract

Metabolomics, the systematic measurement of small molecules (<1000 Da) in a given

biological sample, is a fast-growing fieldwithmanydifferent applications. In contrast to

transcriptomics and proteomics, sharing of data is not as widespread in metabolomics,

though more scientists are sharing their data nowadays. However, to improve data

analysis tools and develop new data analytical approaches and to improve metabolite

annotation and identification, sharing of reference data is crucial. Here, different pos-

sibilities to share (metabolomics) data are reviewed and some recent approaches and

applications regarding the (re-)use and (re-)analysis are highlighted.
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1 INTRODUCTION

New scientific discoveries are built on previous results and find-

ings, both positive and negative. Especially nowadays, the pace of

publishing new results is exceptionally high. Simultaneously, datasets

are becoming increasingly complex, particularly in omics-type data

characterized by high dimensions. One such recent addition to the

omics analysis is metabolomics, the systematic measurement of all

small molecules (<1000 Da) in a biological sample, for example,

cells, tissues, or biological fluids. While public data sharing is com-

mon practice in other omics fields, such as genomics, transcriptomics,

and proteomics, with scientific journals often enforcing it, this is

still not the case in metabolomics, although many journals encour-

age public data sharing [1]. Metabolites are not encoded in the

genome and are highly dependent on the environment (e.g., food,

exposure, lifestyle, etc.). Therefore, no standardized methodology
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and way of data sharing is available. Still, data sharing is vital for

the further development of metabolomics to improve data analysis

strategies and new software tools and metabolite annotation and

identification.

Data sharing can be practiced on different levels in metabolomics,

and sharing of raw data from studies is only one possibility. Shared

data enables the comparison of study outcomes and potentially even

integrating various studies to enhance statistical power. Several tips

for comparing public metabolomics studies have recently been sug-

gested [2]. In addition, many other data-sharing possibilities exist and

are briefly summarized here.

However, data sharing is only one side of the coin. The (re)use

and potential (re)analysis is the other. To advance metabolomics

approaches, data analysis tools and software sharing of reference

data is required. This includes not only the data itself but also

related metadata, which allows the correct interpretation and use.

While this article focuses on the sharing of high-resolution liquid

chromatography-tandemmass spectrometry (LC-MS/MS)data, several

aspects discussed can also be applied to other methodologies, such

as targeted or nuclearmagnetic resonance spectroscopy (NMR)-based

metabolomics.
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2 TYPES OF DATA FOR RE-USE AND
DATABASES

Data sharing in metabolomics facilitates re-use across multiple levels,

enabling the scientific community to derive greater benefits. Increased

data sharing leads to enhanced collective knowledge. Machine learn-

ing andartificial intelligencearemore commonlyused inmetabolomics,

necessitating a larger pool of training data from different areas and

application fields. Below, we provide a concise summary of the differ-

ent types of data which can be shared in metabolomics, along with

corresponding resources.

2.1 Metabolite structures

Although several metabolite structure databases exist, grow, and are

curated, the further sharing of metabolite structures needs to be

encouraged. This is particularly crucial for newly identifiedmetabolites

with novel structures.While these structures are often part of the arti-

cles or the associated supplementary information, structures cannot

be found in machine-readable formats such as Simplified Molecular-

Input Line-Entry System (SMILES) or International Chemical Identifier

(InChIs). A positive example here is SMID-DB.org, which stores the

structures and information on secondarymetabolites from Caenorhab-

ditis elegans and other related nematodes, which have been identified

in different publications, including SMILES and, if available, reference

spectra [3]. Additionally, sharing such structures in larger,more general

databases suchasChemical Entities ofBiological Interest (ChEBI) [4, 5],

PubChem [6], ChemSpider, or LipidMaps [7] make them accessible to a

broader audience.

LC-MS/MS is often not able to identify full structural details such

as the position of hydroxyl groups in complex metabolites such as

flavonoids or the position and stereochemistry of double bonds in

lipids. To address this limitation, ChEBI, for example, allows the

submission and storage of partial structures. Submission of partial

structures and the associated molecular formula makes it possible to

increase the chemical space covered. Subsequently,when the full struc-

tures are identified, they can be linked to the partial structure via

the ChEBI ontology (e.g., 1,2-dihexanoly-sn-glycero-3-phosphocholine

[CHEBI:72999] is a phosphatidylcholine 32:0 [CHEBI:66850]).

However, the actual structure of metabolites and the information

on the organisms that produce them is crucial. This organism-specific

information aids dereplication during metabolite identification and

helps to filter spurious identifications that are unlikely to be present

in the studied organism. A recent example is the LOTUS database,

which contains taxonomical information on organisms producing the

respective natural product [8]. LOTUS is completely linked to Wiki-

data and is built entirely from open data. Additionally, other databases,

such asChEBI or LipidMaps, also store associations betweenmolecules

and organisms that produce them. In ChEBI, specific entries, such

as CHEBI:78804 – C. elegans metabolite or CHEBI:75771 – mouse

metabolite, have been generated, and metabolites can be linked to

them. Such information on the presence of metabolites in specific

species or taxa can be used for improved annotation of metabolites

[9, 8]. Furthermore, species-specific metabolites and reference spec-

tra databases can be constructed from this information. Beside the

organism-specificity, in case of multicellular organisms the tissue or

cell-type origin of a metabolites is of great importance for correct

metabolite annotation, for example, having a role such as “mouse lung

metabolite”. However, currently this information is not part of most

metabolite structure databases. The Human Metabolome Database

(HMDB) represents an exception curating this information for sev-

eral metabolites, for example location in biospecimen or tissues [10].

A summary of all mentioned databases with their respective URL can

be found in Table 1.

2.2 Reference mass spectra

Sharing of reference mass spectra is one of the most obvious and

important factors in advancing LC-MS/MS-based metabolomics. Lab-

oratories can’t hold a reference standard for each known metabolite,

resulting in limited focus and size of their in-house reference libraries.

Though, to be able to annotate metabolites beyond these libraries, it is

essential to incorporate diverse reference spectra from different ana-

lytical platforms (e.g., different MS types, Orbitrap, QToF, IT). Though,

according to different identification schemes, these reference spectra

do not provide definitive identifications (which requires a reference

standard to be measured under the identical analytical condition),

their availability dramatically helps narrow the list of putative [11, 12].

Though more and more laboratories share their reference libraries in

the public domain, only a small growth in novel compounds is observed.

In most cases, laboratories initially focus on constructing in-house

libraries with common metabolites like amino acids, organic acids, and

fatty acids or rely on commercially available chemical libraries. Also,

to further boost advances in-silicomethods beyond their current state,

more chemical diversity is required. Fragmentation spectra of novel

compounds identified shall be deposited in electronic databases (and

not only included in the supplementary information of articles).

Different platforms for sharing MS data have evolved over the last

years, and it is becoming more and more standard to upload refer-

ence spectra of substances measured in in-house libraries. MassBank

[13], MassBank of North America, and GNPS are primary databases

that can store MS data [14]. All of them offer different functionalities

on top of actually storing the spectra. For example, the GNPS ecosys-

tem offers the Mass Search Tool (MASST), which allows searching

reference libraries and public datasets for similar spectra [14, 15]. Dif-

ferent variants of this search tool now exist, for example, FoodMASST,

microbeMASST, or plantMASST [16]. To enable such tools, a combina-

tion with taxonomically informed metabolite libraries is required (see

above). Beyond the purpose of annotation, reference spectra can be

used to develop and evaluate novel in-silico approaches for the anal-

ysis of MS2 data, for example, CSI:FingerID [17, 18], CFM-ID [19, 20],

MetFrag, etc. [21]. Such tools enable advances beyond classical library

and spectralmatching formetabolite annotation, opening newavenues

for analysis and interpretation.
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TABLE 1 Resources to share (novel) metabolite structures.

Resource Weblink Comment

Chemical Entities of Bioloigcal

Interest (ChEBI)

https://www.ebi.ac.uk/chebi/ - Submission of partial structures possible

- Rich ontology to link chemical structures

LipidMaps https://lipidmaps.org/ - Lipid-centric database also storing taxonomic information

LOTUS https://lotus.naturalproducts.net/ - Natural product database also storing taxonomic information

PubChem https://pubchem.ncbi.nlm.nih.gov/ - General chemical database

HMDB https://hmdb.ca/ - Stores tissue and biospecimen location for humanmetabolites

2.3 Retention time and collisional cross section
data

Retention times (RTs) and collisional cross sections (CCSs) are valu-

able orthogonal parameters that can be used to identify metabolites.

Above mentioned identification schemes require such an orthogonal

parameter of chemical reference standards matched to a metabolite

feature for the highest level of identification [11, 12]. While CCS val-

ues are almost instrument-independent, RTs strongly depend on the

employed chromatographic system and instrumentation. Even though

approaches for the normalization of RTs have been suggested [22,

23], substantial variations persist between different column brands,

and sharing of retention data is not widespread. It is important to

note that data sharing should encompass metadata sharing, as the (re-

)use of RTs heavily relies on the available metadata [24]. RTs alone

are practically useless without the information on the employed col-

umn, eluents, flow rate, temperature, and other relevant parameters.

Despite this, RT collections are becoming more available. One exam-

ple is PredRet, which represents an RT collection, but also offers a tool

for projecting RTs across different chromatographic systems [25, 26].

In the future, larger collections of RTs will enable the development of

novel machine-learning models for the prediction of RTs to enhance

metabolite identification [27].

With the advent of ion mobility spectrometry and the more

widespreadapplication inmetabolomics and lipidomics,CCSdatabases

are becoming more critical. Ion mobility enables the separation of

ions based on their shape enabling the potential separation of iso-

baric and isomeric structures. Since deviations between instruments

are typically relatively small, CCS values obtained in different labora-

tories can be used for metabolite annotation [28, 29]. One example

of a CCS database is the CCS Compendium storing CCS values from

different instruments (TWIMS, DTIMS, TIMS) [30]. Besides the CCS

compendium, different collections exist and enable the prediction of

CCS values [31–34].

2.4 Entire datasets (raw data)

Besides sharing individual mass spectra, entire LC-MS/MS runs or

datasets can be shared. They often include processed feature tables

that provide information about metabolite quantities, peak inten-

sities, or areas. While single feature tables are often included

in the supplementary information of published articles or generic

data-sharing platforms such as Zenodo, there are dedicated plat-

forms for sharing of metabolomics raw data, such as Metabo-

Lights [35], Metabolomics Workbench [36], or MassIVE/GNPS [14].

Sharing of such raw data allows other scientists to evaluate the

results of the specific study but also to develop new algorithms

for peak picking, ion deconvolution, etc. This is especially important

when new analytical methods or approaches are becoming available

(such as data-independent acquisition [DIA] or ion mobility in the

past).

Furthermore, in theory, data from different sources can be fused

and compared to increase statistical power. However, in reality,

the diversity of data from different laboratories makes direct com-

parisons challenging, as different mass spectrometric setups might

have different responses to a specific metabolite. An essential fac-

tor for the (re-)use of such datasets is the comprehensive capture

of metadata, including information about the organism, experimen-

tal conditions, and other relevant details. As an example, Harrieder

et al. recently checked metadata associated with different datasets

in Metabolights and Metabolomics Workbench for the completeness

of chromatographic metadata [24]. They found that 70% of all data

was incomplete and missed important information. Lastly, if data is

stored in metabolomics-centric repositories, any information regard-

ing identified metabolites can be easily retrieved without manually

searching within articles or their supplementary information. Further-

more, most of these repositories allow to specify for example organism

and tissue of origin, which allows to reconstruct specific metabolomes,

even including unknown metabolites. A summary of all mentioned

repositories can be found in Table 2.

2.5 (Spatial) Distribution of metabolites

Certain metabolites are only produced in specific organs, tissues

or even cells. Information on the spatial distribution of metabolites

is important for better understanding of biological functions. The

METASPACE project (https://metaspace2020.eu/) offers an annota-

tion platform for spatial metabolomics based on MS imaging (MSI).

The webportal represents a repository for high-resolution MSI data

sets. Annotation on the MS1 level can performed using several of the

mentionedmetabolite structure databases [37]. Images are associated

with rich metadata such instrumentation and origin of samples. Beside

images other database exist, for example, the MetaboAtlas21 (https://

metaboatlas21.metabolomics.fgu.cas.cz/), which allows to browse dis-

https://www.ebi.ac.uk/chebi/
https://lipidmaps.org/
https://lotus.naturalproducts.net/
https://pubchem.ncbi.nlm.nih.gov/
https://hmdb.ca/
https://metaspace2020.eu/
https://metaboatlas21.metabolomics.fgu.cas.cz/
https://metaboatlas21.metabolomics.fgu.cas.cz/
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TABLE 2 Repositories for metabolomics (raw) data.

Repository Weblink Comment

MetaboLights https://www.ebi.ac.uk/metabolights/ - Database for storing of raw data and associated results

- Cross-species (allows to browse for species-specific metabolites)

Metabolomics

Workbench

https://www.metabolomicsworkbench.org/ - Hosts RefMet (Reference List ofMetabolite Names)

GNPS/MassIVE https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp - Rich ecosystem for (re-)use and (re-)analysis of metabolomics data

METASPACE https://metaspace2020.eu/ - Ecosystem for annotation and sharing ofMSI data

tribution of metabolites and lipids in different mouse tissues. Such

atlases will becomemore important in future.

3 (RE-)USE AND (RE-)ANALYSIS OF
METABOLOMICS DATA

3.1 Metabolite identification

The different presented types of data allow a different level of re-use

and re-analysis. The most straightforward way to re-use public data is

through mass spectral libraries for metabolite identification. Publicly

shared spectra can be matched against measured spectra from own

experiments to aid annotation of metabolites not covered in in-house

databases. This provides putative annotations and can help to narrow

down potential candidates for further structural elucidation. Besides

the actual librarymatching, high-quality reference spectra are required

for the development of in silico annotations tools, such CSI:FingerID,

CFM-ID, and others [19, 17, 38]). For amore detailed review, see [39].

Submission of novel structures to chemical reference databases

such as ChEBI, PubChem, or others expands the search space for

the aforementioned in-silico tools. Together with the information on

organisms producing metabolites, this can narrow down potential

candidates. However, great care needs to be taken. Ideally, manual

curation and data verification must be performed since automatic

methods and meta-scores can potentially result in an artificially high

increase in “true positive results” [40]. Furthermore, metabolite struc-

ture databases can serve as input for the annotation of metabolites in

MSI experiments [37].

3.2 Reference datasets for the development of
new workflows

Entire datasets can be used to develop new bioinformatics tools and

approaches. This includes every possible step, from peak picking to

feature grouping and metabolite identification. Bioinformatics labora-

toriesworking on such tools often do not have the capacity to generate

required datasets on their own and rely on publicly available datasets.

For instance, theMetaboLights datasetsMTBLS235andMTBLS234

contain reference data for developing peak picking and assembling

into features [41]. Notably, it contained a synthetic dataset for

which the ground truth is known (known number of metabolites

or features and their identity, which is typically not the case for

biological datasets). Another example is the dataset MTBLS1108 sub-

mitted to MetaboLights, which contains data from data-dependent

(DDA) and data- DIA, which was used for the development of the

DIAMetAlyzer workflow [42]. In addition to sharing the complete

dataset, the workflow, and associated code are also made available

(https://openms.de/application/diametalyzer/ and https://github.com/

oliveralka/DIAMetAlyzer_additional_code). This enables direct bench-

marking of new processing methods for DIA data and the comparison

against an establishedworkflow.

3.3 Reanalysis of metabolomics data at a
repository scale

Publicly shared data can be used for reanalysis, including new statisti-

cal analysis, search for novel compoundsdescribed, or comparisonwith

other datasets. ReDu was developed for exactly this purpose allowing

the extraction of specific knowledge from public datasets [43]. ReDu

allows establishing associations between compounds and different

metadata,for example, sex, life stage, etc.

Advancements in computational power and improved algorithms

allow metabolomics data analysis at a repository scale with hun-

dreds to thousands of LC-MS/MS runs and spectra. One example was

performed for testing of a novel confidence score for metabolite anno-

tation beyond spectral libraries [18]. Over 2500 LC-MS/MS runs from

different human sources were annotated, including novel compounds

not present in HMDB [44]. Another example is the creation of new

suspect spectral libraries [45]. Spectra of new structures have been

inferred from nearest neighbors of spectra with reference matches in

molecular networks, for example, for novel acylcarnitine species.

4 PROBLEMS AND OPPORTUNITIES

Metabolomics is generally still very much technology driven; as such,

no universally accepted analysis method exists (if ever possible). Dif-

ferent laboratories use different types of equipment (e.g., Orbitraps

vs. ToFs) and different chromatographic methods [46]. While the

integration of targeted metabolomics data based on absolute con-

centrations or known and identified metabolites might be possible, it

https://www.ebi.ac.uk/metabolights/
https://www.metabolomicsworkbench.org/
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://metaspace2020.eu/
https://openms.de/application/diametalyzer/
https://github.com/oliveralka/DIAMetAlyzer_additional_code
https://github.com/oliveralka/DIAMetAlyzer_additional_code
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becomes more challenging for non-identified metabolites. Instrumen-

tation variations, such as differences in dynamic range and ionization

efficiencies due to variations in ionization sources, result in varying

relative abundances of adducts and in-source fragmentation, which

are compound-dependent. Furthermore, different chromatographic

methods will result in different RTs. Approaches such as PredRet can

partially help to establish correspondence between datasets [26]. The

use of MS2 additionally aids information for mapping. However, dif-

ferences in collision energy between different instrumentation and

experimental settings can lead to differences in fragmentation spec-

tra. The use of merged or ramped spectra might overcome this in

future. More research is required to better understand how differ-

ences between analytical setups are evolving and if there are ways

to overcome and normalize them. In case of lipidomics analysis, it

has been recently shown that shared reference materials can improve

harmonization of different methods [47]. Besides the actual technical

differences, several differences in the semantics of metabolites exist,

for example, identifiers for metabolites are not harmonized. Metabo-

lite names can often be ambiguous, and systematic IUPAC names

are often not used because of their lengths and complexity, and triv-

ial names are preferred (e.g., (2S)-2-amino-3-(1H-indol-3-yl)propanoic

acid vs. L-Tryptophan). The most unambiguous identifier for a metabo-

lite is its structure, which can be reported using a SMILES, InChI, or

InChIKey. Several approaches have been published to overcome this

issue, for example, bridgeDB or RefMet [48, 49]. However, metabolite

nomenclature is a re-occurring issue [50].

Nevertheless, several opportunities are given by sharing

metabolomics data. Different metabolomics datasets covering

the same or similar biological questions can be combined to increase

the statistical power of studies. However, since metabolomics is far

from a standardized technology, integration of datasets might be

complicated if collected on different platforms. Standardized targeted

metabolomics methods and kits can help to generate data that can

be easily merged to improve statistical power [51, 52]. Results from

such studies will represent the first line of large-scale integration of

data for broader data analysis and enable new findings. However, the

knowledge of the metabolism of different organisms is still scattered.

Public sharing of metabolomics datasets also allows the data-driven

reconstruction of organism metabolomes. For example, the repository

MetaboLights allows to search for organism-specific studies and com-

pounds. Compounds are retrieved from the annotated and identified

compounds in the datasets deposited and linked to a specific species.

Together with in-silico reconstructions of metabolism (also known as

genome-scale metabolic models), the knowledge can be continuously

updated and enhanced to create amore fine-grained picture.

Besides scientific questions, public datasets can be used to educate

the next generation of metabolomics scientists.

5 CONCLUSION

Data sharing in metabolomics can be conducted on different levels,

from submitting novel chemical structures to structural databases and

sharing reference spectra and libraries to entire datasets. Such shar-

ing is essential for the growth of the field of metabolomics. Though

different obstacles and problems associated with metabolomics need

to be solved (e.g., common identifiers, comparable methods), each new

dataset, reference spectrum, or novel structure increases our knowl-

edge of the metabolism of different organisms and biological systems

and is therefore valuable and important.

However, the field of metabolomics is far from being standardized

and requires more vigorous control of metadata related to experi-

mentation and instrumentation.Withoutmeaningfulmetadata, shared

data is only of partial use. For example, an RT without a description of

the employed chromatographic system represents just a single number

or a reference spectrumwithout information on the chemical structure

cannot be used for training purposes.

As technological advancements highly influence metabolomics, it is

crucial to make new types of data for the community to keep up with

thesedevelopments.With the introductionof ionmobility instruments,

there has been a significant release of CCS databases and collections,

which is expected with novel and alternative fragmentation modes,

such as electron activated dissociation (EAD) or ultraviolet photodis-

sociation (UVPD). Both have been shown to be valuable tools for the

detailed analysis of lipids allowing them to determine double bond and

sn-positions in glycerophospholipids [53, 54]. Furthermore, new data

types are needed, such as for the prediction of quantities, ionization

efficiency, or adduct formation [55, 56].

It is important to acknowledge that metabolomics is still behind

fields like genomics, transcriptomics, and proteomics in terms of data

sharing, and new standards need to be established. Nevertheless, big

parts of the metabolomics community realized the value of sharing

data on different scales, and data becomes more available. Facilitat-

ing easy integration and uploading to the metabolomics repository

will help to streamline this process further. Current software tools

often allow the export to common open data formats, such as .mzML

and mzTab [57, 58, 59]. Once automatic upload and (re) data anal-

ysis become feasible; metabolomics will flourish and be used by a

wider range of scientists, including non-experts. Until then: Share your

data!
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