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Abstract

Transcription factors (TFs) are essential players in orchestrating the regulatory land-

scape in cells. Still, their exact modes of action and dependencies on other regulatory

aspects remain elusive. Since TFs act cell type-specific and each TF has its own char-

acteristics, untangling their regulatory interactions froman experimental point of view

is laborious and convoluted. Thus, there is an ongoing development of computational

tools that estimate transcription factor activity (TFA) from a variety of datamodalities,

either based on a mapping of TFs to their putative target genes or in a genome-wide,

gene-unspecific fashion. These tools can help to gain insights into TF regulation and to

prioritize candidates for experimental validation.Wewant to give an overviewof avail-

able computational tools that estimate TFA, illustrate examples of their application,

debate common result validation strategies, and discuss assumptions and concomitant

limitations.
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1 INTRODUCTION

Transcription factors (TFs) are essential proteins that regulate gene

expression by binding to specific DNA sequences in the promoter or

enhancer regions of genes [1, 2]. They exert their regulatory activ-

ity via a diverse range of mechanisms, such as recruiting cofactors,

remodeling of the chromatin state, altering epigenetic modifications,

or interacting directly with the transcription machinery [3–5]. TFs are

crucial actors in many cellular processes, including development, dif-

ferentiation, and response to environmental stimuli [6–8]. It is believed

that nearly half of all knownTFs are expressed in any cell type, although

only a small number of them are thought to be sufficient for establish-

ing the cell type-defining geneexpressionprograms [9, 10].Due to their

role in central biological processes, their dysregulation is observed in

various diseases [11–13]. Consequently, it is of great interest to gain

insights into transcription factor activity (TFA). We define TFA as the

regulatory impact that a TF exerts on the expression of each of its

target genes, which includes any form of regulation, may it be acti-

vation or repression or other effects on transcription like alternative

splicing. Instead of retrieving TFA for each individual gene, it is often

summarized as a TF’s influence on a set of genes, or more generally

as a TF’s importance for a cell state or a certain condition. TFA can

be influenced by various mechanisms, including epigenetic modifica-

tions, post-transcriptional regulation, post-translational modifications,

protein–protein interactions, presence of cofactors, localization, or

DNA structural changes [14–16] (Figure 1). Investigation of TFA on

all regulatory levels represents a significant research challenge, as

TFs can have numerous target genes, each controlled by potentially

various enhancer regions in a cell type-specific manner [15, 17]. For

many TFs, there is limited information about which genes or pro-

cesses they influence andwhether they act as repressors or activators.

Given the prohibitive cost and time required to investigate all possible

combinations of regulatory players experimentally, many computa-

tional tools have been proposed to analyze TFA. We aim to provide a

comprehensive overview of these existing computational approaches.

This review first gives a brief outline of experimental protocols

and data modalities for TFA inference. We then present the various

computational tools partitioned into two main categories (Figure 2,

Table 1). Methods in the first category, referred to as gene regula-

tory network (GRN)-based methods, rely on a TF to gene mapping in

order to estimate TFA. They either use a pre-built network or create

a network de novo based on tool-specific data modalities. TFA is then

typically inferred for a TF and its target genes, which together form a

so-called regulon [18]. Genome occupancy-based tools, on the other

hand, assess TFA by the genome-wide binding behavior of a TF, inde-

pendent of individual target genes. The TFA inferred by these tools can

be seen as a higher level estimate of TFA that summarizes the effects

on individual genes. We highlight the strengths and limitations of each

approach and give a comprehensive overview of the available meth-

ods, including a decision tree separating the tools by the data they use

(Figure 3). We further describe experimental setups for a more direct

TFA readout, discuss prevalent validation endeavors with their short-

comings, present example applications of TFA inference, and point to

key research gaps and opportunities for future developments.

F IGURE 1 The complexity of transcription factor activity (TFA). The activity of a transcription factor (TF) can be influenced by numerous,
potentially interacting factors: (A) different isoforms of the same TF can have different functions. (B) Chromatin accessibility, and thus the ability of
a TF to bind its target, can be limited by DNAmethylation or chromatin structure. (C) TFA can be influenced by post-translational modifications.
(D)Many different interaction partners are involved in transcription, for example, other TFs, mediator proteins, and cofactors. All of which can
potentially affect TFA. Created with BioRender.com.
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F IGURE 2 Overview of the general setup of computational tools to infer transcription factor activity (TFA). Among themost frequently used
data types are gene expression, information on transcription factor (TF) binding, and open chromatin using restriction enzyme accessibility. Some
approaches also incorporate perturbation data or use the DNA sequence for deep learning. Regulatory network-basedmethods depend on linking
TFs to potential target genes, often by creating, including, or refining a gene-regulatory network. Conversely, genome occupancy-based
approaches follow a target gene-agnostic paradigm that utilizes genome-wide signals, for example, TF footprints. Created with BioRender.com.

1.1 Data modalities in TFA inference

There is a multitude of different modalities coming from various bio-

logical assays that are used as input for computational tools to infer

TFA, either individually or in an integrated fashion. The most promi-

nent modality is the transcriptome, with RNA-seq as standard assay

to quantify the expression of genes. While measurements of the tran-

script levels can help in finding TFs which are present in a cell type, it

is also frequently used to correlate TF expressionwith the overall gene

expression across samples or to find differential expression between

conditions.

Another major type of data is information on TF binding sites

(TFBSs) occupancy. TFBS occupancy can either be measured exper-

imentally, for example, with ChIP-seq [19, 20], or predicted by

quantifying the agreement of a TF binding motif to the DNA sequence.

The binding motif of a TF is a representation of the preferred binding

sequence, commonly encoded in a position weight matrix (PWM).

PWMs are the probabilistic quantification of the nucleotide frequen-

cies observed at a TF’s binding sites [15]. Since the genome contains

magnitudes more potential binding motifs than are actually bound by

the cognate TFs, alternative modalities are often included to yield a

more accurate TFBS prediction. It was found that TF binding correlates

with multiple epigenetic data types, such as measurements of chro-

matin accessibility, specific histone modifications, or the presence of

other cofactors [21, 22]. In practice, a common approach in addressing

the rate of false positive motif-based TFBS predictions is to limit the

search space to regions harboring such epigenetic marks, usually via

peak calling. Prominent assays in this context are DNase-seq and

ATAC-seq for finding regions with open chromatin, both working

with enzymes that cleave accessible DNA [23, 24]. Those two assays

can additionally be used for footprint identification. Footprints are

regions within open chromatin where the binding of a TF prevents

the cleavage enzymes to cut, which leads to a characteristic drop in

read coverage, and thus can increase accuracy of TFBS predictions

[19, 25–27].

Notably, other modalities that contribute to TFA, such as the

quantity of proteins and their post-translational modifications, [15,

16, 28], are not yet widely utilized in TFA inference. Handling such

modalities is challenging, due to the scarcity of data, missing knowl-

edge on their precise biological role, and how to properly incorporate

them in computational tools. Therefore, we do not further detail them

here.
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F IGURE 3 Decision tree representation of input data andmethods. The nodes represent the input data, while the leaves correspond to
methods with available packages. Eachmethod is color-coded based on its corresponding programming language.

2 COMPUTATIONAL TOOLS FOR TFA
INFERENCE

2.1 Regulatory network-based approaches

A plethora of tools define TFA via the interaction of TFs with puta-

tive target genes and construct TF- or gene-specific regulons or try to

assemble whole regulatory networks. We only consider GRNs as esti-

mate of TFA, if the strengths of the TF-gene interactions are quantified,

that is, as edge weights in a graph.

The first methods approximating TFA emerged in the early 2000s

and were based on linear regression. With the limited amount of data

available at that time, studies were mainly focused on yeast strains,

which contain amuch lower number of genes and TFs thanmammalian

cells [29]. In general, the methods searched the upstream region of

differentially expressed genes for shared sequence motifs and tried

to explain expression log-ratios based on motif score and occurrence.

The coefficients of a motif that implicitly represented a TF acted as a

proxy for a TF’s activity [30–33]. With the rising availability of ChIP

data subsequent studies integrated the ChIP signal into the model

[34]. A popular method that was developed in 2003 was the network

component analysis (NCA) technique [35]. NCA generates a matrix of

log-ratios of expression values for multiple samples as the product of

a matrix of control strength and a matrix of TFAs. Each row in the

control strength matrix represents the potential influence of TFs on

a gene, while a column in the TFA matrix represents the activity of all

TFs per sample. Prior information derived from ChIP experiments was

incorporated into the control strength matrix where TF-gene inter-

actions without evidence were set to zero. To be able to uniquely

decompose the expression matrix, a set of constraints was imposed

onto the TFA and control strength matrices. In its original implemen-

tation, NCA had several limitations which were tackled by subsequent

methods. FastNCA provided an implementationwith an improved com-

putational complexity and run time [36]. gNCA allowed to incorporate

prior information from knockout experiments [37]. ROBNCA improved

the robustness of the algorithmsby explicitly integrating noise andout-

liers of the expression data into the model [38]. As NCA only checks

upon initialization if all constraints are satisfied, gfNCA ensures that no

violations occur during the iteration steps [39]. sparseNCA extended

NCA to be able to handle the incompleteness of the prior informa-

tion [40]. LNCA was adapted to cope with expression data sets that

show high heterogeneity such as cancer samples or samples covering

different cell states. In order to accomplish this, LNCA creates local

expression profiles with their corresponding control strength matri-

ces by partitioning the expression data using the k-nearest neighbor

algorithm and then finds an optimal global solution [41].

Similarly, Ma and Brent also use a control strength and TFA matrix

and describe TF regulation as the product of these matrices with a

bilinear model [42]. They further specify positive control strengths to

indicate an activating effect and negative values as a repressive effect,

while the TFA matrix is constrained to positive values. Their model

performed best when the signs of the control strength were prede-

termined using TF perturbation data. Initializing the control strength

matrixwithChIP-seq data led to a drop in performance,which dropped

even further when usingmotif-based TFBS prediction.

TFA analysis in heterogeneous samples, such as those derived from

cancer patients, is complicated by confounding factors. For instance,

copy number variations can lead to differential gene expression even

when the activity of the regulatory factor remains constant between

two samples. To overcome this issue, RACER was developed to esti-

mate TFAs in such conditions [43]. The authors use a regularized linear

regression model in which gene expression depends on DNAmethyla-

tion levels, copy number variations, miRNA levels, and the product of

TFA and TF binding strength. A feature selection procedure provides
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a further metric to assess the importance of the TFs by comparing the

model’s performance when a TF is left out.

Similarly, Jiang et al. control for the influence of copy number, DNA

methylation, and TF somatic mutation in their regression framework

called RABIT [44]. However, their method focuses on differences in

TFAs between samples by using differential gene expression as the

dependent variable, and the regulatory activity of a TF is based on a

significance test of the regression coefficients.

biRte is another method that is able to utilize data beyond tran-

scriptome information [45]. By integrating differential gene expression

data and a regulatory network into a joint probabilistic framework, the

model uncovers TFs that drive differences between two groups.mRNA

expression levels aremodeledusing a sparseBayesian linear regression

and Markov-Chain Monte-Carlo sampling infers the activity states of

the regulatory factors. Additionally,biRte can incorporate further infor-

mation like prior knowledge of TFAs, TF-TF interactions, and miRNA

expression data into themodel.

SEPIRA relies on a large collection of expression data from public

compendia, such as GTEx [46], to construct sample-specific TF-gene

networks [47]. These networks are formedbyhighly expressedTFs and

their target genes, in which interactions are inferred via co-expression

and encoded as activating, repressive or non-interacting. Then, a linear

regression is used to predict the expression profile from the ternary

interaction matrix (genes x TFs), and the t-statistic of that regression

represents the TFA. Instead of predicting gene expression, Chen et al.

also tested to estimate the averagemethylation level of promoters.

The authors of VIPER extend the idea of TFA to any type of protein,

allowing for the identification of indirect regulators of expression, such

as signaling proteins [18]. VIPER works in a two-step fashion by first

using an extension of theARACNe [48] algorithm for network construc-

tion and then applying analytic rank-based enrichment analysis (aREA)

to infer the activity of a protein. aREA checks for the enrichment of

a regulon within genes that are differentially expressed. Each gene in

a regulon is weighted based on the confidence of the regulator-gene

interaction and its mode of action. To infer the mode and strength of

action, Alvarez et al. modeled the Spearman’s correlation coefficient

density between each regulator and its target as a three-Gaussianmix-

ture, which also allows each regulator-target pair to be represented by

a continuous value.

NetProphet 3predicts the probability of functional TFbinding events

in a gene’s promoter by combiningmultipleweighted networks derived

from expression data and sequence information with regularized gra-

dient boosting [49]. Compared to its predecessor NetProphet 2.0 [50],

NetProphet 3 was developed to be more flexible and allows users

to incorporate any number and type of evidence scores for TF-gene

interactions. However, its performance relies heavily on the usage

of TF perturbation data. The authors showed that without the per-

turbation data, the model was not able to outperform even simpler

regression-based approaches.

ISMARA is a webserver version of Balwierz et al.’s tool MARA [51],

which aims to identify key regulators by predicting either gene expres-

sion or chromatin states across samples with a linear model using a

Bayesian procedure [52]. TF information is provided via a collection

of precalculated TFBS in promoters, and is used to find informative

TF motifs, as well as to identify TF-gene interactions that explain the

changes across samples. TF–TF interactions are also considered by

looking at whichmotifs are found in TF promoters.

FindIT2 combines multiple tools into an R package, among which is

the aforementionedMARA [53]. The TF-related functions include link-

ing ChIP-seq peaks to genes, which is either based on closest distance

or on a defined window, and allows one to quantify the correlation

of peak accessibility with gene expression or promoter accessibility.

FindIT2 also calculates the regulatory potential [54] per gene, which

summarizes surrounding peaks and, if applied on ChIP-seq data or

TFBS predictions, can score TF target genes. Another functionality is

looking for enrichment of TFs in peak subsets or among regulators of

specific genes.

Another example of a tool compiling existent approaches is decou-

pleR, which contains eleven methods to estimate the activity of TFs

or of any other biological factor, based on prior knowledge and omics

measurements [55].

Zhang et al. developed Taiji, a method based on the personalized

PageRank algorithm to rank TFs by their importance in a network [56].

The tool utilizes epigenome data to link active regulatory regions to

their putative target genes by applying themethod EpiTensor [57]. A cell

type-specific GRN is then generated based on the TFBS predictions in

the regulatory regions of each gene. The nodeweight of a TF in its GRN

corresponds to the number of differentially expressed genes regulated

by the TF, while the edge weight is proportional to a TF’s expres-

sion level. Applying the PageRank algorithm on the network gives the

overall importance of a TF. In an extension called Taiji-reprogram the

method predicts the top TFs whose differential activity explains the

transcriptional differences between two conditions [58].

TEPIC also uses TF motifs in regulatory regions of genes, but in a

non-hit-based fashion. It calculates continuous binding site affinities of

TFs per gene and uses them in an elastic net regression model to pre-

dict gene expression. TEPIC has various extensions and can integrate

chromatin accessibility, chromatin footprints, chromatin interactions,

or ChIP-seq data to find TFs predictive for gene expression within

a sample, for differential expression, or time series data [155–158].

Recently, Hoffmann et al. published TF-Prioritizer [59], an automated

pipeline which is based on TEPIC’s functionalities. It was designed

to prioritize TFs explaining differential expression by using ChIP-

seq, ATAC- seq, or DNase-seq data combined with RNA-seq data. If

ATAC-seq or DNase-seq peaks are provided, footprints are called with

HINT-ATAC [27] (see also Section 2.2). TEPIC then calculates TF affin-

ity scores, followed by DYNAMITE [60] to employ a logistic regression

model for each condition or time point, including empirical p-values

based on a background distribution of scores.

2.1.1 Network-based methods in single cell

The previously listed methods were developed for the use of bulk data

and were hence limited to investigating tissues, cell lines, or FACS-

sorted cells. However, the emergence of single-cell technologies has
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enabled the study of individual cells, resulting in the creation of many

new computational tools, in particular for GRN inference (recently

reviewed in Ref. [61]).

Behjati Ardakani et al. proposed TRIANGULATE, an extension of

TEPIC to scRNA-seq where the TFAs of individual cells can be inferred

using a tree-guided multitask regression model [62]. TRIANGULATE

takes as input the gene expression measurements in single cells along

with the per gene TFAs generated by TEPIC. The TRIANGULATE setup

is designed in such a way that the single cells appearing in the same

lineage tree—inferred from the single cell expression data—are penal-

ized similarly. The coefficients of this multitask learning model are

then used to deduce the relevance of TFs in regulating each individual

cell.

Similarly, Teschendorff andWang built a new version of SEPIRA [47],

called SCIRA [63]. Regulons are still inferred from a collection of bulk

RNA samples, but SCIRA allows one to successively estimate TFA in

single cells.

VIPER also received a successor version, called metaVIPER, which

aims to overcome the requirement for a large number of gene expres-

sion data sets from the same tissue. It tries to solve this problem

by constructing tissue-specific networks from a set of heterogeneous

samples and thus, allows its usage on single cell data [64]. The approach

is based on the assumption that regulator–target interactions may be

partially conserved even across distinct lineages. Hence, given a suf-

ficient number of different tissue-specific networks, there is a high

probability that a protein shares the same targets in a subset of the net-

works. Further, the algorithm assumes that only the context-specific

regulons will show a significant enrichment score when comparing

genes that are differentially expressed in the tissue of interest. The

method BITFAM applies Bayesian factor analysis to infer TFA from

scRNA-seq data by decomposing an expression matrix into a weight

and TFA matrix [65]. While the TFA matrix represents the TFA in each

individual cell, each column in the weight matrix represents the poten-

tial targets of a TF. To derive the posterior distributions of thematrices,

the method leverages a collection of non-tissue-specific ChIP-seq data

which is used to incorporate prior probabilities into the weight matrix.

The learned TFA values can be further used for downstream analysis

tasks such as cell clustering or trajectory inference.

SCENIC is an approach that infers GRNs from scRNA-seq data and

characterizes regulons in a single cell as active or not [66]. To achieve

its goal, the method first uses GENIE3 [67] to find genes that are co-

expressed with TFs across a large number of single cells. To minimize

false positives, SCENIC then checks the putative genes of a regulon

for motif enrichment of their regulator. Finally, SCENIC’s enrichment

algorithm, called AUCell, classifies the regulons in each cell as active or

not.

In its latest version, named SCENIC+, the method tries to leverage

epigenome data by taking both scRNA-seq and scATAC-seq data as

input [68]. Using topic modeling on co-accessible regions, they iden-

tify candidate enhancers in specific cell types and states. For each TF,

SCENIC+ then infers all its target genes and the cis-regulatory regions

throughwhich it exerts its effects by usingPearson correlation and gra-

dient boosting machines. Based on the calculated GRN, SCENIC+ can

also perform in silico TF perturbations and identify themost influential

TF for each cell state.

Another tool for constructing cell type-specific GRNs from scRNA-

seq data is Inferelator 3.0 [69]. It requires a prior network of TF–gene

interactions to calculateTFA fromtheexpressionof aTF’s target genes,

and infers new GRNs via a selection of regularized regression models

that estimate expression from the TFA. The prior network can be built

from existing databases or with their tool inferelator-prior that predicts

TFBSwith PWMs in a gene’s regulatory regions.

Similar toMa andBrent’s approach, TIGER is based onmatrix factor-

ization and incorporates a sign constraint on the regulatory network,

as well as restricts the TFA matrix to non-negative values [70]. In con-

trast to Ma and Brent’s method, TIGER can use scRNA-seq data and

uses a Bayesian approach which relies on a literature-curated network

to impose prior distributions on the variables.

2.2 Genome occupancy-based approaches

As a second category of tools for TFA inference, we want to sum-

marize those that do not require any mapping of TFs to genes. They

quantify the genome-wide binding behavior of TFs and estimate their

importance for the sample at hand or try to identify those responsi-

ble for changes between conditions. Usually, a TF’s binding behavior

is assessed by the chromatin accessibility at the binding sites. One

class of such methods focuses on a specific shape of the accessibil-

ity profile, the so-called footprints. Footprint calling is often used to

narrow down TFBS and can be performed on DNase-seq as well as

ATAC-seq data. Both of these sequencingmethods introduce their own

biaseswhich need to be corrected for, but the detectable footprints are

largely shared [71]. To map footprints to TFs one can either first find

TF motifs and look for footprint signatures around those, or perform a

posterior TFmotif search in already identified footprints’ sequences.

One example of such a footprinting tool is HINT, which uses hid-

den Markov models to identify TF footprints by using strand-specific

open chromatin signalswith correction for protocol-specific biases [26,

27]. It was adapted to work both with DNase-seq, as well as ATAC-seq

data. HINT employs position dependency models for the correction of

cleavage bias, which was shown to be crucial for its performance. TFA

is quantified by averaging the depth of a TF’s footprints and the num-

ber of reads in its flanking regions, and can be differentially compared

between samples.

Similarly, TOBIAS enables genome-wide investigation of TF bind-

ing dynamics via footprint calling from ATAC-seq and offers additional

analyses and visualization tools [25]. Bias correction is done by cal-

culating a dinucleotide weight matrix of the cleavage enzyme to then

estimate the enzyme’s expected influence and subtract it from the

measured signal. Footprint scores are generated using a scoring func-

tion that considers the accessibility and depth of the local footprint.

This score is then correlated with the presence of TFBS, and a thresh-

old is set to distinguish between bound and unbound sites. Moreover,

TOBIAS allows contrasting footprints across conditions, comparison of

binding specificity between individual TFs, and TF network prediction.
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BaGFoot also utilizes chromatin accessibility data (DNase-seq or

ATAC-seq) for TF footprinting and aims to detect changes between

conditions [72]. The approach focuses on the footprint depth, aswell as

the accessibility of the flanking region at all motif occurrences of a TF.

Using these twometrics at all motif sites allows for measuring changes

or TFs that do not show a measurable footprint pattern, meaning TFs

where the footprint signature is too variable to confidently determine

footprints.

Similarly, diffTF also aims to estimate changes in TFA between two

conditions via accessibility changes at potential TFBS [73]. The algo-

rithm scans the genome for TF binding motifs that overlap with a

consensus peak set of all samples called on ATAC-seq data. For peaks

containing multiple motifs of the same TF, the binding site with the

highest read count across all samples is chosen as a representative.

While controlling for GC content, log2 fold-changes for all peaks of a

TF are calculated and compared to a background distribution. TFA is

then represented as the mean difference to the background. If addi-

tional expression data is provided, diffTF classifies TFs into activators

and repressors, based on the Pearson correlation between the RNA-

seq counts of a TF and the ATAC-seq signal of all its putative binding

sites.

2.2.1 Occupancy-based methods in single cell

Tools examining genome-wide occupancy of TFs are also increasingly

developed specifically for single cell data, or designed to work with

bulk as well as single cell. For example, Schep et al. created a method

to calculate accessibility deviations for peaks that share the same

motif in single cell (or sparse) chromatin accessibility data [74]. Their

method, chromVar, analyzes the gain or loss of accessibility of motifs

within peaks by calculating a z-score of the number of fragments

that map to a motif in a cell, minus the expected number of frag-

ments based on all cells. The mean and standard deviation for the

scaling procedure are based on a background peak set that matches

the GC content and accessibility, thus controlling for technical biases

introduced by PCR amplification or variable transposase tagmentation

conditions.

Like previousmethods, chromVar suffers from twomajor limitations:

an open TF motif does not necessarily represent a binding event, and

the samemotifs can be shared by many different TFs. Argelaguet et al.

attempt to tackle these problems by introducing a modified version of

chromVar, called chromVAR-Multiome [75]. In this method, binding sites

are based on an in silico binding score that incorporates information

from single cell RNA expression. For a motif to be considered, the cor-

relation coefficient between its accessibility and the gene expression

of its corresponding TFmust pass a threshold.

de Boer and Regev developed an R package, BROCKMAN, to unravel

the dependencies between TF binding and chromatin accessibility or

chromatinmarks using gapped k-mer frequencies acrossmultiple sam-

ples or single cells [76]. They first construct a k-mer x samples matrix

that contains the frequency of a particular k-mer associated with an

open chromatin region or chromatin mark measured in each sam-

ple. Next, using principal component analysis (PCA), they decompose

this matrix into two other matrices: (1) k-mer x principal components

(PCs)—indicating the contribution of k-mers to each PC and (2) PCs

x samples—projection of samples into PCs, where the number of PCs

is determined through a permutation test. In this manner, the k-mers

represent a group of co-varying TFs that are identified through those

recognizing multiple related k-mers. Finally, to infer the differential

TFA, theyexamine the significantPCsassociatedwith k-mers thatwere

classified into “bound” or “unbound” for each TF. Applying a hyperge-

ometric test helps assess the enriched or depleted status of a bound

k-mer to a particular TF, enabling the identification of differential TFs

between various conditions or cell types.de Boer and Regev also pre-

dict TF–TF interactions by identifying TFs that show covariation on the

same PC.

scFAN uses deep learning on scATAC data and estimates TF binding

in single cells [77]. The convolutional neural network is fist trained on

bulk ATAC-seq and ChIP-seq data to then predict TF binding in open

chromatin regions of individual cells using their continuous scATAC-

seq profile as input. The ATAC signal of similar cells is aggregated to

reduce sparsity. TFA per cell is then quantified by summarizing the

predicted occurrence of each TF across all scATAC-peaks.

2.2.2 Sequence-based deep learning models

There has been a tremendous advancement in deep learning models

that predict epigenetic signals or gene expression fromDNA sequence

alone. While these models do not initially use TF information, they can

successively be interrogated to findwhichmotifs drive the predictions,

or, be fed with artificial sequences. Their use in practice is hampered

by the required computational resources, the cell type-specificity of

the predictions, and that they have difficulties to predict the impact

of the genomic environment [78]. Nevertheless, these methods offer

complementary insights into the syntax of the regulatory code.

Hammelman and Gifford created such a deep learning approach

and used it for the identification of cell state-specific TFs in

chromatin accessibility data [79, 80]. Theirmethod is part of the frame-

work DeepAccess and is based on an ensemble of convolutional neural

networks. Upon trainingwith cell type-specific open chromatin regions

and randomly sampled closed DNA sequences, DeepAccess predicts

whether a sequence is accessible. For estimating the influence of TF

motifs, the predicted accessibility of a sequence set with a TF motif

is compared to the same sequences without the motif. Applying a

signed-rank test statistic on the predicted difference gives the so-

called expected pattern effect. This metric can also be calculated for

the difference between conditions, which the authors term differential

expectedpatterneffect. The flexibility of theapproachallows scientists

to investigate combinations of TF motifs and varying spacing between

motifs.

Yuan and Kelley also model chromatin accessibility from sequence

with convolutional neural networks, but in single cell data, specifically

scATAC-seq [81]. Similar to Behjati Ardakani et al., their tool scBasset

treats single cells as the tasks in their multitask setting. The final layer
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of their network represents a latent cell embeddingwhich is then com-

bined with a linear transformation matrix to predict accessibility. In

order to derive the single cell TFA, perturbed DNA sequences—with

or without the TF motif of interest—are given to the model. The pre-

dicted activity delivered by the output layer of scBasset allows the user

to investigate the role of the TF in each single cell. Meaning, if the TF

was positively involved in regulating a cell, the sequencewith themotif

is expected to return an increased accessibility.

Worth mentioning is also BPNet which does not predict acces-

sibility, but the binding profile of specific TFs from CHIP-exo data

[82]. Although it needs to be trained per TF, BPNet allows one to

examine TF-specific motif syntax rules, specifically how the presence

of other motifs and their spacing affects the predicted TF binding

profile.

3 APPLICATIONS

TFA inference methods have been utilized in diverse settings to

advance our comprehension of fundamental biological mechanisms.

Here, we showcase the application of TFAmethods across various con-

texts, with a focus on examples from development and differentiation,

cancer and aging. This is by all means not a complete list, but supposed

to illustrate potential applications of TFA inference.

3.1 Development and cell differentiation

TFs are essential regulators during development for sustaining cellular

potency, as well as for establishing specific cell lineages. As an example

application in this context, Kamimoto et al. used their in silico pertur-

bation approach to predict TFs that are important for axial mesoderm

development in zebrafish, followed by experimental validation [83].

Lefebvre et al. leveraged TFA inference to identify a set of TFs that pro-

mote the transition from naive B cells to centroblasts in the germinal

center [84]. Similarly, Liu et al. used TFA analysis to identify TFs that

promote the differentiation of T cells into effector and memory cells

[85]. A specific application of TFs’ differentiation potential is directed

reprogramming. It is a process whereby a pluripotent or somatic cell is

converted to another cell type by exogenously expressing a small set of

TFs. Since reprogramming can skip intermediate differentiation steps

and produce arbitrary cell types, this technique holds great promise in

the field of regenerative medicine, as it allows for the repair of dam-

aged tissues and also enables researchers to investigate primary cell

types that are difficult to obtain, such as specific types of neuronal

cells [86]. However, the success of reprogramming is currently limited

to certain cell types, and even these transformations are often incom-

plete, only achieving partial characteristics of the target cell type. The

process itself is highly time-consuming as the possible combinations to

test are enormous. Hence, developing computational methods capable

of accurately predicting effective TF sets is crucial for advancing this

field.Whilemany of the established approaches are built on the identi-

ficationofTFs that showdifferential activity between two typesof cells

[80, 87–89], others are specifically tailored to infer new reprogram-

ming strategies, like Taiji-reprogram [58]. Hammelman et al. provide a

comparative benchmark on tools for ranking reprogramming factors

[86]. In an applied example, Patel et al. measured transcriptomic and

chromatin accessibility changes in the lifetime of murine spinal motor

neurons andusedDeepAccess to find TF candidates regulating different

stages of neuronal maturation, to then recapitulate this maturation in

cultured neurons [90].

3.2 Cancer

Aberrant activity of TFs has been shown to contribute to cancer initi-

ation, maintenance, progression, and drug resistance in various ways

[91]. Among the most prominent examples of cancer-driving TFs is

theoncoprotein c-myc, whose activation increases overall transcription

elongation [92]. Many other classes of TFs have members that con-

tribute to malignancies, such as forkhead box proteins [93] or the ETS

family [94]. The change in TFA in a cancer setting can be caused by

direct effects on the TF itself, but also by indirect effects likemutations

in TFBSs or altered levels of cofactors andmiRNAs. The complexity and

multitude of different drivers make it particularly challenging to infer

altered activity of a TF. Nonetheless, TFA analyses have been used to

estimate the impact of somatic mutations [18], to find interactors of

genes promoting tumorigenesis [95], to serve as prognostic markers in

association with survival rates [96], and to predict drug response [97].

3.3 Aging

Aging is themost significant risk factor for awide range of diseases and

is highly correlated with morbidity and mortality. Compared to their

younger counterparts, aged cells exhibit changes at the transcriptional

level, including a loss of cell type-specific profiles and dysregulation of

developmental genes [98], as well as increased cell-to-cell variation in

their expression profiles [99]. TFs play a central role in themechanisms

underlying these changes [100] and are known to contribute to the ini-

tiation and progression of age-related diseases [101]. Inference of TFA

patterns can, therefore, provide valuable insights into the mechanisms

of aging. Maity et al. used their SCIRA algorithm to analyze scRNA-seq

data from a public murine aging atlas and identified TFs with differen-

tial activity levels in aging,whichwere linked to thedysregulationof the

circadian rhythm. Further, they found TFs that could explain different

macrophage subtype ratios observed in aging and potential contribu-

tors to leukemia [102]. In a similar fashion, Karakaslar et al. examined

the effects of aging in peripheral blood leukocytes and splenic cells and

compared the transcriptome and epigenome between young and old

mice [103]. They applied footprinting analysis, including HINT [27], to

describe TFs associated with increased inflammation upon aging.
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4 EXPERIMENTAL MEASUREMENT OF TFA VIA
PERTURBATION

TF perturbation promises a more direct readout of TFA and often

serves as a resource for validation data. Hence, we want to give

an overview of the huge range of experimental studies and their

approaches for analysis. The list of presentedworks here focusesmore

on larger scaled setups and is not exhaustive, but is supposed to illus-

trate the variety ofmethods and designs. The role of this type of data in

TFA validation will be discussed later in a separate section.

A common procedure is the perturbation of a TF via knockout,

knockdown or overexpression, followed by a readout of the caused

changes—mostly by transcriptome measurements. Dixit et al. pub-

lished Perturb-seq, which combines scRNA-seq with pooled CRISPR-

based perturbation, and applied it in murine immune cells and human

cell lines to knock out TFs and other regulators [104]. Their method

uses lentiviral vectors to deliver the sgRNA togetherwith an expressed

guide barcode for identification. Their work comes with its own com-

putational tool MIMOSCA to estimate the effect of sgRNAs on gene

expressionwith a regularized linearmodel, also allowing to account for

covariates like the number of transcripts in a cell or the cell state. Hack-

ett et al. present an atlas of gene expression dynamics (IDEA: Induction

Dynamics gene Expression Atlas), that provides data on the induction

of more than 200 TFs via a synthetic promoter in yeast [105]. They

measured overmultiple time points with the aim to increase the detec-

tion of direct regulation with rapid changes in expression, as opposed

to indirect effects supposedly taking place at later time points. It also

enabled examination of the dynamics of expression changes. Another

example comes fromAlda-Catalinas et al., who used CRISPR activation

in combination with single cell transcriptomics in mouse embryonic

stem cells. Their goal was to find TFs whose inductions promote a cell

state expected in zygotic genome activation [106]. UsingMOFA+ [107]

allowed them to jointly analyze the expression of genes and of repeat

elements toderive latent factors that explain variation across cellswith

different sgRNAs. Nakatake et al. induced hundreds of genes, including

481 TFs, in hESCs followed by transcriptomic readout after 48 h [108].

On top of measuring expression changes, they recorded microscopic

images which enabled them to link induced genes to morphological

changes. To identify TFs which drive differentiation into certain cell

types, they correlated the perturbed transcriptome to public transcrip-

tome data, assuming that a high similarity indicates a TF’s capability

to differentiate hESC into that cell type. Similarly, Joung et al. created

a TF Atlas of expression profiles of hESCs overexpressing all anno-

tated human TF isoforms (>3500) via a barcoded ORF library, coupled

with scRNA-seq [109]. They found drastic differences in the differen-

tiation potential between splice isoforms for many TFs. Other works

do not focus on expression changes upon TF perturbation, like Rubin

et al., who combinedCRISPR interferencewithATAC-seq into Perturb-

ATAC. They observe changes in the accessibility of chromatin in single

cells and in particular the accessibility at TFBS [110]. Another impor-

tant resource informing on a TF’s activity are cell viability screens,

which frequently include loss-of-function of TFs, and can thus provide

an estimate of the importance of a TF in a cell line [111, 112].

Beside methods interfering with a TF’s gene itself, TFA can be

assessed by using a reporter gene which holds a respective TFBS in

its promoter. Massively parallel reporter assays (MPRAs) measure the

regulatory activity of sequences of candidate regions like enhancers,

and give information on TFA via the TFBS included in the sequence.

They exists in a variety of designs, but have the downside of testing

regions outside of their native chromatin context and do not allow

to identify endogenous target genes of a TF [14, 113]. But since the

reporter is usually not functional, MPRAs promise to reduce indi-

rect effects of perturbation [114]. Abe and Abe aimed to measure

endogenous TFA via a viral-vector-based TF reporter battery using a

bipromoter containing a reference gene and aTFA reporter genewhich

holds the binding motif of the TF [115]. The reference gene was used

to correct for transfection efficiency. They tested their constructs in

human and murine cell cultures, as well as in vivo in the mouse brain.

Additionally, they measured different environmental conditions and

stimuli to visualize dynamic changes with their so-called TFA profile.

Another example iswork fromKreimer et al., who conducted lentiviral-

based MPRAs during neural differentiation and tested selected TF

motifs in regulatory sequences [114, 116]. The sequencewith themotif

is placed in front of a transcribed barcode, so that the ratio of barcode

to the number of coding sequences can be interpreted as activity of the

sequence.

5 LIMITATIONS OF TFA VALIDATION

Asof now, there is noway to directlymeasure the activity of a TF. Every

quantification is only an estimate capturing a certain modality, like the

protein level, mRNA level, or availability of binding sites. TF perturba-

tion is themost direct readout, but converts cells into an artificial state,

accompanied by various confoundingmechanismswhich are discussed

later on. An aggravating factor is the limited availability of perturba-

tion data. Thus, it is also not possible to directly evaluate the quality

of a TFA estimate, which has led to a variety of indirect approaches

trying to describe the plausibility of results or to compare different

methods. Here, wewant to discuss those validation practices, potential

issues, and point to aspects of TF regulation that are underrepresented

in computational tools of TFA inference. We defined TFA as a TF’s reg-

ulatory impact on its target genes, which is often summarized for a

cell state or condition, and, hence, we focus primarily on validating TF-

gene relationships. These relationships serve as the basis for—or are

the result of—tools we categorized as regulatory network-based tools

(Section 2.1).

A common approach is to search for support of TF-gene interac-

tions, which has sparked efforts in assembling databases like HTRIdb

[117], IntAct [118], or TRRUST [119], which gather TF interactions via

text mining, manual curation or integration of other databases and

resources. Due to their nature, those databases are biased toward

well-studied TFs and collect data with variable level of evidence [16,

120]. Others try to support the importance of their identified TFs

and inferred target genes via GO enrichment [49, 121], eQTLs in

binding sites [122], or via measured TF binding [49, 104, 122]. Con-



13 of 20

cerning changes in TF binding behavior, condition-specific TF binding

experiments can be used for evaluation and further substantiated by

measurements of chromatin accessibility or other assays for regula-

tory activity. Frequently referred to as the gold standard, however, is

TF perturbation data. Numerous publications validate their findings

on public data or perform their own experiments [42, 72, 87–89, 119,

123–125]. Others assembled databases, like KnockTF [126]. Although

those different approaches for validation are commonly used, there

appears to be little agreement between them. In a benchmark study,

Garcia-Alonso et al. gathered TF-gene interactions from four types

of approaches (literature-based databases, ChIP-seq data, TFBS call-

ing based on PWMs and inference from expression data) into a joint

database called DoRothEA. They found the vast majority of TF-gene

interactions to be supported by only one approach (96.3%) [120].

Even across literature-baseddatabases therewas little overlap. Bench-

marked against three collected TF perturbation data sets, the different

types of resources varied heavily in their accuracy.

A substantial discrepancy exists between TF ChIP-seq and TF

perturbation data. A common assumption is that TF binding in the pro-

moter is required for a functional TF-gene interaction, meaning that

the TF is important for the gene’s expression. It is the basis for many

network-driven tools (Section 2.1). However, this notion that every

binding event of a TF in a promoter leads to a transcriptional response

was challenged by a TF perturbation screen in yeast, where only 3%

of genes with a measured TFBS in their promoter were affected by

the TF’s knockout [127], and reproduced in more recent perturbation

studies also in human and mice with varying but still small fractions

of overlap [104, 105, 128, 129]. Conversely, the majority of respon-

sive genes were not bound by the perturbed TF, posing a predicament

for occupancy-based approaches (Section 2.2), since TF binding at sites

of known regulatory importance appearedmostly ineffective. Multiple

components have to be considered when it comes to the, seemingly,

lack of regulatory function of TF binding. Aspects on the level of

TFBS, the TFs themselves, as well as the target genes could influ-

ence the response to perturbation and contribute to this gap between

bound and responsive genes. With regard to TFBS, low-affinity bind-

ing sites are frequently neglected, due to the difficulty in annotating

them, although they can actually be informative and functional [15, 17,

130]. They could account for a portion of responsive genes where no

strong binding sites were found and thus were overlooked for being

regulated by a TF. Also rarely considered are more distal TFBS out-

side the promoter. On the other side of the scale, high-affinity binding

sites and regions with more bound TFs appear to be more sensitive

to perturbations [128]. Another layer of complexity is added by the

redundancy of binding motifs. Compared to the number of TFs the

amount of different DNA-binding domains is small, and binding speci-

ficity is additionally driven bymechanisms like combination of multiple

DNA-binding domains, interaction with other proteins, DNA shape,

epigenetic modifications at the target site, or compartmentalization

[3, 14–17]. Despite these specificity mechanisms, TF binding and func-

tion can still be redundant, and thus, the regulatory importance of a

TF might only become evident if any compensatory mechanisms are

abolished [131]. For instance, Gitter et al. found a fourfold higher

agreement between bound and responsive genes upon knockout when

excluding TFs that had a redundant paralog [132]. On top, they could

showan increase of responsive geneswhen a potentially compensating

TF was removed in double knockout experiments. Others also found

compensation for TFs which were co-expressed with other TFs, or

shared functional annotation terms [133, 134]. Such buffering mech-

anisms of TFs point to an aspect of transcriptional regulation which is

heavily neglected in computational approaches: combinatorial action

of TFs. Most prominently represented by the formation of multimers,

TFs interact and depend on each other, as well as on other cofac-

tors [14, 15]. Although some tools allow for the quantification of TF

co-occurrence [135, 136], most cannot estimate how a combination

of TFs might affect regulation. Often mentioned in this context are

the enhanceosome model, assuming synergistic cooperation, and the

billboard model, describing additive cooperation [137]. Neither model

appears to be universal, and experiments perturbing pairs and triplets

of TFs indicate that reality is a mixture of both [104, 109, 110, 114].

On the level of target genes it is of relevance to the outcome of TF

perturbation experiments, that certain features appear to make genes

eithermore sensitive or insensitive to perturbations.Wu and Lai exam-

ined genes that did not respond to perturbation despite TF binding

in their promoter in yeast, and found them to show distinct prop-

erties: low expression, low expression variation across experiments,

no TATA box, having a nucleosome-free region directly upstream of

the TSS, low number of bound TFs and binding sites, and short dis-

tance between binding sites and TSS [134]. Nakatake et al. observed

in human that genes in regions with histone marks associated to hete-

rochromatin responded only to very few TF perturbations, while genes

with more active histone modifications responded broadly [108]. In

their MPRA Kreimer et al. saw a correlation between the baseline

expression from the unperturbed sequence and the effect of mutat-

ing the sequence [114]. Kang et al. gathered data from multiple TF

perturbation experiments and built gradient boosted trees to predict

which genes will change expression [138]. Gene expression and gene

expression variation were the most informative features. Similarly,

but in a broader scope and not focused on TF perturbations, Sigalova

et al. found that expression variation was predictive for differential

expression between conditions, independent of the experimental

design [139]. Taken together, inherent properties of genes may explain

non-responsiveness to perturbation of bound TFs, as well as respon-

siveness despite lack of TF binding.

Even across perturbation experiments it can be expected to detect

different effects dependent on their design. Knockdown and overex-

pression studies can be variable in their efficiency of changing a TF’s

availability, while a full knockout consistently removes a TF. How-

ever, knockout experiments have been repeatedly found to elicit less

profound changes than knockdown, as the loss-of-functionwas accom-

paniedby compensatory transcriptionof related genes [140–143]. This

compensation can also serve as explanation as to why many healthy

humans exhibit several loss-of-function mutations. Mechanistically it

is described to take place on a transcriptional level, independent of

functional compensation on protein level. Different studies suggest

the key player to be premature termination codons that are generated
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from themutated transgene sequence [140–143]. For gain-of-function

protocols it is also argued that they can cause more transcriptomic

changes than loss-of-function [105, 108, 144]. Another aspect poten-

tially affecting the detectable effects is the timepoint of measurement

after perturbation, which differs heavily between studies. While some

works aim to capture more direct effects and measure shortly after

perturbation (e.g., 5 min [105]), others wait longer to focus more on

differentiation effects (e.g., 7 days [109]).

All in all, TF perturbation experiments are still the most evident

and insightful source of TFA validation. It should be kept in mind

however, that experimental design, compensatory mechanisms, gene

states, and the chromatin environment impact their outcome. Partic-

ular care should be taken, when interpreting non-responsiveness of

genes despite TF binding as non-functional. In other words, if perturb-

ing a TF does not change the expression of its bound target genes, it

does not necessarily mean that it is not important for the genes’ regu-

lation in homeostasis, but that its rolemight be takenover byother TFs,

or that other compensatorymechanismsmask its function.

6 DISCUSSION

In this review, we presented an overview of available computational

tools to estimate TFA, described examples for their usage, and dis-

cussed their validation and the concomitant shortcomings. Here, we

want to further detail limitations of frequently used data and assump-

tions, underrepresented data, shortly summarize findings from bench-

mark studies, and give a perspective of how the field might develop in

the future.

Plenty ofmethods rely on experimentallymeasured or predicted TF

binding information, either hit-based or non-hit-based (e.g., via motif

enrichment). As consequence, they are restricted to TFs where such

data is obtainable. Current assays for annotating TFBSs like ChIP-

seq, ChIP-exo, or CUT&RUN are limited to TFs where an antibody

with high affinity is available. They require relatively large amounts

of homogeneous cells, which makes it particularly challenging for

tissues with a high diversity of cell types or cell states. In addition,

only one TF can be measured at a time, hampering the acquisition

of a complete TF binding annotation [19, 20]. Motif-based TFBS

prediction, on the other hand, does not require data in the cell type

of interest, but already defined motifs which were identified so far

only for a fraction of all TFs. Using motifs on the DNA sequence

alone comes with the downside of being prone to false-positives,

which can be mitigated by the usage of chromatin accessibility data,

but in turn requires an additional cell type-specific data modality

[22]. Furthermore, TFs show specific binding patterns. This led to

classification systems like the distinction between pioneers (can bind

closed chromatin and reshape chromatin), settlers (bind majorly to

their motifs in open chromatin), and migrants (bind only a fraction

of their accessible motifs) [145, 146], but these classes are rarely

considered for TFA inference methods. Redundancy of binding

motifs of different TFs further hamper an accurate motif-based TFBS

prediction.

A recurring assumption in models is to expect a high TF expres-

sion to indicate regulatory importance. This could not be confirmed

by perturbation studies [108, 114], and neglects the discrepancy

between RNA and protein levels and the impact of post-translational

modifications [16, 147, 148]. Analogously, the majority of models

assume a linear influence of TFA on gene regulation, which might

be insufficient to describe biological complexity. Barely included in

any model are specific characteristics of TFs, such as DNA-binding

domains, other protein domains, their structure, or subcellular local-

ization. Despite growing knowledge on such kind of information, TFs

are treated as uniform features. On top, different isoforms of TFs are

rarely considered, although they apparently differ in their regulatory

action [109]. Another aspect is the cooperative action of TFs, which

is inherently complicated to capture in a model. The majority of

tools define TFs as independent or assume an additive effect. While

sequence-based deep learning models start to give insights into the

motif syntax of TFs, including how motif spacing and co-occurrence

could affect a region’s activity or a target gene’s expression, their

computational cost and the laborious investigation of the syntax rules

were not yet transferred to more general TFA tools. The dependency

on other non-TF factors is also not well understood and is lacking in

models.

Chromatin compartmentalization and phase-separated conden-

sates are another relevant factor in gene regulation, as they create

microenvironments and transcriptional hubs with specific conditions.

While TFs are thought to be important for the formation of such com-

partments, their function is also likely heavily affected by them, due to

localized concentration of TFs and cofactors [15]. Howexactly conden-

sates form and how they are composed is subject of ongoing research,

and thus, TFA inference still assumes a uniform availability of TFs

across the genome.

Incorporation of more data modalities is a central challenge for TFA

inference. Currently, tools focus on few data types—most prominently

on transcriptome and chromatin accessibility—and thus, can only cap-

ture a small fractionof allmechanisms that affect gene regulation.DNA

methylation, post-transcriptional and -translationalmodifications, pro-

tein levels and their stability and localization, hold valuable informa-

tion, but are currently underrepresented, due to lacking availability and

missing knowledge of usability.

AlthoughTFA inference tools vary in thedata theyuse and albeit the

difficult validation (Section 5), there have been efforts to benchmark

their performance, especially for methods quantifying or identifying

TF–gene interactions. Although unweighted GRNs do not represent

TFA by our definition, their comparison can still be insightful, since

they form the basis for a large fraction of tools. Some works provide

dedicated frameworks for benchmarking, such as BEELINE [149] or—

not limited to TFA—decoupleR [55]. While the scope of tested data and

acquisition of the ground truth between benchmarks differ, a common

finding is that tools perform moderately at best and sometimes worse

than random [55, 120, 149–153]. Variable efforts for parameter opti-

mization could contribute to the modest performance. Some studies

showed that accuracy canbe increasedby jointly integrating theoutput

of multiple tools [55, 150]. Further, the intersection of highly ranked
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TFs or predicted regulons across tools is often low. The low perfor-

manceandsimilarity emphasize thenecessity for standardbenchmarks

and a critical view on the generation of simulation data and the accom-

panied limitations and assumptions. It would be insightful to further

investigate how general strategies and principles, for example, linear

versus non-linear models, affect the performance. Nonetheless, the

results of computational TFA tools are frequently backed up by find-

ings from the literature, and top-ranked TFs are often in line with their

proposed role in the condition at hand [43–45, 52, 83, 152]. Also, even

if the highly ranked TFs contain false positives, it restricts the num-

ber of potential candidates and facilitates the prioritization TFs for

experimental validation.

One of the key advancements in the field is the ongoing develop-

ment and availability of single cell technologies, accompanied by tools

that analyze such data [61]. While there are challenges regarding the

sparsity and integration of multiple modalities, single cell resolution

promises to overcome the inaccuracy of bulk data and to give insights

into cell-specific mechanisms. It has the convenient advantage of pro-

viding a high number of samples for models to train on, given that the

sparsity does not require a high level aggregation of individual cells.

Another positive development is the increased feasibility and avail-

ability of large-scale TF perturbation data. While their interpretation

and analysis is complicated by multiple aspects, as discussed in Sec-

tion 5, they are still providing themost direct data for validation of TFA

inference tools.

Sequence-based deep learning models also hold great potential

for shaping the field, as they provide the possibility to identify TF

motif syntax rules. However, such knowledge has yet to be transferred

to more generalizable tools, that do not require high computational

power or need to be trained on the sample at hand.
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