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Abstract: In this paper, we consider the inclusion of the solvency capital requirement (SCR) into
portfolio optimization by the use of a quadratic proxy model. The Solvency II directive requires
insurance companies to calculate their SCR based on the complete loss distribution for the upcoming
year. Since this task is, in general, computationally challenging for insurance companies (and
therefore, not taken into account during portfolio optimization), employing more feasible proxy
models provides a potential solution to this computational difficulty. Here, we present an approach
that is also suitable for future applications in quantum computing. We analyze the approximability
of the solvency capital ratio in a quadratic form using machine learning techniques. This allows for
an easier consideration of the SCR in the classical mean-variance analysis. In addition, it allows the
problem to be formulated as a quadratic unconstrained binary optimization (QUBO), which benefits
from the potential speedup of quantum computing. We provide a detailed description of our model
and the translation into a QUBO. Furthermore, we investigate the performance of our approach
through experimental studies.

Keywords: solvency II; quadratic unconstrained binary optimization; portfolio optimization; proxy
modeling

1. Introduction

The support for strategic asset allocation is being examined, with a particular focus on
incorporating capital requirements according to Solvency II into investment decisions. The
goal is to investigate to what extent the use of quantum-inspired systems can contribute to
better managing the complexity of the problem and delivering more stable results. Reduced
fluctuations in investment portfolios contribute to the stabilization of companies and, conse-
quently, the financial system. Similarly, methods for determining regulatory requirements
can be reconsidered. More accurate calculations through adequate representation and
inclusion of risk factors can lead to a more precise evaluation of risks, resulting directly in
lower costs and increased efficiency.

Quantitative asset management has its origins in Modern Portfolio Theory, which
was described by Harry Markowitz in 1952. In portfolio theory, the goal is to construct a
portfolio with an optimal risk-return tradeoff. Markowitz’s classical theory uses volatility
as a measure of risk and introduces a mathematical framework to calculate the risk and
return characteristics of a portfolio based on the weights assigned to individual assets, their
expected returns, their volatilities, and their correlations (Markowitz 1952). By optimizing
the risk-return tradeoff, investors can construct portfolios that provide the desired level
of return while minimizing risk or vice versa. In our application, we extend the above
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optimization framework by integrating another risk measure, the Solvency capital require-
ment (SCR). Finding the optimal tradeoff among these three objectives is a multi-objective
optimization problem and one that is interested in finding Pareto-optimal solutions. We
show how finding Pareto-optimal points in this optimization problem can be related to
solving quadratic unconstrained binary optimization (QUBO) problems, for which quan-
tum computing (especially quantum annealing) is considered a promising candidate for a
significant speedup compared to traditional methods.

In the Section 1, we give a brief overview of the basic concepts of multi-objective
optimization and introduce solvency capital as a further objective to be considered in
portfolio optimization alongside return and volatility. Furthermore, we outline how Pareto-
optimal points for this extended problem can be found using QUBOs. In the Section 2, we
show in detail how to construct the required QUBO formulation. We demonstrate how the
SCR is approximated by a quadratic function, how the continuous optimization variables
can be replaced by binary ones and how the condition “unconstrained” is achieved. In
the Section 3, we apply our approach to a real-world example from the insurance industry
consisting of 26 assets and evaluate how closely the Pareto frontier has been approximated
with our method.

1.1. Our Contribution

Our first contribution is that we incorporate the SCR as an objective function into
portfolio optimization and we are the first to study portfolio optimization including SCR
via a quantum-inspired approach. In order to tackle this problem with quantum anneal-
ing or gate-based quantum hardware, the problem has to be translated into a quadratic
unconstrained binary optimization problem, thus translating continuous variables into
binary, writing the budget constraint as penalty function in the objective function, and,
most importantly, find a quadratic formulation of the SCR. The SCR objective is, in general,
highly non-quadratic. Thus, we propose classical machine learning (general least squares
regression) to find a quadratic approximation to the SCR, which is again our contribution.
Our third contribution lies in the evaluation of the performance. We use a multi-objective
view of the performance measurement. The hypervolume indicator has rarely been used
outside the multi-objective community and in particular has never been applied to quan-
tum algorithms. Here, we examine the solutions obtained by the QUBO using the original
multi-objective formulation consisting of return, volatility, and SCR.

1.2. Multi-Objective Portfolio Optimization

At the center of Markowitz portfolio optimization lies the trade-off between risk
and return, which are often considered conflicting objectives in portfolio optimization.
Multi-objective optimization provides a framework to explore and analyze the trade-offs
between these conflicting objectives. We start with a general discussion of the basics of
multi-objective optimization and then concretize to our use case.

Let n, p ∈ N and X ⊆ Rn. For p ≥ 2 and i = 1, . . . , p let fi : X −→ R be an arbitrary
function. We write f : X −→ Rp, x 7−→ ( f1(x), . . . , fp(x)) for the vector-valued function
obtained by combining the fi. A multi-objective optimization problem is defined as

min
x∈X

f (x), (1)

and, in this case, X is called the set of feasible solutions. Since there is no total order relation
on Rp (like the ≤ relation on R), the minimum is taken with respect to a partial order and,
therefore, a minimal element x ∈ X is not unique, in general, see Ehrgott (2005) for more
details on ordering relations. This leads to the concept of Pareto-optimality. A solution
x ∈ X is Pareto-optimal if there is not a solution x̄ ∈ X, x̄ ̸= x with fi(x̄) ≤ fi(x), ∀i =
1, . . . , p and f j(x̄) < f j(x) for at least one j ∈ {1, . . . , p}. In this case, the image y = f (x) is
called nondominated. We call the set of all nondominated images Pareto frontier. The goal
of multi-objective optimization is to determine the Pareto frontier as accurately as possible.
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One of the most common approaches to solving a multi-objective problem is the
weighted sum method, which transforms a multi-objective problem into a single-objective
problem through a scalarization function. Given a weight vector, also known as preference
vector, λ ∈ Rp

≥0, we solve the single-objective optimization problem

min
x∈X

λt f (x). (2)

Note, that an optimal solution to this problem is Pareto-optimal and called supported.
In general, a Pareto-optimal solution x ∈ X is not supported, that is to say, there is no
λ ∈ Rp

≥0 such that x can be realized as a solution to the single-objective problem (2). A
sufficient condition for all Pareto-optimal points to be supported is the convexity of all
objective functions f1, . . . , fp. We refer to Halffmann et al. (2022) and Ehrgott (2005) for
further introduction into multi-objective optimization.

We turn back to Markowitz’s portfolio theory and show how portfolio optimization
fits into the general framework of multi-objective optimization. Let n ∈ N be the number
of assets in our portfolio and R = (R1, . . . , Rn) a random vector describing the return of
assets. We assume that expected values, variances and covariances are known and define

µi := E(Ri),

σi,j := Cov(Ri, Rj),

for i, j = 1, . . . , n. These quantities are further summarized to the return vector µ :=
(µ1, . . . , µn) and the covariance matrix Σ := (Cov(Ri, Rj))i,j∈{1,...,n}. It is also assumed
that any denomination of assets is permissible and that the budget is normalized to 1. Nega-
tive shares are excluded. Under these conditions, the formulation of portfolio optimization
most frequently considered in the literature is given by

min−µtx + q · xtΣx,

s.t.

x1 + . . . + xn = 1,

0 ≤ xi ≤ 1 for each i = 1, . . . , n,

(3)

where q > 0 is called the risk aversion. A vector (x1, . . . , xn) ∈ Rn that satisfies the above
constraints is called an investment decision. In line with the above discussion, the problem
in (3) arises when the weighted sum method is applied to the multi-objective problem (1),
in which p = 2 and the objective functions are given by

f1 : X −→ R, x 7−→ −µtx,

f2 : X −→ R, x 7−→ xtΣx,

and the feasible solutions as X = {x ∈ [0, 1]n|x1 + . . . + xn = 1}. The preference vector
is λ = (1, q). The traditional formulation of portfolio optimization is, therefore, a special
case of the multi-objective view, whereby different risk aversion factors correspond to
different points on the Pareto frontier. When extending portfolio optimization to include
further objectives, the concept of Pareto-optimality provides the most natural mathematical
framework for investigating trade-offs between multiple objectives.

Another reason for taking the multi-objective view is its importance for applications
in industry. Decision-makers can use the Pareto frontier to explore a range of solutions,
each representing a different compromise between competing objectives. This flexibility is
valuable for decision-makers who want to make informed choices based on their priorities.
In the following section, we will introduce a target function, which models a crucial key
figure with profound implications for insurance companies.
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1.3. Extension of Portfolio Optimization by Solvency Capital Requirement

Solvency capital requirement (SCR) is a term used in the insurance industry to refer to
the minimum amount of capital that insurance companies are required to hold in order
to ensure their solvency and financial stability. It is a regulatory measure designed to
protect policyholders and ensure that insurance companies have sufficient funds to cover
unexpected losses and are adequately equipped to cope with various risks such as credit
risk or market risk deriving from the activities carried out.

The currently implemented SCR introduced by EIOPA, the European Insurance and
Occupational Pensions Authority, in the Solvency II framework (European Commission
2015) is defined in a way that is closely related to the concept of Value at Risk or VaR in
short. In general, given any random variable Z and α ∈ (0, 1), let

VaRZ(α) = inf{z ∈ R : P(Z > z) ≤ 1 − α}.

Now let x ∈ [0, 1]n be an investment decision and let Lx be the random variable modeling
the loss of the insurance company with an annual time horizon. Our notation emphasizes
that the loss depends, among other things, on the company’s investment decision. The
Solvency capital requirement is then defined as

SCRLD(x) := VaRLx (0.995)−E[Lx],

where the index LD stands for loss distribution (we will introduce another variant of the
SCR shortly). It can be interpreted as the amount of funds the insurance company needs to
hold in order to be solvent with a probability of 0.995 in the following year. Note, that the
expression VaRZ(α)−E[Z] does not define a convex risk measure, so considering the SCR
in an optimization problem is usually hard (see Artzner et al. (1999) for further details on
risk measures).

Determining Lx and its distribution is difficult as it requires sophisticated stochastic
modeling as well as efficient techniques for implementing the necessary calculations (see
Bauer et al. (2012) for more details). For companies that are challenged by the implementa-
tion, the supervisory authority offers a standardized method for approximating SCRLD(x),
without the need to calculate Lx (in fact, most insurance companies in Germany calculate
their solvency capital using this standardized method in order to reduce costs).

The so-called standard formula for SCRLD is intended to capture the main quantifiable
risks to which most companies are exposed. In contrast to the name, the standard formula is
not a single formula, but rather a framework of various calculation rules that include both,
parameters calibrated by the regulator and company-specific quantities (e.g., the investment
decision x). Here, we will only give a brief overview of the structure of the standard formula.
For details, we refer to European Parliament and European Council (2009).

The core idea is to divide the calculation of SCRLD into several modules and aggregate
them according to specific correlation assumptions. The following modules are considered:

RiskMod := {market, health, default, life, non life, operational, intangible assets}.

The Standard formula assigns a risk value SCRi(x) ∈ R to each of the above risk modules
i ∈ RiskMod (again by giving specific calculating rules that do not involve stochastic mod-
eling). For the calculation of the individual SCRi(x), various methodological approaches
are used, which may differ from module to module. For example, for the calculation
of SCRmarket(x), it is necessary to estimate the risk for investments in equities, which is
realized by a simple factor model. For this, the regulator calibrates stress factors which are
multiplied by company-specific quantities. The stress factors are real numbers which, in the
case of equity risk, correspond to a change in market prices according to a 200-year event.
The company-specific quantity is here the amount of capital invested in equities. Similar
rules are also provided for the other risk modules, for which we refer to the literature.
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The individual risk modules are aggregated as follows. Using the correlation matrix
Corr given by the regulator (European Parliament and European Council (2009), Annex IX,
(1)), the risk modules life, non-life, health, market, default, intangible asset are amalgamated
yielding the so-called Basic Solvency Capital Requirement BSCR(x). To ultimately reach
an approximation for the Solvency Capital Requirement SCRLD(x), a twofold process is
involved: first, we deduct the adjustment factor Adj representing loss-absorption capacity,
and subsequently, we integrate the SCR operational element SCRoperational, addressing the
imperative for capital against operational risk, into the BSCR(x) framework. This yields
the following expression:

SCRLD(x) ≈ BSCR(x)− Adj+ SCRoperational, (4)

with
BSCR(x) =

√
∑
ij

Corrij SCRi(x) SCRj(x),

where i, j ∈ RiskMod and Corrij denotes the correlation coefficient between them. The
right-hand side of (4) is the method most frequently used in practice to calculate SCRLD.
Finally, we consider the company’s own funds in relation to SCRLD. The own funds are
assumed to be a positive constant and denoted as o f ∈ R. Thus, we define

SCR : Rn −→ R

x 7−→ o f
BSCR(x)− Adj+ SCRoperational

and include this function as a further objective in portfolio optimization, which is to be
maximized (the denominator is always non-zero). Therefore, to summarize our general
problem setting, given the objective functions

f1 : Rn −→ R, x 7−→ −µtx,

f2 : Rn −→ R, x 7−→ xtΣx,

f3 : Rn −→ R, x 7−→ − SCR(x),

we are interested in the Pareto frontier of the multi-objective optimization problem

min f1(x1, . . . , xn),

min f2(x1, . . . , xn),

min f3(x1, . . . , xn),

s.t.

x1 + . . . + xn = 1,

0 ≤ xi ≤ 1 for each i = 1, . . . , n.

(5)

In the next subsection, we outline how the determination of Pareto-optimal points of (5)
can be traced back to solutions of quadratic unconstrained binary optimization problems,
for which quantum computing provides an essential speedup.

1.4. Finding Pareto-Optimal Points by Solving QUBOs

In the last subsection, we discussed the importance for insurers to extend portfolio
optimization by the SCR. It is important for decision-makers in the industry to have an
overview of the entire Pareto frontier to make informed choices based on their preferences.

In insurance practice, finding a good approximation to the Pareto frontier of (5)
presents some difficulties, mainly due to the lack of convexity of f3. First, the Pareto-optimal
points are not necessarily supported. This means that, from a theoretical point of view, it is
not guaranteed that a good coverage of the Pareto frontier can be achieved by applying
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the weighted sum scalarization. However, for our particular use case, this is not a major
problem in practice because the image of f = ( f1, f2, f3) is still very close to a convex set.
Second, even if good coverage of the Pareto frontier is possible, the lack of convexity makes
the repeated application of the weighted sum method with subsequent solutions of the
corresponding single-objective optimization problems (one problem for every preference
vector) very costly. In the rest of this paper, we demonstrate how to reformulate this
problem as a QUBO. The motivation for this is that, given a QUBO formulation, a number
of different solution methods can be applied, which might eventually offer significant
speedups over traditional approaches. Apart from the classical simulated annealing, one
such method is quantum annealing. There are indications, that for some problems, quantum
annealing may provide speedups beyond what any classical algorithm can achieve Somma
et al. (2012). There already are commercially available hardware implementations for
quantum annealing, even though our problem is not well suited for the current DWAVE
annealer, for example, due to the large bandwidth of our QUBO matrices. This prevents
the mapping of our QUBO matrices onto the hardware in an efficient way. However, our
formulation might be able to utilize future generations of quantum annealing hardware.

Another possible path to follow is to employ a gate-based quantum computer. For
that, the QUBO formulation makes it possible to solve the problem, for example, with the
QAOA algorithm Zhou et al. (2020). All current gate-based quantum computing hardware
is not able to execute quantum gates with a sufficiently low error rate to solve real-world
problems. Nevertheless, the steady progress over the past few years in increasing hardware
fidelities and error-correction techniques makes the availability of such hardware in the
foreseeable future likely (see, for example, the roadmap published by IBM (2023)).

In the following, we will outline how to move from our original problem to a QUBO.
We show step by step how to obtain the properties “quadratic”, “unconstrained” and “bi-
nary”, with the technical details being discussed in more detail in the respective subsections
of Section 2. The original problem we start with is given by (5) and we want to determine
the Pareto frontier as accurately as possible. For this, the weighted sum method is used
(despite the lack of convexity, most of the Pareto-optimal points are supported). This leads
to the single-objective, constrained, continuous optimization problem

min λ1 f1(x1, . . . , xn) + λ2 f2(x1, . . . , xn) + λ3 f3(x1, . . . , xn)

s.t.

x1 + . . . + xn = 1

0 ≤ xi ≤ 1 for each i = 1, . . . , n,

(6)

with (λ1, λ2, λ3) ∈ R3
≥0. Next, we describe the transition to a quadratic objective function.

By a quadratic function, we mean a polynomial with real coefficients in n variables of total
degree ≤ 2. This definition also includes linear mappings (polynomials of total degree
one) and constants (polynomials of total degree zero). The functions f1 and f2 are already
quadratic by definition. The function f3 is not quadratic but can be well approximated by a
quadratic function, as we will see in Section 2.1. We, therefore, replace f3 with a quadratic
approximation f3,approx (this approximation is usually not convex). With f1, f2, f3,approx
being quadratic, the weighted sum

λ1 f1 + λ2 f2 + λ3 f3,approx

is also quadratic. As an intermediate step, we have a quadratic, constrained, continuous
optimization problem
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min λ1 f1(x1, . . . , xn) + λ2 f2(x1, . . . , xn) + λ3 f3,approx(x1, . . . , xn)

s.t.

x1 + . . . + xn = 1

0 ≤ xi ≤ 1 for each i = 1, . . . , n,

(7)

with (λ1, λ2, λ3) ∈ R3
≥0.

We now describe the transition from “continuous” to “binary”. The idea is to discretize
the continuous optimization variables (x1, . . . , xn) by replacing the domain [0, 1]n with a
well-chosen finite grid G ⊆ [0, 1]n. Writing B := {0, 1}, we consider a bijective mapping

T : (Bm)n −→ G

which transforms bit strings into grid points. Here, m ∈ N will be a parameter that controls
the refinement of the grid and results from the fact that we approximate each variable xi by
m bits. The definition of G and T will be given in Section 2.2. Our optimization problem
will then take the form of a quadratic, constrained, binary problem

min λ1 f1(T(y)) + λ2 f2(T(y)) + λ3 f3,approx(T(y))

s.t.

y ∈ (Bm)n,

T(y)1 + . . . + T(y)n = 1 for all y ∈ (Bm)n.

(8)

with (λ1, λ2, λ3) ∈ R3
≥0. Note, for the index notation in the last line of (8) that T(y) is an

element of Rn for every y ∈ (Bm)n. Of course, the discretization reduces accuracy, but by
increasing m, the discretization can, in principle, be made arbitrarily accurate.

The property “unconstrained” is achieved by incorporating the linear constraint into
the objective function. This is obtained through the introduction of a penalty factor λP > 0,
which associates a certain cost for violating the linear constraint (see Section 2.3). We
arrive at

min λ1 f1(T(y)) + λ2 f2(T(y)) + λ3 f3,approx(T(y)) + λP(T(y)1 + . . . + T(y)n − 1)

s.t.

y ∈ (Bm)n

(9)

with (λ1, λ2, λ3, λP) ∈ R3
≥0 ×R>0 which is a quadratic, unconstrained, binary optimization

problem. The solutions here are not exactly the same as in the constrained case (8). One has
to choose λP carefully so that the solutions of (9) are not too far away from the solutions
of (8). In the next section, we will describe the individual steps of this outlined procedure in
more detail. In Section 3, we apply this approach to a real-world example from the insurance
industry and evaluate how well the Pareto frontier can be determined by solving (9).

2. The QUBO Formulation

In this section, we will show how to formulate our extended portfolio optimization
problem (5) as a Quadratic Unconstrained Binary (QUBO) optimization problem. This
includes how to approximate the SCR-objective f3 by a quadratic function, how to encode
vectors containing fractions in binary code, and how to replace a linear constraint with a
penalty term.

The availability of specialized hardware to solve QUBO problems, in particular, the
quantum annealer developed by D-Wave, has attracted interest in the QUBO formulation
in recent years. Portfolio optimization was an early example. The basic idea to formulate
a Markowitz optimization as a QUBO was sketched and some toy example experiments
were solved on the D-Wave quantum annealer, in Elsokkary et al. (2017). Another example
that explains some aspects in more detail is Venturelli and Kondratyev (2019), which also
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used D-wave annealing hardware. Variations in the basic portfolio optimization have been
examined, too, for example, dynamic settings, in which one optimizes the portfolio changes
one makes over a period of time (Rosenberg et al. (2015)).

QUBOs are optimization problems of the form

min
y∈BN

ytQy, (10)

where B = {0, 1}, N ∈ N and Q ∈ RN×N . Since

ytQy = yt
(Q + Qt

2

)
y

for all y ∈ BN , one can always assume that the matrix Q ∈ RN×N in (10) is symmetric.
It will be important for our optimization problem that the QUBO formulation can not

just accommodate pure quadratic, but also linear and constant terms, i.e., the optimization
problems we will be working with are of the form

min
y∈BN

ytPy + bty + c, (11)

where P ∈ RN×N , b ∈ RN , and c ∈ R. Given an optimization problem of the form (11), one
can always find a symmetric matrix Q ∈ RN×N such that the solution set of (10) is equal to
the solution set of (11). For the constant c, this is easy to see, as the presence of a non-trivial
c has no impact on the optimum at all.

To see how to accommodate the linear term, note that we can write the entries of
b = (b1, . . . , bN) on the diagonal of a diagonal matrix D = diag(b1, . . . , BN) ∈ RN×N . Since
the components of y are binary, we have ytDy = bty. The objective function of a QUBO
is, therefore, always a quadratic function in the sense of our definition from Section 1.4
(polynomial of total degree ≤ 2). The presentation in Section 1.4 is, therefore, consistent
with this subsection.

Given many QUBOs with corresponding matrices of the same format, one can form a
linear combination of these matrices with nonnegative coefficients. An interesting conse-
quence of this is if the exact characteristics of the problem instance (i.e., the entries of the
matrix Q) are subject to uncertainties, we can still use this method to determine a solution
that is “optimal on average” in the following sense.

Consider a finite number of QUBO problem instances Q1, . . . , Qr with r ∈ N and asso-
ciated probabilities p1, . . . , pr for their occurrence (for example, in portfolio optimization,
one can consider different economic scenarios that influence the return and covariance
of the portfolio) then solving each instance separately, y(i) := arg min ytQiy and tak-
ing the average p1y(1) + . . . + pry(r), gives a solution for the average problem instance
p1Q1 + . . . + prQr.

2.1. Finding a Quadratic Approximation for SCR

In this section, we will present our approach to create a suitable quadratic approxima-
tion for the SCR objective. We want to find parameters P ∈ Rn×n, b ∈ Rn and c ∈ R such
that the quadratic function

f3,approx : Rn −→ R, x 7−→ xtPx + btx + c (12)

is a close approximation to f3. We determine the parameters from Formula (12) using a
machine learning algorithm that uses a regression approach to specify the quantities we
are looking for.

In the context of risk capital proxy modeling, regression models are considered for
their simplicity and reasonable performance compared to more complicated models such
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as neural networks. For a more detailed discussion, we refer to Krah et al. (2020) and Jonen
et al. (2023).

A different approach for learning QUBOs from data has been studied in Seelbach
Benkner et al. (2023), where the authors use a multi-layer perceptron to set up their problem
in QUBO form. For our use case, the search for a quadratic relationship in the data is
more appropriate.

In the following, we outline our modeling approach. The data we used for learning
are discussed in Section 3 as part of our use case. Firstly, assume a data set

D := {(wl , ul) ∈ [0, 1]n ×R | l = 1, . . . , L}, (13)

where L ∈ N and for each l = 1, . . . , L, the vector wl ∈ [0, 1]n denotes an investment
decision (i.e., the components of wl add up to one) and ul = f3(wl). We use the general
least-squares regression approach (Nelder and Wedderburn 1972), which consists of finding
suitable coefficients α1, . . . , αK ∈ R such that

ul ≈
K

∑
k=1

αkek(wl), (14)

for all (wl , ul) ∈ D, where K ∈ N is a parameter and ek ∈ L2(Rn) are functions that are
specified in advance and are chosen to be appropriate for the problem at hand. An estimator
α̂ ∈ RK for the coefficients in (14) is found by minimizing the mean squared error loss
(Shalev-Shwartz and Ben-David 2014),

α̂ = arg min
α∈RK

 1
L

L

∑
l=1

(
ul −

K

∑
k=1

αkek(wl)

)2
. (15)

If we write down the ansatz for f3,approx in (12) more precisely as

f3,approx = xtPx + btx + c

=
n

∑
i,j=1

pi,jxixj +
n

∑
i=1

bixi + c,

with pi,j being the entries of P and bi the entries of b, we see that a suitable choice of model
parameters is given by K := n2 + n + 1 and

ei,j(z1, . . . , zn) := zizj, for i, j ∈ {1, . . . , n},

ei(z1, . . . , zn) := zi, for i ∈ {1, . . . , n},

e0(z1, . . . , zn) := 1.

Determining the estimator α̂ from (15) now leads to the parameters P, b, c as they are
realized as entries of α̂. We will apply this method to a use case from the insurance
industry in Section 3. As we will see in more detail, this achieves a (somewhat surprisingly)
good approximation of the solvency function. Note that the resulting function f3,approx
is not necessarily convex, so this approximation alone does not represent a significant
simplification for our optimization problem. For a considerable speed-up, a complete
QUBO formulation is still required.

2.2. Discretization of Continuous Variables

The optimization variables (x1, . . . , xn) in our original problem (5) are continuous in
the range [0, 1] and the representation of these variables on a classical computer is typically
conducted by using floating-point numbers. For the transition to the QUBO formulation,
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we need to reformulate the variables in the binary system. For a given number of m ∈ N
bits, let

v =
(

2m−1

2m−1 , . . . , 21

2m−1 , 20

2m−1

)
∈ Rm. (16)

A real number z ∈ [0, 1] can be approximated as

z ≈
m

∑
k=1

vkyk

where yk ∈ B = {0, 1} for all k ∈ {1, . . . , m} such that the upper bound on the relative
approximation error is 1

2(2m−1) . In other words, z is approximated by finding the binary rep-
resentation of the nearest integer of (2m − 1)z. The number m ∈ N is also called resolution.

For example, consider m = 4 and assume we want to encode a value of z = 0.21. This
is achieved by z ∼= 0011 which according to our encoding represents (0 × 8 + 0 × 4 + 1 × 2
+1 × 1)/(24 − 1) = 3/15 = 0.2.

The idea is now to replace each continuous variable xi in the optimization problem
with an m-tuple (yi,1, . . . , yi,m) ∈ Bm and then to minimize over the yi,j ∈ B. Formally, we
consider the following transformation from bistrings to elements of [0, 1]n:

T : (Bm)n −→ [0, 1]n


y1,1
y1,2
. . .

y1,m

, . . . ,


yn,1
y1,2
. . .

yn,m


 7−→

∑m
k=1 vky1,k

...
∑m

k=1 vkyn,k


and the grid G mentioned in Section 1.4 is given by G = T((Bm)n). With this definition of
T and G, the transition to a binary optimization problem is performed according to (8). We
would like to point out that the application of this variable transformation to a quadratic
function can be written compactly using the Kronecker product ⊗ as

T(y)tPT(y) + btT(y) + c = y((vvt)⊗ P)y + (v ⊗ b)y + c,

for all y ∈ (Bm)n. An implementation of this procedure is openly available in Braun et al.
(2023).

2.3. Constraints

With the considerations made so far, we can translate the original problem (5) into
a quadratic, constrained, binary optimization problem (8). The following easy argument
shows that we can integrate the linear equality constraint present in (8) into the objective (as
an additive penalty term) without violating the properties “quadratic” and “binary”. Con-
sider an arbitrary quadratic binary optimization problem with a linear equality constraint

min
y∈BN

ytQy

s.t.

Ay = b

with A ∈ Rk×N , b ∈ Rk, k, N ∈ N.
Since the function y 7−→ Ay − b is a polynomial in (the entries of) y of total degree 1,

adding λP(Ay − b) (with λP ∈ R>0) to the objective of the above problem does not change
its quadratic property. For Ay − b ̸= 0, the added penalty should make sure that y will not
be considered as a solution.

Note, that the equality constraints mentioned above may only be approximately
satisfied when represented using a penalty term. Furthermore, the penalty factor λP should
be small enough, so that the original objective function is still numerically significant.
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3. Experimental Results

In this section, we discuss an experimental study that explores the potential of our
method for solving the multi-objective problem (5). We provide an overview of the data set
used in our study, the results for the training of an approximation to the SCR-objective f3,
and an estimation of how well the Pareto frontier was approximated. For this, we introduce
the methodology and performance indicators applied in this study.

For our use case, we have been provided with real-world asset data that have been
used for the asset allocation of a large insurance company. Since they consider tens of
thousands of possible assets for their portfolio, these are clustered into 26 asset classes.
These asset classes consist of assets that either are of the same type (e.g., commercial real
estate or government bonds), are from the same region, have the same market capitalization,
or have a high correlation. Each asset class groups together several individual investments
and treats them as equivalent. Due to confidentiality, the names of the asset classes are
anonymized. An overview of the asset classes, their expected return and volatility can be
found in Table 1. The covariance matrix can be found in the Appendix A. The data required
for the calculation of f3 beside µ and Σ, i.e., parameters calibrated by the regulator and
company-specific data needed for risk assessment, will be made available on request. See
also Dächert et al. (2022) for a more detailed description of the required data.

Table 1. Asset classes that we consider in our use case. The column µi contains the expected return
and σi,i the variance, both given in percent. The correlations are given in the Appendix A.

Asset Class i µi σi,i Asset Class i µi σi,i

1 3, 4 2, 8 14 1, 3 3, 4
2 6, 0 9, 2 15 1, 5 3, 8
3 6, 5 12, 6 16 3, 0 4, 7
4 1, 9 1, 9 17 1, 6 3, 6
5 1, 3 4, 2 18 3, 7 9, 3
6 5, 6 7, 0 19 0, 2 2, 5
7 6, 4 8, 7 20 1, 1 1, 3
8 4, 0 13, 5 21 5, 8 8, 3
9 6, 5 17, 8 22 3, 5 9, 4
10 6, 5 18, 4 23 2, 4 6, 9
11 6, 7 17, 4 24 1, 2 9, 3
12 7, 4 20, 6 25 3, 0 8, 0
13 0, 9 3, 9 26 0, 0 1, 0

3.1. Results on the Quadratic Approximation of SCR

For the training of our model in Section 2.1 regarding the approximation of the SCR-
objective, we have generated 40,000 data points for training and 20,000 points for validation
in total. When creating the data set D in (13), we proceeded as follows.

The vectors wl ∈ [0, 1]26 describing the investment decision are generated by in-
dependently sampling 26 uniformly distributed real numbers in [0, 1] with subsequent
normalization. With this selection method, we want to avoid strong preferences in in-
vestments and thus ensure a high degree of generality. For each wl , we have calculated
f3(wl), as discussed in Section 1.3 and labeled the outcome as ul = f3(wl). This process
was repeated 40,000 times to generate training data and 20,000 to generate validation data.

Even if the standard formula is a clear simplification compared to the exact calculation
using the loss distribution, it still contains many company-specific variables that can
sometimes be difficult to determine. To calculate f3(wl), we used a tool which is in
operative use in a German insurance company. This tool is part of a decision support
software for strategic asset allocation and is used to approximate the effect of an investment
decision on the solvency capital on a daily basis. For a detailed description of this tool, we
refer to Dächert et al. (2022).

The training of the regression model in Section 2.1 was performed by standard gradient
descent using pytorch (Paszke et al. 2019). During the training process over 100 epochs,
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both the training and validation errors drop quickly and remain at a low level constantly,
as indicated in Table 2.

Table 2. The development of training and validation errors during 100 epochs. After only a few
epochs, the algorithm finds an approximation with sufficient accuracy. The low validation error
suggests good generalizability without overfitting.

Epoch 1 2 10 100

Training Error 3 × 10−1 4 × 10−4 1 × 10−5 4 × 10−7

Validation Error 9 × 10−1 7 × 10−2 5 × 10−4 5 × 10−7

In addition to the mean squared error, we assessed the quality of our approximation
via the scatter plot Figure 1.

Figure 1. Scatter plot with values of f3(wl) and f3,approx(wl) for every sampled portfolio vector wl
from the validation data.

3.2. Results on Solving the Multi-Objective Problem

Since we are interested in obtaining the whole Pareto frontier of the multi-objective
problem introduced in (5), we consider various weight vectors for the weighted sum
scalarization problem, see (6)–(9). We vary the λ := (λ1, λ2, λ3) vector using a grid pattern
such that λi ∈ {0, 0.05, 0.1, . . . , 0.95, 1} for i = 1, 2, 3 and ∑3

i=1 λi = 1. We call that set of
weights Λ. Further, we set the factor for the penalty term to λP = 15.

We start with a brief assessment of how our chosen discretization of the optimization
variables and the penalty term would affect the determination of the Pareto frontier with
quantum hardware. Discretization and penalty terms are considered together because they
will have a minor impact in the long run and are mainly determined by the hardware limi-
tation (in contrast to the quadratic approximability of the SCR, which is of a fundamental
nature). For example, the discretization is determined by the available number of qubits in
the quantum hardware.

Figure 2 compares the solutions found for problems (7) and (9). Purple points corre-
spond to (7) and were calculated using SciPy (Virtanen et al. 2020). Green points correspond
to (9) and were calculated using D-Wave’s Ocean package for Python, where a simulated
annealing algorithm is available, in the form of the function “neal”. The parameters we
used for DWave’s neal function were annealingSamples = 200 and annealingTime = 100.
Each point (for each color, respectively) is obtained by using a different weight vector
λ ∈ Λ. The resolution used in the discretization was m = 2 and the penalty factor for the
linear equality constrained was λP = 15.

The figure shows that, for practical applications, even with a very small resolution
of m = 2, meaningful portfolios can be found on the Pareto frontier. This also shows that
even small improvements in the hardware (measured by the qubit number, for example)
can be sufficient to enable our method to support decision-making in application-relevant
use cases.
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Figure 2. Pareto frontiers for the portfolio optimization problem according to Equation (7) in purple
and according to Equation (9) in green. Both use the n = 26 asset classes with their returns and the
covariance matrix we described in Table 1. The QUBO solutions were generated with a resolution of
m = 2 bits. A penalty factor of P = 15 was used to enforce the constraint that all funds are invested.
The different points each correspond to a single solution using a weighted sum, each with different
weights. This illustrates that the QUBO formulation can indeed give very similar solutions to the
standard, continuous formulation with the constraint (that the available capital must be fully invested
in the available asset classes), even for low resolutions.

Next, we discuss the overall performance of our method by comparing the Pareto
frontiers found for (6) and (9). For every λ ∈ Λ, we solve (9) via D-Wave’s Ocean package
for Python with the same parameters as above. We obtain a list of potential Pareto-optimal
solutions. For comparison, we solve (6) for each λ as well using SciPy (Virtanen et al.
2020) as the optimizer. We stress that due to the discretization of the weight vectors λ this
is not the whole, continuous Pareto frontier but a very close representation thereof. For
the following paragraphs, we assume that the outcome regarding (6) is indeed the Pareto
frontier. All calculations have been executed using Python 3.11. The code used in this study
is openly available in Braun et al. (2023).

Our main performance index will be the solution quality, answering the question
of whether we can find an adequate approximation to the Pareto frontier via our model.
For that, we compare the representation of the Pareto frontier computed for (6) with the
list of images obtained for (9). We use two different metrics to measure the performance.
The first one is a well-known performance measure for multi-objective heuristics, the
so-called hypervolume indicator. First introduced to multi-objective optimization by
Zitzler and Thiele (1998), it calculates the hypervolume of the area that is dominated by
a given set. The area is bounded from (assuming minimization) above by a predefined
reference point. For different sets, these hypervolume measurements can be compared. In
our experimental study, we use the hypervolume indicator implemented in the pymoo
framework Blank and Deb (2020). As a reference point, we use the Nadir point yNad,
defined by yNad

i := maxx∈X fi(x), with i ∈ {1, 2, 3}, X ⊆ R26 and add a small offset of
0.0001; in our case, we calculate the Nadir point for the image under f = ( f1, f2, f3) of
the solutions of (6). The hypervolume indicator is then given as the relative part of the
hypervolume that is covered by the images returned by solving (9). A 2D example of the
hypervolume and the location of the Nadir point is given in Figure 3.
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f1(x)

f2(x)

yN

yref

Figure 3. A 2D example of the hypervolume indicator. The blue area is the area dominated by the
Pareto frontier and is spanned by the images in the Pareto frontier (blue points) and the reference
point yre f . The reference point is computed by the Nadir point plus a small offset. The red points
are the objective function values of the solutions obtained by the heuristic and the red area is the
corresponding dominated area. In this example, the hypervolume indicator, calculated by counting
the covered tiles, is 16.67%.

The second metric stems from the field of approximation. Every solution from the
Pareto frontier and every solution obtained by our model has been computed by using a
distinct weight vector. For the corresponding weighted sum problem (6), we calculate the
approximation factor between this solution and the best one from our QUBO model (9).
Overall, we use the worst approximation factor over all weights. Given a weight vector
λ = (λ1, λ2, λ3) and let xλ be the optimal solution to the corresponding weighted sum
problem and X̃ the set of solutions obtained by our QUBO model, then the approximation
factor for this weight vector is given by

APX(λ) :=
minx̃∈X̃ λ1 f1(x̃) + λ2 f2(x̃) + λ3 f3,approx(x̃)

λ1 f1(xλ) + λ2 f2(xλ) + λ3 f3(xλ)
. (17)

The total approximation factor is the maximum over all weight vectors

APX = max
λ∈Λ

APX(λ). (18)

For the hypervolume indicator we obtain a value of 0.9883, thus less than 2% of the
area dominated by the images of the classical solver is not covered by solutions of our
model. Thus, this is a very decent result for our heuristic. The approximation factor draws
a similar picture: Here, we achieve a total approximation factor APX of 1.2179. Further,
we stress that for 95% of the weight vectors, we obtain an approximation factor of 1.01
or better.

These results show that meaningful portfolios can be generated if, in the portfolio
optimization problem, one replaces the SCR according to the standard formula by an appro-
priately chosen quadratic form. The quadratic form can be found by means of regression,
which is a significant reduction in complexity compared to the explicit consideration of
the standard formula in the optimization problem. Since it is not to be expected that the
quadratic form resulting from the regression is positive-definite and thus convex, the rele-
vance for the practitioner only arises through a combination with an efficient method for
non-convex quadratic optimization. For this, quantum computing is a promising candidate.
At the time of writing, the quantum hardware is not sufficiently developed to be practically
applicable in the insurance industry. As quantum hardware evolves with more qubits
and reduced errors, our approach will be a new efficient method to generating relevant
portfolios for the practitioner.
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4. Conclusions and Future Research

After an overview of classical portfolio theory, we have looked at the importance of
Solvency Capital Requirement for insurance companies. It is crucial for insurers to meet
their obligations from old policies (with high guaranteed interest rates) and at the same
time fulfill the regulatory requirements for their risk profile. It is, therefore, important
to extend the traditional Markowitz model to include the SCR alongside the usual ob-
jectives of expected return and volatility. However, it should be noted that considering
the SCR in an optimization problem usually involves a considerable amount of time and
computational effort.

For this, we have approximately translated the SCR calculation (according to the
standard formula) into a quadratic form, thus making it accessible to methods for solving
QUBOs. Since return and volatility can be written as QUBOs from the outset, it is possible
to perform the entire portfolio optimization problem (including SCR) on the quantum
computer. As soon as high-performing annealing hardware or Quantum Computers
are available, this formulation can be used to solve the portfolio optimization with SCR,
possibly with a meaningful speed advantage over classical solutions.

The quadratic form for the SCR standard formula was found by means of a machine
learning algorithm. The idea of using a machine learning algorithm to build an approximate
QUBO might be applied successfully in different contexts and might be considered the
main contribution of this work.

Of interest for future research is the consideration of further economically relevant
objective functions, such as key figures from the IFRS balance sheet or valuation reserves.
Moreover, expanding the focus beyond QUBOs, for example, by allowing higher degree
polynomials for approximation, could provide further interesting applications for quan-
tum computing.
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Appendix A

The following table contains the correlation coefficients for the 26 asset classes from
our use case in Section 3. Assets appear in the same order as in Table 1.
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