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Abstract: Measles remains one of the leading causes of death among young children globally, even
though a safe and cost-effective vaccine is available. Vaccine hesitancy and social response to
vaccination continue to undermine efforts to eradicate measles. In this study, we consider data about
measles vaccination and measles prevalence in Germany for the years 2008–2012 in 345 districts. In
the first part of the paper, we show that the probability of a local outbreak does not significantly
depend on the vaccination coverage, but—if an outbreak does take place—the scale of the outbreak
depends significantly on the vaccination coverage. Additionally, we show that the willingness to
be vaccinated is significantly increased by local outbreaks, with a delay of about one year. In the
second part of the paper, we consider a deterministic delay model to investigate the consequences
of the statistical findings on the dynamics of the infection. Here, we find that the delay might
induce oscillations if the vaccination coverage is rather low and the social response to an outbreak is
sufficiently strong. The relevance of our findings is discussed at the end of the paper.

Keywords: measles vaccination; measles outbreaks; social response; zero-inflated negative binomial
regression; delay differential equation

1. Introduction

The COVID-19 crisis was an opportune occasion to demonstrate the ability of math-
ematical models to accurately predict the time course of the prevalence and the impact
of intervention measures. The main tools, such as the reproduction number, are common
knowledge by now. However, we also became aware that we lack understanding in one
important aspect: we humans are not deterministic in behavior like atoms and molecules,
but we are influenced by many ideas, desires, and information. This informs our response
to the threat of disease infection. With respect to the dynamics of infectious diseases, the
incidence rate, prevalence, or knowledge about the virulence of the infection is one central
aspect we respond to. It is well-known that the contact rate in the COVID-19 epidemic
did reduce before lockdowns were introduced [1]. In the present paper, we investigate the
social response and the consequences thereof in the case of a less dramatic but nevertheless
serious infection: measles. We aim to contribute to investigations of social responses to the
incidence of an infection, and their impact on the dynamics of diseases.

An effective measles vaccine was introduced in the early 1960s. In Scandinavian states
such as Sweden or Norway, measles has almost completely vanished. One of the main
reasons is the fact that state support for families is contingent on the vaccination status
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of children, which is a strong incentive for parents to have their children vaccinated. In
other countries, such as Germany, a lower prevalence of measles still persists. Due to
the highly transmittable nature of the virus, high vaccination coverage is necessary to
achieve herd immunity and prevent measles outbreaks, which is yet to be achieved. In
some African countries, a high fraction of the population is skeptical of the effectiveness
and safety of vaccination and hence experiences higher measles prevalence. The WHO
names vaccination hesitancy among the 10 most serious health threats [2,3].

Previous studies indicate that the decision of parents to have their children vaccinated
will be affected by local measles outbreaks. Statistical analysis of a population-based sur-
vey in the US indicates a high significance of local cases for the willingness to become
vaccinated (Table 3 in Ref. [4]). Dales et al. [5] report that a large measles outbreak in
California in 1988–1990 with more than 16,000 cases had a strong impact on vaccination
willingness, although a disappointing response to community-based immunization cam-
paigns is noted. Particularly, media reports have been helpful in decreasing vaccination
hesitancy. Poland [6] conjectures that the perception of a personal threat is necessary to
boost vaccination willingness, based on a survey after a seasonal influenza outbreak in
2009/2010. While there are more survey-based investigations (also see quotations in [4]),
less is known about the impact of social responses on the dynamics of infections, disease
prevalence, and vaccination. An attempt to find traces of measles incidence directly in
vaccination data by Philipson [7] reports that children are tangentially vaccinated earlier in
the presence of a measles outbreak.

The present work aims to utilize statistical analysis of data as well as mechanistic mod-
els to address the mechanisms and the impact of social responses on vaccination hesitancy
and/or infection dynamics. The classical modeling approach of social response is based on
game theory and a utilitarian analysis of the willingness to become vaccinated, starting
with the seminal work by Fine and Clarkson [8]. This concept was deepened by a multitude
of authors, e.g., Refs. [9–12]. The theory of social learning, instead, proposes to modify
standard SIR-type models by phenomenological terms to incorporate behavioral changes or
adapt the willingness to become vaccinated [13–15]. More mechanistic approaches add new
compartments into the compartmental structure of an SIR model with a clear meaning, such
as a compartment of cautious persons: driven by the information about rising prevalence,
persons will change their behavior and move from the standard compartment (with a usual
contact rate) to the compartment of cautious persons (with a reduced contact rate) [1]. This
model is quite successful in explaining the early COVID-19 dynamics. Another specific
mechanism to explain social response is based on opinion dynamics [16–18]. Most articles
elaborating on this idea are theoretical in nature and not substantially validated by data
analysis [17,19–21]. An exception to this is the work of Salathé and Bonnhoeffer [16], who
showed that clusters of spatial outbreaks can be explained by opinion dynamics, or [22],
who explained the structure of data for the vaccination coverage in different districts in
Germany by an opinion model that allows for echo chambers. Following the previous
examples, we aim to overcome the lack of empirically tested modeling approaches in
our work.

The present paper consists of two parts: we first present the data analysis of prevalence
and vaccination data for 354 spatial districts in Germany for the years 2006–2012. The
measles prevalence within these districts is used to investigate the effect of vaccination
on prevalence and vice versa. We cluster the districts by incidence rates and compare the
incidence profiles before adopting linear regression models to describe the incidence as a
function of immunization coverage. We show that vaccination significantly decreases the
size of a local measles outbreak.

Furthermore, we investigate the effect of local measles outbreak on vaccination willing-
ness and are able to reveal that local outbreaks significantly increase willingness to become
vaccinated, but with a delay of one year. Due to our knowledge, particularly the effect
of local outbreaks on vaccination willingness has not been detected before in this direct
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way (also compare to [5]). Particularly, we find some delay in the increase in vaccinations
caused by a local outbreak.

In the second part, we explore the implications of our findings for the dynamics of
prevalence by means of a delay differential equation and find, also for realistic situations,
that social responses can induce oscillations in the incidences of infection and vaccination.

2. Data Analysis of Measles Outbreaks and Vaccination Converge

We first focus on data analysis on measles incidence and measles vaccination to obtain
empirical information on the interactions between incidence and vaccination propensity.
Both implications are of interest: does a measles outbreak increase vaccination willingness?
Conversely, if we have high vaccination coverage, does this decrease the likelihood and
the size of a measles outbreak? The data we use are case numbers [23] (data available
from the SurvStat database of the Robert Koch Institute https://www.rki.de/DE/Content/
Infekt/SurvStat/survstat_node.html, accessed on 6 March 2023) and vaccination rates [24]
(data available at https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=
2&uid=76&cHash=c90314c143c1a9246708062f4fbf0fa8, accessed on 6 March 2023) in the
years 2008–2012. The data are on a spatially local level, where Germany is divided into
345 districts, each inhabited by a population between 150,000 and 800,000 persons. Clearly,
these districts have different social structures; moreover, we expect spatial interactions
to take place, but, in favor of simplicity, we ignore these aspects in the analysis below.
The vaccination rates are for the cohorts of children who were supposed to be vaccinated
according to the rules in place at the time. Mandatory vaccination for measles for children
attending after-school or daycare centers was only introduced in the year 2020 in Germany.
Before that time, parents’ willingness to have their child vaccinated was achieved only with
the help of education, especially by paediatricians.

2.1. Vaccination Decreases the Size of Measles Outbreaks

Vaccination has two effects: the vaccinated person is protected (self-protection), and
the effective reproduction number of infectious diseases is reduced (protection of the pop-
ulation). In the best case, herd immunity is reached, such that major outbreaks are not
possible anymore. The basic reproduction number for measles is around 12 to 18 [25], such
that the rule of thumb indicates that a vaccination coverage of 1− 1/R0 ≈ 0.90–0.95 is nec-
essary to reach herd immunity [26]. Heterogeneity in the contact structure (small kids will
mix with other kids) necessitates an even higher vaccination coverage for herd immunity.

Regarding the probability of an outbreak (case number larger than zero) in a year,
given the vaccination coverage of that year, logistic regression indicates that the effect is
not significant (see Table 1). However, a linear model shows that the size of an outbreak
is significantly reduced. We do not use case numbers for the size but the logarithm of the
incidence per 100,000 persons.

Table 1. vn
i denotes the vaccination coverage, and In

i the incidence (per 100,000). “Coeff.”: coefficient
estimate. p: significance level.

Model Coeff.
Vaccination p-Value

P(In
i > 0) ∼ vn

i Logit Model −0.0068 0.35
ln(In

i |I
n
i > 0) ∼ vn

i Linear Model −0.03 1.86× 10−7

P(In
i > 0) ∼ vn−1

i (delay) Logit Model −0.019 0.19
ln(In

i |I
n
i > 0) ∼ vn−1

i (delay) Linear Model −0.03 1.43× 10−7

We repeat the analysis but now using a time shift: since children are vaccinated at
about 1 year of age, vaccinating a child will prevent him or her from becoming contagious
in future years. Therefore, we investigate the effect of vaccination of the last year on the
probability of an outbreak regarding the incidence this year. Indeed, we find that the

https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html
https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=2&uid=76&cHash=c90314c143c1a9246708062f4fbf0fa8
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estimated effect of vaccination on the prevention of an outbreak strongly increases but is
still not significant; the effect on the size mainly stays the same.

2.2. Cluster and Regression Analysis

Zero-inflated negative binomial regression is utilized to model count data with an
abundance of zeros, particularly in cases of overdispersion, where excess zeros are assumed
to stem from a distinct process [27,28]. In this study, the ZINB was adopted to account
for the excess zeros in the dataset resulting from certain districts reporting no measles
cases during specific years. The response variable is the counts of measles cases from
2008 to 2012, with vaccination rate coverage as the key independent variable. K-means
clustering was employed to group districts based on vaccination rates, using random
centroid initialization [29]. The Silhouette score method was then used to evaluate cluster
quality, with scores ranging from −1 to +1, where higher values indicate better intra-cluster
matching and sub-optimal inter-cluster matching [30].

2.3. Cluster Analysis Using Vaccination Rate Coverage

The clustering analysis of district-level data related to measles vaccination from 2008 to
2012 has yielded three distinct clusters. Cluster one, which consists of 147 (36.6%) districts,
had the highest silhouette score (0.6), representing well-defined districts maintaining con-
sistently high measles vaccination rates with an average vaccination rate of 85.42%. These
districts likely have robust healthcare systems, effective vaccination outreach programs,
and strong community compliance with vaccination recommendations. Cluster two was
made up of 190 districts (47.4%), with a moderate score (0.48), including districts with
varying vaccination rates, influenced by changing healthcare infrastructure and awareness
campaigns, possessing an average vaccination rate of 79.61%. Finally, cluster three was
made up of 64 districts (16%), with the lowest score (0.36), comprising less-defined and
heterogeneous districts facing challenges in vaccination maintenance, likely due to lower
rates and healthcare disruptions, with an average rate of 69.73%. Figure 1 is the scree plot of
the k-means cluster analysis of the 345 districts. The elbow at three clusters represents the
most parsimonious balance between minimizing the number of clusters and minimizing
the variance within each cluster. The scree was use to confirm the selection of the three
clusters used in the analysis.

Figure 1. Scree plot of clusters.

2.3.1. Zero-Inflated Negative Binomial (ZINB) Regression Model

The cluster plot, Figure 2, provides valuable insights into the factors influencing
measles incidence while considering zero inflation and overdispersion. The coefficient
for “vaccination” is −0.0281, indicating that an increase in vaccination rates is associated
with a decrease in the expected count of measles cases (see Table 2). The negative sign
implies that higher vaccination rates lead to a reduction in measles cases. This effect is
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statistically significant (p < 0.001). Moreover, when examining individual states, significant
variations emerge: for instance, Baden-Württemberg (1.0452, p < 0.001) and Bavaria (1.1372,
p < 0001) show positive impacts on measles incidence, suggesting higher case counts
compared to the reference state North Rhine-Westphalia. In contrast, Saxony exhibits
negative influences. Furthermore, the estimated overdispersion parameter (alpha) at 0.776
implies overdispersion in the data. Overall, this model provides valuable insights into the
complex dynamics of measles incidence and vaccination coverage rate, accounting for both
count data and zero-inflation probability, with significant implications for public health
strategies in the various German states, as can be seen in Table 2 below. The cluster plot
in Figure 2 below provides the spatial distribution of the clusters and their relationship to
each other. It helps to identify separation or overlap between clusters and provides insights
into the cohesion within each cluster. By examining the plot, we identify three well-defined
distinct aspects of the clusters. The dimensions of the plot refers to the number of variables
or features used to create the clusters. Each district in the plot is represented by a set of
values corresponding to different variables. In the case of the analysis, dimension one is the
measles vaccination rate for the district, and dimension two is the geographical cardinal
location of the district.

Table 2. Regression model results. Note that N/B: “lnalpha” represents the natural logarithm of
the dispersion parameter, while “alpha” represents the dispersion parameter. “Cons” indicates the
constant terms for the both models.

Variable Coefficient p > |t|
95% Confidence Interval

Lower Upper

Vaccination rate coverage −0.0281 0.0001 −0.0425 −0.0136

Baden-Württemberg 1.0452 0.0001 0.7231 1.3674
Rhineland-Palatinate 0.6767 0.001 0.2701 1.0824
Saxony −0.9370 0.031 −1.7873 −0.0824
Bavaria 1.1370 0.0001 0.8158 1.4582
Berlin 0.5295 0.021 0.0806 0.9783
Brandenburg 0.7771 0.006 0.2246 1.3296
Bremen −0.1149 0.8520 −1.3250 1.0951
Hamburg 1.0572 0.029 0.1096 2.046
Hessen 0.1432 0.513 −0.2857 0.5721
Lower Saxony 0.2918 0.149 −0.1047 0.6884
Mecklenburg-Vorpommern 0.1193 0.853 −1.1390 1.3786
Saarland 0.6028 0.131 0.1789 1.3846
Saxony-Anhalt −0.5165 0.450 −1.8566 0.8236
Schleswig-Holstein 0.3709 0.150 −0.1340 0.8758
Thuringia 1.5820 0.001 0.7518 2.4122
Cons 2.4048 0.010 1.1656 3.6439
North Rhine-Westphalia
(Reference group)
Inflate Measles −46.6649 0.0290 −56.590 56.499
Cons 26.5649 0.040 −42.5710 42.6420
lnalpha −0.2539 0.001 −0.4024 −0.1054
alpha 0.7757 0.6687 0.8990

2.3.2. Model Adequacy

The model employs a logit inflation model to account for zero inflation in the data.
Out of these observations, 661 are non-zero, while 1064 are zeros. The goodness-of-fit is
indicated by a likelihood ratio of −1301.6 (chi-sq = 160.6, p <0.0001).

2.4. Measles Outbreaks Foster Vaccination

While it is intuitive that vaccination helps not only individuals but also the protection
of the population, it is less clear if parents respond to local measles outbreaks such that
vaccination coverage increases. Moreover, we test for a delay in the response of the parents
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to an outbreak. Thus, we consider the difference in the vaccination coverage of next year
and this year, and test by a linear model for an effect of the incidence of this year, last year,
and the year before last year.

Figure 2. Cluster plot.

We find that only the incidence with a delay of one year has a significant (p = 0.015)
positive point estimate (Table 3 and Figure 3), while the other two years have negative
point estimates.

−2 −1 0 1 2 3 4

−
1

5
−

5
0

5

ln(I
i

n−1)

d
v
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Figure 3. Difference in vaccination coverage dvn
i = vn+1

i − vn
i in the years n + 1 and n over the

logarithmic incidence in year n− 1, together with the prediction of the linear model (straight line).
All available years are pooled.

Table 3. vn
i denotes the vaccination coverage, and In

i the incidence (per 100,000). We explain
dvn

i = vn+1
i − vn

i |I
n
i > 0 by a linear model with the factor ln(In−τ

i ), where τ is the delay (τ = 0, τ = 1,
and τ = 2 is tested). “Coeff.”: coefficient estimate. p-value: significance level.

Coeff. ln(Incidence) p-Value

No delay −0.1 0.51
1 year delay 0.4 0.015
2 years delay −0.3 0.08
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3. Mechanistic Model for Measles Dynamics

The findings of the statistical data analysis showed that vaccination reduces incidence.
Furthermore, a measles outbreak does induce a higher vaccination rate, but with a certain
delay. In order to cover both effects, we combine a Kermack–McKendrick-type model and
an opinion-dynamics model. The Kermack–McKendrick model augmented by vaccination
is standard to address the time course of the infection [31,32]. In our model, the vaccination
rate is under control of an opinion dynamics model, which bears some similarity with the
zealot model [33–36]. The public opinion is influenced by measles outbreaks, but only with
a certain delay.

We start off with a stochastic opinion model. At time t, a population of finite size
N ∈ N is made up of Xt pro-vaccination individuals and N − Xt individuals holding an
anti-vaccination opinion. We assume this composition is at a dynamic equilibrium in the
absence of infections, with an equal rate for each person to reconsider her opinion. In
absence of the infection, there are fixed rates from pro- to anti-vaccination and opposite,
such that we will observe an invariant distribution. However, parents might respond to
the presence of the infection. The rate from anti-vaxxers to pro-vaccination is assumed
to depend linearly on the prevalence. If we fix the prevalence I, the rates from pro- to
anti-vaccination and vice versa become

Xt → Xt + 1 at rate (N − Xt) (b + c I(t− τ)/N)

Xt → Xt − 1 at rate Xt a

where a, b, c > 0 are parameters of the opinion model, and τ is the delay in the response of
the opinion dynamics on the prevalence.

If x(t) = E(Xt/N), we easily find the ODE

d
dt

x(t) = (1− x(t)) (b + c I(t− τ)/N)− a x(t)

with only one, globally stable, stationary state x̂,

x̂ =
b + c I(t− τ)/N

a + b + c I/N
.

That is, E(Xt/N)→ x̂ in the long run in case of constant I.
We now formulate the infection dynamics, first without opinion dynamics. We have

a classical SIR model with population dynamics and vaccination, where a fraction ρ of
the newborn is vaccinated (no vaccination of older children). This is, for sure, a strong
simplification, but this simple model is sufficient to understand the effects we aim at.
We find

S′ = (1− ρ) N µ− β
SI
N
− µS

I′ = β
SI
N
− γI − µI

R′ = ρ N µ + γI − µR.

As usual, N is the total population, µ the recruiting rate, β the proportionality constant
of the standard incidence term, and γ the recovery rate.

To combine the opinion and the infection model, we implicitly assume that the opinion
formation model is in equilibrium (which does mean we have a time scale separation,
a, b, c� 0). We then assume that the expected fraction of the pro-vaccination population
determines the fraction of vaccinated kids,

ρ = F(I(t− τ)/N), F(x) =
b + c x

a + b + c x
.
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Therewith, we obtain the complete model depicted in Figure 4 (which is focused on
the basic mechanisms, and can easily extended to become more realistic).

S′ = G(I(t− τ))/N) N µ− β
SI
N
− µS

I′ = β
SI
N
− γI − µI

R′ = F(I(t− τ)/N) N µ + γI − µR

F(x) =
b + c x

a + b + c x
, G(x) = 1− F(x) =

a
a + b + c x

S I R

Figure 4. Scheme of the SIR model with vaccination at birth, where the vaccination probability
depends on the incidence with delay τ. Note that F(x) + G(x) = 1.

As the equations for S and I are independent of R, we can reduce the system, and
consider only

S′ = G(I(t− τ)/N) N µ− β
SI
N
− µS (1)

I′ = β
SI
N
− γI − µI (2)

G(x) =
a

a + b + c x
. (3)

3.1. Analysis

We first identify stationary states; particularly, we aim at the usual dichotomy, that
there is only a disease-free equilibrium (DFE) if the effective reproduction number Re f f ,
which is the reproduction number in the presence of vaccination, is below one and that there
is additionally a stationary endemic state (a stationary state with non-trivial I component)
in case of Re f f > 1.

Proposition 1. The DFE is provided by (S0, I0) = (G(0)N, 0). The effective reproduction number
in presence of vaccination is provided by

Re f f =
βG(0)
µ + γ

.

Proof. In the DFE, we have I = 0, and hence I′ = 0 is satisfied. From S′ = 0, we obtain
S = S0 = G(0) N. Now, we linearize the equation for I′ at (S, I) = (S0, 0) and obtain

I′ = β
S0

N
I − γI − µI = (βG(0)− γ− µ) I.

Therewith, we define Re f f =
∫ ∞

0 βG(0) e−(µ+γ)a da = βG(0)/(µ + γ).

Proposition 2. If Re f f > 1, there is a unique endemic equilibrium (S∗, I∗), which satisfies

S∗ =
γ + µ

β
N, G(I∗/N) =

µ + γ

µ
I∗/N +

γ + µ

β
. (4)
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Proof. We aim at an equilibrium (S∗, I∗) with I∗ > 0: From I′ = 0 and I > 0, we obtain

β
S∗

N
− γ− µ = 0 ⇒ S∗ =

γ + µ

β
N.

We plug this result into S′ = 0 and find 0 = G(I∗/N) N µ− (µ + γ)I∗ − µ
γ+µ

β N; that
is, with i∗ = I∗/N ∈ [0, 1], we find the condition

G(i∗) =
µ + γ

µ
i∗ +

γ + µ

β
.

Note that G′ < 0 and the r.h.s. of the equation is increasing in i∗. There is, hence, at
most one solution.

As Re f f > 1, we know G(0)β > µ + γ, and hence

G(i∗)
∣∣∣∣
i∗=0

>

(
(µ + γ)

µ
i∗ +

γ + µ

β

) ∣∣∣∣
i∗=0

.

Furthermore,

G(i∗)
∣∣∣∣
i∗=1
≤ 1 < 1 +

γ

µ
<

(
µ + γ

µ
i∗ +

γ + µ

β

) ∣∣∣∣
i∗=1

.

Thus, we have a unique solution that establishes the proposition.

We now turn to the local stability analysis. For the DFE, we find the usual result: it is
(globally) stable if Re f f < 1, and unstable for Re f f > 1.

Proposition 3. If Re f f < 1, the DFE is globally (in the positive quadrant) stable.

Proof. Step 1: First of all, due to the definition of G(x) in (3), we have G(0) ≥ G(I(t−
τ)/N), and hence

S′ ≤ G(0)Nµ− µS

such that
lim sup

t→∞
S(t) ≤ G(0)N.

If ε > 0, we have hence that any trajectory (S, I) ∈ R2
+ will after finite time enter the

the strip
Ω = {(S, I) | 0 ≤ S ≤ G(0)N + εN}.

Step 2: We choose ε small enough, such that

Re f f + β
ε

µ + γ
= β

G(0) + ε

µ + γ
< 1.

This is possible as Re f f < 1. We now use L(S, I) = I as a Lyapunov function in Ω,

d
dt

L(S, I) = I′(t) =
(

β
S
N
− µ− γ

)
I ≤ (µ + γ)

(
β

G(0) + ε

µ− γ
− 1
)

I ≤ 0

where d
dt L(S, I) = 0 iff I = 0. Hence, I(t)→ 0. The principle of Lassale now tells us that the

ω limit set of (S, I) is contained in the largest invariant set of I = 0, which is {S = S0}.

We move to the stability behavior of the endemic equilibrium. As a delay is involved
in the dynamics, the endemic equilibrium might lose (linear) stability via a Hopf bifurcation.
Indeed, simulations for different delays indicate that sustained oscillations appear if the
delay crosses a certain threshold (Figure 5).
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Figure 5. Simulations for different τ. From top to bottom: τ = 1, τ = 6, τ = 7. Other parameters:
β = 1, γ = 0.4, µ = 0.2, N = 100, a = 0.1, b = 0.0, c = 2.

Proposition 4. Let i∗ = I∗/N and u∗ = (βi∗+µ)2

2 βi∗ |G′(i∗)| µ . There is τ0 > 0, such that we have a Hopf
point at τ = τ0, if and only if in case of u∗ < 1

G′(ĩ)2 ≥
(βi∗ + µ)2 [βi∗(µ/2 + γ)− 1

4 (βi∗ − µ)2]

(β i∗ µ)2 =: G2
crit.

respectively in case of u∗ ≥ 1

|G′(i∗)| ≥
(

1 +
γ

µ

)
.

The endemic equilibrium is locally asymptotically stable for τ ∈ [0, τ0).

The proof, which follows the standard arguments [32] but is slightly technical, can
be found in Appendix A. For a Hopf bifurcation to happen, additional non-degeneracy
conditions are necessary [37], which we do not check. Instead, we indicate that we indeed
find oscillations in numerical simulations (see Figure 5).
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Note that, for G′(i∗) = 0 (or sufficiently small), no Hopf point appears, and the en-
demic solution is for any delay locally asymptotically stable. The response of the population
to the incidence needs to be strong enough (|G′(i∗)| sufficiently large) to trigger oscillations.

3.2. Realistic Parameter Range

We find that oscillations are possible if the delay is sufficiently large. However, the
question arises if these oscillations, driven by the delay we identified in the data, are
something to expect. Here, time scales are crucial. We identify parameters accordingly.

First of all, the system is homogeneous of degree 1; that is, for s(t) = S(t)/N,
i(t) = I(t)/N, and r(t) = R(t)/N, we again find a proper ODE,

s′ = G(i(t− τ)) µ− β s i− µs

i′ = β s i− γi− µi

r′ = F(i(t− τ)) µ + γi− µr

F(x) =
b + c x

a + b + c x
, G(x) = 1− F(x) =

a
a + b + c x

=
1

1 + (b/a) + (c/a) x
.

Therefore, we do not need to specify N. As we are only interested in children under
5 years old, say, we take µ = 1/5 (with years as the basic time unit). The time a person is
sick is about 9 days, which gives us γ = 365/9 ≈ 39.5. Furthermore, the basic reproduction
number R0 = β/(µ + γ) ≈ 10, and thus we choose β ≈ 400. The only parameters that
remain to be determined are the opinion dynamics parameters. We only require two
lumped parameters here: b̃ := b/a and c̃ := c/a. We find that b̃/(1 + b̃) = F(0) denotes
the fraction of vaccinated children in absence of a previous measles outbreak. Unlike the
epidemic parameters, we do not have standard values for the opinion formation part of
the model; therefore, we consider two different scenarios (Table 4). For scenario 1, we
take the typical vaccination coverage of Germany as a basis, s.t. b̃/(1 + b̃) ≈ 0.5, . . . , 0.9.
We choose b̃ = 4, corresponding to F(0) = 0.8. In scenario 2, we consider a much lower
average vaccination coverage, where only 10% of the children are vaccinated, such that
b̃ = 0.1. Last, we need to specify how strong the response to a local outbreak might be. We
assume the rather optimistic value c̃ = 100 for both scenarios; we need to take into account
that the prevalence, the fraction of infected children at a given time point, will be tiny, such
that c̃ needs to be large in order to allow the prevalence to have a distinct influence.

For scenario 1, we find Re f f = G(0)β/(γ + µ) ≈ 2 > 1, such that we have a positive
endemic equilibrium. Herein,

s∗ =
S∗

N
=

γ + µ

β
≈ 0.1

while the prevalence in equilibrium i∗ = I∗/N is provided by the fixed point equation
stated in (4). Numerical analysis yields

i∗ = 0.0005.

Therewith, we numerically obtain u∗ = 0.51, G′(i∗)2 = 15.4, while the corresponding
threshold for G′(i∗)2 stated in Theorem 4 is G2

crit = 792. A Hopf point is not possible,
even in case of a long delay. A much stronger response is required until periodic orbits
can appear.

If we turn to scenario 2, we have Re f f = G(0)β/(γ + µ) ≈ 10 > 1, and, as before,

s∗ =
S∗

N
=

γ + µ

β
≈ 0.1,

as the fraction of susceptibles is not affected by the opinion model. We find by numerical analysis

i∗ = 0.003, u∗ = 0.08. G′(i∗)2 = 2579.5 > 1634.1 = G2
crit.
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Therefore, periodic orbits may appear if the delay is sufficiently long. Again, numerical
analysis (based on the formula developed in Appendix A) indicates a minimal length for
the delay of τ0 = 0.134 years (ca. 1.5 months), leading to a period of T = 0.84 years (ca.
10 months).

In Figure 6, the bifurcation diagram is shown for three levels of the baseline vaccination.
Theorem 4 indicates that, only for a baseline vaccination coverage that is sufficiently
small, oscillations are possible; we have seen above that, for scenario 1, with 80% baseline
vaccination, no oscillation can be induced. Figure 6 indicates that, for 50% vaccination
and below, we easily find sustained oscillation, provided that the social response appears
with a certain strength. If that is given, even a short or moderate delay of a few weeks
(2–4 weeks) leads to sustained oscillations with a period of about one year. The period of
these oscillations does not depend crucially on the delay or the strength of the response.
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Figure 6. Line of Hopf points in the parameter plane provided by the delay τ and the strength
of social response c̃ for three different baseline vaccination levels. Below the black curve, we find
damped oscillations; above, we have sustained oscillations. The color indicates the period of the
oscillations as provided by the imaginary part of the linearization at the endemic stationary state.
Apart from c̃ and τ (provided by the axes), the parameters used are those of scenario 2.

Table 4. Values for the deterministic model that are in a reasonable range. Recall that F(0) denotes the
fraction of vaccinated newborns in absence of the infection (baseline vaccination). For a discussion of
the parameter choice, see text.

Meaning Variable Scenario 1 Scenario 2

removal rate µ 0.2 yr−1 0.2 yr−1

recovery rate γ 39.5 yr−1 39.5 yr−1

contact rate β 400 yr−1 400 yr−1

delay see text 1 year see text
opinion model, basic parameter b̃ = b/a 4 (⇒F(0) = 0.8) 0.1 (⇒F(0) = 0.1)
opinion model, response to an outbreak c̃ = c/a 100 100

4. Discussion

In this study, we discuss a possible social response of the population to the presence of
measles. In the first part of the study, we focused on the statistical analysis of vaccination
data and measles prevalence for 345 districts in Germany, for the years 2008–2012. It is
not surprising that a higher vaccination coverage indicates a lower size of a local outbreak.
What might be surprising is that the probability of an outbreak is unrelated to the vac-
cination coverage. Here, we note that the overall vaccination coverage in Germany at
this time is sufficiently high to break local transmission chains [38]. The central cause for
the appearance of local outbreaks is non-local infectious contacts. The frequency of these
contacts is approximately independent of the vaccination coverage but depends on the
global force of infection.

The central finding of the present study is that an increase in vaccination converges
on a local outbreak. The only parallel finding known by the authors is the study by



Stats 2023, 6 1292

Philipson [7] in 1996, who found strong evidence in data for the US between 1984 and 1990
that children are vaccinated at younger ages if the measles incidence is high. As the data
we use are noisy, we are only able to identify the effects of local outbreaks due to the fact
that we have localized data, which means on the one hand that parents have a chance to
be aware of these outbreaks (the outbreak did take place, most likely, in the vicinity), and
we have a large sample. However, we do not test for spatial interaction effects: outbreaks
in neighboring districts might also have some effect. Most interesting is the delay in the
response. As vaccination usually takes place between 11 and 14 months, it is most likely
that the mother was still pregnant with the child during the outbreak. This finding may
indicate that particularly pregnant women are susceptible to information about infectious
diseases, which should be investigated in more focused studies.

The statistical analysis reveals another aspect, namely that significant spatial differ-
ences in vaccination coverage exist. Possible explanations are the different histories of
former West and East Germany [38], which still influence the population. Also, opinion
dynamics might contribute, as investigated in [22].

In the second part of the paper, we turn to the investigation of a mechanistic model,
in the same spirit as Philipson [7] (where his model is mainly concerned with the effects
of the price of the vaccine). In the present study, we particularly focus on the delay in
opinion dynamics. The analysis shows that this delay is able to trigger periodic orbits, and
a consistency check with realistic parameter values indicates that the periodic orbits might
be reasonable if the vaccination coverage is rather low and the response is rather strong.
However, because measles is influenced by periodically changing contact patterns [39]
(school vacations or rainy seasons in Africa), it is likely that the periodicity triggered
by the social response is overshadowed by these periodic background patterns. The
interaction between the nonlinear intrinsic social feedback and the extrinsically caused
periodicity in the contact rate might induce bifurcations, which lead to complex behavior.
In case of other infections, the importance of social response was presumably more distinct,
although it is perhaps more difficult to clearly identify in data. During the COVID-19
pandemic, part of the population initially adhered strictly to the rules of social distancing
but eventually became tired of these rules and behaved carelessly again [40,41]. One might
speculate that the incidence first went down to eventually rise again. The waves we have
observed can be mostly attributed to new virus variants, but the social response might also
have contributed.

We learn from this study that social responses in the dynamics of infectious diseases
cannot be neglected. From a modeling perspective, it is unclear how to account for these
social mechanisms. The scientific community agrees on Kermack–McKendrick-like models,
which are powerful tools for the analysis and prediction of the time course of infectious dis-
eases but do not incorporate social feedback. However, if mathematical epidemiology aims
to be a reliable tool for public health authorities, a better understanding of the behavioral
changes and social responses of the population to the presence of infections is necessary.
We have many rather theoretical attempts speculating about the behavioral effects based
on game theory [9–11] or social learning [13,14]. We only have very few examples that aim
to find these effects in data: for example, the study of Philipson [7] for measles, or that of
Barzon et al. [1] for COVID-19. We need more studies that tightly integrate statistical and
mechanistic models to reach a clear agreement on how to model this effect, how important
such effects are in situations of practical relevance, which consequences to expect, and how
to estimate the parameters of these models in a reliable way.
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Appendix A. Proof for the Existence of a Hopf Point

Proof of Proposition 4. We linearize the system at the endemic equilibrium. Let

S = S∗ + s, I = I∗ + i

then

s′(t) = G′(I∗/N) µ i(t− τ)− β
S∗

N
i− β

I∗

N
s− µs

= G′(I∗/N) µ i(t− τ)− (µ + γ) i− β
I∗

N
s− µs

i′(t) = β
S∗

N
i + β

I∗

N
s− µi

= (µ + γ)i + β
I∗

N
s− γi− µi

If we again introduce i∗ = I∗/N, we may write

s′(t) = G′(i∗) µ i(t− τ)− (µ + γ) i− βi∗ s− µs

i′(t) = β i∗ s

As the system is linear, we expect the solutions asymptotically to grow exponentially,

s(t) = s0eλt, i(t) = i0eλt, λ ∈ C.

λ

(
s0
i0

)
=

(
−βi∗ − µ G′(i∗) µ e−λτ − (µ + γ)

β i∗ 0

)
︸ ︷︷ ︸

:=A

(
s0
i0

)

The characteristic polynomial for matrix A reads p(λ) = 0, where

p(λ) = det(A− λI) = λ2 + (βi∗ + µ)λ− βi∗[G′(i∗)µe−λτ − (µ + γ)].

Since G′(x) < 0, we can write

p(λ) = λ2 + (βi∗ + µ)λ + βi∗[|G′(i∗)| µe−λτ + (µ + γ)],

and hence, for λ ∈ R, there are no or negative roots of this equation. λ = 0 or λ > 0 can
never be a root of the characteristic polynomial.

Now, we consider complex eigenvalues, λ = r± iω. We are particularly interested in
the existence of a Hopf point, r = 0 and λ = ±iω. If we plug λ = iω into the characteristic
equation, we obtain

0 = −ω2 + i(βi∗ + µ)ω + βi∗[|G′(i∗)| µe−τωi + (µ + γ)]

= −ω2 + i(βi∗ + µ)ω + βi∗
[
|G′(i∗)| µ

(
cos(ωτ)− i sin(ωτ)

)
+ (µ + γ)

]
.

As the real and the imaginary part of the r.h.s. needs to be zero, we obtain two equations,

0 = (βi∗ + µ)ω− βi∗ |G′(i∗)| µ sin(ωτ)

0 = −ω2 + βi∗[|G′(i∗)| µ cos(ωτ) + (µ + γ)].

Hence,

ω =
βi∗

βi∗ + µ
|G′(i∗)| µ sin(ωτ)
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and therefore

0 = −
(

βi∗

βi∗ + µ

)2
G′(i∗)2 µ2 sin2(ωτ) + βi∗[|G′(i∗)| µ cos(ωτ) + (µ + γ)]

= −
(

βi∗

βi∗ + µ

)2
G′(i∗)2 µ2 ( 1− cos2(ωτ) ) + βi∗[|G′(i∗)| µ cos(ωτ) + (µ + γ)]

We consider this equation as a quadratic polynomial in u = cos(ωτ),

0 = q(u) :=
(

βi∗

βi∗ + µ

)2
G′(i∗)2 µ2u2 + βi∗|G′(i∗)| µ u−

(
βi∗

βi∗ + µ

)2
G′(i∗)2 µ2 + βi∗(µ + γ).

Due to the definition of u, we only accept roots u ∈ [−1, 1]. We find that q(1) > 0. In
order to have an acceptable root, we check if q assumes a non-positive value in [−1, 1]. The
minimum of q(u) is located in

ũ∗ =
−βi∗|G′(i∗)| µ

2
(

βi∗
βi∗+µ

)2
G′(i∗)2 µ2

=
−(βi∗ + µ)2

2 βi∗ |G′(i∗)| µ < 0.

We have two cases to consider. Case (a) ũ∗ > −1. In that case, we check if q(ũ∗) ≤ 0:

q(ũ∗) =

(
βi∗

βi∗ + µ

)2
G′(i∗)2 µ2

(
−(βi∗ + µ)2

2 βi∗ |G′(i∗)| µ

)2

+βi∗|G′(i∗)| µ
(
−(βi∗ + µ)2

2 βi∗ |G′(i∗)| µ

)
−
(

βi∗

βi∗ + µ

)2
G′(i∗)2 µ2 + βi∗(µ + γ)

=
1
4
(βi∗ + µ)2 − 1

2
(βi∗ + µ)2 −

(
βi∗

βi∗ + µ

)2
G′(i∗)2 µ2 + βi∗(µ + γ)

= −1
4
(βi∗ − µ)2 + βi∗(µ/2 + γ)−

(
βi∗

βi∗ + µ

)2
G′(i∗)2 µ2

That is, q(ũ∗) ≤ 0 corresponds to

G′(ĩ)2 ≥
(βi∗ + µ)2 [βi∗(µ/2 + γ)− 1

4 (βi∗ − µ)2]

(β i∗ µ)2 .

In case (b), ũ∗ ≤ −1. In this case, the polynomial is monotonously increasing in [−1, 1],
and we only check q(−1) < 0,

q(±1) = βi∗
(

µ + γ± |G′(i∗)|µ
)

.

such that we have at least one solution in [−1, 1] if

|G′(i∗)| ≥ 1 +
γ

µ
.

Let û∗ be the root of the polynomial q(.). Then,

ω∗ =
βi∗

βi∗ + µ
|G′(i∗)| µ sin(ωτ) =

βi∗

βi∗ + µ
|G′(i∗)| µ

√
1− (û∗)2.
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Therewith, the period of the oscillations can be determined by T = 2π/ω∗. The critical
delay is provided by the smallest positive τ0 such that

cos(ω∗ τ0) = û∗.

Appendix B. Districts in Clusters

Table A1. Cluster 1 Districts (147 (36.6%)).

DE114 DE116 DE119 DE122 DE123 DE127 DE128
DE129 DE12B DE12C DE132 DE133 DE135 DE137
DE13A DE141 DE142 DE143 DE144 DE145 DE146
DE149 DE211 DE213 DE214 DE217 DE219 DE21B
DE21C DE222 DE224 DE229 DE232 DE236 DE237
DE238 DE239 DE23A DE241 DE242 DE243 DE245
DE246 DE247 DE24B DE24C DE254 DE256 DE259
DE25B DE25C DE267 DE269 DE271 DE273 DE274
DE275 DE276 DE277 DE278 DE279 DE27D DE300
DE402 DE404 DE405 DE40B DE40G DE501 DE502
DE713 DE714 DE71B DE71D DE721 DE723 DE732
DE737 DE804 DE80M DE918 DE91C DE923 DE927
DE932 DE934 DE935 DE936 DE93B DE942 DE944
DE94H DEA19 DEA1A DEA28 DEA2A DEA33 DEA46
DEA52 DEA56 DEB11 DEB13 DEB14 DEB18 DEB1A
DEB1B DEB1C DEB21 DEB24 DEB32 DEB35 DEB37
DEB3C DEB3D DEB3E DEB3F DEB3H DEB3I DEC01
DEC02 DEC04 DED2E DED52 DED53 DEE0C DEE0D
DEF04 DEF05 DEF06 DEF07 DEF0A DEF0B DEF0D
DEF0F DEG02 DEG04 DEG06 DEG0B DEG0C DEG0D
DEG0E DEG0F DEG0I DEG0J DEG0K DEG0P DE111

Table A2. Cluster 2 Districts (190 (47.4%)).

DE112 DE113 DE115 DE117 DE118 DE11B DE121
DE124 DE125 DE126 DE139 DE212 DE21H DE223
DE22B DE231 DE233 DE235 DE244 DE248 DE249
DE24A DE24D DE251 DE252 DE253 DE255 DE257
DE258 DE25A DE261 DE262 DE263 DE264 DE268
DE26A DE26B DE26C DE401 DE403 DE406 DE407
DE408 DE409 DE40A DE40C DE40D DE40E DE40F
DE40H DE40I DE600 DE711 DE712 DE715 DE716
DE717 DE718 DE719 DE71A DE71C DE71E DE722
DE724 DE725 DE731 DE733 DE734 DE735 DE736
DE803 DE80J DE80K DE80L DE80N DE80O DE911
DE912 DE913 DE914 DE916 DE917 DE91A DE91B
DE922 DE925 DE926 DE928 DE929 DE931 DE933
DE937 DE938 DE939 DE93A DE941 DE943 DE945
DE946 DE948 DE949 DE94B DE94D DE94E DE94F
DE94G DEA11 DEA12 DEA13 DEA14 DEA15 DEA16
DEA17 DEA18 DEA1B DEA1C DEA1D DEA1E DEA1F
DEA22 DEA23 DEA24 DEA26 DEA27 DEA29 DEA2B
DEA2C DEA2D DEA31 DEA32 DEA34 DEA35 DEA36
DEA37 DEA38 DEA41 DEA42 DEA43 DEA44 DEA45
DEA47 DEA51 DEA53 DEA54 DEA55 DEA58 DEA59
DEA5A DEA5B DEA5C DEB12 DEB15 DEB17 DEB25
DEB31 DEB34 DEB39 DEB3A DEB3B DEB3G DEB3J
DEB3K DEC03 DEC05 DEC06 DEE01 DEE03 DEE05
DEE06 DEE07 DEE08 DEE09 DEE0A DEE0B DEE0E
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Table A2. Cont.

DEF01 DEF02 DEF03 DEF08 DEF09 DEF0C DEF0E
DEG03 DEG05 DEG07 DEG09 DEG0A DEG0G DEG0H
DEG0L

Table A3. Cluster 3 Districts (64 (16%)).

DE11A DE11C DE11D DE12A DE131 DE134
DE136 DE138 DE147 DE148 DE215 DE216
DE218 DE21A DE21D DE21E DE21F DE21G
DE21I DE21J DE21K DE21L DE21M DE21N
DE221 DE225 DE226 DE227 DE228 DE22A
DE22C DE234 DE265 DE266 DE272 DE27A
DE27B DE27C DE27E DE947 DE94A DE94C
DEA57 DEB1D DEB22 DEB23 DEB33 DEB36
DEB38 DED21 DED2C DED2D DED2F DED41
DED42 DED43 DED44 DED45 DED51 DEE02
DEE04 DEG01 DEG0M DEG0N
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