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Abstract: As the adoption of battery electric buses (BEBs) in public transportation systems grows,
the need for precise energy consumption forecasting becomes increasingly important. Accurate
predictions are essential for optimizing routes, charging schedules, and ensuring adequate operational
range. This paper introduces an innovative forecasting methodology that combines a propulsion and
auxiliary energy model with a novel concept, the environment generator. This approach addresses
the primary challenge in electric bus energy forecasting: estimating future environmental conditions,
such as weather, passenger load, and traffic patterns, which significantly impact energy demand. The
environment generator plays a crucial role by providing the energy models with realistic input data.
This study validates various models with different levels of model complexity against real-world
operational data from a case study of over one year with 16 electric buses in Göttingen, Germany. Our
analysis thoroughly examines influencing factors on energy consumption, like altitude, temperature,
passenger load, and driving patterns. In order to comprehensively understand energy demands
under varying operational conditions, the methodology integrates data-driven models and physical
simulations into a modular and highly accurate energy predictor. The results demonstrate the
effectiveness of our approach in providing more accurate energy consumption forecasts, which is
essential for efficient electric bus fleet management. This research contributes to the growing body of
knowledge in electric vehicle energy prediction and offers practical insights for transit authorities
and operators in optimizing electric bus operations.

Keywords: electric buses; energy consumption forecasting; public transportation electrification;
auxiliary power models; propulsion power analysis; data analysis

1. Introduction

In recent years, the public transportation sector has witnessed a significant shift toward
sustainability, with the adoption of battery electric buses (BEBs) emerging as a leading
strategy [1]. This transition, while promising in reducing greenhouse gas emissions and
improving urban air quality, presents the challenge of effectively managing the energy
resources of BEBs to optimize their operation [2]. The energy consumption of electric
buses is subject to variability due to factors such as route characteristics, passenger load,
and environmental conditions [3]. Therefore, a precise forecast of energy requirements
is essential for efficient route planning and optimization of charging locations and bat-
tery size [4] as well as vehicle scheduling [5,6]. With means of those energy forecasting
models, future scenarios for electric buses can also be investigated; for example, inductive
charging at intersections [7], at terminal stops [8], or along the route [9]. With advances
in technology, electric buses have demonstrated remarkable efficiency and adaptability
in various terrains and climates. For example, an electric truck showed promising results
in a field test through the South Tyrolean Dolomites, showcasing the potential of electric
buses in challenging topographies [10]. Moreover, studies have shown that electric buses
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are economically competitive and can have a lower total cost of ownership compared to
diesel buses, particularly when considering societal costs and environmental benefits [3,11].
There are many case studies all around the world. While the number of BEB projects in
China is very high, the number of projects in Europe and the United States is growing
as well [12–21]. However, reliable integration of BEBs into urban transportation systems
necessitates innovative methodologies for accurate energy consumption forecasting. While
the average energy consumption of electric buses is around 1.3 kWh/km, this can vary
significantly based on operational conditions [22]. Previous studies have made considerable
progress in this domain, yet there remains a gap in developing forecasting models that
can adapt to a wide range of real-world operational conditions [23]. This study aims to
bridge this gap by introducing a novel forecasting methodology that combines a detailed
propulsion and auxiliary power model with an environment generator (EG). This approach
is unique in its ability to simulate realistic operational scenarios, thus enhancing the accu-
racy of energy consumption predictions. Our methodology addresses the main challenges
in electric bus energy forecasting, which includes estimating future operational condi-
tions such as weather conditions, varying passenger loads, and dynamic traffic patterns.
By incorporating data-driven models and physical simulations, we offer a comprehen-
sive tool to understand and manage the energy demands of electric buses under diverse
operational conditions.

With this methodology, we aim to answer the following research questions:

• Can data-driven approaches improve energy forecasting for battery electric buses over
constant value assumption for practical applications?

• How big is the error margin for data-driven models versus constant values?
• How can bus operators benefit from more precise energy forecasting?

The rest of the paper is organized as follows: Background and Motivation: This sec-
tion delves into the current landscape of BEB energy consumption research. It outlines
existing methodologies, highlights their limitations, and establishes the need for our in-
novative forecasting methodology. Data Analysis: Here, we present an in-depth analysis
of the operational data collected from BEBs. This includes the methods of data collection,
preprocessing, and a discussion on the key influencing factors such as elevation gain, tem-
perature, passenger load, and traffic patterns. Methodology: This core section describes our
forecasting methodology. It comprehensively details the propulsion and auxiliary energy
models and introduces the environment generator (EG) concept, which provides the energy
models with estimated input values, such as outside temperature, passenger volume, and
traffic conditions. This section explains how these three components synergistically predict
energy consumption. Results and Discussion: We present the validation results of our
models, comparing their performance and discussing their practical implications in the
context of electric bus fleet management and optimization. We also show the potential
of the presented approach with two concrete scenarios for bus operations. Conclusions:
The final section synthesizes our findings, reflecting on our contributions to the field and
suggesting directions for future research. Each section of the paper builds upon the previ-
ous, concluding with a comprehensive understanding of the challenges and solutions in
forecasting energy consumption for BEBs.

2. Background and Motivation

The transition to sustainable public transportation systems, particularly via the adop-
tion of battery electric buses (BEBs), has gained significant interest in recent years. This
shift presents unique challenges, notably in the domain of energy consumption forecasting,
which is crucial for effective fleet management. The literature relevant to this study can
be broadly categorized into three main areas: data analysis, simulation approaches, and
prediction models. Each of these areas offers insights into the methodologies and tools
used for optimizing electric bus operations, yet they also highlight the need for more
comprehensive and adaptable solutions. To understand these challenges, we first examine
empirical studies on BEB operations. Focusing on real-world data, these studies offer
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insights into energy consumption patterns under various operational conditions. As we
explore these insights, we highlight the need for predictive models that can adapt to diverse
real-world scenarios.

2.1. Data Analysis in BEB Operations

Empirical studies on Battery Electric Buses (BEBs) focus on real-world data to analyze
energy consumption patterns. These studies typically examine factors such as passenger
load, route characteristics, and environmental conditions. The insights from these studies
are crucial for developing baseline models and understanding the practical challenges city
bus operators face. In this section, we provide a summary of those recent studies.

Research across different geographical locations employs varied methodologies. Ex-
perimental studies were conducted in Belgrade, Serbia [24]; Saskatoon, Canada [25]; and
Sao Paulo, Brazil [26], with emphasis on factors like heating, cooling, and driving style.
Mišanović et al. [24] found that heating and cooling are key factors for the energy consump-
tion of BEBs in Belgrade. They also reported that driving style could impact consumption
by up to 35%. Clarke et al. [25] found similar results in Saskatoon (Canada), emphasizing
the dominant effect of heating, ventilation, and air conditioning (HVAC) usage on the range
of the vehicles. They also noted that the bus operated reliably in a temperature range of
−39 °C to +39 °C. Eufrásio et al. [26] conducted a study in São Paulo and reported an aver-
age consumption of 1.19–1.27 kWh/km, of which they found higher energy consumption
on hotter days. Different studies provide statistical analyses on energy consumption in rela-
tion to temperature [27,28]. Culik et al. [27] performed a statistical analysis on 14,888 trips
and found that lower temperatures increased energy consumption. Hao et al. [28] analyzed
197 cars over 12 months and found that below 10 °C, energy consumption increased by
2.4 kWh/100 km for every 5 °C drop in temperature.

Martin et al. [29] conducted a comprehensive study on the impact of road gradient
and passenger loading, concluding that the road grade only has a major effect on energy
consumption when the passenger load is changing as well. Further, Fernandes et al. [30]
reported on propulsion and regeneration efficiencies via an experimental study and found
propulsion efficiency to be around 93% and regeneration efficiency around 78%. Vehviläi-
nen et al. [31] observed higher energy use, with winter consumption being 40–45% higher
than in summer in Finland, and Wang et al. [32] analyzed sensor data from 99 electric buses
across seven cities in China and found that higher average speed increased efficiency. De
Wilde [33] and Zhou et al. [34] focused on the impact of air conditioning and passenger
load in Brussels and Macao, respectively. De Wilde [33], within their study in Brussels,
found that higher temperatures, especially above 22 °C, increased energy consumption due
to air conditioning.

Moreover, Zhou et al. [34] utilized onboard diagnostics and a local power company’s
monitoring system to assess the energy consumption of BEBs in Macao, China. The study
found that the average consumption for a 12 m bus is around 1.3–1.7 kWh/km. They also
identified HVAC as the greatest impact factor with a 21–27% increase in harsh conditions,
while passenger load has a significantly lower effect. They found that from a life-cycle
perspective, fossil fuels become reduced by 32–46% by utilizing BEBs instead of diesel
buses. These findings underscore the effectiveness of BEBs in dense urban environments
and support the argument that BEBs are a viable replacement for diesel buses in such
settings. In addition to these studies, He et al. [35] collected data from conventional diesel
buses in Knoxville, Tennessee, to establish a framework for evaluating the feasibility of
bus electrification, taking into account real-world routes, vehicle performance, and energy
consumption patterns. This framework, highlighting an average battery consumption
of 1.35 kWh per kilometer, demonstrates the potential for flexible adaptation to various
operational scenarios, including differing charging schedules and routes.

These studies help in understanding the special cases in real-world conditions. The
analyzed areas either have hot summers (e.g., Brazil) or cold winters (e.g., Norway),
which influences whether the heating or cooling has a bigger impact on the overall energy
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demand. However, most of the presented studies do not make the leap to build prediction
models from the data and do not try to predict environment variables for future bus
trips. Building on the empirical analysis, our focus shifts now to the development of
predictive models. These models range from simple average consumption estimations to
sophisticated machine-learning techniques. Here, we discuss the evolution of these models,
their capabilities, and limitations, underscoring the gap in balancing model complexity
with practical application.

2.2. Predictive Models for BEB Energy Consumption

The modeling of BEB energy consumption is an active field of research. This area has
seen the development of various predictive models, ranging from simplistic approaches
that use average energy consumption values to sophisticated machine learning algorithms.
Some models try to physically model the aspects influencing energy consumption [36,37],
while others use deep learning and other data-driven approaches to achieve precise energy
forecasting [38,39]. However, there is a gap between the simple models that are used in
real-world scenarios and the sophisticated models that cannot be readily applied to the
planning process of bus operators.

The broader spectrum of EV energy modeling, as reviewed by Chen et al. [40], is
vital for the adoption of battery electric transport systems. This work outlines EV energy
consumption modeling trends, particularly the shift towards macroscopic and data-driven
models utilizing machine learning on extensive real-world data. It also underscores the
necessity for versatile models that extend beyond personal vehicles to include electric buses.
Lim et al. [41] provide an in-depth review of different predictive models. Zhou et al. [38]
analyzed operational sensor data from buses in Changsha, China, and found that Long
Short-Term Memory (LSTM) models outperformed Artificial Neural Network (ANN)
models in most cases. Hjelkrem et al. [42] analyzed buses in Norway and China, focusing
on propulsion and auxiliary models. They employed a gray box approach but did not
validate the predictions against measured values.

Ji et al. [39] used a regression model on real tracking data from Jilin, China; using
a temperature Range from −27 °C to 35 °C, they achieved a Mean Absolute Percentage
Error (MAPE) of 12.1%. Li et al. [43] used a physical model combined with a CatBoost
decision tree model and found that their fusion model had an average error of 6.1%.
Basma et al. [44] developed a comprehensive energy model and validated their results
in simulations. The applicability to planning for unknown environmental variables is
unclear. AlOgaili et al. [45] developed a model to estimate energy consumption, considering
integrated elevation data, and validated the model with data from buses in Malaysia. They
also do not consider how to use the models for uncertain future scenarios. Pamua et al.
developed models in [46,47] using a deep learning network model and found high accuracy
on historical data.

A more in-depth review of the different prediction models is not in the scope of this
work, and we refer the interested reader to [40,41,48]. The authors of [48] also conducted a
review on the methods for estimating the energy consumption of BEBs and found that one
of the major challenges in energy prediction is the replication of real-world data.

To conclude, no matter how accurate the prediction model is, its accuracy is limited by
the quality of the input data, which can be addressed in different simulation approaches.
Lastly, we delve into simulation-based studies. These studies provide valuable predictive
insights via virtual modeling of BEB operations under various scenarios.

2.3. Simulation Approaches for BEB Energy Prediction

Simulation-based studies contribute significantly to the applicability of the energy
models by creating virtual models of BEB operations. These models can simulate various
scenarios to estimate energy requirements, including route topographies, traffic conditions,
and passenger loads. Although these simulations offer valuable predictive insights, they
often require extensive data input and may not fully capture the unpredictability of real-
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world conditions. Many studies focus on simulating the vehicle trajectories via traffic
simulation [49], driving cycles [50], or assumptions about speed profiles and vehicle
mass [51] to estimate the propulsion energy demand. While this is especially important
when considering different recuperation efficiencies, the energy demand for HVAC should
not be neglected.

Since it is very difficult to predict all input parameters for the HVAC systems, some
works do not rely on statistical evaluation of measured data but use simulations to generate
input for the models and outside temperature. Wu et al. [52] developed a vehicle model
fed with constant speed. They analyzed the effect of different vehicle weights and outside
temperatures. However, it is unclear how the data was validated. In the article [53], the
authors developed a simulation method to generate bus trips from existing data but used
constant values for auxiliary power demand, which makes up a significant portion of the
overall demand. Lajunen et al. [54] used simulations to predict the energy demand of BEBs,
focusing on different climate conditions and driver behavior. Budiono et al. [55] conducted
a study on urban electric buses, finding that a 100 kW motor and 200 kWh battery are
sufficient for city use, carrying 85 passengers over 200 km. Based on simulations and GPS
data, their research suggests that electric buses are a cost-effective urban transport solution,
especially with government incentives, and have a service life exceeding ten years.

Kivekäs et al. [56] introduced a novel driving cycle synthetization method to generate
diverse cycles and passenger numbers for bus routes based on a few measured cycles.
Applied to a suburban route in Espoo, Finland, the method’s validity was confirmed
by comparing the statistical properties of synthesized and measured cycles. Utilizing a
validated electric bus simulation model, the study analyzed energy consumption varia-
tions in ten thousand synthetic cycles of a battery electric bus. Findings included a mean
consumption of 0.914 kWh/km, a standard deviation of 0.043 kWh/km, and a consump-
tion variation range of 0.331 kWh/km. This methodology offers valuable insights for
public transport authorities, route operators, and bus manufacturers in optimizing bus
powertrains and schedules.

Phyo et al. [57] focused on the impact of driver behavior on the power consumption
of electric buses in Thailand. The study investigated scenarios, including the critical case of
crossing the Rama IX bridge, and explored how climbing resistance affects power demand
and recuperation. The research found that higher bus speeds increase power demand, but
consumption depends on acceleration and deceleration rates. Notably, faster deceleration
or downhill travel can lead to energy recuperation. The study also highlighted that power
consumption is higher in traffic congestion conditions. Additionally, the impact of varying
speed region lengths on power consumption was evaluated. These insights are crucial for
understanding the efficiency of electric buses under varying traffic conditions. The Matlab
simulations focused on the speed profiles of the vehicles. Blades et al. [58] conducted
a simulation study and found that hydrogen fuel cell buses showed higher range and
operating time compared to battery electric buses. In Finland, a computational tool was
developed and tested using standard test cycles on two 100 km routes in the center of
Manhattan. This tool, which supports operational planning and route optimization for
BEBs, reported an energy consumption of 170–200 kWh over 10 h of operation, showcasing
the utility of simulation-based tools in real traffic conditions [59].

The existing body of literature on the energy requirements of BEBs highlights a
research gap in forecasting methodologies that account for diverse and dynamic city bus
operations, including the difficulty of predicting weather conditions and HVAC energy
consumption while also being easily applicable to planning purposes of the bus operators.
While current simulation approaches serve their purpose, they often overlook some of these
critical factors on how to obtain the input data for energy models. This research seeks to
bridge this gap by developing an integrated approach, leveraging empirical data analysis,
simulation techniques, and advanced predictive modeling to offer city bus operators robust
and practical predictive capabilities. This will be achieved via the environment generator
(EG), which will be described later in more detail.
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3. Data Analysis

Before the methodology is described, this section gives an in-depth view of the data
used for this study and how it was obtained, processed, and analyzed. The foundation of
our study is a comprehensive dataset derived from high-resolution operational metrics of
16 Mercedes E-Citaro articulated electric buses operating in Göttingen, Germany over a
1-year period. This dataset includes granular information such as GPS data, acceleration,
speed, vehicle load, interior and exterior temperatures, energy demand details, and more, as
documented in the OMNIplus On data interface www.omniplus.com/de/on/ (accessed on
11 January 2024).

3.1. Data Collection and Preprocessing

Our data collection strategy focused on capturing a complete picture of BEB operations.
We extracted approximately 45,000 individual bus trips between terminal stops. Each trip
was analyzed to gather metrics necessary for estimating energy demand. This included
information on the line and vehicle specifics, start time and date, trip duration, location
coordinates, temperature averages, passenger counts, and state of charge (SOC) levels of
the vehicle’s battery.

Since the observed vehicles primarily served two different lines, the analysis was
focused on those. All the trajectories were split at the terminal stops of those lines (see
Figure 1). For every single detected trip, the following metrics were collected: the line,
vehicle, start time and date, duration, start and end location, mean temperature, mean
and maximum passenger count, the passenger-kilometers, mean and max speed, number
of stops (every time the vehicle slows down to 0 km/h, not differentiating the causes
of stopping), electrical energy, energy for the auxiliaries (mostly HVAC), and start and
end SOC (state of charge). The two analyzed lines cover a distance of 11 km and 13 km,
respectively, and take around 30 min. Since the detection algorithm is imperfect, we had to
filter out some trips with unrealistic values, where the served distances exceeded the actual
distances, which was usually caused by changes in the bus schedule when the bus did not
reach the geo-fence for the terminal station.

Figure 1. Visualization for one bus on one day, serving the same line the whole day.

www.omniplus.com/de/on/
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Figure 2 is an example trajectory between two terminal stops, showing the variability
of the altitude profile, typical speed, and passenger load profiles. One of the major impact
factors for the energy demand is the altitude change, which can be seen there. The effect of
the elevation change can also be seen in Figure 3, which shows a histogram of the energy
demand of all recorded bus trips. The different peaks indicate different lines. While the
middle peak, around 1.55 kWh/km, represents the bus line with almost no elevation gain,
the lower and upper peaks represent the bus line with an almost 150 m elevation difference
between the terminal stops. The peak around 0.7 kWh/km represents the values for the
“down-hill” direction, and the high peak at around 2.2 kWh/km represents the “up-hill”
direction. The dotted red line indicates the energy demand for planning as defined by
the OEM.

Figure 2. Example of the tracking data depicting passenger count, speed, and altitude.

Figure 3. Histogram of the energy consumption on every trip recorded with three distinct peaks,
indicating different bus lines.

In order to compare the different trips, the average energy consumption was adjusted
based on the elevation gain between terminal stops based on the potential energy. The
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idea was to be able to analyze the trips as if they all happened on flat terrain. A simple
formula was used to calculate the potential energy difference according to elevation changes.
epot = m × g × h, where m is the weight of the vehicle, g is the gravitational constant of
the Earth, and h is the elevation change. Neglecting passenger weight and considering the
curb weight of 20,000 kg and the elevation change on one line of 26 m and the other line of
144 m, the correction values are 1.4 kWh and 7.8 kWh for the whole line. This results in
an only slightly skewed normal distributed energy demand histogram as seen in Figure 4.
The dotted red line in this figure also indicates the energy demand for planning as defined
by the OEM.

Figure 4. Histogram of the energy consumption on the bus lines after applying the elevation gain
energy correction.

After applying the filtering of unrealistic trips, calculating and eliminating the influ-
ence of the elevation gain-induced potential energy, and adding information about the
time of the day and year, the data was ready for further analysis. In order to obtain a
better understanding of the dataset, basic numbers were extracted and visual tools like
histogram plots were used to identify distinct patterns in the energy consumption of other
analyzed BEBs. Additionally, we employed statistical methods to evaluate the influence of
temperature on auxiliary power usage and passenger load on both tractive and auxiliary
energy demands. These analyses were critical in understanding the interplay between
operational variables and energy consumption.

3.2. Basic Numbers

This section provides an overview of the data used for this study. The vehicles used
are 16 Mercedes E-Citaro articulated electric buses.

Vehicle Specifications: The analyzed E-Citaro bus is equipped with dual drive axles,
offering a total rated power output of 504 kW. The HVAC system includes a 22 kW heater
and an 8 kW cooling system in the front, alongside a 36 kW water-circuit heater and
dual heat pumps providing 17 kW heating and 23 kW cooling in the passenger area.
Additionally, the bus has 14 kW floor heating and a supplementary 23 kW diesel heater,
which is predominantly used when temperatures are below 8 °C. The maximum HVAC
power usage is 54 kW for cooling and 129 kW for heating.

The data was collected from two bus lines where the vehicles approximately serve the
lines 10 times in each direction. Both routes go straight through the city center of Göttingen,
Germany. They vary significantly in their topology.

Operational Data Overview:
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• Total Trips Observed: The analysis is based on 46,675 bus trips from 16 vehicles over
13 months. From November 2022 to November 2023.

• Total Electrical Energy: A cumulative consumption of 619 MWh was recorded.
• Auxiliary Energy: Auxiliary systems accounted for 176 MWh, 28.5% of the total

consumption. This appears to be quite high considering the additional diesel heating
for cold conditions.

• Passenger Kilometers: The buses covered 6.82 million passenger kilometers (pkm).
• Electrical Energy per Passenger Kilometer (kWh/pkm): The average consumption

was 0.09 kWh per passenger kilometer.
• Temperature Range: Operational temperatures varied from −12 °C to 33 °C.
• Passenger Volume: The average number of passengers was around 19, occasionally

exceeding the maximum capacity of 145 passengers during peak hours.

Although the bus operators know the operations very well, they are very cautious
in the utilization of the battery capacity. Notably, the State of Charge (SOC) generally
remained above 70%, indicating a conservative battery usage pattern in these vehicles (see
Figure 5). This indicates that advanced charging strategies might have a big potential on
the economic performance of the BEBs.

These basic numbers lay the groundwork for our comprehensive analysis, providing
insights into the energy dynamics of battery electric buses.

Figure 5. Histogram of the lowest SOC of the day.

3.3. Influencing Factors

This section describes the major influencing factors on the energy demand. To reduce
the noise in the distributions and obtain a clearer picture of the different factors, the energy
demand for propulsion and auxiliary components are analyzed separately. We used basic
statistical tools, for example, calculating the mean, min, and max values for the different
variables, as well as different percentiles of the data to better understand the distribution
of values. The focus is on the propulsion energy demand since the elevation, traffic, and
driver behavior mostly influence the tractive forces. The passenger load influences the
tractive and auxiliary energy demands because of the passengers’ additional weight and
thermal output. The outside temperature only influences the auxiliaries, mostly the air
conditioning/heating of the passenger area and the battery temperature control. In the
following sections, the different variables are described in more detail.
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3.3.1. Elevation Gain

As mentioned in Section 3.1, elevation change greatly impacts the energy demand of a
single bus line. In order to analyze the other effects in more detail, the described elevation
gain adjustment was employed. This way, statistical analysis over a large number of trips
was possible. According to our evaluations, with a sufficiently powerful electric motor
and batteries, most potential energy can be recuperated and used to charge the batteries,
minus the efficiency losses of the engine. Since most vehicles will travel the same elevation
up and down during the day, it should even out. However, there are some aspects to
consider; if a bus operator decides to acquire vehicles with smaller engines, there might be
significant losses when the machine runs into power limits in generator mode; if the vehicle
travels uphill with many passengers and downhill almost empty, the assumption made
will not hold, since the potential energy changes with the vehicle mass, as it was shown
in [29]. However, due to the high amount of data evaluated in the presented paper, it can
be assumed that such extreme fluctuations in the passenger load have a less significant
impact as they should approximately equalize over the observation window.

In the case of the analyzed routes in Göttingen, the altitude changes happen either
at the beginning or at the end of the bus line, where the passenger load is the lowest (see
Figure 1). There is a significant difference in energy consumption of the uphill and downhill
routes, where the downhill route has an average consumption of 0.7 kWh/km and the
uphill route 2.2 kWh/km (see Figure 3). Since potential energy forms a big part of the
overall energy demand, charging strategies should also consider elevation changes. If the
charging station is on top of a hill, the vehicle should not be charged fully; otherwise, the
potential energy will be lost and converted to heat via the mechanical brakes.

3.3.2. Temperature

We identified the second largest influencing factor using the tracking data as the
outside temperature. As shown in Section 3.2, even though an additional diesel heater was
used, the auxiliary power still accounts for more than 28% of the total energy demand,
which is mostly due to the HVAC system.

In Figure 6, a scatter plot is shown where each individual bus trip is represented by
one blue dot. Each blue dot is the average auxiliary energy demand of that trip, and on
the x-axis is the average outside temperature, which reveals an interesting pattern. A clear
dependence of the auxiliary energy demand and the outside temperature is visible, while
the lower temperatures are split into two cases: (a) pure electric heating (the upper branch)
and (b) heating with the supplementary diesel heater (lower branch). Unfortunately, in this
study, we did not have information about the state of the diesel heater, which makes the
prediction tasks a bit more challenging.

Two distinct distributions become visible by analyzing the histogram of the auxiliary
energy demand in Figure 7 of temperatures below 10 °C. Therefore, we decided to add
estimated labels on whether the diesel heating is on or off during a trip. To obtain this
information, a Gaussian mixture model with two components was fit onto the data of trips
with an average temperature below 10 °C. Trips with higher temperatures were labeled as
“off” for the additional heater. This information was used later on for building prediction
models. Although there is some uncertainty with the correctness of the labels around
0.8 kWh/km, predictions for those energy demand values could either be from case (a) or
(b) (with or without additional diesel heating). Aside from that, it becomes apparent that
the outside temperature significantly impacts the overall energy demand.

This shows that the local and seasonal temperatures should be considered strongly
when planning bus operations. Additional diesel heaters can be considered for the ramp-up
phase, especially for very cold regions. Still, in pursuit of zero-emission public transport in
the long term, the vehicles should be fit to power the HVAC as fully electric.
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Figure 6. Blue dots’ average represent the auxiliary energy demand for a bus trip at a given mean
temperature.

Figure 7. Histogram of the auxiliary energy demand on the different bus trips. For all trips with
temperatures below 10 °C.

3.3.3. Passengers

The passenger load is also a significant factor in the planning of BEB operations. It will
mainly influence the tractive forces in areas with big elevation changes, but also impacts
the HVAC system.

In Figure 8, a clear trend is visible where more passengers mean higher average energy
consumption, with an increase of more than 20% from an almost empty bus (average
passenger count below 10) to a rather full bus (average passenger count above 75). It is
important to note that other factors still heavily influence the expected energy demand,
which is shown in the box plot by the large value range (1.5 × Inter-Quartile-Range (IQR))
indicated by the lines above and below the colored bars.

In Figure 9, the impact of passenger numbers on the auxiliary energy demand is
shown, which is much less than the effect on the propulsion energy demand. Ignoring
the outlier with only two observations for more than 75 passengers, an increase of 8%
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(0.36 kWh/km to 0.39 kWh/km) can be observed from an empty to a full vehicle. Here, the
dominance of other factors over the passenger count is even stronger since the value range
is almost the same for every passenger number category.

Figure 8. Box plot for the average propulsion energy demand for different passenger counts. Median
values are annotated in the plot. The number (n) of samples (bus lines) constituting each bar is
annotated on top.

Figure 9. Box plot for the average auxiliary energy demand for different passenger counts. Median
values are annotated in the plot. The number (n) of samples (bus lines) constituting each bar is
annotated on top.

Due to increasing data collection in public transport, the knowledge about the number
of passengers on a line at different times of the day is getting better and better. Therefore, it
is useful to incorporate such information into prediction models.

3.3.4. Traffic and Driver

Another influencing factor is the speed profile of the vehicle, which is influenced by
the driver as well as the surrounding traffic. With a data-driven approach utilizing tracking
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data, separating the influence of drivers and traffic is very difficult. Different analyses were
performed to analyze the effects.

A clear trend is visible when visualizing the propulsion energy demand over the
number of stops during the serve of one line in Figure 10. Since it is not differentiated
between regular bus stops and traffic-caused stops, the conclusion can only be of a broader
nature. However, we could see from our data that more constant driving results in lower
energy demand. From the analyzed data, we obtain more than a 40% increase in the average
energy consumption for the propulsion energy from 10 to 50 stops for one line serving.

Figure 10. The blue line indicates the mean value for the propulsion energy demand, while the green
areas indicate the value range.

Figure 11. Percentile plot of the propulsion energy demand for each driver.

In order to analyze the different drivers, a different visualization is required. Since
the number of samples per driver is much lower, a percentile plot was chosen to compare
different data samples with different sample sizes and their statistical properties (see
Figure 11. On the y-axis is the percentile, while on the x-axis is the value of interest, the
energy consumption. In the middle of the y-axis is the median value for the data sample, the
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50th percentile. By looking at the x values for the 10th and 90th percentiles, the distribution
of the data can be visually understood.

Every driver is plotted with a different color. From the plot, it can be concluded that
the variance of the energy demand of the different drivers is quite similar since the slope of
each plotted dataset is similar. But, it still seems like drivers with a lower median energy
consumption also have a lower variance, shown by the flatter slopes. An increase of around
30% from the most economical driver to the least economical driver can be observed by
analyzing the median values. This can inform bus operators about the potential for savings
when giving the drivers training in economical driving.

This analysis showcases the importance of understanding the speed profile of the city
buses since this significantly impacts the energy demand. Traffic simulation tools can be
a good method to obtain realistic results. In future studies, the effect of different drivers
could be investigated more deeply, and a model for an optimal eco-driver could possibly
be developed.

This comprehensive data analysis sets the stage for our subsequent modeling ef-
forts, where these insights are integrated into predictive models for energy consumption
forecasting in BEB operations.

4. Methodology

After introducing the background and the dataset, we now dive into the energy
prediction framework. The proposed methodology integrates three components into a
robust energy predictor for BEBs: a propulsion energy model, an auxiliary energy model,
and an environment generator. This section describes this framework in more detail with
all its properties and interactions.

4.1. Forecasting Framework

The overarching concept of this framework is to validate energy models against
measured data and then utilize the same framework for predicting energy demands for
future bus trips.

It can be applied to bus trips with measured data from BEBs to evaluate the perfor-
mance of different energy model instances. Operators can later use the framework for
energy predictions for specific bus lines, dates, and times, employing the most effective
model found via prior investigations.

In Figure 12, all the different components of the framework are illustrated. The layout
of the graphic is roughly based on the notations of a class diagram from the field of software
development. This means that the filled arrows indicate the specialization of different
classes. In this case, the different energy models are concrete instances of either the auxiliary
or propulsion power models. The “normal” arrow indicates the direction of control, where
the operator uses the predictor, which in turn uses the EG and the two models.

The content of Figure 12 can be divided into five logical components:

• blue: The actor side, which includes the person using the framework; the front end of
the framework, called the predictor; and the results report;

• gray: The input for the whole framework, which consists of the aggregated line data
from the buses; the raw tracking data; and the historical weather data;

• purple: The propulsion energy model, which is one of the available instances (Physical
Model, Daytime Altitude Model, Constant Altitude Model, or Constant Model);

• yellow: The auxiliary energy model, which is one of the available instances (MLP
Model, Temperature Model, Monthly Constant Model, or Constant Model);

• green: The environment generator.

When employing the framework for a specific use case, the best combination of energy
models is used depending on the available data. In the simplest case, the constant version
is configured for both the auxiliary and propulsion models. If more precise information
is needed and the data and know-how are available, a combination of more complex
variations in the energy models could be employed. The bus operator only needs to supply
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the specific bus line, the date, and the time to obtain the energy demand prediction. The
predictor first needs to query the EG to obtain the required environment variables, which
in turn queries the required input from the weather API and the bus line data. With the
results of the EG data, the predictor proceeds to request the energy demand predictions
for auxiliary and propulsion energy from the configured models. Finally, the predictor
combines the results and generates the results report for the bus operator.

The historical weather data and bus line data are required for both the model de-
velopment as well as the energy prediction, while the tracking data is only required for
validating the models’ accuracy during model development.
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Figure 12. Overview of the energy forecasting framework. The gray parts are input data to the
framework, the blue parts represent the operator side, while the EG (green) represent the Auxiliary
Energy Model (yellow) and Propulsion Energy Model (purple) form the core of the framework.

The following subsections describe the different models, their strengths, and weak-
nesses in more detail, as well as the functionality and scope of the EG.

4.2. Propulsion Model

Predicting the propulsion energy of a battery electric bus involves considerations of
known distances and topology, along with variables like passenger volume, traffic, and
street conditions.

4.2.1. Constant Model

The constant model, the simplest form of energy prediction, requires only an average
value for energy consumption per kilometer. This model’s advantage lies in its ease of use
and broad applicability. However, it does not account for local factors such as topology,
potentially leading to significant uncertainties and necessitating large safety margins.
Despite its weaknesses, it is still the most widely used too for BEB planning.

4.2.2. Constant Model with Elevation Gain

As discussed earlier, elevation gain, depending on the city, can be the most important
factor for the propulsion energy demand. It therefore seems obvious to implement a simple
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model to incorporate this information. In this work, an algorithm was developed, partly
consisting of the previous constant model and, therefore, needs the distance as input. In
addition, the altitude of the start and end of a route are required to calculate the potential
energy. The only other information required is the mass of the vehicle. For this approach,
though, if no additional information about passenger volume is available, it is enough to
use the vehicle mass plus an average number of 18 passengers. The average passenger
weight of 65 kg was taken from the MAN report [60]. Then, with the formula of potential
energy Epot = m × g × h, the additional energy demand for that trip is calculated, which
can be either positive or negative based on the topology, where m is the empty weight
of the vehicle + passenger weight, g is the gravitational constant, and h is the elevation
gain between the start and the end of the bus trip under analysis. This approach greatly
improves accuracy over the constant model for the analyzed routes in Göttingen, Germany.

4.2.3. Daytime Model with Elevation Gain

To improve the accuracy further from the last model, there are many factors to consider
besides the distance and topology. The more obvious one is the speed profile, which is
determined by the driver’s behavior and the surrounding traffic. Other factors are the
road surface, tire pressure, and even wind. But, the latter ones are exceptionally hard to
incorporate, and their effect is presumably lower than the others. The driver behavior is
also a variable that should be tackled with driver eco-coaching, and the traffic influence is
specific to certain cities and times of the day. This is why, for this model, statistic values
for the different times of the day were aggregated and are used for predicting the daytime-
specific propulsion energy demand. This approach requires the city to have some buses
available to collect the required data since the traffic patterns in different cities might
differ greatly. Although it can further improve the results, it will only benefit some bus
operators who already have some experience with BEBs. For others, it might not be a
practical solution.

4.2.4. Physical Model

The physical models, as described in [36], can potentially yield the most accurate
results. It was developed with the use case in mind where operators have a fleet of
combustion engine vehicles and want to estimate the energy demand of the future buses
based on the movement patterns of the diesel buses. In that scenario, the movement of
all the buses is recorded utilizing GPS trackers. This information, and other available
data like topography and passenger volume, can yield precise results. Therefore, this
model is an upper-bound reference for the accuracy of the propulsion energy model. The
advantages of this model are that it can be easily applied to new observation areas and
can be parameterized to any bus type. The disadvantages are the need for tracking data
and some domain knowledge to apply it to new vehicles. Using concrete speed profiles
for energy estimation is most likely impossible in classical bus operation planning tasks.
While it might be possible to generate speed profiles for different routes and times of the
day, it is questionable if the effort is worth the gained accuracy.

In upcoming studies, it could be investigated how close the accuracy of the physical
model with simulated input data can get to the physical model with real trajectory input
data. This might be an option to improve the accuracy over the daytime model with
elevation gain.

4.3. Auxiliary Model

The auxiliary energy demand is the other major part of energy forecasting for battery
electric buses, which consists of all components requiring energy besides the drivetrain.
The auxiliary energy demand is dominated by the vehicle’s heating, ventilation, and
air-conditioning [61]. Since this part depends on variables like outside temperature, pre-
cipitation, number of passengers, sun intensity, number of door openings, and many
more, a data-driven approach was chosen in this article. We started with a very simple
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constant model. Analogous to the propulsion model, different levels of complexity were
implemented, while the most sophisticated analysis was a neural network in the form of a
multi-layer perception.

4.3.1. Constant Model

Analogous to the propulsion energy model, a simple constant model was set up,
which provides only a single value for the HVAC energy consumption. Since HVAC energy
demand highly varies through the seasons and daytime, the approach is not optimal, but
instead requires an often-applied simplified way to incorporate auxiliary energy demand.
It provides a very simplistic tool for bus operators to obtain a first feel for the feasibility of
different electric buses on their routes.

4.3.2. Monthly Model

The monthly model improves on the constant model by providing monthly consump-
tion values. This can significantly improve the results but is not resilient to outside changes,
like the climate in a different city or global warming. That said, it is still a very simple tool
for bus operations planning while it achieves higher accuracy than the constant model.

4.3.3. Temperature-Based Model

The development of the temperature-based model is an attempt to build a location-
and climate-agnostic model for the auxiliary power demand. By only incorporating the
outside temperature, the operators can use climate tables or weather forecasts to predict
the auxiliary energy demand. This model used all the tracking data from over one year
of bus operations. The average values per temperature were calculated and extrapolated
to temperature ranges beyond the observed values. Since the HVAC in heating mode is a
completely different system than in cooling mode, two different functions were fitted to the
data: one for the values equal to and above 20 °C for the cooling portion, and one for the
values below 20 °C for the heating portion of the HVAC. By utilizing domain knowledge
about the HVAC, this separation is possible and allows for simpler functions.

A box plot was created to show the outside temperature’s influence on the auxiliary
energy demand (see Figure 13). The middle line inside the box shows the median value,
and the colored box shows the IQR from the 25th to the 75th percentile of the observed
values. The outer marks indicate the value range which is defined by 1.5 times the IQR
range. All values beyond this would be considered outliers. This plot shows a strong
correlation between temperature and energy demand. For all values below 10 °C, we
can see a much higher variance in the data, indicating the usage of the additional diesel
heater in most cases. For predicting the energy demand, the model can be fitted to either
the values without diesel heating or the values with diesel heating, reflecting different
operating modes.

4.3.4. Neural Network Model

Since the auxiliary power demand is influenced by more than just the outside temper-
ature, it was an obvious choice to develop a machine learning-based model incorporating
all the easily accessible information. In this case, it was the average temperature during
the trip, the time of day, the month, and the average number of passengers during the trip.
In the beginning, many more input parameters were used for every trip: the maximum
number of passengers, number of person kilometers, average speed, maximum speed,
number of stops, and maximum SOC. However, after a thorough parameter search, the
additional inputs did not improve the accuracy. All the tested parameters from the pa-
rametersearch can be found in Table 1, the best parameters are marked in bold font. In
accordance with Occam’s Razor, which states that theories should be as simple as possible
but not simpler [62], it was decided that the minimum number of inputs that still bring the
best results should be used.
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Figure 13. Box plot of the auxiliary energy demand for different outside temperatures. The red
line shows an estimated extrapolation of the mean values for cold temperatures without the addi-
tional diesel heater. The blue line shows the estimated energy demand for cooling the vehicle in
temperatures above 20 °C.

Table 1. Values for the hyperparameter search of the machine learning model. The best values are
marked in bold font.

Hyperparameter Values

Learning Rate 10−5 . . . 0.0029 . . . 10−1

Layers [64, 32], [64, 32, 16], [64, 32, 16, 8], [64, 32, 16, 8, 4],
[64, 64, 64], [2, 2, 2, 2], [8, 8, 8, 8]

Activation Function relu, tanh, sigmoid
Optimizer adam, sgd, rmsprop, adadelta, adagrad, adamax

Loss Function mse, mae
Epochs 1000

Batch Size 16, 32, 64, 128

The Neural Network (NN) was trained with an 80-20 test–train split and the Early
Stopping callback to find the best weights and prevent overfitting. The input values in the
final model were average temperature, average passenger number, maximum passenger,
person kilometer, number of stops, and the flag indicating diesel heater usage. The heater
flag was obtained using the Gaussian Mixture model as described earlier in Section 3.3.2.
The model’s accuracy could already be significantly improved by adding the diesel heating
flag. We used the accuracy of this model as the best-case scenario for the auxiliary power,
since with perfect knowledge of the input parameters, we obtain the best result.

Table 2 provides an overview of the different models’ strengths and weaknesses. But,
in order to get the best out of those models, good input parameters are required. To obtain
those input parameters, we must focus on the framework’s third and last part, the EG.

4.4. Environment Generator

The environment generator (EG) is a crucial part of this methodology. While the
authors of this article developed sophisticated models, the quality of the results mostly
depends on the quality of the available input data. This is where input data generation
for future bus trips comes into play. This usually gets neglected in existing studies about
energy prediction models. The main information required for the prediction are weather
conditions, where the temperature is most important, traffic, and the number of passengers.
Although more data sources influence energy consumption, in the process of training a
neural network for energy prediction, we found that their influence is marginal compared
to the uncertainties introduced by estimating the input data. In this first step of the
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environment generator, we analyzed the different influencing factors statistically. This
could potentially be improved by incorporating more advanced machine learning models.

4.4.1. Weather

The weather mainly affects the auxiliary power, not the propulsion energy demand
(besides some minor influences via different rolling resistance with rain or snow). The
inside temperature of the vehicles is influenced by outside temperature, sun, precipitation,
and wind. The weather can also have an impact on traffic since heavy rain and snow can
slow down traffic. However, since the different factors have negligible effects on energy
consumption compared to the outside temperature, it was chosen to only generate data for
the outside temperature. This was performed by means of a historical weather API. In this
case, meteostat.com provides an easy-to-use interface to download historical weather data.
The dataset includes the date and time, temperature, relative humidity, precipitation, snow,
wind direction, wind speed, wind gusts, pressure, and hours of sun. This was used to
generate average temperature values for every hour of the year based on the past five years
for the given location. For reference on the different temperature ranges, see Figure 14.
Values are generated by averaging the values for each day based on the last 5 years.

The EG is asked to provide a temperature value for a given location, date, and time.
This can then be used as input for the prediction models.

Table 2. Advantages and disadvantages for the different auxiliary and propulsion Models.

Model Advantages Disadvantages

Auxiliary Models

Constant Model (CM) Easy implementation Low accuracy
Monthly Model Easy implementation, Region specific

better seasonal accuracy
Temperature Model Adaptable to different cities, Specific to vehicle types, requires

seasons, and climatic regions data collection for new vehicles
Neural Network High accuracy Requires extensive data,

vehicle specific

Propulsion Models

Constant Model (CM) Easy implementation Low accuracy
CM with Altitude (wA) Accounts for topology Requires topology data,

improved but still low accuracy
Daytime Model wA Considers topology and Location and vehicle specific

traffic
Physical Model High accuracy, Data and calibration intensive,

adaptable to new vehicles requires trajectory data,
and regions e.g., from simulations

4.4.2. Traffic

Traffic mostly has an impact on the propulsion energy because dense traffic can force
the vehicle to do multiple additional acceleration and deceleration maneuvers. In Figure 10,
the energy demand correlates with the number of stops, but predicting the number of
stops is quite challenging. A different approach was chosen which tries to incorporate the
information that might be used to predict the number of stops: the bus line served and the
time of day. In this case, the EG uses the aggregated bus line data to generate adjustment
factors for the propulsion energy demand based on the time of day and the bus route that
gets served.

This approach has some obvious limitations because the findings do not readily apply
to other cities. While the traffic patterns might be similar, they will differ a lot between
the bus lines. A different approach would be using traffic simulation tools to simulate the
lines at different times of the day. This is also challenging since it is difficult to incorporate
realistic traffic information into the simulation. As more and more cities around the world
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are adopting digital twins for city planners, it sometimes include traffic simulation
tools [63–65]. Traffic simulations could be a viable option for those cities. The validation
of the result is an interesting topic for follow-up studies.

Figure 14. Temperature ranges and median values for Göttingen Germany during the day, for
different times of the year.

4.4.3. Passengers

The data analysis section shows that the passenger volume significantly impacts
the energy demand. There is a notable impact on propulsion energy, while the effect on
auxiliary power is comparatively minor. To integrate these observations into our energy
models, the aggregated bus line data was utilized to obtain statistical representations
of passenger volumes at varying times and across different bus routes. Whenever a
city has passenger data available for the bus lines, this is a good approach. However,
in order to obtain a more generalizable model for different cities, a machine-learning
approach could be possible. Variables such as points of interest (POIs), urban size, and
time of day could be used to train a machine learning model to generate more accurate
passenger volume predictions for the bus lines. This is likely a challenging task but might
be worth investigating.

The framework introduced offers a comprehensive structure for predicting the energy
demand of BEBs. Although individual components of the framework present opportunities
for enhancement, it establishes a modular and robust foundation for systematic improve-
ments. Future models with physical modeling of the auxiliary powers, more detailed
environment generators for traffic conditions, or machine learning-based propulsion en-
ergy models could be seamlessly integrated into the framework and their accuracy could
be validated against the other models.

5. Results and Discussion

This section provides insights into the validation of the different energy models, their
performance results, and the implications of these findings for practical applications in the
field of battery electric bus planning.

5.1. Model Performance and Validation of the Framework

In this section, the accuracy of the propulsion and auxiliary models is analyzed and
compared to generate the results of the presented framework utilized. For every single line
from the tracking data, only input parameters for the EG, plus the actual energy demand,
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were extracted. The input variables are only the day, time, and bus line. Based on this input,
the EG provides input for the different energy models. A best-case model was included for
both cases, propulsion and auxiliary, indicating the best prediction performance, having
complete knowledge of the environment variables. For the propulsion case, the reference
model was the physical energy model based on the tracking data. For the auxiliary case,
the MLP on the test dataset is the reference model.

Our analysis revealed varying degrees of accuracy across different models. The
Constant Model, being the simplest, had the highest Mean Absolute Error (MAE) and
MAPE. Incorporating altitude data into the Constant Model significantly improved its
accuracy, reducing the MAE and error percentage. The Daytime Model with Altitude
offered further improvements, albeit marginally. It becomes clear that there is a big gap
between the best model utilizing the EG and the reference model, which is to be expected
since the EG is far from perfect. Please refer to Table 3 for the detailed values. Future studies
could investigate other approaches using the physical model with a traffic simulation.

Table 3. Model performance metrics for the different propulsion models.

Model MAE (All Data) MAPE

Constant Model 0.524 kWh/km 46.7%
Constant Model + Altitude 0.148 kWh/km 13.2%
Daytime Model + Altitude 0.145 kWh/km 12.9%

Physical Energy Model with
tracking data * 0.062 kWh/km 5.5%

Note: the * denotes the baseline model with optimal input data from historic trips.

In terms of the Auxiliary Models, similar trends were observed. The Constant and
Monthly Constant Model showed a significant MAPE, while the Temperature and MLP
Model offered better accuracy. Since we know that the labeling of the data points is not
perfect in regards to diesel heating usage, we decided to validate the models separately on
the complete dataset and only the data above 10 °C, since we know that there are no side
effects from the diesel heating. Find the detailed results for this experiment in Table 4 In a
follow-up study, this limitation should be eliminated. With correctly labeled data, it would
be possible to generate better models for buses with and without diesel heating.

This division shows the models’ difficulties in coping with the uncertainty in the
lower temperature ranges, whether additional diesel heating was used or not. As with the
propulsion model, we can also see that perfect input data significantly improves the overall
results, which should motivate more research into generating better and more accurate
input data for the models.

Table 4. Model performance metrics for the different auxiliary models on two different datasets: the
whole dataset and for all data where the temperature is above 10 °C.

Model MAE (All Data) MAPE MAE (Below 10 °C) MAPE

Constant Model 0.243 kWh/km 42.6% 0.225 kWh/km 39.5%
Monthly Constant 0.223 kWh/km 39.1% 0.157 kWh/km 27.5%
Temperature Model 0.222 kWh/km 38.9% 0.146 kWh/km 25.6%
MLP Model 0.223 kWh/km 39.1% 0.145 kWh/km 25.4%

MLP with tracking data * 0.091 kWh/km 16.0% 0.0725 kWh/km 12.7%
Note: the * denotes the baseline model with optimal input data from historic trips.

Compared with the existing methods in the literature, our models with perfect input
data are on par with the existing models, having a combined MAPE of 7.9%. But, when
considering the case of predicting values for future bus trips, they significantly outperform
models with constant values. Traditional models often rely on average consumption values,



World Electr. Veh. J. 2024, 15, 27 22 of 27

which can lead to significant inaccuracies in diverse operational conditions. More complex
models often ignore the fact that it is hard to predict future operational conditions.

5.2. Implications for Electric Bus Fleet Management and Optimization

The results of this study have significant implications for the management and op-
timization of electric bus fleets. Accurate energy consumption forecasting enables more
efficient route planning, charging schedule optimization, and overall operational efficiency.
It also aids in reducing operational costs by minimizing the need for large safety margins
in energy planning, contributing to a more sustainable and economically viable transition
to electric public transport systems.

In order to make reliable energy predictions and ensure the feasibility of the bus
operations, we used a Monte Carlo simulation. We performed fit normal distributions to
the energy demands in summer and winter. Since the vehicles serve 20 lines during the
daily operations, the important information for the operator is whether the bus stays within
its predicted energy demand for the total daily operation. This can be ensured with the
fitted distributions and a Monte Carlo simulation. When using the 80th percentile of the
energy demand for the winter case, the probability of exceeding the predicted values in
sum over the whole day (20 trips) is below 99.9%, meaning less than once in two years (see
Figure 15.

This approach is the basis for the following scenarios. Two scenarios were analyzed:

Figure 15. Histogram of the energy demand for the bus trips. In blue, it is the probability of the
vehicle exceeding the predicted energy demand during the course of 20 trips when using different
percentiles of the energy demand.

5.2.1. Scenario 1: Depot Charging

With a daily mileage of 200 km and a fleet of 100 buses, the traditional consumption
assumption of 2.5 kWh/km, as suggested by the manufacturer, results in a total energy
requirement of 50 MWh, equating to battery costs of 6.8 million euros (assuming battery
prices stay at 136 EUR/kWh [66]). However, by adjusting the consumption estimates
to 1.8 kWh/km in winter and 1.56 kWh/km in summer, the actual energy demands are
statistically exceeded only once every two years. The total energy requirement drops to
36 MWh, reducing the battery cost to 4.9 million EUR. This approach ensures more than
99.9% confidence for the vehicles to serve their trips in both seasons.

5.2.2. Scenario 2: Lunch-Time Charging

For a split daily operation with charging once during the afternoon (100 km before
and after), the change in consumption rates significantly impacts the charging demand
and battery capacity requirements. The charging demand per vehicle drops from 250 kW
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to 180 kW. Consequently, the total required battery capacity for the fleet decreases from
25 MWh to 18 MWh, reducing battery costs from 3.4 million EUR to 2.4 million EUR.

These findings have practical implications for the deployment and management
of BEBs. Improved energy forecasting translates into more reliable and efficient public
transportation services, aiding transit authorities in achieving sustainability goals and
enhancing passenger experiences while highlighting the potential for substantial cost
savings via a more nuanced understanding of energy consumption patterns in electric
bus fleets.

6. Conclusions

This research started out with an in-depth data analysis of 16 battery electric buses
operated for 13 months in Göttingen, Germany. The analysis revealed interesting findings
about the different influencing factors for the energy demand of the vehicles. Based on
those findings, data-driven models for the auxiliary and propulsion energy demand were
developed and validated against the measured data from the buses. Together with the
environment generator, which provides the models with the necessary input for the energy
prediction, like passenger volume, weather conditions, and traffic, this presents a novel
energy forecasting framework.

While there is still room to improve the different parts of this framework, it forms a
solid basis for analyzing the strengths and weaknesses of different models and helps in
structuring the forecasting. There are big differences in the accuracy of the different models;
more complexity does not always mean better planning of bus operations in the long term.
This is why we think this energy prediction framework makes an important contribution
to the field of BEB planning by making the models more comparable.

Our study ventured to answer the previously posed research questions in energy
forecasting for battery electric buses (BEBs). The findings are summarized as follows:

• Can data-driven approaches improve energy forecasting for battery electric buses
over constant value assumption for practical applications?
Yes, our research clearly demonstrates that data-driven approaches markedly improve
energy forecasting for BEBs. The incorporation of real-time data, such as altitude,
temperature, and passenger load, into our models significantly enhances the accuracy
of predictions compared to traditional constant value assumptions. This improvement
is crucial for operational efficiency and strategic planning in practical applications.

• How big is the error margin for data-driven models versus constant values?
The error margin for data-driven models is substantially lower than that for models
based on constant values. In our study, the MAPE for data-driven models was
significantly lower. For the propulsion models, the MAPE was reduced from 46.7%
for the constant model to 12.9% for the daytime model. For the auxiliary models, the
MAPE was reduced from 39.5% for the constant model to 25.4% for the MLP model.
This reduction in the error margin underlines the efficacy of data-driven approaches
in capturing the complex dynamics of BEB energy consumption.

• How can bus operators benefit from more precise energy forecasting?
Bus operators stand to gain considerably from more precise energy forecasting. Firstly,
it allows for more efficient route and charging schedule planning. Secondly, it can lead
to cost savings by reducing the need for large batteries. Finally, accurate forecasting
supports the broader objective of sustainable urban transit by facilitating the effective
integration and operation of BEBs in public transport networks.

The study confirms the benefits of integrating specific operational data into energy
consumption models for BEBs. The advanced predictive capabilities of our models highlight
the potential of data-driven approaches in this field.

While our study offers important insights into forecasting models for BEBs, certain con-
straints naturally limit its scope. One notable limitation is the models’ performance across
different geographical and climatic conditions, which presents an interesting ground for
future research. This exploration could focus on how regional variations impact the efficacy
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of each model, as discussed in Section 5.1. Future studies could aim to systematically assess
and compare the performance of these models in diverse environmental settings, offering
more nuanced and context-specific insights. Furthermore, the rapidly evolving landscape
of data sources and technological advancements offers another promising direction for
future research. Upcoming studies could explore the integration of emerging technologies
and novel data sources into existing forecasting models. This could include harnessing
AI and machine learning advancements, IoT-enabled data collection, and real-time ana-
lytics. Investigating these integrations could potentially lead to the development of more
sophisticated and accurate forecasting models, further enhancing the reliability of BEBs’
operational planning.
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