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Abstract: Well-being is one of the pillars of positive psychology, which is known to have positive
effects not only on the personal and professional lives of individuals but also on teams and organiza-
tions. Understanding and promoting individual well-being is essential for staff health and long-term
success, but current tools for assessing subjective well-being rely on time-consuming surveys and
questionnaires, which limit the possibility of providing the real-time feedback needed to raise aware-
ness and change individual behavior. This paper proposes a framework for understanding the
process of non-verbal communication in teamwork, using video data to identify significant predictors
of individual well-being in teamwork. It relies on video acquisition technologies and state-of-the-art
artificial intelligence tools to extract individual, relative, and environmental characteristics from
panoramic video. Statistical analysis is applied to each time series, leading to the generation of a
dataset of 125 features, which are then linked to PERMA (Positive Emotion, Engagement, Relation-
ships, Meaning, and Accomplishments) surveys developed in the context of positive psychology.
Each pillar of the PERMA model is evaluated as a regression or classification problem using machine
learning algorithms. Our approach was applied to a case study, where 80 students collaborated in
20 teams for a week on a team task in a face-to-face setting. This enabled us to formulate several
hypotheses identifying factors influencing individual well-being in teamwork. These promising
results point to interesting avenues for research, for instance fusing different media for the analysis of
individual well-being in teamwork.

Keywords: individual well-being; machine learning; non-verbal communication; video analysis;
teamwork; PERMA

1. Introduction

Since the end of the 20th century, mental health and well-being have become the new
driving forces of psychology. Positive psychology refers to the treatment of mental illnesses
the exploration and nurturing of the elements that contribute to human fulfillment [1].
Indeed, research has shown that having a sense of well-being can lead to positive out-
comes in life including improved health, flourishing relationships, and better academic
performance [2] but also in organizations to increase productivity, collaboration, customer
satisfaction, and reduction in turnover [3,4]. Thus, understanding and promoting indi-
vidual well-being is essential to the health of the workforce and the long-term success
of an organization. However, despite these benefits, identifying individual well-being in
the case of collaboration within a co-located team can prove challenging [5]. In addition,
most current tools for assessing subjective well-being rely on time-consuming surveys and
questionnaires, which limit the possibility of providing real-time feedback necessary to
raise awareness and change individual behavior [6]. Since non-verbal communication,
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mostly visual cues [7,8], offers a precious and non-intrusive way to gather emotional and
cognitive information on an individual’s state of mind [9–11], the aim of this study is
to understand the non-verbal communication process in teamwork, using video data to
identify significant predictors of individual well-being in teamwork. We address the three
following research questions:

• RQ1: Which features of videos taken in a team setting will be predictive of indi-
vidual and team well-being measured with PERMA (Positive Emotion, Engagement,
Relationships, Meaning, and Accomplishments) surveys?

• RQ2: How can the relevance of attributes for predicting individual well-being in a
collaborative work context be measured?

• RQ3: How can theories and hypotheses relevant to positive psychology be derived
from AI-driven team video analysis?

Answering these questions will help experts from sociology and psychology to elabo-
rate new theories and hypotheses based on large amounts of in-the-wild data representative
of all the diversity of human behavior. Among other things, this information will be useful
for organizing more effective and collaborative teamwork sessions. They could also help to
promote policies that favor individual well-being, thereby increasing employee happiness
and retention in companies.

The main contributions of this paper are the development of a framework for un-
derstanding the process of non-verbal communication in teamwork, using video data to
identify significant predictors of individual well-being in teamwork. The framework relies
on video acquisition technologies and state-of-the-art artificial intelligence tools to extract
individual, relative, and environmental characteristics from panoramic video.

In the following, a brief overview of the non-verbal communication and well-being
data analysis research will be carried out in Section 2. The proposed framework to extract
relevant features of non-verbal communication and well-being analysis will be presented in
Section 3. The experiment developed to test this framework as well as the results obtained
will be presented in Section 4. These results will be discussed in Section 5. This will lead
to the conclusions in Section 6, about significant predictors of individual well-being in
teamwork as well as to possible directions for future research.

2. Related Work
2.1. PERMA and the Notion of Well-Being

Striving for happiness has been a primary goal of humanity going back to antiq-
uity. Measuring happiness and lifetime satisfaction has become an active area of research
over the last century. The benefits of well-being as the overall state of an individual’s
happiness, health, and comfort [12] are widely recognized for individuals, organizations,
and society as a whole [2–4]. Positive psychology is the branch of psychology concerned
with the notion of well-being, as it explores and nurtures the elements that contribute
to human flourishing [1]. Providing a holistic view of well-being, one of the leading fig-
ures of the positive psychology movement, Seligman [13] proposed the PERMA model.
Based on the well-being theory established by Forgeard et al. [14], the PERMA model
decomposes well-being into five pillars described as the level of pleasant emotions such as
happiness, joy, etc. experienced (Positive emotions) [13], the level of absorption experi-
enced during an activity (Engagement), the degree of connection with other individuals
(Relationships) [15], the degree to which the individual finds meaning in life (Meaning),
and finally, the level of realization of one’s full potential (Accomplishment) [16]. Based on
the model of Seligman [13], a number of PERMA measurement tools have been proposed
for general assessments [15] or more work-related environments [16,17]. The PERMA+4
framework proposed by Donaldson et al. [17] represents a lean tool specifically tailored for
the working environment allowing survey time to be reduced. The speed of data collection
provided by this method is a considerable advantage over other methods since it simplifies
the collection of a sufficient dataset to enable data-based analysis of individual well-being
in a collaborative work.
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Although surveys like the one listed above are subjective, until the availability of video
analysis and AI it was not possible to collect personal happiness measurements in other
ways. However, researchers have taken other individual parameters as proxies, which
have been shown to be good predictors of happiness such as longevity, social network
ties, and attitude [18] . In his happiness research, Mihaly Csikszentmihalyi [19] introduced
experience-based sampling, using devices that at random points during the day asked
respondents to enter their happiness into a survey. In recent research, the happimeter,
a smartwatch-based solution that measures happiness based on body language was devel-
oped [6]. While some participants in the research described in this paper were wearing the
happimeter, this was not part of the research design for this framework.

2.2. Team Collaboration and Well-Being Data Analysis

Until recently, the only way to collect well-being and happiness ratings was using
surveys. Ekman [10] introduced a facial rating system to measure different emotions, which
initially was used to manually label emotions of faces in videos. In the last few years,
machine learning models to measure human emotions have greatly increased research in
this area. The most accurate results have been achieved using multimodal emotion analysis
combining video, audio, and text inputs. For instance, combined models have been built
by [20]. The drawback of the multimodal method is the amount of work necessary to
collect the different input channels, which makes it rather cumbersome. This is why in this
research we focus on video analysis.

Various approaches for data collection in teamwork environments are widely available
in the literature. Online settings have been used to measure emotional conditions or
engagement in e-sports teams [21] and student groups [22,23], respectively. One of the
advantages of the online setting is that it limits the need for data preparation since the
records of each individual are already disentangled. Other studies focus on measuring
team behavior in a co-located environment within surgical teams [24–26] and laboratory
teams [27–30], working in highly controlled environments. While [27–30] used multimodal
frameworks as Guerlain et al. [24] and Ivarsson and Åberg [25] which used audiovisual
data, Stefanini et al. [26] used sociometric badges developed by Kim et al. [31] to extract
behavioral features such as mutual gaze, interpersonal distance, and movement patterns.

All the research mentioned above uses data from highly controlled environments
compared to in-the-wild data collected in real-world conditions, outside of a controlled
environment, with multiple teams working in parallel.

While the examples listed above use sensors to measure interpersonal interaction, most
teamwork is studied through surveys, which makes analyzing well-being in collaborative
work all the more complex as surveys are generally time-consuming and intrusive [32].

3. Methods

To understand the non-verbal communication process in teams, we propose to use
video data to identify significant predictors of individual well-being in teamwork. Towards
this goal, a two-step facial-analysis-system (FAS), illustrated in Figure 1 and detailed below,
has been developed. It leverages state-of-the-art deep learning technologies to combine a
multi-face tracking approach and a multi-task feature extraction.

We start by recording a video of the team members during the entire period they are
interacting with each other with a 360-degree camera pointed at their faces. This video is
then preprocessed and cleaned. In the next multi-face-tracking step, the faces are detected
and tagged with anonymous identifiers, thus preserving individual anonymity. In the
final multi-task-feature-extraction step, the 3D gaze pattern estimation computes if people
are looking at each other; their facial emotions are also computed, as is the upper body
posture (as people are sitting mostly around a table) and image brightness. This process is
subsequently described in detail.
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Figure 1. Two-step FAS proposed for video-feature extraction in a well-being analysis context.

3.1. Data Presentation

To test the proposed FAS, video data was collected. To do so, an experiment was
conducted over three days with 20 co-located on-site teams, each composed of 4 mas-
ter’s students. During those teamwork sessions, participants were asked to work on a
team project composed of different tasks such as project design and stakeholder analysis.
The study only includes data from the 56 students who signed the informed consent form.
Its purpose is to record non-verbal dynamics during collaborative teamwork in order to
understand the non-verbal communication process, using video data to identify significant
predictors of individual well-being in teamwork.

The experimental setup represented in Figure 2 has been replicated on each of the
20 team’s tables.

Figure 2. Measurement setup to record a single team video data.

As shown in Figure 2, the four participants in each team are placed on opposite sides of
the table, in pairs, facing each other. A wide-angle camera [33] is placed in the exact center
of the table (in both x and y directions) to record the 1.5 h of daily teamwork. The camera is
stacked on top of the mini-PC. The camera was connected via USB to minimize the size
and intrusiveness of the measurement setup. Finally, to reduce visual background noise,
whiteboards topped with folding partitions were placed between adjacent tables.

The acquisition of full panoramic scenes allows the analysis of non-verbal cues such as
3D gaze pattern estimation. The structure selected for recording is a stack of two 180-degree
images. Participants on either side of the table are systematically observed on the top or
bottom image, respectively. This arrangement facilitates subsequent analysis of the video
data by the FAS.
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The final data collection and cleaning resulted in approximately 93 h of video data
stored as MP4 files for all 20 teams analyzed on the three days of observation. This resulted,
on average, in 4.5 h of video data per team and, thus, 1.5 h per team per day and was taken
as the data source for the subsequent well-being analysis.

The video data collected had to be labeled with well-being attributes in order to
be used to analyze participants’ well-being. For this reason, participants were asked to
complete a PERMA+4 questionnaire at the end of each work session to assess their level of
well-being according to the different pillars designated by the PERMA framework.

The PERMA data collected resulted in 104 data points from the 56 study participants
over the three days. These data points are used as ground truth for training the machine
learning model with the video data collected with the proposed FAS detailed below.

3.2. Multi-Face Tracking

Each video is analyzed to determine the respective trajectory of each face present
in the recording, using a multi-face tracking approach. All faces present in a single
video frame are detected and embedded using the RetinaFace model [34] and the ArcFace
model [35], respectively. The RetinaFace model detects a set of faces F = {F1, F2, . . . , Fm}
in a given frame. Each Fm ∈ F is transformed to a lower dimension face embedding
E = {f1, f2, . . . , fm} using ArcFace for greater computational efficiency. Finally, an ID
database is generated by clustering a sample of frames from the video based on the number
of individuals per team. It is then used to identify and track each individual in the video
through face identification. The challenge of re-identification—the process of correctly
identifying person identities across video frames—is tackled by calculating the cosine
distances between preprocessed face templates I = {i1, i2, . . . , in} and the detected face
embeddings E. Then the Hungarian algorithm [36] is used to solve the assignment problem.
This approach allows an efficient tracking of multiple faces in a video stream. No tracking
algorithm in the traditional sense is implemented, while the focus is on facial attributes.

3.3. Multi-Task Feature Extraction

After the face of each member is identified, the second step of the proposed FAS,
the multi-task feature extraction, is employed on the detected faces F to extract features
for the subsequent well-being analysis. Four direct features are extracted.

Face emotion recognition (FER) is used to identify and classify human emotions based
on facial expressions using the residual masking network [37], which performs state-of-the-art
analysis on the FER2013 dataset to estimate the six Ekman emotions [10] plus an added
“neutral” emotion for increased machine learning accuracy. Face alignment is not explicitly
employed in this methodology to prevent potential information loss or artifacts.

The body landmarks are based on the face-center position while the Gaze estimation
evaluates who is looking at whom in a panoramic scene. The approach is based on the
3D head pose and facial landmark estimations to identify where a person is looking.
Specifically, SynergyNet [38] is used to estimate the full 3D facial geometry. The head poses,
and facial landmarks are first spatially transformed to reconstruct the original 3D scene.
Then, a visibility algorithm is employed to detect gaze exchanges among individuals. To do
so, the human field of view (FOV) angle for 3D gaze pattern estimation has to be set to a
specific angle. The number of gaze exchanges is captured in a gaze matrix populated over
the duration of the video stream and illustrated in Figure 3.

Finally, the brightness of the image is extracted directly from the video, reflecting
an environmental characteristic. Each team member is assigned the perceived image
brightness calculated across all images using the root mean square (RMS) described in
Equation (1). It weighs the contributions of the red (R), green (G), and blue (B) channels to
take into account the heterogeneity of human perception [39].

b =
√

0.299 · (R2) + 0.587 · (G2) + 0.114 · (B2) (1)
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While the face emotion recognition and body landmarks are specific to each individual,
the gaze patterns are relative since they result from interactions between team members.
Those direct features are used to extract derivative features valuable for the machine
learning models and summarized in Table 1.

Figure 3. Sample team 3D gaze exchange and gaze matrix.

Table 1. Summary of the attributes extracted from the videos by the proposed FAS.

Origin Category Feature Type

Emotion Recognition Emotional state

Neutral Time Serie
Happy Time Serie
Sad Time Serie
Disgust Time Serie
Surprise Time Serie
Angry Time Serie
Fear Time Serie
Max Emotion %
Freq Emotion changes %

Affective state
Valence Time Serie
Arousal Time Serie
Dominance Time Serie

Body Landmarks Head motion patterns
Velocity Time Serie
Presence %
Positional [X, Y]

Image brightness Brightness Time Serie

3D Gaze pattern estimation Gaze patterns

Gaze Social Network Anal-
ysis SNA

Gazes statistics Statistics
Gaze-difference statistics Statistics
Mutual Gaze statistics Statistics

The emotion recognition data include details about the emotional and affective states of
every team member. The time series for each of Ekman’s six basic emotions plus “neutral”,
alongside the distribution of each emotion (Max Emotion) and the frequency of changes
in emotion (Freq Emotion changes), are extracted. The Body Landmarks data provide the
position of the head centers of individuals using the standard deviation of the 2D kernel
density data distributions in the X and Y directions. They express the spatial extent to which
the individual moved during the analyzed video. From these data, the velocity of the head’s
movement is extracted as a time series by calculating the difference in position between
two consecutive frames. Additionally, the presence feature represents the percentage of
frames an individual is identified in. The level of brightness is directly extracted from the
video as a time series. Finally, the 3D gaze pattern estimation is used to generate interaction
matrices and extract social network metrics. The gaze matrix, illustrated in Figure 3, is
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computed by counting the number of times each individual looks at a team member. This
asymmetrical matrix is combined into to symmetrical matrix, the gaze difference matrix,
and the mutual gaze matrix. The first represents the difference between the total gazes
emitted by person i to person j and the reciprocal, while the second only incorporates
entries where two participants look at each other simultaneously. Features are extracted
from those three matrices using 8 basic statistics: mean, standard deviation, median, max,
min, slope, 75th percentile, and 25th percentile. Social network analysis of the gaze matrix
allows us to extract in-degree and out-degree centrality for each individual.

Linear interpolation is used to fill in missing numerical data while a rolling average
with a time-series-specific window is used to smooth noise.

The result of the proposed FAS is a dataset χ of 125 features generated using, once
again, the 8 basic statistical features to describe each time series (mean, standard deviation,
median, max, min, slope, 75th percentile, and 25th percentile).

4. Results
4.1. Data Collection

To test the proposed framework, the following experiment was conducted. The exper-
iment was based on the exploitation of panoramic video files of work teams and PERMA
survey forms completed by each individual at the end of filmed work sessions. Based on
the work of [40], audio and video data were collected simultaneously in distributed teams.

The results of each question of the PERMA+4 survey by Donaldson et al. [17] were
averaged by pillar in order to obtain a dataset of five target variables tar representing the
five pillars of the PERMA model for each individual in each video file.

Figure 4 resumes the experiment in which the proposed framework is implemented
to better understand non-verbal communication processes in teamwork, using video data
to identify significant predictors of individual well-being in teamwork. The panoramic
video files are formatted and linked to the PERMA surveys in the Data preparation phase
(green). The panoramic video data collected with the 360 degree camera are fed into a data
preparation system, which identifies the faces, the exchange of gazes among people and
the other features which will then be used for training the machine learning system with
regression and classification models in the Data analysis phase (yellow) in order to obtain a
prediction and classification of individual well-being. The PERMA survey will be used as
the dependent variable for training the system. Two types of machine learning, regression
and classification, will be tried to identify the best approach. Finally, SHAP values will be
computed to identify the most relevant features.

Figure 4. Experiment for individual well-being analysis using panoramic video data.

The explainability of the prediction and classification by the identification of significant
predictors is provided in the Feature importance phase (blue) by the computation of
SHAP values.

Each of these phases will now be described in detail.
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4.2. Data Preparation

The first phase is the Data preparation. The panoramic video files are preprocessed to
extract pertinent information usable by the machine learning models.

First, the proposed FAS presented in Section 3 is used to generate the dataset of
features related to each individual in each video.

It extracts multiple initial features directly from the video stream in a time series
structure as summarized in Table 1.

The human field of view (FOV) angle for 3D gaze pattern estimation is set to 60°. A
window size of 30 s is chosen for the rolling average on face emotion to reduce noise.

Then, each record is linked to the associated PERMA labels Y. The PERMA data in
the Y dataset are preprocessed to handle missing values and outliers. Also, both the χ and
the Y dataset are normalized to be used in the machine learning models. Thus, in the Data
preprocessing step, all records linked to a missing value or to a constant value throughout
all the pillars of the PERMA survey are removed. PERMA variables are normalized using
a min-max normalization while the dataset features are normalized using a standard or
robust scaling depending on their distribution [41].

The PERMA variables contained in the Y dataset are continuous variables. Regression
is therefore the most straightforward data analysis model. However, it may also be useful
to classify each variable into binary categories (high- or low-level), as this aligns with the
overall goal of the research. Classification metrics offer more intelligible performance scores
than regression metrics [42]. Thus, a new dataset called Ybin is generated by discretizing
the Y dataset. The discretization is carried out by applying a median threshold to each
dimension of Y for binary classification. In order to reduce the complexity of the methodol-
ogy and provide interpretable results, each targeted variable tar present in Y and Ybin is
analyzed independently in univariate problems.

To further limit the complexity of the models and comply with Occam’s razor principle,
the features extracted in χ are then selected in the Feature selection step to generate the X
dataset. The attribute selection method is preferred to the dimensionality reduction method
for reasons of interpretability of the results [43]. To perform feature selection only within
the training set to prevent data leakage, the X, the Y, and the Ybin datasets are divided
into a training set (Xtrain, ytrain, and ybintrain

) and a test dataset (Xtest, ytest, and ybintest )
representing 80% and 20% of the total dataset, respectively. Then, a voting strategy among
filters presented in Table 2 is defined for feature selection. Those filters are chosen since
they are relatively computationally efficient and model-agnostic.

Table 2. Summary of filters used.

Filter ID Name Reference

1 Univariate Linear Regression/ANOVA F-value [44]
2 Mutual information [45]
3 Variance thresholding [44]
4 Percentile of the highest scores [46]
5 False Positive Rate [47]
6 False Discovery Rate [47]
7 Family wise error rate [47]

Sets of features are evaluated for each target variable tar by the voting system using
Equation (2).

S(Φ) =
7

∑
id=1

wid · Sid(Φ) (2)

where Φ represents the set of features considered, id the filter ID, Sid(Φ) the ensemble
scores from the filter id for all features in Φ, and finally, ωid represents the weight given to
the filter id based on the importance of the filter to the issue at hand [43].
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Since there is no contextual information that would allow one filter to be preferred
to another in the proposed case study, the ωid values of the voting system described by
Equation (2) are set to 1.

The set of features with the highest S(Φ) score is chosen for the Data Analysis phase.

4.3. Data Analysis

The prediction of the PERMA scores is approached both as a regression and as a
binary classification task (classification of the PERMA score level as high or low). Thus,
different models are used and their respective hyperparameters that have to be tuned
for proper performance of the models. Table 3 provides a summary of the models used
for the classification and the regression task, respectively. It also summarizes the various
hyperparameters tuned using grid search and cross-validation on the training dataset.

Table 3. Classification and regression models and associated hyperparameters used in the methodology.

Classification Regression Hyperparameters

Gaussian Naive Bayes - var smoothing
K-Nearest Neighbors K-Nearest Neighbors n neighbors
Logistic Regression - C, penalty, solver, class weight
- Linear Regression -
Ridge Classifier Ridge Regression alpha, class weight
- Lasso Regression alpha
- Elastic Net alpha
Decision Tree Decision Tree max depth

Support Vector Machine Support Vector Regression kernel, C, shrinking, class weight,
epsilon

- BayesianRidge alpha 1, alpha 2
Random Forest Random Forest n estimators, max depth, class weight
Extra Trees Extra Trees n estimators, max depth, class weight
AdaBoost AdaBoost n estimators, learning rate
Gradient Boosting Gradient Boosting n estimators, max depth, learning rate

CatBoost CatBoost iteration, depth, learning rate, auto class
weights

XGBoost XGBoost iteration, depth, learning rate, scale pos
weight

In red are hyperparameters used for classification models only while in in blue are hyperparameters used for
regression models only.

For each target variable tar of the PERMA survey, the training set (Xtrain, ytrain,
and ybintrain

) is split in k-folds in order to find the best combination of hyperparameters.
The chosen model is the one that has the lowest validation error or the highest perfor-
mance metric, such as balanced accuracy for classification or MAE for regression. Finally,
the models are trained using the training sets.

A 5-fold cross-validation on the training set is used to tune the models under consider-
ation. Each pillar of the PERMA model is analyzed independently. Tables 4 and 5 depict
the regression and classification models, respectively, as well as their hyperparameters
offering the best performance on the validation set.

Table 4. Optimal hyperparameters of the regression models.

Dimension Model Best Hyperparameters

P CatBoostRegressor Iterations: 50, Learning Rate: 0.01, Depth: 4, Loss Function:
RMSE

E AdaBoostRegressor Learning Rate: 0.1, N Estimators: 400
R BayesianRidge Alpha 1: 1.0, Alpha 2: 1.0
M ElasticNet Alpha: 0.01, L1 Ratio: 0.9
A BayesianRidge Alpha 1: 0.001, Alpha 2: 0.1
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Table 5. Optimal hyperparameters of the binary classification models.

Dimension Model Best Hyperparameters

P CatBoostClassifier Iterations: 50, Learning Rate: 0.1, Depth: 3, Auto Class
Weights: Balanced

E CatBoostClassifier Iterations: 50, Learning Rate: 0.01, Depth: 4, Auto Class
Weights: SqrtBalanced

R ExtraTreesClassifier Class Weight: balanced, Max Depth: 2

M CatBoostClassifier Iterations: 50, Learning Rate: 0.1, Depth: 2, Auto Class
Weights: Balanced

A CatBoostClassifier Iterations: 50, Learning Rate: 0.01, Depth: 2, Auto Class
Weights: Balanced

The predominance of the CatBoostClassifier model in the classification task is evident
in Table 5. This model is chosen for the classification of the level of four of PERMA’s five
pillars. There is no such evidence in the regression task since, as described in Table 4, each
pillar is predicted by a different model, with the exception of pillars R and A, which are
both predicted by the BayesianRidge model.

The best models and their associated hyperparameters are trained and tested using
the training and the test set, respectively.

The performance on the test set of the regression models is calculated using the MAE
metric to measure the mean absolute error between predicted and actual values [46]. In
Figure 5, the performance of each model is compared to a baseline where the proposed
precision is the average pillar value observed over the test set.

Figure 5. PERMA regression results (lower is better).

The performance on the test set of the classification models is calculated using the
balanced accuracy metric to encourage the model to correctly predict examples from all
classes, regardless of their size [48]. This is conducted by averaging the percentage correctly
predicted for each class individually. In the case of binary classification, the probability of
predicting the right class when the data distribution is uniform is 50% [49]. Thus, a naive
classifier with 50% balanced accuracy is used as the baseline. The comparison between the
baseline and the performance of the classification models for each PERMA pillar is shown
in Figure 6.
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Figure 6. PERMA classification results (higher is better).

The results show that for most of the PERMA dimensions, with the exception of
the Meaning dimension, the best performing regression and binary classification models
outperform the baseline.

The regression and binary classification models outperform the baseline, on average,
by 1.5% and 5.6% respectively. This may be an indication of significant relationships
discovered by the models in the data.

4.4. Feature Importance

Regression models can be used to analyze the coefficients associated with each attribute
to determine its importance. Tree-based models can also provide insight into the importance
of attributes by analyzing the mean decrease in the impurity (MDI). However, they do not
really give any indication of the impact of attributes on prediction or classification [50].
For this purpose, the SHAP value can be used [51].

SHAP values are computed by averaging the influence of one feature over all possible
combinations of features in the model [52]. In this way, the data from each of the models
generated and trained during the Data analysis phase (Section 4.3) are analyzed in order
to extract the influence of features across multiple models allowing the comparison of
the effects of each features and the identification of the most influential features for the
prediction and classification of each PERMA pillar tar.

An analysis examining the Pearson correlation coefficient between each of the PERMA
pillars and the individual features indicated at most weak correlations, with the highest
being roughly 0.3.

To better understand the impact and dynamics of each feature on the final prediction
and classification, a SHAP value analysis is undertaken. The SHAP analysis of the best
binary classifier for the classification of each PERMA pillar is computed and the obtained
results are proposed in Table 6.
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Table 6. SHAP values for classification models across all PERMA-dimensions where red represents a
high attribute value, while blue represents a low attribute value.

Binary Classification

P

0.8 0.6 0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

neutral__standard_deviation
angry__minimum

happy__slope
dominance__minimum
brightness__maximum

velocity__median
out_degree_centrality

neutral__maximum
surprise__minimum

Low

High

Fe
at

ur
e 

va
lu

e

E

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
SHAP value (impact on model output)

valence__median
dominance__median

sad__median
sad__max_count

brightness__maximum
sad__mean
gazes_min
sad__p_25

gazes_mean
velocity__minimum

Low

High

Fe
at

ur
e 

va
lu

e

R

0.6 0.4 0.2 0.0 0.2
SHAP value (impact on model output)

happy__slope
brightness__p_25
angry__minimum
velocity__median

brightness__maximum
velocity__p_75

brightness__mean
brightness__median

brightness__p_75

Low

High

Fe
at

ur
e 

va
lu

e

M

0.6 0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

surprise__mean
surprise__p_25
surprise__p_75

fear__max_count
arousal__median

neutral__maximum
surprise__minimum

surprise__median
dominance__slope

valence__slope

Low

High

Fe
at

ur
e 

va
lu

e

A

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
SHAP value (impact on model output)

arousal__minimum
valence__p_75

dominance__p_25
arousal__standard_deviation

happy__median
happy__p_25

sad__p_75
sad__standard_deviation

Low

High

Fe
at

ur
e 

va
lu

e

As presented in Table 6, the attributes influencing classification vary greatly from pillar
to pillar. The case study results indicate that the positive emotions (P), accomplishment (A)
and meaning (M) pillars are largely influenced by the attributes derived from emotions.
Based on Ekman’s basic emotions, a high minimum level of surprise and a low maximum
level of neutral emotion seem to positively influence pillar P while a low level of sadness
standard deviation and third quartile seems to positively influence pillar A. This suggests
that more stable emotional states are correlated with greater accomplishment. A high level
of valence and dominance slope seems to be linked to the Meaning pillar (M) of the PERMA
model. The engagement pillar (E) seems to be linked to head and gaze movements. A low
level of minimum head velocity and a high average level of gaze exchange seem to have a
positive impact on individuals’ engagement in collaborative work. Finally, the relations
pillar (R) seems to be linked to the environment in which the experiment takes place. Thus,
attributes linked to luminosity have a strong impact on this pillar, with an advantage for
low luminosity levels.
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With the same objective of explicability, the SHAP analysis of the best regression
model for the prediction of each PERMA pillar is computed and the obtained results are
proposed in Table 7.

Table 7. SHAP values for regression models across all PERMA-dimensions.

Regression

P

0.015 0.010 0.005 0.000 0.005 0.010 0.015
SHAP value (impact on model output)

velocity__slope
dominance__standard_deviation

gaze_difference_max
dominance__minimum

velocity__mean
velocity__median
fear__max_count

angry__slope
out_degree_centrality

Low

High

Fe
at

ur
e 

va
lu

e

E

0.15 0.10 0.05 0.00 0.05 0.10
SHAP value (impact on model output)

sad__p_25
gaze_difference_mean

gaze_difference_min
gazes_min

valence__mean
valence__median

valence__maximum
gazes_mean

velocity__p_25
neutral__standard_deviation

valence__p_75

Low

High

Fe
at

ur
e 

va
lu

e

R

0.06 0.04 0.02 0.00 0.02 0.04 0.06
SHAP value (impact on model output)

velocity__p_25
gaze_difference_max

gaze_difference_mean
velocity__median

velocity__p_75
brightness__median

brightness__p_75
velocity__minimum

Low

High

Fe
at

ur
e 

va
lu

e

M

0.2 0.1 0.0 0.1 0.2 0.3 0.4
SHAP value (impact on model output)

dominance__standard_deviation
sad__slope

valence__slope
gaze_difference_mean

gaze_difference_max
out_degree_centrality

happy__maximum
dominance__p_25
dominance__slope

Low

High

Fe
at

ur
e 

va
lu

e

A

0.04 0.02 0.00 0.02 0.04
SHAP value (impact on model output)

sad__p_75
sad__mean

sad__median
dominance__median

dominance__mean
valence__median
dominance__p_25

sad__max_count
valence__p_75

Low

High
Fe

at
ur

e 
va

lu
e

As for the binary classifier and as presented in Table 7, the attributes influencing
prediction and classification vary greatly from pillar to pillar. Once again, the case study
results indicate that the accomplishment (A) and meaning (M) pillars are largely influenced
by the attributes derived from emotions. However, the attributes used vary. The valence
level as well as the number of times sadness is experienced by the participants seems to have
an impact on the accomplishment pillar (A). For the meaning pillar (M), the dominance
(slope and first quartile value) is once again influential with a positive correlation between
meaning value and dominance attribute levels. Contrary to the binary classification model,
the key element for the positive emotion pillar (P) in the regression task seems to be linked
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to the SNA metric of outdegree centrality. The more participants look at others, the more
positive emotions they will experience. The commitment pillar (E) also seems to be linked to
the participant’s emotions, since the value of the third quartile of valence and the standard
deviation observed for the neutral emotion are the most influential attributes for this pillar.
Finally, it seems interesting that the relations pillar (R) seems, once again, to be linked to
the brightness of the environment in which the experiment takes place but also to head
movement. Similarly to the binary classifiers, attributes linked to brightness have a strong
impact on this pillar, with an advantage for low brightness levels but contrary to the binary
classifier, the minimum head velocity seems to have a positive impact on individuals’
relationships.

5. Discussion

To recall, the aim of the proposed study was to understand the non-verbal communica-
tion process in teamwork using video data and identify significant predictors of individual
well-being in teamwork. The experiment conducted and the results obtained serve as a
basis for discussion of the proposed research questions.

RQ1: Which features of videos taken in a team setting will be predictive of individ-
ual and team well-being measured with PERMA surveys?

Through combining video analysis with measuring well-being with PERMA, we
identified relevant features predicting individual well-being: If individuals exchange more
gazes with others, experience more surprises, behave more dominant (i.e., speak more),
and are more emotionally stable, they report higher satisfaction measured through PERMA.
This means that simply experiencing constant happiness is not the best way to achieve a
positive team experience; rather, individuals should engage in an active social exchange
with others and pursue surprising avenues in their work.

A framework combining state-of-the-art tools has been proposed in Section 3 extract-
ing from panoramic video data non-verbal cues, such as facial emotions, gaze patterns,
and head motions as input for individual well-being analysis. An experiment presented in
Section 4 applies the proposed framework and links the extracted attributes to the results of
PERMA+4 surveys evaluating the various pillars of well-being defined in positive psychol-
ogy. This way, a dataset of 125 features has been generated to predict the different pillars
of the PERMA analysis. Machine learning models were then trained for the regression
and binary classification tasks to predict individual well-being scores, as defined by the
PERMA framework.

When applied to a case study of collaboration within 20 co-located work teams, re-
gression models outperform the baselines in four of the five PERMA dimensions, with a
notable 1.5% improvement in MAE. Bayesian ridge regression was identified as particu-
larly effective. In comparison, binary classification emerged as a more reliable approach,
with models yielding a balanced accuracy improvement of 5.1%, also outperforming the
baseline in four out of five PERMA dimensions. Ensemble models, specifically CatBoost,
showed superior performance in this setting. Notably, the Meaning dimension of PERMA
proved challenging in both prediction and classification settings, indicating difficulty in
discerning a participant’s sense of meaning purely from video cues.

RQ2: How can the relevance of attributes for predicting individual well-being in a
collaborative work context be measured?

In this work, we have developed an approach measuring self-reported well-being from
facial expressions and upper body posture. Using SHAP values to measure the size of the
attributes for predicting PERMA we can identify the most predictive attributes. Applying
this approach, we found for instance that active exchanges of mutual glances and engaging
in an active dialog increase the well-being of team members.

SHAP values are used to interpret the impact of features on prediction and classifica-
tion, independently of the machine learning model used. They also rank features according
to their importance for the model under study [51]. Derived from cooperative game the-
ory, SHAP values identify the importance of features for each data point, since they are
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decomposed into the sum of feature contributions. This provides a more transparent de-
scription of the model’s behavior and therefore greater interpretability of the models[51].
Furthermore, this approach facilitates the identification of the most appropriate features for
PERMA prediction by allowing the comparison of the influence of features across multiple
models [51].

RQ3: How can theories and hypotheses relevant to positive psychology be derived
from AI-driven team video analysis?

The general process to develop new theories consists of correlating personal fea-
tures computed from video recordings of team interaction such as emotions, turn-taking,
and looking at others with team outcome and personal well-being measured with PERMA.
This way we are able to identify the most predictive behavioral patterns of an individual
that correlate with high individual satisfaction and team success. These insights will allow
individuals and teams to change their behavior accordingly.

From the feature analysis with SHAP values, various theories, and hypotheses poten-
tially relevant to experts in the field of positive psychology could be derived, for instance
from the distribution of data points in the SHAP analyses. Based on the results of the case
study, preliminary insights for team work could be gained: Paying attention to (i.e., looking
at) team members appears instrumental in fostering happiness (P), calmer head movements
seem to enhance engagement (E) and interpersonal relationships (R), the brightness of the
environment (more light) may have an important impact on relationships (R), the sense
of meaning (M) seems to be strongly tied to an increasing feeling of control, and finally
results suggest that steady emotional states provide a greater sense of achievements (A).

Limitations

The results presented here are valid only for the discussed case study. Thus, al-
though the methodology employed is generalizable, more similar case studies in different
contexts and with different participants should be conducted to further investigate these
conclusions in the field of cognitive sciences. These results show links but do not allow
causalities to be determined. This is one of the limitations of the proposed methodology,
but other factors should also be acknowledged. In data preparation, the FAS did not utilize
explicit face alignment and treated each video frame in isolation, possibly overlooking
the importance of temporal dynamics. These two factors could have a negative impact on
the performance of the proposed model as they could, respectively, complicate emotion
recognition and neglect temporal entanglements. Moreover, inherent assumptions in the
employed algorithms, like using the field of view (FOV) cone model for gaze pattern
estimation, can also introduce errors to the proposed findings. That is also true for the
data preprocessing techniques employed, such as smoothing or linear interpolation, cou-
pled with the dependence on specific feature selection strategies, which may introduce
potential biases and uncertainties. Another limitation of the proposed study is the small
number of data points available, which restricts an accurate exploration of the feature space.
The relative scarcity of data points limits our predictive model’s capacity to generalize
beyond this study. While hyperparameter search space was leveraged by grid-search cross-
validation, they might not capture the entirety of potential configurations. Also, the use of
the SHAP-based feature analysis brings its own set of challenges. Finally, the modeling
strategy relies on the fundamental assumption of relative independence among features,
an ideal scenario that is challenging to achieve consistently. This assumption may mean
that the model sometimes does not accurately capture interactions between features or
possible non-linear effects.

6. Conclusions

Theories and hypotheses from sociology and psychology are necessary to better
understand the behaviors and aspirations of the individuals and societies around us.
However, developing these theories and hypotheses is often difficult, as manual data
collection for qualitative analysis by domain experts is time-consuming, limited, and prone
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to bias. To help experts develop theories based on a wider range of objective data, we
propose a methodology to understand the non-verbal communication process in teamwork
using video data and identify significant predictors of individual well-being in teamwork.

Numerous studies analyze the well-being of individuals and teamwork, but these
studies are positioned in virtual or highly controlled environments (see Section 2). However,
collaborative working generally takes place in uncontrolled, co-located environments.

To fill this gap, the proposed framework leverages video acquisition technologies
and state-of-the-art artificial intelligence tools to extract from panoramic video individual,
relative, and environmental features. Statistical analysis is applied to each time series,
leading to the generation of a dataset of 125 features that are then linked to PERMA surveys.

A SHAP-based feature analysis unveils key indicators associated with the PERMA scores.
Applied to a case study, this method allows us to identify several hypotheses. For ex-

ample, it seems that paying attention to team members is the key to happiness. It also
appears that calm head movements promote individual commitment and interpersonal
relations. Other hypotheses include the importance of the impact of the environment
(brightness) on relationships, the close link between a sense of control and meaning, and the
greater sense of achievement that stable emotional states bring.

However, these results are nuanced, since one case study is not enough to generalize
these theories. The generalization of these results through the analysis of other case studies
in various contexts is a promising line of research that will be interesting to study in the
near future. In addition, practical improvements to the proposed FAS should be considered,
such as explicit face alignment for better emotion recognition, taking into account the effects
of temporal dynamics in image succession, or identifying and managing possible biases
due to interpolation and line smoothing.

This study has identified some promising avenues of research. One lies in the fu-
sion of different mediums for the analysis of individual well-being during teamwork.
Indeed, the analysis of non-verbal communication could be combined with the analysis of
verbal communication to have a holistic vision of communication patterns and develop
an integrated framework for the analysis of communication factors impacting individ-
ual well-being.
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