
Citation: Forestano, R.T.; Comajoan

Cara, M.; Dahale, G.R.; Dong, Z.;

Gleyzer, S.; Justice, D.; Kong, K.;

Magorsch, T.; Matchev, K.T.;

Matcheva, K.; et al. A Comparison

between Invariant and Equivariant

Classical and Quantum Graph Neural

Networks. Axioms 2024, 13, 160.

https://doi.org/10.3390/

axioms13030160

Academic Editor: Mariam Zomorodi

Received: 25 January 2024

Revised: 25 February 2024

Accepted: 25 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Comparison between Invariant and Equivariant Classical and
Quantum Graph Neural Networks
Roy T. Forestano 1,* , Marçal Comajoan Cara 2 , Gopal Ramesh Dahale 3 , Zhongtian Dong 4 ,
Sergei Gleyzer 5 , Daniel Justice 6 , Kyoungchul Kong 4 , Tom Magorsch 7 , Konstantin T. Matchev 1 ,
Katia Matcheva 1 and Eyup B. Unlu 1

1 Institute for Fundamental Theory, Physics Department, University of Florida, Gainesville, FL 32611, USA;
matchev@ufl.edu (K.T.M.); matcheva@ufl.edu (K.M.); eyup.unlu@ufl.edu (E.B.U.)

2 Department of Signal Theory and Communications, Polytechnic University of Catalonia,
08034 Barcelona, Spain; marcal.comajoan@estudiantat.upc.edu

3 Indian Institute of Technology Bhilai, Kutelabhata, Khapri, District-Durg, Chhattisgarh 491001, India;
gopald@iitbhilai.ac.in

4 Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA; cdong@ku.edu (Z.D.);
kckong@ku.edu (K.K.)

5 Department of Physics & Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; sgleyzer@ua.edu
6 Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA 15213, USA;

dljustice@sei.cmu.edu
7 Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany;

tom.magorsch@tum.de
* Correspondence: roy.forestano@ufl.edu

Abstract: Machine learning algorithms are heavily relied on to understand the vast amounts of
data from high-energy particle collisions at the CERN Large Hadron Collider (LHC). The data from
such collision events can naturally be represented with graph structures. Therefore, deep geometric
methods, such as graph neural networks (GNNs), have been leveraged for various data analysis tasks
in high-energy physics. One typical task is jet tagging, where jets are viewed as point clouds with
distinct features and edge connections between their constituent particles. The increasing size and
complexity of the LHC particle datasets, as well as the computational models used for their analysis,
have greatly motivated the development of alternative fast and efficient computational paradigms
such as quantum computation. In addition, to enhance the validity and robustness of deep networks,
we can leverage the fundamental symmetries present in the data through the use of invariant
inputs and equivariant layers. In this paper, we provide a fair and comprehensive comparison of
classical graph neural networks (GNNs) and equivariant graph neural networks (EGNNs) and their
quantum counterparts: quantum graph neural networks (QGNNs) and equivariant quantum graph
neural networks (EQGNN). The four architectures were benchmarked on a binary classification task
to classify the parton-level particle initiating the jet. Based on their area under the curve (AUC)
scores, the quantum networks were found to outperform the classical networks. However, seeing
the computational advantage of quantum networks in practice may have to wait for the further
development of quantum technology and its associated application programming interfaces (APIs).

Keywords: quantum computing; deep learning; quantum machine learning; equivariance; invariance;
supervised learning; classification; particle physics; Large Hadron Collider

MSC: 81P68; 68Q12

1. Introduction

Through the measurement of the byproducts of particle collisions, the Large Hadron
Collider (LHC) collects a substantial amount of information about fundamental particles
and their interactions. The data produced from these collisions can be analyzed using

Axioms 2024, 13, 160. https://doi.org/10.3390/axioms13030160 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030160
https://doi.org/10.3390/axioms13030160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-0355-2076
https://orcid.org/0009-0001-2626-3752
https://orcid.org/0009-0005-8116-1950
https://orcid.org/0000-0002-1000-3454
https://orcid.org/0000-0002-6222-8102
https://orcid.org/0000-0001-5450-2207
https://orcid.org/0000-0003-4515-7303
https://orcid.org/0000-0003-3890-0066
https://orcid.org/0000-0003-4182-9096
https://orcid.org/0000-0003-3074-998X
https://orcid.org/0000-0002-6683-6463
https://doi.org/10.3390/axioms13030160
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030160?type=check_update&version=1

Axioms 2024, 13, 160 2 of 15

various supervised and unsupervised machine learning methods [1–5]. Jet tagging is a key
task in high-energy physics, which seeks to identify the likely parton-level particle from
which the jet originated. By viewing individual jets as point clouds with distinct features
and edge connections between their constituent particles, a graph neural network (GNN)
is considered a well-suited architecture for jet tagging [2,3].

Classified as deep geometric networks, GNNs have the potential to draw inferences
about a graph structure, including the interactions among the elements in the graph [6,7].
Graph neural networks are typically thought of as generalizations of convolutional neural
networks (CNNs), which are predominantly used for image recognition, pattern recogni-
tion, and computer vision [8,9]. This can be attributed to the fact that in an image, each
pixel is connected to its nearest neighboring pixels, whereas in a general dataset, one would
ideally like to construct an arbitrary graph structure among the samples. Many instances
in nature can be described well in terms of graphs, including molecules, maps, social
networks, and the brain. For example, in molecules, the nodal data can be attributed to the
atoms, the edges can be characterized as the strength of the bond between atoms, and the
features embedded within each node can be the atom’s characteristics, such as reactivity.

Generally, graphically structured problems involve unordered sets of elements with
a learnable embedding of the input features. Useful information can be extracted from
such graphically structured data by embedding them within GNNs. Many subsequent
developments have been made to GNNs since their first implementation in 2005. These
developments have included graph convolutional, recurrent, message passing, graph
attention, and graph transformer architectures [2,6,10,11].

To enhance the validity and robustness of deep networks, invariant and equivariant
networks have been constructed to learn the symmetries embedded within a dataset by pre-
serving an oracle in the former and by enforcing weight sharing across filter orientations in
the latter [12,13]. Utilizing analytical invariant quantities characteristic of physical symme-
try representations, computational methods have successfully rediscovered fundamental
Lie group structures, such as the SO(n), SO(1, 3), and U(n) groups [14–17]. Nonlinear
symmetry discovery methods have also been applied to classification tasks in data do-
mains [18]. The simplest and most useful embedded symmetry transformations include
translations, rotations, and reflections, which have been the primary focus in invariant
(IGNN) and equivariant (EGNN) graph neural networks [19–21].

The learned representations from the collection of these network components can be
used to understand unobservable causal factors, uncover fundamental physical princi-
ples governing these processes, and possibly even discover statistically significant hidden
anomalies. However, with increasing amounts of available data and the computational cost
of these deep learning networks, large computing resources will be required to efficiently
run these machine learning algorithms. The extension of classical networks, which rely
on bit-wise computation, to quantum networks, which rely on qubit-wise computation,
is already underway as a solution to this complexity problem. Due to superposition and
entanglement among qubits, quantum networks are able to store the equivalent of 2n char-
acteristics from n two-dimensional complex vectors. In other words, while the expressivity
of the classical network scales linearly, that of the quantum network scales exponentially
with the sample size n [22]. Many APIs, including Xanadu’s Pennylane, Google’s Cirq,
and IBM’s Qiskit, have been developed to allow for the testing of the quantum circuits and
quantum machine learning algorithms running on these quantum devices.

In the quantum graph structure, classical nodes can be mapped to the quantum states
of the qubits, real-valued features to the complex-valued entries of the states, edges to the
interactions between states, and edge attributes to the strength of the interactions between
the quantum states. Through a well-defined Hamiltonian operator, the larger structure of
a classical model can then be embedded into the quantum model. The unitary operator
constructed from this parameterized Hamiltonian determines the temporal evolution of the
quantum system by acting on the fully entangled quantum state of the graph. Following
several layers of application, a final state measurement of the quantum system can then be

Axioms 2024, 13, 160 3 of 15

made to reach a final prediction. The theory and application of unsupervised and super-
vised learning tasks involving quantum graph neural networks (QGNNs), quantum graph
recurrent neural networks (QGRNNs), and quantum graph convolutional neural networks
(QGCNNs) have already been developed [23,24]. Improvements to these models to arbi-
trarily sized graphs have been made with the implementation of ego-graph-based quantum
graph neural networks (egoQGNNs) [25]. Quantum analogs of other advanced classical
architectures, including generative adversarial networks (GANs), transformers, natural
language processors (NLPs), and equivariant networks, have also been proposed [23,26–32].

With the rapid development of quantum deep learning, this paper intends to offer a
fair and comprehensive comparison between classical GNNs and their quantum counter-
parts. To classify whether a particle jet has originated from a quark or a gluon, a binary
classification task was carried out using four different architectures. These architectures
included a GNN, SE(2) EGNN, QGNN, and permutation EQGNN. Each quantum model
was fine tuned to have an analogous structure to its classical form. In order to provide a
fair comparison, all models used similar hyperparameters as well as a similar number of
total trainable parameters. The final results across each architecture were recorded using
identical training, validation, and testing sets. We found that QGNN and EQGNN outper-
formed their classical analogs on the particular binary classification task described above.
Although these results seem promising for the future of quantum computing, the further
development of quantum APIs is required to allow for more general implementations of
quantum architectures.

2. Data

The jet tagging binary classification task is illustrated with the high-energy physics
(HEP) dataset Pythia8 Quark and Gluon Jets for Energy Flow [33]. This dataset contains data
from two million particle collision jets split equally into one million jets that originated
from a quark and one million jets that originated from a gluon. These jets resulted from
LHC collisions with total center of mass energy

√
s = 14 TeV and were selected to have

transverse momenta pjet
T between 500 to 550 GeV and rapidities |yjet| < 1.7. The jet

kinematic distributions are shown in Figure 1. For each jet α, the classification label is
provided as either a quark with yα = 1 or a gluon with yα = 0. Each particle i within the jet
is listed with its transverse momentum p(i)T,α, rapidity y(i)α , azimuthal angle ϕ

(i)
α , and PDG

id I(i)α .

Figure 1. Distributions of the jet transverse momenta pT , total momenta p, and energies E.

2.1. Graphically Structured Data

A graph G is typically defined as a set of nodes V and edges E , i.e., G = {V , E}. Each
node v(i) ∈ V is connected to its neighboring nodes v(j) via edges e(ij) ∈ E . In our case,
each jet α can be considered as a graph Jα composed of the jet’s constituent particles as the
nodes v(i)α with node features h(il)α and edge connections e(ij)α between the nodes in Jα with
edge features a(ij)α . It should be noted that the number of nodes within a graph can vary.
This is especially true for the case of particle jets, where the number of particles within

Axioms 2024, 13, 160 4 of 15

each jet can vary greatly. Each jet Jα can be considered as a collection of mα particles with l
distinct features per particle. An illustration of graphically structured data and an example
jet in the (ϕ, y) plane are shown in Figure 2.

Figure 2. A visualization of graphically structured data (left) and a sample jet shown in the (ϕ, y)
plane (right) with each particle color-coded by its transverse momentum p(i)T,α.

2.2. Feature Engineering

We used the Particle package [34] to find the particle masses m(i)
α from the respective

particle IDs I(i)α . From the available kinematic information for each particle i, we constructed
new physically meaningful kinematic variables [35], which were used as additional features
in the analysis. In particular, we considered the transverse mass m(i)

T,α, the energy E(i)
α ,

and the Cartesian momentum components, p(i)x,α, p(i)y,α, and p(i)z,α, defined, respectively, as

m(i)
T,α =

√
m(i)2

α + p(i)2T,α , E(i)
α = m(i)

T,αcosh(y(i)α), (1)

p(i)x,α = p(i)T,αcos(ϕ(i)
α), p(i)y,α = p(i)T,αsin(ϕ(i)

α), p(i)z,α = mT,ijsinh(y(i)α).

The original kinematic information in the dataset was then combined with the additional
kinematic variables (1) into a feature set h(il)α , l = 0, 1, 2, . . . , 7, as follows:

h(il)α ≡
{

p(i)T,α, y(i)α , ϕ
(i)
α , m(i)

T,α, E(i)
α , p(i)x,α, p(i)y,α, p(i)z,α

}
. (2)

These features were then max-scaled by their maximum value across all jets α and particles
i, i.e., h(il)α → h(il)α /maxα,i(h

(il)
α).

Edge connections are formed via the Euclidean distance ∆R =
√

∆ϕ2 + ∆y2 between
one particle and its neighbor in (ϕ, y) space. Therefore, the edge attribute matrix for each
jet can be expressed as

a(ij)α ≡ ∆R(ij)
α =

√(
ϕ
(i)
α − ϕ

(j)
α

)2
+
(

y(i)α − y(j)
α

)2
. (3)

2.3. Training, Validation, and Testing Sets

We considered jets with at least 10 particles. This left us with N = 1,997,445 jets, 997,805
of which were quark jets. While the classical GNN is more flexible in terms of its hidden
features, the size of the quantum state and the Hamiltonian scale as 2n, where n is the
number of qubits. As we shall see, the number of qubits is given by the number of nodes
nα in the graph, i.e., the number of particles in the jet. Therefore, jets with large particle
multiplicity require prohibitively complex quantum networks. Thus, we limited ourselves
to the case of nα = 3 particles per jet by only considering the three highest momenta pT

particles within each jet. In other words, each graph contained the set hα = (h(1)
α , h(2)

α , h(3)
α),

Axioms 2024, 13, 160 5 of 15

where each h(i)
α ∈ R8 and hα ∈ R3×8. For training, we randomly picked N = 12,500 jets and

used the first 10,000 for training, the next 1250 for validation, and the last 1250 for testing.
These sets happened to contain 4982, 658, and 583 quark jets, respectively.

3. Models

The four different models described below, including a GNN, an EGNN, a QGNN, and an
EQGNN, were constructed to perform graph classification. The binary classification task
was determining whether a jet Jα originated from a quark or a gluon.

3.1. Invariance and Equivariance

By making a network invariant or equivariant to particular symmetries within a
dataset, a more robust architecture can be developed. In order to introduce invariance and
equivariance, one must assume or learn a certain symmetry group G of transformations
on the dataset. A function φ : X → Y is equivariant with respect to a set of group
transformations Tg : X → X, g ∈ G, acting on the input vector space X, if there exists a set
of transformations Sg : Y → Y that similarly transform the output space Y, i.e.,

φ(Tgx) = Sg φ(x). (4)

A model is said to be invariant when, for all g ∈ G, Sg becomes the set containing only
the trivial mapping, i.e., Sg = {IG}, where IG ∈ G is the identity element of the group
G [12,36].

Invariance performs better as an input embedding, whereas equivariance can be
more easily incorporated into the model layers. For each model, the invariant component
corresponds to the translational and rotational invariant embedding distance φ ≡ ∆R(ij)

α .
Here, the function φ : R2 ×R2 → R makes up the edge attribute matrix a(ij)α , as defined
in Equation (3). This distance is used as opposed to solely incorporating the raw coordi-
nates. Equivariance has been accomplished through the use of simple nontrivial functions
along with higher-order methods involving the use of spherical harmonics to embed the
equivariance within the network [37,38]. Equivariance takes different forms in each model
presented here.

3.2. Graph Neural Network

Classical GNNs take in a collection of graphs {Gα}, each with nodes v(i)α ∈ Vα and
edges e(ij)α ∈ Eα, where each graph Gα = {Vα, Eα} is the set of its corresponding nodes and
edges. Each node v(i)α has an associated feature vector h(il)α , and the entire graph has an
associated edge attribute tensor a(ijr)α describing r different relationships between node v(i)α

and its neighbors v(j)
α . Here, we can define N (i) as the set of neighbors of node v(i)α and

take r = 1, as we only consider one edge attribute. In other words, the edge attribute tensor
a(ijr)α → a(ij)α becomes a matrix. The edge attributes are typically formed from the features
corresponding to each node and its neighbors.

In the layer structure of a GNN, multilayer perceptions (MLPs) are used to update
the node features and edge attributes before aggregating, or mean pooling, the updated
node features for each graph to make a final prediction. To simplify notation, we omit the
graph index α, lower the node index i, and introduce a model layer index l. The first MLP
is the edge MLP ϕe, which, at each layer l, collects the features hl

i , its neighbors’ features
hl

j, and the edge attribute aij corresponding to the pair. Once the new edge matrix mij is
formed, we sum along the neighbor dimension j to create a new node feature mi. This extra

Axioms 2024, 13, 160 6 of 15

feature is then added to the original node features hi before being input into a second node
updating MLP ϕh to form new node features hl+1

i [8,10,21]. Therefore, a GNN is defined as

mij = ϕe(hl
i , hl

j, aij),

mi = ∑
j∈N (i)

mij, (5)

hl+1
i = ϕh(h

l
i , mi).

Here, hl
i ∈ Rk is the kth-dimensional embedding of node vi at layer l, and mij is typically

referred to as the message-passing function. Once the data are sent through the P graph
layers of the GNN, the updated nodes hP

i are aggregated via mean pooling for each graph
to form a set of final features 1

nα
∑nα

i=1 hP
i . These final features are sent through a fully

connected neural network (NN) to output the predictions. Typically, a fixed number of
hidden features k = Nh is defined for both the edge and node MLPs. The described GNN
architecture is pictorially shown in the left panel in Figure 3.

Figure 3. Graph neural network (GNN, left) and equivariant graph neural network (EGNN, right)
schematic diagrams.

3.3. SE(2) Equivariant Graph Neural Network

For the classical EGNN, the approach used here was informed by the successful
implementation of SE(3), or rotational, translational, and permutational, equivariance on
dynamic systems and the QM9 molecular dataset [21]. It should be noted that GNNs
are naturally permutation equivariant, in particular invariant, when averaging over the
final node feature outputs of the graph layers [39]. An SE(2) EGNN takes the same form
as a GNN; however, the coordinates are equivariantly updated within each graph layer,
i.e., xi → xl

i where xi = (ϕi, yi) in our case. The new form of the network becomes

mij = ϕe(hl
i , hl

j, aij, |xl
i − xl

j|),

mi = ∑
j∈N (i)

mij, (6)

xl+1
i = xl

i + C ∑
j ̸=i

(xl
i − xl

j)ϕx(mij),

hl+1
i = ϕh(h

l
i , mi).

Since the coordinates xl
i of each node vi are equivariantly evolving, we also introduce a

second invariant embedding |xl
i − xl

j| based on the equivariant coordinates into the edge
MLP ϕe. The coordinates xi are updated by adding the summed difference between the
coordinates of xi and its neighbors xj. This added term is suppressed by a factor of C, which
we take to be C(nα) = 1

ln(2nα)
. The term is further multiplied by a coordinate MLP ϕx,

which takes as input the message-passing function mij between node i and its neighbors
j. For a proof of the rotational and translational equivariance of xl+1

i , see Appendix A.
The described EGNN architecture is pictorially shown in the right panel in Figure 3.

Axioms 2024, 13, 160 7 of 15

3.4. Quantum Graph Neural Network

For a QGNN, the input data, as a collection of graphs {Gα}, are the same as described
above. We fix the number of qubits n to be the number of nodes nα in each graph. For the
quantum algorithm, we first form a normalized qubit product state from an embedding
MLP ϕ|ψ0⟩, which takes in the features hi of each node vi and reduces each of them to
a qubit state |ϕ|ψ0⟩(hi)⟩ ∈ C2 [40]. The initial product state describing the system then

becomes |ψ0
α⟩ =

⊗n
i=1 |ϕ|ψ⟩(hi)⟩ ∈ C2n

, which we normalize by
√
⟨ψ0

α|ψ0
α⟩.

A fully parameterized Hamiltonian can then be constructed based on the adjacency
matrix aij, or trainable interaction weights Wij, and node features hi, or trainable feature
weights Mi [24]. Here, for the coupling term of the Hamiltonian HC, we utilize the edge
matrix aij connected to two coupled Pauli-Z operators, σz

i and σz
j , which act on the Hilbert

spaces of qubits i and j, respectively. Since we embed the quantum state |ψ0⟩ based on
the node features hi, we omit the self-interaction term which utilizes the chosen features
applied to the Pauli-Z operator, σz

i , which acts on the Hilbert space of qubit i. We also
introduce a transverse term HT to each node in the form of a Pauli-X operator, σx

i , with
a fixed or learnable constant coefficient Q0, which we take to be Q0 = 1. Note that the
Hamiltonian H contains O(2n × 2n) entries due to the Kronecker products between Pauli
operators. To best express the properties of each graph, we take the Hamiltonian of the form

H(aij) = ∑
(i,j)∈E

aij

(
Îi − σz

i
2

−
Îj − σz

j

2

)2

︸ ︷︷ ︸
HC

+ ∑
i∈V

σx
i︸ ︷︷ ︸

HT

, (7)

where the 8 × 8 matrix representations of HC and HT are shown in Figure 4. We generate
the unitary form of the operator via the complex exponentiating of the Hamiltonian with
real learnable coefficients γlq ∈ RP×Q, which can be thought of as infinitesimal parameters
running over Q = 2 Hamiltonian terms and P layers of the network. Therefore, the QGNN
can be defined as

Uij = ϕu(aij) = e−i ∑Q
q=1 γlq Hq(aij), (8a)

|ψl+1⟩ = ϕ|ψ⟩(|ψl⟩, Uij) = Ul
θUijUl†

θ |ψl⟩, (8b)

where Ul
θ = (θ′ − iI)(θ′ + iI)−1 is a parameterized unitary Cayley transformation in which

we force θ′ = θ + θ† to be self-adjoint, i.e., θ′ = θ′†, with θ ∈ C2n×2n
as the trainable

parameters. The QGNN evolves the quantum state |ψ0⟩ by applying unitarily transformed
ansatz Hamiltonians with Q terms to the state over P layers.

Figure 4. The 8 × 8 matrix representations of the coupling and transverse Hamiltonians defined in
Equation (7).

The final product state |ψP⟩ ∈ C2n
is measured for output, which is sent to a classical

fully connected NN to make a prediction. The analogy between the quantum unitary
interaction function ϕu and classical edge MLP ϕe, as well as between the quantum unitary

Axioms 2024, 13, 160 8 of 15

state update function ϕ|ψ⟩ and classical node update function ϕh, should be clear. For a
reduction in the coupling Hamiltonian HC in Equation (7), see Appendix B. The described
QGNN architecture is pictorially shown in the left panel in Figure 5.

Figure 5. Quantum graph neural network (QGNN, left) and equivariant quantum graph neural
network (EQGNN, right) schematic diagrams.

3.5. Permutation Equivariant Quantum Graph Neural Network

The EQGNN takes the same form as the QGNN; however, we aggregate the final
elements of the product state 1

2n ∑2n

k=1 |ψP
k ⟩ via mean pooling before sending this complex

value to a fully connected NN [31,40,41]. See Appendix C for a proof of the quantum
product state permutation equivariance over the sum of its elements. The resulting EQGNN
architecture is shown in the right panel in Figure 5.

4. Results and Analysis

For each model, a range of total parameters was tested; however, the overall com-
parison test was conducted using the largest optimal number of total parameters for each
network. A feed-forward NN was used to reduce each network’s graph layered output to a
binary one, followed by the softmax activation function to obtain the logits in the classical
case and the norm of the complex values to obtain the logits in the quantum case. Each
model trained over 20 epochs with the Adam optimizer consisting of a learning rate of
η = 10−3 and a cross-entropy loss function. The classical networks were trained with a
batch size of 64 and the quantum networks with a batch size of one due to the limited
capabilities of broadcasting unitary operators in the quantum APIs. After epoch 15, the best
model weights were saved when the validation AUC of the true positive rate (TPR) as a
function of the false positive rate (FPR) was maximized. The results of the training for the
largest optimal total number of parameters |Θ| ≈ 5100 are shown in Figure 6, with more
details listed in Table 1.

Figure 6. (a) GNN, (b) EGNN, (c) QGNN, and (d) EQGNN training history plots.

Table 1. Metric comparison between the classical and quantum graph models 1.

Model |Θ| Nh P Train ACC Val ACC Test AUC

GNN 5122 10 5 74.25% 74.80% 63.36%
EGNN 5252 10 4 73.66% 74.08% 67.88%
QGNN 5156 8 6 74.00% 73.28% 61.43%

EQGNN 5140 8 6 74.42% 72.56% 75.17%
1 The pink color represents the GNN results. The red color represents the EGNN results. The blue color represents
the QGNN results. The cyan color represents the EQGNN results. This representation extends to Figure 7.

Axioms 2024, 13, 160 9 of 15

Recall that for each model, we varied the number of hidden features Nh in the P graph
layers. Since we fixed the number of nodes nα = 3 per jet, the hidden feature number
Nh = 23 = 8 was fixed in the quantum case, and, therefore, we also varied the parameters
of the encoder ϕ|ψ0⟩ and decoder NN in the quantum algorithms.

Based on the AUC scores, the EGNN outperformed both the classical and quantum
GNN; however, this algorithm was outperformed by EQGNN with a 7.29% increase in AUC,
representing the strength of the EQGNN. Although the GNN outperformed the QGNN
in the final parameter test by 1.93%, the QGNN performed more consistently and outper-
formed the GNN in the mid-parameter range |Θ| ∈ (1500, 4000). Through the variation in
the number of parameters, the AUC scores were recorded for each case, where the number
of parameters taken for each point corresponded to |Θ| ≈ {500, 1200, 1600, 2800, 3500, 5100},
as shown in the right panel in Figure 7.

Figure 7. Model ROC curves (left) and AUC scores as a function of parameters (right).

5. Conclusions

Through several computational experiments, the quantum GNNs seemed to exhibit
enhanced classifier performance compared with their classical GNN counterparts based
on the best test AUC scores produced after the training of the models while relying on
a similar number of parameters, hyperparameters, and model structures. These results
seem promising for the quantum advantage over classical models. Despite this result,
the quantum algorithms took over 100 times longer to train than the classical networks.
This was primarily due to the fact that we ran our quantum simulations on classical
computers and not on actual quantum hardware. In addition, we were hindered by the
limited capabilities in the quantum APIs, where the inability to train with broadcastable
unitary operators forced the quantum models to take in a batch size of one or train on a
single graph at a time.

The action of the equivariance in the EGNN and EQGNN could be further explored
and developed. This is especially true in the quantum case where more general permutation
and SU(2) equivariance have been explored [40–43]. Expanding the flexibility of the
networks to an arbitrary number of nodes per graph should also offer increased robustness;
however, this may continue to pose challenges in the quantum case due to the current
limited flexibility of quantum software. A variety of different forms of the networks can
also be explored. Potential ideas for this include introducing attention components and
altering the structure of the quantum graph layers to achieve enhanced performance of
both classical and quantum GNNs. In particular, one can further parameterize the quantum
graph layer structure to better align with the total number of parameters used in the
classical structures. These avenues will be explored in future work.

6. Software and Code

PyTorch and Pennylane were the primary APIs used in the formation and testing of
these algorithms. The code corresponding to this study can be found at https://github.com/
royforestano/2023_gsoc_ml4sci_qmlhep_gnn (accessed on 5 February 2024).

https://github.com/royforestano/2023_gsoc_ml4sci_qmlhep_gnn
https://github.com/royforestano/2023_gsoc_ml4sci_qmlhep_gnn

Axioms 2024, 13, 160 10 of 15

Author Contributions: Conceptualization, R.T.F.; methodology, M.C.C., G.R.D., Z.D., R.T.F., S.G.,
D.J., K.K., T.M., K.T.M., K.M. and E.B.U.; software, R.T.F.; validation, M.C.C., G.R.D., Z.D., R.T.F.,
T.M. and E.B.U.; formal analysis, R.T.F.; investigation, M.C.C., G.R.D., Z.D., R.T.F., T.M. and E.B.U.;
resources, R.T.F., K.T.M. and K.M.; data curation, G.R.D., S.G. and T.M.; writing—original draft
preparation, R.T.F.; writing—review and editing, S.G., D.J., K.K., K.T.M. and K.M.; visualization,
R.T.F.; supervision, S.G., D.J., K.K., K.T.M. and K.M.; project administration, S.G., D.J., K.K., K.T.M.
and K.M.; funding acquisition, S.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This study used resources of the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231 using NERSC award NERSC DDR-ERCAP0025759.
S.G. was supported in part by the U.S. Department of Energy (DOE) under Award No. DE-SC0012447.
K.M. was supported in part by the U.S. DOE award number DE-SC0022148. K.K. was supported in
part by US DOE DE-SC0024407. Z.D. was supported in part by College of Liberal Arts and Sciences
Research Fund at the University of Kansas. Z.D., R.T.F., E.B.U., M.C.C., and T.M. were participants in
the 2023 Google Summer of Code.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The high-energy physics (HEP) dataset Pythia8 Quark and Gluon Jets
for Energy Flow [33] was used in this analysis.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
AUC Area Under the Curve
CNN Convolutional Neural Network
EGNN Equivariant Graph Neural Network
EQGNN Equivariant Quantum Graph Neural Network
FPR False Positive Rate
GAN Generative Adversarial Network
GNN Graph Neural Network
LHC Large Hadron Collider
MDPI Multidisciplinary Digital Publishing Institute
MLP Multilayer Perceptron
NLP Natural Language Processor
NN Neural Network
QGCNN Quantum Graph Convolutional Neural Network
QGNN Quantum Graph Neural Network
QGRNN Quantum Graph Recurrent Neural Network
TPR True Positive Rate

Appendix A. Equivariant Coordinate Update Function

Let Tg : X → X be the set of translational and rotational group transformations with
elements g ∈ Tg ⊂ G that act on the vector space X. The function φ : X → X defined by

φ(x) = xi + C ∑
j ̸=i

(xi − xj) (A1)

is equivariant with respect to Tg.

Axioms 2024, 13, 160 11 of 15

Proof. Let a general transformation g ∈ Tg act on X by gX = RX + T, where R ∈ Tg
denotes a general rotation, and T ∈ Tg denotes a general translation. Then, under transfor-
mation g on X of function φ defined above, we have

φ(gx) = (gxi) + C ∑
j ̸=i

(gxi − gxj)

= (Qxi + T) + C ∑
j ̸=i

(Qxi + T − Qxj − T)

= (Qxi + T) + C ∑
j ̸=i

(Qxi − Qxj)

= Qxi + C ∑
j ̸=i

Q(xi − xj) + T

= Q[xi + C ∑
j ̸=i

(xi − xj)] + T

= gφ(x),

where φ(gx) = gφ(x) shows φ transforms equivariantly under transformations g ∈ Tg
acting on X.

Appendix B. Coupling Hamiltonian Simplification

The reduction in the coupling Hamiltonian becomes

ĤC =
1
2 ∑

(j,k)∈E
Λjk

[(
Îj − σz

j

2

)
−
(

Îk − σz
k

2

)]2

=
1
8 ∑

(j,k)∈E
Λjk

[(
Îj − σz

j

)
−
(

Îk − σz
k
)]2

=
1
8 ∑

(j,k)∈E
Λjk

[(
Îj − σz

j

)2
−
(

Îj − σz
j

)(
Îk − σz

k
)
−
(

Îk − σz
k
)(

Îj − σz
j

)
+
(

Îk − σz
k
)2
]

=
1
8 ∑

(j,k)∈E
Λjk

[
Îj Îj − Îjσ

z
j − σz

j Îj + σz
j σz

j − Îj Îk + Îjσ
z
k + σz

j Îk − σz
j σz

k − Îk Îj + Îkσz
j + σz

k Îj

− σz
k σz

j + Îk Îk − Îkσz
k − σz

k Îk + σz
k σz

k

]
=

1
8 ∑

(j,k)∈E
Λjk

[
Îj Îj − 2 Îjσ

z
j + σz

j σz
j − 2 Îj Îk + 2 Îjσ

z
k + 2σz

j Îk − 2σz
j σz

k + Îk Îk − 2 Îkσz
k + σz

k σz
k

]
=

1
8 ∑

(j,k)∈E
Λjk

[
Îj − 2σz

j + σz
j

2 − 2 Îj Îk + 2 Îjσ
z
k + 2σz

j Îk − 2σz
j σz

k + Îk − 2σz
k + σz

k
2
]

=
1
8 ∑

(j,k)∈E
Λjk

[
2 Îj − 2σz

j − 2 Îj Îk + 2 Îjσ
z
k + 2σz

j Îk − 2σz
j σz

k + 2 Îk − 2σz
k

]
=

1
4 ∑

(j,k)∈E
Λjk

[
Îj − σz

j − Îj Îk + Îjσ
z
k + σz

j Îk − σz
j σz

k + Îk − σz
k

]
,

and multiplying on the left by Îj and on the right by Îk produces

=⇒ ĤC =
1
4 ∑

(j,k)∈E
Λjk

[
Îj Îk − σz

j Îk + Îjσ
z
k + σz

j Îk − σz
j σz

k − Îjσ
z
k

]
=

1
4 ∑

(j,k)∈E
Λjk

[
Îj Îk − σz

j σz
k

]
. (A2)

Axioms 2024, 13, 160 12 of 15

Appendix C. Quantum Product State Permutation Equivariance

For V, a commutable vector space, the product state
⊗m

i=1 vi : Vn × · · · × Vn → Vnm

is permutation-equivariant with respect to the sum of its entries. We prove the n = 2 case
for all m ∈ Z>0.

Proof. (By Induction) Assuming we have an n = 1 final qubit state,

|ψ1⟩ =
1⊗

i=1

(
v1

1
v2

1

)
=

(
v1

1
v2

1

)
,

the sum of the product state elements is trivially equivariant with respect to similar graphs.
If we have n = 2 final qubit states, the product state is

|ψi⟩ =
⊗

i={1,2}

(
v1

i
v2

i

)
=

(
v1

1
v2

1

)
⊗
(

v1
2

v2
2

)
=

v1

1v1
2

v2
1v1

2
v1

1v2
2

v2
1v2

2

,

where the sum of elements becomes

v1
1v1

2 + v2
1v1

2 + v1
1v2

2 + v2
1v2

2 = v1
2v1

1 + v1
2v2

1 + v2
2v1

1 + v2
2v2

1

= v1
2v1

1 + v2
2v1

1 + v1
2v2

1 + v2
2v2

1,

which is equivalent to the sum of the elements
v1

2v1
1

v2
2v1

1
v1

2v2
1

v2
2v2

1

 =

(
v1

2
v2

2

)
⊗
(

v1
1

v2
1

)
=

⊗
i={2,1}

(
v1

i
v2

i

)

for commutative spaces where vj
i ∈ C and {1, 2}, {2, 1} should be regarded as ordered sets,

which again shows the sum of the state elements remaining unchanged when the qubit
states switch positions in the product. We now assume the statement is true for n = N final
qubit states and proceed to show the N + 1 case is true. The quantum product state over N
elements becomes

N⊗
i=1

|ψi⟩ =
⊗

i

(
v1

i
v2

i

)
=

(
v1

1
v2

1

)
⊗
(

v1
2

v2
2

)
⊗ · · · ⊗

(
v1

N
v2

N

)
, (A3)

which we assume to be permutation-equivariant over the sum of its elements. We can
rewrite the form of this state as

N⊗
i=1

|ψi⟩ =

A1
A2
...

A2N

 = Aj, (A4)

where Aj defines the 2N terms in the final product state. Replacing the i + 1th entry of the
Kronecker product above with a new N + 1th state, we have

N+1⊗
i=1

|ψi⟩ =
⊗

i

(
v1

i
v2

i

)
=

(
v1

1
v2

1

)
⊗
(

v1
2

v2
2

)
⊗ · · · ⊗

(
v1

i
v2

i

)
⊗
(

v1
N+1

v2
N+1

)
⊗
(

v1
i+1

v2
i+1

)
⊗ · · · ⊗

(
v1

N
v2

N

)
︸ ︷︷ ︸

N+1 terms

.

Axioms 2024, 13, 160 13 of 15

When this occurs, this new state consisting of 2N+1 elements with the N + 1 state in the
i + 1th entry of the product can be written in terms of the old state with groupings of the
new elements in 2N+1−i batches of 2i elements, i.e.,

N+1⊗
i=1

|ψi⟩ =

B1 = A1v1
N+1

B2 = A2v1
N+1

...
B2i = A2i v1

N+1
B2i+1 = A1v2

N+1
...

B2i+1 = A2i v2
N+1

...
B2N+1−2i+1+1 = A2N−2i+1v1

N+1
...

B2N+1−2i = A2N v1
N+1

B2N+1−2i+1 = A2N−2i+1v2
N+1

...
B2N+1 = A2N v2

N+1

, (A5)

which, when summed, becomes

2N+1

∑
k=1

Bk =
2N

∑
j=1

Ajv1
N+1 +

2N

∑
j=1

Ajv2
N+1

= (v1
N+1 + v2

N+1)
2N

∑
j=1

Aj.

However, the i + 1th entry is arbitrary, and, due to the summation permutation equiv-
ariance of the initial state

⊗N
i=1 |ψi⟩, the sum ∑2N

j=1 Aj is equivariant, in fact invariant,

under all reorderings of the elements |ψi⟩ in the product
⊗N

i=1 |ψi⟩. Therefore, we conclude⊗N+1
i=1 |ψi⟩ is permutation-equivariant with respect to the sum of its elements.

To show a simple illustration of why (A5) is true, let us take two initial states and
see what happens when we insert a new state between them, i.e., in the 2nd entry in the
product. This should lead to 22+1−1 = 22 = 4 groupings of 21 = 2 elements. To begin,
we have

(
v1

1
v2

1

)
⊗
(

v1
2

v2
2

)
=

v1

1v1
2

v2
1v1

2
v1

1v2
2

v2
1v2

2

 =

A1
A2
A3
A4

,

and when we insert the new third state in the 1st entry of the product above, we have

(
v1

1
v2

1

)
⊗
(

v1
3

v2
3

)
⊗
(

v1
2

v2
2

)
=

v1
1v1

3v1
2

v2
1v1

3v1
2

v1
1v2

3v1
2

v2
1v2

3v1
2

v1
1v1

3v2
2

v2
1v1

3v2
2

v1
1v2

3v2
2

v2
1v2

3v2
2

=

A1v1
3

A2v1
3

A1v2
3

A2v2
3

A3v1
3

A4v1
3

A3v2
3

A4v2
3

,

Axioms 2024, 13, 160 14 of 15

which sums to

(A1 + A2 + A3 + A4)v1
3 + (A1 + A2 + A3 + A4)v2

3 = (v1
3 + v2

3)
2N=22=4

∑
i=1

Aj.

References
1. Andreassen, A.; Feige, I.; Frye, C.; Schwartz, M.D. JUNIPR: A framework for unsupervised machine learning in particle physics.

Eur. Phys. J. C 2019, 79, 102. [CrossRef]
2. Shlomi, J.; Battaglia, P.; Vlimant, J.R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 021001.

[CrossRef]
3. Mikuni, V.; Canelli, F. Point cloud transformers applied to collider physics. Mach. Learn. Sci. Technol. 2021, 2, 035027. [CrossRef]
4. Mokhtar, F.; Kansal, R.; Duarte, J. Do graph neural networks learn traditional jet substructure? arXiv 2022, arXiv:2211.09912.
5. Mikuni, V.; Canelli, F. ABCNet: An attention-based method for particle tagging. Eur. Phys. J. Plus 2020, 135, 463. [CrossRef]

[PubMed]
6. Veličković, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [CrossRef] [PubMed]
7. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81. [CrossRef]
8. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
9. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th

International Conference on Learning Representations (ICLR ’17), Toulon, France, 24–26 April 2017.
10. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of

the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1263–1272.
11. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
12. Lim, L.; Nelson, B.J. What is an equivariant neural network? arXiv 2022, arXiv:2205.07362.
13. Ecker, A.S.; Sinz, F.H.; Froudarakis, E.; Fahey, P.G.; Cadena, S.A.; Walker, E.Y.; Cobos, E.; Reimer, J.; Tolias, A.S.; Bethge, M. A

rotation-equivariant convolutional neural network model of primary visual cortex. In Proceedings of the International Conference
on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

14. Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Deep learning symmetries and their Lie groups,
algebras, and subalgebras from first principles. Mach. Learn. Sci. Tech. 2023, 4, 025027. [CrossRef]

15. Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Discovering Sparse Representations of Lie Groups
with Machine Learning. Phys. Lett. B 2023, 844, 138086. [CrossRef]

16. Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Accelerated Discovery of Machine-Learned
Symmetries: Deriving the Exceptional Lie Groups G2, F4 and E6. Phys. Lett. B 2023, 847, 138266. [CrossRef]

17. Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Identifying the Group-Theoretic Structure of
Machine-Learned Symmetries. Phys. Lett. B 2023, 847, 138306. [CrossRef]

18. Roman, A.; Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Unlu, E.B. Oracle-Preserving Latent Flows. Symmetry 2023, 15, 1352.
[CrossRef]

19. Maron, H.; Ben-Hamu, H.; Shamir, N.; Lipman, Y. Invariant and Equivariant Graph Networks. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

20. Gong, S.; Meng, Q.; Zhang, J.; Qu, H.; Li, C.; Qian, S.; Du, W.; Ma, Z.M.; Liu, T.Y. An efficient Lorentz equivariant graph neural
network for jet tagging. J. High Energy Phys. 2022, 7, 030. [CrossRef]

21. Satorras, V.G.; Hoogeboom, E.; Welling, M. E(n) Equivariant Graph Neural Networks. arXiv 2021, arXiv:2102.09844.
22. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
23. Beer, K.; Khosla, M.; Köhler, J.; Osborne, T.J.; Zhao, T. Quantum machine learning of graph-structured data. Phys. Rev. A 2023,

108, 012410. [CrossRef]
24. Verdon, G.; Mccourt, T.; Luzhnica, E.; Singh, V.; Leichenauer, S.; Hidary, J.D. Quantum Graph Neural Networks. arXiv 2019,

arXiv:1909.12264.
25. Ai, X.; Zhang, Z.; Sun, L.; Yan, J.; Hancock, E.R. Decompositional Quantum Graph Neural Network. arXiv 2022, arXiv:2201.05158.
26. Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling Quantum Generative

Adversarial Networks. Phys. Rev. Lett. 2022, 128, 220505. [CrossRef]
27. Chu, C.; Skipper, G.; Swany, M.; Chen, F. IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis

On NISQ Devices. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

28. Sipio, R.D.; Huang, J.H.; Chen, S.Y.C.; Mangini, S.; Worring, M. The Dawn of Quantum Natural Language Processing. In
Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Virtual, 7–13 May 2021; pp. 8612–8616.

29. Cherrat, E.A.; Kerenidis, I.; Mathur, N.; Landman, J.; Strahm, M.C.; Li, Y.Y. Quantum Vision Transformers. arXiv 2023,
arXiv:2209.08167.

http://doi.org/10.1140/epjc/s10052-019-6607-9
http://dx.doi.org/10.1088/2632-2153/abbf9a
http://dx.doi.org/10.1088/2632-2153/ac07f6
http://dx.doi.org/10.1140/epjp/s13360-020-00497-3
http://www.ncbi.nlm.nih.gov/pubmed/32647596
http://dx.doi.org/10.1016/j.sbi.2023.102538
http://www.ncbi.nlm.nih.gov/pubmed/36764042
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1088/2632-2153/acd989
http://dx.doi.org/10.1016/j.physletb.2023.138086
http://dx.doi.org/10.1016/j.physletb.2023.138266
http://dx.doi.org/10.1016/j.physletb.2023.138306
http://dx.doi.org/10.3390/sym15071352
http://dx.doi.org/10.1007/JHEP07(2022)030
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevA.108.012410
http://dx.doi.org/10.1103/PhysRevLett.128.220505
http://dx.doi.org/10.1109/ICASSP49357.2023.10096772

Axioms 2024, 13, 160 15 of 15

30. Meyer, J.J.; Mularski, M.; Gil-Fuster, E.; Mele, A.A.; Arzani, F.; Wilms, A.; Eisert, J. Exploiting Symmetry in Variational Quantum
Machine Learning. PRX Quantum 2023, 4, 010328. [CrossRef]

31. Nguyen, Q.T.; Schatzki, L.; Braccia, P.; Ragone, M.; Coles, P.J.; Sauvage, F.; Larocca, M.; Cerezo, M. Theory for Equivariant
Quantum Neural Networks. arXiv 2022, arXiv:2210.08566.

32. Schatzki, L.; Larocca, M.; Nguyen, Q.T.; Sauvage, F.; Cerezo, M. Theoretical Guarantees for Permutation-Equivariant Quantum
Neural Networks. arXiv 2022, arXiv:2210.09974.

33. Komiske, P.T.; Metodiev, E.M.; Thaler, J. Energy flow networks: Deep sets for particle jets. J. High Energy Phys. 2019, 2019, 121.
[CrossRef]

34. Rodrigues, E.; Schreiner, H. Scikit-Hep/Particle: Version 0.23.0; Zenodo: Geneva, Switzerland, 2023. [CrossRef]
35. Franceschini, R.; Kim, D.; Kong, K.; Matchev, K.T.; Park, M.; Shyamsundar, P. Kinematic Variables and Feature Engineering for

Particle Phenomenology. arXiv 2022, arXiv:2206.13431.
36. Esteves, C. Theoretical Aspects of Group Equivariant Neural Networks. arXiv 2020, arXiv:2004.05154.
37. Murnane, D.; Thais, S.; Thete, A. Equivariant Graph Neural Networks for Charged Particle Tracking. arXiv 2023, arXiv:2304.05293.
38. Worrall, D.E.; Garbin, S.J.; Turmukhambetov, D.; Brostow, G.J. Harmonic Networks: Deep Translation and Rotation Equivariance.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 21–26
July 2017; pp. 7168–7177. [CrossRef]

39. Thiede, E.H.; Hy, T.S.; Kondor, R. The general theory of permutation equivarant neural networks and higher order graph
variational encoders. arXiv 2020, arXiv:2004.03990.

40. Mernyei, P.; Meichanetzidis, K.; Ceylan, İ.İ. Equivariant Quantum Graph Circuits. arXiv 2022, arXiv:2112.05261.
41. Skolik, A.; Cattelan, M.; Yarkoni, S.; Bäck, T.; Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. Npj

Quantum Inf. 2023, 9, 47. [CrossRef]
42. East, R.D.P.; Alonso-Linaje, G.; Park, C.Y. All you need is spin: SU(2) equivariant variational quantum circuits based on spin

networks. arXiv 2023, arXiv:2309.07250.
43. Zheng, H.; Kang, C.; Ravi, G.S.; Wang, H.; Setia, K.; Chong, F.T.; Liu, J. SnCQA: A hardware-efficient equivariant quantum

convolutional circuit architecture. arXiv 2023, arXiv:2211.12711.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PRXQuantum.4.010328
http://dx.doi.org/10.1007/JHEP01(2019)121
http://dx.doi.org/10.5281/zenodo.8112280
http://dx.doi.org/10.1109/CVPR.2017.758
http://dx.doi.org/10.1038/s41534-023-00710-y

	Introduction
	Data
	Graphically Structured Data
	Feature Engineering
	Training, Validation, and Testing Sets

	Models
	Invariance and Equivariance
	Graph Neural Network
	SE(2) Equivariant Graph Neural Network
	Quantum Graph Neural Network
	Permutation Equivariant Quantum Graph Neural Network

	Results and Analysis
	Conclusions
	Software and Code
	Equivariant Coordinate Update Function
	Coupling Hamiltonian Simplification
	Quantum Product State Permutation Equivariance
	References

