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Abstract: Numerous applications of the Internet of Things (IoT) feature an event recognition behavior
where the established Shannon capacity is not authorized to be the central performance measure.
Instead, the identification capacity for such systems is considered to be an alternative metric, and
has been developed in the literature. In this paper, we develop deterministic K-identification (DKI)
for the binary symmetric channel (BSC) with and without a Hamming weight constraint imposed
on the codewords. This channel may be of use for IoT in the context of smart system technologies,
where sophisticated communication models can be reduced to a BSC for the aim of studying basic
information theoretical properties. We derive inner and outer bounds on the DKI capacity of the BSC
when the size of the goal message set K may grow in the codeword length n. As a major observation,
we find that, for deterministic encoding, assuming that K grows exponentially in n, i.e., K = 2nκ ,
where κ is the identification goal rate, then the number of messages that can be accurately identified
grows exponentially in n, i.e., 2nR, where R is the DKI coding rate. Furthermore, the established inner
and outer bound regions reflects impact of the input constraint (Hamming weight) and the channel
statistics, i.e., the cross-over probability.

Keywords: deterministic K-identification; capacity region; binary symmetric channel; Hamming
distance; post Shannon communications; internet of things

1. Introduction

The Internet of Things (IoT) refers to a system of interconnected devices that commu-
nicate and share data with one another [1,2]. The IoT is first-class and the fastest growing
area of technology, where its constituent is called a thing. These things are classified in
three groups: people, machines and information (food, medicines, books, etc.). Exam-
ples include a driving car with built-in sensors monitoring vehicle health and driving
performance, or a person with a heart monitor implant for efficient patient management,
and can be very varied, including any natural or human-made objects that has sensors,
processing/controlling ability, and can transfer information over a network using specific
communication technologies. Some of the key challenges and possible research topics for
IoT are highlighted in [3]. Moreover, in [4], different physical layer security techniques for
IoT are studied.

Smart cities: IoT can be used in the context of smart cities [5], where it provides an
urban network to connect devices such as sensors, lights, and meters, for the sake of
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data collection and analysis. The smart cities exploit state-of-the-art technologies such as
cloud computing [6] and machine learning [7] to provide a better quality of government
service, enhancing infrastructure, public utilities, and citizen services. In particular, in the
context of smart mobility and transportation systems [8], IoT may provide opportunities for
integrating control, communications, and date processing across a heterogeneous network
of transportation systems. IoT applications can be extended to different aspects of such
systems, including the infrastructure, vehicle, and user/driver. The interactions between
such components give rise to inter- and intra-vehicular communication, smart traffic control,
safety, logistics, user/vehicle control, electronic toll collection systems, etc. [9]. Specifically,
a potential IoT application scenario for these contexts is exploiting sensors for the sake of
environmental monitoring [10]. That is, in a wireless sensor network, a group of sensors
which monitor the environment are expected to send the minimum amount of information
to the decision center for the sake of performing an appropriate and reliable timely act.

Smart medical and health-care systems: Applications of IoT for medical and health-
care purposes are referred to as the Internet of Medical Things (IoMT) [11,12]. In this context,
the technology for creating a digitized healthcare system where the medical resources
cooperate with others for providing health-care services is referred to as smart health-care. In
particular, IoT devices may be used for enabling remote emergency notification systems and
health monitoring. Such devices range from blood pH/pressure and heart rate monitors to
more advanced devices capable of monitoring specialized implants, such as pacemakers,
wristbands, or sophisticated hearing aids [11]. Moreover, a field related and concurrently
expanding to the IoMT is the Internet of Bio-Nano Things (IoBNT) [13,14] which is the
application of IoT for connecting bio-nano things inside the human body in order to provide
a network of nano-scale and biological devices. A parallel developing and linked field to
IoMT and IoBNT is molecular communication (MC), which provides platform, tools and
techniques for establishing communications in the molecular scale [15,16].

1.1. Post-Shannon Communications for IoT

The classical information theory was established by Shannon in [17], where three levels
of communications, including technical (reliable symbol transmission), semantic (message’s
meaning transfer) and effectiveness (achieve goal/pragmatic aspect of message exchange)
problems were defined. Shannon, in [17], considered solely the technical problem, which
focuses on the accurate transmission of symbols. However, several applications for emerg-
ing sixth-generation (6G) or future-generation (XG) wireless communications/networking
systems in the context of IoT demand to deal with the semantic and effectiveness aspects
of the message. In fact, future XG systems fold the semantic of message and the goal of
message communication into their design. This is required in these applications in order to
fulfill certain performance features, including sustainability (robustness), latency, reliability,
security, etc. Studying these new aspects of the message goes beyond the conventional
Shannon paradigm/framework, and are referred to as post-Shannon communications
(PSCs) [18]. For example, in goal/task-oriented communications [19], the success of execu-
tion for specific task (effectiveness problem) at the destination/receiver is the key concern,
and is demanded by the transmitter.

In particular, a first discussion of the PSC for 6G can be found in [18]. The use of PSC
for MC is studied in [20], in which the possible capabilities of MC for 6G is discussed for
the first time. Also, a detailed discussion of the requirements for tactile internet (which
refers to the data transfer in real-time (extremely low latency) in combination with high
availability and reliability requirements) and 6G can be found in [21], in which the PSC
is introduced to be of particular importance for several key areas of applications for 6G,
wherein new communication scenarios, performance requirements and open questions
for the PSC are discussed as well. Moreover, the wireless communication systems in 5G
and beyond networks, which include reconfigurable intelligent surfaces (RISs) [22], deal
with aspects such as localization, synchronization and beamforming design. These aspects
in RISs often require use of the semantic metrics rather than the conventional Shannon
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metrics; cf. [23,24] for further details. Moreover, various applications in the context of
smart medical and health-care systems for 6G networks require task accomplishment [20],
and are needed to adapt the encoded signal depending to the specific application-driven
requirements of the receiver.

1.2. IoT Needs and Impact of the Deterministic K-Identification

The evolving growth and development of technologies for IoT use cases have given
rise to several applications where a reliable symbol transmission (the technical problem of
Shannon) is less relevant. In particular, the 5G and 6G wireless communications systems in
the horizon of IoT are expected to create new applications where the semantic and goal
performing aspects of the messages are the key concern. Furthermore, these applications
suffer other challenges, such as having difficulty coping with generation of randomness
and working with sophisticated random number generators. Also, in some case, a strict
criterion on the performance speed for recognition/identification of an event is imposed, or
it is needed to deal with an increasing size of the search space. In the following, we expand
on such challenges in more detail and suggest the K-identification problem as a promising
approach for them.

Semantic and goal-oriented communications: Let us define the K-identification prob-
lem considered in this paper as follows: Assume that the message set is M = {1, 2, . . . , M},
and message i is sent by the transmitter. Furthermore, assume an arbitrary subset of the
message set with size K by K. In the technical problem setting (symbol transmission), the
receiver is interested in determining exactly which message is sent by the transmitter, i.e.,
to reconstruct the sent message. However, in the K-identification setting, the receiver is
only interested in determining whether or not the sent message belongs to the set K. In
other words, the receiver decided i ∈ K or i /∈ K without stating exactly which message is
sent. Note that, in principle, identification should be guaranteed for any goal identification
message setK ⊆ M of size |K| = K, regardless of whether these identification message sets
are intended for one or different receivers. In the K-identification problem, receiver seeks to
perform a specific goal/task if its desired message sent at the transmitter, belongs to a set
of K messages. Therefore, this problem may help to deliver the semantic aspects associated
with the messages and can be adapted to the goal/task-oriented communications settings.
That is, the K-identification problem can be a compelling candidate/answer to the IoT
needs for applications defined in the context of PSC. These applications often ignore a
reliable transmission of bits/symbols, and instead are alarm-triggered and demand to
convey the semantic aspects of the messages. Potential applications of the K-identification
problem for IoT systems are considered in [25].

Randomness generation/management: The original problem of K-identification pro-
posed by Ahlswede in [26] considers employing randomness in the encoding module of a
communication setup. That is, for each message at the transmitter, a unique distribution is
assigned, which associates/maps the message to a codeword. This randomized mechanism
for the K-identification problem allows for a remarkable gain in terms of the number of
different messages (or/and their semantics/effects) that can be conveyed to the receiver,
namely a double exponential behavior for the size of the message set; cf. [26] for details.
Although in majority of use cases for IoT applications, such a double exponential behavior
demand might be already real and steadily increasing, it has not necessarily been a focus
point when launching an IoT device on the market. This occurs mostly because of cost and
integration barriers. Specifically, in order to ensure standard realization of distributions
in the encoding procedure, a true random number generator (TRNG) [27] should be em-
bedded in IoT devices and utilized. Hardware-based TRNGs are often difficult to launch,
manage and maintain for specific use cases [28]. These difficulties can be mitigated by ex-
ploiting deterministic codes in the system design for some of the applications. In addition,
deterministic codes often have the advantage of simpler implementation, simulation [29,30]
and explicit construction [31]. As a result, the deterministic K-identification (DKI) consid-
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ered in this paper may be regarded a promising solution for several IoT applications that
do not comprised randomness in their encoding part.

Performance speed: In the standard identification with deterministic encoding (DI)
problem (i.e., K = 1) [32,33], the receiver performs a series of comparisons between a given
goal message and each element of the message set (one-to-one comparison). However, in
the DKI problem, the receiver is capable of performing a one-to-set comparison, i.e., an
inclusion test. In other words, the receiver is searching for a specific message within an
arbitrary set of K messages (goal message set), and is able to declare reliably whether or not
a specific message which is searching for is included in the goal message set. This feature
for the DKI problem may be regarded as an advantage in terms of speed in the set-wise
search, compared to the DI for identification-based IoT devices. In the following, we explain
from a quantitative perspective that why the one-by-one comparison as made in the DI
is slow, and why the simple inclusion test as made in the DKI is fast. In order to evaluate
the search performance speed of K-identification against the standard identification, let
us define the time complexity that is required in order to exhaust the entire collection of
subsets of size K as a metric. Then, observe that the message set M = {1, . . . , M} with size
M has (M

K ) subsets of size K, referred to as the search space. Now, note that the total search
space is the power set of the message set, i.e., the set of all subsets of the message set with
size 2M. Therefore, ratio of the size of the search space to the size of the power set for the
message set, converges exponentially to zero in the message size, M, i.e.,

(M
K )

2M ≤ 2MH(K/M)

2M = 2MH(K/M)−1) n→∞−−−→ 0, (1)

for K ≥ 1 and M − K ≥ 1, where the inequality holds by ([34], p. 353), with H(z) ≜ −z
log(z)− (1 − z) log(1 − z), being the binary entropy function. On the other hand, for the
DI problem the sequence of one-to-one comparisons for the asymptotic codeword lengths,
n (i.e., very large message set size) trades a long delay on the receiver’s proficiency with an
inverse polynomial order in M. More specifically, the receiver searches for a single message
among M different messages; therefore, the ratio of the size of the search space to the size
of the whole search space is 1/M, which tends to zero for increasing M.

Growing search space: Some of the envisioned IoT applications may need a K-
identification task where size of the goal message set K = K(n) has to grow in n. For
example, where it is required that the size of the goal message set, K, for which the
inclusion test (search in a set) is conducted, remains a fixed percentage order of the size of
the message set. Therefore, by growing codeword length, n, which implies a growing size
of the message set, the corresponding goal message set also grows. To account for these
cases, we consider a generalized identification model, whose parameter K ≥ 1 can grow
exponentially in n. Possible implications of this observation in the context of IoT include
locating an malfunctioned server within a network of K web servers; spotting/detecting a
faulty node in a local partition of wireless sensor network with size K; and in data mining
within the procedure of sorting data, where some algorithms need to know that a desired
data are included to which set of element with size K.

1.3. Binary Symmetric Channel

A binary symmetric channel (BSC) in information/coding theory is one of the most
well-known and fundamental models for communications channels where the input and
output alphabets are binary, i.e., {0, 1}. In this model, each symbol (bit) sent by the
transmitter experiences a distortion (flipping); that is, the received symbol (bit) can be
flipped with a cross-over probability of p ∈ (0, 1), but is otherwise received correctly. In
contrast to the simplicity of the BSC, many information theoretical problems related to this
model are still being investigated in the literature. For example, studying the behavior of
the decoding error probabilities and characterization of them as a function of the codeword
length n, in the asymptotic for the entire region of coding rate R, which requires knowing
the analytic function of the so-called channel reliability function (CRF) [35], is still unknown.
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In addition, the error exponents for a binary symmetric channel in several settings are not
yet completely characterized; cf. [35,36] for further details. The K-identification problem
considered in this work is the most generalized and difficult version of the identification
problem [26]; therefore, it is rather evident that studying this topic for a general model
may be exceedingly hard. However, we can obtain some insights into the effects of the size
of goal messages, K, by restricting our investigations to a basic/simple frame of model,
i.e., the BSC. More specifically, such information is a theoretical endeavor dedicated to the
basic BSC model, which can be useful in the subsequent aspects.

Upgrade to advanced models: Often, studying an information theoretical problem
begins with considering the most basic and simple abstract model. This allows the theorists
to develop the required analytical tools and techniques in more straightforward manner
and benefit the specific results as guides to the use and analysis of more advanced mod-
els. In other words, general/advanced models can often inherit/benefit analytical tools,
techniques, and comprehensive steps that have been developed for the basic models. For
example, studying the DI problem for a discrete memoryless channel (DMC) [32] was
initiated/sparked by an earlier work in the literature for the BSC [33].

Error correction codes and modulation: The simplicity of such a basic model with
a binary alphabet often is favorable for an explicit code construction problem or for em-
ploying modulation techniques. This advantage facilitates the procedure of cultivating
novel coding methods. For example, the widely used polar transmission codes are adopted
initially for a binary input memoryless channel [31]. Therefore, the simplicity of the BSC
model allows experts to utilize it as a promising candidate for evaluation/analyzing the
performance of future error correction DKI codes.

Information theoretical characteristics: Several advanced channel models for IoT
applications can be simplified/specialized to a BSC. This allows information theorists to
examine basic characteristics of such IoT systems (CRF, error exponent, critical rate, etc.)
and acquire decent analytical insights needed for practical aspects such as modulation/de-
tection design and explicit code construction. Therefore, studying the BSC effectively
yields/suggest solutions for more advanced problems of IoT [37]. In addition, the BSC
model is a useful model for studying network coding, which is an important technique
in order to enhance the performance of a communication network [36]. Concrete modern
scenarios in IoT systems that include the BSC model are telephone links, radio communica-
tion lines [37], implementation of noise aggregation methods for physical layer security [4],
decision fusions for multi-route and multi-hop wireless sensor networks [38], and multi-hop
networks [39].

1.4. Information Theoretical Analysis of BSC-Based IoT Systems

Theoretical advancements of communication channels for IoT systems modeled by
BSC are helpful for characterization of their performance limits, which may be used in
related system designs. For example, evaluation of explicitly constructed codes for such
applications against such performance limit bounds may provide instructive recommen-
dations/interpretations for the sake of efficient encoding/decoding procedures. In this
context, for a given error probability and with no restriction imposed on the codeword
length, the Shannon message transmission (TR) capacity of the BSC is studied in [17].
In [40–43], for a specified codeword length and a fix rate less than the TR capacity, the
error probability for the optimal TR code is investigated. The problem of construction of
optimum or at least good codes for TR problem with a given rate and codeword length is
addressed in [40,44–46]. Furthermore, the TR capacity of the BSC is shown to be attained
by Bernoulli input with 1/2 success probability, i.e., X ∼ Bern(1/2) [35]. In [41], random
linear code for the achievability proof with an exponential decoding search is investigated.

However, in the research that is currently available, the BSC has mostly been studied
for the TR problem. On the other hand, in [33], the DI for the BSC without input constraint
is studied, where the lower bound on the DI capacity is established. In addition, in [32], the
DI for the BSC with input constraint in a generalized context of the channel model, namely,
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DMCs is addressed and an extensive proof, dedicated for the BSC, was not provided.
Based on the author’s information, for the BSC with input constraint, with the exception of
this paper’s conference version [47], the ultimate performance limits for the deterministic
K-identification (DKI) problem have not yet been examined in the literature.

1.5. Applications of the K-Identification Problem for IoT

The use of PSC for MC systems, whose objective is based on recognition of specific
event, is studied in [20,48]. In the vision of IoT, the identities of the things are often required
to be verified for each other. This identification task is needed in order to make sure
that the things can address and reliably communicate with themselves. Consequently, the
identification capacity [49] is the primary relevant quantitative metric in such systems,
and the TR capacity [17] may not be the primary performance measure. In particular, for
event-recognition, alarm-prompt or object-finding problems, where the receiver aims to
recognize the occurrence of a specific event, determine an alarm, or realize the presence of
an object, with respect to a set, in terms of a reliable Yes / No final decision, the so-called
K-identification capacity [26] is the appropriate metric. For the K-identification problems,
the receiver is focused on a subset of size K of the message set, M, which is known as
the goal message set. The recipient chooses a message at random, and confirms if it is
part of the specified goal message set. The error requirements imposed on the associated
K-identification codes guarantee that each inclusion test is reliable for every arbitrary choice
of the goal message set.

In the context of IoT, specific instances of the K-identification problem may be found in
the detection of damaged cells in a memory disk drive, where, e.g., a failure detector wants
to know whether or not the corrupted cell is present in a group of cells; in lottery prize
events, where, e.g., a person aims to determine whether a winner is among their favorite
teams or where people seek to know if a specific lottery number is among their collection
of numbers; in smart traffic management, where, e.g., one may be interested in finding
to which group/set of streets a goal location belongs to. Additionally, K-identification
might be used in health monitoring within the context of smart medical and health-care
systems. For example, in a remote surgery [50], where the inclusion of a particular cancer or
illness inside a goal group of K-cancers/diseases may be the communication goal. Finally,
the K-identification problem may find applications in the generalized identification with
decoding problem [26] in various IoT applications. Such a problem is an extension of the
K-identification, wherein when the receiver identifies that the message belongs to set K,
and it also identifies the message itself.

1.6. Contributions

In this paper, we address identification systems whose encoders are deterministic
and their receiver is required to conduct the K-identification job, i.e., spotting an objec-
t/event/message within a set of goal objects/events/messages with size K = 2nκ for some
κ ∈ [0, 1). We assume that the communication over n channel uses are independent of each
other, and the noise is additive Bernoulli process. We formulate the problem of DKI over the
BSC with and without Hamming weight input constraint. Our primary goal is to study the
BSC’s DKI capacity region. This study specifically contributes the subsequent contributions:

♢ Generalized identification model: We examine the BSC, in which the size of the goal
message set, K, may scale with the codeword length, n. As a consequence, this model
incorporates the DI with K = 1, and DKI with constant K > 1. Therefore, we can
confirm whether asymptotic codeword lengths allow for reliable identification, even
when the goal message set grows in size, using our suggested generalized model. As
far as is known by the authors’ knowledge, no previous research has been conducted
on a generalized DKI model in the literature.

♢ Codebook scale: We prove that, for K-identification over the BSC with determin-
istic encoding, the codebook size grows in n, similarly to that of the DI problem
(K = 20 = 1) [32,33] and the TR problem [17] over the same channel, namely expo-
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nentially in the codeword length n, i.e., ∼2nR, where R is the DKI coding rate, even
when the size of the goal message set grows exponentially in n, i.e., K = 2nκ , where
κ ∈ [0, 1) is the identification goal rate, and certain functions of the channel statis-
tics and input restrictions set upper bounds on it. This result implies that one can
extend the collection of goal messages for identification without compromising the
codebook’s scalability.

♢ Capacity formula: We derive inner and outer bounds on the DKI capacity region
for constant K ≥ 1 and growing K = 2nκ , for the BSC with and without Hamming
weight constraints. Our capacity bounds reflect the impact of the channels statis-
tics, i.e., cross-over probability and the input constraint A in the optimal scale of the
codebook size, i.e., 2nR. In particular, in the coding procedure, we define a param-
eter β ∈ (0, 1), referred to as the distinction property of the codebook which adjust
the Hamming distance property for the constructed codebook. Then, assuming a
given codebook distinction, β, a channel with asymptotic small cross-over probability
(i.e., an almost perfect channel) causes the feasible range for the goal identification
rate κ to shrink; that is, the capability of the BSC for K-identification decreases, which
is unfavorable. On the other hand, when the cross-over probability increases and
converges to its maximum possible values, i.e., ε → 1/2 (almost pure noisy channel),
then the feasible range for κ begins to enlarge favorably. This observation can be inter-
preted as follows: The channel noise can be exploited as an additional inherent source
embedded in the communication setting for performing the K-identification task with
a larger value of K. This observation is in contrast to previous results for DKI over
the slow fading channel [51], or the DI for Gaussian and Poisson channels [32,48,52],
where capacity bounds were shown to be independent of the input constraints or the
channel parameters. We demonstrate that the suggested upper and lower bounds on
attainable rates (R, κ) are independent of K for constant K, whereas they are functions
of the goal identification rate κ for increasing goal message sets.

♢ Technical novelty: To obtain the proposed inner bound on the DKI capacity region,
we address the input set imposed by the input constraints, and exploit it for an ap-
propriate ball covering (overlapping balls with identical radius); namely, we consider
covering of hyper balls inside a Hamming cube, whose Hamming radius grows in
the codeword length n, i.e., ∼nβ, for some β ∈ (0, 1) upper bounded by a function
of the channel statistic. We exploit a greedy construction similar as for the Gilbert
bound method. While the radius of the small balls in the DI problem for the Gaussian
channel with slow and fast fading [32], tends to zero as n → ∞, here, the radius similar
to the DKI problem for the slow fading channel [51] grows in the codeword length
n for asymptotic n. In general, the derivation of lower bound for the BSC is more
complicated compared to that for the Gaussian [32] and Poisson channels with/out
memory [48,52], and entails exploiting of new analysis and inequalities. Here, the
error analysis in the achievability proof requires dealing with several combinatorial
arguments and using of bounds on the tail for the cumulative distribution function
(CDF) of the Binomial distribution. The DKI problem was recently investigated in [52]
for a DTPC with ISI where the size of the ISI taps is assumed to scale as L(n, l) = 2l log n.
In contrast to the findings in [52], where the attainable rate region of triple rates (κ, l, R)
for the Poisson channel with memory was derived, here, we study the DKI problem
for a memoryless BSC, i.e., L = 1, and the attainable rate region of pair rates (κ, R) is
established. Furthermore, while the method in the achievability proof of [52] is based
on sphere packing, which includes an arrangement of non-overlapping spheres in the
feasible input set. Here, we use a rather different approach called sphere/ball covering,
which allows for the spheres/ball to overlap with each other. For the derivation of the
outer bound on the DKI capacity region, it is assumed that a random series of code
with diminishing error probabilities is provided. Then, for such a sequence, we prove
that an one-to-one mapping between the message set and the set of the feasible input
set (induced by the input constraint) can be established. Unlike the previous upper
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bound proof for DI over the DMC [32]; here, the proof for corresponding lemma is
adopted in order to incorporate relevant set of the goal message sets, appropriately.
Moreover, in the converse proof, similarly to [52], the method of proof by contradiction
was utilized; that is, assuming that a certain property regarding the distance or number
of the codewords is negated, we lead to a contradiction related to the sum of the sort I
and sort II error probabilities. However, unlike [52], where a sub-linear function for
the size of the goal message set was considered, i.e., K(n, κ) = 2κ log n = nκ , here, our
converse entails a faster function, namely K(n, κ) = 2κn.

Notations: We use the subsequent notations throughout this paper: We use symbol
≜ for a definition. Alphabet sets are shown by blackboard bold letters K,X,Y,Z . . .. Ran-
dom variables (RVs) are indicated by upper case letters X, Y, Z, . . .. Constants and values
(realization) of RVs are specified by lower case letters x, y, z, . . .. Row vectors of size n,
i.e., x = (x1, . . . , xn) and y = (y1, . . . , yn), are represented by lower case bold symbol x and
y. The distribution of a RV X is specified by a probability mass function (pmf) pX(x) over a
finite set X . The CDF of a Binomial RV is indicated by BX(x) ≜ Pr(X ≤ x). All information
quantities and logarithms are in base 2. Symbol [[M]] represents the set of all consecutive
natural numbers from 1 to M. We indicate the modulo two addition operator by ⊕. The
number of points for which the corresponding symbols for two sequences, x1 and x2, are
different is known as the Hamming metric (distance), i.e., dH(x1, x2) ≜ ∑n

t=1 δ(xi1,t, xi2,t),
where δ(·, ·) is the Kronecker delta, defined as follows:

δ(xi, xj) =

〈
1 xi ̸= xj,

0 xi = xj.
(2)

The Hamming cube is defined as the set of binary sequences with length n, and is
denoted by Hn. The n-dimensional Hamming hyper ball of radius r for integers n, r such
that n ≥ r ≥ 1, in the binary alphabet, centered at x0 = (x0,t)|nt=1, is defined as

Bx0(n, r) = {xn ∈ X n : dH(x, x0) ≤ r}. (3)

Specifically, Bx0(n, r) for alphabet X n = Hn, center 0 ≜ (0, . . . , 0) and radius
r = nA(A ≥ 0) is given by B0(n, nA) = {x ∈ Hn : ∑n

t=1 xt ≤ nA}. The volume of the
Hamming hyper ball Bx0(n, r) in the q-ary alphabet is defined as the number of points that
lie inside the ball, and is denoted by Vol

(
Bx0(n, r)

)
. The set of whole numbers is denoted

by N0 ≜ {0, 1, 2, . . .}. The q-ary entropy function Hq : [0, 1] → R for positive integer q ≥ 2,
is defined as Hq(ε) ≜ x logq(q − 1) − x logq x − (1 − x) logq(1 − x). Hq(·) for q = 2, is

denoted by H(·), and is defined as H(ε) ≜ −ε log(ε)− (1 − ε) log(1 − ε). Throughout the
paper, we denote the BSC with cross-over probability ε ∈ (0, 1/2) by B.

1.7. Organization

This paper is structured as follows. Section 2 provides background information on
the identification and K-identification problems, and reviews previous results on them. In
Section 3, system model and fundamental definitions are established, and the background
knowledge about DKI codes are provided. Section 4 introduces our primary results and
contributions for the DKI capacity of the BSC. In the end, Section 5 include a summary and
possible directions for more research.

2. Background on the Identification Problem

In the subsequent section, we give the background for the current work and establish
the identification problem. Also, we motivate for the deterministic-encoder identification
versus the well-known randomized-encoder identification (RI) scheme. In addition, we
review relevant previous results on the DI, RI, DKI, and randomized K-identification (RKI)
capacities for different channels.
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2.1. Identification Problem

In the Shannon communication problem [17], a sender encodes its message in a manner
that the receiver can perform a reliable reconstruction. That is, the receiver is interested in
knowing which message was sent from the transmitter. In contrast, the coding design for
the identification setting [49] is intended to conduct a different goal, namely to find out if a
desired message was sent by the transmitter or not. Furthermore, we assume that prior to
the communication, the transmitter is not informed of the message that the receiver seeks
to identify.

Randomized identification: The identification problem (which has been studied in
various setting of deterministic or randomized protocols, in the context of communication
complexity; see [53,54]) in communication theory is initiated by Ahlswede and Dueck
in [49], where a randomized encoder is employed to select the codewords. In this problem,
the codewords are chosen based on their corresponding distribution, and the codebook
size grows double-exponentially in the codeword length n, i.e., ∼22nR

[49], where R is the
coding rate. This observation stands different from the TR problem, where the size growth
for the codebook is only exponentially with the codeword length, i.e., ∼2nR. The realization
of explicitly constructed RI codes features high complexity, and is often challenging for the
applications of MC in the context of IoBNT; cf. [48] for further details. However, in [55,56],
explicit construction of RI codes using algebraic codes (Reed-Solomon) has been considered.

Deterministic identification: Although the remarkable properties of RI schemes for
the codebook size may seem appealing for some applications, in several practical settings,
using a huge amount of randomness may not be favorable. Examples include MC, where
implementation in the nano-scaled environment is prohibitive [51], or in a pessimistic
jamming scenario, where it is assumed that the radar jammer has access to the whole
codebook [57]; therefore, using randomness results in extra expenses and does not guaran-
tee a benefit. Additionally, deterministic codes typically offer advantages such as ease of
implementation, simulation experimentation [29,30], and systematic construction [31]. The
motivation of Ahlswede and Dueck to develop the RI problem [49] is probably traced back
to the work of JáJá [33], who considered DI from a communication complexity perspective
(an important observation regarding the behavior of the identification function has been
well studied in communication complexity, where the out-performance of randomized
protocols over the deterministic protocols (exponential gap between the two classes) for
computing such a function is established; for instance, while the error-free deterministic
complexity of the identification function is lower bounded by log m, where m is the length
of message, for the randomized protocol and when ε error is allowed in computation of the
identification function, only O(log log m + 1/ε) bits suffices; see [54,58] for further details);
that is, where the codewords are determined by a deterministic function from the messages.
Moreover, it seems that Ahlswede and Dueck were inspired to show that employing ran-
domness similar to what has been accomplished in the communication complexity field
yields an advantage of exponential gap compared to the DI problem (a detailed comparison
of codebook sizes in DI and RI problem over various channel models can be found in [48])
for the codebook size. In application cases where complexity is restricted, DI could be
preferred over RI. For instance, in MC systems, where the development and deploying of a
huge number of random sources (distributions) may not be clear.

K-identification scenario: In the standard DI or RI problems [32,49], the receiver aims
to identify the occurrence of a single message, that is, the decoder at the receiver selects
an arbitrary message from the message set referred to as the goal message, and then, by
exploiting a decision rule (decoder), determines reliably whether or not this goal message is
identical to the sent message. The identification problem can be extended in the subsequent
sense: The receiver chooses a subset of K messages from the message set, called the goal
message set (denoted by K) and, unlike the standard DI or RI problems, it checks whether
or not the sent message is a member of K. This problem is called K-identification in the
literature [26]. The goal message set selected by the receiver can be any arbitrary subset of
the message set of size K, among the total (M

K ) such subsets.



Future Internet 2024, 16, 78 10 of 45

The K-identification framework can be thought of as a generalization of DI or RI
problems, in which the receiver’s single goal message is replaced with a collection of K goal
messages, where K ≥ 1. Therefore, the DKI for the special case where K = 1 corresponds
to the DI problem studied in [48,59]. Moreover, the K-identification problem is extended
in [26] to generalized identification with decoding, where when the receiver identifies that
the message belongs to set K, it also identifies the message itself. The K-identification
problem, as considered in this paper, is different from a similar scheme called multiple object
identification [60], where the sender’s data contains the information of K messages and the
receiver’s objective is to identify whether or not a specific message belongs to set K. Here,
it is assumed that the receiver does not know the set of objects selected by the sender.

2.2. Previous Results on DI Capacity

The DI problem for DMCs subject to an average constraint, is studied in [32] and a
full characterization of capacity is established. Therein, the codebook size similar to that of
the TR problem [17], is shown to grow exponentially in the codeword length, i.e., ∼2nR [32].
Ahlswede and Cai studied the DI problem for the compound channels in [57]. Furthermore,
recent observation for DI over continuous input alphabet channels including Gaussian chan-
nels with fast and slow fading [32], memoryless discrete-time Poisson channel (DTPC) [48],
DTPC with inter-symbol interference (ISI) [52], and Binomial channel [59], revealed a
new observation regarding the codebook size, namely, it scales super-exponentially in the
codeword length, i.e., ∼2(n log n)R, which is different than the standard exponential [32] and
double exponential [49] behavior for DI and RI problems, respectively.

2.3. Previous Results on DKI Capacity

Ahlswede studied RKI for DMC in ([26] Th. 1), and showed that assuming K = 2nκ ,
the set of all attainable pairs (R, κ), where R is the RKI coding rate and κ is the goal
identification rate, contains{

(R, κ) : 0 ≤ R, κ ; R + 2κ ≤ CTR
}

, (4)

where CTR is the TR capacity of the DMC. The DKI problem for the slow fading channels,
denoted by Gslow, in the presence of an average power constraint and assuming a codebook
size of super-exponential scale, i.e., K(n, κ) = 2κ log n, is studied in [51], and the subsequent
bounds on the DKI capacity are established:

1 − κ

4
≤ CDKI(Gslow, M, K) ≤ 1 + κ, (5)

for 0 ≤ κ < 1. As far as we know, there has not yet been any research performed in the
literature on the DKI capacity of the BSC with input constraint, which is pertinent to IoT
systems; hence, it is the primary emphasis of this study.

3. System Model and Preliminaries

This section presents the selected system model, and some preliminaries regarding
DKI coding are established.

3.1. System Model

We target a communication setting, which is focused on the identification goal; that is,
the objective of the decoder is defined as follows: Determine if the sent message belongs to
a goal group of messages of size K. In order to do this, the transmitter and the receiver build
(the suggested inner and outer bounds on the DKI capacity region functions, whether or
not a particular code is utilized for the communication; however, in order to approach the
capacity limits, appropriate, explicitly built codes could be needed), a coded communication
channel over n, uses of the binary symmetric channel. We assume that the random variables
(RVs) X ∈ {0, 1} and Y ∈ {0, 1} indicate model the input and output of the channel. Each
binary input symbol is flipped with probability 0 < ε < 1/2; see Figure 1. The stochastic
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flipping (the extreme cases of ε = 0 or ε = 1/2 result in CTR = 1 and CTR = 0, respectively;
hence, these cases are commonly excluded from the analysis) of the input symbol is modeled
via an additive binary Bernoulli noise, i.e., Z ∈ {0, 1}. Therefore, the input–output relation
of channel reads: Y = X ⊕ Z, where ⊕ indicate the modulo two addition. That is, the
channel input/output X/Y are related as follows:

W(Y|X) =

〈
1 − ε Y = X,

ε Y ̸= X,
(6)

for all X, Y ∈ {0, 1} and 0 < ε < 1/2.

0 0

1 1

1 − ε

1 − ε

ε

ε

Figure 1. Bit transition graph over a BSC. Each bit is flipped independently of other bits, with a
cross-over probability of ε ∈ (0, 1/2).

Furthermore, it is assumed that the various channel uses are independent of one
another and that the communication channel is memoryless. Therefore, the transition
probability distribution for n channel uses is given by

Wn(y|x) =
n

∏
t=1

W(yt|xt) = εdH(x,y)(1 − ε)n−dH(x,y), (7)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) stand for the sent codeword and received
signal, respectively, and dH(·) denotes the Hamming distance. Observe that dH(x, y) is a
RV, and follows a Binomial distribution; see Remark 1. We assume that the codewords
are restricted by an input constraint of the form 1

n ∑n
t=1 xt ≤ A, where A > 0 constrain

the Hamming weight over the entire n channel uses in each codeword normalized by the
codeword length.

Memoryless property: In the standard modeling of the BSC, we assume that the
channel is exploited at different time instances in an independent manner; that is, the
communications of symbols at distinct time instances are statistically independent of each
other. However, in the physical channels, such as telephone lines with impulse noise
or slowly fading radio communications with binary alphabet, communication is usually
dispersive and the channel exhibit memory [35,61]. Therefore, appropriate steps need to be
take in order to ensure the orthogonality of the different channel uses. Some immediate
approaches include applying interlacing or scrambling the symbols of a codeword; cf. [61]
for further details. Therefore, in the analysis, we can assume that such methods can be
applied to circumvent the effect of channel memory and assert statistical independence
between different channel noise samples to ensure the memoryless property.

3.2. DKI Coding for the BSC

The definition of a DKI code for the BSC, B, is given below.

Definition 1 ( BSC DKI Code ). An (n, M(n, R), K(n, κ), e1, e2)-BSC-DKI code for a BSC B for
integers M(n, R) and K(n, κ), where n and R are the codeword length and coding rate, respectively,
is defined as a system (C, TK), which consists of a codebook C = {ci}i∈[[M]] ⊆ Hn, with ci =

(ci,t)|nt=1 ⊆ Hn, such that n−1 ∑n
t=1 ci,t ≤ A, ∀i ∈ [[M]] and a decoder (We recall that the decoding
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sets for the DKI problem, similarly to that for the RI problem, may have in general intersection;
however, to guarantee a vanishing sort II error probability for the asymptotic codeword lengths n,
an optimal decoder may be defined in a way such that the size of such intersection regions becomes
negligible) TK ⊆ Hn, where K is an arbitrary subset (recall that the system (family) of all subsets
of the set [[M]], of size K, is

{
K ⊆ [[M]] ; |K| = K

}
; note that |{K ⊆ [[M]] ; |K| = K}| = (M

K ),
and the error requirements, required by the DKI code definition, apply to every possible choice of the
set K with K arbitrary messages among all (M

K ) cases) of [[M]] with size K, see Figures 2 and 3.

i Enc +

mod 2

Dec Yes / No

Z ∼ Bern(ε) K={j1, . . . , jK}

ci Y

Figure 2. System model for DKI communication setting over a BSC. Employing a deterministic en-
coder at the transmitter, the message i is mapped to the codeword ci = (ci,t)|nt=1 using a deterministic
function. The decoder at the receiver is provided with an arbitrary goal message set K, and given the
channel output Y = (Yt)|nt=1, it asks whether or not i belongs to K.

c2

c3

c4

c1

c5

c6

c7

Input Space Output Space

T1

T6

T7

T3

T2

T4

T5

Correct Identification

Type I Error

Type II Error

Figure 3. A DKI configuration with K = 4 and a goal message set K = {2, 4, 5, 7} is displayed. The
channel’s output is located in the union of each individual decoder Tj (marked in blue) in the correct
identification event, where j is a member of the goal message set. If the channel output is seen in
the complement of the union of distinct decoders that the codeword’s index belongs to, a sort I error
event takes place. When the transmitted codeword’s index does not not belong to K, and the channel
output is recognized in the union of the individual decoders Tj, with j ∈ K, an error event of sort
II occurs.

The encoder sends codeword ci, given a message i ∈ [[M]], and the decoder’s job is to solve a
binary hypothesis: was j ∈ K a goal message that was sent or not? See Figure 3. There exist two
sorts of errors that may happen:

♢ Sort I Error Event: Rejection of the actual message; i ∈ K.
♢ Sort II Error Event: Acceptance of a wrong message; i /∈ K.

The associated error probabilities of the DKI code (C, T ) read

Pe,1(i,K) = Pr(Y ∈ T c
K
| x = ci)= 1 − ∑

y∈TK

Wn(y | ci), ∀i ∈ K miss-identification, (8)

Pe,2(i,K) = Pr(Y ∈ TK | x = ci) = ∑
y∈TK

Wn(y | ci), ∀i /∈ K false identification, (9)
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where, for every e1, e2 > 0, fulfill the bounds Pe,1(i,K) ≤ e1, ∀i ∈ K and Pe,2(i,K) ≤ e2, ∀i /∈ K,
where K ∈ {K ⊆ [[M]] ; |K| = K} is an arbitrary subset of [[M]] with size K.

Definition 2 ( DKI Coding / Goal Identification Rates ). The codebook size M(n, R) and the

goal message set size K(n, κ) are sequences of non-decreasing monotonically functions in the
codeword length n, with R, κ, and l indicating the DKI coding rate and the goal identification rate,
respectively. In this work, we consider the subsequent functions:

M(n, R) = 2nR and K(n, κ) = 2nκ . (10)

Thereby, the DKI coding rate, R, and the goal identification rate, κ, are defined as follows
(additionally, in the literature, other rate definitions for different communication settings are adopted;
for example, in the RI [49] problem, the RI coding rate is defined as (log log M)/n, while in the
TR [17] or DI [32] problems for a DMC, the TR and DI coding rates are given by R = (log M)/n.):

R =
log M

n
, κ =

log K
n

. (11)

Definition 3 ( Attainable Rate Region ). The pair of rates (R, κ) is called attainable if, for every

e1, e2 > 0 and sufficiently large n, there exists an (n, M(n, R), K(n, κ), e1, e2)-BSC-DKI code.
Then, the set of all attainable rate pairs (R, κ) is referred to as the attainable rate region for the BSC,
B, and is denoted by RDKI(B, M, K).

Definition 4 ( Capacity Region / Capacity ). The operational DKI capacity region of the BSC,

B, is defined as the closure of all attainable rate triples (R, κ) (the closure of a set A consists of all
points in A together with all limit points of A, where the limit point of A is a point x that can be
approximated by the points of A; see [62] for further details), and is denoted by CDKI(B, M, K).
For the standard identification (K = 1), the capacity region is specialized to a single point, also
called the DI capacity which is the supremum of all attainable DI coding rates, R. The DI capacity
is denoted by CDI(B, M).

Remark 1 ( Distribution of Output Statistics ). Assuming that the codeword ci is sent and the
channel output y is observed at the receiver, the number of cross-overs (flips) that occurs in the
channel is given by dH(y, ci). Therefore, the probability that k cross-overs among the n channel
uses occurs, follows a Binomial distribution with parameters n and ε as follows:

Pr
(
dH(Y, ci) = k

)
=

(
n
k

)
εk(1 − ε)n−k. (12)

4. DKI Capacity Region of the BSC

In this section, we first present our main results, i.e., the inner and outer bounds on
the attainable rates region for B. Subsequently, we provide the detailed proofs.

4.1. Main Results

Our DKI capacity region theorem for the BSC, B, is stated below.

Theorem 1. Let B indicate a BSC with cross-over probability 0 < ε < 1/2, and let β ∈ (0, βmax)
be an arbitrary constant, where βmax ≜ (4ε)/(2ε + 1). Further, let H(p) indicate the binary
entropy function and the tangent line of H(p) in point ε be specified as follows:

Tε(p) = H(ε) + (p − ε)
dH(p)

dp

∣∣∣
p=ε

.



Future Internet 2024, 16, 78 14 of 45

Next, assume that B endows an exponential size for the codebook and the goal message
set, i.e., M(n, R) = 2nR and K(n, κ) = 2nκ , respectively, where the codewords are subject to the
Hamming weight constraint of the form n−1 ∑n

t=1 ci,t ≤ A, ∀i ∈ [[M]]. Now, let us define the
subsequent functions:

f1(ε, β) ≜

(
1 − β/2

)
ε − β/4

1 − β
, (13)

f2(ε, β) ≜(1 − β/2)ε + β/4. (14)

Next, let us define the inner and outer rate regions, i.e., Rinn(B) and Rout(B), respectively,
as follows:

R
inn(B) ≜

⋃
β∈(0,βmax)

R
inn
β (B), (15)

where

R
inn
β (B) ≜

〈 {(R, κ); 0 ≤ R ≤ H(A)− H(β), 0 ≤ κ < min(κ1
UB, κ2

UB)} A < 1/2,

{(R, κ); 0 ≤ R ≤ 1 − H(β), 0 ≤ κ < min(κ1
UB, κ2

UB)} A ≥ 1/2,
(16)

with

κ1
UB ≜ Tε( f1(ε, β))− H( f1(ε, β)), (17)

κ2
UB ≜ Tε( f2(ε, β))− H( f2(ε, β)), (18)

and

R
out(B) ≜

〈 {(R, κ); 0 ≤ R ≤ H(A), 0 ≤ κ ≤ H(A)} A < 1/2,

{(R, κ); 0 ≤ R ≤ 1, 0 ≤ κ ≤ 1} A ≥ 1/2.
(19)

Then, the DKI capacity region CDKI(B, M, K) is bounded by

R
in(B) ⊆ CDKI(B, M, K) ⊆ R

out(B). (20)

Proof of Theorem 1. The proof of Theorem 1 comprises two components, presented in
Sections 4.2 and 4.3, respectively, which are the inner and the outer bound proofs.

Corollary 1 ( DI Capacity of The BSC ). The inner and outer bounds for the DKI capacity region
of the BSC, B, for an extreme case (standard identification) where the goal message set consists of
only one message, i.e., K = 1, recover the previous results for the BSC with Hamming constraint
([32] Ex. 1):

CDI(B, M) =


H(A) if A < 1/2,

1 if A ≥ 1/2,
(21)

and the BSC without Hamming constraint ([33] Th. 3.1):

CDI(B, M) = 1. (22)

Proof. The proof is obtained directly by placing K = 1 into the upper bounds given in
(17) and (18) in Theorem 1, and making further mathematical simplifications. In particular,
we show that closure of the inner bound for K = 1 coincides the outer bound. Therefore,
a full characterization of the capacity region is yielded. We begin with the subsequent
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observation: The upper bounds provided in (17) and (18) for K = 2nκ = 1 (κ = 0) tend to
zero. That is,

R
inn(B)

∣∣∣∣
κ=0

=
⋃

β∈(0,βmax)

R
inn
β (B)

∣∣∣∣
κ=0

(23)

where

R
inn
β (B)

∣∣∣∣
κ=0

=

〈 {(R, κ); 0 ≤ R ≤ H(A)− H(β), κ = 0} if A < 1/2,

{(R, κ); 0 ≤ R ≤ 1 − H(β), κ = 0} if A ≥ 1/2.
(24)

Next, observe that the outer bound provided in (19) for K = 2nκ = 1 (κ = 0) is
given by

R
out(B)

∣∣∣∣
κ=0

≜

〈 {(R, κ); 0 ≤ R ≤ H(A), κ = 0} if A < 1/2,

{(R, κ); 0 ≤ R ≤ 1, κ = 0} if A ≥ 1/2,
(25)

which is the closure of the inner bound. Therefore, since the closure of the inner bound
region calculated in (24) coincides with the outer bound region given in (25), we obtain a
closed form formula for the DI capacity of the BSC as follows:

CDI(B, M) = CDKI(B, M, K = 1) =


H(A) if A < 1/2,

1 if A ≥ 1/2,
(26)

where there is a Hamming constraint, and

CDI(B, M) = 1, (27)

where there is no Hamming constraint. This concludes the proof of Corollary 1.

Proof. The proof of Theorem 1 comprises two components, presented in Sections 4.2 and 4.3,
respectively, which are the achievability and converse proofs.

Here, we summarize some key findings from the proof of Theorem 1.
♢ Input constraint: Theorem 1 reveals an important observation regarding the im-

pact of the input constraint (when it is effective, i.e., 0 < A < 1/2) on the inner and outer
regions formulas for the DKI capacity. In contrast to previous results for DI over Gaussian
channel [32] or DKI over slow fading channel [51], where the capacity bounds does not
reflect the impact of the input constraint, our results for DKI over the BSC in this paper
reflect the impact of the Hamming weight constraint on the inner and outer regions.

♢ Scale of codebook: The inner and outer bounds on the DKI capacity region given
in Theorem 1 are valid in the standard scale for the codebook size, i.e., M = 2nR, where R
is the coding rate. This result coincides the conventional behavior of the codebook size for
TR [17] and DI [32] problems over the BSC. Other scales higher than the exponential for the
codebook size of K-identification problem are reported in the literature; see Figure 4.

♢ Scale of goal message set: Theorem 1 unveils that the size of the set of the goal
messages scales exponentially in the codeword length, i.e., ∼2nκ . In particular, the result in
Theorem 1 about size of the goal message set constitutes of the subsequent three cases in
terms of K:

DI, K = 1: In this scenario, the goal message set is a degenerate case; that is, K = {i},
with i ∈ [[M]], and is equivalent to the standard identification setup (κ = 0), where
|K| = K = 1. As a result, the identification setup in randomized regimes [49] and deter-
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ministic regimes [32] can be thought of as a particular instance of the K-identification
that is examined in this work. See Corollary 1 for further details.
Constant K > 1: The scenario where κ → 0 as n → ∞ is implied by a constant K > 1.

Our capacity bounds in Theorem 1 on the attainable rate pairs (R, κ) are the same as
those for K = 1. That is, the result in this cases converge to those for K = 1 given in
Corollary 1, for the asymptotic n → ∞.
Growing K: The fact that a trustworthy K-identification is still attainable, even in

cases where K scales with the codeword length as ∼2nκ for some κ ∈ [0, 1), is another
significant finding of Theorem 1 ; see Figure 5.

M(n, R)
2nR

DKI (BSC)

2(n log n)R

DKI (GSF)

22nR

RKI (DMC)

Figure 4. Range of codebook sizes for various K-identification configurations. The codebook scale
for DKI problem over the BSC coincide the conventional exponential behavior. But, aside from
the standard exponential and double exponential code sizes [26] (RKI over DMC), a different non-
standard codebook size is also observed for Gaussian channel with slow fading (GSF); namely, it
grows super-exponentially in the codeword length n, i.e., 2(n log n)R.

K(n, κ)
2κ log n

DKI (GSF)

2κn

DKI (BSC)

Figure 5. Spectrum of goal message set sizes for different K-identification setups. The goal message
set scale for DKI problem over the BSC grows exponentially in the codeword length. Additionally, the
GSF channel represent a sub-linear scale, which is lower than the conventional exponential behavior.
The scale of goal message set for the BSC is identical to its codebook scale, i.e., exponentially in the
codeword length.

We provide the inner bound proof in Section 4.2 and the outer bound proof in
Section 4.3 as the proof of Theorem 1.

4.2. Inner Bound (Achievability Proof)

Before we provide the inner bound proof, we explain on our methodological ap-
proaches that are used here and expand on them. In particular, similar to other information
theoretical problems, the derivation of the inner bound on the DKI capacity region, consists
of the subsequent two main steps:

♢ Step 1 (rate analysis): First, we propose a greedy-wise method for codebook con-
struction, which has a flavor similar to that observed in the classical approach of the
Gilbert–Varshamov (GV) bound (the early introduction of such a bound in the litera-
ture is accomplished by Gilbert in [63]) for covering of overlapping balls embedded in
the input set. More specifically, we introduce a codebook of exponential size in the
codeword length n, which fulfills the input constraint and enjoys a Hamming distance
property; namely, every pair of distinct codewords are separated by a certain distance.
Moreover, we introduced a parameter β in order to account/adjust such a distance.
This step is particularly relevant in the sort II error analysis, as well as the derivation
for the final lower bound on the identification coding rate. Additionally, we identify
the whole range across which the parameter β can change, which is needed to derive
an analytical lower bound on the corresponding codebook size.

♢ Step 2 (error analysis): In the second part (error analysis), we show that the sug-
gested codebook in the previous part is optimal, i.e., leads to an attainable rate pairs
(R, κ). To this end, we begin with introducing a decision rule which is a distance
decoder based on the Hamming metric, and would show that the associated errors of
the sort I and the II probabilities vanish in the asymptotic codeword length, i.e., when
n → ∞. Moreover, the error analysis for the sort II error probability determines the
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associated error exponent. As a result, the feasible region for the goal identification
rate is obtained.

◀Codebook Construction▶

In the following, we confine ourselves to codewords that meet the subsequent condi-
tion: n−1 ∑n

t=1 ci,t ≤ A, ∀ i ∈ [[M]]. Furthermore, we divide them into two cases:

♢ Case 1—with Hamming weight constraint: A ≤ 1, then the condition n−1 ∑n
t=1 ci,t

≤ 1, i ∈ [[M]] is non-trivial in the sense that it induces a strict subset of the entire input
set Hn. We denote such subset by B0(n, nA) and is equivalent to∥ci∥1 ≤ A.

♢ Case 2—without Hamming weight constraint: A ≥ 1, then each codeword belong-
ing to the n-dimensional Hamming cube Hn fulfilled the Hamming weight constraint,
since 1

n ∑n
t=1 ci,t ≤ 1 ≤ A, i ∈ [[M]]. Therefore, we address the entire input set

Hn = {0, 1}n as the possible set of codewords and attempt to exhaust it in a brute-
force manner in the asymptotic, i.e., as n → ∞.

◀Analysis For Case 1▶

Observe that, within this case, we again divide into two cases:

• 0 < A < 1/2.
• A ≥ 1/2.

The argument for the need of such division is that the binary entropy function H(·)
is monotonic increasing in domain 0 < A < 1/2 and decreasing in domain A ≥ 1/2. In
the latter case, we can introduce an alternative Bernoulli process, which results in a larger
volume space, and at the same time, it guarantees the Hamming weight constraint.

For the sub-case 1, i.e., where 0 < A < 1/2, we restrict our considerations to an
n-dimensional Hamming hyper ball with edge length A. We use a packing arrangement
of overlapping hyper balls of radius r0 =

⌊
nβ
⌋

in an n-dimensional Hamming hyper ball
B0(n, nA).

Lemma 1 ( Space exhaustion ). Let R < H(A) and let β ∈ (0, βmax) be an arbitrary positive
constant referred to as the distinction property of the casebook.

Then, for sufficiently large codeword length n, there exists a codebook C = {ci}i∈[[M]] ⊆ Hn,
with ci = (ci,t)|nt=1 ⊆ Hn, which consists of M sequences in the n-dimensional Hamming hyper
ball B0(n, nA), such that the subsequent holds:

♢ Hamming distance property: dH(ci, cj) ≥
⌊
nβ
⌋
+ 1 ∀i, j ∈ [[M]], where i ̸= j.

♢ Codebook size: the codebook size is at least M ≥ 2n(R−H(β)).

Proof. Recall that the minimum Hamming distance of a code C is given by

d min ≜ min
(i,j)∈[[M]]×[[M]]

dH(ci, cj). (28)

We begin to obtain some codewords that fulfill the Hamming weight constraint,
namely,

1
n

n

∑
t=1

ct ≤ A. (29)

First, we generate a codeword C i.i.d∼ Bern(A) (such a random generation should not
be confused with a similar procedure as is accomplished in the encoding stage of the
RI problem. While therein, each message is mapped to a codeword through a random
distribution, here for the DI problem, we first solely restrict ourselves to generation of
codewords through the Bernoulli distribution to guarantee the Hamming weight constraint,
and employ them in the next procedure called the greedy construction up to an exhaustion.
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Then, after the exhaustion, we establish a deterministic mapping between the message
set and the codebook; that is, each message is associated with a codeword. Further, in
the RI problem, it is in general possible that two different messages are mapped to a
common codeword; however, considering the DKI problem in here, there exists a one-to-
one mapping between the set of messages and the set of codewords). Since E[Ct] = A, by
the weak law of large numbers, we obtain

lim
n→∞

Pr
(∣∣∣∣ 1n n

∑
t=1

Ct − A
∣∣∣∣ ≤ τ

)
= 1, (30)

where τ > 0 is an arbitrary small positive. Therefore, for sufficiently large codeword
length n, the event

∣∣∣n−1 ∑n
t=1 Ct − A

∣∣∣ ≤ τ occurs with probability 1, which implies that, for
sufficiently large n, the subsequent event happens with probability one:

1
n

n

∑
t=1

Ct ≤ A + τ. (31)

Now, observe that since (31) holds for arbitrary values of τ, it implies that the subse-
quent condition for sufficiently large n, is fulfilled

1
n

n

∑
t=1

Ct ≤ A, (32)

which is the Hamming weight constraint, as required.
Next, we begin with the greedy procedure as follows: Let us denote the first codeword

determined by the Bernoulli distribution by c1, and assign it to message with index 1. Then,
we remove all the sequences that have a Hamming distance of less or equal than

⌊
nβ
⌋

from c1. That is, we delete all the codewords that lie inside the Hamming ball with center c1
and radius r =

⌊
nβ
⌋
. Then, we generate a second codeword by the Bernoulli distribution,

and repeat this procedure until all the sequences belonging to the feasible subspace, i.e., the
Hamming hyper ball, B0(n, nA), are exhausted. Therefore, such a construction fulfills the
property provided in Lemma 1 regarding the minimum Hamming distance of the code, i.e.,

dH(ci, cj) ≥
⌊
nβ
⌋
+ 1. (33)

In general, the volume of a Hamming ball of radius r, assuming that the alphabet size
is q, is the number of codewords that it encompasses, and is given by ([64] see Ch. 1)

Vol
(
Bx(n, r)

)
=

r

∑
i=0

(
n
i

)
(q − 1)i. (34)

Let B denote the obtained ball covering after the exhaustion of the entire Hamming
hyper ball B0, i.e., an arrangement of M overlapping small hyper balls Bci (n, r0), with
radius r0 =

⌊
nβ
⌋

where i ∈ [[M]], that cover the entire Hamming hyper ball, B0(n, nA),
where their centers are coordinated inside the B0(n, nA), and the distance between the
closest centers is

⌊
nβ
⌋
+ 1; see Figure 6. As opposed to the standard ball packing observed

in coding techniques [65], the balls here are neither necessarily entirely contained within
the Hamming hyper ball, nor disjoint. That is, we only require that the centers of the balls
are inside B0(n, nA) and have a non-empty intersection with B0(n, nA), which is rather a
ball covering problem.
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⌊
nβ
⌋
+ 1

nA

⌊
nβ
⌋

Figure 6. Illustration of an exhausted greedy-wise ball covering of an n-dimensional Hamming hyper
ball B0(n, nA), where the union of the small balls of radius r0 =

⌊
nβ
⌋

cover a larger Hamming hyper
ball. As the codewords are assigned to the center of each ball lying inside the an n-dimensional
Hamming hyper ball B0(n, nA) according to the greedy construction, the Hamming weight of a
codeword is bounded by nA, as required.

Th ball covering B is called exhausted if no point within the input set, B0(n, nA),
remains as an isolated point; that is, with the property that it does not belong to at least one
of the small Hamming hyper balls. In particular, we use a covering argument that has a
similar flavor as that observed in the GV bound ([66] Th. 5.1.7). Specifically, consider an
exhausted packing arrangement of

M(n,R)⋃
i=1

Bci (n,
⌊
nβ
⌋
), (35)

balls with radius r0 =
⌊
nβ
⌋

embedded within the space B0(n, nA). According to the greedy
construction, the center ci of each small Hamming hyper ball, corresponds to a codeword.
Since the volume of each hyper ball is equal to Vol(Bc1(n, r0)), the centers of all balls lie
inside the space B0(n, nA), and the Hamming hyper balls overlap with each other, the total
number of balls is bounded from below by

M ≥
Vol
(⋃M

i=1 Bci (n, r0)
)

Vol(Bc1(n, r0))

(a)
≥

Vol
(
B0(n, nA)

)
Vol(Bc1(n, r0))

(b)
≥

∑
⌊nA⌋
j=0 (n

j)

Vol(Bc1(n, r0))
, (36)

where (a) holds since the Hamming hyper balls may have in general intersection, and (b)
follows by (34) with setting q = 2, since ⌊nA⌋ ≤ nA. Now, the bound in (36) can be further
simplified as follows:

log M ≥ log
( ⌊nA⌋

∑
j=0

(
n
j

)/
Vol(Bc1(n, r0))

)
(a)
≥ nH(A) + o

(
log n

)
− nH(β), (37)

where (a) exploits Lemma (A66) for setting radius r = ⌊nε⌋ = ⌊nA⌋ and q = 2, and (A76)
with r0 = ⌊nε⌋ =

⌊
nβ
⌋
. Now, we obtain

log M ≥ nH(A) + o
(
log n

)
− nH

(
β
)
, (38)
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where the dominant term has an order of n. Therefore, in order to obtain finite value for
the lower bound on the DKI coding rate, R, (38) induces the scaling law of codebook size,
M, to be 2nR. Hence, we obtain

R ≥ 1
n

[
nH(A) + o

(
log n

)
− nH

(
β
)]

= H(A) +
o
(
log n

)
n

− H
(

β
)
, (39)

which tends to H(A)− H(β) as n → ∞.
Now, we proceed to the sub-case 2, i.e., where A ≥ 1/2. In this case, instead of sticking

to generation of codewords ∼ Bern(A), we generate the codewords according to Bernoulli

process with success probability of 1/2; that is, C i.i.d∼ Bern(1/2). Observe that the required
Hamming weight constraint given in (29) is now met, since for E[Ct] = 1/2, we have

1
n

n

∑
t=1

ct ≤ 1/2 ≤ A. (40)

Therefore, subsequent similar line of arguments as provided for the sub-case 1, we
obtain the subsequent lower bound on the DKI coding rate, R,

R ≥ 1
n

[
nH(1/2) + o

(
log n

)
− nH

(
β
)]

= H(1/2) +
o
(
log n

)
n

− H
(

β
)
, (41)

which tends to H(1/2) = 1 as n → ∞.

◀Analysis for Case 2▶

Lemma 2 (see [33, Claim 1]). Let R < 1, and let β ∈ (0, βmax) be an arbitrary positive constant
referred to as the distinction property of the casebook. Then, the entire Hamming cube Hn can be
exhausted for the codebook in the asymptotic codeword length n, i.e., where n → ∞. That is, for a
sufficiently large n, we obtain C = {ci}i∈[[M]] = Hn, with ci = (ci,t)|nt=1 ⊆ Hn, which consists of
M sequences in the n-dimensional Hamming hyper ball B0(n, nA), such that the subsequent holds:

♢ Hamming distance property: For every i, j ∈ [[M]], where i ̸= j, we have

dH(ci, cj) ≥
⌊
nβ
⌋
+ 1. (42)

♢ Codebook size: The codebook size is at least M ≥ 2n(R−H(β)).

Proof. Recall that the minimum Hamming distance of a code C is given by

d min ≜ min
(i,j)∈[[M]]×[[M]]

dH(ci, cj). (43)

Next, we begin with the greedy procedure as follows: Let us denote the first codeword
determined by the Bernoulli distribution by c1, and assign it to message with index 1. Then,
we remove all the sequences that have a Hamming distance of less or equal than

⌊
nβ
⌋

from
c1. That is, we delete all the codewords that lie inside the Hamming ball with center c1 and
radius r =

⌊
nβ
⌋
. Then, we generate a second codeword by the Bernoulli distribution and

repeat this procedure until all the sequences are exhausted.
Let B denotes the obtained ball covering after the exhaustion of the entire input

set Hn, i.e., an arrangement of M overlapping small hyper balls Bci (n, r0), with radius
r0 =

⌊
nβ
⌋
, where i ∈ [[M]], which covers n-dimensional Hamming cube Hn, where their

centers are coordinated inside Hn, and the distance between the closest centers is
⌊
nβ
⌋
+ 1.

As opposed to the standard ball packing observed in coding techniques [65], the balls here
are neither necessarily entirely contained within the Hamming hyper ball, nor disjointed.
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That is, we only require that the centers of the balls are inside Hn, and have a non-empty
intersection with Hn, which is rather a ball covering problem.

The ball covering B is called exhausted if no point within the input set; Hn, remains
as an isolated point; that is, with the property that it does not belong to at least one of the
small Hamming hyper balls. In particular, we use a covering argument that has a similar
flavor as that observed in the GV bound ([66] Th. 5.1.7). Specifically, consider an exhausted
packing arrangement of

M(n,R)⋃
i=1

Bci (n,
⌊
nβ
⌋
), (44)

balls with radius r0 =
⌊
nβ
⌋

embedded within the space Hn. According to the greedy
construction, the center ci of each small Hamming hyper ball corresponds to a codeword.
Since the volume of each hyper ball is equal to Vol(Bc1(n, r0)), the centers of all balls lie
inside the space Hn, and the Hamming hyper balls overlap with each other, the total number
of balls is bounded from below by

M ≥
Vol
(⋃M

i=1 Bci (n, r0)
)

Vol(Bc1(n, r0))

(a)
≥ Vol(Hn)

Vol(Bc1(n, r0))

(b)
≥ |X |n

Vol(Bc1(n, r0))
, (45)

where (a) holds since the Hamming hyper balls may have, in general, an intersection, and
(b) follows, since Vol(Hn) = |X n| = |X |n. Now, the bound in (45) can be further simplified
as follows

log M ≥ log

(
|X |n

Vol(Bc1(n, r0))

)
(a)
≥ n log |X |+ o

(
log n

)
− nH(β)

(b)
≥ n + o

(
log n

)
− nH(β), (46)

where (a) exploits Lemma (A76) with ε = β. Now, for β ∈ (0, βmax) being an arbitrary
small positive constant, we obtain

log M ≥ n + o
(
log n

)
− nH

(
β
)
= n(1 − H

(
β
)
) + o

(
log n

)
, (47)

where the dominant term has an order of n. Therefore, in order to obtain finite value for
the lower bound on the DKI coding rate, R, (38) induces the scaling law of codebook size,
M, to be 2nR. Hence, we obtain

R ≥ 1
n

[
n(1 − H

(
β)
)
+ o
(
log n

)]
= 1 − H

(
β
)
+

o
(
log n

)
n

, (48)

which tends to 1 − H(β) as n → ∞.

◀Encoding▶

Given a message i ∈ [[M]], transmit x = ci.
◀Decoding▶

Let us define δβ ̸= 1/2 as follows:

δβ =
(
1 − β/2

)
ε + β/4, (49)

which is referred to as the decoding threshold where β ∈ (0, βmax) is an arbitrary constant.
Observe that given 0 < ε < 1/2 and (49), we obtain the subsequent bounds on the δβ :

ε < δβ < (1 − β) ε + β/2. (50)
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In order to recognize/identify whether message j ∈ [[M]] has been sent, the decoder at
the receiver verifies whether or not the output of the channel y is included in the decoding
set TK =

⋃
j∈KTj, with

Tj =
{

y ∈ Hn ; T(y, cj) ≤
⌊

nδβ

⌋}
, (51)

where

T(y, cj) = dH(y, cj) ≜
n

∑
t=1

δβ(yt, cj,t), (52)

is known as the decoding metric assessed for the individual codeword cj and the observation
vector y, with the Kronecker delta being δβ(·, ·). In other words, given the channel output
vector y ∈ Hn, the decoder indicates that the message j was sent if there is at least one
j ∈ K, such that dH(y, cj) ≤

⌊
nδβ

⌋
. In the alternative scenario, wherein the inequality

dH(y, cj) >
⌊

nδβ

⌋
applies for every index j ∈ K, the decoder determines that j was not sent.

Remark 2. Adopted decoder For the achievability proof, we use a decoder that, given an output
sequence y, states that if the output vector y is in the subsequent set, then the message j ∈ K

was sent ⋃
j∈K

{
y ∈ Hn ; dH(y, cj) ≤

⌊
nδβ

⌋}
, (53)

where δβ is a decoding threshold and cj = [cj,1, . . . , cj,n] is the codeword linked to message j. We
notice that the decoder in (53) combines the elements of set K through a fundamental union operator.
Such a simple operator may feature a penalty with respect to the error exponents for the sort I/II error
probabilities or the obtained attainable rates. Therefore, we recall that in principle a more optimum
decoder for the K-Identification scheme, which guarantees vanishing sort I/II error probabilities,
might demand a more complicated algebraic operators between the realization of members for each
specific set K, and entails advanced dependencies on the elements of set K.

◀Error analysis▶

In the subsequent, we examine the error probabilities of sort I and sort II. In particular,
the sort I error analysis is less involved and exploiting known bounds related to the upper
tail of the Binomial CDF we guarantee its vanishing. The sort II error analysis is more
complicated, where we combines techniques from JáJá [33] and certain Hamming distance
property for the binary alphabet. In addition, we exploit some bound on the Binomial
CDF. Moreover, the error exponents yield the feasible range for the goal identification rate
κ. Before we start the analysis, we introduce the subsequent parameter definitions and
conventions: Fix e1, e2 > 0 and let ζ0, ζ1 > 0 be arbitrarily small constants. Further, let
introduce the subsequent conventions:

• Yt(i) is output of channel at time t conditioned that x = ci, i.e., Yt(i) = ci,t ⊕ Zt.
• The vector of symbols is Y(i) ≜ (Y1(i), . . . , Yn(i)).

Sort I errors: This error event occur when the transmitter sends ci, yet y /∈ TK for
every i ∈ K. More specifically, the sort I error probability is given by

Pe,1(i,K) = Pr
(
Y(i) ∈ T c

K

)
= Pr

(
Y(i) ∈

( ⋃
j∈K

Tj

)c)
. (54)

In order to show that the probability term provided in (54) tends to zero for asymptotic
codeword lengths, we show that this term is upper bounded by certain upper tail of the
Binomial CDF. Next, employing existing bounds for this tail given in Appendix A4, we
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establish an upper bound on such an upper tail which vanishes in the asymptotic. The
extensive analysis for the sort I errors is provided in Appendix A.

Sort II errors: The sort II error event happens when Y(i) ∈ TK while the transmitter
sent ci with i /∈ K. Then, for each possible (M

K ) case of K, where i /∈ K, the sort II error
probability is given by

Pe,2(i,K) = Pr
(
Y(i) ∈ TK

)
= Pr

(
Y(i) ∈

⋃
j∈K

Tj

)
. (55)

To show that the probability term provided in (55) vanishes for asymptotic regime, we
break this term into two new terms and address them separately. One of the terms is shown
to vanish by exploiting the proof derived in the sort I error analysis. For the other term,
using standard techniques we show that it corresponds to certain Binomial CDF. Then,
employing some existing bounds on such Binomial CDF given in Appendix A5, we assert
an upper bound for it which tends to zero in the asymptotic. The detailed analysis for the
sort II errors is provided in Appendix B.

Observe that considering the established lower bound on the DKI coding rate R and
the established upper bound on the goal identification rate κ, as provided in (41) and (48)
and (A60), means that we have shown for every e1, e2 > 0 and sufficiently large n, there
exists an (n, M(n, R), K(n, κ), e1, e2)-BSC-DKI code, such that the set RDKI(B, M, K) of all
attainable rate pairs (R, κ) contains

RDKI(B, M, K) ⊇ R
inn(B) ≜

⋃
β∈(0,βmax)

R
inn
β (B), (56)

with

R
inn
β ≜

〈 {(R, κ); 0 ≤ R ≤ H(A)− H(β), 0 ≤ κ < min(κ1
UB, κ2

UB)} if A < 1/2,

{(R, κ); 0 ≤ R ≤ 1 − H(β), 0 ≤ κ < min(κ1
UB, κ2

UB)} if A ≥ 1/2,
(57)

where κ1
UB and κ2

UB are provided in (A58) and (A59), respectively.

Remark 3. Methodology for establishing the feasible region of β Observe that, since the parame-
ter β adjusts the radius of the hyper spheres used in the codebook construction, a trivial restriction
on it would be as follows: β ≥ 0. Next, employing the Hamming distance property of Lemma 1 and
Lemma 2, β can not be greater or equal than 1; therefore, we conclude that 0 ≤ β < 1. Now, we
exclude the boundary points β = 0, since it makes the upper bounds on the κ equal to zero (κ < 0),
which is a contradiction since κ ≥ 0. Next, we focus on the arguments of Tε(·) and H(·) given
in (A58) and (A59); see Figure 7. First, observe that the function f2(ε, β) (cf. (17)) has no zero,
and is monotonically increasing for 0 < β < 1. Second, note that the function f1(ε, β) (cf. (17)) is
decreasing for 0 < β < 1 with a zero at βmax = (4ε)/(2ε + 1); therefore, the subsequent feasible
interval for β is yielded:

0 < β < βmax = (4ε)/(2ε + 1).

Observe that the function βmax = (4ε)/(2ε + 1) is continuous and monotonically increasing
for domain ε ∈ (0, 1/2). That is, βmax tends to zero for asymptotic small β and tends to one for
β → βmax arbitrary.

Remark 4. Trade-off between goal identification rate and attainable DKI / RKI rate Our results
in the achievability proof unveil a common behavior between the DKI and RKI problems; namely, for
a given codeword length, there is a trade-off between the size of the goal message set and DKI/RKI
codebook size. Specifically, considering the RKI problem for a DMC with zero sort I error probability
(cf. (A65)), or obtained inner bound on the set of all attainable rate pairs (R, κ) for a DMC (cf. (4)),
we deduce that if one allows for larger goal identification coding rate κ, subsequently a penalty on
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the upper bound for the attainable RKI rate, R, is incurred, and this upper bound would be decreased.
A similar observation for the DKI problem as considered in this paper is found, namely, the same
trade-off between attainable DKI coding rate R and goal identification rate κ exist. In particular,
the calculated upper bounds provided in (16) on R and κ suggest that for asymptotic small β → 0,
while the upper bound on κ tends to zero ( fz(ε, β) → ε for z ∈ {1, 2}), the upper bound on R is
increased. On the other hand, in one allows that β → βmax arbitrary, then upper bounds on κ and
R are increased and decreased, respectively.
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Figure 7. Depiction of the error exponent for a BSC. The tangent line of the binary entropy function
H(p) in the cross-over probability point 0 < p = ε < 1/2, calculated for ε < p = δ < (1 − β) ε + β/2,
marked in green, is denoted by Tε(δ). For a given cross-over probability ε, the difference between
Tε(δ) and H(δ) is referred to as the error exponent. For example, the upper bounds on the goal
identification rate κ calculated in (A58) and (A59) are two different error exponents that are derived
in the sort II error analysis. The minimum of these error exponents is the bottleneck for the rate κ,
i.e., an eligible upper bound.

Remark 5. In the analysis for the sort II error probability, an upper bound is found which vanishes
exponentially in the codeword length n, (cf. (A51)). This observation reveals that the fastest scales
for the size of the goal message set K(n, κ), which guarantees the vanishing of the sort II error
probability, as n → ∞ is permitted to be defined as follows: K(n, κ) = 2nκ . In other words, the
upper bound on the sort II error probability is capable of being exploited for having a set of goal
messages with exponential size.

4.3. Upper Bound (Converse Proof)

Before we start the converse proof, some comprehensive steps are explained: We show
that the feasible input set (subset of the input sequences that fulfills the Hamming constraint)
can be entirely exhausted for selection of the codewords. To this end, we establish an one-
to-one mapping between the message and input sets. Hence, the number of messages 2nR

is bounded by the size of the feasible input set. More specifically, depending on whether or
not an effective Hamming weight constraint is imposed on the input of the channel, we
divide it into two cases and address them separately. In particular, the converse proof for
each case consists of the subsequent two main technical steps.

♢ Step 1: we show in Lemma 3 that for any attainable DKI rate whose error probabilities
of sort I and sort II tends to zero as n → ∞), any pair of distinct messages are associated
with different codewords.

♢ Step 2: exploiting Lemma 3, we acquire an upper bound for the DKI codebook size
of a the BSC.
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We begin with the below lemma on a DKI codebook size.

Lemma 3 ( DKI codebook size ). Consider a sequence of (n, M(n, R), K(n, κ), e(n)1 , e(n)2 )-BSC-

DKI codes (C(n), T (n)), such that e(n)1 and e(n)2 tend to zero as n → ∞. Then, given a sufficiently
large n, the codebook C(n) satisfies the subsequent property: two different messages i1, i2 ∈ [[M]]
cannot have the same codeword representing them; that is,

i1 ̸= i2 ⇒ ci1 ̸= ci2 . (58)

Proof. Contrarily, suppose that there are two messages i1 and i2, such that i1 ̸= i2, and

ci1 = ci1 = xn, (59)

for some xn ∈ X n. Since (C(n), T (n)) forms a (n, M(n, R), K(n, κ), e(n)1 , e(n)2 )-BSC-DKI code,
as stated in Definition 1, it implies that for every possible choice (arrangement) of the goal
message set K ⊆ [[M]] of size K, the upper bound on the sort I and sort II error probabilities,
i.e., e(n)1 and e(n)2 , respectively, tends to zero as n tends to infinity.

Remark 6. Decoder in converse proof While we imposed a concrete structure on the decoding
set TK, in the achievability proof provided in Section 4.2, i.e., we set TK =

⋃
i1∈KTi1 , the converse

proof treats the decoding set TK as a generic function.

Next, we review the definition of a BSC DKI code found in (1), and concentrate on
the underlying presumptions about the characteristics of a particular series of BSC DKI
codes (C(n), T (n)) found in Lemma 3. The subsequent property is endowed by such a code
sequence with five parameters, (n, M(n, R), K(n, κ), e(n)1 , e(n)2 ). For any overall/generic
selection of the goal message, set K ⊆ [[M]] of size K, as n approaches to infinity, the upper
bound on the sort I and sort II error probabilities, or e(n)1 and e(n)2 , respectively, tends to
zero. That is,

lim
n→∞

[
Pe,1(i1,K) + Pe,2(i2,K)

]
= 0, ∀K ⊆ [[M]]. (60)

Next, we will represent a particular class of the goal message sets by K(i1, i2), where
i1 ∈ K and i2 /∈ K, i.e.,

K(i1, i2) ≜
{
K ⊆ [[M]]; |K| = K; i1 ∈ K, i2 /∈ K

}
. (61)

Observe that |K(i1, i2)| ≥ 1; that is, there exists at least one arrangement K′ belonging
to K(i1, i2), where i1 ∈ K, i2 /∈ K. This is valid as the two messages i1 and i2 are different,
i.e., i1 ̸= i2, in accordance with Lemma 3. The sort I and sort II error probability, so have
the subsequent upper bounds:

Pe,1(i1,K) = Wn(T c
K
| xn = ci1)i1∈K ≤ e(n)1 ,

Pe,2(i2,K) = Wn(TK | xn = ci2)i2 /∈K ≤ e(n)2 , (62)

where TK ⊆ Hn is the decoding set considered for the set of goal messages K. This leads to
a contradiction, since

1 = Wn(T c
K
| xn) + Wn(TK | xn)

= Pe,1(i1,K) + Pe,2(i2,K) (63)

≤ e(n)1 + e(n)2 ,
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where the last inequality exploits the definition of sort I/II error probabilities given in
(8) and (9). Therefore, e(n)1 + e(n)2 ≥ 1, which is a contradiction to (60).

Put differently, Lemma 3 asserts that every given sequence of BSC DKI codes (C(n), T (n))
has the below property: The upper limits on the sort I and sort II error probabilities disap-
pear for an arbitrary (generic) choice of K of size K(n, κ), meaning that e(n)1 and e(n)2 tend to
zero as n → ∞. Nevertheless, we demonstrate that there are specific options for K, shown
by K(i1, i2), whose elements does not satisfy this property, namely, e(n)1 and e(n)2 do not
disappear since the sum of the corresponding upper limits on the sort I and sort II errors
is lower bounded by one. This observation is obviously contradictory, as the inequality
presented in (59) does not hold. Hence, distinct messages i1 and i2 cannot share the same
codeword, and there exist an one-to-one mapping between the message set M and the
codebook C. This concludes the proof of Lemma 3.

◀Case 1: with Hamming weight constraint (0 < A < 1)▶

Lemma 3 states that every message has a distinct/unique codeword. As a result,
the number of input sequences that meet the input restriction/constraint serves as the
maximum number of messages. We divide in two cases, namely, where 0 < A < 1/2 and
1/2 ≤ A < 1. For the first case, we obtain the subsequent upper bound on the size of the
DKI codebook:

2nR ≤
∣∣B0(n, nA)

∣∣ = ∣∣∣∣{x ∈ Hn : 0 ≤
n

∑
t=1

xt ≤ nA
}∣∣∣∣ (a)

≤ 2nH(A), (64)

where (a) exploits the upper bound on the volume of the Hamming ball provided in
Lemma A2 for 0 < A < 1/2. Thereby, (64) implies

R ≤ H(A). (65)

On the other hand, for a given sequence of DKI code in the converse, the size of the
goal message set K is always upper bounded by the size of the message set M; that is,
2nκ ≤ 2nR gives κ ≤ R. Therefore, exploiting (65), we obtain

κ ≤ H(A). (66)

Now, we proceed to calculate the upper bound on the size of the DKI codebook, where
1/2 ≤ A < 1. We argue that this case is equivalent to having a Hamming weight constraint
of the form A∗ = 1/2. That is, the codewords with constraint ∑n

t=1 xt ≤ nA∗, where
A∗ = 1/2 fulfilled the same constraint with 1/2 ≤ A < 1. The new Bernoulli input process
has 1/2 success probability, i.e., X ∼ Bern(1/2). Therefore, again employing Lemma A2
for the critical point ε = 1/2, we obtain

2nR ≤
∣∣B0(n, nA∗)

∣∣ = ∣∣∣∣{x ∈ Hn : 0 ≤
n

∑
t=1

xt ≤ nA∗
}∣∣∣∣ ≤ 2nH(A∗=1/2), (67)

which implies

R ≤ H
(

A∗ = 1/2
)
= 1. (68)

◀Case 2: without Hamming weight constraint (A ≥ 1)▶

In this instance, the size of the complete input set, i.e., |X |n, that is, the number of
input sequences, is a maximum amount on the number of messages. Therefore, we can
establish the subsequent upper bound on the size of the DKI codebook 2nR ≤ |X |n which,
for |X | = 2, implies
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R ≤ 1
n

log|X |n = 1. (69)

Next, similar to the provided arguments for deriving (66), we obtain

κ ≤ 1. (70)

Observe that the established upper bound on the DKI coding rate R as provided in
(65), (68) and (69) and implies that the set RDKI(B, M, K) of all attainable rate pairs (R, κ) is
contained as follows:

RDKI(B, M, K) ⊆ R
out(B), (71)

where

R
out(B) ≜

〈 {(R, κ); 0 ≤ R ≤ H(A), 0 ≤ κ ≤ H(A)} if A < 1/2,

{(R, κ); 0 ≤ R ≤ 1, 0 ≤ κ ≤ 1} if A ≥ 1/2,
(72)

where κ1
UB and κ2

UB are provided in (A58) and (A59), respectively.

Thus, exploiting the fact that DKI capacity region is the closure of the setRβ
DKI(B, M, K)

of all attainable rate pairs (R, κ) is contained as follows:

CDKI(B, M, K) ⊆ R
out(B). (73)

Thereby, the relations provided in (56) and (71) complete the proof of Theorem 1.

5. Future Directions and Summary

In this work, the deterministic K-identification problem for IoT systems was studied.
The results obtained in this paper can serve as a model for tasks that are based on an
event recognition within the context of future IoT applications. Specifically, we consider
IoT systems that can be modeled by the binary symmetric channel. For this setup, we
established inner and outer bounds on the DKI capacity region with/without the Hamming
weight constraint for a codebook size of M(n, R) = 2nR. Our results in this work regarding
the DKI capacity for the BSC model unveiled that the conventional exponential scale
of 2nR considered for the DI [32] and TR problems [17], is the appropriate scale for the
codebook size of the DKI problem of the BSC with/without Hamming weight constraint.
This observation is was proved by finding a suitable ball covering for an n-dimensional
Hamming hyper ball or the entire input set in the same line of arguments as that for the
basic Gilbert bound method. In particular, in the presence of a Hamming weight constraint A,
we pack hyper balls with radius

⌊
nβ
⌋
, for some β ∈ (0, 1) inside a larger Hamming hyper

ball, which results in ∼2nH(A) codewords. We remind you that the scale of the codebook
for DKI over the BSC is lower than that for the DKI over slow fading channels [51] or
the DI over Poisson channel with and without ISI [48,52]. Moreover, we find out that the
BSC features an exponentially large set of the goal messages set, in the codeword length,
n, i.e., 2nκ ; and characterize the entire feasible range on the goal identification rate κ as a
function of the channels statistic ε and the Hamming constraint (for 0 < A < 1/2).

For the converse part, a similar approach as our previous work for DI over the
DMC [32] is followed. That is, for the case where a non-trivial Hamming weight constraint
is present (0 < A < 1), we establish an one-to-one mapping between the message set and
the feasible set induced by the Hamming weight constraint. In particular, we exploit the
method of proof by the contradiction. Namely, we first assume that two generic different
messages i1 and i2 share the common codewords, and then show that such an assumption
leads to a contradiction regarding the sum of the error probabilities, i.e., we derive that the
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sum of the sort I and sort II error probabilities converges to one. Hence, the falsehood of
the early assumption is guaranteed, and the total number of messages M = 2nR is bounded
by the size of the feasible input set, i.e., M ≤ 2nH(A). For the case where A ≥ 1, (absent of a
Hamming constraint), a similar line of argument can be applied in order to establish the
one-to-one function.

There are numerous ways to expand upon the findings we have showcased in this
manuscript. Some of the possible topics for the future research are as follows:

♢ Explicit code construction: In this paper, we mainly address the determination of
basic performance constraints for the DKI for the BSC with/without Hamming weight
constraint, where an explicit code construction was not investigated. That is, in the
achievability proof, we only guarantee the existence of a code without suggesting a
systematic method for construction of the code. Therefore, an important direction for
research may be explicit construction of K-identification codes for the BSC and devel-
opment of efficient encoding and low complexity decoding schemes. Furthermore, the
efficiency of such concrete designs can be measured versus the information theoretical
bounds derived in this paper.

♢ Generalized channel models: We consider in this work one of the simplest and most
basic channel model, namely the BSC in the absence of channel state, memory, or
feedback. Therefore, our result can be extended to a DMC (with or without memo-
ry/feedback), compound, and arbitrary varying channels, which are generalizations
of the BSC. In particular, several realistic IoT scenarios modeled by the BSC feature
memory to some extent and the effect of memory may not be made negligible in a
straightforward manner. Therefore, the application of memoryless channels as con-
ducted in this paper to these realistic instances may in general yields different capacity
results. In addition, it may be possible to exploit the memory effect in terms of gaining
more optimum inner and outer bounds on the DKI capacity, as well as the specification
of the encoding and decoding modules; cf. [61,67–69] for detailed studies on the BSC
models with memory.

♢ Multi-user and multi-antenna systems: The results in this paper study a point-to-
point single user system, and might be extended to advanced scenarios proper for
the future communication network settings including multiple-input multiple-output
channels or multi-user channels, which are deemed to be more relevant in the complex
IoT systems.

♢ Finite codeword length coding: The obtained bounds on the K-identification capac-
ity region studied in this paper determine the performance limits of BSC with/without
Hamming weight constraint when the codeword length can grow arbitrarily. However,
in practical applications, the codeword length is finite, where there is no way to afford
significant encoding/decoding delays. As a result, studying the non-asymptotic DKI
capacity of the BSC is an interesting direction for future research.
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Appendix A. Sort I Error Analysis

Consider the sort I error, i.e., the transmitter sends ci, yet y /∈ TK for every i ∈ K. The
sort I error probability is given by

Pe,1(i,K) = Pr
(
Y(i) ∈ T c

K

)
= Pr

(
Y(i) ∈

( ⋃
j∈K

Tj

)c)
(a)
= Pr

(
Y(i) ∈

⋂
j∈K

T
c
j

) (b)
≤ Pr

(
Y(i) ∈ Tc

i
)
= Pr

(
T(Y(i), ci) >

⌊
nδβ

⌋)
, (A1)

where (a) follows by De Morgan’s law, i.e., (
⋃

i∈KTi)
c =

⋂
i∈KT

c
i and (b) holds since⋂

j∈KT
c
j ⊂ Ti. Now, observe that

Pr
(

T(Y(i), ci) >
⌊

nδβ

⌋)
(a)
= Pr

(
dH(Y(i), ci) >

⌊
nδβ

⌋)
(b)
=

n

∑
l=
⌊

nδβ

⌋
+1

(
n
l

)
εl(1 − ε)n−l , (A2)

where (a) follows by (52) and (b) holds by (12). In order to bound (A2), we proceed to
apply the bound provided in (A86) given in Lemma A4: Observe that

l
n
=

⌊
nδβ

⌋
+ 1

n
(a)
>

nδβ

n
= δβ

(b)
> ε, (A3)
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where (a) follows, since x < ⌊x⌋+ 1 for real x and (b) holds by (50). On the other hand,

l
n
=

⌊
nδβ

⌋
+ 1

n
≤

max
⌊

nδβ

⌋
+ 1

n
(a)
<

⌊
n max

(
ε + β(1/2 − ε)

)⌋
+ 1

n
(b)
<

⌊n/2⌋+ 1
n

n≥3
< 1, (A4)

where (a) follows by (50) and (b) holds since ε + β(1/2 − ε) is upper bounded by the
boundary value of ε, i.e., where ε = 1/2. Observe that the last inequality in (A4) holds
for sufficiently large n. Now, since the inequalities provided in (A3) and (A4) fulfill the
conditions in Lemma A4, we employ Lemma A4 to establish the following lower bound on
(A2) as follows

Pr
(

T(Y(i), ci) >
⌊

nδβ

⌋)
=

n

∑
l=
⌊

nδβ

⌋
+1

(
n
l

)
εl(1 − ε)n−l (A5)

≤


(⌊

nδβ

⌋
+ 1
)
(1 − ε)(⌊

nδβ

⌋
+ 1
)
(1 − ε)−

[
n − (

⌊
nδβ

⌋
+ 1)

]
ε

 · 2
−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)
.

Observe that the denominator in (A5) is always a strict positive term, since assuming
we arrive to a trivial inequality as follows(⌊

nδβ

⌋
+ 1
)
(1 − ε) >

[
n − (

⌊
nδβ

⌋
+ 1)

]
ε ⇐⇒ (A6)⌊

nδβ

⌋
+ 1 − ε

⌊
nδβ

⌋
− ε > nε − ε

⌊
nδβ

⌋
− ε ⇐⇒ (A7)⌊

nδβ

⌋
+ 1 > nε ⇐⇒ (A8)⌊

nδβ

⌋
+ 1

n
> ε, (A9)

which is already verified in (A3). Now, we proceed to find a simplified upper bound on the
left hand side coefficient in the bracket given in (A5) as follows:(⌊

nδβ

⌋
+ 1
)
(1 − ε)(⌊

nδβ

⌋
+ 1
)
(1 − ε)−

[
n − (

⌊
nδβ

⌋
+ 1)

]
ε

(a)
=

(
nδβ + 1

)
(1 − ε)(⌊

nδβ

⌋
+ 1
)
− ε

(⌊
nδβ

⌋
+ 1
)
− nε + ε

(⌊
nδβ

⌋
+ 1
) (A10)

≤

(
nδβ + 1

)
(1 − ε)(⌊

nδβ

⌋
+ 1
)
− nε

(b)
≤

(
nδβ + 1

)
(1 − ε)

nδβ − nε
,
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where (a) holds by exploiting x ≤ ⌊x⌋ for real x and simplifying the denominator by
distributing ε over the bracket, and (b) follows, since

nδβ <
⌊

nδβ

⌋
+ 1 ⇐⇒ nδβ − nε <

⌊
nδβ

⌋
+ 1 − nε ⇐⇒ 1

nδβ − nε
>

1⌊
nδβ

⌋
+ 1 − nε

. (A11)

where the first inequality follows since x < ⌊x⌋+ 1 for real x. Thereby, employing (A10)
unto (A5), we obtain

Pr
(∣∣T(Y(i), ci)

∣∣ > ⌊nδβ

⌋)
=

n

∑
l=
⌊

nδβ

⌋
+1

(
n
l

)
εl(1 − ε)n−l

≤

(
nδβ + 1

)
(1 − ε)

nδβ − nε
· 2

−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)
(A12)

=

(
δβ +

1
n

)
(1 − ε)

δβ − ε
· 2

−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)

≜ ζ1,n.

Observe that the exponent of exponential term is always strictly positive, since for ε ∈
(0, 1/2), the arguments of Tε(·) and H(·) are strictly less than 1/2. That is, we have the
following

Tε

((⌊
nδβ

⌋
+ 1
)/

n
)
> H

((⌊
nδβ

⌋
+ 1
)/

n
)

. (A13)

The argument is as follows:

l
n
=

⌊
nδβ

⌋
+ 1

n
≤

max
⌊

nδβ

⌋
+ 1

n
(a)
<

⌊
n max

(
ε + β(1/2 − ε)

)⌋
+ 1

n
(A14)

(b)
<

⌊n/2⌋+ 1
n

(c)
≤ n/2 + 1

n
,

which is strictly less than 1/2 in the asymptotic, i.e., as n → ∞, where (a) and (b) follows
by the same arguments given for (A4), and (c) follows since ⌊x⌋ ≤ x for real x.

Therefore, the difference for the evaluation of Tε(·) and H(·) for a given fix argument
is always a strict positive value; see Figure 7. Hence, Pe,1(i,K) ≤ e1, ∀i ∈ TK holds for
sufficiently large n and arbitrarily small e1 > 0. Thereby, the sort I error probability satisfies
Pe,1(i,K) ≤ ζ1,n ≤ e1. This complete the analysis for the sort I error probability.

Appendix B. Sort II Error Analysis

In the following, we address sort II errors, i.e., when Y(i) ∈ TK while the transmitter
sent ci with i /∈ K. Then, for each possible (M

K ) cases of K, where i /∈ K, the sort II error
probability is given by

Pe,2(i,K) = Pr
(
Y(i) ∈ TK

)
= Pr

(
Y(i) ∈

⋃
j∈K

Tj

)
(a)
= Pr

( ⋃
j∈K

{
T(Y(i), cj) ≤

⌊
nδβ

⌋})
(b)
= Pr

( ⋃
j∈K

{
dH(Y(i), cj) ≤

⌊
nδβ

⌋}) (c)
≤ ∑

j∈K
Pr
(

dH(Y(i), cj) ≤
⌊

nδβ

⌋)
(A15)

≤ K · Pr
(

dH(Y(i), cj) ≤
⌊

nδβ

⌋)
,
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where (a) follows by (51), (b) holds by (52) and (c) follows by the union bound, i.e., the
sum of each individual event’s probability sets an upper constraint on the probability of
the union of events. Let us define the following events

Fδβ
(i) ≜

{
Y ∈ Hn ; dH(Y(i), ci) ≤

⌊
nδβ

⌋}
, (A16)

Fδβ
(i, j) ≜

{
Y ∈ Hn ; dH(Y(i), cj) ≤

⌊
nδβ

⌋}
. (A17)

Next, employing the law of total probability with respect to the event
{

dH(Y(i), ci) ≤⌊
nδβ

⌋}
, we establish an upper bound on Pr

(
dH(Y(i), cj) ≤

⌊
nδβ

⌋)
given in (A15) as follows:

Pr
(

dH(Y(i), cj) ≤
⌊

nδβ

⌋)
(a)
= Pr

(
Fδβ

(i, j) ∩ Fδβ
(i)
)
+ Pr

(
Fδβ

(i, j) ∩ F c
δβ
(i)
)

(b)
≤ Pr

(
Fδβ

(i, j) ∩ Fδβ
(i)
)
+ Pr

(
F c

δβ
(i)
)

(A18)

(c)
= Pr

(
Fδβ

(i, j) ∩ Fi(δβ)
)
+ Pr

(
dH(Y(i), ci) >

⌊
nδβ

⌋)
(d)
≤ Pr

(
Fδβ

(i, j) ∩ Fδβ
(i)
)
+ ζ1,n,

where (a) holds by the law of total probability, (b) follows since F c
i (δβ) ⊃ Fδβ

(i, j) ∩ F c
i (δβ),

(c) holds by (A16), and (d) exploits (A12).
Now, we focus on the event Fδβ

(i, j) ∩ Fδβ
(i). Let

d ≜ dH(ci, cj)
(a)
≥
⌊
nβ
⌋
+ 1, (A19)

where (a) follows by the assumption made in the code construction regarding the minimum
Hamming distance; see Lemma 1 and (42). Now, without loss of generality, we may assume
that the two sequence ci and cj differ in the first d symbols, i.e.,

ci =
(

ci1 , ci2 , . . . , cid , cid+1
, . . . , cin

)
cj =

(
cj1 , cj2 , . . . , cjd , cjd+1

, . . . , cjn

)
(A20)

y =
(
y1, y2, . . . , yd, yd+1, . . . , yn

)
,

where y is the realization of vector Y(i). Therefore, the n − d last symbols (bits) of ci and
cj are identical. Observe that the event

{
dH(Y(i), ci) ≤

⌊
nδβ

⌋}
implies that the received

vector y and ci differ in p bits, where p ≤
⌊

nδβ

⌋
, i.e.,

dH(y, ci) = p ≤
⌊

nδβ

⌋
. (A21)

Now, we assume that p1 bits out of the p bits happen in the first d bits, i.e., dH(y|d1, ci|d1)
= p1, where

ci|d1 ≜
(

ci1 , ci2 , . . . , cid

)
and y|d1 ≜

(
y1, y2, . . . , yd

)
, (A22)

and p2 bits with p2 = p − p1 happens in last n − d bits, i.e., dH(y|nd+1, ci|nd+1) = p2, where

ci|nd+1 ≜
(

cid+1
, . . . , cin

)
and y|nd+1 ≜

(
yd+1, . . . , yn

)
. (A23)
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Observe that since the symbols of sequences are bits, i.e., either 0 or 1; therefore,
d = dH(ci, cj) implies that the two sequences ci and cj are complementary for the first d
bits. Now, we infer that if the two sequences y|d1 and ci|d1 differ in p1, then y|d1 and ci|d1 are
identical in those p1 bits. Hence, dH(y|d1, cj|d1) = d − p1.

Now, if we collect all the positions for which y|n1 and cj|n1 differ, we obtain

dH(y, cj) = dH(y|n1 , cj|n1 ) = dH(y|d1, cj|d1) + dH(y|nd+1, cj|nd+1) = d − p1 + p2. (A24)

Observe that, since we restrict ourselves to the event

Fδβ
(i, j) ∩ F c

i (δβ) ≜

{
dH(Y(i), cj) ≤

⌊
nδβ

⌋}
∩
{

dH(Y(i), ci) ≤
⌊

nδβ

⌋}
, (A25)

d − p1 + p2 ≤
⌊

nδβ

⌋
⇒ p2 ≤

⌊
nδβ

⌋
− d + p1. (A26)

On the other hand, since dH(y, cj) ≤
⌊

nδβ

⌋
, we obtain

p ≤
⌊

nδβ

⌋
⇒ p1 + p2 ≤

⌊
nδβ

⌋
⇒ p2 ≤

⌊
nδβ

⌋
− p1. (A27)

Now, in order to calculate Pr
(

dH(Y(i), cj) ≤
⌊

nδβ

⌋)
in (A15), we first fix p1, and then

sum up over all possible cases for the p2, then we would have a second sum which runs
for values of p1 from 0 to d. Observe that the p2 has two upper bounds given in (A26)
and (A27); therefore, in the calculation, we restrict ourselves to the minimum of those two
upper bounds. Let define pUB

2 ≜ min
{⌊

nδβ

⌋
− p1,

⌊
nδβ

⌋
− d + p1

}
. Thereby,

Pr
(
Fδβ

(i, j) ∩ Fδβ
(i)
) (a)
≤

d

∑
p1=0

(
d
p1

)
·

pUB
2

∑
p2=0

(
n − d

p2

)
εp1+p2(1 − ε)n−(p1+p2)+d−d

(b)
=

 d

∑
p1=0

(
d
p1

)
εp1(1 − ε)d−p1

 ·

 pUB
2

∑
p2=0

(
n − d

p2

)
εp2(1 − ε)n−d−p2

, (A28)

where (a) holds since p = p1 + p2, and (b) follows since every expression that is indepen-
dent of the sum’s variable can be shifted left behind the inner sum. In (b), we have added
0 = d − d, to obtain the correct form for the two binomial distribution expressions. Now,
observe that the first sum is the Binomial cumulative distribution function at point x = d
and can be upper bounded by 1, i.e.,

d

∑
p1=0

(
d
p1

)
εp1(1 − ε)d−p1 = Pr

(
p1 ≤ d

)
= BX(x)|x=d = BX(d) = 1. (A29)

Now, let focus on the second sum in (A28), for which we establish an upper bound by
maximizing pUB

2 through setting p1 = ⌊d/2⌋, i.e.,

arg max
p1

pUB
2 = ⌊d/2⌋. (A30)

Therefore,

max pUB
2 ≜ max

[
min

{⌊
nδβ

⌋
− p1,

⌊
nδβ

⌋
− d + p1

}]
= min

{⌊
nδβ

⌋
− p1,

⌊
nδβ

⌋
− d + p1

}∣∣∣∣
p1=⌊d/2⌋

(A31)
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=
{⌊

nδβ

⌋
− ⌊d/2⌋,

⌊
nδβ

⌋
− d + ⌊d/2⌋

}
=
{⌊

nδβ

⌋
− ⌊d/2⌋,

⌊
nδβ

⌋
−
(

d − ⌊d/2⌋
)}

=
⌊

nδβ

⌋
− d + ⌊d/2⌋,

where the last equality holds since by ⌊d/2⌋ ≤ d/2 for real d/2, we obtain d/2 ≤ d−⌊d/2⌋.
Now, we exploit the inequality (A95) given in Lemma A5 to obtain an upper bound

for the second sum in (A28) as follows: First, we check whether the required condition
in Lemma A5 are satisfied or not. Namely, we set k =

⌊
nδβ

⌋
− d + ⌊d/2⌋ and n = n − d.

Now, we calculate their ratio as follows:

k
n − d

=

⌊
nδβ

⌋
− d + ⌊d/2⌋
n − d

(a)
≤

nδβ − d + d/2
n − d

=
nδβ − d/2

n − d
=

δβ − (d/2n)
1 − d/n

(b)
<

δβ − β/2
1 − β

≜ τ, (A32)

where (a) holds since ⌊x⌋ ≤ x for real x and (b) holds by the following argument: we
assume that (b) holds and assuming that δβ ̸= 1/2, we arrive at a trivial inequality, namely,
d > nβ :

δβ − (d/2n)
1 − d/n

<
δβ − β/2

1 − β
⇒ (A33)(

δβ − (d/2n)
)(

1 − β
)
<
(

δβ − β/2
)
(1 − d/n) ⇒ (A34)

δβ − βδβ − (d/2n) + (βd/2n) < δβ − (δβd/n)− β/2 + (βd/2n) ⇒ (A35)

β
(

1/2 − δβ

)
< (d/2n)− (δβd/n) ⇒ (A36)

β
(

1/2 − δβ

)
< (d/n) ·

(
1/2 − δβ

)
⇒ (A37)

nβ < d, (A38)

which can be deduced by assumptions of code construction given in (42), i.e.,

dH(ci, cj) ≥
⌊
nβ
⌋
+ 1

(a)
> nβ − 1 + 1 = nβ, (A39)

where (a) holds, since
⌊
nβ
⌋
> nβ − 1 for real nβ. Now, we exploit (50), to show that (A32)

is upper bounded by ε as follows

δβ < ε + β(1/2 − ε) ⇒ δβ < ε + β/2 − βε ⇒ δβ − β/2 < ε(1 − β) ⇒
δβ − β/2

1 − β
< ε. (A40)

Thereby, we apply safely Lemma A5 with parameters j = p2, k = pUB
2 ≜

⌊
nδβ

⌋
− d + ⌊d/2⌋

and n = n − d, and obtain⌊
nδβ

⌋
−d+⌊d/2⌋

∑
p2=0

(
n − d

p2

)
εp2(1 − ε)n−d−p2 ≤ ε((n − d)− k)

ε(n − d)− k
· 2n

[
H( k

n−d )−Tε(
k

n−d )
]

(A41)

≤
ε
(

1 − k
n−d

)
ε − k

n−d

· 2n
[

H( k
n−d )−Tε(

k
n−d )

]
.
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Let us focus on the coefficient in (A41). In the following, assuming an upper bound
for it, we arrive to a trivial inequality, therefore, the upper bound is valid.

ε
(

1 − k
n−d

)
ε − k

n−d

<
ε(1 − τ)

ε − τ
. (A42)

Observe that (A42) yield the following chain of expressions:

1 − k
n−d

ε − k
n−d

<
1 − τ

ε − τ
⇒ (A43)

ε − τ − kε

n − d
+

kτ

n − d
< ε − k

n − d
− ετ +

kτ

n − d
⇒ (A44)

−τ − kε

n − d
< − k

n − d
− ετ ⇒ (A45)

k
n − d

(1 − ε) < τ(1 − ε) ⇒ (A46)

k
n − d

< ε, (A47)

which is trivial, since it is already proved in (A32). Now, observe that for 0 < k
n−d < τ < ε,

the following holds

H
(

k
n − d

)
− Tε

(
k

n − d

)
< H(τ)− Tε(τ), (A48)

see Figure 7. Therefore, since τ always yield a smaller exponent, we obtain an upper bound
on the sum in (A41) as follows

⌊
nδβ

⌋
−d+⌊d/2⌋

∑
p2=0

(
n − d

p2

)
εp2(1 − ε)n−d−p2 ≤ ε((n − d)− k)

ε(n − d)− k
· 2n

[
H( k

n−d )−Tε(
k

n−d )
]

(a)
<

ε(1 − τ)

ε − τ
· 2n

[
H( k

n−d )−Tε(
k

n−d )
]

(A49)

(b)
<

ε
(

1 − k
n−d

)
ε − k

n−d

· 2n[H(τ)−Tε(τ)]

≜ ζ0,n,

where (a) exploits (A42), and (b) follows by (A48). Thereby, recalling (A28) and employing
(A29), we obtain

Pr
(
Fδβ

(i, j) ∩ Fδβ
(i)
)
≤ 1 ·

k

∑
j=0

(
n − d

j

)
εj(1 − ε)n−d−j <

ε(1 − τ)

ε − τ
· 2n[H(τ)−Tε(τ)] ≜ ζ0,n. (A50)

Hence, recalling (A15) and (A18), we obtain

Pe,2(i,K)

≤ K ·
[

Pr
(

dH(Y(i), cj) ≤
⌊

nδβ

⌋)]

≤ K ·
[

Pr
(
Fδβ

(i, j) ∩ Fδβ
(i)
)
+ ζ1,n

]
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= K ·

 ε(1 − τ)

ε − τ
· 2n[H(τ)−Tε(τ)] +

(
δβ +

1
n

)
(1 − ε)

δβ − ε
· 2

−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)
 (A51)

(a)
= 2nκ ·

 ε(1 − τ)

ε − τ
· 2−n[Tε(τ)−H(τ)] +

(
δβ +

1
n

)
(1 − ε)

δβ − ε
· 2

−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)


=
ε(1 − τ)

ε − τ
· 2−n[Tε(τ)−H(τ)−κ] +

(
δβ +

1
n

)
(1 − ε)

δβ − ε
· 2

−n

Tε

( ⌊
nδβ

⌋
+1

n

)
−H

( ⌊
nδβ

⌋
+1

n

)
−κ


,

which implies that both the exponential factors given in (A51) should yields strict positive
exponents; that is, we obtain two separate upper bounds on the κ as follows:

κ < Tε(τ)− H(τ) and κ < Tε


⌊

nδβ

⌋
+ 1

n

− H


⌊

nδβ

⌋
+ 1

n

, (A52)

Therefore,

κ < min

Tε(τ)− H(τ), Tε


⌊

nδβ

⌋
+ 1

n

− H


⌊

nδβ

⌋
+ 1

n


. (A53)

Now, we focus on the second argument in (A53), and provide the following asymptotic
behavior:

lim
n→∞

Tε


⌊

nδβ

⌋
+ 1

n

− H


⌊

nδβ

⌋
+ 1

n

 = Tε

 lim
n→∞

⌊
nδβ

⌋
+ 1

n

− H

 lim
n→∞

⌊
nδβ

⌋
+ 1

n

, (A54)

where the equality holds, since Tε(·) and H(·) are continuous functions of δβ. Now, observe

that since
⌊

nδβ

⌋
− 1 <

⌊
nδβ

⌋
≤ nδβ for real nδβ, we obtain

lim
n→∞

nδβ − 1 + 1
n

≤ lim
n→∞

⌊
nδβ

⌋
+ 1

n
≤ lim

n→∞

nδβ + 1
n

⇒

δβ ≤ lim
n→∞

⌊
nδβ

⌋
+ 1

n
≤ lim

n→∞
δβ +

1
n

(a)⇒ lim
n→∞

⌊
nδβ

⌋
+ 1

n
= δβ, (A55)

where (a) holds by the squeeze theorem. Thereby,

lim
n→∞

Tε


⌊

nδβ

⌋
+ 1

n

− H


⌊

nδβ

⌋
+ 1

n

 = Tε

(
δβ

)
− H

(
δβ

)
. (A56)

Thus, recalling (A53), we obtain the subsequent upper bound on the goal identification
rate κ:

κ < min

Tε(τ)− H(τ), Tε


⌊

nδβ

⌋
+ 1

n

− H


⌊

nδβ

⌋
+ 1

n
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(a)
= min

{
Tε

(
δβ − β/2

1 − β

)
− H

(
δβ − β/2

1 − β

)
, Tε

(
δβ

)
− H

(
δβ

)}
, (A57)

where (a) follows from (A32) and (A56). Next, exploiting (49), we derive the arguments
provided in (A57) as follows:

κ1
UB ≜ Tε( f1(ε, β))− H( f1(ε, β)) (A58)

κ2
UB ≜ Tε( f2(ε, β))− H( f2(ε, β)), (A59)

where f1(ε, β) and f2(ε, β) are given in (13) and (14). Thereby,

κ < min(κ1
UB, κ2

UB). (A60)

Therefore, recalling (A51), we obtain

Pe,2(i, j) ≤ Pr
(
Fδβ

(i, j) ∩ Fδβ
(i)
)
+ Pr

(
dH(Y(i), ci) >

⌊
nδβ

⌋)
≤ ζ0,n + ζ1,n ≤ ζ0 + ζ1 ≤ e2, (A61)

hence, Pe,2(i, j) ≤ e2 holds for sufficiently large n and arbitrarily small e2 > 0.

Appendix C. Cover-Free Families

In this subsection, we provide some preliminaries about the concept of cover-free
families and establish some basic and well-known results. Furthermore, we draw the
connection between such concept and the RKI.

Definition A1 ( r-cover-free family ). Let pair (X,F ) be a set system, where X is a set of points

and F is a set of subsets (blocks) of X. A set system (X,F ) is called r-cover-free family, if for an
arbitrary r distinct blocks A1, . . . , Ar ∈ F and any other block A0 ∈ F , we have

A0 ̸⊂
r⋃

i=1

Ai. (A62)

The concept of r-cover-free families in the literature was first found in [70]. In the
following, we introduce a well-known theorem in the literature, which established a power
law decaying the lower and upper bounds on the size of cover-free families.

Theorem A1 (see [70]). Let A ≜ {1, · · · , |A|} and F be the set of points and subsets, respectively,
such that the set system (A,F ) constitute a r-cover-free family. Then, let indicate the maximum
size of F over A by M(|A|, r). Now, we have

c1

r2 ≤ log M(|A|, r)
|A| ≤ c2

r
,

for some constants c1 and c2.

Next, we present a theorem which establish an upper bound on the size of r-cover-free
family as follows:

Theorem A2 (see [71]). Assume that set system (A,F ) constitute a r-cover-free family where
A ≜ {1, · · · , |A|}. Now, the maximum size of the r-cover-free family, i.e., |F |, is upper bounded
as follows:

log M(|A|, r)
|A| ≤ k · log r

r2 , (A63)
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where k is a constant.

Next, we explain on the connection between the notion of r-cover-free families in
the combinatorics and RKI for noiseless discrete memoryless channel found by Ahlswede
in [26]: Let a = |X |, r = aκn, |A| = an, then the RI coding with 0-valued first type error, is
upper bounded by:

Rn ≜
log log M(an, aκn)

n
≤ (1 − 2κ) log a + o(1). (A64)

Then, for a DMC with input alphabet of size |X |, we obtain

R ≤ (1 − 2κ) log |X |. (A65)

Therefore, for the binary input channel, i.e., where |X | = 2, we obtain R ≤ 1 − 2κ.

Appendix D. Lower Bound on the Volume of the Hamming Ball

Lemma A1 (see [72, Lem. 16.19]). Let n, q ≥ 2 be positive integers and assume a real ε where
0 ≤ ⌊nε⌋/n ≤ 1 − 1/q. Then, volume of the Hamming ball in the q-ary alphabet is lower bounded
as follows:

Vol
(
Bx0(n, r)

)
≜

⌊nε⌋

∑
j=0

(
n
j

)
(q − 1)j ≥ qHq

(
⌊nε⌋

n

)
−o
(

logq n
)

. (A66)

Proof. Observe that the Stirling approximation [73] gives the following bounds on n!:

√
2nπ

(
n
e

)n
eλ1(n) ≤ n! ≤

√
2nπ

(
n
e

)n
eλ2(n). (A67)

Now, we have(
n

⌊nε⌋

)
=

n!
⌊nε⌋!(n − ⌊nε⌋)!

>

√
2nπ · ( n

e )
n · eλ1(n)[√

2⌊nε⌋π ·
(
⌊nε⌋

e

)⌊nε⌋
· eλ1(n)

]√2
(

n
(

1 − ⌊nε⌋
n

))
π ·
(

n
(

1− ⌊nε⌋
n

)
e

)n
(

1− ⌊nε⌋
n

)

=


( n

e )
n

(
⌊nε⌋

e

)⌊nε⌋
·
(

n
(

1− ⌊nε⌋
n

)
e

)n(1− ⌊nε⌋
n )


·

 e
λ1(n)−λ2(⌊nε⌋)−λ2

(
n
(

1− ⌊nε⌋
n

))
√

2π⌊nε⌋
(

1 − ⌊nε⌋
n

)
 (A68)

(a)
=

 1(
⌊nε⌋

n

)⌊nε⌋
·
(

1 − ⌊nε⌋
n

)n
(

1− ⌊nε⌋
n

)
 ·

 e⌊nε⌋ · en
(

1− ⌊nε⌋
n

)
en

 · Res(n)

(b)
=

Res(n)(
⌊nε⌋

n

)⌊nε⌋
·
(

1 − ⌊nε⌋
n

)n
(

1− ⌊nε⌋
n

)
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where (a) holds, since we let

Res(n) ≜
e

λ1(n)−λ2(⌊nε⌋)−λ2

(
n
(

1− ⌊nε⌋
n

))
√

2π⌊nε⌋
(

1 − ⌊nε⌋
n

) , (A69)

and (b) holds, since

e⌊nε⌋ · en
(

1− ⌊nε⌋
n

)
en = 1. (A70)

Next, we proceed to bound the Hamming ball as follows: Observe that the volume of
Hamming ball as provided in (A66) is lower bounded by the Binomial coefficient for the
largest index, i.e., j = ⌊nε⌋. Therefore,

Vol
(
Bx0(n, r)

)
≜

⌊nε⌋

∑
j=0

(
n
j

)
(q − 1)j

≥
(

n
⌊nε⌋

)
(q − 1)⌊nε⌋

>
(q − 1)⌊nε⌋(

⌊nε⌋
n

)⌊nε⌋
·
(

1 − ⌊nε⌋
n

)n
(

1− ⌊nε⌋
n

) · Res(n) (A71)

= q

logq

 (q−1)⌊nε⌋

(
⌊nε⌋

n

)⌊nε⌋
·
(

1− ⌊nε⌋
n

)n
(

1− ⌊nε⌋
n

)
+logq Res(n)

= q⌊nε⌋ logq(q−1)−⌊nε⌋ logq
⌊nε⌋

n −n
(

1− ⌊nε⌋
n

)
logq

(
1− ⌊nε⌋

n

)
+logq Res(n)

= q
n
(

⌊nε⌋
n logq(q−1)− ⌊nε⌋

n logq
⌊nε⌋

n −
(

1− ⌊nε⌋
n

)
logq

(
1− ⌊nε⌋

n

)
+logq Res(n)

)

= qnHq

(
⌊nε⌋

n

)
+logq Res(n).

Now, by letting λ1(n) = 0 and λ2(n) = 1/(12n), we obtain

Res(n) =
e−

1
12⌊nε⌋−

1
n−⌊nε⌋√

2π⌊nε⌋
(

1 − ⌊nε⌋
n

) (a)
≤ e−

1
12⌊nε⌋−

1
n−⌊nε⌋√

2π⌊nε⌋(1 − ε)

(b)
= K(ε)⌊nε⌋−

1
2 e−

1
12⌊nε⌋−

1
n−⌊nε⌋ , (A72)

where (a) follows for sufficiently large n, since ⌊nε⌋ ≤ nε and (b) holds by setting K(ε) ≜
1√

2π(1−ε)
. Therefore,

logq Res(n) = logq K(ε)− 1
2

logq⌊nε⌋ − 1
12⌊nε⌋ − 1

n − ⌊nε⌋ = o(logq n), (A73)

which implies that

lim
n→∞

logq Res(n)

logq n
= 0. (A74)
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Thereby,

Vol
(
Bx0(n, r)

)
≜

⌊nε⌋

∑
j=0

(
n
j

)
(q − 1)j ≥ qnHq

(
⌊nε⌋

n

)
+o(logq n). (A75)

Appendix E. Upper Bound on the Volume of the Hamming Ball

Lemma A2 (see [72, Lem. 16.19]). Let integer n ≥ 1 and 0 < ε ≤ 1/2 with n > ⌊nε⌋ ≥ 1.
Then, volume of the Hamming ball in the binary alphabet is upper bounded as follows:

Vol
(
Bx0(n, r)

)
≜

⌊nε⌋

∑
j=0

(
n
j

)
≤ 2nH(ε), (A76)

Proof. Note that 0 < ∀ε ≤ 1/2, the logit function H(ε) ≜ log
(

ε
1−ε

)
is non-positive, i.e.,

H(ε) = log
(

ε

1 − ε

)
= log ε − log(1 − ε) ≤ 0. (A77)

Next, notice that for i ∈ [0, ⌊nε⌋] we obtain the following:

i log ε + (n − i) log(1 − ε) ≥ −nH(ε), (A78)

where H(ε) is the binary entropy function. Hence, εi(1 − ε)n−i ≥ 2−nH(ε). Now,

1 = (ε + (1 − ε))n =
n

∑
i=0

(
n
i

)
εi(1 − ε)n−i ≥

⌊nε⌋

∑
i=0

εi(1 − ε)n−i ≥ 2−nH(ε)
⌊nε⌋

∑
i=0

(
n
i

)
. (A79)

Therefore, we obtain

Vol
(
Bx0(n, r)

)
≜

⌊nε⌋

∑
j=0

(
n
j

)
≤ 2nH(ε). (A80)

Appendix F. Bound on the Upper Tail of the Binomial Cumulative Distribution
Function—Part 1

Lemma A3 (see ([35] Probl. 5.8-(c))). Let 0 < ε < 1 and ε < k
n < 1. Then,(

n
k

)
εj(1 − ε)n−k ≤

n

∑
j=k

(
n
j

)
εj(1 − ε)n−j ≤

(
n
k

)
εk(1 − ε)n−k

[
k(1 − ε)

k(1 − ε)− (n − k)ε

]
. (A81)

Proof. The proof for the lower bound is trivial and obvious. For proving the upper bound,
we employ the provided hints given in ([35] p. 531) as follows: Observe that(

n
j + 1

)
=

(
n
j

)(
n − k
k + 1

)
<

(
n
j

)(
n − j

j

)
, (A82)

and (
n

k + m

)
=

(
n

k + m − 1

)(
n − (k + m − 1)

k + m − 1

)
<

(
n

k + m − 1

)(
n − k

k

)
, (A83)
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Using the induction, we obtain(
n

k + m

)
<

(
n
k

)(
n − k

k

)m
. (A84)

Now, we sum over the variable j by using a geometric series. Next, we combine this
results with the result of part (a) in the Problem 5.8 of [35, Probl. 5.8], and we obtain the
desired upper bound. That is,√

n
8k(n − k)

enH(k/n)+k log ε+(n−k) log(1−ε) ≤
n

∑
j=k

(
n
j

)
εj(1 − ε)n−j (A85)

<

√
n

2πk(n − k)
· k(1 − ε)

k(1 − ε)− (n − k)ε
· enH(k/n)+k log ε+(n−k) log(1−ε).

Appendix G. Bound on the Upper Tail of the Binomial Cumulative Distribution
Function—Part 2

Lemma A4. Let 0 < ε < 1 and ε < k
n < 1. Then,

n

∑
j=k

(
n
j

)
εj(1 − ε)n−j ≤ 2n

[
H( k

n )−Tε(
k
n )
][

k(1 − ε)

k(1 − ε)− (n − k)ε

]
. (A86)

Proof. Recall that the equation of the tangent line to the binary entropy function H(δβ) at
the specific point δβ = ε is given by

Tε(δβ)

(a)
= H(ε) + (δβ − ε)

dH(δβ)

dδβ

∣∣∣∣
δβ=ε

(b)
= H(ε) + (δβ − ε) log

(
1 − ε

ε

)
= H(ε) + (δβ − ε)

[
log(1 − ε)− log ε

]
(A87)

(c)
= −ε log ε − (1 − ε) log(1 − ε) + δβ log(1 − ε)− δβ log ε − ε log(1 − ε) + ε log ε

= −ε log ε − log(1 − ε) + ε log(1 − ε) + δβ log(1 − ε)− δβ log ε − ε log(1 − ε) + ε log ε

= − log(1 − ε) + δβ log(1 − ε)− δβ log ε

= − log(1 − ε) + δβ log(1 − ε)− δβ log ε

= −δβ log(ε)− (1 − δβ) log(1 − ε),

where (a) holds by definition of a tangent line to a function at specific point, (b) follows
since derivative of the entropy function reads the negative of the logit function, i.e.,

dH(δβ)

dδβ
= −logit (δβ) ≜ − log

(
δβ/(1 − δβ)

)
, (A88)

for 0 < δβ < 1, and (c) holds by definition of the entropy function, i.e.,

H(ε) ≜ −ε log ε − (1 − ε) log(1 − ε). (A89)

Therefore, exploiting (A88) we obtain,

Tε

(
k
n

)
= − k

n
log(ε)− (1 − k

n
) log(1 − ε), (A90)
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which implies −nTε(
k
n ) = k log(ε) + (n − k) log(1 − ε). Thereby,

2−nTε(
k
n ) = εk(1 − ε)n−k. (A91)

Now, observe that the Binomial coefficient (n
k) where k ≥ 1 and n − k ≥ 1, can be

upper bounded as follows ([34] see p. 353)(
n
k

)
≤ 2nH( k

n ). (A92)

Therefore,

k(1 − ε)

k(1 − ε)− (n − k)ε
·
(

n
k

)
εk(1 − ε)n−k

(a)
≤ k(1 − ε)

k(1 − ε)− (n − k)ε
· 2nH( k

n ) · εk(1 − ε)n−k

(b)
≤ k(1 − ε)

k(1 − ε)− (n − k)ε
· 2nH( k

n ) · 2−nTε(
k
n ) =

[
k(1 − ε)

k(1 − ε)− (n − k)ε

]
· 2n

[
H( k

n )−Tε(
k
n )
]
, (A93)

where (a) holds by (A91), and (b) follows by exploiting (A91). Now, recalling (A86),
we obtain

n

∑
j=k

(
n
j

)
εj(1 − ε)n−j ≤ k(1 − ε)

k(1 − ε)− (n − k)ε
2n
[

H( k
n )−Tε(

k
n )
]
. (A94)

This completes the proof of Lemma A4.

Appendix H. Bound on the Binomial Cumulative Distribution Function

Lemma A5 (see ([74] App. A)). Let 0 < ε < 1 and k < n with k
n < ε. Then,

k

∑
j=0

(
n
j

)
εj(1 − ε)n−j ≤ ε(n − k)

εn − k
· 2n

[
H( k

n )−Tε(
k
n )
]
. (A95)

Proof. Let us define

k′ ≜ n − k,

ε′ ≜ 1 − ε, (A96)

i.e., k ↔ k′ and ε ↔ ε′ or equivalently

k ↔ n − k,

ε ↔ 1 − ε. (A97)

Now, observe that k
n > ε ⇒ k′

n < ε′.
Furthermore, by definition of the binary entropy function and its tangent line, we have

H
(

k
n

)
= H

(
n − k

n

)
, (A98)

and

Tε

(
k
n

)
= T1−ε

(
n − k

n

)
, (A99)

where (A98) follows by (A89) and (A99) holds by (A90).
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Now, applying the variable exchange of j ↔ n − j unto (A86), we obtain

n−j=n

∑
n−j=k

(
n

n − j

)
εn−j(1 − ε)n−(n−j) ≤ 2n

[
H( k

n )−Tε(
k
n )
][

k(1 − ε)

k(1 − ε)− (n − k)ε

]
. (A100)

Observe that, since the index of sum in (A86) runs form k to n, i.e., k ≤ j ≤ n, in the
new system, we have k ≤ n − j ≤ n, which is equivalent to 0 ≤ j ≤ n − k. Further, the
Binomial coefficient for 0 ≤ j ≤ n fulfills the subsequent identity:(

n
n − j

)
=

(
n
j

)
, (A101)

Thereby,

n−k

∑
j=0

(
n
j

)
εn−j(1 − ε)j ≤ 2n

[
H( k

n )−Tε(
k
n )
][

k(1 − ε)

k(1 − ε)− (n − k)ε

]
. (A102)

Now, applying the exchange of variables given in (A97) unto (A102), we obtain

k

∑
j=0

(
n
j

)
(1 − ε)n−jεj ≤ 2n[H( n−k

n )−T1−ε(
n−k

n )]

[
(n − k)ε

(n − k)ε − k(1 − ε)

]

= 2n
[

H( k
n )−Tε(

k
n )
][

(n − k)ε
(n − k)ε − k(1 − ε)

]
, (A103)

where the equality holds by (A98) and (A99). Therefore,

k

∑
j=0

(
n
j

)
(1 − ε)n−jεj ≤ 2n

[
H( k

n )−Tε(
k
n )
][

(n − k)ε
(n − k)ε − k(1 − ε)

]
. (A104)

Now, we focus on the bracket in (A103), which can be simplified as follows:

(n − k)ε
(n − k)ε − k(1 − ε)

=

(
n−k

n

)
ε(

n−k
n

)
ε − k

n (1 − ε)
=

ε − k
n ε

ε − k
n

=
ε(n − k)
εn − k

, (A105)

where the first equality follows by dividing both sides in the left side by factor n. Thereby,

k

∑
j=0

(
n
j

)
(1 − ε)n−jεj ≤ ε(n − k)

εn − k
· 2n

[
H( k

n )−Tε(
k
n )
]
. (A106)

This completes the proof of Lemma A5.
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