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The usage of synthetic data is gaining momentum in part due to the unavailability

of original data due to privacy and legal considerations and in part due to its utility

as an augmentation to the authentic data. Generative adversarial networks (GANs),

a paragon of generative models, initially for images and subsequently for tabular

data, has contributedmany of the state-of-the-art synthesizers. As GANs improve,

the synthesized data increasingly resemble the real data risking to leak privacy.

Di�erential privacy (DP) provides theoretical guarantees on privacy loss but

degrades data utility. Striking the best trade-o� remains yet a challenging research

question. In this study, we propose CTAB-GAN+ a novel conditional tabular

GAN. CTAB-GAN+ improves upon state-of-the-art by (i) adding downstream

losses to conditional GAN for higher utility synthetic data in both classification

and regression domains; (ii) using Wasserstein loss with gradient penalty for

better training convergence; (iii) introducing novel encoders targeting mixed

continuous-categorical variables and variables with unbalanced or skewed data;

and (iv) training with DP stochastic gradient descent to impose strict privacy

guarantees. We extensively evaluate CTAB-GAN+ on statistical similarity and

machine learning utility against state-of-the-art tabular GANs. The results show

that CTAB-GAN+ synthesizes privacy-preserving data with at least 21.9% higher

machine learning utility (i.e., F1-Score) across multiple datasets and learning tasks

under given privacy budget.
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1 Introduction

In the modern business world, it is common for companies to leverage big data to

gain valuable insights from a variety of internal and external sources. However, the in-

depth knowledge contained within these data can often infringe upon personal privacy and

lead to injustified analysis (Narayanan and Shmatikov, 2008). To mitigate the risk of data

abuse and protect against privacy breaches, many governments introduced strict regulations

such as GDPR (EU), CCPA&NYPA (US), and LGPD (Brazil), which enforces stringent data

protection measures. This presents a challenge for data-driven industries as they must now

seek out innovative, scientifically sound solutions that enable knowledge discoveries while

adhering to the constraints of data privacy and government regulation.

One potential solution is the use of synthetic data. These synthetic data are not only

statistically comparable to the original data but also exhibit the same utility in subsequent

data analysis, and the artificial nature makes them compliant with GDPR. The generative

adversarial network (GAN) (Goodfellow et al., 2014), which is composed of a generator

and a discriminator, is an innovative generative model that has been proven effective in

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1296508
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1296508&domain=pdf&date_stamp=2024-01-08
mailto:zilong.zhao@tum.de
https://doi.org/10.3389/fdata.2023.1296508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1296508/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Zhao et al. 10.3389/fdata.2023.1296508

synthesizing images, and has recently been utilized to synthesize

tabular data (Mottini et al., 2018; Park et al., 2018; Xu et al.,

2019; Zhao et al., 2021). However, recent studies have shown

that GANs may fall prey to membership inference attacks which

greatly endanger the personal information present in the real

training data (Chen et al., 2020b; Stadler et al., 2020). Therefore,

it is imperative to safeguard the training of tabular GANs such

that synthetic data can be generated without causing harm. To

address these issues, prior studies (Jordon et al., 2018; Long et al.,

2019; Torkzadehmahani et al., 2019; Torfi et al., 2020) rely on

differential privacy (DP) (Dwork, 2008). DP is a mathematical

framework that provides theoretical guarantees bounding the

statistical difference between any resulting machine learning (ML)

model trained with or without a particular individual’s information

in the original training dataset. Typically, this can be achieved by

injecting calibrated statistical noise while updating the parameters

of a network during back-propagation, i.e., DP stochastic gradient

descent (DP-SGD) (Abadi et al., 2016; Xie et al., 2018; Chen et al.,

2020a), or by injecting noise while aggregating teacher ensembles

using the PATE framework (Papernot et al., 2016; Jordon et al.,

2018).

Current state-of-the-art (SOTA) tabular GAN algorithms only

consider two types of variables, namely, continuous and categorical,

ignoring a significant class of mixed data type. It is also uncertain

if existing solutions can effectively handle highly imbalanced

or skewed variables. Furthermore, most SOTA DP GANs are

evaluated on images, and their efficacy on tabular datasets needs

to be verified. Existing DP GANs do not provide a well-defined

consensus on which DP framework (i.e., DP-SGD or PATE) is

optimal for training tabular GANs. Moreover, DP GAN algorithms

such as Chen et al. (2020a) (GS-WGAN) and Jordon et al.

(2018) (PATE-GAN) change the original GAN structure from

one discriminator to multiple discriminators, which increases the

complexity of the algorithm. Xie et al. (2018) (DP-WGAN) and

Torfi et al. (2020) (RDP-GAN) use the weight clipping to bound

gradients which introduces instability for GAN training.

In this study, we extend CTAB-GAN (Zhao et al., 2021) to

a new algorithm CTAB-GAN+. The objectives of CTAB-GAN+

are two-folds: (1) further improve the synthetic data quality in

terms of machine learning utility and statistical similarity; and

(2) implement efficient DP into tabular GAN training to control

its performance under different privacy budgets. To achieve the

first goal, CTAB-GAN+ introduces a new feature encoder used for

variables following single Gaussian distribution. Moreover, CTAB-

GAN+ adopts the Wasserstein distance plus gradient penalty

(hereinafter referred to as Was+GP) loss (Gulrajani et al., 2017)

to further enhance the stability and effectiveness of GAN training.

Finally, CTAB-GAN+ adds a new auxiliary model to improve

the synthesis performance for regression tasks. To achieve the

second goal, CTAB-GAN+ uses the DP-SGD algorithm to train

a single instead of multiple discriminators as in PATE-GAN and

GS-WGAN. This reduces the complexity of the algorithm. CTAB-

GAN+ also applies DP-SGD to the generator and the auxiliary

model when there are real data involved in the calculation of losses.

Additionally, CTAB-GAN+ reduces the privacy cost by accounting

for sub-sampling (Wang et al., 2019) of smaller subsets from the full

dataset used to train the models.

We rigorously evaluate CTAB-GAN+ using two setups: (1)

without DP to generate data as realistic as possible and (2) with

DP under different privacy budgets to show the trade-off with data

fidelity. Both setups rely on machine learning utility and statistical

similarity of the synthetic data as evaluation metrics. Specifically,

CTAB-GAN+ is tested on seven widely used machine learning

datasets: Adult, Covertype, Credit, Intrusion, Loan, Insurance, and

King against 9 SOTA tabular data generation algorithms: IT-GAN,

CTGAN, TVAE, TableGAN, CWGAN, andMedGAN used in setup

one, and PATE-GAN, DP-WGAN, and GS-WGAN used in setup

two. In setup one, CTAB-GAN+ outperforms all baselines by at

least 33.5% on accuracy and 56.4% on AUC. In setup two under

the same privacy budget (i.e., ǫ = 1 and ǫ = 100), CTAB-GAN+

outperforms all SOTA DP GANs on average by at least 7.8% and

21.9% on F1-score.

The main contributions of this study can be summarized

as follows: (1) Novel conditional adversarial network which

introduces a classifier/regressor providing additional supervision

to improve the utility for ML applications. (2) Efficient modeling

of continuous, categorical, and mixed variables via novel data

encoding. (3) Improved GAN training using well-designed

information loss, downstream loss and generator loss along with

Was+GP to enhance stability and effectiveness. (4) Constructed a

simpler and more stable DP GAN algorithm for tabular data to

control its performance under different privacy budgets. Our code

is openly hosted at this github.1

2 Motivation

Through empirical analysis, we show how previous SOTA

methods fall short in addressing challenges in industrial datasets.

The specifics of our experimental setup are detailed in Section 5.1.

2.1 Single Gaussian variables

Single mode Gaussian distributions are very common.

Figure 1A shows the histogram of variable bmi (i.e., body mass

index) in the Insurance dataset, and synthetic data are generated

by six SOTA algorithms for this variable. The distribution of

real data is close to a single mode Gaussian distribution. But

except TableGAN and TVAE, none of the SOTA algorithms can

correctly recover this distribution in their synthetic data. IT-

GAN reproduced the Gaussian distribution, but its mean and

standard deviation shifted. CTGAN uses variational Gaussian

mixture (VGM) to model all continuous variables. However, VGM

is a complicated method to deal with single mode Gaussian

distributions as it initially approximates the distribution with

multiple Gaussian mixtures by default. TVAE also uses VGM to

encode continuous column, but variational autoencoder (VAE)

framework handles this use case better than GAN. CWGAN and

MedGAN use min-max normalization to scale the original data

to [0, 1]. TableGAN also uses min-max normalization but scales

the original data to [−1, 1] to better match the output of the

1 https://github.com/Team-TUD/CTAB-GAN-Plus-DP
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FIGURE 1

Challenges of modeling industrial dataset using existing GAN-based table generator: (A) single Gaussian, (B) mixed type, (C) long tail distribution, and

(D) skewed data.

generator using tanh as activation function. The reason that min-

max normalization works for TableGAN but not MedGAN and

CWGAN is because the training convergence for both algorithms

is less stable than for TableGAN. However, since TableGAN

applies min-max normalization on all variables, it suffers from

a disadvantage modeling column with complex multi-modal

Gaussian distributions.

2.2 Mixed data type variables

As far as we are aware, existing GAN-based tabular data

generators only recognize table columns as either categorical or

continuous. However, in reality, a variable can possess qualities

of both types and often exhibits missing values as well. A prime

example of this is the Mortgage variable from the Loan dataset.

Figure 1B displays the distribution of the original and synthetic data

generated by six SOTA algorithms for this variable. As the data

described, a loan holder can either have no mortgage (0 value) or

a mortgage (any positive value). Despite the numerical nature of

the data, all six SOTA algorithms treated the Mortgage variable as

continuous, neglecting the unique significance of the value zero. As

a result, all six algorithms generate values of approximately 0 rather

than an exact 0. Furthermore, negative values for Mortgage hold no

meaning in the real world.

2.3 Long tail distributions

Real-world data often exhibits long tail distributions, where the

majority of occurrences are concentrated near the initial value of

the distribution, with rare cases appearing toward the end. This

can be seen in the cumulative frequency plots of data generated

by six SOTA algorithms for the Amount variable in the Credit

dataset, as shown in Figure 1C. This variable represents transaction

amounts when using credit cards, and it is likely that the majority

of transactions involve relatively small amounts, ranging from a few

bucks to thousands. However, it is also possible for there to be a very

small number of transactions with large amounts. It is noteworthy

that for the purpose of comparison, both plots utilize the same x-

axis, but the real data does not contain any negative values. The

real data demonstrates that 99% of occurrences occur at the start of

the range, with the distribution extending up to 25,000. In contrast,

none of the synthetic data generators is able to effectively learn and

replicate this behavior.

2.4 Skewed multi-mode continuous
variables

The term multi-mode is derived from variational Gaussian

Mixtures (VGM), which is discussed in more detail in Section 4.3.

The rationale behind the use of multiple modes can be easily

understood through the examination of Figure 1D. This figure

plots the distribution of the working hours-per-week variable from

the adult dataset, including the original data and synthetic data

generated by all six SOTA algorithms. It is clear that the original

distribution does not conform to a standard Gaussian shape. There

is a prominent peak at 40 h, but there are also several lower peaks

at 20, 45, and 50. Additionally, the altitude of approximately 20

is higher than those in 10 or 30. This type of behavior poses a

challenge for SOTA data generators to capture. The closest results

are obtained by IT-GAN and CTGAN which use VGM estimation

for continuous variables. IT-GAN recovers most of the modes in

the original distribution. However, the frequency of each mode

changed, especially the dominant mode of approximately 40 h.

CTGAN loses some modes compared to the original distribution.

The above examples show the shortcomings of current SOTA

GAN-based tabular data generation algorithms and motivate the

design of our proposed CTAB-GAN+.

3 Related work

The related study consists of two parts: (i) generative model for

tabular data, and (ii) differential private tabular GANs.
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3.1 Generative model for tabular data

Current state-of-the-art introduces several generative models

for tabular data synthesis. MedGAN (Choi et al., 2017) combines

a GAN with an autoencoder to synthesize electronic health record

(EHR) data. While traditional GANs are only able to learn the

distribution of continuous values, MedGAN’s autoencoder is used

to translate the continuous generation into categorical values.

Mottini et al. (2018) adopted the Cramér Distance (Bellemare

et al., 2017) and cross-net architecture (Wang et al., 2017) into

the algorithm. In addition to generating with continuous and

categorical data types, Mottini et al. (2018) also handled a missing

value in the table by adding new variables. TableGAN (Park

et al., 2018) includes an auxiliary classifier in the algorithm to

improve the correlations between the generated features and labels

for classification datasets. IT-GAN (Lee et al., 2021) uses neural

ordinary differential equations (NODEs; Chen et al., 2018) as

its generator. One advantage of this design is that IT-GAN can

control the synthesis quality by controlling the negative log-

density. However, the dimensionality of the generator’s hidden

layers cannot be changed, so an autoencoder is needed to compress

the input into a fixed-length hidden representation. This design

has the limitation that there is a loss of information during the

compression from the table to the latent vector, which means that

the GAN is unable to learn from the lost information.

In order to generate tabular data while conditioning on

specific class of particular variable, conditional GAN is increasingly

used. The ability to generate data for specific classes is

important when the available data is limited and highly skewed

as it allows the creation of synthetic data to rebalance the

distribution. CWGAN (Engelmann and Lessmann, 2020) utilizes

the Wasserstein distance (Arjovsky et al., 2017) in the conditional

GAN framework and uses a conditional vector to oversample

the minority class in order to address imbalanced tabular data

generation. CTGAN (Xu et al., 2019) and TVAE (Xu et al.,

2019) used a variational Gaussian mixture to encode continuous

columns in order to handle complex data distributions. CTGAN

also adopts a strategy called training-by-sampling, which leverages

the use of the conditional vector to address imbalanced categorical

variable problems.

CTAB-GAN+ combines the strengths of previous approaches,

such as Was+GP, auxiliary classifier along with the effective

encodings. Additionally, CTAB-GAN+ addresses the challenges of

single Gaussian and long-tail variable distributions and introduces

a new conditional vector structure to better handle imbalanced

continuous variable distribution.

3.2 Di�erential private tabular GANs

To avoid leaking sensitive information on single individuals,

previous studies explored multiple differential private learning

techniques applied to GANs. Table 1 provides an overview. PATE-

GAN (Jordon et al., 2018) uses PATE (Papernot et al., 2016)

which relies on output sanitization by perturbing the output of

an ensemble of teacher discriminators via Laplacian noise to train

a student discriminator scoring the generated samples. One key

limitation is that the student discriminator only sees synthetic

data. Since these data are potentially unrealistic, and the provided

feedback can be unreliable. (Xie et al., 2018) (DP-WGAN), (Chen

et al., 2020a) (GS-WGAN), and (Torfi et al., 2020) (RDP-GAN)

used differential private stochastic gradient descent (DP-SGD)

coupled with the Wasserstein loss. Moreover, DP-WGAN uses a

momentum accountant, whereas GS-WGAN and RDP-GAN used

a Rényi Differential Privacy (RDP) accountant. The Wasserstein

loss is known to be more effective against mode-collapse compared

to KL divergence (Arjovsky et al., 2017). The RDP accountant

provides tighter bounds on the privacy costs improving the privacy-

utility trade-off. To incorporate differential privacy guarantees and

make the training compatible with the Wasserstein Loss, Xie et al.

(2018) and Torfi et al. (2020) used weight clipping to enforce the

Lipschitz constraint. The drawback is the need for careful tuning

of the clipping parameter (see Section 4.7). To overcome this

issue, Chen et al. (2020a) enforced the Lipschitz constraint via a

gradient penalty term as suggested by Gulrajani et al. (2017) but

addressed only images and studies its efficacy only for training the

generator network.

The proposed CTAB-GAN+ leverages RDP-based privacy

accounting comparing to PATE used by PATE-GAN. Same as DP-

WGAN, CTAB-GAN+ uses one discriminator instead of multiple

ones trained by PATE-GAN and GS-WGAN. Since CTAB-GAN+

adopts Was+GP loss, it intrinsically constraints the gradient norm

allowing to forgo the weight clipping used inDP-WGAN. This leads

to a more stable training. In a nutshell, CTAB-GAN+ by training

only one discriminator with Was+GP loss results in a more stable

DP GAN algorithm compared to the SOTA algorithms.

4 CTAB-GAN+

In order to address the challenges described in Section 2,

CTAB-GAN+ introduces several new features. One of these

features is a redesigned min-max scaler that normalizes single

Gaussian variable as well as a novel mixed-type encoder that can

effectively represent mixed categorical-continuous variables and

missing values. CTAB-GAN+ incorporates Was+GP, downstream,

information, and generator losses (Gulrajani et al., 2017; Odena

et al., 2017; Park et al., 2018; Xu et al., 2019) to improve synthetic

data quality and training stability. Additionally, the newly designed

conditional vector can counter the mode-collapse problem for

both the imbalanced categorical and continuous variables. Finally,

differential private SGD training is implemented for all the

components to achieve strict privacy guarantees.

4.1 Technical background

4.1.1 Tabular GAN
GANs have proven its utility for synthesizing tabular data in

previous studies (Yahi et al., 2017; Park et al., 2018; Xu et al., 2019).

There are many excellent methods that we can learn from.

Modeling imbalanced dataset can be a challenge for GANs as

they can cause models to disproportionately favor the majority

class. To address this issue, we adopted the training-by-sampling

method from CTGAN. This approach involves the use of a
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TABLE 1 Overview of DP GANs.

Model DP algo Loss WC DP site #D Noise Account. Data format

PATEGAN PATE KL Diver. N D M Lap. PATE Table

DP-WGAN DP-SGD Was. Y D S N Moment Image & Table

GS-WGAN DP-SGD Was. + GP N G M N RDP Image

RDP-GAN DP-SGD Was. Y D S N RDP Table

CTAB-GAN+ DP-SGD Was. + GP N (D, G), S (C) G,D, C S N RDP Table

Diver, Divergence;Was,Wasserstein;WC,Weight Clipping; GP, Gradient Penalty; Lap, Laplacian noise; N, No; Y, Yes;N, Gaussian noise; S, Single; M,Multiple;G, Generator;D, Discriminator;

C, Auxiliary model.

conditional vector, which represents the classes of categorical

columns. The vector is used to both feed the generator and

discriminator and to sample subsets of the real training data that

satisfy the given condition. By leveraging this condition, we can

resample all classes and give minority classes a higher chance of

being included in the training data.

To more effectively represent tabular data, we use one-hot

encoding for all the categorical variables. To handle the complex

distributions of continuous columns, we adopted theMode-Specific

Normalization (MSN) method (Xu et al., 2019). This involves

encoding each value as a value-mode pair based on a variational

Gaussian mixture model.

To improve the stability of GAN training, CTAB-GAN+

adopts the Was+GP (Gulrajani et al., 2017) loss, which was

proposed to address the issues of exploding and vanishing gradients

that can arise with the use of gradient clipping in the original

WGAN (Arjovsky et al., 2017). Comparing to WGAN (Arjovsky

et al., 2017), Was+GP replaces weight clipping with a constraint

on the gradient norm of the discriminator, which helps to further

stabilize the training process and reduces the need for hyper-

parameter tuning. One notable difference between Was+GP and

other GAN methods is that the discriminator is updated five times

per mini-batch of data, while the generator is only updated once.

This has implications for our differential privacy budget, which is

described in more detail in Section 4.7.

To enhance the generation quality, we incorporated three extra

terms into the loss function of the generator: information (Park

et al., 2018), downstream [referred as classification loss in Odena

et al. (2017) for classification problems], and generator loss (Xu

et al., 2019). The information loss is used to minimize the

discrepancy between statistics of the real data and the generated

data, helping to produce data that is more statistically similar to

the real data. The downstream loss requires adding to the GAN

architecture an auxiliary model (classifier or regressor) in parallel

to the discriminator. The auxiliary model produces predictions

based on the generated features. The downstream loss measures

the discrepancy between the synthesized and predicted values in

downstream analysis, helping to improve the semantic integrity

of synthetic records. For instance, in a health record dataset,

the record (sex = male, disease = uterine cancer) would not be

semantically correct, as men do not have a uterus, and such a

record would not exist in the original data, but “male” and “uterine

cancer” are existing in the sex and disease columns, respectively.

The downstream loss, which is used by TableGAN for classification

tasks, helps to prevent the generation of semantically incorrect

records. CTAB-GAN+ extends the use of the downstream loss

to regression datasets. The generator loss measures the difference

between the specified conditions and the output classes of the

generator. This loss helps the generator to learn to produce the

exact same classes as the given conditions.

4.1.2 Di�erential privacy
DP is becoming the standard solution for privacy protection

and has even been adopted by the US census department to bolster

privacy of citizens (Hawes, 2020). DP protects against privacy

attacks by minimizing the influence of any individual data point

based on a given privacy budget. In this study, we leverage the Rényi

Differential Privacy (RDP) (Mironov, 2017) as it provides stricter

bounds on the privacy budget. A randomized mechanism M is

(λ, ǫ)-RDP with order λ and privacy budget ǫ if

Dλ(M(S)||M(S′)) =
1

λ− 1
logEx∼M(S)

[(
Pr[M(S) = x]

Pr[M(S′) = x]

)]λ−1

≤ ǫ (1)

holds for any adjacent datasets S and S′, where Pr denotes

the probability density at given condition and Dλ(P||Q) =
1

λ−1 logEx∼Q[(P(x)/Q(x))
λ] represents the Rényi divergence for two

probability distributions P and Q (Chen et al., 2020a). In addition,

a (λ, ǫ)-RDP mechanismM can be expressed as

(ǫ +
log1/δ

λ− 1
, δ)-DP. (2)

where δ denotes the probability of breaching DP constraints. For

the purpose of this study,M corresponds to a tabular GANmodel.

RDP is a strictly stronger privacy definition than DP as

it provides tighter bounds for tracking the cumulative privacy

loss over a sequence of mechanisms via the composition

theorem (Mironov, 2017). Let ◦ denote the composition operator.

For M1,...,Mk such that Mi is (λ, ǫi)-RDP ∀i , the composition

M1◦...◦Mk is

(λ,
∑

i

ǫi)-RDP (3)

Additionally, for a Gaussian mechanism (Dwork and Roth,

2014),Mσ parameterized by σ as

Mσ (x) = f (x)+N(0, σ 2I) (4)

where f denotes an arbitrary function with sensitivity 12f =

maxS,S′ ||f (S) − f (S′)||2 over all adjacent datasets S and S′ and N
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represents a Gaussian distribution with zero mean and covariance

σ 2I (where I is the identity matrix), Mσ satisfies (λ,
λ12f

2

2σ 2 )-

RDP (Mironov, 2017).

Lastly, two more theorems are key to this study. The post-

processing theorem (Dwork and Roth, 2014) states that if M

satisfies (ǫ, δ)-DP, F ◦M will satisfy (ǫ, δ)-DP, where F can be

any arbitrary randomized function. Hence, it suffices to train one

of the two networks in the GAN architecture with DP guarantees

to ensure that the overall GAN is compatible with differential

privacy. RDP for subsampled mechanisms (Wang et al., 2019)

computes the reduction in privacy budget when sub-sampling

private data. Formally, let X be a dataset with n data points

and subsample return m ≤ n subsamples without replacement

from X (subsampling rate γ = m/n). For all integers λ ≥

2, if a randomized mechanism M is (λ, ǫ(λ))-RDP, then M ◦

subsample is

(λ, ǫ′(λ))-RDP (5)

where

ǫ′(λ) ≤
1

λ− 1
log(1

+ γ 2

(
λ

2

)

min
{

4(eǫ(2) − 1), eǫ(2) min{2, (eǫ(∞) − 1)2}
}

+

λ
∑

j=3

γ j

(
λ

j

)

e(j−1)ǫ(j) min{2, (eǫ(∞) − 1)j)})

According to (1), each fixed λ can be used as a privacy measure,

Wang et al. (2019) emphasized its function view in which ǫ is a

function of λ, and this function is fully determined by M. The

function is denoted by ǫ(λ). When λ = ∞, it indicates that M

is (ǫ, 0)-DP, i.e., pure DP.

4.2 Architecture of CTAB-GAN+

The structure of CTAB-GAN+ is shown in Figure 2. It

comprises three blocks: generator G, discriminator D, and an

auxiliary component (either a classifier or a regressor) C. The

input of G requires a noise vector plus a conditional vector. The

conditional vector construction details are given in Section 4.4.

Before feeding data to D and C, variables are encoded via different

feature encoders depending on the variable type and characteristics.

The details of the used encoders are provided in Sections 4.3,

4.5, and 4.6. The input of D needs to also concatenate the same

conditional vector as given to G.

GANs are trained via a zero-sum min-max game where the

goal of the generator being to produce synthetic data that is

indistinguishable from real data, and the goal of the discriminator

being to accurately distinguish between real and synthetic data.

In the specific case described in the text, G is trained using

additional feedback based on three loss terms: the information

loss, the downstream loss, and the generator loss. The information

loss measures the difference between the first- and second-order

statistics (mean and standard deviation) of the synthetic and real

data, encouraging the synthetic data to have the same statistical

properties as the real data. The downstream loss measures the

correlation between the target column and other columns in the

data, ensuring that the combination of values in the synthetic data

are semantically correct. The generator loss is the cross-entropy

between the given conditional vector and the generated output

classes, encouraging the generator to produce exactly the same

output classes as the given conditional vector. These three loss

terms are added to the default loss term (i.e., Was+GP) of G during

training. We adopted the CNN structure from Park et al. (2018)

for G and D. CNNs are good at capturing the relation between

pixels within an image, which in our case, can help to increase the

semantic integrity of synthetic data. The input data, which consists

of row records stored as vectors, are processed by wrapping it in the

closest square matrix dimensions and padding missing values with

zeros. C, implemented using a multi-layer perceptron (MLP) with

four 256-neuron hidden layers, is trained on the real data to better

interpret the semantic integrity of the synthetic data. The synthetic

data is reverse transformed from its matrix encoding to a vector

(details in Section 4.3), while the real data are encoded (details in

Sections 4.3, 4.6) before being used as input for C to create the class

label predictions.

Suppose the last layer of D is softmax, then we used fx and

fG(z) that denote the logits fed into this softmax layer from a real

sample x and a sample generated from latent value z, respectively.

The information loss for G is calculated as

LG
info = ||E[fx]x∼pdata(x) − E[fG(z)]z∼p(z)||2

+ ||SD[fx]x∼pdata(x) − SD[fG(z)]z∼p(z)||2

where pdata(x) and p(z) denote prior distributions for real data and

latent variable, E and SD denote the mean and standard deviations

of the features, respectively. The downstream loss is expressed as

LG
dstream = E[|l(G(z))− C(fe(G(z)))|]z∼p(z)

where l(.) returns the target variable and fe(.) returns the input

features of a given data record. Finally, the generator loss is

presented as

LG
generator = H(mi, m̂i)

where mi and m̂i are the given and generated conditional vector

bits corresponding to column i and H(.) is the cross-entropy loss.

Condition in column i is selected using the training-by-sampling

procedure (see Section 4.4 for details).

Let LD
default and LG

default denote the GAN loss of discriminator

and generator from Was+GP. Its unique objective function of

discriminator is defined as follows:

LD = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

︸ ︷︷ ︸

original discriminator loss

+ λ E
x̂∼Px̂

[(
∥
∥∇x̂D(x̂)

∥
∥
2
− 1])2

︸ ︷︷ ︸

gradient penalty

where Px̂ is defined as sampling uniformly along straight lines

between pairs of points sampled from the real data distribution

Pr and the generator distribution Pg . For G, the complete training

objective is

LG = LG
default + LG

info + LG
dstream + LG

generator
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FIGURE 2

Synthetic tabular data generation via CTAB-GAN+.

The training objective for D is unchanged. Finally, the loss

to train the auxiliary C is similar to the downstream loss of

the generator:

LC
dstream = E[|l(x)− C(fe(x))|]x∼pdata(x)

4.3 Mixed-type Encoder

The tabular data are organized in rows and columns, and each

column is encoded before it is used as input for training. We

distinguished three types of variables: categorical, continuous, and

mixed. Mixed columns contain both categorical and continuous

values, or any column with missing values. To handle mixed

columns, we propose a new mixed-type encoder that treats them

as concatenated value-mode pairs. As an example, the encoding of

a mixed variable is shown in red in Figure 3A. The values in this

column can either be exactly µ0 or µ3 (the categorical part) or

continuously distributed around two peaks inµ1 andµ2. To handle

the continuous part, we adopted the Mode-Specific Normalization

(MSN) idea from Xu et al. (2019) in using a variational Gaussian

mixture (VGM) (Bishop, 2006) model to estimate the number of

modes k, e.g., k = 2 in our example, and fit a Gaussian mixture.

The learned Gaussian mixture is P =
∑2

k=1 ωkN(µk, σk), whereN

is the normal distribution, and ωk,µk, and σk are the weight, mean,

and standard deviation of each mode, respectively.

In order to encode values within the continuous region of the

variable distribution, we establish a relationship between each value

and the mode with the highest probability of occurrence, which

is then normalized accordingly (see Figure 1B). To determine the

appropriate mode, we first consider the probability density of both

ρ1 and ρ2 for a given variable value τ . Once the mode with the

highest probability is selected (in our example, mode 1 due to its

higher ρ1), we then proceeded to normalize the value, resulting in

the normalized value α =
τ−µ1
4σ1

. To keep track of the mode used

to encode τ , we utilize one-hot encoding, with the specific mode

(e.g., mode 1) being represented as a binary vector (in our example,

β = [0, 1, 0, 0]). Finally, we concatenate α and β , expressed as

α
⊕

β , to obtain the final encoding.

For the categorical value (such as µ0 or µ3 in Figure 3A), the

normalized value α is simply set to 0, as the category is determined

solely by the one-hot encoding component. As an illustration, for

a given value within µ1, the final encoding can be expressed as

0
⊕

[1, 0, 0, 0].

The process of encoding categorical variables involves the

utilization of a one-hot vector, denoted by γ . In the event

of missing values, these are treated as a distinct class and an

additional bit is added to the one-hot vector to represent it

accordingly. For a given row that possesses N variables, it is

encoded by concatenation of the encoding of all variable values,

i.e., either (α
⊕

β) for continuous and mixed variables or γ for

categorical variables. Having n continuous/mixed variables and

m categorical variables (n + m = N) the final encoding is

V =

n
⊕

i=1

αi

⊕

βi

N
⊕

j=n+1

γj (6)

4.4 Conditional vector construction

In CTAB-GAN+, we leverage conditional GAN to tackle the

issue of imbalanced distribution in training datasets, extending

the training-by-sampling approach (Xu et al., 2019). This method

has been extended to incorporate the modes of continuous and

mixed columns, thereby providing a more complete solution to

the problem. When we sample real data, we used the conditional

vector to filter and rebalance the training data. The conditional

vector V is a bit vector given by the concatenation of all mode

one-hot encodings β (for continuous and mixed variables) and all

class one-hot encodings γ (for categorical variables) for all variables

present in Equation 6. Each conditional vector specifies a single
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FIGURE 3

Encoding for mix data-type variable. (A) Mixed type variable distribution with VGM. (B) Mode selection of single value in continuous variable.

FIGURE 4

Conditional vector: example selects class 2 from third variable.

mode or a class, with V being a zero vector that has a single

one in correspondence to the selected variable with the selected

mode/class. Figure 4 shows an example with three variables, one

continuous (C1), one mixed (C2), and one categorical (C3), with

class 2 selected in C3.

In order to address the issue of imbalanced data

distribution during training, we utilize a conditional vector

which is constructed for each training iteration. To build

this vector, we first randomly choose a variable with equal

probability. We then estimate the probability distribution

of each mode (or class for categorical variables) within the

selected variable, using logarithm of frequency as a proxy.

By using the logarithm of the probabilities instead of the

original frequencies, we increase the chances of including rare

modes/classes in the training process and prevent the issue

of collapsing.

To rebalance the dataset, each timewe need a conditional vector

during training, we first randomly choose a variable with uniform

probability. Then, we calculated the probability distribution of

each mode (or class for categorical variables) in that variable

using frequency as proxy and sample a mode based on the

logarithm of its probability. Using the log probability instead

of the original frequency gives minority modes/classes higher

chances to appear during training. This helps to alleviate the

collapse issue for rare modes/classes. Extending the conditional

vector to include the continuous and mixed variables helps

to deal with imbalance in the frequency of modes used to

represent them.

4.5 General transform

CTAB-GAN originally adopts the mode-specific-normalization

(MSN) from CTGAN to encode all continuous variables. MSN

uses VGM to estimate the distribution of continuous variables.

Figure 1A shows that VGM is not suitable for simple distributions

such as single Gaussian. Another problem is the dimensionality

explosion caused by using one-hot-encoding for categorical

variables with a high number of categories. To counter both

problems we propose the general transform (GT). GT is an effective

approach to minimize the complexity of our algorithm.

The main idea of GT is to encode columns in the range of

(−1, 1). This makes the encoding directly compatible with the

output range of the generator using tanh activation function.

This is achieved via a shifted and scaled min-max normalization.

Mathematically, given a data point xi of a continuous variable

x, the transformed value, xti = 2 ∗ xi−min(x)
max(x)−min(x)

− 1, where

min(x) and max(x) represents the minimum and maximum values

of the continuous variable. Inversely an encoded or generated

value xti may be reverse transformed as Xi = (max(x) −

min(x))∗
Xt
i+1

2 +min(x). Continuous variable can be directly treated

with the above formulas for normalization and denormalization.

Categorical variables are first encoded using integers before using

the above normalization and rounded to integers after using the

above denormalization.

A similar transform was first introduced by TableGAN, but

it applies this transformation on all variables. This choice is not

optimal. From our experiments, we find that this technique only

works well for continuous columns with simple distributions such

as a single-mode Gaussian and does not cater to more complex

distributions. By default, CTAB-GAN+ deals with continuous

variable with MSN and only selectively uses GT for processing

single-mode Gaussian variables. Similarly, when the categorical

column is high dimensional and we decide to use another encoder

instead of one-hot encoding, categorical columns should prefer

MSN as encoding rather than GT. Using GT loses the mode

indicator, i.e., β1 in Figure 4, from the conditional vector forgoing

the ability to enhance the correlation between variables for specific

categories. Moreover, using integers instead of one-hot vectors can

impose artificial distances between the different categories which

do not reflect the reality. Therefore, we recommend to use GT
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for categorical variables only if the categorical variables contain

so many categories that the available machines can not train

with the encoded data and the distribution of the categories is

single-mode Gaussian.

4.6 Long tails treatment

We use variational Gaussian mixtures (VGM) to encode

continuous values and handle multi-modal data distributions (as

explained in Section 4.3). However, this method is not suitable

for all types of data distributions, particularly those with long tails

where a few rare points are significantly far from the majority of the

data. Encoding values toward the tail of such distributions becomes

challenging for VGM. To address this issue, we apply a logarithm

transformation to pre-process variables with long tail distributions.

For a given variable with a lower bound of l, we replace each value

τ with τ c:

τ c =

{

log(τ ) if l >0

log(τ - l+ǫ) if l 60, where ǫ >0

}

(7)

By applying the logarithmic transformation to columns with

long tail distributions, we can reduce the distance between rare tail

values and the bulk data. This can help VGM to encode all values

more effectively. We demonstrate the effectiveness of this simple

yet powerful technique in Section 5.6.

4.7 Di�erential privacy

DP-SGD (Abadi et al., 2016) is the central framework to

provide DP guarantees in this study. DP-SGD uses noisy stochastic

gradient descent to limit the influence of individual training

samples xi. After computing the gradient g(xi), the gradient is

clipped based on a clipping parameter C and its L2 norm ḡ(xi) ←

g(xi)/max(1,
||g(xi)||2

C ), and Gaussian noise is added g̃(xi)← ḡ(xi)+

N(0, σ 2C2I)). g̃ is then used in place of g to update the network

parameters as in traditional SGD.

One of the biggest challenges with DP-SGD is tuning

the clipping parameter C since clipping greatly degrades the

information stored in the original gradients (Chen et al., 2020a).

Choosing an optimal clipping value that does not significantly

impact utility is crucial. However, tuning the clipping parameter

is laborious as the optimal value fluctuates depending on network

hyperparameters (i.e., model architecture and learning rate) (Abadi

et al., 2016). To avoid an intensive hyper-parameter search, Chen

et al. (2020a) proposes to use the Wasserstein loss with a gradient

penalty term for training discriminator in GANs. This term ensures

that the discriminator generates bounded gradient norms which

are close to 1 under real and generated distributions. Therefore, an

optimal clipping threshold of C = 1 is obtained implicitly for DP-

SGD on the discriminator and the generator. An empirical clipping

value (Chen et al., 2020c) 1 is used for the auxiliary model.

When there is real data involved, CTAB-GAN+ trains all its

components (i.e., discriminator, generator, and auxiliary model)

using DP-SGD where the number of training iterations is

determined based on the total privacy budget ǫ. Thus, to compute

the number of iterations, the privacy budget spent for every

iteration must be bounded and accumulated. For this purpose,

we use the subsampled RDP analytical moments accountant

technique. To elaborate the process of adding noise on gradients

and calculating privacy cost in CTAB-GAN+, we show the

theoretical analysis of discriminator in below as an example, the

generator and the auxiliary model share the same process.

Corollary 1. Each discriminator update satisfies (λ, 2Bλ/σ 2)-RDP

where B is the batch size.

Proof 1. Let f = clip(ḡD,C) be the clipped gradient of the

discriminator before adding noise. The sensitivity is derived via the

triangle inequality:

12f = max
S,S′
||f (S)− f (S′)||2 ≤ 2C (8)

Since C = 1 as a consequence of the Wasserstein loss with

gradient penalty, and by using (4), the Gaussian mechanism used

within the DP-SGD procedure denoted as Mσ parameterized

by noise scale σ may be represented as being (λ, 2λ/σ 2)-RDP.

Furthermore, each discriminator update for a batch of real data

points {xi, .., xB} can be represented as

g̃D =
1

B

B
∑

i=1

Mσ (▽θDL
D(θD, xi)) (9)

where g̃D and θD represent the perturbed gradients and the

weights of the discriminator network, respectively. LD is the loss

function of discriminator. (9) may be regarded as a composition of

B Gaussian mechanisms and treated via (3). The privacy cost for a

single gradient update step for the discriminator can be expressed

as (λ,
∑B

i=1 2λ/σ 2) or equivalently (λ, 2Bλ/σ 2).

Note that Mσ is only applied for those gradients that are

computed with respect to the real training dataset (Abadi et al.,

2016; Zhang et al., 2018). Hence, the gradients computed with

respect to the synthetic data or the gradient penalty term are left

undisturbed for discriminator. For the generator, the DP-SGD is

only applied on the gradients that are calculated by the information

loss. There are no real data involved in the generator loss. The

default GAN loss for generator LG
default and downstream loss are

the post processing of already DP-protected discriminator and

auxiliary model; therefore, there is no need to apply DP-SDG to

the generator for these losses.

Next, to further amplify the privacy protection of CTAB-

GAN+, we rely on (5) with sub-sampling rate γ = B/N, where

B is the batch size and N is the size of the training dataset.

Intuitively, subsampling adds another layer of randomness and

enhances privacy by decreasing the chances of leaking information

about particular individuals who are not included in any given

subsample of the dataset.

5 Experimental analysis for data utility

To demonstrate the synthetic tabular data quality of the

proposed CTAB-GAN+, we conducted experiments using seven
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commonly used machine learning datasets. We compared the

results with those obtained using six SOTA tabular data generators

as well as CTAB-GAN. Our evaluation criteria include measures

of ML utility, statistical similarity to the real data, and ablation

analyses to highlight the efficacy of the unique components of

CTAB-GAN and CTAB-GAN+.

5.1 Experimental setup

5.1.1 Datasets
All synthesizers are evaluated on seven commonly used

machine learning datasets. Three of them Adult, Covertype, and

Intrusion are from the UCI machine learning repository.2 Credit

and Loan are from Kaggle.3 The above five tabular datasets are

used for classification tasks where the target variable is categorical.

To consider also regression tasks we include two more datasets,

Insurance and King from Kaggle4 where the target variable

is continuous.

Due to computing resource limitations, 50K rows of data are

sampled randomly in a stratified manner with respect to the target

variable for the Covertype, Credit, and Intrusion datasets. The

Adult, Loan, Insurance and King datasets are taken in their entirety.

The details of each dataset are shown in Table 2. We assume that

the data type of each variable is known before training, a common

assumption from previous studies (Xu et al., 2019; Lee et al.,

2021).

5.1.2 Baselines
Our CTAB-GAN+ is compared with CTAB-GAN and six

other SOTA tabular data generators: IT-GAN (Lee et al.,

2021), CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019),

TableGAN (Park et al., 2018), CWGAN (Engelmann and Lessmann,

2020), and MedGAN (Choi et al., 2017). We implemented all

algorithms in Pytorch and kept the hyperparameters, generator,

and discriminator structures consistent with the descriptions

provided in their studies. All the algorithms remain the same

hyperparameters on all the datasets. For Gaussian mixture

estimation of continuous variables, we set the default number of

modes 10, the same as in CTGAN. We trained all algorithms for

150 epochs on Adult, Covertype, Credit, and Intrusion datasets.

However, for Loan, Insurance, and King datasets, we trained all

algorithms for 300 epochs as these datasets are smaller and require

more training to converge. All experiments are repeated three

times, and average results are reported.

5.1.3 Environment
The experimental machine equips with an Intel i9 CPU with 10

cores, a GeForce RTX 2080 Ti GPU, and 32 GB of memory.

2 http://archive.ics.uci.edu/ml/datasets

3 https://www.kaggle.com/mlg-ulb/creditcardfraud,itsmesunil/bank-

loan-modelling

4 https://www.kaggle.com/mirichoi0218/insurance,harlfoxem/

housesalesprediction

5.2 Evaluation metrics

The synthetic data are evaluated on two dimensions: (1)

machine learning (ML) utility and (2) statistical similarity. They

measure if the synthetic data can be used as a good proxy of the

original data.

5.2.1 Machine learning utility
The ML utility of classification and regression tasks is

quantified differently. For classification, we quantify the ML utility

via the performance, i.e, accuracy, F1-score, and area under the

ROC curve (AUC), achieved by five widely used machine learning

algorithms on real vs. synthetic data: decision tree classifier,

linear support-vector-machine (SVM), random forest classifier,

multinomial logistic regression, and MLP. Figure 5 shows the

evaluation process for classification datasets. The training dataset

and synthetic dataset are of the same size. The aim is to show

the difference in ML utility when a ML model is trained on

synthetic vs. real data. We used different classification performance

metrics. Accuracy is the most commonly used but does not cope

well with imbalanced target variables. F1-score and AUC are

more stable metrics for such cases. AUC ranges from 0 to 1. For

regression tasks, we quantify the ML utility in a similar manner but

using four common regression algorithms—linear regression, ridge

regression, lasso regression, and Bayesian ridge regression—and

three regressionmetrics—mean absolute percentage error (MAPE),

explained variance score (EVS), and R2 score. All algorithms

are implemented using scikit-learn 0.24.2 with default parameters

except max-depth 28 for decision tree and random forest, and 128

neurons for MLP. For a fair comparison, hyper-parameters are

fixed across all datasets. Due to this, our results can slightly differ

from Xu et al. (2019), where the authors use different ML models

and hyper-parameters for different datasets.

5.2.2 Statistical similarity
Three metrics are used to quantify the statistical similarity

between real and synthetic data.

5.2.2.1 Average Jensen-Shannon divergence (JSD)

The JSD is a measure of the difference between the probability

mass distributions of individual categorical columns in the real and

synthetic datasets. It is bounded between 0 and 1 and is symmetric,

making it easy to interpret. We average the JSDs from all the

categorical columns to obtain a compact, comprehensible score.

5.2.2.2 Average Wasserstein distance (WD)

To measure the similarity between the distributions of

continuous/mixed columns in synthetic and real datasets, we use

the Wasserstein distance. We found that the JSD metric was

numerically unstable for evaluating the quality of continuous

columns, especially when there is no overlap between the synthetic

and original datasets, so we chose to use the more stable

Wasserstein distance instead. To make the WD scores comparable

across columns, before computing the WD we fit and apply a min-

max normalizer to each continuous column in the real data and

apply the same normalizer to the corresponding columns in the
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TABLE 2 Datasets description.

Dataset Problem Train/test
split

Target
variable

Continuous Binary Multi-class Mixed-type Long-tail General
transform

Adult Classification 39k/9k “income” 3 2 7 2 0 1

Covertype Classification 40k/10k “Cover_Type” 10 44 1 0 0 47

Credit Classification 40k/10k “Class” 30 1 0 0 1 29

Intrusion Classification 40k/10k “Class” 22 6 14 0 2 6

Loan Classification 4k/1k “PersonalLoan” 5 5 2 1 0 9

Insurance Regression 1k/300 “charges” 3 2 2 0 0 1

King Regression 17.3k/4.3k ’price’ 11 2 5 2 0 7

FIGURE 5

Evaluation flows for ML utility of classification.

synthetic data. We average all column WD scores to obtain the

final score.

5.2.2.3 Di�erence in pair-wise correlation (Di�. Corr.)

To evaluate the preservation of feature interactions in synthetic

datasets, we compute the pair-wise correlation matrix separately

for real and synthetic datasets. Pearson correlation coefficient

is used between any two continuous variables. Similarly, the

Theil uncertainty coefficient is used to measure the correlation

between any two categorical features. The correlation ratio between

categorical and continuous variables is used. Note that the dython5

library is used to compute these metrics. Finally, the difference

between pair-wise correlation matrices for real and synthetic

datasets is computed.

5 http://shakedzy.xyz/dython/modules/nominal/#compute_associations

5.3 Results analysis

We first discuss the results in ML utility before addressing

statistical similarity.

5.3.1 ML utility
Table 3 shows the results for the classification datasets. A better

synthetic dataset is expected to have small differences in ML utility

for classification tasks trained on real and synthetic data. It can

be seen that CTAB-GAN+ outperforms all other SOTA methods

and CTAB-GAN in all the metrics. CTAB-GAN+ decreases the

AUC difference from 0.094 (i.e., best baseline CTAB-GAN) to

0.041 (56.4% reduction), and the difference in accuracy from

7.86% (i.e., best baseline IT-GAN) to 5.23% (33.5% reduction).

The improvement over CTAB-GAN shows that general transform
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TABLE 3 Di�erence (± standard deviation) of ML utility and statistical similarity for Classification between original and synthetic data, averaged on five

datasets.

Method ML utility di�erence Statistical similarity di�erence

Accuracy (%) F1-score AUC Avg JSD Avg WD Di�. corr.

CTAB-GAN+ 5.23±1.493 0.090 ± 0.009 0.041 ± 0.003 0.039 ± 0.002 0.010 ± 0.001 2.03 ± 0.039

CTAB-GAN 8.90±1.841 0.107± 0.008 0.094± 0.004 0.062± 0.002 0.013± 0.002 2.09± 0.031

IT-GAN 8.95±1.911 0.229± 0.007 0.183± 0.002 0.078± 0.001 0.026± 0.002 2.63± 0.053

TVAE 7.86±2.034 0.181± 0.010 0.140± 0.004 0.097± 0.002 0.017± 0.002 2.41± 0.055

CTGAN 21.51±3.525 0.274± 0.012 0.253± 0.006 0.070± 0.002 0.025± 0.002 2.73± 0.097

TableGAN 11.40±2.381 0.130± 0.009 0.169± 0.004 0.080± 0.001 0.055± 0.004 2.30± 0.078

MedGAN 14.11±4.431 0.282± 0.017 0.285± 0.006 0.110± 0.004 0.159± 0.003 2.77± 0.181

CWGAN 20.06±4.014 0.354± 0.022 0.299± 0.006 0.132± 0.002 0.136± 0.002 2.82± 0.167

A lower value indicates a better result. Best result in each column is highlighted in bold.

TABLE 4 Di�erence (± standard deviation) of ML utility and statistical similarity for regression between original and synthetic data, averaged on two

datasets.

Method ML utility di�erence Statistical similarity di�erence

MAPE EVS R2 Avg JSD Avg WD Di�. corr.

CTAB-GAN+ 0.04 ± 0.011 0.03 ± 0.014 0.04 ± 0.002 0.040 ± 0.001 0.014 ± 0.001 0.65 ± 0.044

CTAB-GAN 0.06± 0.010 0.05± 0.006 0.06± 0.002 0.119± 0.003 0.042± 0.001 1.23± 0.040

IT-GAN 0.61± 0.025 0.41± 0.019 0.48± 0.003 0.097± 0.001 0.029± 0.001 2.23± 0.076

TVAE 0.24± 0.019 0.08± 0.009 0.22± 0.002 0.184± 0.002 0.021± 0.002 1.13± 0.058

CTGAN 0.87± 0.091 0.59± 0.047 0.71± 0.002 0.139± 0.002 0.035± 0.001 2.60± 0.117

TableGAN 0.34± 0.010 0.43± 0.006 0.48± 0.001 0.212± 0.003 0.031± 0.002 2.26± 0.039

MedGAN 0.98± 0.131 0.65± 0.172 0.43± 0.005 0.269± 0.004 0.145± 0.005 2.82± 0.175

CWGAN 0.64± 0.099 0.72± 0.073 0.46± 0.003 0.292± 0.003 0.159± 0.005 2.79± 0.076

A lower value indicates a better result.

encoder and Was+GP loss indeed help enhance the feature

representation and GAN training. Table 4 shows the results for the

regression datasets. The result of CTAB-GAN and CTAB-GAN+

are far better than all other baselines. This shows the effectiveness

of the feature engineering. Additionally, as CTAB-GAN+ adds

the auxiliary regressor which explicitly enhances the regression

analysis, the overall downstream performance of CTAB-GAN+ is

better than CTAB-GAN. We note that CTAB-GAN uses auxiliary

classification loss for the classification analysis and disables it for

the regression analysis.

5.3.2 Statistical similarity
Statistical similarity results for the classification datasets are

reported in Table 3 and for regression datasets in Table 4. CTAB-

GAN+ stands out again across all baselines in both groups of

datasets. For classification datasets, CTAB-GAN+ outperforms

CTAB-GAN, CTGAN, and IT-GAN by 37.1%, 44.3%, and 50.0%

in average JSD. This is due to the use of the conditional vector,

the log-frequency sampling and the extra losses, which work well

for both balanced and imbalanced distributions. CTAB-GAN+ also

outperforms all the baselines for continuous variables. Comparing

to CTAB-GAN, the significant improvement comes from the

use of general transform to model continuous columns with

simple distributions which originally usedMSN under CTAB-GAN

and CTGAN. For regression datasets, CTAB-GAN+ outperforms

CTAB-GAN by 63.4 and 74.5% in average JSD and average

WD, respectively. In addition to JSD and WD, the synthetic

regression datasets maintain much better correlation than all the

comparisons. This result confirms the efficacy of the usage of the

auxiliary regressor.

5.4 Ablation analysis

Due to the page limit, ablation analysis are only implemented

for classification datasets. We focus on conducting an ablation

study to analyse the impact of the different components of CTAB-

GAN and CTAB-GAN+.

5.4.1 With CTAB-GAN
To assess the effectiveness of each strategy, we conducted

four ablation studies that gradually remove components of CTAB-

GAN. The experiments include (1) w/o C, where we remove C

and the corresponding classification loss for Generator G from
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TABLE 5 Ablation analysis for CTAB-GAN (F1. di�.).

Dataset CTAB-GAN w/o C w/o I. Loss w/o MSN w/o LT

Adult 0.704 −0.01 −0.037 −0.05 -

Covertype 0.532 −0.018 −0.184 −0.118 -

Credit 0.710 +0.011 −0.177 +0.06 +0.001

Intrusion 0.842 −0.031 −0.437 +0.003 −0.074

Loan 0.803 −0.044 +0.028 +0.013 -

TABLE 6 Ablation analysis for CTAB-GAN+ (F1. di�.).

Dataset CTAB-GAN+ w/o GT w/o Was+GP

Adult 0.684 +0.013 −0.029

Covertype 0.636 −0.196 −0.012

Credit 0.802 −0.303 −0.08

Intrusion 0.912 −0.041 −0.049

Loan 0.806 −0.001 +0.003

CTAB-GAN; (2) w/o I. loss (information loss), where we remove

information loss from CTAB-GAN; (3) w/o MSN, where we use

min-max normalization to replace MSN for continuous variables.

Here, the conditional vector is the same as for CTGAN; and

(4) w/o LT (long tail), where we exclude the long tail treatment.

This only affects datasets with long-tailed columns, namely, Credit

and Intrusion.

The results are compared with the default CTAB-GAN. Table 5

shows the results in terms of F1-score difference between ablation

and CTAB-GAN on all five classification datasets. Each part

of CTAB-GAN has different impacts on different datasets. For

instance, w/o C has a negative impact for all datasets except

Credit, where the small number of categorical variables limits the

effectiveness of the semantic check. w/o information loss has a

positive impact on Loan but leads to worse results for all other

datasets. It can even make the model unusable for Intrusion.

w/o MSN performs bad for Covertype but has little impact for

Intrusion. Credit without MSN performs better than original

CTAB-GAN. This is because 28 out of its 30 continuous variables

are nearly single mode Gaussian distributed. The initialized high

number of modes, i.e., 10, for each continuous variable (same

setting as in CTGAN) degrades the estimation quality. w/o LT

has the biggest impact on Intrusion since it contains two long tail

columns which are important predictors for the target column.

For Credit, the influence is limited. Even if the long tail treatment

fits well the amount column (see Section 5.6), it is not a strong

predictor for the target column.

5.4.2 With CTAB-GAN+
To show the efficacy of the General Transform and Was+GP

loss in CTAB-GAN+, we propose two ablation studies. (1) w/o

GT which disables the general transform in CTAB-GAN+. All

continuous variables use MSN and all the categorical variables use

one-hot encoding. (2) w/o Was+GP which switches the default

GAN training loss from Was+GP to the original GAN loss

defined in Goodfellow et al. (2014). It is worth noting that the

information, downstream and generator losses are still present

in this experiment. The other experimental settings are the same

as in Section 5.4.1. Table 6 shows the results in terms of F1-

score difference among different versions of CTAB-GAN+. For

Covertype, Credit, and Intrusion datasets, the effects of GT and

Was+GP are all positive. GT significantly boosts the performance

on Covertype and Credit datasets. For Adult, it worsens the

result. The reason is that the Adult dataset contains only one

GT column: age. Since this column is strongly correlated with

other columns, the original MSN encoding can better capture this

interdependence. The positive impact of Was+GP on the other

hand is limited but consistent across all datasets. The only exception

is the Loan dataset, where GT and Was+GP have minor impacts.

This is due to the fact that Loan has fewer variables comparing

to other datasets, which makes it easier to capture the correlation

between columns. CTAB-GAN already performs well on Loan,

Therefore, GT and Was+GP cannot further improve performance

on this dataset.

5.5 Training time analysis

Previous results show that CTAB-GAN+ outperforms the

SOTA in ML utility and statistical similarity. This comes at

the expense of additional training complexity, i.e., Was+GP,

information, downstream and generator losses, and feature

encoding, i.e., mixed-type, long tail, and VGMmode in conditional

vectors. To capture the additional costs, Table 7 shows the average

training time per epoch for all models on all classification datasets.

IT-GAN is the slowest because it trains an autoencoder on top of

GAN. Since the dimensionality of its generator is unchanged for all

the datasets, its training time is similar across datasets except on

Loan due to its small size. Except IT-GAN, CTAB-GAN+ is slower

than other algorithms in most cases. CTAB-GAN+ runs faster than

CTAB-GAN on Credit and Loan datasets because of the usage of

GT. For other datasets, CTAB-GAN+ uses more training time than

CTAB-GAN per epoch due to the nature of Was+GP. Was+GP

demands updating five times the discriminator per data batch as

compared to a single update required by the original GAN loss.

Actually, CTGAN and CWGAN also use Was+GP loss in their

training. But with all the extra losses and auxiliary component,

CTAB-GAN+ and CTAB-GAN are slower than other algorithms.

To further improve the training efficiency of CTAB-GAN+,

it is possible to pre-train the classifier/regressor with the real
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TABLE 7 Training time (s/epoch) usage.

Dataset CTAB.+ CTAB. IT. TVAE CT. Table. Med. CW.

Adult 11.11 7.50 12.69 1.91 1.82 0.52 0.33 4.73

Covertype 9.24 8.38 12.74 4.09 3.44 1.69 0.33 10.41

Credit 3.79 8.92 11.51 10.46 2.46 1.73 0.34 4.50

Intrusion 12.54 10.73 12.83 6.90 3.09 1.75 0.34 10.81

Loan 0.44 0.57 1.19 0.29 0.18 0.06 0.04 1.12

FIGURE 6

Modeling industrial dataset using CTAB-GAN+: (A) simple Gaussian, (B) mixed type, (C) long tail distribution, and (D) skewed data.

dataset before-hand instead of in parallel to the generator. Thus,

by computing only the inference, we can speed up the calculation

of the classifier loss. However, if we use that solution to address this

issue, it may create another problem. This is because (Weng, 2019)

suggests that when training the GAN with a perfect discriminator,

the gradient of the loss function drops close to zero and learning

stagnates. That is why we do not pre-train the discriminator but

train it along side the generator. In similar vein, a well-trained

classifier/regressor may not help the training of generator at least

at the beginning.

5.6 Results for motivation cases

After reviewing all the metrics, let us recall the four motivation

cases from Section 2.

5.6.1 Single Gaussian variables
Figure 6A shows the real and CTAB-GAN+ generated bmi

variable. CTAB-GAN+ can reproduce the distribution with minor

differences. This shows the effctiveness of general transform to

better model variables with single Gaussian distribution.

5.6.2 Mixed data type variables
Figure 6B compares the real and CTAB-GAN+ generated

variable Mortgage in Loan dataset. This variable is encoded as

mixed type. We can see that CTAB-GAN+ generates clear “0”

values and the frequency is close to real data.

5.6.3 Long tail distributions
In Figure 6C, we present the cumulative frequency graph for the

Amount column in the Credit dataset, which has a typical long-tail

distribution. It can be observed that CTAB-GAN+ is able to recover

the real distribution with high fidelity. This is mainly attributed

to the log-transform data pre-processing used by CTAB-GAN+,

which enables it to learn this complex structure significantly better

than SOTA methods shown in Figure 1C.

5.6.4 Skewed multi-mode continuous variables
Figure 6 shows the original Hours-per-week variable

distribution from the adult dataset and the corresponding

synthetic data distribution from CTAB-GAN+. The synthetic data

do not only capture the dominant peak round 40 but also capture

well other side peaks with lower frequency. The reason is that

CTAB-GAN+ incorporates modes of VGM into conditional vector,

and then we can apply the training-by-sample and logarithm

frequency also to the modes of continuous variables. This gives the

mode with less weight more chance to appear in the training and

avoids the mode collapse.

5.7 Further discussion

The preceding findings highlight the efficacy of CTAB-GAN+

in modeling various types of data distributions, contributing

to enhanced fidelity for synthetic data. However, this section

delves into the limitations inherent in the current implementation

of CTAB-GAN+.
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TABLE 8 Di�erence of accuracy (%), F1-score, AUC, and AP between original and synthetic data: average over 5 ML models and five datasets with

di�erent privacy budgets ǫ = 1 and ǫ = 100.

Method ǫ = 1 ǫ = 100

Accuracy (%) F1-score AUC Accuracy (%) F1-score AUC

CTAB-GAN+ 32.21 0.473 0.409 22.04 0.392 0.348

PATE-GAN 38.17 0.513 0.447 37.96 0.508 0.394

DP-WGAN 36.88 0.536 0.510 27.27 0.502 0.423

GS-WGAN 64.10 0.668 0.495 58.22 0.639 0.488

A lower value indicates a better result. Best result in each column is highlighted in bold.

The primary challenge lies in handling high-dimensional data

during training. The use of one-hot encoding for categorical

columns, such as ZIP-Code, poses a significant hurdle. In such

cases, the encoded data becomes excessively lengthy and sparse,

amplifying the difficulty for the model to discern data patterns.

Additionally, extremely high-dimensional data may exceed the

memory capacity of the training machine. While labeling each

category with a numerical value and treating it as a continuous

column can mitigate this issue, it introduces implicit distances

between categories, deviating from the desired representation.

A second potential limitation lies in the permutation effect

on synthetic data quality when altering the tabular data column

order. Typically, permuting the column order of tabular data has

no influence on its semantic meaning. However, this can potentially

result in changes to the quality of synthetic data generated. During

the feature encoding step, CTAB-GAN+ initially transforms each

data row into an image and employs a convolutional neural

network (CNN) for both the generator and discriminator functions

to handle the data. CNNs are known for their proficiency in

capturing regional feature relations. As demonstrated in the results

presented in Tables 3, 4, CNN-based algorithms such as CTAB-

GAN and CTAB-GAN+ surpass the performance of the fully-

connected network-based CTGAN. Nevertheless, when a user

permutes the column order, regional features undergo changes,

leading to potential discrepancies in the information captured by

the CNN and, consequently, variations in synthetic data quality.

Addressing these challenges necessitates the exploration of

new feature engineering approaches and the development of

novel model structures. These avenues remain open for future

research endeavors.

6 Experiment analysis for di�erential
privacy

In this section, we show the effect of activating DP in

CTAB-GAN+ and compare CTAB-GAN+ with three SOTA DP

GAN algorithms.

6.1 Experiment setup

6.1.1 Datasets
Due to page limit, we only use the classification datasets: Adult,

Covertype, Intrusion, Credit, and Loan.

6.1.2 Metrics
We use the same ML utility metrics from Section 5.2 under two

privacy budgets, i.e., ǫ = 1 and ǫ = 100.

6.1.3 Baselines
CTAB-GAN+ is compared against three SOTA architectures:

PATE-GAN (Jordon et al., 2018), DP-WGAN (Xie et al., 2018), and

GS-WGAN (Chen et al., 2020a). The code of PATE-GAN and DP-

WGAN is taken from the private data generation toolbox6 which

already adapts them for tabular data synthesis. We extend GS-

WGAN to the tabular domain by converting each data row into

a bitmap image. We first normalized all values to the range [0, 1]

and re-shaped rows in the form of square images filling missing

entries (if any) with zeros. The re-shaped rows are fed into the

algorithm, and the generated images are transformed into data rows

by reversing the previous two operations. All hyper-parameters

are kept to their default values except for the default network

architecture which is adjusted according to the spatial dimensions

of the tabular datasets. Lastly, note that to compute privacy cost

fairly, the RDP accountant is used for all approaches that use DP-

SGD as it provides tighter privacy guarantees than the moment

accountant (Wang et al., 2019).

6.1.4 Privacy accounting
To compute the privacy cost in a fair manner, we used the

RDP accountant for all approaches that employ DP-SGD: CTAB-

GAN+, DP-WGAN, and GS-WGAN. PATE-GAN uses moment

accountant (Wang et al., 2019) by default. We set δ = 10−5 for

all experiments. We follow the examples of DP-WGAN and set

the exploration span of λ to [2, 4096]. We use (2) to convert the

overall cumulative privacy cost computed in terms of RDP back to

(ǫ, δ)-DP.

6.2 Results analysis

6.2.1 ML utility
Table 8 presents the results for the differences ML utility

between models trained on the original and synthetic data: lower

is better. CTAB-GAN+ outperforms all other SOTA algorithms

under both privacy budgets. With a looser privacy budget, i.e.,

6 https://github.com/BorealisAI/private-data-generation
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TABLE 9 Statistical similarity metrics between original and synthetic data: average on five datasets with di�erent privacy budgets ǫ = 1 and ǫ = 100.

Method ǫ = 1 ǫ = 100

Avg JSD Avg WD Di�. corr. Avg JSD Avg WD Di�. corr.

CTAB-GAN+ 0.322 0.136 5.16 0.302 0.131 5.03

PATE-GAN 0.356 0.221 9.45 0.366 0.221 8.94

DP-WGAN 0.362 0.221 9.19 0.359 0.221 9.49

GS-WGAN 0.624 0.472 15.61 0.547 0.397 10.90

A lower value indicates a better result. Best result in each column is highlighted in bold.

higher ǫ, all metrics for all algorithms improve. These results are

in line with our expectation because higher privacy budgets mean

training the model with less injected noise and more training

epochs—before exhaustion of the privacy budget. CTAB-GAN+

outperforms second best 7.8% in F1-Score under ǫ = 1, and

this advantage increases to 21.9% when ǫ = 100. The superior

performance of CTAB-GAN+ compared to other baselines can be

explained by its well-designed neural network architecture, which

improve the training objective and capacity to better deal with the

challenges of the tabular domain such as column dependencies.

This also explains the poor results offered by GS-WGAN which is

not designed to handling these specific issues achieving the worst

overall performance.

6.2.2 Statistical similarity
Table 9 summarizes the statistical similarity results. Among all

DP models, CTAB-GAN+ and GS-WGAN consistently improve

across all metrics when the privacy budget is increased. But the

performance of GS-WGAN is significantly worse than CTAB-

GAN+. PATE-GAN and DP-WGAN also see improvements on

Diff. Corr., which means the algorithms capture better column

dependencies with higher privacy budgets. But there are no

significant improvement on Avg JSD and Avg WD. This highlights

the inability of this methods to capture the statistical distributions

during training despite a looser privacy budget. This can be

explained by the lack of effective feature engineering for dealing

with complex statistical distributions present in the tabular

domain which arise from imbalances in categorical columns and

skews in continuous columns commonly found in real-world

tabular datasets.

7 Conclusion

In this study, we propose CTAB-GAN+, a conditional GAN

based tabular data generator. CTAB-GAN+ advances beyond SOTA

methods by improving performance on regression datasets and

allowing control over the quality of synthesized data. The core

features of CTAB-GAN+ include as follows: (1) introduction of the

auxiliary component, i.e., classifier or regressor, into conditional

GAN, (2) effective data encodings for mixed and simple Guassian

variables, (3) a novel construction of conditional vectors, and (4)

tailored DP discriminator for tabular GAN. Results show that the

synthetic data of CTAB-GAN+ results into higher ML utility and

higher similarity against ten baselines on seven tabular datasets.

The overall improvement on classification datasets is at least 56.4%

(AUC) and 33.5% (accuracy) compared to related studies with no

privacy guarantees. When turning on differential privacy, CTAB-

GAN+ outperforms baselines at least 7.8% and 21.9% on F1-Score

under privacy budgets ǫ = 1 and ǫ = 100. As future study, we plan

to expand the range of data types that our algorithm can handle to

better represent all types of data columns.We also intend to develop

a tool for automated data type detection to make our algorithm

more user-friendly.

Author’s note

This manuscript delves into the pivotal realm of data science,

emphasizing the generation of synthetic data using advanced

machine learning models, specifically Generative Adversarial

Networks (GANs) for tabular data. In the contemporary big

data ecosystem, there’s an increasing need to generate high-

quality synthetic data, which not only resembles the original but

also ensures stringent privacy safeguards. Our research, centered

around the introduction of CTAB-GAN+, contributes to this

need by blending robust data synthesis, data utility preservation,

and the incorporation of differential privacy. Given the journal’s

commitment to advancing the frontiers of data science and

exploring the challenges and opportunities posed by big data, our

work is distinctly aligned with its vision.
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