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Sebaceous glands drive acne, however, their role in other inflammatory skin

diseases remains unclear. To shed light on their potential contribution to

disease development, we investigated the spatial transcriptome of sebaceous

glands in psoriasis and atopic dermatitis patients across lesional and non-

lesional human skin samples. Both atopic dermatitis and psoriasis sebaceous

glands expressed genes encoding key proteins for lipid metabolism and

transport such as ALOX15B, APOC1, FABP7, FADS1/2, FASN, PPARG, and

RARRES1. Also, inflammation-related SAA1 was identified as a common

spatially variable gene. In atopic dermatitis, genes mainly related to lipid

metabolism (e.g. ACAD8, FADS6, or EBP) as well as disease-specific genes,

i.e., Th2 inflammation-related lipid-regulating HSD3B1 were differentially

expressed. On the contrary, in psoriasis, more inflammation-related

spatially variable genes (e.g. SERPINF1, FKBP5, IFIT1/3, DDX58) were

identified. Other psoriasis-specific enriched pathways included lipid

metabolism (e.g. ACOT4, S1PR3), keratinization (e.g. LCE5A, KRT5/7/16),

neutrophil degranulation, and antimicrobial peptides (e.g. LTF, DEFB4A,

S100A7-9) . In conclusion, our results show that sebaceous glands

contribute to skin homeostasis with a cell type-specific lipid metabolism,
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which is influenced by the inflammatory microenvironment. These findings

further support that sebaceous glands are not bystanders in inflammatory skin

diseases, but can actively and differentially modulate inflammation in a

disease-specific manner.
KEYWORDS

sebaceous glands, psoriasis, atopic dermatitis (AD), spatial transcriptomics, lipid
metabolism, inflammatory skin diseases
Introduction

Acne, one of the most prevalent diseases in adolescents,

provides evidence that sebocytes may be disease drivers by

increasing lipid production (1–4). Gene expression analyses of

whole tissue acne samples and sebocyte cell lines showed that

sebocytes are able to respond to a wide repertoire of both local

and systemic stimuli, such as hormones, growth factors and

neuroendocrine mediators, with an increased expression of

inflammatory cytokines, cholesterol biosynthesis, cyclooxygenase

and lipoxygenase (5, 6). This suggests that sebocytes may contribute

to the pathogenesis of acne and have a complex impact on skin

metabolism and inflammation. Advances in sebaceous gland (SG)

research including the detection of Toll-like receptors (TLRs) on the

surface of SGs (7), changes in gene expression patterns in response

to their activation (8, 9), and the production of antimicrobial

peptides (10–13) have led to the introduction of “sebaceous-

immunobiology” (14), suggesting that the active role of SGs in

disease pathogenesis may extend far beyond acne.

Results from immunostainings and whole tissue gene

expression data suggest that seborrhoeic dermatitis is centered

around dysfunctional SGs, in which metabolized sebum lipids

may induce inflammation (15, 16). The presence of enlarged SGs

in rosacea also suggests a central role in the pathology of this disease

(17, 18). Therefore, SG-rich areas, enlarged SGs and seborrhoea are

thought to contribute to inflammatory skin diseases. However, our

increasing knowledge of the immune-competence of sebocytes

allowed further intriguing speculations as to whether SGs could

indeed independently drive disease pathologies in two of the major

inflammatory skin diseases such as atopic dermatitis (AD) and

psoriasis (PSO).

AD is characterized by dry skin and inflammation, starting in

SG poor areas, and later involving SG-rich parts, such as the face

(19). Lipid analysis of the epidermis showed that the characteristic

lipid barrier disruption in AD is a result of keratinocyte dysfunction

and reduced levels of sebum lipids (20, 21). In contrast, PSO often

starts on the scalp, especially in the early-onset form, and

subsequently prefers sites with low sebum production, i.e. elbows

and knees. However, in the distinct entity known as “sebopsoriasis”

or “seborrhiasis” (seborrhoeic dermatitis + psoriasis), PSO lesions

occur at the same sites as seborrhoeic dermatitis (22). This
02
topographical coexistence, as well as other findings such as SG

atrophy observed in the chronic phase of both diseases (23, 24),

provide excellent starting points to further investigate the functional

sebaceous (immuno)biology in PSO and AD (25, 26).

In this work, we aim to clarify the role of SGs in the

development and disease homeostasis of AD and PSO. Therefore,

we investigated and compared the spatial transcriptomic changes in

SGs of lesional (L) and non-lesional (NL) human skin samples.
Results

SGs are characterized by their active lipid metabolism, lipid-

related gene expression and protein abundance. Recently, sebocytes

have been implicated in immunoregulatory functions (14).

However, comprehensive analyses of their in vivo gene expression

profile are lacking. Therefore, we aimed to identify differentially

expressed (DEGs) and spatially variable genes (SVGs) in SGs of

human NL, AD and PSO skin by spatial transcriptomics (Methods).

Briefly, we manually annotated sebaceous glands in PSO, AD and

NL skin samples (Figures 1A, B), visualized the data (Figure 1C),

analyzed spatial patterns of SG-specific SVGs (Figure 1D), DEGs

(Figure 1E) and pathway enrichments (Figure 1F).
Sebaceous glands exert a specific pattern
of gene expression in the skin

First, we identified the gene expression profile of SGs in NL skin

samples. Our results showed that SGs have a specific gene

expression signature that clearly distinguishes them from other

structures within the skin (Figure 1C). Our analyses of SGs in NL

skin compared to the rest of NL skin delivered a large set of 5,449

differentially expressed genes highlighting the unique characteristics

of SGs (Supplementary Table S2, Supplementary Figure S3).

To further dissect the spatial expression profile of SGs in NL

skin, we identified SVGs and distinct spatial expression patterns

(Figures 2A–J; Methods) (27). Four of the expression patterns were

significantly enriched in SGs (Figure 2K): pattern 1 (1,178 genes,

padj value: 9.20e-23), pattern 7 (1,071 genes, padj value: 1.92e-07),

pattern 8 (495 genes, padj value: 6.77e-18), and pattern 9 (393
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genes, padj value: 5.02e-29). Pathway enrichment analysis provided

further insight into the SG-related patterns (Supplementary Table

S3). Genes from pattern 9 revealed SG-typical pathways related to

lipid, fatty acid, steroid, and cholesterol metabolism, and energy

production (Figure 2L). Genes from pattern 1 were associated with

mitochondrial function, the citric acid cycle and energy production

(Figure 2M). Pattern 7 genes were linked to intracellular transport

and cell cycle (Figure 2N).
Sebaceous gland transcriptome is different
in atopic dermatitis and psoriasis

Extending our studies to L samples of AD and PSO, distinct

gene expression profiles of NL and L SGs were revealed (Figure 3A).

We identified genes with significantly altered expression levels in

SGs compared to the rest of the skin in each of the above conditions

and applied pathway enrichment analysis (Figure 3B). The top 20

pathways enriched in NL SGs compared to the rest of NL skin

showed SG-typical functions related to lipid, cholesterol, or steroid

metabolism, among others, and were used as a reference for the

analysis of changes in DEGs in L SGs. Comparing the enriched

pathways of DEGs in SGs in NL and AD skin, we found that SGs

altered their specific gene expression signature related to synthesis

of very long chain fatty acyl-CoAs, SREBP-regulated cholesterol

biosynthesis, glycerophospholipid biosynthesis, and biotin

transport in AD SGs. When assessing DEGs in SGs of PSO

samples, pathways such as the citric cycle, electron transport and

ATP synthesis, vitamin metabolism and branched-chain amino acid

catabolism, which were enriched in NL and AD SGs, could not be

identified. Importantly, gene clusters determining key SG functions

such as peroxisomal lipid, steroid, fatty acid, cholesterol, and
Frontiers in Immunology 03
linoleic acid metabolism, as well as the activity of SREBP, were

detectable in both AD and PSO.

To better understand the biology of SGs at a finer spatial scale,

SVGs were identified using spatialDE (see also Materials &

Methods). In both AD and PSO, SGs continued to express genes

encoding key proteins for lipid metabolism and transport such as

ALOX15B (Figures 3C, D), APOC1, FABP7 (Figures 3E, F), FADS1,

FADS2, FASN, PPARG, or RARRES1 among others at high levels

(Supplementary Table S4). Inflammation-related SAA1 was also

identified as a common AD/PSO SVG (Figures 3G, H). AD SG-

specific SVGs included lipid metabolism-related genes such as

ACAD8, FADS6 , or EBP (Figure 3I), but also revealed

inflammation-related CCL17 and HSD3B1 (Figure 3K). In PSO

SGs, SERPINF1 (Figure 3J) and immune function-related FKBP5

(Figure 3L) were identified as SVGs. Other PSO-specific SVGs were

the typical lipid metabolism-related gene ACOT4, and S1PR3,

which is involved in proliferation and inflammation in PSO (28)

(Supplementary Table S4). SVG expression was shown on

previously annotated lesional atopic dermatitis (Figure 3M) and

psoriasis (Figure 3N) slides.
Sebaceous glands show profound changes
in their lipid production-related gene
expression profile in atopic dermatitis

Having identified the genetic programs specific to SGs in the

context of the whole skin, we aimed to define further disease-

specific gene expression changes. Therefore, we compared the gene

expression profiles of SGs in L AD skin with those of SGs in NL

samples. The top 3 enriched pathways were cholesterol

biosynthesis, fatty acid metabolism and steroid metabolism
B
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A

FIGURE 1

Study cohort and workflow. (A) The spatial transcriptomics dataset contains 6 lesional and non-lesional skin samples from psoriasis and atopic
dermatitis patients. 6 psoriasis, 10 atopic dermatitis, and 24 non-lesional spots, containing 26,186 transcriptomes, of which 212 were of sebaceous
glands, were analyzed. After (B) manual annotation for sebaceous glands and (C) visualization, the dataset was subject to (D) SpatialDE, (E) differential
gene expression, and (F) pathway enrichment analysis. Created with BioRender.com.
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(Figure 4A). These results provide further evidence that SGs in AD

actively modify their lipid profile already at the level of gene

expression. Clusters such as ATP synthesis and electron transport

further reveal an altered metabolic activity for SGs in AD skin.
Gene signature encoding type 3/Th17-
related immune functions distinguishes
sebaceous glands in psoriasis and
atopic dermatitis

By comparing the gene expression profile of SGs from L PSO

and NL samples, we identified PSO-typical pathways related to

differentiation (keratinization, cornified envelope formation) and

inflammation (neutrophil degranulation, antimicrobial peptides;

Figure 4B). In further analyses, we compared the gene expression
Frontiers in Immunology 04
profiles of L PSO vs. L AD SGs. In PSO, SGs gained

immunocompetence. Besides immune features such as interferon

signaling (e.g. IFIT1/3, DDX58) and production of antimicrobial

peptides (e.g. LTF, DEFB4A, S100A7-9), significant differences were

found in the expression of genes related to keratinization (e.g.

LCE5A, KRT5/7/16) and SUMOylation in PSO (Figure 4C).
Discussion

In this manuscript, we present an in vivo human spatial

transcriptome signature analysis of SGs. Compared to the

limitations of whole tissue analysis or in vitro data, spatial

transcriptomics allowed us to define the transcriptome of

sebocytes within small groups of cells in vivo. Using SpatialDE, a

spatial gene clustering approach that enables expression-based
B C

D E F
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FIGURE 2

Sebaceous glands have a pivotal role in lipid metabolism-related tasks in non-lesional skin. Spatially variable genes and distinct spatial expression
patterns were identified in non-lesional skin samples. (A–I) Enriched patterns for one replicate of a (J) non-lesional skin sample is shown.
(K) Significant enrichment of sebaceous gland spots in the pattern intensities was calculated using Mann-Whitney U one-sided (greater) test.
Pathway enrichment analysis in patterns (L) 9, (M) 1, and (N) 7.
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tissue histology (27), we were able to study the biology of SGs at an

even more granular scale.

SGs are well-defined, easily identifiable structures within the

skin, composed predominantly of sebocytes. Although this

minimizes annotation or contamination errors, a methodological

limitation of our work is that the 55 μm spot size of the Visium

Spatial Gene Expression slide (10x Genomics) used to analyze the

samples does not allow conclusions to be drawn at the level of

individual cells. This is more pronounced in acne samples, where

the inflammatory cell infiltrate is also localized in the partially

damaged pilosebaceous unit; therefore, we stuck to the two most

common inflammatory skin conditions, PSO and AD, where the

pilosebaceous unit is not the target of inflammation. A comparison

of our data to the SG-specific transcriptome of acne lesions would
Frontiers in Immunology 05
have been desirable. Nevertheless, aside from the above mentioned

limitations, published whole tissue analyses do not provide

sebocyte-specific gene expression data (29), while available single

cell RNA results on acne samples lack sebocyte-specific data (30).

Future spatial transcriptomics studies focusing on SGs in acne

lesions will allow further conclusions on the specific role and

comparison of SGs in acne and other inflammatory skin diseases.

Other limitations are that SGs are rare in lesional PSO and AD

samples, and the size of the cohort analyzed in our study is also

small, although the total of more than 26,000 transcriptomes

analyzed allowed us to delve deep into the SG transcriptome.

While confirming the overexpression of lipid metabolism-

related genes in SGs, our spatial transcriptomics analysis shed

light on previously unstudied pathways. The highly active cell
B
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FIGURE 3

Sebaceous glands’ transcriptome changes in inflammatory microenvironment. (A) UMAP plot of gene expression of non-lesional and lesional SGs.
(B) Top 20 Reactome pathways of enrichment analysis comparing non-lesional sebaceous glands vs. the rest of non-lesional skin and corresponding
enrichment in lesional atopic dermatitis sebaceous glands vs. the rest of lesional atopic dermatitis skin, and lesional psoriasis sebaceous glands vs.
the rest of lesional psoriasis skin. Selected spatial variable genes enriched in sebaceous glands (C–H) shared across atopic dermatitis and psoriasis,
(I, K) unique to lesional atopic dermatitis and (J, L) unique to lesional psoriasis. Annotated lesional (M) atopic dermatitis and (N) psoriasis slides.
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type-specific lipid metabolism of sebocytes has been progressively

revealed over the last two decades of sebocyte research (14). Here,

we confirm the in vivo relevance of widely studied enzymes and

signaling pathways like delta-6 desaturase/FADS2 or stearoyl-

coenzyme A desaturase (31, 32). Furthermore, the previously

reported central role of nuclear receptors such as PPARs or

retinoic acid (33–35), and the characterization of other

transcription factors such as SREBP-1 or FoxO1 (36) in the

regulation of SG proliferation and lipid metabolism (37) are

supported by our findings. Based on our data, linoleic acid, a

known activator of PPAR-g and also the source of arachidonic

acid, could be a potent natural stimulus behind the unique features

of sebocytes (38, 39). We also confirmed the central role of genes

involved in lipid synthesis (FASN, THRSP, and ELOVL5),

metabolism (FADS2 and ACSBG1) and transport (APOC1), and

keratinization (KRT79), which were found to be expressed in a

combined subpopulation of healthy, L and NL AD inner root sheath

and SG cells (40). In the present study, we identified each one of

these genes and many more as SVGs in L AD and PSO SGs. In

addition, our transcriptome analyses revealed enzymes and

pathways for further studies, such as the role of SUMOylation
Frontiers in Immunology 06
and the HSP90 chaperone cycle for steroid hormone receptors

in sebocytes.

The results of our study support the postulated inflammatory

capacity of sebocytes in AD. AD is characterized by dry skin and

inflammation, which is primarily associated with an impaired skin

barrier. The findings that AD skin has low levels of sebocyte-specific

lipids (20, 41, 42), and a recent publication showing that the amount

of sebum secreted by SGs was decreased in AD patients and was

negatively correlated with barrier function and disease severity (43),

further support that SGs may play an active role in the pathogenesis

of AD. Importantly, a recent study has also linked the cytokine

milieu of AD to sebocyte functions by showing that IL-4 upregulates

the expression of 3b-hydroxysteroid dehydrogenase 1 (HSD3B1), a

key enzyme in the conversion of cholesterol to sebum lipids (44).

Here, we support these findings by identifying HSD3B1 as an AD

SG-specific SVG.

SGs appear to be involved in type 2/Th2 inflammation.

ALOX15B, a common AD/PSO SVG, is a key player in fatty acid

metabolism, and cholesterol homeostasis. In our previous studies

investigating the eicosanoid/docosanoid signaling in the skin of

human AD patients, we found that the sum of 15-LOX metabolites
B

C

A

FIGURE 4

Sebaceous glands contribute to type 3 inflammation/Th17 immunity. Top 5 enriched pathways of (A) lesional atopic dermatitis sebaceous glands vs.
non-lesional sebaceous glands, (B) lesional psoriasis sebaceous glands vs. non-lesional sebaceous glands, and (C) lesional psoriasis sebaceous
glands vs. lesional atopic dermatitis sebaceous glands.
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was significantly increased (45). Furthermore, studies have shown

that in activated human macrophages, ALOX15B is induced by the

Th2 cytokines IL-4 and IL-13 and has an effect on IL-4-induced

CCL17 in an SREBP-2-dependent manner (46). This further

supports a potential involvement of SGs in type 2/Th2-

inflammation. However, the identification of ALOX15B as an

SVG in PSO SGs requires further validation to define its role in

type 3/Th17-inflammation.

We found further evidence for the active contribution of SGs in

inflammation. CCL17 plays a potential role in the pathogenesis of AD

(47), which was also identified as an AD-specific SVG in the present

study. While SAA1 encoding serum amyloid A1, previously described

as a marker of TLR 1/2- and 4-activated SGs (8), was also found to be a

common SVG of AD/PSO SGs in the present work, highlighting the

importance of further investigating the inflammatory capacity of SGs.

An alteration of the retinoic acid signaling at the level of the SGs

may be pathologically relevant, as RARRES1 expression levels were

also altered in SGs of AD and PSO samples. Notably, RARRES1 is

one of the key genes found to be upregulated in skin samples from

acne patients treated with the potent skin drying agent isotretinoin,

as well as in both the SEB1 (48) and SZ95 sebocyte cell lines (49) in

response to isotretinoin.

Overall, the SG transcriptome signature in AD revealed

numerous genes involved in the formation of the lipid skin

barrier. The clusters of mitochondrial functions, ATP synthesis

and respiratory electron transport that were altered in AD SGs

provide further important starting points for studies on how

changes in lipid production might be linked to an altered energy

expenditure (50, 51).

Our data confirmed that PSO SGs not only maintained their

active lipid metabolism, but also acquired immune-competence via

their gene expression profile. PSO is characterized by atrophy and

sometimes absence of SGs in the affected skin samples, raising the

questions of whether this plays a role in the development and

progression of the disease and whether the alterations in the

expression of lipid metabolism-related genes (AWAT2, DHCR7,

ELOVL5 or FAR2) identified in this study are specific to PSO. The

involvement of PSO SGs in skin inflammation was confirmed by

comparing SGs from PSO samples with SGs from NL and AD

samples. The detected transcripts encoding keratins and

differentially down-regulated genes related to cell cycle and

proliferation suggest that the driving mechanism behind SG

atrophy may share similarities, such as the involvement of

NOTCH signaling, but is generally different in the two diseases.

Immune-related clusters, such as interferon signaling, neutrophil

activation and the induction of genes encoding antimicrobial

peptides, clearly dissected the two diseases also at the level of

SGs, suggesting an active contribution of SGs to type 3/

Th17 inflammation.

Notably, S1PR3 was identified as a PSO SG-specific SVG in our

study, suggesting an involvement of SGs in the pathogenesis of PSO.

The lncRNA H19/miR-766-3p/S1PR3 axis has previously been

shown to contribute to keratinocyte hyperproliferation and skin

inflammation in PSO via the AKT/mTOR pathway (28). The PSO-

specific SVG SERPINF1 may also play a role in the immune

regulation of PSO (52).
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FKBP5 was identified as another PSO-specific SVG. Recently,

the immunoregulatory FKBP5 has been shown to contribute to NF-

kB-driven inflammation and cardiovascular risk (53), and is also

associated with depression susceptibility (54, 55). Both

cardiovascular risk and depression are known and common

comorbidities of psoriasis (56, 57). Further studies are needed to

investigate a potential role of FKBP5 in the link between systemic

inflammation, cardiovascular risk and depression susceptibility in

psoriasis patients.

In conclusion, this study provides human in vivo data which

confirmed that beyond altering their lipid metabolism in a disease-

specific manner in an inflammatory microenvironment, SGs can be

considered as an active and immunocompetent structure in L skin

with possible pathological and therapeutic relevance. Moreover, our

data serve as a starting point for further studies at protein level to

better understand the role of SGs in inflammatory skin diseases in

the future.
Materials & methods

Study cohort and spatial transcriptomics

The study cohort leverages patients from the Schäbitz et al.

study (58). L and NL skin from each patient was collected and

subsequently processed using the software SpaceRanger-1.0.0 from

10x Genomics. L skin was defined by clinical presence of typical

hallmarks of AD or PSO inflammation, such as involvement of

predilection sites, erythematous papules and plaques, or scaling.

After taking the biopsies, the diagnosis was confirmed by 2

independent dermatopathologists, considering typical histological

hallmarks of AD or PSO, including presence of immune cells,

spongiosis, acanthosis, papillomatosis, and hyperkeratosis, amongst

others. NL skin was defined as skin clinically and histologically

absent of the mentioned AD and PSO (or any other dermatosis)

hallmarks. The study was approved by the local ethics committee

(Klinikum Rechts der Isar, 44/16 S). Each patient gave written

informed consent for sample collection for research purposes.
Spatial transcriptomics data preprocessing

Leveraging the cohort from Schäbitz et al. (58), we performed

the preprocessing using `scanpy` (59). First, we conducted quality

control on spot and gene level. Spots having a mitochondrial

fraction above 25%, less than 30 genes, and less than 500 UMI-

counts or more than 500,000 UMI-counts were filtered out. Genes

were required to be measured in at least 20 spots. The R-package

`scran` (60) was used to normalize the data using size factors. We

added a pseudo count of 1 to the normed counts and transformed

them into log counts per million (logCPM). Next, we identified

highly variable genes for each specimen using the flavor cell_ranger.

We corrected for technical artifacts caused by the project co-variate

using `scanorama` (61). In order to embed the data in 2D, we

calculated principal components (PCs) and selected n_pcs = 15

explaining the most variance. PCs were leveraged to create a nearest
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neighbor graph using the default parameters. Using the graph, the

data was embedded in 2D using UMAP (62). For the downstream

analysis we selected only those specimen having SG annotations. In

total we got 1 PSO, 1 AD, and 1 non-lesional sample with 2

replicates each (6 slides in total) (Supplementary Table S1).
Differential gene expression and pathway
enrichment analysis of
spatial transcriptomics

To identify significantly up- and down-regulated genes in SGs

at a spatial resolution, we compared spots annotated as SG with the

remaining spots using the R-package ‘glmGamPoi’ (63). Raw counts

and size factors which have been calculated during the

preprocessing step were used as input for the differential gene

expression (DGE) analysis. In addition, we also considered

biological variances, i.e., cellular detection rate (cdr), patient

heterogeneity, and tissue layers. Variables of the differential gene

expression (DGE) analysis were NL skin, AD, PSO, and a pool of

PSO and AD. The following designs were used.

Ys; ɡ   ∼   cdr   +   patient   +   annotation   +   condition

and

Ys; ɡ ∼ cdr   +   annotation   +   condition

Here, Ys; ɡ is the raw count of gene ɡ in a spot s. The later design

was used to compare L, PSO vs. AD in Figure 4C, as the designmatrix

needed to be of full rank. P-values were corrected using the multiple

testing method of Benjamini-Hochberg (BH) (64). In addition, DEx

genes had to have a adj :   p − value   ≤   0:1 and jloɡ2FCj > 1.

Pathway enrichment analysis was performed using the

Bioconductor packages ‘ReactomePA’ (65) and ‘org.Hs.eg.db’

(66). Pathways were considered enriched at a false discovery rate

(FDR) of 10%, corrected with BH.
Discovering spatial patterns and
variable genes

We used spatialDE (27), which allowed us to determine spatial

patterns and their associated genes per sample. Following the

spatialDE workflow, we assumed normal distributed data,

corrected for library size and ran spatialDE with default settings

to obtain spatial variable genes (SVGs). Automatic expression

histology (AEH) was used to identify spatial patterns using the

previously observed and prefiltered SVGs requiring a q-value <

0.05. We set the number of expected patterns C to nine and used

the mean length scale as optimal characteristic length scale

parameter l as recommended by spatialDE. In order to

determine whether a pattern is enriched in a SG, we used the

alternative hypothesis that pattern intensity in SG is greater than

in other spots. The tests for all patterns on a specimen were

conducted using the one-sided Mann-Whitney U test (67) in the

python package `statannotations` (68). P-values were corrected
Frontiers in Immunology 08
with the multiple test correction method Bonferroni (69). We

called the null hypothesis rejected if the adj :   p − value   ≤   0:05.

Default parameters of Bioconductor’s R package “ReactomePA”

were used for p-value and q-value cut-offs, and a minimal gene set

size of five was required.
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