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Currently, the incidence of prostate cancer is increasing, and it has become a

great threat to men’s health. The detection, staging, and follow-up of prostate

cancer patients are inseparable from morphology or magnetic resonance

imaging (MRI). However, these do not fully meet the needs of diagnosis and

patient management. In particular, owing to the late diagnosis, metastatic

castration-resistant prostate cancer (mCRPC) patients usually have poor

survival and few options for further effective treatment. Prostate-specific

membrane antigen (PSMA), because of its overexpression on prostate cancer

cells, has gained interest due to its application in the imaging and theranostics

field. Several PSMA radioligands have been developed for imaging and treating

prostate cancer. Many clinical trials have assessed the efficacy and safety profiles

of these radionuclide agents and show promise in patients who have exhausted

other standard treatment options. To date, several small compounds for

targeting PSMA have been developed, and 68Ga-PSMA-11 and 18F-DCFPyL

have been approved by the United States (US) Food and Drug Administration

(FDA) for imaging of prostate cancer. 111In- or 99mTc-labeled PSMA-ligand can

guide surgeons searching for radioactive metastatic lymph nodes, and 177Lu- or
225Ac-labeled PSMA-ligand can be used for internal radiotherapy. Moreover,

some molecules for therapeutic application are undergoing different stages of

clinical trials. In this review, we present current perspectives on the use of PSMA-

targeted imaging and theranostics in prostate cancer. As PSMA-targeted imaging

and therapeutics are becoming the standard of care for prostate cancer patients,

we emphasize the importance of integrating nuclear medicine physicians into

multidisciplinary oncology teams.
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Introduction

Prostate cancer (PCa) ranks third among the most common

cancers diagnosed in men worldwide. With approximately 2.3

million new cases by 2040, PCa is becoming one of the most

prevalent neoplasms in men worldwide (1, 2). Thus, accurate

diagnosis, staging, and effective personalized treatment methods

are of vital importance.

Based on anatomy information, conventional imaging strategies

such as computed tomography (CT) and magnetic resonance

imaging (MRI) have limitations in lesion detection, especially in

metastatic patients, while bone scans do not offer anatomical details.

Thus, novel molecular imaging biomarkers are urgently needed.

Prostate-specific membrane antigen (PSMA) is a type II

transmembrane glycoprotein encoded by folate hydrolase 1 gene

(FOLH1) (3–5). It is weakly expressed in healthy prostate tissue but

is overexpressed in PSMA-positive PCa cells (3). Furthermore,

increasing expression of PSMA expression is observed in

androgen deficiency, hormone refractory and metastatic diseases,

higher PSA levels, and a higher International Society of Urologic

Pathologists (ISUP) grade at diagnosis (6, 7). Primary PCa lesions

are PSMA-negative proximately in 5%–10% of cases (8). Moreover,

PSMA is not specific to the prostate, and the expression in the

neovasculature of other solid malignancies (such as renal cell,

bladder transitional cell, and colon cell) was observed (3).

Moreover, in numerous normal tissues, for example, endometrial

glands, testis, bladder, kidney tubules, pancreas islets, heart, and

ganglion cells in the gastrointestinal tract and brain, weak-to-

moderate levels of PSMA expression have been detected (9).

Although it is reported that certain benign diseases such as

lymphadeni t is and mal ignant diseases such as lung

adenocarcinoma may also exhibit PSMA uptake (10), its

remarkable sensitivity and specificity for PCa continue to

establish it as a dedicated imaging modality for patients with PCa.

Thus, PSMA-positron emission tomography (PET) is still

considered to be a rather sensitive and highly specific tool for

PCa diagnosis despite its expression by subsets of various types of

other tissues (9, 11, 12).
Abbreviations: ADT, androgen deprivation therapy; ARATs, androgen-

receptor-axis-targeted therapies; BCR, biochemical recurrence; BiTE, bispecific

T-cell engager; bRFS, biochemical recurrence-free survival; CI, confidence

interval; CRPC, castration-resistant prostate cancer; CT, computed

tomography; DDR, DNA damage repair; DPD, 3,3-diphospho-1,2-

propanodicarboxylic acid; ePLND, extended pelvic lymph node dissection;

FDA, Food and Drug Administration; FOLH1, folate hydrolase 1 gene; GCPII,

carboxypeptidase II; mCRPC, metastatic castration-resistant prostate cancer;

mHSPC, majority of hormone-sensitive prostate carcinoma; MRI, magnetic

resonance imaging; OS, overall survival; PCa, prostate cancer; PET, positron

emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific

membrane antigen; RGS, radioguided surgery; rhPSMA, radio-hybrid PSMA;

RLT, radioligand therapy; RP, radical prostatectomy; SBRT, single-component

stereotactic radiotherapy; SPECT, single-photon emission computed

tomography; US, United States.
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In the field of PSMA-related therapy, PSMA-ligand imaging can

help improve the prognosis. Felix et al. combined PSMA-PET and

MRI-guided single-component stereotactic radiotherapy (SBRT)

for local recurrence of PCa, and the findings are encouraging

(13). Furthermore, several clinic trials such as VISION trial (14),

TheraP trial (15), and LuPSMA trial (16) have demonstrated

promising results of PSMA-targeted therapy in PCa patients.

Moreover, Horn et al. found that PCa patients with recurrence at

a single anatomical interval of location experienced significantly

longer biochemical recurrence-free survival (bRFS) and treatment-

free survival interval through PSMA radioguided surgery

(RGS) (17).

This review will provide an overview of the current clinical

applications of PSMA-targeted imaging and therapy.
PSMA-ligand imaging

PSMA-ligand PET/CT or MRI is mainly used in the following

clinical indications: primary staging of cancers, biochemical

recurrence (BCR), and detect ing and monitor ing of

advanced disease.
Primary staging

A precise staging, local extent, and extra-prostatic metastasis are

crucial in intermediate-risk and high-risk PCa patients for further

treatment method decisions. These include radical prostatectomy

(RP) with standard nodal dissection or extended pelvic lymph node

dissection (ePLND) in PCa, radiotherapeutic treatment, or

multimodal therapy. A prospective comparison of primary

staging before and after PSMA-ligand PET/CT was conducted.

Intermediate- and high-risk PCa patients (n = 108) have

indicated that PSMA-ligand PET/CT upstaged 6.4% of patients

from M0 to M1. Moreover, compared with conventional imaging,

14% of N0M0 patients became N1M0, and 2.8% of M1 patients

ended up with M0. A change in management of the disease

occurred in 21% of patients (18).

The additional molecular imaging information has increased

the detection rate of PSMA-ligand PET/CT. As evidence increases,

PSMA-ligand PET/CT is more effective in initial staging than other

imaging modalities. Compared with traditional imaging modalities

such as bone scans and CT, several studies have shown 68Ga-

PSMA-11 PET improved detection rates in malignant lesions (19).

Several retrospective studies have shown that 68Ga-PSMA-11 PET/

CT is superior to standard imaging and has high sensitivity and

specificity (94% and 99%, respectively) for lesion detection (12, 20).

A recent prospective trial, proPSMA, demonstrated that the

diagnostic accuracy of PET/CT was 27% greater than

conventional imaging (p < 0.001) (21).

The high specificity and high sensitivity of PSMA-ligand PET in

lesion detection of primary PCa patients have been proven. A

retrospective study of 1,253 patients (high-risk, 47.6%), metastatic

disease was detected by 68Ga-PSMA-11 PET in 12.1% of the cohort.

Nearly half of the detected lymph node metastases were outside the
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boundaries of an ePLND (Figure 1). Skeletal metastases were found

in 59 men (4.7%). PCa metastases were identified in 5.2% of

intermediate-risk patients, compared with 19.9% of high-risk

patients. The study highly demonstrated the potential of using

PSMA-PET for primary staging (22). Another study comparing 340

segments from 68Ga-PSMA-11 PET and multiparametric MRI with

histopathology has revealed that 68Ga-PSMA-11 PET/CT

significantly outperformed multiparametric MRI and even better

results were achieved when both methods were combined (23).

Furthermore, for detection of bony lesions in PCa, PSMA-

ligand PET clearly outperformed standard imaging (CT, MRI, and

bone scanning) in several studies (24, 25). Janssen et al. have

reported a superior sensitivity and specificity of 68Ga-PSMA-11

PET/CT compa r ed w i th 9 9mTc -3 , 3 - d i pho spho -1 , 2 -

propanodicarboxylic acid (DPD), single-photon emission

computed tomography (SPECT). In the region-based analysis, the

sensitivity and specificity of 68Ga-PSMA-11 PET/CT were 97.7%

and 100%, respectively, and those of 99mTc-DPD-SPECT were

69.4% and 98.3%, respectively (p < 0.05) (25). A study including

75 patients and 410 bone regions has demonstrated similar results.

It has been proven that 68Ga-PSMA-11 PET outperformed planar
99mTc bone scintigraphy to detect affected bone regions

(sensitivities and specificities for PET vs. 99mTc bone scintigraphy

[patient-based analysis]: 98.7%–100% vs. 86.7%–89.3%; 88.2%–

100% vs. 60.8%–96.1%; [region-based analysis]: 98.8%–99% vs.

82.4%–86.6%; 98.9%–100% vs. 91.6%–97.9%; p < 0.001,
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respectively) (24). Interestingly, according to a systematic review

of 12 studies and 322 patients who underwent 68Ga-PSMA-11 PET

scanning for primary stage disease, methodology and outcomes

differed greatly. The median sensitivity and specificity were 33%–

92%, 82%–100% per lesion and 82%–100%, 67%–99% per

patient, respectively.

Several studies indicated that in most tumor diseases, the

diagnostic performance of PET/MRI is similar to or even better than

that of PET/CT (26). PET/MRI is widely utilized in PCa patients,

primarily for its advantages in combining PET and MRI, providing

high-resolution multiparametric imaging (27). PET/MRI is employed

to delineate radiation therapy target areas (28) and diagnose BCRs (29),

and for the preoperative assessment of high-risk patients (30). This

technology has the potential to enhance the management and

treatment decision-making for PCa patients, especially in complex

cases, but further research is needed to validate its advantages.

Therefore, PSMA-ligand PET/CT or PET/MRI can be used to

determine the extent of local tumors, lymph nodes, bone, and organ

metastases, and, more importantly, to plan effective treatment and

improve prognosis. However, published data on mechanism

experiments and heterogeneous uptake of PSMA-ligand are still

limited (31). Recent studies have demonstrated this using PSMA

immunohistochemistry; nonetheless, PSMA ligands and antibodies

have different sizes and binding positions, which may introduce

methodological limitations. Further studies are needed before

reliable conclusions can be drawn.
FIGURE 1

Comparison of enhanced MR, CT, and 68Ga-PSMA-11 PET/CT in a PCa patient with lymph node metastasis before RP. A 55-year-old man was
diagnosed with prostate cancer;, MR and 68Ga-PSMA-11 PET/CT was performed before RP. High 68Ga-PSMA-11 uptake was observed in the lower
left abdomen and pelvis (A, yellow and green arrow). The preoperative MR identified several lymph nodes with a maximum of 5 mm in short
diameter, adjacent to the internal iliac vessels bilaterally (B, axial enhanced T2-weighted phase 1 MR image; (C), axial enhanced T2-weighted phase 2
MR image, yellow and white arrow). CT also revealed those lymph nodes (D, yellow and white arrow), but PET/CT fusion image (E), PET image (F),
and “hot iron” pseudocolor PET image (G) demonstrated that only the lymph nodes on left side had high 68Ga-PSMA-11 uptake. Postoperative
histopathology confirmed that the left lymph nodes were metastasis while the right one was reactive hyperplasia.
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Biochemical recurrence detection

In approximately 30% to 40% of PCa cases, disease will recur after

the primary treatment. Elevating levels of prostate-specific antigen

(PSA) always indicate the recurrence (11). Because of the implications

for future disease management, the location of the lesions must be

determined once BCR has been detected. However, localizing lesions is

a difficult task. There has been evidence that salvage radiotherapy in

patients with BCR after RP is most effective while serum PSA <0.5 ng/

mL (32, 33). Radiotherapy timing is crucial to these patients.

Monitoring PSA cannot easily provide enough information.

Regarding conventional imaging modalities, CT can detect only

11%–14% of lesions in patients with BCR after RP (34). Compared

with bone scans, choline-based PET imaging has higher pooled

specificity [0.82, 95% confidence interval (CI) 0.78, 0.85; 0.99, 95%

CI 0.93, 1.00, respectively] and reports fewer false-positive lesions

(35). Moreover, the PSA level, kinetics, and morphology have

significantly affected the sensitivity of choline PET (36–38).

However, PSMA-ligand PET shows a much higher detection

rate, especially in low PSA levels. Afshar-Oromieh et al. assessed a

large cohort including 319 patients with recurrent PCa who

underwent 68Ga-PSMA-11 PET (median serum PSA value of 4.59

ng/mL, range: 0.01–41395 ng/mL). They reported detection rates of

47% for serum PSA values ≤ 0.2 ng/mL, rising to 100% for serum

PSA values > 20 ng/mL (39). Similar results from other studies have

further proven that 68Ga-PSMA-11 PET has higher detection rate

for BCR with low PSA levels (40, 41). In addition, data from other

research groups that studied 18F-DCFBC, 18F-DCFPyL, and 18F-

rhPSMA-7 have also indicated rather high detection rates with low

serum PSA levels (Figure 2) (42–44).

However, these results should be treated with caution because

there was no systematic histological confirmation in most of the
Frontiers in Oncology 04
patients, and follow-up imaging was incomplete in the entire

cohort. Current guidelines do not make recommendation for a

single radiopharmaceutical. The comparison among different

PSMA-targeted tracers are missing; thus, the term “PSMA-ligand”

refers to a number of different tracers (45). It is necessary to

perform further clinical studies with standardized follow-up

protocols and histological validation before comparing outcomes

associated with the use of these tracers.
Advanced disease monitoring

Androgen deprivation therapy (ADT) is the mainstay of

treatment for PCa patients with recurrent or advanced disease

(46, 47). However, in the first 5 years following ADT,

approximately 10%–20% of patients will develop castration-

resistant PCa (CRPC) (48). Once the metastatic castration-

resistant prostate cancer (mCRPC) is detected, the overall survival

(OS) ranges from 2 to 3 years (46, 47).

Monitoring the serum PSA level provides insight into both the

disease burden and the biology of the disease; however, some

mCRPC patients may have a low PSA level, because the tumor is

less dependent on androgen receptor signaling. Moreover, PSA

levels can stay low while visceral metastases are developing (49).

The relationship between increasing PSA values and disease

progression has been confirmed, but decreasing PSA values are

not always associated with response to therapy. Using serum PSA

alone to monitor disease development or therapy response in

mCRPC patients is not entirely reliable (47, 50).

For mCRPC patients, some studies have suggested the choline

PET/CT may be used in disease monitoring (51, 52). However,

another prospective study has reported that there was no significant
FIGURE 2

Comparison of detection rates of 68Ga and 18F labeled PSMA-ligand. Purple lines indicate the 68Ga-PSMA-11, and green lines show 18F-PSMA-
ligands. The 68Ga-PSMA-11 PET has a modestly high detection rate even at low serum PSA levels. 18F-DCFPyL has a higher detection rate in all the
various PSA levels as compared with 18F-DCFBC and is comparable with 68Ga-PSMA-11. 18F-rhPSMA performs the best among these 18F-labeled
ligands and is similar to 68Ga-PSMA-11.
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correlation between 11C-choline PET/CT image findings and

chemotherapy treatment response (53). In summary, the

application of choline PET/CT appears to be limited to the

routine monitoring of mCRPC patients.

It has been demonstrated that new tracers, such as 68Ga-PSMA-

11 PET/CT (54), can be used for monitoring disease in addition to

choline, although these are not yet recommended in the mCRPC

patient guidelines (45). Gafita et al. have reported a case of an

mCRPC patient who underwent 177Lu-PSMA therapy, and the
68Ga-PSMA PET has clearly reflected the lesion alteration during

the therapy (55). Thus, further studies in mCRPC patients are

urgently needed to confirm the potential clinical application of

PSMA-ligand in disease monitoring.
PSMA-targeted radiation therapy

Several therapies have been approved for mCRPC patients;

however, the survival benefit in patients is usually less than 6

months (56). Novel therapies are needed for clinical application,

and PSMA has emerged as a promising therapeutic molecular

target. There are mainly two types of radioisotopes: alpha-

emitting and beta-emitting.
Beta-emitting PSMA-targeted
radioligand therapies

177Lu-PSMA-617 is the most used beta-therapy molecule. The

TheraP phase 2 trial reported that 177Lu-PSMA-617 led to a higher

PSA response rate (65/98 vs. 37/85) and fewer adverse events (32/98

vs. 45/85) as compared with cabazitaxel (15). Furthermore, the

VISION trial has reported that compared with standard care, 177Lu-

PSMA-617 plus standard care significantly prolonged both

imaging-based progression-free survival (median, 8.7 vs. 3.4

months; hazard ratio for progression or death, 0.40; 95% CI, 0.29,

0.57; p < 0.001) and OS (median, 15.3 vs. 11.3 months; hazard ratio

for death, 0.62; 95% CI, 0.52 to 0.74; p < 0.001). Additionally, the

quality of life was not affected by the adverse events caused by
177Lu-PSMA-617 therapy (14). Another trial using LuPSMA

reported that of 30 patients with mCRPC who had progressed

after conventional treatment, 17 achieved a PSA decline of 50% or

more. Fewer toxic effects and a reduction in pain were

observed (16).

The other commonly used PSMA-ligand is 177Lu-PSMA-I&T,

which also shows promising results (57). In a study of 100 patients

where 177Lu-PSMA-I&T was used, a good response to treatment

and low toxicity were observed (PSA decline ≥ 50%: 38 patients had

a median clinical progression-free survival of 4.1 months and

median OS was 12.9 months) (58). Several studies (59–61) have

shown similar results (summarized in Table 1).

In addition, 177Lu-PSMA-617 has been used in several types of

combination therapies. In CRPC patients, the combination of

androgen-receptor-axis-targeted therapies (ARATs) may lead to

improved tumor control. The DNA damage repair (DDR) pathway

has been proven to participate closely during the radioligand
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therapy (RLT) (62); hence, the combination with PARP inhibitors

such as olaparib and rucaparib have been under analysis. Moreover,

immune checkpoint inhibitors such as anti-PD-1 or anti-CTLA-4

monoclonal antibodies are an important class of cancer therapies.

Owing to the abscopal effect, combination therapy is under

evaluation. Table 2 summarizes representative clinical trials of

combination therapies.

There are other notable PSMA-targeting radionuclide therapy

agents. 131I-MIP-1095 is one of the first agents used in

radiopharmaceutical therapy against PCa (63). A study of 34

mCRPC patients who received 131I-MIP-1095 found that the first
TABLE 1 Studies of PSMA-targeted therapy.

Radioligand Clinical Trial
Identifier/
Authors

Primary Study Objective

177Lu-
PSMA-617

NCT03392428 177Lu-PSMA-617 vs. cabazitaxel

177Lu-
PSMA-617

NCT03511664 177Lu-PSMA-617 + standard care vs.
standard care alone

177Lu-
PSMA-617

NCT04343885 177Lu-PSMA-617 + docetaxel vs.
docetaxel in mHSPC

177Lu-
PSMA-617

12615000912583 mCRPC patients who progressed after
conventional treatment

177Lu-
PSMA-617

Fendler et al. Dosimetry, safety, and
efficacy evaluation

177Lu-
PSMA-617

Rahbar
et al., 2016

Safety and efficacy as 3rd-line
therapies in mCRPC

177Lu-
PSMA-617

Rahbar
et al., 2018

Survival evaluation of heavily
pretreated mCRPC

177Lu-
PSMA-I&T

NCT04886986 Effectiveness of 225Ac-J591 and 177Lu-
PSMA-I&T combination for mCPRC

177Lu-
PSMA-I&T

NCT04297410 177Lu-PSMA-I&T Radionuclide Neo-
Adjuvant Treatment Feasibility Trial

177Lu-
PSMA-I&T

NCT05204927 177Lu-PSMA-I&T vs.
Hormone Therapy

177Lu-
PSMA-I&T

Heck et al. Survival evaluation of heavily
pretreated mCRPC

177Lu-J591 NCT03545165 Combination of 177Lu-J591 and 177Lu-
PSMA-617

177Lu-J591 NCT00195039 Effectiveness of 177Lu-J591
for mCPRC

177Lu-J591 NCT00859781 Effectiveness of 177Lu-J591 in
combination with ketoconazole and
hydrocortisone against BCR.

177Lu-J591 NCT00916123 Effectiveness of 177Lu-J591 in
combination with docetaxel
in mCRPC

225Ac-J591 NCT04506567 Dose-escalation study of fractionated
225Ac-J591 for mCPC

227Th-
PSMA-TTC

NCT03724747 Safety and efficacy in mCRPC
BCR, biochemical recurrence; mCRPC, metastatic castration-resistant prostate cancer;
mHSPC, metastatic hormone-sensitive prostate cancer; PSMA, prostate-specific
membrane antigen.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1230251
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1230251
dose of RLT presented with the best therapeutic effect compared

with the second and the third doses (64). 177Lu-PSMA-R2 is a urea-

based PSMA-targeting small-molecule inhibitor (63). It has been

shown to present a rapid tumor uptake and elimination through the

urinary system in preclinical studies (65). A phase 1/2 clinical trial

to evaluate 177Lu-PSMA-R2 in mCRPC is currently under

way (NCT03490838).
Alpha-emitting PSMA-targeted
radioligand therapies

Utilizing alpha emitters for treatment offers two distinct

advantages compared to conventional radioligand therapies. The

short distance between cells within human tissue (<0.1 mm) allows

the selective destruction of target cancer cells while preserving the

surrounding healthy tissue (66). The two most commonly used

alpha-emitting radioactive isotopes currently are 225Ac and its

daughter nuclide 213Bi, with half-lives of 9.9 days and

46 min, respectively.

Recent studies have demonstrated the remarkable efficacy of
225Ac-PSMA-617 in the treatment of mCRPC, particularly in

patients who have experienced disease progression after 177Lu-

PSMA therapy (67). There is also a clinical case report of 213Bi-

PSMA-617, which is both an alpha and beta emitter, that achieved a

drop in PSA from 237 mg/L to 43 mg/L in the patient with mCRPC

(68). The study by Sathekge et al. (69) involved a relatively small

cohort of 21 patients, and confirmed that 225Ac-PSMA-617 can lead

to a significant reduction of pre-treatment PSA levels by more than

50% in the majority of hormone-sensitive prostate carcinoma

(mHSPC) patients.

However, the use of high-activity 225Ac/213Bi generators for

preparing therapeutic doses in the gigabecquerel (GBq) range

remains prohibitively expensive, and the global supply of 225Ac

produced from 229Th is severely limited (66). In terms of treatment,

due to its highly cytotoxic nature, alpha-emitting isotopes like 225Ac

may be associated with more serious side effects compared with

PSMA-targeted b-radiation, including conditions like xerostomia

(70). Furthermore, 225Ac produces a substantial number of recoiling

daughter nuclei during its decay process, making this radioisotope

challenging to control as a targeted alpha therapy agent (71).

Nonetheless, this form of treatment offers hope for mCRPC and

mHSPC patients and underscores the significant potential that

targeted alpha therapy may have in the treatment of other cancers.
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PSMA-targeted immunotherapies

There are several anti-PSMA radioimmunotherapies under

evaluation, with a notable example being the J591 antibody.
177Lu-J591, 255Ac-J591, and 227Th-PSMA-TTC are three

promising antibodies also under evaluation. The preliminary

results using J591 show high efficacy and few side effects (72).

The related clinical trials are listed in Table 1.

PSMA-targe t ed b i spec ific T-ce l l engage r (B iTE)

immunotherapy has been developed in recent years .

Pasotuxizumab (AMG 212) binds to CD3 on T cells and PSMA

on the tumor cells. A phase I clinical trial (NCT 01723475) has

shown that a PSA decrease ≥ 50% was observed in 3 out of 16

patients and that BiTE immune therapy could be efficacious in solid

tumors (73).
PSMA radioguided surgery

In patients with PCa, metastatic or recurrent lymph nodes may

be in atypical locations and/or small in morphology, hindering

accurate identification before and at the time of potential

surgery (74).

Owing to the high detection rate for lymph node metastases,

PSMA-ligand imaging combined with lymphadenectomy and

salvage lymph node resection are increasingly used. PSMA-RGS

allows the detection of PSMA-positive PCa cells and metastatic

lymph nodes during the operation (75). RGS is a radionuclide-

based radiomic model to measure intra-operative g-emission using
99mTc- or 111In-labeled PSMA-ligand and provide acoustic feedback

with a gamma probe (31). Schottelius et al. first reported the

possibility of 111In-PSMA-I&T as an RGS radionuclide probe in

2015 (76). After that, Rauscher et al. conducted a comparative study

in which the sensitivity, specificity, and accuracy of 111In-labeled

PSMA RGS were 92.3%, 93.5%, and 93.1% respectively (77). 111In-

PSMA-I&T-RGS facilitated intra-operative resection of sub-

centimeter metastatic lymph nodes. The smallest resected

metastatic lesion was 2 mm in size (75). In contrast, the 99mTc,

known as the most widely applied and available radioisotope, was

introduced as a PSMA-targeted RGS probe due to its medium-

energy g-radiation, low cost, short half-life, and high stability in vivo

in 2016 (78). In the past few years, 99mTc-labeled PSMA-I&S

gradually replaced the application of 111In-labeled PSMA-I&T in

RGS (79, 80). In a retrospective analysis of 132 surgical specimens in

31 patients with BCR after primary RP who underwent 99mTc-

PSMA-RGS, Maurer et al. reported that this novel approach had a

sensitivity of 83.6% (95% CI 70.9%, 91.5%), a specificity of 100%,

and an accuracy of 93.0% (95% CI 85.8%, 96.7%) (74).

Moreover, the robot-assisted PSMA-ligand surgery has

gradually become a hot spot in RGS recently. Yılmaz et al.

conducted 99mTc-PSMA-targeted robot-assisted RGS in 15

intermediate- or high-risk score (D’Amico risk stratification)

patients; the sensitivity, specificity, accuracy, and negative and

positive predictive value were 100%, respectively (81). Thus,

patients with PCa profit from RGS because suspicious metastatic
TABLE 2 Studies of 177Lu-PSMA-617 combination therapies.

Clinical Trial Identifier Combination Method

ENZA-P (NCT04419402) Enzalutamide in mCRPC

PSMAddition (NCT04720157) ARATs and ADT in mHSPC

LuPARP (NCT03874884) Olaparib in mCRPC

PRINCE (NCT03658447) Pembrolizumab in mCRPC
ARATs, androgen-receptor-axis-targeted therapies; mCRPC, metastatic castration-resistant
prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; PSMA, prostate-
specific membrane antigen.
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lymph nodes are accurately resected, which could correlate with

better prognosis.

This technique has been used in PSMA-positive PCa patients;

however, the correlation between PSMA IHC and PSMA uptake

using gamma probe during surgery is still unclear. The activity

gathered by the gamma probe during surgery is dependent not only

on the specific PSMA-ligand accumulation in cells, but also on the

distance of the probe to the lesions and the size of the tumor

deposit. Therefore, clear correlations between the signal from the

gamma probe and the PSMA expression on preclinical and clinical

experiments are difficult to achieve and have not been reported so

far in literature. Thus, there are no guidelines and threshold values

of gamma probe counts for metastatic lesion detection.
Conclusions

PSMA-targeted imaging and therapy represent a rapidly

emerging strategy in PCa management. PSMA-ligand imaging

provides accurate staging of primary PCa and high diagnostic

efficacy in recurrent lesions compared with conventional imaging,

allowing early therapeutic intervention. Moreover, there is evidence

that the results may contribute to a change in the risk classification,

and impact clinical practice. Standardized interpretation (e.g,.

miTNM) of PSMA-ligand PET and its potential for predicting

prognosis are evolving. Several institutions have adopted these in

clinical practice. Furthermore, PSMA-targeted radioligand therapy

is a very promising approach for the treatment of advanced PCa,

especially mCRPC, with recent evidence showing a survival benefit.

Several prospective trials are ongoing and will hopefully provide

evidence for supporting approval for marketing. We believe that

PSMA-targeted theranostics will soon become significant strategies

in the standard of care for PCa management. Nuclear medicine

physicians should be integrated into multidisciplinary teams, along
Frontiers in Oncology 07
with medical oncologists, radiation oncologists, urologists, and

radiologists, to optimize patient care.
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