
TYPE Original Research

PUBLISHED 05 January 2024

DOI 10.3389/fnut.2023.1295078

OPEN ACCESS

EDITED BY

George Lagoumintzis,

University of Patras, Greece

REVIEWED BY

Keshari Thakali,

University of Arkansas for Medical Sciences,

United States

Larry Parnell,

Tufts University, United States

*CORRESPONDENCE

Fabian Hellbach

fabian.hellbach@med.uni-augsburg.de

RECEIVED 15 September 2023

ACCEPTED 11 December 2023

PUBLISHED 05 January 2024

CITATION

Hellbach F, Freuer D, Meisinger C, Peters A,

Winkelmann J, Costeira R, Hauner H,

Baumeister S-E, Bell JT, Waldenberger M and

Linseisen J (2024) Usual dietary intake and

change in DNA methylation over years: EWAS in

KORA FF4 and KORA fit.

Front. Nutr. 10:1295078.

doi: 10.3389/fnut.2023.1295078

COPYRIGHT

© 2024 Hellbach, Freuer, Meisinger, Peters,

Winkelmann, Costeira, Hauner, Baumeister,

Bell, Waldenberger and Linseisen. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Usual dietary intake and change in
DNA methylation over years:
EWAS in KORA FF4 and KORA fit

Fabian Hellbach1,2*, Dennis Freuer1, Christa Meisinger1,

Annette Peters2,3,4,5, Juliane Winkelmann6,7, Ricardo Costeira8,

Hans Hauner9,10, Sebastian-Edgar Baumeister11, Jordana T. Bell8,

Melanie Waldenberger3,4,12 and Jakob Linseisen1,2

1Department of Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital

Augsburg, Augsburg, Germany, 2Medical Faculty, Institute for Medical Information Processing, Biometry,

and Epidemiology, Ludwig-Maximilian University Munich, Munich, Germany, 3Institute of Epidemiology,

Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg,

Germany, 4Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research

Center for Environmental Health (GmbH), Neuherberg, Germany, 5German Center for Diabetes

Research (DZD e.V.), Neuherberg, Germany, 6Institute of Neurogenomic, Helmholtz Zentrum München,

German Research Center for Environmental Health (GmbH), Neuherberg, Germany, 7Technical

University of Munich, Institute of Human Genetics, Klinikum Rechts der Isar, Munich, Germany,
8Department of Twin Research and Genetic Epidemiology, King’s College London, London,

United Kingdom, 9Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences,

Technical University of Munich, Freising, Germany, 10School of Medicine, Institute of Nutritional

Medicine, Technical University of Munich, Munich, Germany, 11Medical Faculty, Institute of Health

Services Research in Dentistry, University of Münster, Münster, Germany, 12German Research Center for

Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany

Introduction: Changes in DNA methylation can increase or suppress the

expression of health-relevant genes. We investigated for the first time

the relationship between habitual food consumption and changes in DNA

methylation.

Methods: The German KORA FF4 and KORA Fit studies were used to study

the change in methylation over a median follow-up of 4 years. Only subjects

participating in both surveys and with available dietary and methylation data were

included in the analysis (n = 465). DNA methylation was measured using the

Infinium MethylationEPIC BeadChip (Illumina), resulting in 735,527 shared CpGs

across both studies. Generalized estimating equation models with an interaction

term of exposure and time point were used to analyze the association of 34 food

groups, folic acid, and two dietary patterns with changes in DNA methylation over

time.

Results: The results were corrected for genomic inflation. Significant interaction

terms indicate di�erent e�ects between both time points. We observed only a

few significant associations between food intake and change in DNA methylation,

except for cream and spirit consumption. The annotated genes include CLN3,

PROM1, DLEU7, TLL2, and UGT1A10.

Discussion: We identifiedweak associations between food consumption andDNA

methylation change. The di�erential results for cream and spirits, both consumed

in low quantities, require replication in independent studies.
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1 Introduction

DNA methylation is the most frequently researched
manifestation of epigenetics because of its practical characteristics.
The interindividual variation, the precision of measurement
enabled by up-to-date technology, and the expected effect size
of the exposure-outcome associations make DNA methylation
a fitting measure for epigenetics population research (1). The
methylation of cytosine–guanine sites (CpGs) is regulated by
the activity of DNA methyltransferases and 10–11 translocation
proteins and emerges via the transfer of the methyl group of S-
adenosylmethionine (SAM). SAM is generated by the one-carbon
metabolism in which a few vitamins andmolecules of dietary origin
act as cofactors, e.g., folic acid, vitamin B12, or methionine (2).

A change in DNA methylation can result in enhanced
or suppressed gene expression. For example, cancer is often
characterized by global DNA hypomethylation, while specific
tumor suppressor genes are hypermethylated (3). How DNA
methylation affects the corresponding gene expression is often
characterized by the location (i.e., gene promoter, gene body, inside
or outside of a CpG island) of the methylated CpG sites (4).

The first studies on diet and DNA methylation were conducted
in cancer patients because of the known association between cancer
and DNA methylation and the idea to elucidate the potentially
harmful or protective effects of diet on cancer (5). Then, research
started to look directly at dietary factors that influence DNA
methylation and until today focused heavily on micronutrients
such as folic acid or B vitamins (6). Mandaviya et al. (7) showed
associations between dietary folate intake and CpG methylation in
an epigenome-wide association study (EWAS), but other groups
were unable to confirm these associations (8, 9). Altogether,
research on DNA methylation and dietary folate intake is still
inconclusive (5).

The literature provides some EWAS results for the dietary
consumption of food (summarized in food groups) (9, 10). To
date, no analyses have examined the longitudinal association of
food consumption and temporal change of DNA methylation
in mononuclear blood cells. Based on our experience in cross-
sectional analyses (6, 9), we aimed to explore the interaction of
diet and time on DNA methylation at the food group level by
conducting EWAS on the Infinium MethylationEPIC BeadChip
array with 850k CpG sites. Specifically, we assessed the association
between food groups and changes in DNA methylation over
time. Food groups that were analyzed in this study (i) are
sources of nutrients involved in human C1 metabolism (e.g.,
cabbage vegetables), (ii) have a known association with systemic
inflammation (e.g., red meat), or (iii) are described to be associated
with metabolic disease risk (e.g., sugar-sweetened beverages).
One additional aim was to test for the stability of diet and
DNA methylation associations by replicating previous analyses
performed in FF4 in the Fit study.

Abbreviations: SAM, S-adenosylmethionine; CpG, cytosine–guanine

site; EWAS, epigenome-wide association study; FFQ, food frequency

questionnaire; AHEI-2010, Alternate Healthy Eating Index 2010; MDS,

Mediterranean Diet Score; GEE, generalized estimating equations; QN,

quantile normalization.

2 Methods

2.1 Population

The Cooperative Health Research in the Augsburg Region
(KORA) study was conducted in the city of Augsburg and two
surrounding counties in Germany. KORA FF4 is the second
follow-up of the population-based health survey KORA S4 with
a recruitment phase between 1999 and 2001. Initially, 4,261
randomly selected subjects aged 25–74 years agreed to participate
in the S4 baseline study. In 2013/2014, 2,279 subjects participated
in the second follow-up (KORA FF4). The study has been described
in detail previously (11). In KORA FF4, dietary data are available
for 1,602 subjects, and blood DNA samples are available for
1,928 participants, where methylation data were measured. KORA
Fit is a follow-up study for all KORA study participants born
between 1945 and 1964, including 707 KORA FF4 participants
with dietary data and 565 with methylation data available, and a
median follow-up time of 4 years. The analytic dataset included
individuals who participated in KORA FF4 and KORA Fit and
who had methylation and dietary intake data (n = 464). The
investigation was conducted according to the guidelines laid down
in the Declaration of Helsinki, including written informed consent
of all participants. All study methods were approved by the ethics
committee of the Bavarian Chamber of Physicians, Munich (EC no.
06068 and EC no. 17040).

2.2 Usual dietary intake

The procedure of obtaining habitual dietary intake data was
identical for KORA FF4 and Fit and is described in the following.
Repeated 24-h food lists and a food frequency questionnaire (FFQ)
with 246 and 148 items, respectively, were used to collect dietary
intake data. The 24-h food list was developed for the German
NAKOHealth Study (12) and collected information on food intake
of the past day indicating the type of food items consumed.
The FFQ was based on the German version of the multilingual
European Food Propensity Questionnaire asking for the frequency
of servings (13). Both were offered to the study participants as
web-based forms. Two to three 24-h food lists on non-consecutive
days were used to obtain the probability of consumption of food
items for each subject (including the respective FFQ information
as covariable). The amount consumed was estimated from the
Bavarian Food Consumption Study II (BVS II), adjusting for age,
sex, BMI, physical activity, and smoking status. Usual dietary intake
(g/day) was estimated by multiplying the items’ consumption
probability with the estimated amount consumed; consumption
amount times consumption probability results in continuous diet
data. Modeling the usual dietary intake was done to reduce
the prominent measurement error in dietary data. Supplement
intake was not considered for the computation of usual dietary
intake. Further information is provided elsewhere (14). Dietary
data was categorized into 17 main food groups and 71 subgroups
in accordance with the EPIC SOFT classification scheme (15).
Nutrient data was obtained using the German Nutrient Database
(Bundeslebensmittelschlüssel), version 3.02, published inMay 2014
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and accessed in 2019. To obtain an intake value for each food group
independent of total energy intake, we used the residual method
(16). Residuals are drawn from a linear regression model where
usual dietary intake is the dependent variable and energy intake
is the independent variable. In addition, we added the predicted
food intake for the mean energy intake of the study population
to the residuals for better interpretability. Two dietary patterns
were used as secondary exposure variables: The Alternate Healthy
Eating Index 2010 (AHEI-2010) (17) is a score used to assess
consumption of foods and nutrients predictive of chronic disease
risk (e.g., alcohol, grains, and fruit). A lower risk of chronic disease
development is associated with a higher AHEI-2010 score. We
slightly modified the AHEI-2010 since we did not have access to
trans-fat consumption data and excluded it, therefore resulting
in a maximum of 100 points instead of 110. For the purpose of
calculating AHEI, our usual dietary intake data were transformed
into servings/day with references reported in Chiuve et al. (17).
The Mediterranean Diet Score (MDS) (18) depicts adherence to a
dietary pattern that scores the consumption of fish, cereals, fruits
and nuts, vegetables, legumes, and a high ratio of unsaturated to
saturated lipids above the median intake as high (1 point) and the
consumption of meat and dairy above the median as low (0 points).
Thus, the MDS score reflects the individual consumption relative
to the sex-specific population median of the respective food group,
except for alcohol, where a moderate amount of consumption is
scored highest.

2.3 DNA methylation data

2.3.1 KORA FF4
Genomic DNA (750 ng) of 1,928 individuals was bisulfite

converted using the EZ-96 DNA Methylation Kit (Zymo Research,
Orange, CA, USA) in two batches (n = 488, n = 1,440). The
Illumina (San Diego, CA, USA) iScan platform, in combination
with the Infinium MethylationEPIC BeadChip, was used for
subsequent methylation analysis according to standard protocols
provided by Illumina. For generation of methylation data
export files and initial quality control of assay performance,
GenomeStudio software, version 2011.1, with MethylationModule,
version 1.9.0, was used. Quality control and preprocessing of the
data were performed in R (v3.5.1) (19) with the package minfi
(v.1.28.3) [21] and primarily following the CPACOR pipeline (20).
Using R commands read.metharray and bgcorrect.illumina, raw
intensities were read into R and background corrected. Probes
with detection p > 0.01 were set to missing. Before normalization,
problematic samples and probes were removed, resulting in the
removal of 40 samples, leaving n = 1,888 samples. A total of
2 samples showed a mismatch between reported sex and sex
prediction by minfi; 33 had a median intensity < 50% of the
experiment-wide mean or <2,000 arbitrary units; and 9 (four
overlapped with the previous) had >5% missing values on the
autosomes. Furthermore, a total of 59,631 probes were removed
(some meeting multiple criteria): probes with SNPs with minor
allele frequency < 5% at the CG position (n = 11,370), cross-
reactive probes (n = 44,493) (21, 22), or the single base extension
(n = 5,597) as given by minfi, and 5,786 with > 5% missing

values. Ultimately, probes from the X chromosome (n = 17,743,
following quality control) and the Y chromosome (n = 379) were
excluded. A total of 788,106 probes remained. After dividing the
signal intensities into six probe types (type II red, type II green,
type I green unmethylated, type I green methylated, type I red
unmethylated, and type I red methylated), quantile normalization
(QN) was applied to each type (20)]. The probes of female andmale
participants were processed separately. The transformed intensities
were then used to generate methylation beta values, a measure
from zero to one indicating the percentage of cells methylated
at a given locus. Beta values were controlled for outliers with
±3 · IQR (interquartile range), resulting in the exclusion of 0.5%
of the data points. The Infinium MethylationEPIC Manifest file
genome build 37 (https://emea.support.illumina.com/downloads/
infinium-methylationepic-v1-0-product-files.html, accessed on 14
April 2022), was used to map probes to genes. Informed consent for
genetic studies was obtained from all subjects.

2.3.2 KORA FIT
Quality control and preprocessing were conducted as in FF4.

Before normalization, 35 samples were removed, as they had
>5% missing values on the autosomes (of these, 7 also failed
either the sex prediction or median intensity quality control steps
implemented in minfi, commands getSex, and getQC respectively).
A total of 112,150 probes were removed (some overlappingmultiple
categories): cross-reactive probes as given in published lists (n =

44,493) (20, 22); probes with SNPs withminor allele frequency>5%
at the CG position (n = 11,370) or the single base extension (n
= 5,597) as given by minfi; and 61,471 with >5% missing values
(autosomes only). A total of 753,709 probes remained for analysis.

QN was performed as in FF4. Probes from the X chromosome
(n = 17,743, following quality control) and the Y chromosome (n
= 379) were excluded from the analysis.

2.4 Statistical analysis

We applied a generalized estimating equation (GEE) model
with an exchangeable correlation matrix across all 735,527 CpG
loci that were common in ∼450 subjects participating in KORA
FF4 and KORA Fit to examine the association between usual
dietary intake (in g/day) and temporal change of methylation.
The GEE model included methylation beta residual values as the
dependent variable. Due to the limited power of our analysis
to include the technical plate identifier variable, leading to a
convergence problem, we extracted methylation residuals out of
a model with methylation as the dependent variable and a plate
identifier variable as the independent variable and used these values
as the outcome variable. To examine the temporal change in
methylation, we included an interaction term for the food exposure
variables and the binary time indicator (KORA FF4/KORA Fit).
The regression term for the exposure was regarded as the cross-
sectional effect. The p-value for the interaction termwas Bonferroni
corrected and evaluated as significant if it was < 0.05. We tested
the following 34 food groups, folic acid intake, and two diet
quality scores: potatoes, total vegetables, leafy vegetables, fruit
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vegetables, root vegetables, cruciferous vegetables, mushrooms,
onions and garlic, legumes, total fruits, nuts and seeds, milk,
yogurt, cheese, cream, grain products, whole grain products, total
meat, fresh red meat, processed meat, total fish, eggs, plant oils,
butter, margarine, total sweets, cakes, sugar-sweetened beverages,
coffee, tea, wine, beer, spirits, alcohol (ethanol), AHEI, and MDS.
Usual dietary intake data (residuals after regression against total
energy intake) were regarded as independent variables. Covariable
selection was based on the literature and our own assessment of
confounding based on the disjunctive cause criterion (23). The
selected covariables were sex, BMI (continuous), BMI squared, age
(continuous), age squared, smoking (never, former, and current),
total caloric intake (continuous), alcohol in g/day (continuous)
(except for the exposures: wine, beer, spirits, AHEI, and MDS).
Additionally, we measured leukocyte cell proportions in each
individual (monocytes, basophil, and eosinophil granulocytes, and
lymphocytes, all in percent of leukocytes) and adjusted the models
with these measured leukocyte data. All variables were used at both
time points. Examination of the multicollinearity of covariables led
to the exclusion of neutrophil granulocytes as a covariable. The
results for food groups with significant signals were corrected for
genomic inflation by using the bacon package (24) in R. To test for
consistency of our results, we ran a linear regression model with
delta methylation value (FIT minus FF4) as the outcome and food
intake in KORA FF4 as exposure, with identical FF4 covariables.

To test for the stability of cross-sectional associations obtained
in a previous analysis in KORA FF4 [with a Bonferroni corrected
p-value below 0.05 (6)], we applied linear regression models with
these selected CpGs in KORA Fit. We applied several approaches to
investigate the effect of percent change in dietary intake (Fit intake
divided by FF4 intake). The KORA Fit population was analyzed
as a whole and as subgroups. Subgroups were analyzed that differ
in regards to their change in food consumption. The aim was to
analyze subjects in isolation who had (a) stable dietary intake, i.e.,
<10% change in intake in the respective food group; (b) less stable
dietary intake, i.e., <20% change in intake; (c) modest increase in
intake, i.e., more than 10% increase in intake; (d) strong increase in
intake, i.e., more than 20% increase in intake; (e) modest decrease
in intake, i.e., more than 10% decrease in intake; and (f) strong
decrease in intake, i.e., more than 20% decrease in intake.

We chose to correct for multiple testing by using Bonferroni
correction with the number of CpG sites tested per food group as
the denominator. For all analyses, only complete cases regarding
the included covariates were considered. All statistical analyses
were carried out with R statistical software version 4.1.2. (19).

3 Results

3.1 Longitudinal analysis

Male participants had a greater total caloric intake and alcohol
intake than female participants at both time points (Table 1). More
information regarding the sex- and cohort-specific consumption
of all food groups is given in Supplementary Table 3. BMI was
similar across both, sex and survey. On average, participants
increased their physical activity from FF4 to Fit. We modeled
the multiplicative interaction of food exposure and time to test

the association with changes in DNA methylation. In total, we
observed one significant signal each (Bonferroni corrected p <

0.05) for the consumption of total vegetables, fruit vegetables, root
vegetables, legumes, grain products, and folic acid; three signals
for mushrooms; four signals for cabbage vegetables; five signals for
sugar-sweetened beverages; 122 signals for cream; and 1,630 signals
for spirits (results not shown). Genes annotated to the respective
CpGs were ADAMTS2, MRC2, SECTM1, TLL2, UGT1A10, GSG1L,

SLC6A13, VPS37C, COMMD5, FMN2, DLC1, PQLC3, TMEM87B,

and LRRC34. After correction for genomic inflation and multiple
testing (Bonferroni), few results persisted with p < 0.05 (Table 2):
one for cabbage vegetables, fruit vegetables, grain products, sugar-
sweetened beverages, and folic acid; three for cream; and 193
for spirits (Supplementary Table 1). In particular, the results with
annotations of TLL2 and UGT1A10 survived multiple testing
corrections. The linear regression analysis with delta methylation as
the outcome showed that from a total of 30 significant signals from
the bacon-corrected GEE analysis (only the associations with the
six lowest p-values for cream and spirit groups), 22 were significant
without correction, and 24 had the same direction in effect size
(Supplementary Table 2).

As a means of acquiring more insight, we accessed databases
such as the EWAS catalog (25), BIOS QTL browser (26), and
GoDMC methylation Quantitative Trait Locus (mQTL) repository
(27). The EWAS catalog showed that most CpGs were not found
to be previously associated with diet-relevant or cardiometabolic
phenotype outcomes. The exception was cg02620443 (sugar-
sweetened beverages), which was previously associated with
incident type 2 diabetes mellitus (28). Additionally, we compared
our results to the significant top independent eQTM signals in the
BIOS database, but none of the signals were significantly associated
with local gene expression levels in the eQTMs independent top
effects dataset. Six out of 16 CpGs (cg02780269 in SECTM1,
cg11613902 in TLL2, cg11811840 in UGT1A10, cg07376134 in
GSG1L, cg17737146 in LLRC34, and cg26942952) were found to
have a genetic basis in the GoDMC database. All of the mQTLs for
these six CpGs were local genetic effects (in cis) that annotated to
the same gene as the CpG site. The finding that both genetic effects
and diet may influence DNAmethylation levels at these target CpG
sites suggests that future work into gene-environment interactions
may be advantageous in the context of identifying diet influences
on the human epigenome.

3.2 Cross-sectional reproduction of KORA
FF4 in KORA FIT

To explore the stability of associations of usual dietary intake
of food groups and DNA methylation, we analyzed those food
group—CpG associations in the KORA Fit study that were reported
as significant in an earlier analysis of our team in KORA FF4 (6).
Overall, few results could be reproduced in KORA Fit (Table 3),
i.e., reached statistical significance; however, with a much smaller
sample size as available in KORA FF4. Comparing the effect size
estimates between KORA FF4 and KORA Fit, the size and direction
were often comparable. However, the significant associations with
wine intake were reproduced, and associations of beer intake and
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TABLE 1 Demographic characteristics of all study participants with complete information needed for the GEE analysis.

KORA FF4 KORA Fit

Male Female Male Female

n 216 259 220 261

Age in years (median [IQR]) 59.0 [54.0, 63.0] 59.0 [54.0, 63.0] 63.0 [58.0, 67.0] 63.0 [58.0, 67.0]

BMI kg/m² (median [IQR]) 27.4 [25.2, 30.6] 26.2 [23.3, 29.5] 27.8 [25.2, 30.8] 26.6 [23.8, 29.9]

Total calories/day (median [IQR]) 2114.5 [1913.5, 2344.6] 1561.0 [1433.3, 1749.2] 2053.4 [1845.4, 2296.1] 1538.0 [1379.2, 1708.9]

Alcohol g/day (median [IQR]) 14.9 [5.6, 26.0] 3.0 [1.8, 5.3] 15.0 [6.2, 25.5] 2.7 [1.6, 5.5]

Smoking (%)

Regular smoker 32 (14.8) 33 (12.7) 27 (12.3) 27 (10.3)

Former smoker 107 (49.5) 91 (35.1) 113 (51.4) 96 (36.8)

Never smoker 77 (35.6) 135 (52.1) 80 (36.4) 138 (52.9)

Phys. Activ.= Active (%) 135 (62.5) 176 (68.0) 157 (71.4) 190 (72.8)

Education years= < 13 years (%) 120 (55.6) 166 (64.1) 123 (55.9) 167 (64.0)

IQR, Interquartile range.

CpG DNA methylation were mostly reproduced in KORA Fit.
Repeating these analyses in subgroups of KORA Fit (with an
even smaller sample size) according to the change in consumption
(comparing KORA FF4 and KORA Fit intake data), previous
significant associations with cabbage, wine, and beer consumption
were confirmed in the groups with increasing intake data. When
the intake of food groups distinctly decreased in KORA Fit, the
effect size estimates were no longer comparable with the FF4
results, reassuring the validity of the analytic approach (Table 3).
We also evaluated the effect size of the cross-sectional term in the
GEE model and observed the same direction in all but one case
(not shown).

4 Discussion

This is the first EWAS examining associations of a broad range
of food groups and changes in DNA methylation over time. Our
results indicate that there are differences in effect size for some
diet-DNA methylation associations dependent on the time point,
which also implies that most other associations do not differ in
effect size, although this cannot be said with statistical certainty.
We observed very few signals for the consumption of various food
groups and many signals for cream and spirit consumption. Our
analysis of (cross-sectional) stability of dietary exposure and DNA
methylation associations showed that most signals were not stable
over time, although this needs to be taken with caution due to the
limited power of the analysis.

The by far highest number of significant longitudinal
associations were observed for spirit consumption. This could
be due to the alcohol content, which is known for associations
with DNA methylation (29), but this point does not hold for
the other alcoholic beverages that were examined (i.e., wine,
beer, ethanol in g/day). The usually small amounts of spirits
consumption (median ± IQR; FF4: 0.3 g/day ±0.2; FIT: 0.3 g/day
±0.2, Supplementary Table 1) and the fact that the vast majority
of signals disappeared after correction for genomic inflation

(Supplementary Table 2) indicates that these results could partially
be false positives. However, a few signals remained significant and
are discussed in the following. The cg20997359-associated gene
MAP1B was found to be associated with global developmental
delays, seizures, and dysmorphic features due to a MAP1B non-
sense mutation in a case study (30). The gene CLN3 annotated
to one of the CpGs showed a significant association with alcohol
exposure in one GWAS as indicated in the GWAS catalog (31).
Cg21230392 is mapped to the PROM1 gene, which is a relevant
progenitor marker in human alcoholic hepatitis (32) and showed
increased expression inmice fed with alcohol (33). The longitudinal
association indicates increased methylation at the time of the Fit
survey which some studies show can result in gene suppression
due to the CpG positioned in the first exon (34). Another CpG was
associated with the DLEU7 gene, which was shown to be associated
with snoring (35) and therefore this epigenetic mechanism could be
related to alcohol-induced snoring (36).

Habitual cream consumption was low (median ± IQR; FF4:
1.4 g/day ± 1.15; FIT: 1.3 g/day ± 0.8), indicating a low
heterogeneity between subjects, which, in turn, may increase the
risk of misclassification and thus less reliable results. Cream is
closely related to milk which may modify human serum cholesterol
levels. The geneTLL2 (cg11613902) was observed to be significantly
positively associated in an African GWAS with total cholesterol
as the exposure (37). We observed decreasing methylation with
increasing cream consumption in FF4. This gene alters a regulatory
motif for sterol regulatory element-binding proteins (38), which
are crucial for lipid metabolism. Another observation was the
association of cg11811840 methylation and cream consumption.
The CpG is mapped to UGT1A10 and is involved in xenobiotic
metabolism. It was found that UGT1A locus activity is related
to fibrosis in nonalcoholic steatohepatitis, where higher activity
induced by a SNP allele leads to protection from this disease (39).
The interaction effect suggests higherUGT1A10 activity for the FIT
survey due to lower methylation levels in the gene body.

The CpG with the lowest p-value for the association of DNA
methylation and sugar-sweetened beverage consumption maps
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TABLE 2 GEE analysis results: significant longitudinal associations between DNA methylation sites and food group consumption.

ProbeID Food group E�ect sizea Standard errora P-valuea P-value (bacon)a Chr RefGene name RefGene group Relation to CpG island

cg25441661 Cabbage-vegetables 8.83e-04 1.50e-04 3.64e-09 1.22e-08 5 ADAMTS2y Body† N/A

cg01022859 Fruit-vegetables 1.52e-04 2.75e-05 2.83e-08 6.38e-08 17 MRC2 Body N/A

cg02780269 Grain-products 3.64e-04 6.61e-05 3.75e-08 5.88e-08 17 SECTM1 TSS1500 Island

cg11613902 Cream 0.003 4.51e-04 3.51e-13 5.79e-09 10 TLL2 Body N/A

cg11811840 Cream −2.25e-03 3.23e-04 2.94e-12 1.86e-08 2 UGT1A10† Body† N/A

cg07376134 Cream 0.002 3.58e-04 1.02e-11 5.16e-08 16 GSG1L TSS1500 Island

cg02620443 Sugar-sweetened-beverages 6.46e-05 1.07e-05 1.86e-09 1.46e-08 12 SLC6A13† ExonBnd† N/A

cg25479306 Spirits 0.001 1.39e-04 0.000 1.64e-15 11 VPS37C TSS200 Island

cg24654205 Spirits 0.002 2.33e-04 0.000 2.06e-15 8 COMMD5† TSS200† S_Shore

cg17700903 Spirits 0.009 8.41e-04 0.000 4.55e-15 1 FMN2† TSS1500† N_Shore

cg08870763 Spirits −5.72e-03 5.78e-04 0.000 1.53e-14 8 DLC1† Body† N/A

cg08694574 Spirits 0.008 8.04e-04 0.000 1.08e-13 16 N/A N/A S_Shelf

cg04731518 Spirits −4.07e-03 4.26e-04 0.000 1.14e-13 2 PQLC3 Body N/A

cg04439376 Spirits 0.010 0.001 0.000 1.21e-13 2 TMEM87B TSS1500 Island

cg17737146 Spirits 0.013 0.001 0.000 1.23e-13 3 LRRC34 Body Island

cg26942952 Folic-acid 1.76e-04 3.17e-05 3.09e-08 5.22e-08 12 N/A N/A S_Shore

All significant results in the GEE analysis were evaluated with the p-value for the interaction term, and all shown associations remained significant after Bonferroni and Bacon’s correction. Results for consumption of spirits are shortened, due to space reasons and are
accessible in Supplementary Table 2. UCSC RefGene Name—Target gene names from the UCSC database. UCSC RefGene Group—Describing CpG position. TSS1500= 200-1500 bases upstream of the transcription start site (TSS); 5-UTR=Within the 5′ untranslated
region, between the TSS and the ATG start site; Body= Between the ATG and stop codon, irrespective of the presence of introns, exons, TSS or promoters; 3′UTR= Between the stop codon and the poly A signal; ExonBnd= Exon Boundaries. Relation to UCSC CpG
Island—The location of the CpG relative to the CpG Island. Shore = 0-2kb from Island; Shelf = 2–4kb from Island; N = Upstream (5′) of CpG Island; S = Downstream (3′) of CpG Island (https://knowledge.illumina.com/microarray/general/microarray-general-
reference_material-list/000001568?langsel=/fo/). aValues are obtained from the interaction term of the model. †Indicates available splice variants.
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TABLE 3 Cross-sectional reproduction of significant results of food group consumption and DNA methylation in KORA FF4 in the KORA Fit study, overall, and stratified for the extent of intraindividual change in

food consumption in KORA Fit when compared to KORA FF4 data.

Change in food group consumption (KORA Fit / KORA FF4)

ProbeID Food group Overall Stable <

±0.1
Less

stable <

± 0.2

Modest
increase
≥ +0.1

Strong
increase
≥ +0.2

Modest
decrease
≤−0.1

Strong
decrease
≤−0.2

RefGene
name

RefGene
group

Relation to
CpG island

cg01838728 Leafy-vegetables −5.76e-04# −1.13e-03# −1.06e-03# −9.83e-04# −5.72e-04# 0.001 6.10e-04 N/A N/A N/A

cg15351590 Root-vegetables −5.74e-05# −2.52e-04# −3.84e-04# −2.04e-04# −9.89e-05# 3.95e-04 5.08e-04 KIFC1 TSS1500 N_Shore

cg14698575 Cabbage-vegetables 6.01e-04# −8.45e-04 6.78e-04# 0.001∗# 0.001∗# −2.02e-04 −3.19e-04 N/A N/A S_Shore

cg23709902 Cabbage-vegetables 2.35e-04# 0.001# 0.002∗# 1.85e-04# 2.86e-04# 7.44e-04# 7.95e-04# SRCIN1 Body Island

cg06102690 Cabbage-vegetables −3.57e-04 −6.50e-05 2.28e-04# −6.32e-04 −2.58e-04 5.47e-04# 3.87e-04# CCDC149 TSS200 N/A

cg10399824 Onions-garlic −2.10e-04# −2.65e-04# −4.90e-04# −7.60e-05# −1.36e-04# 9.49e-05 1.26e-04 GRK5 Body N/A

cg06690548 Wine −1.74e-04∗# −9.61e-05# −1.52e-04# −2.12e-04∗# −2.15e-04∗# −2.58e-04∗# −2.42e-04∗# SLC7A11 Body N/A

cg06690548 Beer −5.02e-05∗# −4.60e-05∗# −5.41e-05∗# −3.59e-05# −3.19e-05# −5.11e-05∗# −5.25e-05# SLC7A11 Body N/A

cg26457483 Beer −1.92e-05# −5.01e-05# −4.68e-05∗# −1.11e-06# −4.61e-06# 4.48e-05 1.25e-04∗ PHGDH Body S_Shore

cg14476101 Beer −2.38e-05# −5.21e-05# −4.65e-05∗# −6.90e-07# 3.73e-06 1.51e-05 7.87e-05 PHGDH Body S_Shore

cg06088069 Beer −3.69e-05∗# −5.03e-05∗# −4.42e-05∗# −2.80e-05∗# −1.62e-05# −8.21e-06# −2.08e-06# JDP2† 5′UTR† S_Shore

cg16246545 Beer −7.05e-06# −4.27e-06# −1.14e-05# 2.00e-07 −2.54e-06# 1.90e-05 7.66e-05∗ PHGDH Body S_Shore

cg15837522 Beer −8.18e-05∗# −4.93e-05# −5.67e-05# −9.78e-05∗# −1.01e-04∗# −6.03e-05# 1.20e-05 N/A N/A N/A

cg18120259 Beer −3.22e-05∗# −4.82e-05# −6.05e-05∗# −1.26e-05# −4.03e-06# −4.32e-05# 1.85e-05 LOC100132354 Body N/A

cg08228578 Beer −2.38e-05∗# −2.46e-05# −2.06e-05# −2.48e-05# −2.54e-05# −1.43e-06# −2.00e-05# SHMT2† Body† S_Shore

cg10223198 Beer −2.09e-05∗# −5.13e-05∗# −2.02e-05# −5.38e-06# −1.43e-05# −4.29e-07# −1.58e-05# N/A N/A N/A

Effect sizes of the linear regression models adjusted for possible confounders at time point KORA Fit. We applied several approaches to investigate the effect of percent change in dietary intake (Fit intake divided by FF4 intake). The aim was to analyze subjects
in isolation who had (a) stable dietary intake, i.e., <10% change in intake in the respective food group; (b) less stable dietary intake, i.e., <20% change in intake; (c) modest increase in intake, i.e., more than 10% increase in intake; (d) strong increase in intake,
i.e., more than 20% increase in intake; (e) modest decrease in intake, i.e., more than 10% decrease in intake; (f) strong decrease in intake, i.e., more than 20% decrease in intake. UCSC RefGene Name—Target gene names from the UCSC database. UCSC RefGene
Group—Describing CpG position. TSS1500= 200–1500 bases upstream of the Transcription start site (TSS); 5-UTR=Within the 5′ untranslated region, between the TSS and the ATG start site; Body= Between the ATG and stop codon, irrespective of the presence
of introns, exons, TSS or promoters; 3′UTR= Between the stop codon and the poly A signal; ExonBnd= Exon Boundaries. Relation to UCSC CpG Island—The location of the CpG relative to the CpG Island. Shore= 0–2kb from Island; Shelf= 2–4kb from Island; N
= Upstream (5′) of CpG Island; S = Downstream (3′) of CpG Island (https://knowledge.illumina.com/microarray/general/microarray-general-reference_material-list/000001568?langsel=/fo/). ∗Indicates significance in the Fit cohort without correction. #Indicates
the same direction of effect sizes in the analysis in the FF4 and Fit cohort. †indicates available splice variant.
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to the gene SLC6A13, which is an amino acid transmembrane
transporter and monocarboxylic acid transmembrane transporter.
ADAMTS2 is the gene that is annotated to the top signal
(cg25441661) in the analysis of cabbage vegetables and DNA
methylation, which translates to a metalloproteinase with
thrombospondin motifs. Minor zinc levels in cabbage could be one
factor for this identified association because of the zinc-cofactor
binding site found in the ADAMTS2 protein (40). The CpG which
showed an association with folic acid does not map to any known
gene. Mapped genes to the association of fruit vegetables and grain
products areMRC2 and SECTM1 and are members of the mannose
receptor family of proteins and transmembrane and secreted
protein with characteristics of type 1a transmembrane protein.

Although the association of DNA methylation at cg26577993
(mapped gene: TUBB3) and legume consumption did not survive
genomic inflation correction, it is worth mentioning that one study
found that TUBB3 expression was modified by the application
of lupeol, found in the skin of lupin seeds, to rat cerebral
cultures submitted to inflammatory damage (41). Additionally,
another study found TUBB3 expression changes in rat cortical
astrocyte/neuron primary co-cultures after the application of
monocrotaline, which is a toxic substance in a plant from the family
of Leguminosae (42). Our results showed only a few stable dietary
DNA methylation associations between the FF4 and Fit surveys.
This could be due to the limited sample size of the KORA Fit study.
Past EWAS in FF4 (6) on its own and a meta-analysis including
the FF4 cohort (9) results have shown different signals for different
food groups.

Several strengths accompany this study. We filtered robust
findings by applying bacon correction to address genomic inflation
by estimating the empirical null distribution. Many signals lost
statistical significance, but a few persisted. Additionally, GEE
models are robust to the misspecification of the correlation
structure. Finally, we used habitual dietary intake data to represent
dietary information. This approach decreases the prominent
measurement bias in dietary questionnaire data by using a blended
approach combiningmultiple information sources (i.e., 24-h recalls
and FFQs).

Our study is also subject to certain limitations. The longitudinal
study design of KORA FF4 and Fit is inherent to two biases.
Recall bias could lead to less accurate reporting of dietary or
lifestyle information in the follow-up, and selection bias could stem
from the fact that health-conscious people tend to commit more
frequently to follow-up examinations. Additionally, we have no
gene expression data available, and the data stems only from blood
cells, so tissue-wide extrapolation of the results is not possible.
Furthermore, the sample size of subjects in KORA FF4 and Fit
combined is small, and therefore, replication is needed.

5 Conclusion

This study aimed to investigate the longitudinal association of
usual dietary intake and DNA methylation in blood mononuclear
cells. We observed several significantly different marginal effect
sizes in the GEE model, especially with spirits and cream
consumption, of which several persisted after correction for
genomic inflation. As spirits and cream are consumed in low

amounts, we cannot exclude spurious findings. Our earlier reported
cross-sectional findings on diet-DNA methylation associations
were largely not statistically significant (but similar in size and
direction of the effect size estimate) in KORAFit, which is likely due
to the small sample size. With decreasing dietary intake (from FF4
to Fit) of food groups, effect size estimates seem to change direction.
Finally, it is important that our longitudinal results are reproduced
in larger cohorts to ensure sufficient statistical power.
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