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Abstract
Storage assets are critical for physical trading of commodities under volatile prices.
State-of-the-art methods for managing storage facilities such as the reoptimization
heuristic (RH), which are part of commercial software, approximate a Markov Deci-
sion Process (MDP) assuming full information regarding the state and the stochas-
tic commodity price process and hence suffer from informational inconsistencies with
observed price data and structural inconsistencies with the true optimal policy, which
are both components of generalization error. Focusing on spot trades, we find via an
extensive backtest that this error can lead to significantly suboptimal RH policies. We
develop a forward-looking data-driven approach (DDA) to learn policies and reduce
generalization error. This approach extends standard (backward-looking) DDA in two
ways: (i) It represents historical and estimated future profits as functions of features in
the training objective, which typically includes only past profits; and (ii) it enforces
structural properties of the optimal policy. To elaborate, DDA trains parameters of
bang-bang and base-stock policies, respectively, using linear- and mixed-integer pro-
grams, thereby extending known DDAs that parameterize decisions as functions of
features without policy structure. We backtest the performance of RH and DDA on six
major commodities, employing feature selection across data from Reuters, Bloomberg,
and other public data sets. DDA can improve RH on real data, with policy structure
needed to realize this improvement. Our research advances the state-of-the-art for stor-
age operations and can be extended beyond spot trading to handle generalization error
when also including forward trades.
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1 INTRODUCTION

Storage assets play a fundamental role in commodity mar-
kets. Examples include natural gas and oil storage caverns,
grain silos, and metal warehouses. In 2017, more than 600
warehouses across 14 countries were approved by the Lon-
don Metal Exchange (LME), with several million tonnes
of metal delivered into and taken out of LME warehouses
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(LME, 2017). The Chicago Merchantile Exchange (CME),
another major marketplace for physical metal trading, is also
expanding its storage network. CME-registered warehouses
in Salt Lake City held 131,774 tonnes of copper in January
2018 (Reuters, 2018), which translated into 927 million USD
of inventory.

Merchant trading companies use storage to benefit from
positive commodity price differentials over time, that is,
they buy low, store, and sell high at a later date (Williams
& Wright, 1991, p. 24). These assets have finite space and
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constraints on the rates of injection and withdrawal. Max-
imizing the profit from operating storage requires adapting
the timing of constrained injections and withdrawals to the
movement of uncertain commodity spot prices. The related
optimization of storage operations can be approached using a
Markov decision process (MDP) that contains in its state the
on-hand inventory (i.e., endogenous state) and multiple fac-
tors (i.e., exogenous state) of a Markovian stochastic process
describing the evolution of spot prices. The extant storage
literature formulates this MDP assuming that the stochastic
process is known. A common choice for the exogenous state
is a vector of futures contract prices (Lai et al., 2010) since
they are available for commodities with futures markets and
expectations of the spot price equals futures prices under the
risk-neutral measure.

Storage MDPs with realistic price dynamics are high-
dimensional and thus intractable to solve directly. Least-
squares Monte Carlo (LSM) and reoptimization heuristics
(RH) are state-of-the-art approaches (Breslin et al., 2008;
Breslin et al., 2009; Gray & Khandelwal, 2004a, 2004b) for
approximating the aforementioned intractable MDP and are
part of commercial storage management software (Energy
Quants, 2018; Kyos, 2018; Lacima, 2018; MathWorks, 2018).
LSM computes a parametric approximation of the MDP value
function using backward induction and regression, which is
then used to compute storage decisions (Nadarajah et al.,
2015). RH obtains storage decisions at a given stage and
state by solving a deterministic linear program, referred to as
an intrinsic linear program (ILP), which is based on futures
prices available at the current time. For RH, ILP is reop-
timized at each stage after accounting for updated futures
price information (Lai et al., 2010; Secomandi, 2015). An
advantage of RH over LSM is that its inputs are agnostic
to the assumed commodity price process in the MDP. More-
over, in the context of natural gas, RH storage policies have
been shown to be near-optimal in computational studies that
assume full information about the storage MDP, that is, in
a setting where the exogenous state composition and the
stochastic process describing the evolution of this state are
known and exact (e.g., Lai et al., 2010; Nadarajah & Seco-
mandi, 2018; Secomandi, 2010; Secomandi, 2015; Wu et al.,
2012). Empirical studies investigating the performance of RH
for managing the storage of commodities other than natural
gas are scant.

Focusing on spot trades, we perform an extensive back-
test of the RH policy on price data across six commodities
(i.e., copper, gold, crude oil, natural gas, corn, soybean) from
Thomson Reuters over the period 2000–2017. The goal of
this backtest is to understand the true performance of RH by
applying its decisions on a historical sample path of prices
and benchmarking the resulting profit against the value of an
optimal perfect foresight solution on this price path, which is
indeed optimistic but immune to assumptions implicit in the
MDP. We observe that several insights regarding the perfor-
mance of RH change fundamentally as explained next:

∙ RH yields smaller profits than ILP on 37.0% of our com-
modity backtest instances, which suggests that the value of

reoptimization can be negative, deviating from the substan-
tial positive value of reoptimization reported for the full-
information problem (Secomandi, 2015).

∙ A one-period look-ahead policy leads to higher profits than
RH on several instances, that is, ignoring futures price
information may be beneficial. This result differs from the
literature on forecast horizons in the full-information set-
ting, which argues that far-ahead futures price information
does not affect optimal first-stage decisions (Cruise et al.,
2019).

∙ RH yields an average value of 11.0% of the perfect fore-
sight solution, which makes one wonder if the near-
optimality of RH in the full-information setting extends to
real data.

We rationalize the aforementioned stark differences using
the train-test paradigm of machine learning (ML). Specif-
ically, existing performance evaluations of RH (as well as
other methods such as LSM) in the storage literature both
compute policy parameters/decisions (i.e., train the policy)
and test the performance of these decisions under the full-
information setting, which the actual data may not satisfy.
Informally speaking, the performance difference in the train-
ing environment (i.e., full-information setting) and the testing
environment is referred to as generalization error. Our back-
test suggests this error may be significant when employing
the RH policy.

Motivated by the above observations, we take an ML
approach to target the reduction of generalization error
and learn storage policies. To this end, we relax the full-
information assumption and formulate a feature-based
storage stochastic dynamic program (F-SDP) where the
exogenous state is represented by a generic set of features
that evolve according to an unknown stochastic process. We
then develop a data-driven approach (DDA) to tackle F-SDP
that extends existing approaches in two key ways. First, it
is forward-looking and uses financial-market features (e.g.,
futures prices) to include future estimates of profit in the
training objective, in addition to historical profits considered
by standard DDAs (see, e.g., Bertsimas & Kallus, 2020).
Second, it allows one to enforce structural properties of an
optimal F-SDP policy when computing data-driven policies.
Within this framework, we begin by considering standard
linear decision rules (DDA-LDRs) from the literature (see,
e.g., Ban & Rudin, 2019) that specify decisions as a lin-
ear parameterization of random variables. The DDA-LDR
parameters are trained using the empirical risk minimiza-
tion (ERM) framework (Friedman et al., 2001), which
involves solving a regularized convex program. DDA-LDRs
do not encode any structure of the F-SDP optimal policy
and thus training them in our forward-looking approach
allows us to understand the value of such future information
alone without considering the impact of policy structure.
We subsequently propose structured data-driven policies
(DDA-SPs) that encode bang-bang and double base-stock
structures shared by the F-SDP optimal policy for storage
assets with different operating characteristics. In contrast to
DDA-LDRs, DDA-SPs are parameterized by coefficients of
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price thresholds or base-stock levels, which are trained using
linear and mixed-integer programming. We discuss how the
regularized training procedure and the policy structure used
when computing DDA-SP make it robust to price uncertainty
(i.e., it accounts for downside risk) and estimation error,
respectively.

We perform a backtest of DDA approaches across the same
six commodities used in our RH backtest. As candidate fea-
tures, we consider spot and futures prices from Thomson
Reuters, analyst forecasts of spot prices from Bloomberg,
temperature, the S&P 500 index, and the Trade Weighted
U.S. Dollar index. Feature selection reveals several practical
insights. First, in the absence of futures prices and analyst
forecasts as features, adding the S&P 500 and trade weighted
U.S. dollar indices can improve profits compared to using
only spot prices. This finding is relevant when futures mar-
kets or analyst forecasts are absent, which is the case for com-
modities such as asphalt and specific types of polyethylene.
Second, while futures prices have large errors when treated as
forecasts of spot prices, their inclusion on top of spot prices
can improve storage profits. Third, embedding analyst fore-
casts further enhances storage profits by 7%, that is, spot
and futures prices along with these forecasts lead to median
profits that are undominated by other feature combinations,
which is consistent with the hypothesis that futures prices
and analyst forecasts account for factors that affect prices.
We thus use this feature combination for our performance
analysis.

The median profits of DDA-LDR range between 2.1% and
2.4% (of the perfect foresight value) for different feature
choices, while the RH median profit is 12%. That is, despite
being a data-driven policy, DDA-LDR performs even worse
than RH. In contrast, we observe that DDA-SP generates
median profits between 15.7% and 26.7% and also improves
on the 25th percentile of profits (i.e., downside). Hence, both
regularization in training and the structure encoded in these
data-driven policies can help to improve on the performance
of RH profits as well as the downside risk profile of the profit
distribution. In addition, the DDA-SP median profits change
significantly when forward-looking profits based on futures
prices are considered during the training procedure, indicat-
ing that our extension of existing DDA approaches can add
value. The difference between DDA-SP and RH policies are
35.9%, 19.8%, 11.2%, −4%, 19.5%, and 5%, respectively,
on the copper, gold, crude oil, natural gas, corn, and soybean
instances. The performance of RH and DDA-SP thus varies
significantly across commodities with DDA-SP exhibiting
good overall performance and RH remaining a strong con-
tender in particular for natural gas.

Our findings advance the state-of-the-art for commod-
ity storage operations. The extended DDA and structured
policies highlight potential opportunities to enhance storage
software by considering generalization error. In particular,
although we apply our framework for spot trading, it can be
extended to evaluate and handle generalization error when
combined with forward trading.

1.1 Related work and novelty

Our models, methods, and findings extend the literature on
commodity storage, data-driven optimization, and commod-
ity finance as discussed below.

The literature on commodity storage dates back to the
warehouse management problem introduced by Cahn (1948)
and further studied by Charnes and Cooper (1955), Bell-
man (1956), and Dreyfus (1957). The storage assets in these
very early papers were managed under deterministic prices.
Charnes et al. (1966) and Secomandi (2010) consider the
stochastic version of the storage problem with and with-
out rate constraints, respectively, and characterize the opti-
mal policy. Significant recent effort has gone toward using
approximate dynamic programming techniques to find near-
optimal policies to the intractable storage SDP in the full-
information setting (Cruise et al., 2019; Lai et al., 2010;
Nadarajah et al., 2015; Nadarajah & Secomandi, 2018; Nasci-
mento & Powell, 2008; Wu et al., 2012). Secomandi et al.
(2015) consider the impact of choosing an incorrect num-
ber of factors in a prespecified price model on storage val-
uation and hedging. They term this price-model error. Sec-
omandi (2015) and Nadarajah and Secomandi (2018) argue
in single and network storage settings, respectively, that the
RH policy is price model error-free as it uses only mar-
ket futures prices as input. However, they do not analyze
the impact of futures prices providing poor forecasts of the
spot price as they work under the risk-neutral measure where
the expected spot price equals the futures price. In sum-
mary, the extant storage literature has not empirically stud-
ied the impact of generalization error on the storage oper-
ating policy or developed data-driven operating policies that
target this error. Our backtest of RH, development of DDA
approaches that leverage known policy characterizations, and
related empirical insights are novel to this literature. More-
over, our use of regularization and policy structure provides
an ML and optimization-inspired view of managing storage
operations, which is relevant beyond this setting to other real
options involving commodities such as soybean, corn, and
palm (Boyabatlı et al., 2017; Devalkar et al., 2011, 2018; Goel
& Tanrisever, 2017) and energy (Nadarajah & Secomandi,
2021).

Our work builds on methodological work from empirical
optimization (Bartlett & Mendelson, 2006; Esfahani et al.,
2018) and the emerging data-driven optimization literature
(see, e.g., Ban et al., 2018; Bertsimas & Kallus, 2020; Curtis
& Scheinberg, 2017; Elmachtoub & Grigas, 2022), which
addresses generalization error by explicitly focusing on
out-of-sample performance. Strictly speaking, our paper
belongs to the growing literature (e.g., Ban & Rudin, 2019;
Chenreddy et al., 2019; Mandl & Minner, 2020) that empiri-
cally tests the value of data-driven optimization in operations
management problems. Data-driven optimization has been
applied to single-period inventory control or newsvendor
applications (Ban & Rudin, 2019) and in multiperiod settings
using linear or piece-wise linear decision rule approximations
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(Ben-Tal et al., 2005; See & Sim, 2010), for instance, for
financial contracting (Mandl & Minner, 2020). In a mar-
keting setting, Chenreddy et al. (2019) combine ERM with
polynomial approximations and inverse reinforcement learn-
ing. The forward-looking DDA that we propose extends
the backward-looking DDAs in this literature. While linear
decision rules are known, our assessment of their perfor-
mance for commodity storage, especially when trained using
estimates of future profits is new. Our structured data-driven
policy and the evaluation of the value of enforcing policy
structure are both novel. In addition, the parameters of the
structured policies that we train are thresholds, which are
easily interpretable by managers. Our models for training
these data-driven policies add to the literature on inter-
pretable ML, an area that has studied several applications
ranging from classification to healthcare (see Lakkaraju &
Rudin, 2017, and references therein) but none that share
the structure of the commodity storage application. More
broadly, our empirical finding that enforcing policy structure
can improve out-of-sample performance of data-driven poli-
cies is relevant for other operations management problems
where characterizations of the optimal policy structure are
known.

Finally, our results contribute to recent work in commodity
finance that brings to light the value of features for price pre-
diction (Alquist & Kilian, 2010; Cortazar et al., 2018; Heath,
2019). These papers emphasize the importance of the true
distribution of spot prices (as opposed to risk-neutral distri-
butions), which is consistent with our focus. However, the
aforementioned papers take a statistical view and do not focus
on decision making, while we take an ML perspective and
train operating policy parameters. Therefore, our comparison
of DDA approaches and feature selection in the context of
storage decisions add novel components to this literature. Our
forward-looking DDA shows how the presence of financial
markets allows one to obtain future profit estimates that can
be leveraged as part of the training objective. We also assess
the values of futures prices and analyst forecasts of spot prices
as features when training decision rules for storage to be sig-
nificant. In particular, while futures prices may provide poor
forecasts of spot prices, they nevertheless provide valuable
information to train policies. This finding motivates further
research on the differential impact of data on prediction ver-
sus decision making.

2 COMMODITY STORAGE
OPERATIONS AND POLICY
PERFORMANCE

In Section 2.1, we present a feature-based extension of the
well-known storage SDP. In Section 2.2, we describe the sta-
tistical perspective used to evaluate storage policies in the lit-
erature and make a case for the value in using an ML perspec-
tive instead.

2.1 Feature-based storage MDP

We extend the (stochastic) commodity storage problem for-
mulated by Charnes et al. (1966), Secomandi (2010), and Lai
et al. (2010). Consider a single-item, multiperiod, discrete-
time, periodic-review inventory replenishment problem at
a single commodity storage asset (e.g., warehouse) with a
finite planning horizon T . Periods t = 0, 1, 2, … ,T equal deci-
sion stages and might correspond to hours, days, weeks, or
months. The storage asset state is described by It and denotes
the amount stored at the beginning of t. It is bounded by
warehouse capacity C, that is, 0 ≤ It ≤ C. The holding cost
per unit of time and unit of inventory is denoted by ch

t ≥ 0.
We denote by yi

t ≥ 0 the period t injection quantity and by
yo

t ≥ 0 withdrawal quantity at this period. These decisions are
subject to injection and withdrawal limits Gi and Go, respec-
tively. Storage operations have associated operational fric-
tions. Specifically, injections and withdrawals incur marginal
costs of ci ≥ 0 and co ≥ 0, respectively, and have associated
losses of 𝜂i ∈ (0, 1] and 𝜂o ∈ (0, 1]. The commodity spot
price in period t is denoted by pt. The friction-adjusted pur-
chase and selling prices are

pi
t =

1
𝜂i

pt + ci, po
t = 𝜂opt − co, (1)

where it is common to assume that storage losses are paid in-
kind, that is, using a fraction of the physically traded com-
modity. Note that pi

t ≥ po
t . As is standard in the merchant

operations literature, we assume that the merchant is a price
taker (i.e., injections and withdrawals do not affect the spot
price). We also assume the merchant has access to the spot
market only (physical trading, rather than financial trading
via futures contracts).

Injection and withdrawal decisions at each period are con-
ditioned on the information available to the user (i.e., the
MDP state). Let 𝜉t := {It,Xt} denote all information avail-
able to the merchant at the beginning of period 0 ≤ t ≤ T . The
inventory level It is endogenous information as past injections
and withdrawals determine its value. The remaining compo-
nent is a vector of N features (Xt,n ∈ n, n = 1, … ,N), which
is exogenous information and unaffected by storage opera-
tions. At period t, the distribution of the (random) spot price
p𝜏, 𝜏 > t depends on Xt. Examples of features include current
and past spot prices, prices of futures contracts, and investor
forecasts of spot prices. Given It at period t, the feasible injec-
tion and withdrawal set t(It) is defined as

t(It) :=
{(

yo
t , y

i
t

)|yo
t ∈ [0,min{It,G

o}], yi
t

∈ [0,min{C − It,G
i}]

}
. (2)

Storage results in inventory It transitioning to It+1 = It − yo
t +

yi
t. Under nonzero marginal costs, it is easy to verify that it is

suboptimal to inject and withdraw in the same period.
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A storage operating policy 𝜋 is a collection of decision
rules {Y𝜋

t , t = 0, … ,T}, where Y𝜋
t := (Y𝜋,o

t ,Y𝜋,i
t ) is a func-

tion that assigns a pair of withdrawal and injection decisions
(yo

t , y
i
t) to each state (It,Xt) at period t. Denoting by Π the

set of all operating policies, the value of optimally managing
storage starting from a state (It,Xt) at period t is

F-MDP Vt(It,Xt) : = max
𝜋∈˙

T∑
𝜏=t

𝔼

[(
po
𝜏Y

𝜋,o
𝜏 − pi

𝜏Y
𝜋,i
𝜏 − ch

𝜏 I𝜋𝜏
) |Xt

]
,

(3)

where Vt(It,Xt) is the value function at period t and state
(It,Xt), I𝜋t is the inventory level reached at period t when
using policy 𝜋, and 𝔼 is expectation with respect to the
true (and potentially unknown) stochastic process driving the
features. We suppress the discount factor without loss of
generality as it can be factored into the prices and holding
cost.

An optimal policy to the storage MDP can be sequentially
computed using the following stochastic dynamic program-
ming recursion:

F-SDP Vt(It,Xt) = max
(yo

t ,y
i
t)∈t(It)

×
{

po
t yo

t − pi
ty

i
t − ch

t It

𝔼
[
Vt+1(It − yo

t + yi
t,Xt+1)|Xt

]}
,

(4)

∀t = 0, … ,T − 1 and (It,Xt). Unlike the feature-based SDP
presented here, the extant storage literature predefines the fea-
ture vector Xt and assumes a stochastic process for its evolu-
tion. A popular choice for Xt is the forward curve, that is,
Xt = (ft,t, ft,t+1, … , ft,T ), where ft,t′ , t′ > t, is the time t price of
a futures contract maturing at time t′ and ft,t = pt (see, e.g.,
Lai et al., 2010). The stochastic process driving these prices
typically has multiple factors and satisfies 𝔼[pt′ |ft,t′ ] = ft,t′ .
This is true in complete markets under the risk-neutral mea-
sure, where market participants have different risk prefer-
ences but attribute a unique value to the asset. However, mar-
ket incompleteness is common in commodity markets and
this assumption may not hold.

The structure of the optimal policy known in the com-
modity storage literature (see, e.g., Secomandi et al., 2015)
extends to F-SDP as stated in Proposition 1 under Assump-
tion 1.

Assumption 1 (Bounded spot price expectation). Assume
that for all stages t = 0, 1, … ,T it holds that

𝔼t[pt+1|Xt] < ∞. (5)

Proposition 1 (Optimal Policy Structure). The following
holds under Assumption 1:

(a) Suppose Gi = Go = C. Then there is an optimal policy of
F-SDP and price threshold functions Pt(Xt) such that at
each period t and state (It,Xt), the optimal storage injec-
tion and withdrawal decisions satisfy

(
yi

t, y
o
t

)
=

⎧⎪⎨⎪⎩
(C − It, 0) if pi

t < Pt(Xt),

(0, 0) if po
t < Pt(Xt) ≤ pi

t,

(0, It) if Pt(Xt) ≤ po
t .

(6)

(b) Suppose min{Gi,Go} < C. Then there is an optimal
policy of F-SDP and injection and withdrawal base-
stock–level functions Si

t(Xt) and So
t (Xt), respectively, with

Si
t(Xt) ≤ So

t (Xt) such that at each period t and state (It,Xt)
the optimal storage injection and withdrawal decisions
satisfy:(
yi

t, y
o
t

)
=

⎧⎪⎨⎪⎩
(min{Si

t(Xt) − It,G
i}, 0) if It < Si

t(Xt),

(0, 0) if Si
t(Xt) ≤ It ≤ So

t (Xt),

(0,min{It − So
t (Xt),G

o}) if It > So
t (Xt).

(7)

We omit the proof of Proposition 1 as it follows stan-
dard reasoning available in the literature. When Assumption
1 holds, the value function can be shown to be bounded fol-
lowing the arguments in Lemma B.1 of Nadarajah and Sec-
omandi (2018). The remaining parts of the proof to estab-
lish policy structure mirror Lemma B.2 of Secomandi et al.
(2015).

Proposition 1(a) summarizes the bang-bang structure of the
optimal policy when the storage asset is fast, that is, it has
full operational flexibility (FF) and no rate constraints. In this
case, the optimal policy is based on the value taken by a state-
dependent price threshold Pt(Xt) in relation to the friction-
adjusted spot prices. Depending on the value of Pt(Xt) the
optimal decision is to (i) fill storage, (ii) do nothing, or (iii)
empty storage. The optimal policy for a slow storage asset
with rate constraints, which we refer to as limited operational
flexibility (LF), is shown in Proposition 1(b). Injection and
withdrawal depend on comparing inventory level with state-
dependent injection and withdrawal base-stock levels. These
decisions (i) fill up storage to the injection base-stock level,
(ii) do nothing, or (iii) decrease inventory down to the with-
drawal base-stock level.

2.2 Policy performance evaluation

Solving F-MDP directly is challenging since we do not have
a feature representation X or knowledge of the stochastic
process M driving its evolution. We refer to (X,M) as the
feature–model pair. Even if the feature representation was
known, the computational burden of solving F-MDP is
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prohibitive due to the well-known curses of dimensionality.
Therefore, it is common to forgo finding an optimal policy
and instead solve a tractable optimization model that approx-
imates F-MDP and delivers a heuristic policy. Given such
a heuristic policy �̂�, its performance needs to be evaluated.
We discuss the evaluation procedure used extensively in the
merchant storage literature (and more broadly in stochastic
optimization) and then present a data-inspired evaluation
procedure, also highlighting its implications to methods that
compute policies. This subsection will form the conceptual
basis for our empirical results and methods in the remaining
parts of the paper.

The literature on storage operations evaluates the perfor-
mance of a heuristic policy �̂� via simulation. Let V �̂�(p) be
the value of applying the decisions of policy �̂� on the spot-
price trajectory p := (pt, t = 0, … ,T). Further, we denote by
𝜋∗X,M an optimal policy to F-MDP formulated using (X,M).
The goal is to evaluate the exact optimality gap:

OPTX,M(�̂�) := 𝔼X,M

[
V𝜋∗X,M (p) − V �̂�(p)|X0

]
, (8)

where 𝔼X,M is expectation w.r.t. model M over feature tra-
jectories X under feature representation X. Since 𝜋∗X,M is
unknown, it is common to replace it by a computable upper

bound UX,M(X0) such that UX,M(X0) ≥ 𝔼X,M[V𝜋∗X,M (p)|X0]. A
common upper bounding approach is information relaxation
and duality (see Brown et al., 2010, for details). The resulting
optimality gap estimate is

UX,M(X0) − 𝔼X,M
[
V �̂�(p)|X0

]
. (9)

The evaluation of the optimality gap in the literature is tied
to the feature representation and stochastic model assump-
tions. This estimate of policy performance can be misleading
if the assumed pair (X,M) is different from the true (X∗,M∗).
We term this potential difference between assumed and true
feature–model pairs as information inconsistency. To illus-
trate, consider policies �̂�A and �̂�B evaluated using the exact
optimality gap (8). Then it is possible that OPTX,M(�̂�A) >
OPTX,M(�̂�B) while OPTX∗,M∗ (�̂�A) < OPTX∗,M∗ (�̂�B). Hence,
the simulation-based performance ranking of these policies
may differ from their ranking on real data due to informa-
tion inconsistency.

Motivated by the above observation, we consider evaluat-
ing the performance of policies in a data-driven manner. Our
starting point is the following definition of idealized gener-
alization error used in reinforcement learning (see Murphy,
2005, section 4):

GE∗(�̂�) := OPTX∗,M∗ (�̂�) = 𝔼X∗,M∗

[
V𝜋∗X∗,M∗ (p) − V �̂�(p)|X0

]
.

(10)

Intuitively, this definition is an assessment of how the notion
of approximate optimality underlying the problem solved to
obtain �̂� “generalizes” to handle the exact optimality asso-

ciated with F-MDP formulated with (X∗,M∗), which gives
rise to 𝜋∗X∗,M∗ . While conceptually appealing, similar to the

issue in (8), 𝜋∗X∗,M∗ is unknown and hence the value V𝜋∗X∗,M∗ (p)
too. We thus replace this value by the perfect foresight
value VPF(p) obtained by optimizing storage operations with
knowledge of the true spot prices p. Clearly this value does
not depend on (X,M), that is, unlike UX,M(X0) used to obtain
(9) starting from (8), the term VPF(p) is a feature–model pair
independent upper bound. The resulting computable general-
ization error is

𝔼X∗,M∗

[
VPF(p) − V �̂�(p)|X0

]
. (11)

We replace the expectation 𝔼X∗,M∗ by its sample average
approximation based on H trajectories of observed data ph :=
(ph

0, … , p
h
T ) for h = 1, … ,H to obtain the empirical generaliza-

tion error

GE(�̂�) :=
1
H

H∑
h=1

[
VPF(ph) − V �̂�(ph)

]
. (12)

Minimizing GE(�̂�) to find a policy �̂�GE := arg min𝜋∈Π GE(𝜋)
is equivalent to maximizing empirical performance on
observed data, that is, �̂�GE solves max𝜋∈Π

∑H

h=1 V �̂�(ph)∕H. In
other words, unlike the focus of the existing storage literature
on finding policies with low optimality gaps (e.g., less than a
few percent) under a potentially incorrect model (X,M), the
effort when using (12) for evaluation is redirected to rank-
ing policies based on their performance on data. In addition
to providing a data-driven ranking of policies, GE(�̂�) mea-
sures the empirical performance of a policy relative to the per-
fect foresight value. This difference is insightful, especially in
volatile commodity markets, as it shows the value that can be
gained from perfect knowledge of future information and has
been considered in the literature (Kleindorfer et al., 2012).

Minimizing GE(�̂�) mitigates the possibility of incorrectly
ranking policies during evaluation and concluding that a pol-
icy with poor empirical performance is near-optimal owing to
the previously discussed information inconsistency between
an assumed feature–model pair (X,M) and the true such pair
(X∗,M∗). Although we focus mainly on performance evalua-
tion of a given policy here, it is important to note that informa-
tion inconsistency can also cause the method that computes
�̂� to incorrectly rank policies and thus choose one with poor
performance on data. Specifically, the generalization error of
a policy �̂� can be larger than �̂�GE due to this information
inconsistency. It is also common for methods to optimize
over a smaller policy class Π̂ ⊂ Π to achieve tractability. This
restriction can result in Π̂ excluding the optimal policy or
more importantly near-optimal ones, and thus increase gen-
eralization error even in the absence of information incon-
sistency. We refer to this difference in policy sets as struc-
tural inconsistency. In summary, a firm can compare the per-
formance of policies using traditional simulation assuming
a feature–model pair and re-evaluating these policies using
generalization error as the metric on data. If the ranking
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of policies changes, this is a signal that there is informa-
tion inconsistency. When designing data-driven policies that
attempt to reduce generalization error, one needs to be cog-
nizant of both information and structural inconsistencies.

3 RH BACKTEST

In this section, we perform an extensive backtest to evalu-
ate the performance of RH based on generalization error as
defined in (12). We describe RH in Section 3.1. We overview
the data set used for our backtest in Section 3.2 and present
results in Section 3.3.

3.1 Algorithm

RH, which is sometimes referred to as forward dynamic
optimization (Eydeland & Wolyniec, 2003, p. 355), is a
sequential RH and a type of certainty-equivalent control that
determines injection and withdrawal decisions by solving an
“intrinsic” linear program formulated using point estimates
of future spot prices. It does not require any training, which
makes its implementation easy. We denote the time t point
estimate of the spot price p𝜏 with 𝜏 > t by ft,𝜏 and define the
vector Ft := (ft,𝜏, 𝜏 ∈ t) where t = {t, t + 1, … ,T}. Thus,

the estimates of pi
t and po

t are f i
t,𝜏 =

1

𝜂i
ft,𝜏 + ci and f o

t,𝜏 =

𝜂oft,𝜏 − co, respectively. We denote by  (I, t,T) the feasible
set of inventory levels and storage decisions {(yi

𝜏, y
o
𝜏, I𝜏), 𝜏 ∈

{t, t + 1, … ,T}} over a planning period {t, t + 1, … ,T} with
a starting inventory level of I. This set is defined by the fol-
lowing constraints:

I𝜏+1 = I𝜏 − yo
𝜏 + yi

𝜏, ∀𝜏 ∈ {t, t + 1, … ,T − 1}, (13)

0 ≤ yi
𝜏 ≤ C − I𝜏, ∀𝜏 ∈ {t, t + 1, … ,T}, (14)

0 ≤ yo
𝜏 ≤ I𝜏, ∀𝜏 ∈ {t, t + 1, … ,T}, (15)

yi
𝜏 ≤ Gi, ∀𝜏 ∈ {t, t + 1, … ,T}, (16)

yo
𝜏 ≤ Go, ∀𝜏 ∈ {t, t + 1, … ,T}. (17)

Constraints (13) model the inventory transitions. Constraints
(14)–(17) enforce the restrictions on the injection and with-
drawal amounts.

The ILP at period t is

max
{(yi

𝜏,y
o
𝜏 ,I𝜏),𝜏∈t}

∑
𝜏∈t

[
f o
t,𝜏y

o
𝜏 − f i

t,𝜏y
i
𝜏 − ch

t I𝜏
]

(18)

s.t. {(yi
𝜏, y

o
𝜏, I𝜏), 𝜏 ∈ t} ∈  (Īt, t,T). (19)

The objective function (18) maximizes the profit from stor-
age operations estimated using the spot price forecast Ft with
decisions subject to operational constraints  (Īt, t,T).

The RH policy is based on solving ILP (18)–(19) at each
stage. To elaborate, ILP is solved in the current period t given
the forecast Ft and the inventory state information It to obtain
injection and withdrawal decisions for each future period, that
is, (yi

𝜏, y
o
𝜏) for 𝜏 ∈ t. The period t decision pair (yi

t, y
o
t ) is the

decision implemented by the RH policy at state (It,Ft). Then
an ILP is formulated in period t + 1 using updated inventory
state information It+1 = It − yo

t + yi
t and an updated forecast

Ft+1. Solving the resulting ILP gives the period t + 1 RH
decision and so on. RH thus side-steps the curse of dimen-
sionality involved in tackling F-SDP by solving LPs based on
point forecasts.

RH is popular for managing natural gas storage, where ft,𝜏
is chosen to be the time t price of a futures contract with matu-
rity at time 𝜏. Choosing ft,𝜏 as a futures price is directly appli-
cable for operating storage assets of other commodities with
traded futures contracts. When a futures market is absent, ft,𝜏
could be a point forecast or a prediction of p𝜏.

When F-SDP is formulated for a commodity with a futures
market (i.e., Xt = Ft), the existing literature that uses RH cites
two advantages. The first is that the RH policy is consistent
with the structure of an F-SDP optimal policy, which from
our discussion in Section 2.2 implies that the structural com-
ponent of generalization error is zero for RH. The second
advantage is that RH is model-free. Specifically, the futures
prices in Ft are available from traded contracts in the market
and not based on any statistical model. Under the risk-neutral
measure typically used in the literature, this model-free def-
inition of ft,𝜏 as a futures price also results in an unbiased
estimator of p𝜏 since we have ft,𝜏 = 𝔼[p𝜏] for all 𝜏 ∈ t. How-
ever, the RH policy is applied under the real-world measure
(often referred to as the physical measure) that drives spot
prices, where a futures price may provide a poor forecast of
the spot price. In other words, although RH is model-free, it
can (and likely will) have a nonzero informational component
of generalization error. To assess the generalization error and
performance of RH on real data, we perform a backtest in
Section 3.2.

3.2 Data and instances

Our RH backtest is based on spot and futures price data
between 2000 and 2017 for the following six commodi-
ties: copper, gold, crude oil, natural gas, corn, and soybean.
Futures contracts for metals and energy are traded at the New
York Mercantile Exchange (NYMEX) and for agricultural
commodities at the Chicago Board of Trade (CBOT). We con-
sider futures prices for the first 12 maturities, that is, 1- to 12-
months-ahead contracts, and use monthly prices at the first
trading day of the corresponding month. Even though con-
tracts beyond 1 year are available for various commodities,
these markets are typically highly illiquid with only very few
contracts traded, which implies that the predictive content for
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TA B L E 1 Commodity spot and futures price data from Thomson Reuters (2000–2017)

Commodity Price quotation Annualized volatility Spot market (Data source) Futures market (Data source)

Metals

Copper USD/lb 25% Nevada Copper (NCUCASH) COMEX (HGc1-12)

Gold USD/ounce 17% Gold (XAU=) COMEX (GCc1-12)

Energy

Crude oil USD/bbl 37% West Texas Intermediate (CRUDOIL) NYMEX (CLc1-12)

Natural gas USD/mmbtu 65% Henry Hub Natural Gas (NATLGAS) NYMEX (NGc1-12)

Agricultural

Corn USc/bushel 29% No.2 Yellow Corn (CORNUS2) CBOT (Cc1-12)

Soybean USc/bushel 25% No.1 Yellow Soybean (SOYBEAN) CBOT (Sc1-12)

F I G U R E 1 Spot prices for copper, gold, crude oil, natural gas, corn, and soybean from 2000 to 2017 [Color figure can be viewed at
wileyonlinelibrary.com]

future spot prices might be low (Alquist & Kilian, 2010). Fur-
thermore, our perfect foresight analysis on the empirical data
indicates that planning horizons that are significantly smaller
than 12 months are sufficient for optimal first-stage decisions
(see Figure EC.1 of the Supporting Information).

Among the six commodities we consider, four of them
have futures contracts with monthly maturities. The excep-
tions are CBOT corn and soybean futures. The former
futures mature in March, May, July, September, and Decem-
ber while the latter futures mature in January, March, May,
July, August, September, and November (www.cmegroup.
com). To obtain monthly corn and soybean futures prices we
employ linear interpolation following Nadarajah and Seco-
mandi (2018) who apply the approach described in Guthrie
(2009). Table 1 summarizes the sources we use to obtain data.
Figure 1 plots the spot prices for each commodity.

For each commodity, we consider various operational set-
tings for the storage asset in our backtest. Table 2 summa-
rizes the parameters that we vary to obtain 4 × 2 × 3 × 9 =
216 instances per commodity (i.e., 1296 instances in total).
Across all instances, we normalize warehouse capacity to
C = 1, choose initial inventory I0 = 0, and set storage hold-

TA B L E 2 Summary of the numerical design

Planning horizon T ∈ {1, 3, 6, 12}

Storage flexibility Gi = Go ∈ {0.5, 1}

Operational frictions 𝜂i = 𝜂o ∈ {1, 0.995, 0.99}

Subperiods 2000–2002, 2002–2004, …, 2016–2017

ing cost ch
t = 0 (although, we tested plausible values for this

parameter and found that it led to similar results). There
are no injection and withdrawal costs (ci = co = 0). Further-
more, we distinguish between fully flexible storage (FF) with
Gi = Go = C and limited flexible storage (LF) with Gi =

Go =
1

2
C.

3.3 Results

Our implementation of RH assumes monthly inventory
review periods so that each storage decision period coincides
with a futures contract maturity. This assumption is consistent

http://www.cmegroup.com
http://www.cmegroup.com
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TA B L E 3 Performance of futures-based RH in VRH∕VPF ⋅ 100% across all instances

Mean Min 25%-Q 50%-Q 75%-Q Max Meana Meanb

Copper 1.3 −58.5 −12.2 0.0 10.6 70.0 4.1 1.5

Gold 10.0 −107.5 0.0 0.0 23.2 78.7 9.4 11.1

Crude oil −5.1 −171.9 −30.1 7.1 26.3 70.5 −3.3 7.6

Natural gas 18.6 −125.9 6.0 25.6 44.8 79.5 21.2 28.5

Corn 16.7 −44.3 −5.8 14.5 42.2 64.9 20.0 19.4

Soybean 24.5 −31.6 −1.0 20.8 45.6 79.8 28.1 27.3

Overall 11.0 −171.9 −4.6 9.5 34.9 79.8 13.3 15.9

aMean w/o 2008–2009 (financial crisis).
bMean w/o 2014–2015 (oil price drop).

with past studies of RH (see, e.g., Lai et al., 2010; Secomandi,
2015). We also note that futures markets can be more liquid
than spot markets, which are often thinly traded (Geman &
Smith, 2013). We tested RH based on trading in the futures
market with the closest expiry (the so-called front-month con-
tract) as a proxy for the spot price. As the results were similar,
we do not report them in the paper.

3.3.1 Empirical performance of RH

Table 3 reports statistics of the RH backtest across the 1296
instances summarized in Table 2. We obtain an assessment of
the true generalization error by measuring

VRH

VPF
⋅ 100% where

VRH and VPF are the RH and perfect foresight profits, respec-
tively. VPF is calculated based on past data via (18)–(19)
given known price trajectories rather than forecasts.

We find that RH achieves 11.0% of the perfect foresight
value on average. Its performance across commodities varies
significantly. For instance, the mean profits vary from −5.1%
for crude oil to 24.5% for soybean. The negative mean profit
for crude oil was intriguing. Further investigation showed that
the RH policy results in negative profits on 30.1% of the
instances. Negative profits usually occur whenever the fore-
cast shows decreasing prices and therefore the RH policy sells
available inventory to the market disregarding that the pur-
chase costs were higher. Indeed, in practice, these negative
profits can be avoided by trading in forward contracts. We
also observe that the financial crisis of 2008–2009 and the
oil price drop during 2014–2015 significantly impact perfor-
mance. Notably, if we exclude the instances corresponding to
the 2014–2015 subperiod, the average performance of RH for
crude oil increases from −5.1% (unprofitable storage) to 7.6%
(profitable storage) and its worst-case performance improves
from −171.9% to −64.2%.

The performance of RH varies with the operational storage
parameters (Gi,Go, 𝜂i, 𝜂o). We report these results in Table
EC.1 of the Supporting Information. While for a given oper-
ational setting (e.g., copper, n = 12, 𝜂i = 𝜂o = 0.995) RH
yields positive mean profit for a fully flexible (FF) storage
asset, this average profit becomes negative once the storage

asset has limited flexibility (LF), that is, once the injec-
tion and withdrawals are constrained. Moreover, if frictions
are large (i.e., small 𝜂i and 𝜂o) relative to the (expected)
price changes, the warehouse slows down its activity (see,
for example, the instances of gold with zero mean profit in
Table S1).

The small RH profit percentages relative to the perfect
foresight solution are not themselves concerning because our
benchmark is anticipative but it does raise the question of
whether RH can be improved. Note that this question does
not arise in the RH performance results reported for natu-
ral gas in the literature (see, e.g., Lai et al., 2010), which
are performed under statistical model assumptions and show
that RH is within a few percent of the optimal policy value.
These differences in the assessment of RH suggest that infor-
mation inconsistency may be at play here but confirming this
suspicion requires comparing against a method that targets
generalization error, which will be the focus of Sections 4
and 5.

3.3.2 Performance impact of the planning
horizon

To understand if the performance of RH can be improved, we
define variants of RH that solve an ILP at each stage formu-
lated over a shorter horizon than T = 12, that is, we exclude
futures prices with further maturities. In particular, we con-
sider T ∈ {1, 3, 6, 12} and use RHT to denote the RH variant
with a planning horizon of T periods.

Figure 2 shows that the performance of RH is sensitive to
the planning horizon T on almost all instances. Exceptions
include the FF instances without frictions where it is known
that a one-period look-ahead policy is optimal (see related
results in Table EC.1 of the Supporting Information). Using
longer planning horizons in RH helps improve the average
performance for crude oil, gold, and soybean but hurts prof-
its for natural gas and corn, while this effect is mixed for
copper. Several performance changes are substantial with T .
For instance, the average profit percentage for natural gas
reduces from over 25% for RH1 to less than 20% for RH12. A
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F I G U R E 2 Average performance of RHT for different planning horizons T

TA B L E 4 Dominance matrix of RHT for different planning horizons
T reporting the percentage of instances (N= 1296) in which the RH variant
in the row strictly outperforms its variant in the column

RH1 RH3 RH6 RH12

RH1 – 28.7 28.4 29.9

RH3 31.2 – 9.6 14.8

RH6 38.9 21.9 – 8.0

RH12 41.4 27.5 12.0 –

similar trend can be observed for corn. These results indicate
that it is possible to significantly improve the performance of
the standard RH policy (i.e., RH12).

We investigate the results of Figure 2 further in the domi-
nance matrix shown in Table 4. The one-step look-ahead pol-
icy based on RH1 outperforms RH policies with longer plan-
ning horizons on a significant number of instances.

Specifically, RH1 strictly improves RH12 on 29.9% of the
instances (and weakly in 58.6% of the instances, which is
omitted in the paper). Further, we observe that RH6 is equal
to or better than RH12 on 88.0% of the instances, which sug-
gests that futures prices with later maturities adversely affect
the performance of the RH12 operating policy. This finding
is qualitatively different from the literature on forecast hori-
zons (Chand et al., 2002) applied to RH under a risk-neutral
measure (see Section 2 for a related discussion), which states
that adding futures price information to RH can only be ben-
eficial to its performance and ignoring futures prices beyond
a certain maturity does not affect performance (Cruise et al.,
2019). One possible explanation for the longer futures maturi-
ties hurting the performance of RH in our real-world backtest
could be related to these futures prices providing a poor fore-
cast of the corresponding spot price as exemplarily shown in
Figure 3.

3.3.3 Value of reoptimization

The preceding qualitative deviation from the literature also
brings into question whether there is value in the reopti-
mization of ILP, which is needed to define the RH pol-
icy. Under the risk-neutral measure and standard statistical
model assumptions, reoptimization has been shown to add
significant value over the intrinsic (static) policy based on
the forward curve available at the initial stage (Lai et al.,

F I G U R E 3 NYMEX futures curves (dashed) and realized spot prices
(◦) for natural gas (prices refer to closing prices at the first trading day of
the corresponding month) [Color figure can be viewed at
wileyonlinelibrary.com]

2010; Secomandi, 2015). We assess if this remains the case
in our backtest. We define the value of reoptimization as

VReO := (
VRH−VILP

VPF
) ⋅ 100% with V ILP denoting the profit

obtained using the ILP. While RH revises the injection and
withdrawal decision plan in each period based on new futures
price information and updated inventory, ILP determines the
plan for all periods based on F0. Figure 4 summarizes the
value of reoptimization for RH with different planning hori-
zons. The value of reoptimization can be either positive or
negative. Across the instances, this value is negative for RH12
on 37.0% of the instances, which is significant. Figure EC.2 of
the Supporting Information shows in more detail when reop-
timization would have generated positive value and when not.
We observe that ILP outperforms RH especially in phases
of sharp price jumps or drops, once again indicating that the
inability of futures prices to forecast spot price changes can
lead to the behavior of RH for spot trading when evaluated
on real data being substantially different from what has been
observed in controlled simulations.

3.3.4 Value of perfect price information

In Section EC.2.3 of the Supporting Information, we investi-
gate what information (albeit idealistic) could be provided to
RH in lieu of futures prices to improve its performance. Our
results show that one-step-ahead spot price information gen-
erates significant additional profits compared to standard RH
with futures price information. The perfect foresight value for
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F I G U R E 4 Value of reoptimization for T ∈ {1, 3, 6, 12} (light gray to dark gray). Note on boxplot characteristics: minimum, 1st-, 2nd-, 3rd-quartile,
maximum

flexible storage assets can almost fully (on average 98.5%)
be captured by correctly classifying the direction of one-step-
ahead price movements. The improvement for limited flexi-
bility is over 50%.

Therefore, we show that there is opportunity to improve on
RH for spot trading. This observation motivates the develop-
ment of DDAs for managing storage that targets generaliza-
tion error.

4 DATA-DRIVEN DECISION RULES

In this section, we focus on data-driven decision rules for
managing commodity storage. In Section 4.1, we present a
forward-looking DDA. We apply this approach using linear
decision rules and structured policies in Section 4.2 and Sec-
tion 4.3, respectively. Finally, we discuss robustness aspects
of these policies in Section 4.4.

4.1 Forward-looking policy training and
evaluation framework

We consider the computation of data-driven injection and
withdrawal decision rules (ui

t(X, 𝛽
i), uo

t (X, 𝛽o)) at each stage,
which are functions of features X and parameter vectors
𝛽i and 𝛽o. The decision rule parameters 𝛽i and 𝛽o are the
trained coefficients of features that fully characterize the deci-
sion rules for purchasing and selling (see Equations (28) and
(30)). They are computed using the ERM framework (Vapnik,
1998, p. 32). Suppose we have a historical spot price sample
path covering T′ periods. This procedure divides this sam-
ple path into training, validation, and testing segments corre-
sponding to the subperiods {0, … ,Ts}, {Ts + 1, … ,Tv}, and
{Tv + 1, … ,T′}, respectively. The coefficients of the deci-
sion rules are chosen to maximize regularized profit on the
training sample path segment. Regularization is added to
avoid overfitting decisions to a single sample path (see Mohri
et al., 2012, p. 28). The standard backward-looking math
program—see Bartlett and Mendelson (2006), and for recent
applications, Ban and Rudin (2019) and Mandl and Minner

(2020)—used for training is

max
{(yi

t ,y
o
t ,It),t∈{0,1,…,Ts}}

{(𝛽o
n ,𝛽

i
n),n=0,…,N}

1
Ts

[
Ts∑

t=0

(po
t yo

t − pi
ty

i
t − chIt)

]
− 𝜆‖(𝛽o, 𝛽i)‖1

(20)

s.t. {(yi
t, y

o
t , It), t ∈ {0, 1, … ,Ts}} ∈  (Ī0, 0,T

s), (21)

yi
t = ui

t(Xt, 𝛽
i), ∀t ∈ {0, 1, … ,Ts}, (22)

yo
t = uo

t (Xt, 𝛽
o), ∀t ∈ {0, 1, … ,Ts}, (23)

where the first term of the objective is the average profit
over the training period and the second term is a 1-norm
regularization where 𝜆 ≥ 0 controls the weight of this term
in the objective. Constraint (21) enforces operational con-
straints while constraints (22)–(23) encode the decision
rule structure. Given 𝛽 coefficients, a data-driven storage
policy 𝜋DDA is the collection of feasible injection and
withdrawal decision rules {(yi

t(Xt, 𝛽
i), yo

t (Xt, 𝛽
o)), t ∈ 0},

where yi
t(Xt, 𝛽

i) := max{min{C − It,G
i, ui

t(Xt, 𝛽
i)}, 0} and

yo
t (Xt, 𝛽

o) = max{min{It,G
o, uo

t (Xt, 𝛽
o)}, 0}. Math program

(20)–(23) is solved several times by varying 𝜆 ≥ 0. Each
solution produces a possibly different set of 𝛽 coefficients
and corresponding policy. Among these policies, 𝜋DDA is
chosen to be the one that results in the largest profit on the
validation segment. Finally, the profit of 𝜋DDA is evaluated
on the testing segment against the perfect foresight solution.

An important property of (20)–(23) is that all the data used
in its definition are available at or before period Ts. Hence,
it is common in the literature to maximize the profit over
the training period. In the context of commodity storage as
well as other applications with financial markets, forward-
looking market information beyond the training set is avail-
able via futures prices at period Ts. As already discussed in
earlier sections, the futures price ft,𝜏 may be a reasonable pre-
dictor for the spot price p𝜏 at least for near-term maturities.
Based on this observation, we consider solving the following
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F I G U R E 5 Optimization (training) and evaluation framework

forward-looking training math program over T f > Ts

periods:

max
{(yi

t ,y
o
t ,It),t∈{0,1,…,Tf}}

{(𝛽o
n ,𝛽

i
n),n=0,…,N}

1
T f

⎡⎢⎢⎢⎢⎢⎣
Ts∑

t=1

(po
t yo

t − pi
ty

i
t − chIt)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Standard ERM

+

Tf∑
t=Ts+1

(f o
Ts,ty

o
t − f i

Ts,ty
i
t − ch

t It)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
Forward optimization: Estimate of future profit

⎤⎥⎥⎥⎥⎥⎦
− 𝜆‖(𝛽o, 𝛽i)‖1

(24)

s.t. {(yi
t, y

o
t , It), t ∈ {0, 1, … ,T f}} ∈  (Ī0, 0,T

f), (25)

yi
t = ui

t(Xt, 𝛽
i), ∀t ∈ {0, 1, … ,T f}, (26)

yo
t = uo

t (Xt, 𝛽
o), ∀t ∈ {0, 1, … ,T f}. (27)

Constraints (25)–(27) are analogous to (21)–(23) but defined
over a longer time horizon T f. The objective function (24) has
an extra term not found in (20). This term corresponds to the
estimated profits over the periods {Ts + 1, … ,T f} obtained
using futures prices available at Ts. Indeed, choosing T f = Ts

gives us back the standard ERM math program. We illustrate
our forward-looking framework to train storage policies in
Figure 5.

The data-driven framework described above can be used
to target generalization error, which as discussed in Sec-
tion 2.2 can be viewed as having components due to infor-
mation inconsistency and structural inconsistency. The effect
of the former inconsistency can be mitigated via feature selec-
tion in the context of the training, validation, and testing
framework. The effect of latter inconsistency depends on the
choice of (ui

t(X, 𝛽
i), uo

t (X, 𝛽o)), which will be the focus of
Sections 4.2 and 4.3. In this paper, we evaluate if our forward-
looking ERM adds value compared to using the standard
ERM math program.

4.2 Linear decision rules (DDA-LDR)

The common choice for decision rules is an affine map-
ping of features to decisions, referred to as linear decision
rules (LDRs; see Ban & Rudin, 2019, for a newsvendor
example and for additional references). Such a mapping for
(ui

t(Xt, 𝛽
i), uo

t (Xt, 𝛽
o)) at period t is:

ui
t(Xt, 𝛽

i) :=
N∑

n=0

𝛽i
nXt,n, uo

t (Xt, 𝛽
o)) :=

N∑
n=0

𝛽o
nXt,n, (28)

where 𝛽i
n ∈  ⊂ ℝ and 𝛽o

n ∈  ⊂ ℝ are feature coefficients
that are unknown to the merchant and must be learned from
historical time series data. To allow for a feature-independent
intercept, we set Xt,0 = 1 ∀t ∈ 0. The linear parameteriza-
tion of uo

t and ui
t is not very restrictive since one can introduce

new features that are nonlinear functions of the original fea-
tures. For instance, such functions could involve interactions
terms (e.g., 𝛽i

3X1tX2t), polynomials (e.g., 𝛽i
1X2

1t), and lagged
observations (e.g., 𝛽i

2X1,t−1).
We refer to the policy obtained based on the choice (28)

as DDA-LDR. A computational advantage of DDA-LDR is
that (24)–(27) becomes a linear program that is efficient to
solve. In terms of structural consistency, an LDR will in gen-
eral not have the same structure as an optimal storage policy.
Thus, it may suffer from generalization error because of this
inconsistency, which motivates the structured decision rules
considered next.

4.3 Structured decision rules (DDA-SP)

We choose ui
t(Xt, 𝛽

i) and uo
t (Xt, 𝛽

o) guided by the policy
structures outlined in Proposition 1.

We begin by considering the optimal policy structure in the
full flexibility case (i.e., Proposition 1(a)), which is based on
a price threshold Pt(Xt). Our goal will be to compute Pt(Xt)
using feature information in a data-driven manner and impose
the optimal policy structure on the decision rules that we
compute. In other words, we enforce

Pt(Xt) :=
N∑

n=1

𝛽nXt,n, (29)

and choose

(ui
t(Xt, 𝛽), uo

t (Xt, 𝛽)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(C − It, 0) if pi
t <

N∑
n=1

𝛽nXt,n,

(0, 0) if po
t <

N∑
n=0

𝛽nXt,n ≤ pi
t,

(0, It) if
N∑

n=0

𝛽nXt,n ≤ po
t .

(30)
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The choice for ui
t(Xt, 𝛽

i) and uo
t (Xt, 𝛽

o) in (30) is funda-
mentally different from a linear decision rule, as these deci-
sions are not directly parameterized by features but features
specify thresholds (as decision signals) within the optimal
policy structure. Math program (24)–(27) under definition
(30) has an mixed-integer program representation, which is
detailed in Section EC.3.1 of the Supporting Information.
This representation facilitates the use of off-the-shelf com-
mercial solvers for solving this math program.

For a storage asset with limited flexibility, the estima-
tion of a single price threshold is not sufficient because at
the same market price pt, different purchase-and-inject and
withdraw-and-sell decisions yi

t and yo
t , respectively, can be

optimal depending on the current inventory level It. We spec-
ify ui

t(Xt, 𝛽
i) and uo

t (Xt, 𝛽
o) using the policy structure of

Proposition 1(b) and the parameterized base-stock levels

Si
t(Xt) := max

{
0,

N∑
n=0

𝛽i
iXt,n

}
,

S𝚫t (Xt) := max

{
0,

N∑
n=0

𝛽𝚫i Xt,n

}
, (31)

with So
t (Xt) := Si

t(Xt) + S𝚫t (Xt). This additive formulation of
the base-stock levels is required to ensure that Si

t ≤ So
t . We

provide a mixed-integer linear program to compute the 𝛽i
i

and 𝛽𝚫i coefficients in Section EC.3.2 of the Supportingx
Information.

4.4 Robustness of DDA-SP

Storage policies need to account for price and estimation
risk. Price risk arises because commodity prices are uncer-
tain, while estimation risk is a consequence of errors incurred
when determining the parameters of a policy. DDA-SP
accounts for both these risks as discussed below.

Differences between in-sample and out-of-sample profits
of a storage policy can be attributed to the informational and
structural components of generalization error (discussed in
Section 2.2). The informational component arises due to com-
modity spot prices in the test set being uncertain and differ-
ent from the training set (i.e., price risk). Regularization adds
bias to the estimator to improve out-of-sample performance
by avoiding overfitting (Mohri et al., 2012).

It can also be viewed as ensuring that the policy is trained
using a robust objective in the forward-looking math pro-
gram (20)–(23). To understand this, note that setting 𝜆 equals
zero in the objective (20) amounts to maximizing profits on
the training set without accounting for price risk. For a posi-
tive 𝜆, the bias added by the regularization makes this objec-
tive robust, that is, training and validation procedures used
to determine policy parameters account for spot prices differ-
ing from historical prices within some uncertainty set (see,
e.g., Gao et al., 2017, for theoretical results on the robustness
interpretation of regularization).

The structural component of generalization error, interest-
ingly, has implications on both model complexity and the
impact of estimation error. Consider DDA-LDR, which is
inconsistent with the optimal policy structure in general. The
complexity of the class of policies represented by LDRs is a
function of the richness of features. For instance, if features
used in the definition (28) of LDR include the class of pre-
specified threshold and/or base-stock policies, then the class
of LDRs subsume the set of structured policies considered
by DDA-SP. In contrast, regardless of the richness of fea-
tures, the class of policies that DDA-SP considers is restricted
to those satisfying optimal policy structure, thus potentially
reducing model complexity relative to LDRs. Additionally,
policy structure makes DDA-SP robust to estimation error. To
see this, consider DDA-LDR again. Changes in feature val-
ues Xt directly translate into changes in the injection or with-
drawal decisions for LDRs as seen in (28). In contrast, for the
choice (30) of DDA-SP, small changes in feature values may
not affect decisions if the estimated Pt(Xt) value remains in
the same interval as the exact threshold. Analogous reason-
ing holds for the double-base stock structure in the case of a
slow storage asset.

We numerically verify robustness of DDA-SP compared to
DDA-LDR in Section 5.3.

5 PERFORMANCE EVALUATION
OF DDA

In this section, we evaluate the performance of DDA-LDR/SP
compared to ILP and RH.

5.1 Setup

Table 5 summarizes the approaches we compare and the data
that they exploit. In addition to the data considered in the
RH backtest (Section 3.2), we also include analyst forecast
data based on a feature selection study detailed in Section 5.4,
which shows that spot prices, futures prices, and median ana-
lyst forecast constitute an undominated feature combination.
We use Bloomberg’s Analysts’ Median Composite Forecast
that reports the median of the price forecasts offered by up to
31 major financial institutions. While individual expert fore-
casts may exhibit high prediction errors, by using the median
forecast over a variety of well-established financial institu-
tions, we expect some error diversification (Cortazar et al.,
2018). Based on the median forecasts, we generate monthly
analyst forecast curves At = (at,𝜏 : 𝜏 ∈  = {t, t + 1, … , t +
T}) for the six commodities for planning horizons up to 12
months for the limited time period of 2008 to 2017 (Note:
The RH results based on analyst forecasts and AR(1) spot
history rather than futures curves are reported in Tables EC.2
and EC.3 of the Supporting Information). Our experimental
setup for operational parameters is identical to the first three
rows of Table 2. To obtain instances spanning multiple sub-
periods, we split the data as shown in Table 6. This yields
2 × 3 × 8 × 4 = 192 instances per commodity.
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TA B L E 5 Benchmarks and feature data

Approach Computation
Policy
consistency

Futures
prices

Spot
history

Analyst
forecasts

ILP LP Yes ✓ No No

RH LP Yes ✓ No No

DDA-LDR LP No ✓ ✓ ✓a

DDA-SP MILP Yes ✓ ✓ ✓a

aData availability allows analyst forecasts to be used from Jan 2008.

TA B L E 6 Backtesting setup

Sample In-sample Out-of-sample Sample In-sample Out-of-sample

1 2000–2001 2002–2003 5 2008–2009 2010–2011

2 2002–2003 2004–2005 6 2010–2011 2012–2013

3 2004–2005 2006–2007 7 2012–2013 2014–2015

4 2006–2007 2008–2009 8 2014–2015 2016–2017

Referring to Table 6, we optimize based on a single sam-
ple path (e.g., 2000–2001) and evaluate on a test set (e.g.,
2002–2003). We repeat this procedure for all test sets on a
broad variation of operational storage parameters and then
show the results as mean and quartile statistics across the 192
instances. The rationale behind this is that it represents the
setting for decision making in practice: The storage manager
trains the policy parameters on a training set (including vali-
dation on a validation set) and evaluates on a test set.

We tested sensitivity on training horizons by evaluating
DDA-SP for three different training set lengths, that is, 12
months, 24 months, and 36 months. A training length of 24
months resulted in the best performance on average. Using
a shorter training cycle of 12 months or a longer training of
36 months can deteriorate the downside performance of data-
driven policies and foster downside outliers by not fully cap-
turing the underlying price behavior (too short training sets)
or by training on structural breaks (too long training sets).
Apart from that, median performance when employing 12 and
24 months of training is similar. For more details, we refer to
Section EC.7.1 of the Supporting Information. The following
results are based on 24 months of training.

We further test DDA-LDR and DDA-SP with and with-
out forward optimization. For the forward optimization, we
use Ft containing futures prices with the 12 closest monthly
maturities (T f = Ts + 12) that outperformed both a shorter
forward optimization horizon of T f = Ts + 6 and having no
forward optimization, that is, T f = Ts (see Section EC.7.2
of the Supporting Information for more details). We report
sensitivity toward frictions and storage flexibility in Support-
ing Information EC.7.3. The effect of discount rates on per-
formance is reported in Supporting Information EC.7.4. To
avoid overfitting and to enable feature selection, we apply
regularization to regularize DDA-LDR and DDA-SP in a
cross-validation procedure, which leads to better performance

compared to unregularized DDA for the majority of instances
(see Section EC.8 of the Supporting Information for more
details).

5.2 Performance evaluation

Figure 6 summarizes the performance results of the differ-
ent storage policies. More detailed numbers are reported in
the Supporting Information (TableEC. EC.4 and EC.6). Note
that the mean performance in general increases by excluding
subperiods 2008–2009 (financial crisis) and 2014–2015 (oil
price drop), which is shown in Figure EC.5 of the Supporting
Information.

(i) DDA versus RH.On the majority of commodities, we
observe that DDA-SP can outperform RH consistently
(see Table EC.6) and by a significant amount (see Table
EC.4): Over all commodities, DDA-SP with forward
optimization strictly dominates RH in 63.7% of the
instances (Table EC.6) with a median performance of
26.7% of the perfect foresight profit, while RH achieves
a median performance of 12.0% (Table EC.4). For cop-
per, crude oil, and corn, the DDA-SP profit improve-
ments over RH are statistically significant at the 1%
level. For natural gas, DDA-SP without and with for-
ward optimization improves the performance of RH on
66.1% and 46.4% of the instances, respectively. How-
ever, RH has a better median performance than DDA-SP.
This may be reasonable in markets that are particu-
larly efficient, which is the case for natural gas com-
pared to less efficient metal and agricultural markets
(Kristoufek & Vosvrda, 2013). In highly efficient mar-
kets, all available information is already included in the
futures prices. Another reasonable explanation is the
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F I G U R E 6 Out-of-sample performance of the different policies from 2002 until 2017 across all instances. Note. * w/o forward optimization, ** w/
forward optimization. Boxplots characteristics: first-, second-, third-quartile, mean (×). For a better graphical comparability of the quartiles, we do not
explicitly show the whiskers in these plots. The corresponding minimum and maximum values can be found in Table EC.4 of the Supporting Information

substantially higher volatility of gas prices (65%) com-
pared to the other commodities (17%–37%) we con-
sidered in our experiments (see Table 1). This might
favor periodic reoptimization (RH) that exclusively uses
forward-looking information, while feature-based DDA
is sensitive to structural breaks in the training history.
The observed improvement on RH using DDA-SP is in
contrast to prior results in the literature that establish
the near-optimality of RH. This finding confirms that
the effects of information inconsistency in the evaluation
of policies can be significant when assuming a feature–
model pair and favors generalization error, a data-driven
metric, for such evaluation. In addition to the evaluation
of policies, generalization error appears to be a useful
metric to focus on when computing policies, as we do
for computing the DDA-SP policy.

(ii) DDA with forward optimization versus DDA w/o for-
ward optimization.We observe the value of considering
forward optimization in the DDA policies to be positive.

For instance, including forward-looking information in
DDA-SP improves average performance on 63.9% of
the instances (Table EC.6). Except for natural gas, the
profit improvement of DDA-SP through forward opti-
mization is statistically significant at the 1% level. Thus,
our forward-looking training approach adds value over
backward-looking DDAs.

(iii) DDA-SP versus DDA-LDR.We observe that the LDR
approach, which does not ensure policy consistency, per-
forms poorly for our constrained multi-stage optimiza-
tion problem. DDA-SP, which respects policy structure,
strictly outperforms DDA-LDR on 77.6% (with forward
optimization) and 73.6% (without forward optimization)
of the instances, respectively (Table EC.6). The profit
gain from DDA-LDR** to DDA-SP** is statistically
significant at the 1% level for all commodities under
consideration. These results suggest that there is sig-
nificant structural inconsistency in DDA-LDR, which is
reduced by imposing policy structure in DDA-SP.



DATA-DRIVEN STORAGE OPERATIONS 2453
Production and Operations Management

TA B L E 7 Performance of DDA-SP in V∕VPF ⋅ 100% with respect to
storage flexibility

Mean Min 25%-Q 50%-Q 75%-Q Max

FF

Copper 24.1 −115.0 12.1 35.9 58.4 78.6

Gold 17.4 −65.1 8.6 21.4 32.3 65.3

Crude oil 13.3 −129.5 7.4 21.3 39.9 66.6

Natural gas 9.0 −69.3 −21.4 17.7 40.0 59.5

Corn 35.0 −6.6 27.8 39.3 49.6 64.8

Soybean 28.8 0.9 18.1 30.2 38.2 52.9

Overall 21.3 −129.5 8.9 26.6 42.9 78.6

LF

Copper 23.7 −188.2 5.9 33.7 70.2 83.6

Gold 6.3 −136.6 2.3 17.0 32.8 80.5

Crude oil 18.0 −159.1 4.7 22.7 45.3 75.5

Natural gas 5.0 −68.0 −34.5 1.9 39.7 71.5

Corn 43.6 −3.7 24.8 55.2 60.3 71.9

Soybean 37.5 0.0 19.2 45.5 53.6 71.1

Overall 22.4 −188.2 7.1 12.0 36.9 83.6

(iv) DDA-SP under full and limited flexibilities.Table 7
shows the disaggregated performance of DDA-SP**
from Figure 6 with respect to storage flexibility. The
results of DDA-SP relative to the perfect foresight bound
are not fundamentally different between fully flexible
storage assets (FF) and limited flexible storage assets
(LF), that is, DDA-SP performs well for both of the
storage settings. However, we observe for the FF case
that it is more effective to train a price threshold Pt,
rather than the more general double base-stock struc-
ture. While DDA-SP with the FF structure yields an
average (median) performance of 21.3% (26.6%), DDA-
SP with the LF structure yields 11.9% (22.8%). Further-
more, DDA-SP-FF is more efficient and reduces compu-
tation times of DDA-SP-LF (above 3600 s) on average
by almost 90%.

5.3 Improvement of downside risk

We investigate the performance of methods in terms of the
25%-quartile of the profit distribution on each instance, which
is representative of downside risk.

Figure 7 displays these results. Despite the DDA-LDR
policies being trained using regularization, their 25-th per-
centile of profits are worse than RH on roughly 50% of
the commodities and instances. In contrast, DDA-SP poli-
cies improve on the downside risk of RH policies or are
comparable for all commodities except natural gas. For nat-
ural gas, where RH was shown to be a strong competitor,
the downside risk measured as the 25%-quartile performance
can be improved by monthly reoptimization of DDA-SP,
which increases the 25%-quartile performance from −31.8%

to −14.0% of the perfect foresight value. Thus, consistent
with the discussion in Section 4.4, both regularization and
policy structure in DDA-SP are valuable to manage down-
side risk.

5.4 Feature selection

For effectively using DDA-SP, and in particular reducing
information inconsistency, selecting the right initial feature
set is crucial. We consider the following candidate features:
spot prices, futures prices, analyst forecasts, temperature, the
S&P 500 index, and the Trade Weighted U.S. Dollar Index.
We will employ as a reference the feature combination used to
obtain the results in earlier sections, specifically spot prices,
futures prices, and analyst forecasts. Our results show that
all three feature categories were relevant for storage deci-
sions. In addition to the feature type, the lag of features
also matters (see Tables EC.16– EC.19 of the Supporting
Information).

Our results reported in Supporting Information EC.7.5
show that ignoring futures and analyst forecast features from
the reference feature combination and relying on a pure
backward-looking approach with spot price features only
deteriorates performance.

However, there can be situations when liquid futures con-
tracts or analyst forecasts are absent. In this case, it may be
worth considering other features. Table EC.12 of the Sup-
porting Information therefore compares the performance of
DDA-SP with spot price features only to DDA-SP with spot
price and macroeconomic features (i.e., the S&P 500 index
and the Trade Weighted U.S. Dollar Index) that have been
shown to drive commodity prices. The results show that in the
absence of futures and analyst forecasts, adding macroeco-
nomic features can help in particular with respect to downside
risk. This is an important result with practical implications
as there are commodities where futures and analyst forecasts
are not available, for example, for commodities without liquid
futures markets (e.g., asphalt or specific types of polyethylene
such as HDPE, LDPE, and LLDPE).

Our additional results reported in Table EC.13 of the Sup-
porting Information also show that whenever both futures
and analyst forecasts are consistently available, additional
macroeconomic features do not lead to a consistent perfor-
mance improvement. One reason may be that macroeconomic
information is already priced into futures and analyst forecast
rates (Rational Expectation Hypothesis).

The absence of analyst forecasts however deteriorates stor-
age performance (see Table EC.14 of the Supporting Infor-
mation). This observation adds to the empirical findings from
Cortazar et al. (2018) by showing that analyst forecasts also
improve storage decisions. Cortazar et al. (2018) find sim-
ilar support for price forecasting. Specifically, adding ana-
lyst forecasts as features on top of futures prices improves
spot price forecast accuracy, arguing that this improvement is
likely because futures-based forecasts alone may not incor-
porate explicit information about the risk premium.
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F I G U R E 7 25%-quartile of V∕VPF ⋅ 100% of RH versus DDA-LDR with forward optimization and RH versus DDA-SP with forward optimization for
the six combinations of Gi = Go ∈ {0.5, 1} and 𝜂i = 𝜂o ∈ {1, 0.995, 0.99}

For natural gas where DDA performs comparatively poor
in our experiments, we test the effect of the additional fea-
ture temperature that has been shown to drive natural gas
prices (see, e.g., Nick & Thoenes, 2014). Therefore, we col-
lect monthly average temperature data and add it as an addi-
tional feature to the original DDA models. Our results from
Table EC.15 of the Supporting Information confirm that tem-
perature does not provide significant additional information
for storage decisions. The results only slightly improve per-
formance on single instances.

5.5 Summary of insights

Our findings have implications on both storage practice and
data-driven optimization research.

The existing literature evaluates the performance of the
RH policy relative to the optimal policy of a storage MDP
with full-information assumptions. In this setting, RH has
been shown to yield near-optimal profits. However, we show
that this evaluation may be misleading if applied to oper-
ate storage on real data due to generalization error. We
make four related observations from Section 3.2: (i) RH can
yield unprofitable storage operations (VRH < 0), (ii) ignoring
futures price information can be beneficial, (iii) the value of
reoptimization is not necessarily positive, and (iv) the direc-
tion (upward or downward) of the one-step-ahead price fore-
cast is essential.

We show that there are two potential sources of gener-
alization error: informational inconsistencies and structural
inconsistencies. To mitigate the adverse effects of general-

ization error, we propose data-driven and ML-based policies
that explore feature data (e.g., available analyst forecasts and
futures prices or macroeconomic and weather features). We
find that these policies can outperform RH without requiring
the reoptimization of a linear program or tuning the planning
horizon. Further, the linear decision rule approach from the
data-driven optimization literature is not effective in our set-
ting. Structured policies that encode properties of an optimal
policy are instead needed to improve on RH. Finally, extend-
ing the standard ERM approach to include forward-looking
information (if available, as is the case in commodity mar-
kets) can improve the performance of data-driven policies.

6 CONCLUSIONS

We study the fundamental commodity storage problem. RHs
are widely used in academia and practice to compute storage
operating policies due to their computational attractiveness
and known near-optimality in simulation experiments based
on specific model assumptions. We demonstrate on real data
that the empirical performance of RH can be suboptimal due
to generalization error and propose a forward-looking ERM
approach to compute linear decision rules and structured
data-driven policies, also highlighting how it addresses
informational and structural inconsistencies. We find that
data-driven policies that encode an optimal policy structure
exhibit robust performance across commodities and time
periods in our data set, while linear decision rules perform
worse than RH, despite being trained using data. In addi-
tion to uncovering the importance of policy structure in a
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data-driven optimization setting, using forward-looking
futures price information in the training phase on top of
historical spot prices can be crucial to improve out-of-sample
performance. On the other hand, the additional value of
learning from historical spot price data in our best data-
driven storage policy compared to using only futures prices
for this purpose sheds light on its performance relative to RH,
which uses futures price alone. For markets such as natural
gas, which are highly efficient and exhibit high volatility, the
value of learning from historical spot prices appears to be
limited and both RH and our DDA show good performance.
In contrast, this value is substantial in less efficient and/or
less volatile commodity markets such as copper, gold, crude
oil, corn, and soybean, where the DDA can outperform RH.

Our DDA and structured policies advance the state-of-the-
art for commodity storage. They suggest potential value in
having existing software, which already incorporates back-
testing capabilities, to also directly target generalization error
when computing storage decisions. This research can be
enhanced in several ways, of which we briefly state three.
The first is to improve our backtest by allowing more granular
intramonthly trading and leveraging data on trading volume
to select only “liquid” futures contracts for use in RH and
DDA. The second is to extend our backtest to understand the
impact of generalization error and the performance of RH and
DDA when forward trades are combined with spot trades. The
third is to investigate DDAs that directly minimize downside
risk when computing operating policies as opposed to rely-
ing on regularization for potential risk mitigation as we do in
this paper.
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