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Similarity between structural and proxy
estimates of brain connectivity
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Abstract

Functional magnetic resonance and diffusion weighted imaging have so far made a major contribution to delineation of

the brain connectome at the macroscale. While functional connectivity (FC) was shown to be related to structural

connectivity (SC) to a certain degree, their spatial overlap is unknown. Even less clear are relations of SC with estimates

of connectivity from inter-subject covariance of regional F18-fluorodeoxyglucose uptake (FDGcov) and grey matter

volume (GMVcov). Here, we asked to what extent SC underlies three proxy estimates of brain connectivity: FC,

FDGcov and GMVcov. Simultaneous PET/MR acquisitions were performed in 56 healthy middle-aged individuals.

Similarity between four networks was assessed using Spearman correlation and convergence ratio (CR), a measure

of spatial overlap. Spearman correlation coefficient was 0.27 for SC-FC, 0.40 for SC-FDGcov, and 0.15 for SC-GMVcov.

Mean CRs were 51% for SC-FC, 48% for SC-FDGcov, and 37% for SC-GMVcov. These results proved to be reproducible

and robust against image processing steps. In sum, we found a relevant similarity of SC with FC and FDGcov, while

GMVcov consistently showed the weakest similarity. These findings indicate that white matter tracts underlie FDGcov to

a similar degree as FC, supporting FDGcov as estimate of functional brain connectivity.
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Introduction

Diffusion weighted imaging (DWI) and functional

magnetic resonance imaging (fMRI) have so far made

a major contribution to delineation of the human brain

connectome at the macroscale. Structural connectivity

(SC) refers to a physical link between two regions that

is inferred from 3D reconstructions of white matter

(WM) fiber tracts from DWI data.1 In a broad sense,

functional connectivity (FC) is defined as ‘statistical

dependencies among remote neurophysiological

events.2 The most common technique to capture FC

is fMRI, where neural activity is inferred from varia-

tions in blood oxygen level dependent (BOLD) signals

over time.3 To avoid misunderstandings, we reserve the

term “FC” for fMRI-derived connectivity estimates

thereafter. A number of studies found that estimates

of SC and FC were positively correlated, albeit to a

variable degree.4–9 Of note, FC was also observed

between regions where there was little or no SC,5,10

supporting the view that FC is partially mediated by

indirect pathways. However, data on spatial overlap
between SC and FC at the whole brain level are still
missing.

Information on brain connectivity has also been
inferred from structural magnetic resonance imaging
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(sMRI) data, such as T1-weighted images.11 In contrast
to time series of fMRI, sMRI data are available for
analyses as one single image per subject. Thus, sMRI-
based connectivity estimation relies on identification of
inter-subject covariance patterns at a group level. This
approach has produced valuable insights into brain
connectivity both in healthy12,13 and pathological con-
ditions, such as Alzheimer’s disease 14 and schizophre-
nia.15 The covariance patterns have been interpreted as
a result of mutual trophic influences mediated by
axonal connections or experience-related neural plas-
ticity.12 A number of studies found a significant simi-
larity of this connectivity estimate with SC,6,16 as well
as with FC.6,17,18

There is increasing evidence that molecular imaging
can effectively contribute to the study of the brain con-
nectome.19 Similar to sMRI, PET-based connectivity
estimation is commonly performed at a group level.
This approach has been successfully applied to PET
measures of glucose metabolism,20–22 neurotransmis-
sion,23,24 and pathological protein aggregations.25–27

The most popular approach has been PET with
18F-Fluordesoxyglucose (FDG), sometimes referred
to in the literature as metabolic connectivity.28

Instead, we now propose the term FDGcov, inter-
subject covariance of regional FDG-PET measures,
to discriminate it from connectivity estimates from
functional PET.29 FDGcov was found to provide valu-
able insights into healthy brain function 30,31 as well as
into pathophysiology and diagnosis of numerous neu-
ropsychiatric disorders.22,32–36 So far, only one study
has mapped FDGcov to SC.37 Specifically, our group
found that around a half of FDGcov connections had a
structural substrate at the whole brain level. Neither
FC nor covariance in gray matter (GM) characteristics
were analyzed in our previous study. Furthermore, the
cohort included both patients and healthy subjects, and
the analysis of similarity was limited to a spatial
overlap.37

So far, just two studies have investigated the simi-
larity between connectivity estimates derived from at
least three imaging techniques.6,18 Di and colleagues
reported low correlation between FC, covariance in
GM volume (GMVcov), and FDGcov, as well as a lim-
ited proportion of overlapping connections. SC was
not quantified by the authors. Further, that work
included data from multiple sites, acquired with vary-
ing imaging protocols and with PET and MRI acquis-
itions lying up to 4 years apart. Another study
compared four estimates of connectivity in human
and primate data: FC, covariance in cortical thickness,
SC from tract-tracing (in monkeys), and SC from DWI
tractography.6 They found a poor general agreement,
with DWI-SC and FC having the strongest similarity.
That study included no PET data.

In the present work we asked to what degree SC may
underlie FDGcov in comparison with more established
MR-based estimates of brain connectivity, FC and
GMVcov. Herewith, we explicitly treat SC as reference,
because it is indicative of actual anatomical connectiv-
ity, reproducible,38 and available at a single subject
level. In contrast, the estimates FC, FDGcov, GMVcov

are based on statistical dependencies between regional
signals;2 we refer to them as proxy estimates of brain
connectivity thereafter. To address these questions,
DWI, fMRI, sMRI, and FDG-PET data were acquired
simultaneously in a large group of healthy individuals
on a hybrid PET/MR scanner. As both FDG uptake
and BOLD signal index neural activity, we hypothe-
sized that SC-FDGcov would be closer to SC-FC
rather than to SC-GMVcov. This is far from obvious,
since unlike FC, FDGcov and GMVcov are quantified
from inter-subject variability.11

Materials and methods

Participants

By means of advertisements in internet and on hospital
bulletin boards we recruited healthy, right-handed,
German-speaking individuals at the age of 50 to 65
years old. Exclusion criteria were self-reported or
objective (test battery) cognitive impairment, history
of a neurological or psychiatric disorder, contraindica-
tions for MRI, and relevant anomalies on structural
MRI images, including cerebrovascular disease. Data
of 8 subjects were excluded for the following reasons:
excessive motion, i.e., more than 3mm or 3� maximum
displacements during scanning (n¼ 2), large falx ossi-
fications (n¼ 1), wrong phase encoding direction in
DWI (n¼ 4), and incomplete data set (n¼ 1). Thus,
the data of 56 individuals (25 females, mean�SD
age: 56� 4 years) were available for the present
study. The study was performed in accordance with
the ethical standards as laid down in the 1964
Declaration of Helsinki. The study was approved by
the Federal Office for Radiation Protection and the
Ethics Review Board of the University Hospital
Klinikum rechts der Isar, Technical University of
Munich (project number 399/13). All participants pro-
vided written, informed consent.

Image acquisition

The participants were scanned in a 3T PET/MR
Siemens Biograph mMR scanner with a vendor-
supplied 16-channel head coil. They were instructed
to fast for six hours prior to the scan session. After
the intravenous injection of on average 102� 5 (SD)
MBq of 18F-FDG, the participants stayed
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comfortably in a quiet, dimly lit room, with closed eyes.
Reconstructed PET images (30–60min post-injection)
had a voxel size of 1.04� 1.04� 2.03mm3. Anatomical
T1-weighted images were acquired with a magnetiza-
tion-prepared rapid gradient-echo (MP-RAGE)
sequence with a voxel size of 1.0� 1.0� 1.0mm3.
DWI was performed using a single-shot EPI sequence
of voxel size 2� 2� 2mm3, with 30 diffusion directions
with b¼ 800 s/mm2 and one volume with b¼ 0 s/mm2.
For the fMRI acquisition, which lasted 8min, partic-
ipants were instructed to stay awake, close their eyes
and think of nothing in particular. 212 volumes were
acquired using a Prospective Acquisition Correction
EPI sequence with voxel size of 3.0� 3.0� 3.0mm3.
An ultra-short echo time sequence was acquired for
attenuation correction of the PET data. A dual echo
gradient echo sequence was acquired to correct the
DWI images for susceptibility induced distortions.
Details of the PET and MR acquisitions are given in
the supplementary material to our recent article.39

Grey matter parcellation

Estimation of connectivity indices from four imaging
techniques required us to make a number of methodo-
logical decisions. One of the major challenges was the
choice of a parcellation scheme from a vast variety of
available brain atlases. Finally, we decided to use the
Automated Anatomical Labeling 2 (AAL2) atlas40 for
the following reasons: a) it includes cortex, cerebellum,
and subcortical regions, b) it has a lower proportion of
small regions, an important advantage in light of
potential partial volume effects in PET data, c) it is
more robust than other atlases against non-linear regis-
trations (data not shown), d) it has a simple nomencla-
ture, e) it is the most widely used atlas, making a
comparison with the literature more straightforward.
Since AAL2 regions are defined in a way that their
borders extend beyond GM, we sampled only GM
part of those regions (see below). Another important
methodological issue was a registration approach. We
decided to keep the images in the native (individual)
space and transform the atlas from the MNI space to
the individual space, in order to reduce data manipu-
lation and have a better visual control over accuracy of
registration. Thus, the AAL2 parcellation was non-
linearly transformed from the MNI152 T1 space to the
individual T1 space using Advanced Normalization
Tools (ANTs).41 Afterwards, T1 images were segmented
using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/soft
ware/spm12/). GM probability maps were then binar-
ized at a probability of 0.5, followed by parcellation.
Certain regions of the original parcellation were com-
bined or removed in order to minimize the number of
small regions (volume <512mm3, i.e. 2�FWHM in all

directions). Finally, we obtained a parcellation of 106

regions. The list of regions and further details are

given in the Supplementary Material.

Structural connectivity network

We obtained SC networks from DWI data using tools

of the FMRIB Software Library (FSL). After visual
inspection of the images by means of FSLeyes, we esti-

mated the field map with fsl_prepare_fieldmap and cor-

rected for susceptibility induced distortions, eddy

currents, inter-volume movement, and signal dropout

using eddy.42 Then, we extracted brain tissue with

BET43 and fit the Ball and Sticks diffusion model

with N¼ 2 using BedpostX.44 Afterwards, we per-

formed whole brain probabilistic tractography using a

WM seeding approach with ProbtrackX. To this end,

0.5 thresholded masks of GM, WM, and CSF were

used as target, seed and exclusion masks, respectively.

To allow transformation of the masks from the T1
space to the DWI space, in which the tractography

was performed, a linear transformation was provided

to ProbtrackX. As an estimate of SC we used the

number of streamlines connecting two GM regions

and normalized them by the surface area of those

regions in the WM-GM interface to compensate for

surface-driven effects on streamline counts.45,46 In

order to construct a group SC network, we resampled

the connection weights, i.e. strength, of each subject to

Gaussian distribution5,47 and calculated an average

across subjects. Following multiple studies, we applied

a proportional threshold to retain connections present

in more than 75% of subjects.48–50 This resulted in a
network density of 34%.

Functional connectivity network

FC was inferred from fMRI data. The diagnostic tool

tsdiffana was utilized in MATLAB v2020a software

(The MathWorks Inc., Natick, Massachusetts, USA)

to detect corrupted frames that might not be noticed

visually. After removal of the first three volumes of the

BOLD series, the images were corrected for slice timing

and realigned to the volume acquired temporally in the

middle using SPM12. We created WM and CSF masks
applying a threshold of 0.99 to the probability maps

from the T1 segmentation. Those masks, as well as the

GM parcellation, were linearly transformed from the

T1 space to the BOLD space using the FSL registration

tool FLIRT with a nearest neighbor interpolation.51

After that, we regressed the WM and CSF signal com-

ponents using fsl_glm. Motion was not regressed out,

as this may reduce reliability.52 Instead, we checked

that none of the included subjects showed an excessive

motion (>3mm or >3�). A temporal band-pass filter
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(0.009–0.080Hz) was applied to reduce non-BOLD

high frequency signals due to heart rate and breathing

and lower frequency signals due to scanner instability.4

Next, we extracted the signal from each region and

calculated the Pearson correlation between each pair

of regions. In order to build a group FC network, we

applied a Fisher z-transformation to the correlation

coefficients, averaged them across subjects and trans-

formed them back to Pearson correlation coefficients.18

Covariance networks

A group network of FDGcov was estimated from FDG-

PET images. After a linear registration of PET images

to the individual T1 space with SPM, FDG uptake was

extracted from each region and normalized by mean

GM uptake.53 Finally, Pearson correlations were cal-

culated between each pair of regions across subjects.
To keep the cerebellum and subcortical structures in

the analyses, we decided to use GM volume rather than

GM thickness as morphological feature. GM volume

(GMV) was calculated for each region as a sum of GM

probabilities multiplied by the voxel size. Afterwards,

we regressed out the total GMV of each subject.54

Finally, Pearson correlation of the residuals between

pairs of regions was calculated across subjects to

obtain a symmetric 106x106 matrix.

Similarity between the networks

To assess similarity between the networks in terms of

strength, we calculated Spearman correlations between

connection weights of a network pair. This non-

parametric test was chosen, as the connection weights

were not normally distributed (Kolmogorov-Smirnov

test). As the biological meaning of negative FC as

well as negative FDGcov and GMVcov is still under dis-

cussion,55 we in addition re-calculated the correlations

for positive connections weights only.18,56

To assess similarity between the networks in terms

of spatial distribution, we calculated convergence ratio

(CR), the number of common connections divided by

the average of the connections in a network pair. This

index is equivalent to Dice similarity coefficient. To

this end, the networks need to be binarized via thresh-

olding. Common approaches are 1) removal of connec-

tions below a minimum connection weight,57 2) removal

of connections below a desired density/sparsity,58 where

the sparsity is defined as the number of null elements in

its matrix divided by the total number of elements,50 and

3) removal of connections above certain p-values of cor-

relation coefficients.23,31 While the approaches 1) and 3)

produce networks with a different number of connec-

tions, 2) produces networks with the same number of

connections but a different minimum weight. As the

spatial overlap between binary networks is affected by

their sparsity, but independent of the connection weight,

we decided to use the approach 2). Thus, CR between all

network pairs was calculated at a sparsity range of

65.8% to 80%. The lower limit was imposed by the

sparsity of the group SC network, which was 65.8%

after the proportional thresholding step. The upper

limit ensures that all networks are connected.16 In

graph theory, a network is connected, if one can

go from a region A to a region B by following a

path (link succession). Further, we computed CR

expected by chance as described in the Supplementary

Material.
As secondary analyses, we calculated similarity

between the proxy estimates of brain connectivity

only. Herewith, all possible connections, i.e., irrespec-

tive of SC, were considered. We note, however, that

this comparison should be treated with caution, as in

the absence of a reference standard, it is not clear which

connections are true and which are artifactual.

Robustness analyses

To assess robustness of our results, we repeated the

analyses under different conditions, namely:

a. Test-retest reproducibility, i.e., we analyzed imaging

data acquired under the same conditions approxi-

mately 8 weeks later.39

b. Omitting Gaussian resampling of SC, i.e., each ele-

ment of the group SC matrix was calculated as aver-

age of normalized streamline counts across subjects.
c. Omitting SC thresholding, i.e., no threshold was

applied to the group SC matrix.
d. Applying a more liberal proportional threshold of

50% to the SC matrix.
e. Regressing out a distance between the regions. Since

brain networks are spatially embedded, distance

between regions might be a confound when estimat-

ing similarity between networks.7 To take that into

account, we calculated Euclidean distance between

ROI centroids in the native space of each subject,

followed by a linear regression of mean distances

across subjects from the weight distribution of

SC and proxy estimates of brain connectivity.

Resultant residuals were used to recalculate CRs. In

addition, partial Spearman correlations between con-

nection weights were calculated using distance as

covariate.
f. Limiting the analysis to the cerebral cortex. To this

end, vermis, cerebellum, and subcortical structures

were excluded from the analysis, resulting in a par-

cellation of 80 cortical regions.
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Results

Figure 1 presents the adjacency matrices for each brain
connectivity estimate, where each entry indicates the
connection weight, i.e., strength of a link between
regions. The SC matrix had a sparsity of 65.8%; no
region was disconnected (Figure 1a). Unthresholded
SC matrix is shown in Supplementary Figure 1.

Figure 2 shows histograms of connection weights.
The connection weight distributions for all networks
was unimodal, with a percentage of negative weights
equal to 26% for FC, 52% for FDGcov, and 53% for
GMVcov. Histograms of connection weights corre-
sponding to the unthresholded SC network are shown
in Supplementary Figure 2.

The scatterplots and Spearman correlation coeffi-
cients (SCC) between SC and the proxy estimates are
shown in Figure 3. All SCC were positive and statisti-
cally significant (p’s< 0.001, Bonferroni corrected),
decreasing in the order r¼ 0.40 for SC-FDGcov,
r¼ 0.27 for SC-FC, and r¼ 0.16 for SC-GMVcov.

The correlations for positive weights only are shown

in Supplementary Figure 3. The coefficients decreased

in the order r¼ 0.31 for SC-FC, r¼ 0.26 for SC-

FDGcov, and r¼ 0.18 for SC-GMVcov (p’s< 0.001,

Bonferroni corrected).
Spatial overlap as quantified by CR was substantial-

ly higher than that expected by chance for all networks

(Figure 4). Mean CRs were 51% for SC-FC, 48% for

SC-FDGcov, and 37% for SC-GMVcov.
Figure 5 presents an overlap between SC and the

proxy estimates at 80% sparsity. Overall, it was stron-

ger for intralobe connections and homotopic interhe-

mispheric connections, especially in the cerebellum

(hemispheres and vermis). In addition, FDGcov and

FC stronger overlapped with SC in the occipital and

frontal lobes.
SCC between weights of the proxy estimates were

r¼ 0.30 for FC-FDGcov, r¼ 0.25 for FC-GMVcov,

and r¼ 0.22 for FDGcov-GMVcov (Supplementary

Figure 4). CRs for the proxy estimates were 46% for

Figure 1. Group matrix for each connectivity estimate. The color bars indicate connection weights. The 106 regions were grouped
into the following structures: frontal (F), limbic (L), occipital (O), parietal (P), subcortical (S), temporal (T), cerebellar hemispheres
(C), and vermis (V). The subscript indicates the left (L) and right (R) hemisphere.
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FDGcov-FC, 43% for GMVcov-FC, and 40% for

FDGcov-GMVcov (Supplementary Figure 5).
Results of the robustness analyses are presented in

Table 1. Overall, the measures of similarity did not

change substantially. First, the entire analysis proved

to be highly reproducible, including the limits of the

sparsity interval (66.1–79.8%) (a). Omitting Gaussian

resampling affected neither sparsity of the SC matrix

nor the ranking of similarities between the networks

(b). Omitting SC thresholding leaded to a denser SC

matrix with a sparsity of 13.3% (c). A resultant wider

sparsity interval did not change significantly SCC, but

increased systematically CRs, making them closer to

CR by chance (c). Application of a more liberal pro-

portional threshold of 50% to the SC matrix produced

sparsity of 55%. Beside an expected increase in CRs,

the similarity metrics showed the same behavior as

before (d). Regressing out the distance between regions

altered maximum sparsity, at which all networks are to

be connected, from 80% to 64.7%. This precluded us

Figure 2. Distribution of edge/connection weights for each estimate.

Figure 3. Scatter plots of connection weights and Spearman correlation coefficients for SC and the proxy estimates.
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from applying the connectedness criterion to set the
upper limit of the sparsity range. Therefore, we kept
the previous sparsity rage (65.8–80.0%). As expected,
both SCCs and CRs decreased when distance between
regions was regressed out, but CR values were still well
above those expected by chance (e). Finally, when the
analyses were limited to the cortex (f), SCC and CR
values remained similar. The measures of similarity

between the proxy estimates only did not change sub-

stantially, too (Supplementary Table 2).

Discussion

In the present study, we examined similarity between

SC and proxy estimates of brain connectivity FC,

GMVcov, and FDGcov. All SCCs as index of similarity

Figure 4. Convergence ratio (CR) between SC and proxy estimates as a function of sparsity level. The percentages indicate mean
CRs over the sparsity range.

Figure 5. Overlap matrices between SC and proxy estimates as a function of sparsity level. Yellow elements indicate common
connections after thresholding the networks at 80% sparsity.
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strength were significant, with a low to moderate
degree. CRs as index of spatial similarity appeared to

be higher than that by chance for all pairs of the esti-
mates. The strongest similarity with SC was found for
FC and FDGcov, while GMVcov consistently showed
the weakest similarity. Of note, comprehensive addi-
tional analyses confirmed robustness of the findings.

Anatomical connections between brain regions are
considered as structural core of brain connectivity.59

To what degree does this core explain patterns of func-
tional connectivity? By functional connectivity we
explicitly mean here estimates of brain connectivity
from measures of neural activity, such as fMRI and

FDG-PET. The present results indicate that around a
half of functional connections, both from fMRI and
FDG-PET, are underlied by SC. While spatial similar-
ity in terms of CR was slightly higher for fMRI, sim-
ilarity in terms of SCC was higher for FDGcov. This is
not implausible, because not identical connections were
considered in the analyses. To calculate CR, 34% of
the strongest connections in each network were consid-

ered. Hence, negative connections were excluded. In
contrast, the Spearman correlations were restricted to
structurally consistent connections, independently of
their strength and sign. Thus, the relevance of a struc-
tural connection in terms of strength is more similar to
that of FDGcov than FC, while the strongest FC spa-
tially overlap somewhat better with structural connec-

tions than the strongest FDGcov connections. As
expected, limiting the correlation analyses to positive
connection weights produced the same order of simi-
larity as CR, i.e. SC-FC> SC-FDGcov.

While FDG-PET has been increasingly utilized in
the field of brain connectivity,19 the meaning of

FDGcov and its relationship with the more established
MRI-based estimates of brain connectivity has been
unclear. The present study indicates that SC as estimat-
ed with DWI underlie FDGcov and FC to a similar
degree. A relevant relationship between FC and
FDGcov is further supported by our additional analyses
of similarity between proxy estimates of connectivity,
where FC and FDGcov showed the highest correlation
and spatial overlap with each other. This result is

intriguing, given important differences between the
estimates, especially in respect to the targeted process,
acquisition mode, and modeling approach.60 We spec-
ulate that similarity might be even higher when indices
of brain connectivity are derived from temporal corre-
lations in dynamic FDG-PET data.29 In contrast, sim-
ilarity between GMVcov and FDGcov was lowest, even
somewhat lower than that between GMVcov and FC.
These observations strongly support FDGcov as index
of functional connectivity rather than a sort of statis-
tical artifact of inter-subject correlations.29,61

The first attempt to compare SC and FDGcov net-

works has been undertaken by our group very recent-
ly.37 We found a spatial overlap of 55%, i.e. very
similar value to that of the present work (48%).
These similar results are rather surprising given a
number of important differences between the studies
in respect to study design and methods, e.g., popula-
tion (patients and healthy subjects vs. healthy subjects
only), atlases, number of regions (62 vs. 106), modeling
approach of FDGcov (sparse inverse covariance estima-
tion vs. correlation), method of tractography (deter-
ministic vs. probabilistic), and index of SC (fractional
anisotropy vs. normalized streamline counts). Despite
the methodological differences the present work

Table 1. Robustness analyses.

SCC

O a) b) c) d) e) f)

SC-FDGcov 0.40 0.41 0.42 0.32 0.38 0.26 0.38

SC-FC 0.27 0.24 0.27 0.31 0.29 0.11 0.34

SC-GMVcov 0.16 0.16 0.17 0.17 0.15 0.01 0.17

CR

SC-FDGcov 48 48 49 63 50 37 49

SC-FC 51 50 51 66 54 41 51

SC-GMVcov 37 37 37 59 42 29 36

CR by chance 27 27 27 53 32 27 30

Min sparsity 66 66 66 13 55 66 64

Max sparsity 80 80 80 80 80 80 77

Similarity metrics obtained under modified conditions relative to the original (O) ones: a) Test-retest reproducibility, b) Omitting the Gaussian

resampling step of SC, c) Omitting the proportional threshold to SC matrix, d) Applying a 50% proportional threshold to the SC matrix, e) Regressing

out distance from all connectivity estimates, f) limiting the analysis to the cerebral cortex. SCC: Spearman correlation coefficient; CR: mean

convergence ratio computed over the corresponding sparsity range [min sparsity, max sparsity].
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supports our previous conclusion that around half of
FDGcov connections may have a structural substrate at
the whole brain level.

Similarity between SC and FC has been extensively
addressed in the literature, both in healthy and patho-
logical conditions. Although the studies coincide in a
positive association between these two estimates, the
reported correlation values vary from weak to
good,4–7,47,62 likely due to methodological differences
between the studies. The correlation coefficients in the
present study are well within this range. We are not
aware of any data on spatial overlap between SC and
FC at the whole brain level. Here, we found a CR of
51%. In other words, roughly a half of functional con-
nections have a structural substrate.

We explored for the first time GM covariance net-
works in combination with FDGcov, SC, and FC in the
same healthy subjects. So far, the biological mecha-
nisms behind regional GM covariance have not been
well understood. The most widespread hypotheses
point at mutually trophic factors mediated by axonal
connections,63 activity-dependent processes,64 common
experience-related plasticity,63 and genetics.65 In the
present study, GMVcov showed the weakest similarity
with the other estimates. Of note, our quantitative
results closely resemble previously reported ones,
despite a number of methodological differences. In par-
ticular, Gong et al. compared patterns of covariance of
GM thickness with SC across the entire cerebral
cortex.16 For a similar sparsity level, they reported a
CR of 33 to 37%, while we found a CR of 33 to 36%.
Our results are furthermore well in line with those of
Reid et al., who reported the weakest similarity for
covariance of GM thickness with SC and FC.6 Their
SCCs were, however, higher, likely due to a better data
quality and a lower resolution parcellation.5,6 Further,
Di and colleagues compared GMVcov, FC, and
FDGcov networks through Spearman correlations and
percentage of overlap.18 Their SCCs were very close to
ours and, alike, those for GMVcov were the weakest.
Like in the present study, similarity between the proxy
estimates decreased in the following order FDGcov-
FC>FDGcov-GMVcov>FC-GMVcov at the majority
of sparsity levels. These observations support the con-
clusion above that FDGcov as estimate of functional
brain connectivity is closer to FC than to GMVcov.

In this study, we decided to omit any streamline-
length correction of SC weights. It is known that
long-distance connections detected through tractogra-
phy are fewer and weaker than short-distance connec-
tions.66 To adjust for this, FSL’s length correction
multiplies the connectivity distribution by the expected
length of pathways. However, this effect has also been
observed in invasive tract tracing studies, such that the
WM seeding approach applied here was suggested to

mitigate such a bias.67 Nevertheless, we took into

account the distance between regions in our robustness

analyses. A systematic decrease in the similarity metrics

suggests that spatial embedding might contribute to

network similarity.4,5,7

A limitation of this study is a relatively low b-value

as well as a low number of diffusion directions. Yet,

while a higher b-value would increase the diffusion

weighting of the images, it might also reduce their

signal-to-noise ratio. Along these lines, increasing the

number of directions would require a longer acquisi-

tion time of the DWI sequence, limiting practicability

of multimodal imaging protocols as ours. Further, a

required number of diffusion directions as well as an

optimal b-value depend on the diffusion model to be

applied.68 Of note, the FSL ball and sticks model, as

applied here, was shown to robustly detect crossing

fibers in DWI data acquired with parameters close to

ours.46

In summary, we found a relevant similarity of SC

with FC and FDGcov, while GMVcov consistently

showed the weakest similarity. These results indicate

that SC underlies FDGcov, inter-subject covariance of

FDG uptake, to a similar degree as group FC, an

established estimate of brain connectivity. This work

underpins FDGcov as index of functional brain connec-

tivity. Future studies should compare properties of the

different connectomes using e.g., graph theory metrics.

Further, dependence of FDGcov on intensity normali-

zation should be explored.
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Consortium, et al. Structural covariance networks are

coupled to expression of genes enriched in supragranular
layers of the human cortex. NeuroImage 2018; 171:

256–267.
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