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Consortia blockchain networks face the issue of expanding their systems to new
members. Onboarding processes are often cumbersome, as they require identifying
the new participant, manually setting up rights, exchanging key material, and adding
information about the new member to the consensus smart contract. Besides that,
these processes are time-consuming and scale poorly. Identifying the members might
be faulty as the pre-existing members might be deceived by malicious parties claiming
to be someone else. This paper proposes a novel methodology to allow the
onboarding of new parties without time-intensive off-chain processes. We
establish identities of new consortia members by utilizing TLS certificates bound to
publicly known domain names. With this identity scheme in place, the network
operators can define rules such as only specific parties are allowed to join the
network, e.g., only owners of *.edu domains. This methodology scales well,
provides for extensive ruling and monitoring, and helps consortia blockchains to
grow faster.
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1 INTRODUCTION

Private or public permissioned blockchain networks are a compelling alternative to public
permissionless blockchains such as Ethereum or Bitcoin for enterprises forming a consortium.
Not only the issues of energy consumption and the respective carbon footprint Stoll et al. (2019);
Gallersdörfer et al. (2020) or scalability Xin et al. (2017) are resolved, but also the entities setting up
the network remain in full control over the circulating supply of cryptocurrency and who is able to
join and participate in the network Androulaki et al. (2018). Privacy and access control are often
required, as the members of the consortium store private information or handle otherwise
proprietary data within the network.

As a critical difference to permissionless networks, not everyone can join and participate in the
network at any time. The access to the network, either on an application-level (e.g., transactions and
execution of smart contracts) or on a “mining” level1 (e.g., proposing new blocks) is strictly limited
and defined by the actors that set up the network.
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In particular, the role of the validators is of interest. They can
create new blocks, include transactions in the network, and secure
the integrity of the network. However, the management of the set
of validators has two downsides:

1) It is time-consuming, as every participant has to be onboarded
to the network manually by communicating off-chain, e.g.,
exchanging information and addresses. Often, a party within
the network is responsible for collecting information and
ensuring the proper onboarding of the new participant.

2) There is a form of centralization, as 1) often a single entity is
responsible for adding new validators to the network or 2) if
amongst the existing validators voting is conducted, voters
would need to verify who they are actually voting on (e.g., as
there is no link between an address in a network and a real-
world entity).

This paper proposes a solution to ease the management of
validators in permissioned blockchain networks and address the
previously mentioned issues. We do so by proposing the usage of
TLS certificates, allowing the identification of a counterparty by a
Fully Qualified Domain Name (FQDN), e.g., www.example.org.
Thereby we allow adding entities to the validator set either by
directly specifying the FQDN of the new validator or defining
rules an FQDN needs to adhere to, e.g., the Top Level Domain
(TLD) needs to be . edu. This novel authentication mechanism
can also be used for FQDN-based voting, so voters are certain
which new entity applies to become a validator.

Our work builds upon previously published research in
Gallersdörfer et al. (2021); Gallersdörfer and Matthes (2021).
Gallersdörfer and Matthes (2021) proposes the usage of TLS-
certificates in the context of off-chain verification (e.g., in a wallet
such as Metamask) to prevent address replacement attacks. These
attacks aim at tricking end-users into sending funds such as ICO
investments to wrong addresses, resulting in the loss of the respective
funds. Gallersdörfer et al. (2021) proposes the mirroring of parts of
the Public Key Infrastructure (PKI) on-chain that lies behind the
TLS certificate structure. This allows for the usage of the certificates
and signatures in an on-chain context. In this manuscript, we extend
the second approach to be usable as a form of active authentication
in the context of consortia membership management.

The paper is structured as follows: Section 2 introduces
concepts of the World Wide Web, outlines the previous
approaches, and explains their limitations. In section 3 we
introduce the active usage of TLS-certificates in an on-chain
context and extend the application to consortia membership
management. In section 4 we conclude the paper.

2 BACKGROUND

Several systems are the backbone of the World Wide Web, and we
also rely on these technologies in this paper. First, we introduce
components of the Web-PKI, namely PKIs in general, DNS, and
TLS. Then, we discuss permissioned blockchain networks and how
they are managed. Afterward, we present previous work done to
utilize TLS-certificates and FQDNs in the context of the blockchain.

2.1 Web-PKI
On today’s internet, there are a set of technologies and public key
infrastructures in place that can be summarized as Web PKI.
These include, amongst other, the Domain Name System,
Transport Layer Security, Certificate Authorities, DNS Security
Extensions, and Certificate Transparency. In particular, we cover
regular PKIs, DNS, and TLS.

2.1.1 PKI
Public Key Infrastructures are systems in place to allow entities
the management of key material for trusted entities, such they can
sign, verify and communicate with other parties in a safe way
Weise (2001). Integrity, privacy, and authenticity are of the
highest importance for these systems.

Often, these PKIs are organized in a hierarchical order. There
are several trust anchors, often called root certificates. All entities
in the network know the certificates and trust the authorities
managing these root certificates to behave honestly. These, in
turn, issue new certificates for other entities in the network
containing a unique identifier (e.g., in TLS, FQDNs are used).

The PKI presents itself as a tree-like structure. There are few
roots but many leaves. First, this allows for broad usage. Millions
of certificates can be managed with such a structure. Second, it
also enables an efficient verification mechanism: For an entity to
prove that his certificate is signed by one of the root certificates, it
only has to prove the signing path to the root and the second
entity, only aware of the root certificate, can verify the claims
made by the first party. This is the basis for today’s Internet. In
Figure 1, we depict a form of hierarchical PKI.

2.1.2 DNS
The domain name system (DNS) is a naming service that allows
resolving human-readable names to IP addresses. It was first
described in rfc (1987a) and in rfc (1987b). These names follow a
definition, containing out of Top-level domains (e.g., com, edu,
org), second-level domains (e.g., example, wikipedia), and
additional levels that are used to further divide the respective

FIGURE 1 | Hierarchical public key infrastructure.

Frontiers in Blockchain | www.frontiersin.org December 2021 | Volume 4 | Article 7394312

Gallersdörfer et al. Onboarding in Permissioned Blockchain Networks

http://www.example.org
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


name. These domains are separated by a dot (.) and together form
a unique identifier, the Fully Qualified Domain Name (FQDN).
The second-level domains are managed by selected registrars,
which sell the domains to interested buyers. They are able to use
the domain in the context they desire, e.g., for website hosting or
e-mail address usage. As this naming scheme is broadly
established in the world and subject to daily usage for billions
of people, we also rely on it for the purposes of this paper.

2.1.3 TLS
Transport-Layer-Security (TLS) was first introduced in Allen and
Dierks (1999) and continually expanded in Dierks and Rescorla
(2006), Rescorla and Dierks (2008) and Rescorla (2018) as a
protocol to secure the communication between two parties via the
WorldWideWeb. The identification of the counterparty relies on
X.509 certificates (described in Housley et al. (1999)) which
contains key material and a human-readable name established
in the DNS to allow end users to easily recognize the party they
are interacting with. As this system and the cryptography behind
it is widely in use and no further bootstrapping is required, it
provides a solid basis for integrating its signature schemes within
a blockchain system.

2.2 Managing Permissioned Blockchain
Networks
Permissioned blockchains are often considered an alternative to
permissionless blockchains. They require different consensus
mechanisms for creating new valid blocks in the networks
than permissionless blockchains. While these systems often
rely on mechanisms such as Proof-of-Work (PoW) or Proof-
of-Stake (PoS), permissioned networks often depend on some
form of Proof-of-Authority (PoA) or some form of Byzantine-
Fault-Tolerant-Scheme (BFT). One difference between these
schemes is, that PoA or BFT algorithms require the validating
entities to be known prior to the launch of the network. Later on,
if the set of validators changes, entities can be on- or offboarded.

In this paper, our work builds upon the Ethereum blockchain.
Any other type of permissioned blockchain with Smart Contract
support can be used, as our scheme can be applied regardless. We
use Ethereum due to its simplicity as well as its higher
prominence in the space.

For Ethereum-based permissioned networks, rules, the
consensus mechanism, and other settings are defined within
the genesis block of the respective permissioned blockchain.
The genesis is the first block in the network which does not
link to prior blocks. To allow new entities to join the network,
members of the consortium need to share, inter alia, the genesis
block with new participants. While the genesis block and an
account funded with the respective currency is sufficient to read
from and create transactions within the network, it is not
sufficient for being able to become a validator in the network.
An exemplary genesis block is displayed in Listing 1.2

Listing 1. A genesis. json file. The initial signer is defined within
the extradata field. Two accounts receive an initial balance of
300,000 and 400,000 respectively.

There are two main ways to manage the list of the validators in
the network.

• Managing the set of validators in the genesis block: The entity
creating the network can define within the genesis block the
set of validators. This is a straightforward and easy way to set
validators, but it comes with the downside of reduced
flexibility. As blocks in the network cannot be changed
after the fact, adding new validators or removing old ones
require a hard fork. This hard fork needs to be administered
off-chain, e.g., the parties involved in the network need to
communicate with each other and define a new block that
overrides the rules set in the genesis block.

• Use a contract-based validator set: Instead of just stating a
list of validators, one can also define a specific smart
contract for the management of the validator set. The
contract is created with the genesis block and usually
receives an easy to recognize address such as 0x000 . . .
005. Within that contract, the creator of the network also
defines the first validator and is able to add or remove new
validators at a later point in time. This approach does not
require a hard fork and is more flexible, e.g., as it also allows
for the automatic removal of inactive validators.

Due to the clear benefits of a contract-based validator set, most
networks opt for it and do not rely on a fixed set of validators.
Several example contracts are available3, which are also used for
the Ethereum Tesnet Kovan.

Nonetheless, the existence of such smart contracts does not
eliminate problems of centralization and the need for an off-chain
synchronisation between the entities in the network. If only one
entity is responsible for maintaining the contract-based validator
set, the network is centralized and the main entity is able to
manipulate the network in ways it desires. Another option would

2The file is taken from https://geth.ethereum.org/docs/interface/private-network 3https://github.com/openethereum/kovan-validator-set/
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be to vote on new validators, as it is done within the Bloxberg
network, a public permissioned network aimed at scientific
applications4. The problem with such an approach is that 1)
either voting happens on a name-basis and the central entity is
trusted to adhere to the voting and adds the related address to the
set of validators or 2) the voters elect on a pure address, without
any further information whom it belongs to. In any case, both
approaches have downsides.

2.3 Usage of TLS-Certificates in Blockchain
Networks
In this section, we discuss the usage of TLS-certificates in
blockchain networks as outlined in Gallersdörfer et al. (2021);
Gallersdörfer and Matthes (2021). First, we give an overview of
the components and design space of using TLS certificates in the
context of blockchain and then discuss how both approaches
account for their different requirements.

2.3.1 Components of the System
In both systems, there are three two components: An
endorsement and the verifier.

2.3.1.1 Endorsement
If we want to use TLS certificates in the context of blockchains, it
has to be understood how these certificates are applied. In a
WWW-context, TLS certificates are used every time a client (e.g.,
a web browser) contacts a web server and the web server responds
with a message signed with the private key belonging to the
respective certificate. The signature itself is short-lived and is
newly created every time a new client approaches the webserver.
In the context of blockchains, we also need a form of signature.
Together with the plaintext, we refer to the signature as
endorsement.

An endorsement states that the owner of a certificate intends
that an address is acting on behalf or in his name. As the signed
address is also capable of creating signatures, endorsements can
be seen as sub-certificates directly aimed at addresses for
blockchain networks. For that, the endorsement contains the
following information:

• Address: The to-be endorsed address
• Domain: A fully qualified domain name from the respective
certificate

• Expiry date: A date after the respective endorsement is not
valid anymore

• Flags: Flags allow for advanced settings, e.g., if
subendorsements are allowed

• Signature: The signature created by the private key of the
respective certificate over the above mentioned fields.

Depending on the use case, there can be more fields like the
fingerprint of the certificate. That allows users to find the

respective certificate even if it is not available any more on the
web server through means like Certificate Transparency.

2.3.1.2 Verifier
The verifier is a software application that retrieves the endorsement
and verifies it. It depends on the context the verifier runs in (see
Section 2.3.2 for further details), but usually it obtains the
certificate, verifies if it trusts the certificate (by checking if there
is a signed path between a trusted root certificate and the certificate
in question) and verifies if the endorsement was actually created
with the respective certificate. Other checks are also applied (e.g.,
expiry date). The verifier ensures that either an address can be
trusted or that it has access to a specific service.

2.3.2 Strategies for Using TLS-Certificates in a
Blockchain Context
Leveraging TLS-certificates in a blockchain environment poses
the question of the specific needs of the participants of the system.
Both Gallersdörfer and Matthes (2021) and Gallersdörfer et al.
(2021) solve specific needs of the user: The first aims at the usage
of certificates from an off-chain perspective, the second allows for
the usage of certificates in an on-chain environment. To
understand the context of off-chain or on-chain usage, we
need to ask several questions:

• Q1: Where is the endorsement stored? The endorsement
can reside off-chain (e.g., on a web server or on IPFS) or it
can be stored on-chain, either in one centralized smart
contract or in individual smart contracts.

• Q2: Where is additional information stored that is required for
verification? This additional information includes the respective
certificate, the certificate chain as well as the trusted root
certificates as well as other information, such as time. This
information can be obtained off-chain (from the webserver) or
it can be made available in an on-chain environment.

• Q3: Where is the verification taking place? The verification
can be done off-chain, e.g., in a browser or wallet, such that
one single user can decide if she trusts the endorsement or
not. Alternatively, the verification can take place on-chain,
such that the authenticity of endorsements can be made
subjects or requirements in smart contract code.

Depending on the goal of the system, these questions are answered
differently. Figure 2 (system A) and Figure 3 (system B) display the
respective architectural decisions. It becomes evident that while in
systemAmost of the data handling and verification is done off-chain
(e.g., in a browser or a wallet), in systemB the verification of the work
is done entirely on the blockchain, which also requires the data for the
verification (e.g (root-) certificates, . . . ) to reside on-chain.

Both systems store the endorsement on-chain; other storage places
are unreliable and for on-chain verification (as in system B it is even
required to have the information available). Additional information
such as certificates in system A are just retrieved from the respective
sources (e.g., webserver), while in system B this information needs to
be stored on-chain, as otherwise it would not be possible to verify that
data within a smart contract. As for Q3, the verification for system A
happens off-chain and for systemBon-chain. Both systems have their4http://bloxberg.org/
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individual strengths and disadvantages, therefore it needs to be
decided on the context which system to use.

In the context of this paper, we rely on system B as it allows for
on-chain verification. As it only allows passive forms of validation,
we extend system B by allowing entities to actively use their
endorsement as a means of authentication and authorization at
smart contracts. More concrete, they can use their TLS-certificates
as a means to become a validator in a permissioned network. As
previously described, the set of validators can bemanaged by a smart
contract, and proposing a smart contract architecture to use TLS-
certificates as a means for access control is the aim of this paper.

3 ARCHITECTURE EXTENSION

In this section, we first give more details about the design of
Gallersdörfer et al. (2021). Then, we derive requirements from
our use case and elaborate on how we augment the already
existing architecture to enable our use case.

3.1 Previous Design
The design in Gallersdörfer et al. (2021) consists of three main
components. We introduced the general notion of endorsements
already in section 2.3.1. The x.509 certificate storage mirrors
relevant certificates present in the TLS PKI and the on-chain
endorsement storage stores and validates endorsements.

3.1.1 X.509 Certificate Storage
The X.509 certificate storage is a smart contract that stores,
manages, and verifies X.509 certificates that are submitted to
the contract. The smart contract is able to parse certificates and
supports a set of cryptographic functions to validate their
contents. Two characteristics are noteworthy: Bootstrapping
the certificate storage and the CRUD operations it supports.

Bootstrapping a certificate storage smart contract is
straightforward. Every self-signed certificate that is submitted
to the contract is considered to be a root-certificate. The creator of
the smart contract can begin with submitting well-known root
certificate lists, e.g., by Mozilla Foundation5. As the verifying
party later on defines which root certificates to trust, the insertion
of additional, non-trusted root certificates is not an issue, as they
are not considered when verifying certificates or lateron
endorsements. Third parties, which are new in the network,
are able to verify that the root certificates stored within the
certificate storage smart contract are identical to the ones they
have stored on their local machine.

The X.509 certificate storage covers the following CRUD
operations:

• Create: Entities submit certificates to the smart contract one
by one. Submitted certificates are parsed and validated in
accordance to Housley et al. (1999) and Boeyen et al. (2008).
If a parent certificate is referenced, either 1) it is already
existing or 2) needs to be submitted beforehand. Then, the
respective signature is verified as well. To ensure that only
valid certificates are added to the storage, further checks
such as the expiry of the certificate are also executed.

• Read: Single certificates can be read through a unique
certificate identifier. This also allows to reference parent
certificates and retrieve them as well.

• Update: Due to the nature of public key infrastructures,
single properties of a certificate cannot be changed. Updated
certificates rather have to be reissued to the contract.
However, it is possible to update the revocation status of
the certificate. To revoke a certificate, either a Certificate

FIGURE 2 | Architecture of the system proposed in Gallersdörfer and Matthes (2021). The Off-chain verifier collects data from all sources and decides off-chain
about the validity of an endorsement.

5https://wiki.mozilla.org/CA
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Revocation List (CRL) Boeyen et al. (2008) or a Online
Certificate Status Protocol (OCSP) Galperin et al. (1999)
response has to be submitted to the contract.

• Delete: Certificates cannot be deleted, as the removal of
single certificates could break the trust of other certificate
chains.

Due to the structure of the certificate storage, it is not only
possible to use certificates from the regular TLS PKI but also
possible to establish own PKIs as well as use existing ones, e.g.,
within companies.

3.1.2 Endorsement Storage
The endorsement storage extends the certificate storage and
allows for the management and verification of endorsements of
respective TLS certificates. It thereby relies on the validity of
three crucial parts of information: 1) the certificate of the
entity signing the certificate, 2) the endorsement and the
signature it contains, and 3) the root certificates the verifier
trusts.

With this approach, the verification is highly efficient. All
information that can be cryptographically verified is verified only
once. Due to the immutability of the smart contract and the data
it contains, the results of the verification can be stored within the
contract and only minor details, such as the expiry date, need to
be checked. These processes take place when the certificate or the
endorsement is inserted in the table. Later verification requires
only a minor effort.

Similar to the certificate storage, the endorsement storage also
offers a set of CRUD operations, namely:

• Create: If a new endorsement is submitted to the
endorsement storage, the referenced certificate is
verified for its validity, it is checked if the domain
names match and if the endorsement is not expired. If
this is the case, the endorsement is submitted to the
endorsement storage.

• Read: Similar to the certificate storage, the endorsement can
also be retrieved by a key, either by the endorsed address or
by the domain name. As multiple endorsements can exist, a
list of endorsements is returned. The requesting party needs

to ensure that an endorsement is (indirectly) signed by a
root certificate that it trusts.

• Update: Endorsements itself cannot be updated. However,
they can be revoked by the respective party.

• Delete: Endorsements face similar issues to certificates. It is
not allowed to delete endorsements, as decentralized
applications could rely on them for their functionality,
even if they are expired.

3.2 Requirements
The next step is the definition of the requirements. Our goal is not
only to cover the requirements for the features of our system
(Functional Requirements (FR)), but also requirements in the
context of usability, cost and blockchain technology (Non-
Functional Requirements (NFR)). We derive basic functional
and non-functional requirements for our use case consortia
membership management.

We identified following functional requirements:

• FR1: Authenticate at application smart contract: An
endorsed account should be able to authenticate itself at
an application.

• FR2: Authorize at application smart contract: An
authenticated account should be able to authorize itself at
an application according to the rules of the smart contract.

• FR3: Use TLS certificate attributes for authorization: The
application smart contract owner should be able to define
the properties of the TLS certificate that are required for
accessing specific functions.

Further, we identified the following non-functional
requirements:

• NFR1: On-Chain access control decisions: To guarantee
deterministic behavior, the rules, properties, and access
control decisions need to be on-chain.

• NFR2: Access control without pre-provisioning of the
subject at the application: An access request should not
require any kind of pre-provisioning of the address at the
application. This increases flexibility, decreases barriers of
entry and increases the user-friendliness of the system.

FIGURE 3 | Architecture of the system proposed in Gallersdörfer et al. (2021). All data, including certificates reside on-chain. One can ask the endorsement
storage whether a certain address is endorsed by a domain. As only valid endorsements are stored within the endorsement storage, the verification only has to
take place once.
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3.3 Attribute-Based Access Control (ABAC)
and TLS Attributes
In our approach, we opt for an attribute-based access control
approach. The reasoning behind this is straightforward: Our
application smart contract (the contract managing the
validator list) should decide on specific properties of the
respective TLS certificate. Therefore, other approaches
such as Discretionary Access Control (DAC) or Role-based
Access Control (RBAC) are outside the scope of our
approach.

In an ABAC system, the access requesting user is indirectly
described by attributes from the respective TLS certificate, the
attributes that describe the entity the certificate has been issued to
are relevant. These attributes are stored in the subject, a sub-field
of the tlsCertificate field. However, the supported attribute types
differ depending on the type of the endorsing certificate. There
are three different types of SSL/TLS certificates: Domain-
validated (DV) certificates, Organization-validated (OV)
certificates and Extended-validation (EV) certificates.
Depending on the certificate type a more sophisticated
validation process is required, in order to guarantee the
credibility of the attributes. The DV certificates support the
least attributes, while EV certificates support the most. Table 1
depicts which attribute types are included in which type of TLS
certificate. Further attribute types included in EV certificates and
other certificate fields, as certificate extensions, are left out for

clarity. However, if future work identifies such use-cases, our
system can easily be extended to support more attribute types.

In the following we provide a brief overview of the supported
attributes types, specify their OIDs and provide examples:

• commonName (2.5.4.3) - e.g. www.example.edu: The FQDN
of the organization.

• countryName (2.5.4.6) - e.g. DE: The country the
organization is located in.

• localityName (2.5.4.7) - e.g. Muenchen: The city the
organization is located in.

• state Or Province Name (2.5.4.8) - e.g. Bayern: The state or
province the organization is located in.

• organizationName (2.5.4.10) - e.g. Blockchain University:
The name of the organization.

• organizationUnitName (2.5.4.11) - e.g. IT: The name of a
business unit within the organization.

Access control evaluation requires access to the attributes of a
specific TLS certificate that endorses an address. Therefore, for
each endorsing certificate the attribute values have to be stored on
the blockchain. As the certificate storage already stores most
information of a TLS certificate and its certificate chain, we can
retrieve all attributes required for our work from the central
database.

For our use case at hand the commonName-attribute is the
most relevant. Other attributes can be used as consortia
blockchain operators see fit. However, given the low adoption
of OV or EV certificates, we advise sticking to the commonName-
attribute.

3.4 Processes to Enable TLS-Based
Consortia Membership
To set up a system with the intended functionality, the following
steps need to be considered. If the network is already set up and
running, a hardfork is required to change the type of contract to a
contract with TLS support.

• Deployment of certificate storage: At the beginning, the
certificate storage contract needs to be deployed, as all other
smart contracts depend on the correct management of
certificates.

• Initial storage of trusted root certificates: Second, the trusted
root certificates need to be stored within the certificate
storage smart contract. The responsible entity can either
rely on already well-known certificate authorities or define
their own certificate authorities, e.g., if deployed within a
company with existing PKI.

• Deployment of the endorsement storage: The endorsement
storage contract is also required for the correct functioning
of the validator smart contract. The responsible entity needs
to deploy and reference it to the certificate storage smart
contract.

• Deployment of the validator smart contract: The validator
smart contract is the last contract to deploy. It references to
the certificate storage as well as the endorsement storage.

TABLE 1 | Attribute types Cooper et al., 2008 supported by our ABAC system
with respective OIDs Hoffman and Schaad (2010) and certificate types

OID Attribute type DV OV EV

2.5.4.3 commonName X X X
2.5.4.6 countryName — X X
2.5.4.7 localityName — X X
2.5.4.8 stateOrProvinceName — X X
2.5.4.10 organizationName — X X
2.5.4.11 organizationUnitName — X X

TABLE 2 | Comparison of Gallersdörfer and Matthes (2021), Gallersdörfer
et al (2021) and this work.

System A System B This work

Endorsement storage on-chain on-chain on-chain
Certificate storage off-chain on-chain on-chain
Endorsement verification off-chain on-chain on-chain
Passive/active authentication passive passive active

TABLE 3 | Fullfillment of requirements

System A System B This work

On-chain Verification 7 ✓ ✓
Openness ˜ ✓ ✓
Compatibility 7 ✓ 7

Availability 7 ✓ ✓
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• Definition of rules for prospective validators: The owner of
the validator smart contract should define rules and
attributes that prospective validators need to fulfill.

• Optional: Establish hard fork: If the network already runs,
it is advisable to upgrade all nodes in the network to the
latest genesis. json-file in order to account for the future
hard fork.

All contracts can be set up as precompiled contracts at the
beginning of the network, rendering manual creation of contracts
unnecessary. After finishing all steps, other prospective validators
are able to join the network and begin their work as validators in
the permissioned network. They have to follow these steps:

• Adding respective certificates: As previously outlined, TLS
certificates need to be added on a one-by-one basis. A

prospective validator needs to add all intermediate
certificates and its own certificate to the certificate storage.

• Creating endorsement: The entity needs to use the
private key of their certificate to create an
endorsement including their address, domain and
expiry date. As this verification happens only once, the
period for expiry can be short.

• Submit endorsement: The endorsement needs to be
submitted to the endorsement storage. It gets verified
alongside the certificates previously submitted to the
certificate storage.

• Register as validator: If the prospective validator fulfills the
requirements set out by the owner of the network, it can
register itself with the validator smart contract. The contract
checks the requirements and adds the asking party to the set
of validators.

FIGURE 4 | Setup to enable automatic onboarding with TLS-certificates in the permissioned blockchain.

FIGURE 5 | Process for an interested party to register in the permissioned blockchain.
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It is up to the owners of the network to set the gas fees and if
they allow the creation of transactions without fees. In this case it
is advisable, as then newmembers of the network are not required
to be pre-funded with the respective currency of the network.

The process for setting up the network, introducing respective
contracts, allowing anyone to connect to the network and joining
are depicted in Figures 4, 5.

3.5 Evaluation
We briefly discuss architectural decisions and their impact on
other use cases as well as the fulfillment of our requirements.

Albeit the architecture previously proposed in Gallersdörfer
et al. (2021) seems complex, our proposal allows for the usage of
TLS certificate properties to be used in the context of access
control in smart contracts. For our use case we authorize the
asking address for every call to the protected smart contract. In
this example use case for managing validators in permissioned
blockchain networks, only one call is required to gain access to the
system.

Our previous work indicates that the initial filing of the
certificate storage requires some gas; for 13 root certificates
and 24 intermediate certificates the total gas amounts to 3̃3
million gas in Ethereum Gallersdörfer et al. (2021). As this has
to be paid only once, it might be worthwhile to deploy on the
mainnet. Adding a single domain certificate alongside an
endorsement consumes about 1.3 million gas, which might be
a reasonable price for single actors.

However, in any permissioned blockchain in which gas costs
do not play a relevant role, this is not an issue. As permissioned
networks do not have the same requirements and transaction fees
as permissionless networks, such a system can easily be deployed.
Even storage wise, given that one certificate requires about 1 kb of
storage, permissioned blockchains should be able to handle this
amount of load easily.

Considering the requirements that we set out for our
approach, the following statements can be made:

• FR1: An endorsed account can authenticate itself at an
application smart contract. ✓

• FR2: An endorsed account can authorize itself at an
application smart contract. ✓

• FR3: The entity owning the application smart contract can
define the requirements for authorization. ✓

• NFR1: On-Chain access control decisions: All relevant data
for decisions is stored on-chain in a trustless manner. ✓

• NFR2: Access control without pre-provisioning of the
subject at the application: The account can directly call
the respective smart contract without pre-provisioning. ✓

• NFR3: Minimal costs of user management, authentication
and authorization: Transaction fees and costs were not
considered or optimized for. ✓

3.6 Comparison With Previous Approaches
The systems described in this paper, in Gallersdörfer andMatthes
(2021), and in Gallersdörfer et al. (2021) deviate from each other.
We describe their differences from a functional, security and
requirements perspective.

3.6.1 Functional Perspective
InTable 2, we display the key differences between the two previous
systems Gallersdörfer and Matthes (2021), Gallersdörfer et al.
(2021), and this work. System A and B deviate in where the
verification of endorsements takes place; system A allows for a
decentralized, off-chain verification in which every single user
executes the verification. This has the advantage that different
system configurations (e.g., trusted root certificates) are considered
as well as the low cost of the approach Gallersdörfer and Matthes
(2021). This also comes with the disadvantage that there is no on-
chain information about the validity of the endorsement; this is
crucial for applications that rely on such information, e.g., address
independent payments. In this work, we extend system B by
allowing to actively use the endorsement to authenticate and
authorize at a Smart Contract, using attribute-based access control.

3.6.2 Security Perspective
An extensive analysis of the security implications of the
underlying systems is given in the respective previously
published work. Nonetheless, we highlight common security
themes and provide an insight into where these systems
deviate. As this work builds upon system B, potential attack
vectors remain identical.

3.6.2.1 TLS as the Underlying System
TLS and DNS are relied upon in all three systems. It allows us to
use cryptographic key material alongside human-readable
information (e.g., the domain name) to assert this information
to addresses within blockchain systems. Thus said, an error that
occurs on the TLS layer (e.g., maliciously issued certificates) can
be used to obtain a fraudulent endorsement, independent if it
takes place in systems A, B, or this work. Attacks like these
(especially on a large scale) are not common; nonetheless, due to
the transparency of the blockchain, one can monitor for such
attacks and mitigate their damages (e.g., by warning users).

3.6.2.2 Ways of Verification
One of the key differences is that in system A, the verification of
information happens off-chain and uses live data from the
WWW (e.g., by accessing the webserver or Certificate
Transparency). In contrast, in system B and this work, the
verification is done on-chain once and only if contradicting
information (e.g., a certificate is revoked) exists, it needs to be
pushed on-chain by the respective responsible parties.

Second, given the novelty of the solidity programming
language in the case of Ethereum (or any other novel
blockchain-based language), no libraries exist for verifying
certificates. Contrary to that, programmers can access many
libraries in other programming languages like Javascript,
Python, or Java. Therefore, the off-chain verification
mechanisms might be more robust than on-chain mechanisms.

3.6.2.3 Human Error
In all systems, humans are prone to be attacked or social-
engineered into sending their funds regardless. First, typo-
squatting is still a common theme, e.g., replacing an upper-
case I for a lower-case l and tricking the users into believing
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that they are accessing the correct domain. Applying to system A,
another approach that can also result in the loss of funds is just
telling the users to ignore the warning of the browser-based
wallet, sending their funds regardless. Educating users is an
essential step in combating such approaches; given the
complexity of the technology, significant efforts are required.

3.6.3 Requirements Perspective
The previously prop osed systems fullfil a set of functional and
non-functional requirements. As this work builds upon system B,
we do not introduce these requirements in this paper again. To
better understand these systems and their differences, we first
discuss differing requirements and then display them in Table 3

The first relevant functional requirement is introduced in
system B: Allow the verification of an endorsement to take
place on-chain. System A introduced the notion of
endorsements but only allowed verification in an off-chain
environment, as not all data was available on-chain. System B
allowed for the verification of endorsements on-chain.

The second deviating functional requirement is the system’s
openness, meaning that anyone can participate and use the
technology. As we rely on TLS, any certificate authority deemed
trustworthy by a verifier can be used. There is a slight difference
between systems A and B/this work, as in system B, the existence of
alternative Certificate Authority (CA) is explicit, meaning that a
verifier knows that an alternative CA is used. In system A, this
information has to be communicated via other means. Therefore, it
is less likely that alternative CAs are used within system A.

A third functional requirement differing between systems is
compatibility: Does the system support contracts that have been
deployed without the respective system A/B/this work in mind?
System A does not, as it requires the smart contract to adhere to a
specific interface standard. As contracts cannot be updated, once
deployed, contracts cannot be made compatible to system A. The
endorsements are stored in a centralized Smart Contract in
system B, independent of the actual endorsed smart contract.
Therefore, the respective contract can also be endorsed
retroactively. This work, as it builds upon system B, also
allows the retroactive endorsement of existing smart contracts
but does not allow existing contracts to be used for verification
purposes, as they still need to support the respective interface. In
this specific use case, a new contract can easily be deployed and
used to onboard new consortia members.

The availability requirement introduces the notion of
dependency on other entities or systems. As system A does
depend on the webserver and other systems, it might be
possible that verification attempts fail due to missing data.
This is not the case for system B and this work, as all
information is stored and kept on-chain for verification purposes.

All additional requirements introduced in this paper do not
apply to the previous systems. Table 3.6.3 contains the
requirements deviating between different systems.

3.7 Related Work
This work builds upon previous work aiming at providing a
way to utilize TLS-certificates in an on-chain context. To that

system, related work exists: ENS delivers a means to register
domain names with the TLD. eth, finding increasing adoption
within the community Johnson et al. (2020). CertLedger shifts
the processes of Certificate authorities on blockchain systems,
allowing for these processes to be more transparent and, thus,
more secure Kubilay et al. (2019). Systems like Instant Karma
PKI (Matsumoto and Reischuk (2017)) introduce game-
theoretical models that incentivize certificate authorities and
offer insurance against fraudulent operations. While these
systems exist and sometimes see some adoption, we are
unaware that any is used for an active authentication
mechanism or in a consortia membership context.

4 CONCLUSION

This manuscript extended previous research about mirroring and
migrating parts of existing Public Key Infrastructures in a
Blockchain environment to support the management and
onboarding of validators in permissioned blockchains. We
defined requirements and discussed architectural decisions to
actively use endorsements stored within the blockchain. Our
approach allows consortia blockchains to enhance their
onboarding process and reduce administrative and
communicational costs. Voting in such networks should be
more trustworthy, as well as the centralization to one single
party should be reduced.

We intend to extend the framework to support access control
for multiple addresses for one endorsement as future research. In
the current use case, only one entity must be endorsed, but there
are other use cases in which firms could issue multiple entities the
right to access specific resources. For example, a car manufacturer
could decide to equip their cars with specific wallets. Endorsing
these wallets with the respective TLS certificate could yield an
ecosystem where vehicles have access to certain services or
benefits, such as reduced parking fees. A system like that can
both prevent the existence of malicious copies and an easy
extension of the marketplace for the respective cars of the
manufacturer.
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