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Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity
to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the sys-
temic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains explora-
tory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the
brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include
astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating
oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma
genes, and studied their functional networks and contribution towards gliomagenesis. We identified
the principal transcription factors that are found to be regulating vital tumorigenic processes. We also
assessed the protein–protein interaction networks at their domain level to get a more microscopic view
of the structural and functional operations that transpire in these cells. This yielded the eminent protein
regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mech-
anisms in glioma cell types that can be targeted for a more efficient glioma therapy.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Glial cells are the non-neuronal inhabitants of the central ner-
vous system (CNS) that provide crucial assistance for neural net-
work topology and function [1]. Across the entire territory of the
nervous system, glial cells surpass neurons numerically and form
a substantial portion of the nervous tissue [2]. Thus, on account
of their prominence, dysfunctional glial cells lead to a variety of
severe ailments, one of which is the most common form of CNS
neoplasm called glioma. Gliomas account for roughly 36% of all pri-
mary CNS tumours and almost 80% of all CNS malignant tumours
[3,4]. Glioblastoma multiforme (GBM) is the most common and
aggressive (WHO grade IV) form of malignant glioma. This variant
ascends from glial cells, either de novo as primary GBM or from
pre-existing low-grade astrocytomas as secondary GBM [5]. The
conventional approach to treat this form of infiltrative tumor is
maximum surgical resection followed by concomitant radiation
therapy and chemotherapy using temozolomide [6]. However, its
heterogeneity and notorious nature in a difficult-to-access
microenvironment, renders this tumour lethal and its complete
elimination unattainable. Hence, GBM has a feeble prognosis and
relapse is almost inevitable resulting in a median survival rate of
8 to 15 months. Therefore, to successfully treat this tumour, the
development of novel therapeutic strategies has emerged as a
prime requisite.

In CNS, glial cells are essentially of four main types- astrocyte,
oligodendrocyte, microglia and ependymal cell. Astrocytes are
the most abundant (approximately 20–40%) irregular star-shaped
cell type in the brain [7]. They engage extensively with neurons
to provide architectural and metabolic support, and are also crucial
for the formation of the blood–brain barrier [8]. Oligodendrocytes
have a comparatively lesser amount of cytoplasm [8], and function
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to insulate axons via enveloping them to form myelin sheaths [9].
Oligodendrocytes are further classified into oligodendrocyte pre-
cursor cells (OPCs), premyelinating or newly formed oligodendro-
cytes (NFOs) and myelinating oligodendrocytes (MOs) based on
their degree of differentiation [10,11]. Microglial cells are the
smallest, most eminent immune cells of the CNS that remove deb-
ris and account for around 10% of the whole brain cell population
[8,12,13]. They are the first responders when improper events
occur in the brain [12]. Last of all, ependymal cells are ciliated that
line the ventricular surface of the CNS and act as the first line of
defense [14]. As glial cells are the core constituents of tumour for-
mation and are responsible for maintaining homeostasis in the
brain, it becomes imperative to understand and gain insight into
their functional operations in GBM. Conversely, it is important to
note that even though ependymal cells give rise to a glioma, named
ependymoma [15], the involvement of these cells in GBM has inad-
equate literature support and lacks proper annotation. Thus, we
did not consider this cell type in our study.

Although some cancers have well-defined series of events that
lead to their genesis, the development of GBM is driven by a com-
plex network of various genetic and molecular perturbations,
resulting in critical changes in signaling pathways [16]. For exam-
ple, EGFR signaling pathway [17], Ras pathway [18], PTEN signaling
pathways[19], retinoblastoma pathway [20], etc. are some of the
vital signaling pathways that undergo modification in GBM. Most
of these unprecedented discoveries have transpired at the tissue
level analysis of the tumour. However, little is known about the
GBM formation at the level of aforementioned cell types. This con-
sequently opened a gateway to direct our focus on the functional
alterations and contributions made independently by each glial
cell type in GBM.

In this study, we conducted an analysis on differential gene
expression profiles of GBM primary solid tumour (TP) and recur-
rent solid tumour (TR) in astrocytes, microglial cells, OPCs, NFOs,
and MOs. Our investigation enabled us to dissect top transcription
factor regulators and scrutinize protein-domain level network
interactions in each of these GBM TP and TR specific cell types. This
allowed us to make some noteworthy observations, and revealed
common as well as unique mechanisms that occur in these glial
cells. These findings can be further validated to inspect their rele-
vance as targets for drug therapy in the hope of a sustainable treat-
ment against GBM.
2. Materials and methods

2.1. RNA-sequencing data analysis of GBM and data acquisition of
brain cell type-specific genes

The Cancer Genome Atlas (TCGA) firehouse (https://gdac.broad-
institute.org/) provided us with RNA-Seq by Expectation-
Maximization (RSEM) normalized expression data for normal brain
and TP, TR cancer from GBM patients. The DESeq2 package, which
is part of the integrated Differential Expression and Pathway anal-
ysis (iDEP v.90) software [21], was used to identify the differen-
tially expressed genes (DEGs) using the normalized expression
data. Genes that met the following criteria were considered as
DEG: p-adjusted-value � 0.05 and log2 fold change 1 (absolute fold
change: 2) [22]. The bulk RNA and single-cell sequencing gene
datasets of normal brain astrocyte, microglia, OPC and NFO were
collected from the literature [23,24]. Normalized expression data
related to OPC, NFO and MO were downloaded from GEO database
(accession ID: GSE52564) [23] and DEGs were extracted using iDEP
v.90 software [21]. In these, the bulk RNA sequenced mouse genes
[23] of each brain cell type were mapped to their human orthologs

by employing g:Profiler (https://biit.cs.ut.ee/gprofiler/orth).
91
Ultimately, we went ahead with the genes that were available in
human organism and performed our investigation.

2.2. Overlap analysis to retrieve cell type-specific glioma gene datasets

We mined 1388 astrocyte, 1300 microglia, 2538 OPC, 4118 NFO
and 2745 MO genes [23,24], respectively. We overlapped these sets
of genes with the DEGs of GBM TP and TR to extract subsets of
unique and common cell type-specific glioma genes. We consid-
ered these genes for further analysis.

2.3. Transcription factor network analysis

We curated transcription factors (TFs) from the above-
mentioned subsets of genes by using the human TF atlas v1.01

(http://humantfs.ccbr.utoronto.ca/), an index of 1639 known and
probable TFs [25]. We overlapped these TFs with glioma cell
type-specific DEGs and extracted the common TFs. They were used
to compute the TF co-regulatory target network using CoRegNet, a
R/Bioconductor package [26]. This package administers the h-
LICORN algorithm [27,28] to reconstruct a network by identifying
experimentally validated co-regulators and co-inhibitors for a
given set of gene expression data. To procure a more refined net-
work, input features such as TF-gene interaction data, (e.g., ChIP-
sequencing, TF-binding site), to endorse the regulatory interactions
were incorporated as additional evidence. Furthermore, this pack-
age also implements a function to evaluate the TF activity by mea-
suring their transcriptional influence. This influence is estimated in
a sample-specific fashion based on a comparison of the expression
of the activated and repressed targets of a regulator, and it does so
while being more noise-resistant than the standard network recon-
struction approaches [26]. We further investigated the association
of two or more TFs by conducting a TF-TF correlation network anal-
ysis. This was done by generating a table of correlation coefficients
and their corresponding p-values using the Hmisc package

(https://hbiostat.org/R/Hmisc/). We then formatted the correlation
matrix that consists of the cormat matrix of the correlation coeffi-
cients, and the pmat matrix of the correlation p-values, by using
the function flattenCorrMatrix. The TF co-regulatory and TF-TF cor-
relation networks were visualized in Cytoscape v3.8.0 [29].

2.4. Protein domain interaction network analysis

We extracted the human protein domain interactions (PDIs)

data from the INstruct database (http://instruct.yulab.org), a 3-
dimensional structurally resolved library of high-quality protein
interactome networks containing 6585 interactions at protein
domain level. INstruct consists of interactions that were derived
from some of the most prominent interaction databases and
screened to present only binary interactions that met its stringent
quality standards [30]. To visualize the protein domain interaction
network (PDIN) of the retrieved PDI INstruct data, SIGNOR v.2.0
(http://signor.uniroma2.it), the SIGnaling Network Open Resource
[31] was used. SIGNOR is a compilation of experimentally vali-
dated causal relationships, i.e., interactions in which a source
entity has an influence on a target entity (e.g. activation, inhibition,
binding). Proteins having the highest number of interactions were
considered as top regulators.

2.5. Functional pathway enrichment analysis

We used METASCAPE [32] to undertake pathway analysis of
DEGs, TFs, and proteins from PDI networks. These included KEGG
pathways and gene ontology biological process. Using a
p-adjusted value � 0.05, the pathways were deemed statistically
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significant. Due to the unavailability of enriched METASCAPE data
for a few DEGs and PDI proteins, we derived their function and
pathway information from the National Centre for Biotechnology
Information (NCBI) [33] and UniProt [34].
2.6. Data visualization and statistical analysis

In this study, we used R statistical software v3.6.3 (https://

www.r-project.org/) to conduct data visualization and statistical
analysis. Hierarchical clustering analysis was done using the Eucli-
dean similarity metric and visualized as dendrogram using fac-
toextra R package. Volcano plots illustrating the top DEGs in and
across glioma-specific cell types were generated using the ggplot2,
ggrepel, EnhancedVolcano, gghighlight, and dplyr R packages. The
differential expression analysis of GBM and the top protein regula-
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tors in PDINs were visualized as barplots using the ggpubr R pack-
age that implemented the ggpbarplot function. Unique and
common glioma-specific genes/TFs in cell types were pictured as
barplots using the UpSet R package. The Pheatmap R package
was used to render the heatmaps.
3. Results

3.1. Workflow for dissecting unique and common mechanisms in GBM
at the single-cell level

GBM is widely studied at tissue level, however, here we scruti-
nized the events that occur in the cell types of this tumour at its
primary as well as recurrent stages. The workflow we followed in
this study is briefly illustrated as a pipeline in Fig. 1A. To begin
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with, we extracted the RNA sequencing gene expression dataset of
GBM; normal brain, TP and TR cancer patients, from The Cancer
Genome Atlas (TCGA). The bulk RNA and single-cell sequencing
gene datasets of the brain cell types- astrocyte, microglia, OPC,
NFO and MO- were mined from Zhang Y et al [23] and
Fan X et al [24]. Next, we culled out cell type-specific glioma genes
and conducted the pathway enrichment analysis for these differen-
tially expressed genes (DEGs). Furthermore, transcription factor
(TF) analysis was implemented wherein we constructed the TF-
gene co-regulatory and TF-TF correlation networks. Finally, we
performed the protein domain interaction network (PDIN) analysis
which gave us a detailed landscape of the mechanisms that occur
at the proteomic level in each GBM cell type.
3.2. Transcriptomic analysis of GBM and derivation of cell type-specific
glioma genes

To elucidate the functional dynamics that occur due to the gene
expression in GBM, we performed the transcriptomic examination.
The hierarchical clustering analysis of GBM TP and TR expression
profiles evidently showed clear partitioning of the normal brain
and cancer patient samples (Fig. 1B-C). We detected 6639 DEGs
in GBM TP, out of which 3465 were upregulated and 3174 were
downregulated (Fig. 1D). In GBM TR, we identified 579 DEGs, out
93
of which 310 were upregulated and 269 were downregulated
(Fig. 1E).

Our next step involved overlapping of the GBM TP, TR, astro-
cyte, microglia, OPC, NFO and MO gene datasets in order to derive
cell type-specific glioma genes. This allowed us to cull down sub-
sets of unique cell type-specific glioma genes and common glioma
genes across the cell types as shown in Fig. 2A-B.

In total, we obtained 29 subsets of TP glioma genes and 19 sub-
sets of TR glioma genes. These include genes that are unique to the
cell types and common across various combinations of these cell
types. The genes in each subset were categorized based on their
differential expression (Supplementary Table S1A-AC and S2A-
S). The DEGs are illustrated in Fig. 3 and Fig. 4 with the top upreg-
ulated and downregulated genes highlighted. In conclusion, we
winnowed down glioma genes specific to glial cell types and con-
sidered these genes in our further analysis.
3.3. Signaling pathways enriched in glioma-specific cell types

To enhance our knowledge on the involvement of these cell-
specific DEGs in GBM, we performed pathway enrichment analysis
of upregulated and downregulated genes separately in TP and TR.
These analyses revealed that in TP astrocytes, genes participate
in hormone synthesis and metabolism (Supplementary
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Table S3A). In TP microglia, genes are engaged in signaling and cell
death pathways (Supplementary Table S3B). In TP OPC, they reg-
ulate metabolism and signaling pathways (Supplementary
Table S3C). In TP NFO, genes are involved in lipid signaling and
coagulation cascades (Supplementary Table S3D). Lastly, in TP
MO, the upregulated genes are linked to signaling pathways and
metabolism (Supplementary Table S3E).

Correspondingly, in TR astrocyte, genes are involved in signal-
ing cascades (Supplementary Table S4A). In TR microglia, genes
94
take part in signaling pathways (Supplementary Table S4B). In
TR OPC, gene are linked to cell cycle and signaling pathways (Sup-
plementary Table S4C). In TR NFO, genes are engaged in cell cycle
and TNF signaling pathway (Supplementary Table S4D). Finally, in
TR MO, they participate in cell adhesion and immune related path-
ways (Supplementary Table S4E).

The pathway enrichment analysis was also conducted for genes
that were common between the cell types and GBM. In sum, the
common TP upregulated genes are involved in signaling, cell adhe-
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sion and metabolic pathways (Supplementary Table S3F-AC).
Similarly, the common TP downregulated genes are involved in cell
growth, tumor progression and T-cell regulation (Supplementary
Table S3F-AC).

Furthermore, the TR upregulated genes that are common across
different combinations of cell types participate in signaling path-
ways, cell growth, apoptosis, and immune response (Supplemen-
tary Table S4 F-S). Likewise, the common TR downregulated
genes participate in signaling pathways such as metabolism, cell
migration and adhesion (Supplementary Table S4 F-S). In a nut-
shell, this analysis revealed that although the DEGs in these cancer
cell types participate in different signaling pathways, they are
common in growth-related functions.

3.4. Identification of unique and common transcription factors in each
cell type

Transcription factors (TFs) play a critical role in the regulation
of gene transcription and expression processes. This corresponds
as a vital element in an intricate network system that governs
healthy cell development and function [35]. Hence, owing to their
significance, we investigated the TFs present in the GBM-specific
brain cell types. Primarily, we filtered the TFs from the gene data-
sets by performing an overlap analysis with the Human TF atlas
catalog containing 1639 recognized and likely human TFs [25]. This
enabled us to segregate out cell type-specific TP and TR glioma TFs
that are unique and common across astrocyte, microglia, OPC, NFO
and MO (Fig. 5A-B) (Supplementary Table S5A-T and S6A-H). This
provided us with 20 subsets of TFs in TP and 8 subsets of TFs in TR.
95
The 8 subsets in TR include TFs in astrocyte (n = 2), microglia
(n = 1), OPC (n = 1), NFO (n = 1), MO (n = 1), OPC and NFO
(n = 1), astrocyte and NFO (n = 1), and lastly in OPC, NFO and
MO (n = 1). However, in our further network analysis, we only con-
sidered TFs in TP and not the TR TFs, since they were very less in
number; TF-target network cannot be constructed in TR dataset.

We initiated our examination with putative TF-target co-
regulation analysis. This was done via CoRegNet that enriched
the networks with the ENCODE ChIP-sequencing data as additional
evidence [26]. Out of 20 TF subsets in TP, this analysis gave results
for only 8 TF subsets due to numerically less TFs in the remaining
subsets. In TP astrocytes, we observed a total of 15 TFs and 9 of
them are enriched with ChIP-seq data (Supplementary Fig. S1A).
In TP microglia, out of 14 total TFs, 11 are complemented with
ChIP-seq (Supplementary Fig. S1B). In TP MO, out of a total of
15 TFs, 11 were supported by ChIP-seq data (Supplementary
Fig. S1C). In TP NFO, out of a total of 23 TFs, 13 are corroborated
with the ChIP-seq data (Supplementary Fig. S1D). In TP OPC and
NFO, out of a total of 26 TFs, 16 were complemented with ChIP-
Seq data (Supplementary Fig. S1E). In TFs common across TP
NFO and MO, a total of 13 were observed out of which 8 were
enriched with ChIP-Seq data (Supplementary Fig. S1F). In TP
astrocyte, OPC and NFO, a total of 7 TFs were found, out of which
4 were supported with ChIP-Seq data (Supplementary Fig. S1G).
Lastly, in TP OPC, NFO and MO, a total of 12 TFs were identified,
out of which 8 were corroborated with ChIP-Seq data (Supplemen-
tary Fig. SH). Finally, we observed unique novel putative TFs in TP
astrocyte (n = 6), microglia (n = 2), MO (n = 4) and NFO (n = 10)
(Supplementary Fig. S2A-D). The common novel putative TFs
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were also observed in TP OPC and NFO (n = 10), NFO and MO
(n = 5), astrocyte, OPC and NFO (n = 3) and OPC, NFO and MO
(n = 4) (Supplementary Fig. S2E-H). For these novel TFs we did
not find evidences in ChIP-seq datasets from ENCODE. Overall, this
analysis revealed enriched common and unique transcription fac-
tors in glioma-specific cell types.

3.5. Transcription factor co-regulatory network analysis revealed
critical TFs

To gain a deeper understanding of the functionality and associ-
ation between the TFs, we conducted a TF-TF correlation analysis
by computing the correlation coefficient to generate networks dis-
playing positive (activation) and negative (inhibition) interactions.
We further refined this investigation by conducting TF transcrip-
tional influence activity analysis using the CoRegNet package
[26], this indicates howmany targets are regulated by each TF. Pos-
96
itive influence indicates that TF is regulating upregulated targets
and negative influence denotes that TF is regulating downregu-
lated targets. The transcriptional influence is computed for the
TFs with a suitable number of targets in the transcriptional net-
work (minimum 10 activated and 10 repressed). This further nar-
rowed down the known TFs and gave us the top regulators. In TP
astrocyte, we observed 9 TFs with GLIS3 being the most significant
TF influencer followed by OSR2 and HOXB2 (Fig. 6A). Similarly, in
TP microglia, correlation between 11 TFs was seen, with LTF being
the prominent TF (Fig. 6B). In TP MO, correlation between 11 TFs
was found, with DMRTA2 being the notable TF influencer, followed
by TCF7L1and FOXS1 (Fig. 6C). In TP NFO, correlation between 13
TFs was noted, with CENPA being the influential TF followed by
E2F8 and EN2 (Fig. 6D). In OPC and NFO, correlation between 16
TFs was detected with E2F7 being the eminent TF influencer fol-
lowed by FOXJ1 (Fig. 6E). Similarly, in TFs common between NFO
and MO, correlation between 8 TFs was witnessed, with ASCL1
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being the principal TF, followed by SOX11 and CSRNP3 (Fig. 6F). In
OPC, NFO and MO, correlation between 8 TFs was observed, with
TEAD2 being the chief TF followed by DLX1 and ST18 (Fig. 6G).
Lastly, in astrocyte, OPC and NFO, correlation between 4 TFs was
seen, with BCL11A being the salient TF influencer (Fig. 6H). In
sum, TF-TF network analysis revealed top TF regulators in each
glioma-specific cell type.

3.6. Transcription factors in each cell type regulate various signaling
and metabolic processes

Additionally, to better acquire knowledge of the processes the
TFs participate in each of the cell types, we performed a pathway
enrichment analysis. This evaluation revealed that in TP astrocyte,
TFs ZNF878 and CREB3L4 are involved in highest number of pro-
cesses such as signal transduction downstream of smoothened
protein which is involved in hedgehog signaling [36], activation
of phospholipase C activity and peroxisome, positive regulation
of translation, respectively (Fig. 7A). Consequently, in TP microglia,
LTF, the significant TF regulator is found to regulate signaling path-
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ways like TNF, TLR, chemokine, B-cell receptor and processes such
as transcriptional misregulation, natural killer cell mediated cyto-
toxicity, phagocytosis and carbon metabolism in cancer (Fig. 7B).
Moreover, the TF BATF is found to significantly regulate the highest
number of processes such as negative regulation of immune sys-
tem, positive regulation of adaptive immune response and NFjB
TF activity, B cell activation, T cell migration etc. In TP MO, the
top regulator, DMRTA2, is seen to be involved in CAMs (Fig. 7C).
In TP NFO, the eminent regulator, CENPA, is observed to be
involved in cell cycle whereas the third top regulator, EN2, is found
to be involved in apoptosis, phosphatidylinositol signaling system,
complement and coagulation cascades. However, NKX6.2 is seen to
participate in the highest number of processes like pathways in
cancer, beta-alanine metabolism, RIG-I-like signaling pathway
etc. (Fig. 7D). In addition, ASH1L is seen to regulate the highest
number of processes such as apoptosis, NFjB signaling pathway,
carbon metabolism in cancer etc. Similarly, in TP OPC and NFO,
the TF SP9 is witnessed to significantly regulate highest number
of processes such as CAMs, and cAMP, MAPK signaling pathways
(Fig. 7E).
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Furthermore, in TFs common between TP NFO and MO, the
prominent TF regulator, ASCL1, is found to be involved in endocy-
tosis and cytokine-cytokine receptor interaction, whereas the sec-
ond top TF influencer, SOX11, is found to regulate signaling
pathways such as TGF-b, MAPK, calcium, phosphatidylinositol
and apelin (Fig. 7F). Additionally, the TF TEAD3 is found to regulate
highest number of signaling pathways such as extrinsic apoptotic
via death domain receptors, NFjB and insulin-like growth factor
receptor. In TP astrocyte, OPC and NFO, the notable TF, BCL11A,
is involved in microRNAs in cancer, whereas the TF SIX5 is seen
to regulate highest number of processes such as regulation of
GTPase activity, cell growth, complement activation, lectin path-
way etc (Fig. 7G). Finally, In TP OPC, NFO and MO, the second most
significant TF influencer DLX1, is noted to be involved in cGMP-
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PKG signaling pathway and the third top TF influencer, ST18, is
noted to be involved in the highest number of processes that
include cAMP, oxytocin and MAPK signaling pathways (Fig. 7H).
Taken together, the TF network pathway analysis gave us a thor-
ough view of the important cancer-related pathways they regulate
in each glioma-specific cell type.

3.7. Protein-protein interaction network analysis at the domain level

Protein-protein interactions (PPIs) are the fundamental driving
force behind the working of a complex network of processes. The
interactions occur when the respective domains of each protein
physically associate with each other, thereby corresponding to
facilitate a particular function[37]. Hence, studying PPIs of GBM



Fig. 8. Protein-domain interaction network (PDIN) analysis of TP proteins in cell types. (A-O) Comprehensive visualization of PDINs in each cell type and the most significant
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at the protein domain level gives a more holistic view of the func-
tional operations that materialize in each cell type. We began by
enrolling the TP and TR genes into the INstruct database and
retrieved high-quality protein-domain interaction data (Supple-
mentary Table S7A-X and S8A-I). This data was further logged
into the SIGnaling Network Open Resource (SIGNOR 2.0) database
to visualize the regulatoryprotein-domain interaction networks
99
(PDINs). Lastly, we also conducted pathway enrichment analysis
for these proteins.

In TP astrocyte, some important processes like neurotrophin
signaling pathway and endocytosis were seen (Fig. 8A). In TP
microglia, we observed signaling pathways that regulate pluripo-
tency of stem cell, MAPK signaling pathway, complement and
coagulation cascades as some of the important processes
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(Fig. 8B). We further winnowed down MAPK14 (domain- Pkinase),
NFKBIA (domain- Ank), BCL3 (domain- Ank), SYK and TRADD
(domain- Death) as the significant protein regulators that are reg-
ulating 4, 2, 2, 2 and 2 proteins, respectively. The top TF influencer
LTF, is found to regulate BCL3. In TP OPC, the participation of the
PDIs in pathways and processes needs to be studied further
100
(Fig. 8C). In TP NFO, the PDIs were seen to take part in processes
such as cell cycle, signaling pathways regulating pluripotency of
stem cells, Rap1 and PI3K-Akt signaling pathways, complement
and coagulation cascades (Fig. 8D). The two most prominent pro-
tein regulators were found to be CDK1 (domain- Pkinase) and
PTPN12 (domain- Y_phosphatase) regulating 4 and 3 proteins,



Organize actin
cytoskeleton

Axon guidance, invasive growth
and cell migration

G-alpha
Alpha subunit of inhibitory

complex

RGS

Plexin_cytoplRas

GNAI1RGS20

PLXNB1RND1

Inhibits signal
transduction

A

B

Neurite formation
and arborization

Cell interactions
with ECM

efhandPkinase

EGF_CA EGF_CA

CABP2CAMK2G

NID1FBLN2

astrocyte & NFO & MO & TP

Apoptosis
Cell proliferation, differentiation

& migration

Assists in autophagApoptosis, Oncogene

Modulator/transducer in various
transmembrane signaling

pathways

UBAPkinase

FGFI-set

WD40G-gamma

UBQLN4
TRIB2

FGF8FGFR2

GNB1GNG3

astrocyte & OPC & MO & TP

Cell cycle- DNA replication
& elongation

MCM4MCM7

MCM MCM

Inhibitor of cysteine
proteinases

Catalyzes the covalent attachment
of ubiquitin

Degradation of GM2
gangliosides

CystatinPeptidase_C1

UQ_conzf-C3HC4

Glyco_hydro_20

CST3
CTSS

UBE2UTRIM47

HEXA
HEXB

Glyco_hydro_20b

microglia & OPC & NFO & TP

Mitochondrial import,
regulator of cell

cycle & signal transduction
proteins

Regulator of Akt/AKT1
activity

HSP90

HSP90AA1FKBP5

TPR_1

microglia & MO & TP

Complement system

C1QAC1QB

Collagen Collagen

astrocyte & microglia & NFO & TP

Cell division Inhibits adenylate
cyclase activity,
involved in metaphase

G-alphaGoLoco

GNAI1RGS14

astrocyte & microglia & OPC & TP

Cell motility
Gelsolin

GSNACTB

Actin

astrocyte & NFO & TPastrocyte & OPC & TP

microglia & OPC & NFO & MO & TP

efhand

TNNC1TNNI3

Troponin

Innate immunological memory,
adipocyte differentiation &
telomerase regulation

Transcriptional
regulator ATF7BACH1

bZIP_1 bZIP_1

Apoptosis, NFkB &TNF
signaling pathway

TNFR_c6TNF

SH2

LTBRTNFSF14

FYNIL7R

fn3
Cell growth/survival/
adhesion/
motility, Immune response

Apoptosis,
T cell activation/

homeostasis/proliferation

OPC & NFO & MO & TR

TNF & NIK/NFkB
signaling pathways

Thymosin
Phagocytosis,
cell migration,
gene expression TMSB4XACTG1

Actin
PI3K signaling
pathway

PTPN13PDLIM4

PDZ PDZ

UbiquitinationUbiquitin ligase
activity

UQ_con

UBE2D4ZNRF2

zf-C3HC4

Negative regulator-
Neuron
apoptosis &
PDGFR/ Wnt
signaling pathways

Cell cycle arrest,
cell migration,
Apoptosis negative
regulator

LRP1THBS1

EGF_CA EGF_CA

astrocyte & TR MO & TRmicroglia & TR

astrocyte & NFO & TR microglia & NFO & TR astrocyte & OPC & NFO & TR

Fig. 10. Protein domain interactions (PDIs) between cell types. (A-B) PDIs in and across cell types with their functions in TP and TR, respectively.

S. Fathima, S. Sinha and S. Donakonda Computational and Structural Biotechnology Journal 20 (2022) 90–106
respectively. In TP MO, we witnessed PDIs engaging in signaling
pathways such as T-cell receptor, MAPK, and sphingolipid
(Fig. 8E). In this PDIN, PDPK1 (domain- Pkinase) was found to be
the chief protein regulator that is regulating 2 proteins. PDPK1 is
regulated by the most significant TF influencer DMRTA2 in this cell
type.

Similarly, this analysis was also conducted for TP proteins com-
mon across cell types. In TP astrocyte and MO, the PDI was found to
101
participate in CAMs process (Fig. 8F). In TP microglia and OPC, a
PDI is observed to engage in cell cycle (Fig. 8G). In TP microglia
and NFO, the vital processes witnessed were Rap1, NFjB signaling
pathways and natural killer cell mediated cytotoxicity (Fig. 8H).
PRKCA (domain- Pkinase) and SYK were noted to be the influential
protein regulators regulating 6 and 2 proteins, respectively. In TP
OPC and MO, a PDI takes part in axon guidance (Fig. 8I). In TP
OPC and NFO, vital processes like cell cycle, transcriptional misreg-



Fig.11. Graphical abstract of our findings. Depiction of prospective gliomagenesis model in GBM at its cell type level.
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ulation, fluid sheer stress and signaling pathways such as Jak-STAT,
hippo, PI3K-Akt, AGE-RAGE, apelin, and cAMP were observed
(Fig. 8J). The 3 notable protein regulators were winnowed down
to SRC, PDGFRB and PLK1 (domain- Pkinase) that are regulating
12, 3 and 3 proteins, respectively. PLK1 was found to be governed
by the top TF influencer i.e. E2F7. In TP NFO and MO, the PDIs par-
ticipate in Ras, Rap1, TNF, phospholipase D signaling pathways and
natural killer cell mediated cytotoxicity (Fig. 8K). In TP astrocyte,
OPC and MO, we noted the PDIs but their involvement in processes
needs further evaluation (Fig. 8L). In TP astrocyte, OPC and NFO,
the PDIs were observed to take part in Notch and AMPK signaling
pathways (Fig. 8M). In TP microglia, NFO and MO, T-cell receptor
and Rap1 signaling pathways were seen with LCK (domain- Pki-
nase_tyr) being the principal protein regulator governing 2 pro-
teins (Fig. 8N). Lastly, in TP OPC, NFO and MO, the PDIs are
involved in cell cycle and p53 signaling pathway with CDK2
(domain- Pkinase) as the salient protein regulator governing 5 pro-
teins (Fig. 8O).

This analysis was similarly conducted on TR cell types. How-
ever, the SIGNOR result was available for only TR NFO, and TR
OPC and NFO proteins. In TR OPC and NFO, the participation of
the PDI needs further examination (Fig. 9A). Lastly, in TR NFO,
the PDI is found to take part in T-cell receptor signaling pathway
(Fig. 9B).

Overall, this analysis manifested a comprehensive view of the
domain-level interactions of the proteins, their regulation, and
the pathways they control.

For some proteins, the SIGNOR visualization and functional
funct data from enrichment analysis was unobtainable. However,
we found that these How shared PDIs between TP astrocyte and
OPC participate in cell proliferation, differentiation, migration,
apoptosis, oncogenesis, act as modulator/transducer in various
transmembrane signaling pathways and assists in autophagy. The
PDIs common between TP astrocyte and NFO take part in processes
such as invasive growth, cell migration and signal transduction
inhibition. In TP microglia and MO, the PDI is involved in regulation
of Akt/AKT1 activity, mitochondrial import, regulation of cell cycle
and signal transduction proteins. The PDIs in TP astrocyte, NFO and
MO are involved in cell interaction with ECM, neurite formation
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and arborization. In TP microglia, OPC and NFO, the PDIs take part
in catalyzing the covalent attachment of ubiquitin and inhibition of
cysteine proteinases. The PDI shared between microglia, OPC, NFO
and MO, is engaged in the complement system. The PDI between
TP astrocyte, microglia and OPC, takes part in cell division and inhi-
bits adenylate cyclase activity. The common PDI between astro-
cyte, OPC and MO is involved in cell cycle, DNA replication and
elongation. Lastly, the mutual PDI among astrocyte, microglia
and NFO takes part in the cell motility process (Fig. 10A).

Similarly, the PDIs in TR microglia takes part in cell growth, sur-
vival, motility, immune response, apoptosis, T cell activation,
homeostasis, proliferation and signaling pathways such as NFjB
and TNF. The TR MO PDI participates in innate immunological
memory and telomerase regulation. PDI shared between TR astro-
cyte and NFO is involved in phagocytosis, cell migration, gene
expression, TNF and NFjB signaling pathways. The PDI in TR
microglia and NFO engages in PI3K signaling pathway whereas
mutual PDI between TR astrocyte, OPC and NFO, is involved in cell
cycle arrest, cell migration, negative regulation of apoptosis,
PDGFR and Wnt signaling pathways. Finally, the PDI common
between TR OPC, NFO andMO engages in ubiquitination. (Fig. 10B).

Taken together, this analysis revealed the key protein domain
interactions and functions regulated in GBM TP and TR by proteins
across cell types.
3.8. Prospective gliomagenesis model of GBM at its cell type level

Somatic aberrations induce the transformation of healthy glial
cells into cancerous cells. Our findings give crucial insight into
the various unique and common molecular mechanisms that
undergo alterations in the glial cell types leading to the inception
of GBM (Fig. 11). The differentially expressed pathways in astro-
cyte, microglia, OPC, NFO, and MO were found in TP as well as
TR GBM. Our integrated transcriptional and proteomic analyses
reveal critical transcription factors and proteins in each and across
all five cell types that can be studied and validated as drug targets
to treat GBM.
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4. Discussion

Due to its heterogenic nature and ability to evade any form of
therapy regimens, GBM remains to be the most invasive and detri-
mental brain tumour. Designing a compelling treatment strategy
against this lethal glioma has been a challenging issue globally.
The studies being conducted are maximally based and focused on
the tumour tissue as a whole. This prompted us to renew the stan-
dard approach and perform an extensive in-silico analysis at the
cell type level.

Glial cells or neuroglia are the non-excitable group of support
cells in the nervous system that predominate the neurons in abun-
dance. The CNS consists of astrocyte, microglia, and oligodendro-
cytes [38]. Oligodendrocytes are further divided into OPC, NFO
and MO. Before myelination occurs, the OPCs first convert into
NFOs and then finally into mature MOs that myelinate the axons
[39,40]. Malfunction of these glial cells consequently gives rise to
gliomas. For example OPCs have been widely studied for their con-
tribution in gliomas [41,42]. The transcription factors OLIG2 and
SOX10 are expressed in all cells of the oligodendrocyte lineage
[10], and these TFs exhibit broad expression across the glioma sub-
types [43,44].

In this study, we retrieved the gene expression dataset of GBM;
normal brain, TP and TR cancer patients (Fig. 1B-E). We compared
this dataset with the gene sets from bulk RNA and single-cell
sequencing datasets of astrocyte, microglia, OPC, NFO and MO. This
winnowed down subsets of TP and TR glioma genes that are unique
as well as common to the cell types (Fig. 2A-B). Differential expres-
sion analysis allowed us to segregate upregulated and downregu-
lated genes (Supplementary Table 1A-AC and 2A-S).
Additionally, we highlighted the top DEGs in each of these subsets
(Figs. 3 and 4). Further investigation of these single-cell specific TP
GBM genes revealed signaling pathways such as oxytocin, chemo-
kine, mTOR, phosphatidylinositol, sphingolipid, Ras, hedgehog and
mechanisms such as steroid hormone biosynthesis, inositol phos-
phate, glycerophospholipid, purine metabolism, endocytosis cho-
line metabolism in cancer, CAMs etc. to be governed by the
upregulated genes unique to the cell types. In contrast, the down-
regulated genes unique to the cell types are involved in signaling
pathways such as NOD-like, TNF, T-cell receptor, MAPK, HIF-1,
p53, PI3K-Akt, insulin, hippo, Rap1 and mechanisms such as thy-
roid hormone synthesis, cytosolic DNA-sensing pathway, apopto-
sis, ferroptosis, transcriptional misregulation in cancer, natural
killer cell mediated cytotoxicity, central carbon metabolism in can-
cer, homologous recombination, pyrimidine and gluthathione
metabolism, CAMs etc.

Our analysis also disclosed the pathways that are employed by
the genes common across various combinations of cell types. This
revealed that the common TP upregulated genes are involved in
signaling pathways such as cAMP, hippo, apelin, MAPK, adipocy-
tokine, calcium, phospholipase D, insulin, TGF-b, AMPK, Ras, cell
growth and metabolism. Conversely, the common TP downregu-
lated genes participate in PI3K-Akt, Rap1, hippo, cAMP, apelin,
p53, chemokine, B-cell receptor, NOD-like, PPAR, negative regula-
tion of TGF-b, PDGFR, CD40, TLR5, Notch signaling pathways and
processes like cell cycle, apoptosis, pyroptosis, somatic stem cell
division, negative regulation of cell population proliferation and
growth, activation of NF-kappaB-inducing kinase activity, tumour
progression, cell motility and T-cell regulation (Supplementary
Table. S3A-AC).

Furthermore, our examination on TR GBM unveiled that the
upregulated genes unique to the cell types govern signaling path-
ways such as EGFR, MAPK, phospholipase C-activating G protein-
coupled acetylcholine receptor, interleukin-7-mediated, regulation
of neural precursor cell proliferation, negative regulation of T cell
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mediated cytotoxicity and replication. Contrariwise, the TR cell
type unique downregulated genes are involved in ciliary neu-
rotrophic factor-mediated, ionotropic glutamate receptor, meval-
onate, BMP signaling pathways and mechanisms such as negative
regulation of protein dephosphorylation, negative regulation of
macroautophagy, pyruvate metabolism, cell cycle and positive reg-
ulation of neural precursor cell proliferation. Similarly, when we
analyzed the mutual genes across cell types, we found that the
common TR upregulated genes take part in Fas, NFjB, TORC2 sig-
naling pathways and processes like tolerance induction to tumor
cell, B-cell differentiation, cell growth, apoptosis, tumour suppres-
sion, pentose phosphate pathway and immune response. On the
other hand, the common TR downregulated genes are involved in
Notch, MAPK, NFjB signaling pathways and processes like carbon
metabolism, glycolysis/gluconeogenesis, acetate metabolism and
cellular migration and adhesion (Supplementary Table. S4A-S).

The engagement of these signaling pathways with GBM has
been extensively studied [45–52]. However, our analysis gives a
holistic view of the mechanisms that are linked distinctively to
the cell types and it unveils if the genes contributing to these
molecular pathways are unique or common to the five cell types
studied. There is growing evidence that inhibiting TGF-b signaling
might give novel treatment options for GBM where TGF-b pro-
motes its proliferation and survival [53].

Our next approach consisted of studying the transcription fac-
tors (TFs) that monitor the above-mentioned genes. We mined
the TFs from the Human TF atlas [25]. This disclosed TP and TR
TFs that are unique and common to the cell types and are oversee-
ing the expression of glioma genes (Fig. 5A-B) (Supplementary
Tables 5A-T and 6A-H).

The TFs found in TR astrocyte, SIX3 has been discovered to sup-
presses glioblastoma cell growth and invasion via the WNT path-
way [54–56] whereas the TF OVOL1 has been found to
participate in EMT in cancers such as breast and colon [57]. NFKB2
TF found in TRmicroglia corroborates with recent studies that indi-
cate NF-kB activation as a key cause of the malignant phenotype
that leads to a poor prognosis in GBM patients [58]. TF BCL6 in
OPC has been uncovered to encourage glioma and also to be a
promising target to treat this cancer [59]. In TR MO, the TF BACH1
has been detected to aggravate p53 and increase glioblastoma
resistance to temozolomide [60]. The TF, CREB3L2, found in TR
NFO has been found to take part in malignant glioma survival path-
way [61]. SOX1 discovered in TR OPC and NFO has been studied to
promote GSCs to proliferate and self-renew [62]. KLF6 whose
reduction advances NFjB signaling in glioblastoma [63] is found
to be the common TF between TR astrocyte and NFO. Finally,
SOX10 has been observed to be the common TF across all three cell
types of oligodendrocytes in TR GBM. Sox10 is expressed widely in
gliomas and promotes gliomagenesis triggered by platelet-derived
growth factor-B [44]. Nevertheless, further analysis of TR TFs was
not implemented since they were less in number.

Given our findings in TP dataset, we conducted the TP TF co-
regulatory network analysis (Supplementary Fig. S1A-H). In TP,
this sequestered out 9 (astrocyte), 11 (microglia), 11 (MO), 13
(NFO), 16 (OPC & NFO), 8 (NFO & MO), 8 (OPC, NFO & MO) and 4
(Astrocyte, OPC & NFO) experimentally validated TFs, thereby
excluding out 6 (astrocyte), 2 (microglia), 4 (MO), 10 (NFO), 10
(OPC & NFO), 5 (NFO & MO), 3 (Astrocyte, OPC & NFO) and 4
(OPC, NFO & MO) novel TFs, respectively (Supplementary Fig. S2-
A-H). Further investigation of the TFs based on their correlation
and TF influence activity revealed that the downregulated GLIS3
is the significant TF regulator in TP astrocyte. The increased expres-
sion of this factor has been studied to influence the glioma cells’
invasion, migration and proliferation activity, whereas its insuffi-
cient expression has an inhibitory effect on NF-jB signaling path-
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way [64]. In TP microglia, LTF, known to inhibit tumour cell growth
[65], is the downregulated prominent TF monitor. In TP NFO,
CENPA TF is also downregulated and found to be the chief TF gov-
ernor. CENPA has been discovered to regulate the expression of key
genes involved in cell proliferation, cell cycle, and centromere/
kinetochore, and it also encourages tumor cell growth [66]. In TP
MO, the principal TF governor was DMRTA2 which was found to
be downregulated. DMRTA2 has been found to regulate the expres-
sion of Hes1 gene, and this gene has been studied to have roles in
cancer stem cell (CSC) maintenance, metastasis, and drug-induced
apoptosis antagonism [67,68]. The notable TF regulating the com-
mon genes between NFO and MO in TP was revealed to be down-
regulated ASCL1. In a study, it was found that ASCL1 expression in
a subgroup of GBM CSCs triggers neuronal target genes and
enhances Notch inhibitor responsiveness, resulting in tumorigenic-
ity being reduced [69]. Furthermore, in TP OPC and NFO, E2F7,
which is found to be amplified in some tumours and controls the
cell cycle by binding to RB1, is the downregulated eminent TF reg-
ulator [70]. The downregulated TEAD2 TF, which is common
between all three types of TP oligodendrocytes, is the influential
TF governer. This TF belongs to the TEAD family of TFs known to
be necessary for development and have a crucial role in tumour
initiation as well as progression [71]. Lastly, BCL11A TF is the prime
upregulated TF governing the common genes between astrocyte,
OPC and NFO in TP. It has been shown that BCL11A is linked to
breast cancer cell carcinogenesis, proliferation, invasion, and
metastasis by activating Wnt/-catenin signalling [72] (Fig. 6A-H).

In addition, we conducted an in-depth study of the functional
operations regulated by these TFs in their co-regulatory networks
(Fig. 7A-H). In TP astrocyte, we discovered that TFs ZNF878 and
CREB3L4 are involved in highest number of processes such as sig-
nal transduction downstream of smoothened protein, activation of
phospholipase C activity and peroxisome, positive regulation of
translation, respectively. Phospholipase C (PLC) has been deter-
mined to control a range of cell functions such as cell motility,
transformation, differentiation, and proliferation, and PLC also reg-
ulates cancer cells in part by serving as signaling intermediates for
cytokines like EGF and interleukins [73]. In TP microglia, the prin-
cipal regulator LTF is found to regulate TNF, TLR, chemokine, B-cell
receptor signaling pathways and processes such as transcriptional
misregulation, natural killer cell mediated cytotoxicity, phagocyto-
sis and carbon metabolism in cancer. In addition, BATF TF is seen to
regulate highest number of processes such as negative regulation
of immune system, positive regulation of adaptive immune
response and NFjB TF activity, B cell activation, T cell migration
etc. In TP NFO, the significant TF regulator CENPA is involved in cell
cycle whereas the third top influencer EN2 is involved in processes
such as apoptosis. In TP MO, ASH1L is seen to regulate highest
number of processes that include apoptosis, carbon metabolism
in cancer and NFjB signaling pathway. In TP NFO and MO,
SOX11, the second top TF influencer is observed to regulate signal-
ing pathways such as TGF-b, MAPK, calcium, phosphatidylinositol
and apelin, whereas TEAD3 is regulating highest number of pro-
cesses like extrinsic apoptosis, NFjB pathway etc. In TP OPC and
NFO, SP9 is seen to regulate highest number of processes signifi-
cantly that include cAMP and MAPK signaling pathways. In TP
OPC, NFO and MO, Suppression of Tumourigenicity 18 (ST18), reg-
ulating the highest number of processes, has been studied to regu-
late pro-inflammatory and pro-apoptotic gene expression [74]. The
second notable TF regulator, DLX1, is involved in cGMP-PKG signal-
ing pathway, and this cyclic GMP (cGMP)/protein Kinase G (PKG)
pathway has been identified as an endogenous apoptotic mecha-
nism in a variety of cancers, notably breast and colon cancers
[75–79]. Lastly, in TP astrocyte, OPC and NFO, the TF SIX5 is found
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to be involved in the highest number of processes like regulation of
GTPase activity, cell growth, complement activation, lectin
pathway.

Once we had conducted our analysis at the transcriptomic level,
we inspected the proteome activities undertaken in the GBM brain
cells types individually. Given the importance of the association of
domains in protein–protein interactions for a functional outcome
to eventuate, we retrieved protein-domain interaction (PDI) data
by logging the cell type-specific gene datasets onto the INstruct
database (Supplementary Table S7A-X and S8A-I). We further
added signal transduction information to these PDIs and visualized
extensive protein-domain interaction networks (PDINs) using the
SIGNOR database. Our investigation identified essential protein
regulators and also uncovered the foundational pathways occur-
ring due to these PDINs. In TP astrocyte, although the prime pro-
tein regulator could not be deduced, we found that the PDINs
participate in neurotrophin signaling pathway and endocytosis
(Fig. 8A). In TP microglia, the significant protein regulators such
as MAPK14 (domain- Pkinase) activates MAPKAPK3 (domain- Pki-
nase), binds to PXN, inhibits MAX (domain- HLH) and EIF4EBP1
(domain- eIF_4EBP). The next protein regulator NFKBIA (domain-
Ank) inhibits NFKB1 and activates RELA (domain- RHD), whereas
regulator BCL3 (domain- Ank) activates NFKB1 and indirectly binds
to NFKB2 (domain- Ank). BCL3 is regulated by LTF, the prominent
TF influencer detected in TP microglia. In addition, protein regula-
tor SYK activates SH3BP2 and VAV1, and regulator TRADD
(domain- Death) activates FADD (domain- Death) and RIPK1. Some
fundamental signaling pathways like MAPK, regulation of pluripo-
tency of stem cells and processes such as cytokine-cytokine recep-
tor interaction, complement and coagulation cascades etc. are seen
to be transpiring in this cell type (Fig. 8B). The eminent protein
regulators in TP NFO are CDK1 (domain- Pkinase) that activates
CDC25A, inhibits WEE1 (domain- Pkinase), CASP9 (domain- Pepti-
dase_C14), CASP8 (domain- Peptidase_C14), and regulator PTPN12
(domain- Y_phosphatase) that inhibits JAK2 (domain- Pki-
nase_Tyr), BCAR1 and PTK2B (domain- Pkinase_Tyr). These PDIs
are observed to participate in essential processes like cell cycle,
Rap1, PI3K-Akt signaling pathways, regulation of pluripotency of
stem cells, complement and coagulation cascades (Fig. 8D). In TP
MO, the notable protein regulator was detected to be PDPK1
(domain- Pkinase) that activates PRKCE (domain- Pkinase) and
PRKCA. This protein regulator is found to be governed by the prime
TF influencer in this cell type i.e. DMRTA2 (Fig. 8E). The PDI com-
mon between TP astrocyte and MO is involved in cell adhesion
(Fig. 8F). The PDI common between TP microglia and OPC partici-
pates in cell cycle (Fig. 8G). The significant protein regulators in the
PDIN common between TP microglia and NFO are PRKCA (domain-
Pkinase) that activates NCF1, CYBA, inhibits LCK (domain- SH3_1),
binds to ITGB2, SNAP23, DGKZ (domain- C1_1), and regulator SYK
that activates PRKCA (domain- Pkinase) and inhibits LCK (domain-
SH3_1). This PDIN is engaged in NFjB, Rap1 signaling pathways
and natural killer cell mediated cytotoxicity (Fig. 8H). Whereas
the PDI shared between TP OPC and MO participates in axon guid-
ance (Fig. 8I). The three influential protein regulators in PDIN com-
mon between TP OPC and NFO are SRC that activates EPHA2
(domain- Ephrin_Ibd), IGF1R, LRP1, DLG4, JUP, CTNNB1 (domain-
Arm), CDH5, RAC1 (Ras), TIAM1 (domain-PH), inhibits ITGAL and
binds to GRB2, MMP14, PTPN12. Followed by PDGFRB that binds
to GRB2, SRC and FYN, and lastly, PLK1 (domain- Pkinase) that acti-
vates CHEK2 (domain- Pkinase), binds to CTNNB1 (domain- Arm)
and BRCA2 (domain- BRCA2). PLK1 regulator has been found to
be regulated by the chief TF influencer detected i.e. E2F7. This PDIN
is associated with vital signaling pathways such as JAK-STAT, PI3K-
Akt, cAMP, apelin, AGE-RAGE, hippo and processes such as cell
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cycle, transcriptional misregulation in cancer, fluid sheer stress
(Fig. 8J). The PDIs mutual between TP NFO and MO are engaged
in TNF, Rap1, Ras, Phospholipase D signaling pathways and process
such as natural killer cell mediated cytotoxicity (Fig. 8K). Whereas
the PDIs common between TP astrocyte, OPC and NFO are involved
in Notch, AMPK signaling pathways (Fig. 8L). We found notch,
AMPK signaling pathways regulated in astrocyte, OPC and NFO in
TP (Fig. 8M). In TP microglia, NFO and MO, the chief protein regu-
lator was recognized as LCK (domain- Pkinase_Tyr) that activates
PRKCD and PTPN6 (domain- SH2). This PDIN is witnessed to take
part in glioma, Rap1 and T-cell receptor signaling pathways
(Fig. 8N). Finally, in the PDIN shared between all the three cell
types of oligodendrocytes, the principal protein regulator is
inferred to be CDK2 (domain- Pkinase) that activates UBE2A,
MCM2, MCM3, and inhibits CDKN1A (domain- CDI), TPX2
(domain- Aurora-A_bind). Cell cycle and p53 signaling pathway
are the crucial processes affiliated to this PDIN (Fig. 8O). Corre-
spondingly, the SIGNOR data was available for only two TR subsets
of proteins. In TR NFO, the PDI is observed to be involved in T-cell
receptor signaling pathway (Fig. 9B).

A similar analysis of TP and TR proteins was performed that
lacked the SIGNOR visualization and regulation data (Fig. 10A-B).
The following functional processes are seen to be operated by the
TP proteins in the cell types: invasive growth, cell migration, signal
transduction inhibition, apoptosis, oncogenesis, cell cycle, autop-
hagy, cell attachment/migration/differentiation, and complement
system. Analogously, the processes driven by the TR proteins in cell
types are: apoptosis, T cell activation/homeostasis/proliferation,
cell growth/survival/adhesion/motility, phagocytosis, cell cycle
arrest, ubiquitination, signaling pathways like TNF, NFjB, PI3k,
PDGFR and Wnt. In sum, our analysis gives a comprehensive and
wider perspective of the various phenomena that emerge in the
GBM cell types.
5. Conclusion

In this study, we examined the brain cell types in GBM. Astro-
cyte, microglia, OPC, NFO and MO specific TP and TR glioma genes
were extracted from the openly accessible transcriptome dataset of
GBM. We studied the GBM grade 4 gene expression in each of the
glial cell types and performed comprehensive network analyses to
understand cell type specific pathways. This underlined cell type
specific prominent transcription factors regulating significant
pathways and also identified prime protein regulators in protein-
domain interaction networks. Furthermore, we observed that the
chief TF influencers, LTF, DMRTA2 and E2F7, govern the eminent
protein regulators BCL3, PDPK1 and PLK1, respectively. Some dis-
tinctive as well as mutual processes and functional pathways have
been deduced to take place in these GBM borne glial cell types. Our
study opens avenue for inspection and modulation of these mech-
anisms in the brain cell types in order to refine the therapeutic
routes to treat this aggressive cancer.
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