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Abstract: The growing awareness of the influence of “what we eat” on lifestyle and health has led
to an increase in the use of embedded food analysis and recognition systems. These solutions aim
to effectively monitor daily food consumption, and therefore provide dietary recommendations to
enable and support lifestyle changes. Mobile applications, due to their high accessibility, are ideal for
real-life food recognition, volume estimation and calorific estimation. In this study, we conducted
a systematic review based on articles that proposed mobile computer vision-based solutions for
food recognition, volume estimation and calorific estimation. In addition, we assessed the extent to
which these applications provide explanations to aid the users to understand the related classification
and/or predictions. Our results show that 90.9% of applications do not distinguish between food and
non-food. Similarly, only one study that proposed a mobile computer vision-based application for
dietary intake attempted to provide explanations of features that contribute towards classification.
Mobile computer vision-based applications are attracting a lot of interest in healthcare. They have
the potential to assist in the management of chronic illnesses such as diabetes, ensuring that patients
eat healthily and reducing complications associated with unhealthy food. However, to improve trust,
mobile computer vision-based applications in healthcare should provide explanations of how they
derive their classifications or volume and calorific estimations.

Keywords: computer vision; mobile applications; food recognition; volume estimation; nutritional
monitoring

1. Introduction

According to the European Regional Obesity Report 2022 by the World Health Organi-
sation (WHO), about 59% of adults in Europe are obese or overweight [1]. Excess calorie
intake, which is linked to unhealthy food consumption and nutritional imbalance, is one
of the leading causes of obesity [2]. Conventionally, manual dietary assessment methods
such as 24 h dietary recall (24HR) have been used, proving efficient means of assisting
users to understand their dietary behaviour and allowing targeted interventions to address
underlying health challenges [3]. However, 24HR requires the user to manually report their
food consumption in the last 24 h period without the supervision of an experienced dieti-
tian. As a result, the consumed food size reported reliant on the user’s visual assessment
for estimation. This implies that the reported consumed portion could vary depending
on the user’s judgement, which may lead to biased and inaccurate dietary information.
To address the inaccuracy in dietary monitoring and assessment, semi-automated and
automated systems have been previously proposed in the literature [4,5]. Advances in
artificial intelligence (AI) have enabled the development of many applications with the
potential to change how people monitor their health [6]. In addition, the easy availability
and widespread use of mobile devices such as smartphones with integrated high-quality
cameras make these devices practical for eating habits analysis in real life.
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This review examines peer-reviewed studies covering mobile computer vision-based
applications for dietary assessment. After a compressively systematic search of the liter-
ature, high-impact studies were reviewed. Thereafter, the techniques were compared to
highlight the focus of the study, the type of dietary information provided and whether
the algorithm provides any explanations to the user on factors that influence a particular
prediction of said operation.

Though several reviews on food recognition and volume estimate have been published,
most studies are focused on a particular research area. Ref. [7], for example, reviewed
image-assisted dietary approaches, and another comprehensive study, Ref. [8], focused on
sensor technologies for food intake monitoring. Boushey et al. [9] reviewed an extensive
number of techniques that use image-assisted and image-based approaches for dietary
assessment. In addition, the authors discussed the benefits and challenges of the different
approaches reviewed. In addition, Ref. [10] explored computational models, mathematics
and techniques applied in image-based dietary assessment. Finally, a recent survey study
discussed algorithms developed for automatic food recognition and volume estimates for
dietary estimation [11], which highlighted the need for transparency, using explainable AI
as a gap to be filled by future studies.

Today, the majority of image-based diet assessment systems rely on machine learning
(ML) approaches, and more specifically deep learning (DL), to recognise food types, esti-
mate the volume and predict the nutritional value of a given dish [12]. A major issue arising
from the use of DL-based approaches is the “black box” aspect of the systems, as they
do not provide insights into factors influencing the decision making of the algorithm due
to their inherent opaqueness. For a computer vision-based diet recommendation system
to be adopted in contexts such as healthcare to, for instance, support diet planning for
patients with chronic illnesses such as diabetes, dietitians and clinicians need to understand
to trust the decisions made by the AI-powered system [13]. Therefore, to improve the
trustworthiness of AI-based solutions in healthcare, explainability and interpretability is
necessary.

In this study, we extensively review existing mobile-based applications used to detect
and recognise food to measure the amount of nutritional intake, focussing on the under-
lying algorithms and approaches applied for accurate volume and calorie estimation. In
the context of the investigation proposed here, we define the "mobile” part of the term as
solutions for edge devices (smartphones, raspberry/Arduino). In addition, we assess the
extent to which these applications explain to the user factors that influence the decision
making of the model. Several authors have defined explainability differently in the litera-
ture [14,15]. In the context of our study, we simply define explainability as the ability of
the model to explain the internal working mechanism to humans, i.e., how the algorithm
makes decisions. The main contributions of this study are as follows:

• To the best of our knowledge, this is the first systematic review that focuses on
mobile computer vision-based algorithms for food recognition, volume estimation and
dietary assessment to determine the extent to which existing computer vision-based
applications provide explanations to help the users understand how the algorithms
make decisions.

• The analysis proposed provides a critical comparison among mobile-based automatic
food recognition and nutritional-value-estimation techniques.

• This study analyses gaps and proposes possible solutions to create trustworthy image-
based food recognition and calorie estimation applications for nutritional monitoring.

The remainder of this study is organised as follows: the methods section describes
the approach used to determine the eligibility of published articles used in this study; the
results section discusses the findings of the analysis; finally, the discussion section lays out
the conclusions stemming from the interpretation of the findings.
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2. Materials and Methods

A systematic review of the literature uses an explicit and reproducible research ap-
proach to methodically search the existing published work and find results of multiple
studies on a similar topic. This process aims to summarise the state of the art and to answer
fundamental research questions on particular and defined issues [16,17].

In this section, we outline the detailed methodology used to carry out the systematic
review. The systematic review was conducted following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) [18]. In this study, all manuscripts
included met the criteria, as illustrated in Table 1.

Table 1. Summary of the inclusion criteria.

Criteria Definition

Language of manuscript: English

Years of publication: 2010–2022

Fields: • Artificial intelligence/computer vision
• Medicine/nutritional

The type of solutions considered:

Computer vision

• Healthy eating
• Nutritional estimate
• Food recognition
• Volume estimation

Types of device(s): Mobile applications

The eligibility criteria that were used to select the articles were as follows:

• Only articles available in English.
• Only articles published between January 2010 and October 2022.
• Only papers that discuss computer vision systems on mobile phones for food recogni-

tion, volume estimation and calorie estimation.

The advances in computing technology on mobile phones have proliferated the scien-
tific research interest in the use of mobiles over the last 12 years. In this study, we included
articles published between 2010 and 2022. Figure 1 shows the distribution of studies
retrieved from PubMed, IEEE Xplore and Scopus grouped by the year of publication.
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Exclusion criteria

We excluded articles or papers that met the following:

(1) Short conference papers;
(2) Review articles;
(3) Full-text not available.

Additionally, studies that did not meet the criteria summarised in Table 1 were ex-
cluded from this systematic review.

2.1. Search Methods

The following databases were used, IEEE Xplore, PubMed and Scopus, to identify and
collect articles related to mobile-based computer vision for nutritional monitoring. The
selection was performed based on relevance to the domains of interest and scope. The
fields considered in the search query were limited to the titles and abstracts of the papers.
Several keywords were used, combining them using Boolean operators (AND, OR and
NOT) to cross-examine the scientific databases. As an example, the search keywords used
for PubMed, IEEE Xplore and Scopus are provided in Table 2.

Table 2. Queries used for the selected search databases.

Search Database Search Keywords

PubMed

(Nutritional monitoring [Title/Abstract]) AND (computer vision
[Title/Abstract]) AND (artificial intelligence [Title/Abstract])

AND (smartphone [Title/Abstract]) AND (mobile
[Title/Abstract]) OR (food recognition [Title/Abstract]) OR (Food

images recognition [Title/Abstract])

IEEE Xplore

(“Abstract”: Nutritional monitoring) AND (“Abstract”: computer
vision) OR (“Abstract”: Food images recognition) OR (“Abstract”:
food image recognition) AND (“Abstract”: artificial intelligence)

AND (“Abstract”: smartphone) AND (“Abstract”: Mobile)

Scopus

TITLE-ABS-KEY(“food image recognition” OR “food images
recognition” OR “food volume estimation” OR “volume

estimation” OR “nutritional monitoring”) AND
TITLE-ABS-KEY-AUTH (“mobile device” OR “Mobile devices”

OR “Smartphone” OR “Edge device”)

2.2. Selection of Studies

After retrieving the articles from the search databases, we used Mendeley reference
manager software to create a database of references, remove duplicates and manage the
references. As highlighted in the inclusion criteria, articles were selected based on a
three-step process:

• Assessment of the title;
• Assessment of the abstract;
• Assessment of full article.

The three-step process is recommended by [19], with the aim of refining the database
by removing irrelevant papers and ensuring that only papers that meet the eligibility criteria
are reviewed. The full process used for selection, including screening and determining
eligibility and inclusion, is illustrated in Figure 2.
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Figure 2. The diagram illustrates the PRISMA workflow.

2.3. Data Extraction

For each of the chosen studies, the following information was included: (1) focus
of study; (2) dataset; (3) method; (4) result; (5) whether it provides diet information;
(6) explainability. In this study, explainability was assessed in terms of the system’s ability
to provide the rationale behind a particular prediction—for example, why the algorithm
recognised a particular dish to contain carbohydrates or why the algorithm estimated a
given dish to contain a certain number of calories. However, we did not assess the quality
of explanations given. The results were critically discussed, illustrating the state of the art
of computer vision-based mobile applications for food recognition and volume estimation.
Finally, we performed statistical analyses on the survey studies.

3. Results
3.1. Study Selection

We selected a total of 22 studies published between 2010 and 2021. These studies
were selected from 393 articles retrieved from Scopus, PubMed and IEEE Xplore, after
multiple elimination steps. The first step eliminated 25 studies because of duplication.
The second step, screening of abstracts and titles, excluded 244 studies. Two more studies
were excluded because of the lack of access to the full text. Finally, this systemic review
concluded with 22 studies that aimed at using mobile applications for food recognition,
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volume estimation and calorific estimation. A schematic workflow for food detection,
volume estimation and calorific estimation can be seen in Figure 3.
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3.2. Food Recognition

Food recognition applications aim to identify and recognise food on a given dish with
precision. Therefore, accurate, robust and trustworthy food classification algorithms are
important to reach the expected level of outcome. As highlighted in a recent review by
Tahir and Loo [11], several approaches have been used to classify food categories using
image recognition. These approaches range from traditionally using manually crafted
features to using more complex deep-learning-based characteristics. However, only a few
of the proposed food image recognition systems have been tested in a real-life environment
using mobile devices such as smartphones.

Earlier mobile-based classifiers in the domain of food recognition include support
vector machine (SVM), K-nearest neighbour (KNN) and multi-kernel learning. These algo-
rithms have been preferred due to their higher performance when compared to other classi-
fication approaches. In their study, Kawano et al. [20] proposed mobile food recognition us-
ing manual features such as colour and texture to train an SVM. Similarly, Zhang et al. [21]
developed a smartphone-based application for food recognition called “Snap-n-Eat” using
a linear SVM classifier. The authors performed hierarchical segmentation to partition the
food images into different regions. After they extracted low-level features from each region,
these features were used by the classifier to determine the food category. Their SVM-based
classifier achieved accuracy above 85% when identifying 15 categories of food. However,
their system only categorised 15 types of food.

Silva et al. [22] proposed an interactive mobile application for automatic food detection
using a quadratic SVM on an expanded database containing 60 food classes. Their SVM
classifier using colour, histogram of oriented gradients (HOG), modified local binary
patterns (LBP), Gabor and speeded up robust features (SURF) performed better compared
to the standard model on a validation Food-101 dataset. In addition, using DL-based
features, they achieved an overall performance of 87.2%.

Today, DL-based approaches are increasingly being proposed for food recognition. DL-
based methods are being preferred because of their ability to learn automatically important
features to distinguish the different food classes. Commonly used DL-based techniques
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in food recognition include convolutional neural network (CNN) [23,24], Deep CNN [25],
InceptionV3 [26] and ensemble algorithms [27].

Temdee and Uttama [28] applied transfer learning to train a CNN model on a dataset of
2500 images with 40 categories. They reported a testing accuracy of 75.2%. Tiankaew et al. [29]
proposed a food photography application for smartphones using transfer learning to adapt
their deep CNN model to learn from a dataset of 7632 images of 13 kinds of Thai food
collected from the Internet. They achieved a test accuracy of 82%. Similarly, Ref. [30]
developed a deep CNN model for Korean-food image detection and recognition for use on
mobile devices. Their model achieved a test accuracy of 91.3% in detecting 23 categories
of Korean food. The aforementioned studies are limited by the few food categories they
can detect.

Food recognition can be a tedious task that requires a large, diverse dataset to achieve
good accuracy in recognising different types of food. Mezgec and Seljak [25] proposed “Nu-
triNet” fine-tuned on a dataset composed of 225,953 images and presenting 520 categories
of food and drinks. The model achieved a top-5 accuracy of 55% on real images taken with
a mobile phone. Despite the generally good performance of their model, the authors did
not perform segmentation, implying that irrelevant items in the image create an image
recognition challenge. On the other hand, Freitas, Cordeiro and Macario [31] developed
a segmentation approach using a region-based convolutional neural network (RCNN) to
classify Brazilian food types. With their CNN-based segmentation model integrated into a
mobile application, their segmentation analysis achieved an intersection over the union
(IoU) accuracy of 0.70. Table 3 summarises food recognition and classification methods
used in mobile applications.

Despite DL-based approaches outperforming traditional food recognition methods,
DL methods are often applied to large unlabeled datasets because data annotation of
large databases remains a challenge. Thus, applying DL techniques to unlabeled data
can be challenging and less effective. To overcome this challenge, methods exploring
both mid-level-based and deep CNN techniques have been proposed [32]. However,
such an approach will usually employ many different features and extremely deep CNN
architectures, which can be computationally expensive. Thus, it is not suitable for usage on
mobile phones. Further research focusing on developing lightweight and computationally
efficient DL models will enable deploying mobile-based deep CNN applications.

3.3. Volume Estimate

After food recognition itself, the next challenge for automatic food analysis is to
estimate the volume of food on a given plate. The first challenge for this task is the precise
identification of each type of food present in a dish, as individual materials might be
cooked or prepared differently from one meal to the other (i.e., fried, baked, or cooked).
Additionally, the quality of a picture might vary for different mobile devices, which could
affect the accuracy of volume estimation of food on a given image. Therefore, algorithms
need to perform enhancements on images or avoid making volume estimations if the image
quality does not yield accurate results. Methods for volume estimation employed in mobile
applications are summarised in Table 4.
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Table 3. Summary of food recognition techniques used by existing computer vision-based mobile applications.

Author Focus App Name Dataset
(Categories) Algorithm Features Accuracy

(Top 5)
Distinguish

Food/Non-Food Explainability Mobile Platform

Kawano and
Yanai [33] 2013 Food recognition FoodCam 6781 images (50) Linear SVM histogram,

Bag-of-SURF. (81.55%) No No Android

Zhang et al.
[21] 2015 Food recognition Snap-n-Eat (15) Linear SVM Colour, HOG, SIFT,

gradient. 85% No No Android

Mezgec and
Seljak [25] 2017

Food and drink
recognition - 225,953 images (520) Deep CNN adapted

from AlexNet CNN-based features 86.39% (55%) No No Mobile-web

Silva et al.
[22] 2018 Food recognition - Extended Food-101 Quadratic SVM Gabor and SURF

features. - No No Android

Temdee and
Uttama [28] 2017 Food recognition - 2500 images (40) CNN

Filter based on three
RGB colour
channels.

75.2% No No Mobile-web

Termritthikun,
Muneesawan,

and Kanprachar
[34] 2017

Food recognition - THFOOD-50 CNN CNN-based features 69.8% (92.3%) No No Android

Tiankaew et al.
[29] 2018 Food recognition Calpal 7632 images (13) CNN and adapting

VGG19 CNN-based features 82% No No Cross-platform
(Android and iOS)

Qayyum and
Şah [23] 2018

Food image
recognition - 5000 images Modified CNN CNN-based feature 86.97% (97.42%) No No iOS

Sahoo et al.
[35] 2019

Food image
recognition FoodAi FoodAI-756 Transfer learning.

CNN CNN-based feature 80.09% No No Mobile-web

Park et al.
[30] 2019 Food recognition - 92,000 images (23) DCNN CNN-based features 91.3% No No Mobile-web

Kayikci, Basol
and Dörter
[36] 2019

Food classification Türk Mutfağı Food24 CNN CNN-based features 93% No No iOS

Freitas,
Corddeiro and

Macario
[31] 2020

Food segmentation
and classification MyFood 1250 images (9) Mask RCNN CNN-based features IoU = 0.70 No No Cross-platform

(Android and iOS)

Cornejo et al.
[26] 2021 Food recognition NutriCAM 3600 (36) CNN CNN-based features 85% No No Cross-platform

(Android and iOS)

Tahir and Loo
2021 [27] Food image analysis -

Food/Non-Food,
Food101,

UECFood100,
UECFood256,

Malaysian Food.

MobileNetV3 CNN-based features
with fine-tuning.

Food/Non-Food: 99.12%.
Food101: 80.80%

UECFOOD100: 80.40%
UECFOOD256: 68.50%
MalaysianFood: 71.2%

Yes Yes Android

CNN = convolutional neural network; DL = deep learning; DCNN = deep convolution neural network; FCN = fully convolutional neural network; IoU = intersection over union;
RCNN = region-based convolutional neural network; SDG = stochastic gradient descent; SURF = speeded up robust features; SVM = support vector machine.
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In the literature, several techniques have been proposed for volume estimation, rang-
ing from simple techniques such as an approach based on pixel counting [21] to more
complex three-dimensional (3D) model segmentation [24,37]. In their application called
“Snap-n-Eat”, Zhang et al. [21] used pixel counting to estimate the portion size of each
segmented food section on a given plate. Once the portion size is computed, the authors
could estimate the calories and nutritional facts present on the plate. They found that the
pixel-counting approach was simple and gave a good estimation of portion size. However,
they assumed predefined calorific and nutritional value per food category. This assumption
may not be true; for example, an ounce of baked potato chips can have 14% fewer calories,
50% less fat and less saturated fat than fried potato chips [38].

Rhyner et al. [37] used a 3D model and segmentation results of each food item on a
plate to compute carbohydrate content on a given plate. Their mobile-based application,
“GoCARB”, provided more accurate carbohydrate estimations when compared to tradi-
tional methods in a similar cohort of type 1 diabetes participants. However, this approach
has some limitations, such as identifying complex meals with multiple ingredients or
meals covered by sauces. In another study, food volume was estimated using depth map
fusion from smartphone images taken from different angles [24]. The volume estimate was
derived from a 3D model of the food object. The results show an accurate and reliable
food volume estimation, though with a slight overestimation of 0–10% depending on the
shape of the object. Generally, 3D modelling for food volume estimation approaches gives
superior estimations compared to methods building on single-view images.

Vision-based dietary assessment applications have demonstrated reasonable accuracy
in estimating food portions. Several key challenges such as view occlusion and scale
ambiguity have been reported in the literature. Moreover, the proposed approaches require
users to take multiple images of a given dish from different viewing angles. Acquiring
multiple images before eating can be tedious and may not be practical for long-term
dietary monitoring. As a solution to view occlusion and scale ambiguity, depth sensing
techniques have been proposed for volume estimation, combining depth sensing and
AI capabilities [39,40]. The real-time 3D reconstruction with deep learning synthesis
demonstrated better volume estimation compared to previous approaches. However, these
algorithms are yet to be fully tested in a real-world setting using a mobile phone application.

3.4. Strengths and Weakness of Computer Vision Applications for Dietary Assessment

In this study, we summarised computer vision-based mobile applications used for food
recognition, nutritional volume estimates and dietary assessment. Several mobile computer
vision-based applications have been proposed in the literature for food recognition of
Middle Eastern [36], European [24,37], American and Asian food [29,30]. These applications
learn how to recognise food from images using existing large food databases, such as
UNIMB 2016, PFID, Food-101, UECFOOD and Vireo-Food. However, most of these systems
do not filter out non-food images except for one recent application [27].
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Table 4. Summary of food volume estimation methods used in mobile applications.

Author Focus Dataset
(Categories) Method Features Result

(Error) Explainability Application Name

Zhu et al. [41] 2010 Volume estimation 3000 images
Step 1: camera calibration.

Step 2: 3D volume reconstruction.
(multi-view)

Fiducial markers Error: 1% No -

Zhang et al. [21] 2015 Calorie estimation (15)

Counting pixels in each segmented item.
Additionally, using the depth of

the image.
(single-view)

SIFT features and HOG
features. 85% No Snap-n-Eat

Akpa et al. [42] 2016 Volume estimation 119 images Image processing with chopstick Error: 6.8% No -

Rhyner et al. [37] 2016 Carbohydrate estimation 19 adults (n = 60 dishes;
6 dishes a day)

3D model and segmentation.
(multi-view) Colour and texture. (Error: 18.7%) No GoCarb

Okamoto and
Yani [43] 2016 Calorie estimation 60 test images (20) Quadratic curve estimation.

(single-view) 2D size of food Error: 21.3% No

Silva et al. [22] 2018 Estimate weight and
calories Food-101

Estimated food volume from segmented
food. With fingers as reference.

(single-view)
CNN based features (error +/− 5% and 8% of

ground truth) No -

Tiankaew et al. [29] 2018 Calorie estimation (13) Compute calories.
(single-view)

User information and
calorie table. No Calpal

Gao et al. [44] Volume estimation SUEC Food Multi-task CNN
(single-view) Deep CNN

Error:
Chicken: 2.7%

Fried pork: 12.3%
Congee: −0.27%

No MUSEFood

Sowah et al. [45] 2020 Calorie estimation and
recommendations 300 (25)

Use Harris Benedict’s equation to
determine calorie requirements.

(single-view)
Patient data No -

Tomescu [24] 2020 Volume estimation 80,000 (382)
CNN

EfficientNet
(Multi-view)

Depth maps, shape. 10% volume
overestimation. No -

Herzig et al. [46] 2020 Volume estimation 48 meals (128 items) CNN for segmentation
(single-view) Depth sensing Absolute error (SD): 35.1 g

(42.8 g; 14% [12.2%]) No -

2D = two-dimensional; 3D = three-dimensional; CNN = convolution neural network; DL = deep learning; FCN = fully convolutional neural network; HOG = histogram of oriented
gradients (HOG); IoU = intersection over union; SIFT = scale-invariant feature transform; T1D = type 1 diabetes; T2D = type 2 diabetes; USDA = US Department of Agriculture.
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Mobile devices are resource-constrained environments, having limited processing
power and short battery lives. The emergence of mobile devices with sufficient resources to
run ML models locally is promising. Such technology allows one to keep user data on the
device, thereby reducing privacy concerns and server load. However, the majority of the
existing mobile solutions proposed for food detection and volume estimation perform ML
on servers, which could lead to possible unethical consequences; indeed, a such solution
requires user (personal) data to be transmitted to external servers. Therefore, mobile
health applications need to perform operations on the users’ devices to reduce ethical risks
relating to personal data. Some studies have demonstrated the promising performance of
lightweight neural networks, which can be used in smartphone applications [47,48]. Edge
ML is possible by reducing the model size (number of parameters).

Existing computer vision-based applications are useful in helping users monitor
dietary intake, provide quick results and offering responses to users at scale. Existing appli-
cations use different methods and techniques. As a result, food recognition and volume
estimation performance differ in terms of accuracy. Hence, there is a need to standardise
the applied methods to improve reproducibility. Additionally, there are no existing ethical
guidelines to describe errors, measure bias or address other ethical concerns. Therefore,
there is a need for ethical principles to be incorporated into the design and development of
computer vision-based applications for food recognition and volume estimation.

3.5. Explainability

Out of the solutions proposed in the literature, only one study proposed a user-centred
AI framework to increase trustworthiness in the ingredient detection algorithm [27]. In their
study, the authors of [27] used SHAP (Shapley additive explanations) to highlight regions
in a dish that contribute positively to the model prediction. SHAP applies a game theory
approach to explain how the ML model makes predictions by highlighting features that
most influence model predictions [49]. SHAP values have desired mathematical properties
as a solution to game theory problems [50]. However, SHAP values are limited in that
they ignore causal structures in the data [51]. Additionally, SHAP values are not a solution
to human-centric explanations. Human-centric explanations can be achieved by linking
explanations to domain knowledge [52]. Finally, developing explainable and interpretable
mobile health applications will improve trust levels and increase the adoption of such
applications in a real-world environment.

3.6. Statistical Analyses

The pie chart in Figure 4 represents the distribution of food datasets of the studies
surveyed grouped by the country from where the food dataset came from. Three studies
used more than one dataset from different countries, we categorised these studies as using
a generic dataset. We summarised the surveyed studies in two groups: (1) studies that
distinguished between food and non-food and (2) studies that did not. As shown in Figure 5,
only two studies distinguished between food and non-food. Moreover, as highlighted in
Section 3.5, only one study attempted to provide explanations on how the model makes
decisions to the end users to improve trust. The pie chart in Figure 6 shows the percentages
of studies of different types, attempting to explain classification or prediction results.
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4. Discussion

Here we discuss the results and how they can be interpreted from the perspective
of previous studies and the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

In this study, we provided a systematic review of mobile computer vision-based ap-
proaches for nutritional monitoring. Our study focused on food classification methods
using food recognition and nutritional volume estimation. Additionally, the review ex-
plored and compared the extent to which the proposed algorithms provide explanations
to end users on the outputs of ML models. Moreover, due to its systematic approach, our
study is reproducible. To the best of our knowledge, this is the first systematic review
focusing on mobile computer vision-based applications for food image recognition, volume
estimation and deriving nutritional value.

Previously, existing computer vision-based algorithms for dietary assessment have
been reviewed. For example, Min et al. [53] examined emerging methods, concepts and
tasks in food computing. In another study, Subhi et al. [54] presented an outline of method-
ologies used for automatic dietary assessment, including their performance, feasibility and
challenges. In a recent study, Tahir and Loo [11] conducted a comprehensive survey to
scrutinise traditional and deep visual methods for feature extraction and classification in
food recognition. Unlike existing surveys, our study is the first systematic review focusing
on mobile computer vision-based applications. Lastly, we reported whether existing mo-
bile computer vision-based applications provide explanations regarding the algorithms’
predictions to the user.

4.1. Findings

The majority of the studies in the literature proposing mobile computer vision-based
applications for food recognition do not filter non-food images. Distinguishing between
non-food and food from images is an essential first step for any food recognition system.
Several studies have reported better performance by employing transfer learning using
pre-trained models and fine-tuning in this regard [23,25,29,55]. The majority of mobile
applications for food recognition from images have neglected beverages. We only found
one mobile application that recognises drink images. Drinks, especially alcoholic beverages,
can have a negative impact on individuals’ health. Thus, mobile applications for dietary
assessment should include drinks. Recognising drinks will be challenging, given the fact
that drinks do not have a clear shape and are often occluded by their containers, and
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ingredients are often blended in the drink [56]. Thus, accurately recognising the nutritional
content of a drink based solely on image seems arduous and ambitious.

The majority of mobile applications for food volume estimates use a single-view
method for food volume estimation. Though the single-view methods are friendlier for
the users compared to multi-view approaches, they can be inaccurate given the fact that
food is a 3D object. Therefore, multiple images are needed for accurate food estimation. In
addition, standardised guidelines are needed to ensure robustness and consistency in food
volume estimation algorithms.

4.2. Challenges and Outlook

Advanced approaches such as deep learning-based methodologies have increased the
performance and classification accuracy of food image recognition. However, as highlighted
in several studies, deep learning approaches are limited to one output per image [25]. This
implies that not every item gets successfully recognised, for example, in images with
multiple foods or drink items.

Although we are witnessing a growing number of datasets, including diverse food
categories, those datasets are not yet inclusive. Out of all the mobile vision-based appli-
cations we reviewed, only one application used African food (Ghanaian food) [46], and
only two used Latin America: one Brazilian food [31] and one Peruvian food [26]. In
addition, we observed that studies having used large datasets obtained better classification
accuracy. Hence, there is a need to build a more inclusive large dataset for food images, to
be frequently updated, using real-life images through crowdsourcing. Food recognition
and volume estimation are complex and challenging tasks, which will require algorithms to
understand the textures, shapes and appearances of different foods to handle the different
variations of how different dishes are prepared. To achieve this, datasets comprising images,
ingredients and other contextual information are needed. Moreover, there is no predeter-
mined number for the number of food dishes. Hence, food recognition algorithms need to
be agile to adapt to the continuously evolving variations of dishes. Despite their limitations,
continuous learning approaches should be explored to determine how continuous learning
can be applied to food datasets without forgetting previously learned information.

In this study, we reviewed computer vision-based applications for food recognition,
volume estimation and dietary assessment. Our study is limited to mobile vision-based
applications only. We conclude that food recognition and volume estimation mobile
applications are still in their infancy, and because of a lack of trust in the algorithms
composing them, these applications are yet to become a reality.

Therefore, designers and developers of these applications need to ensure that they
provide user-friendly explanations, linking food segments in a given dish to nutritional
information. The explainability of mobile computer vision-based models can help users,
dietitians and clinicians understand, and therefore, trust the volume estimation performed
by these systems.

5. Conclusions

In this study, we explored a wide range of computer vision-based mobile applications
developed to detect food from images and estimate the calories in a given dish. Additionally,
we examined the extent to which these food recognition applications provide explanations
to users. We found that the majority of solutions proposed in the studies we surveyed do not
distinguish between food and non-food. Similarly, only one out of 22 computer vision-based
applications surveyed in our study have attempted to provide explanations by highlighting
features that contribute towards an increase or reduction of a particular prediction.

Unsupervised computer vision-based applications, learning from unlabelled image
datasets, are showing promising potential to create generalisable models able to perform
classification on mixed food items. One major issue remains: unsupervised models are
opaque in how they learn and make decisions. Explainability is required to provide
understanding to the users on how and why a decision has been made by the algorithm.
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Therefore, unpacking the “black box” needs to become a priority to build trust towards
the applications. Trust is key to increasing the adoption of mobile health applications. To
achieve this, future AI-driven mobile health studies should incorporate ethical principles
such as transparency, explainability and privacy from the onset. In addition, our results
suggest that developers of mobile health applications should apply ethics by design to
ensure that the solutions they develop are trustworthy.

Finally, dietary assessment applications should integrate multi-modality data such as
videos and data from wearable devices to provide additional information to complement
information from images.
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