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RESEARCH ARTICLE

Understanding and modelling the ambiguous impact of off-farm 
income on tropical deforestation
Thomas Knoke, Elizabeth Gosling and Esther Reith

TUM School of Life Sciences, Department of Life Science Systems, Technical University of Munich, Freising, 
Germany

ABSTRACT
Few land-allocation models consider the impact of off-farm income on 
tropical deforestation. We provide a concept to integrate off-farm income 
in a mechanistic multiple-objective land-allocation model, while distin
guishing between farms with and without re-allocation of on-farm labor 
to obtain off-farm income. On farms with re-allocation of labor we found 
that off-farm income reduced farmers’ financial dependency on defores
tation-related agricultural income leading to less tropical deforestation. 
The influence of off-farm income covered two aspects: availability of 
additional income and re-allocation of on-farm labor to off-farm activities. 
The labor effect tended to reduce deforestation slightly more than the 
income effect. On farms without re-allocation of on-farm labor we showed 
how farmers can use off-farm income to purchase additional labor to 
accelerate deforestation. Our study highlights the importance of consid
ering off-farm income in land-use models to better understand, model 
and possibly curb tropical deforestation.
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Introduction

The expansion of agriculture and forestry is a key driver of tropical deforestation (Pendrill et al., 
2019). Scientifically, such re-allocation of natural forest to human-modified land is part of land-use 
science (e.g. Walker, 2004), which investigates how humans shape and change the Earth’s land cover, 
where ‘understanding and modelling’ is central to the discipline (Müller & Munroe, 2014). To learn 
about and possibly avoid future deforestation we need land-use models, but adequately capturing 
the underlying socio-economic processes and conditions that drive land-use change poses 
a challenge. For example, new conceptual approaches are rare (O’Sullivan et al., 2016; Verburg 
et al., 2019) and few land-use models can account for non-agricultural aspects such as off-farm 
income, which influence both the livelihoods and land allocation decisions of farm households (Antle 
et al., 2017; Janssen & van Ittersum, 2007).

Ignoring important underlying socio-economic conditions may lead to unrealistic projections of 
future land allocation, a fact that may have caused biased modelling results for the Amazon, where 
land-use models largely failed to predict the amount of deforestation (Dalla-Nora et al., 2014). For 
example, in South America smallholder farms dominate tropical agriculture (Affholder et al., 2013), 
for which the regional socio-economic conditions are very important. Smallholder farms are com
monly managed by family members, building on the principle of transfer of ownership to the next 
generation (Van Vliet et al., 2015). Such farms often have limited access to resources, for example, 
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labor or capital, which distinguishes them from market-oriented, more intensively managed farms, 
which are less resource constrained. Some farmers with limited access to labor resources have to re- 
allocate current on-farm labor to obtain off-farm income, while other farmers receive specific types of 
off-farm income without re-allocation of on-farm labor (e.g. from farmer-owned businesses, remit
tances from abroad or pensions). For our conceptual study we will consider both types of small
holder farms and call them either farms ‘with re-allocation of labor’ or farms ‘without re-allocation of 
labor’.

The availability of off-farm income as an important underlying socioeconomic condition will 
influence deforestation processes on farms with re-allocation of labor and farms without re- 
allocation of labor differently. For example, Vosti et al. (2000) showed how farmers may use off- 
farm income to invest in additional deforestation by establishing an intensive agricultural production 
system, when enough labor is available. An example for a study raising doubts about any influence of 
off-farm income on deforestation is Hübler (2017), who found no significant effect of financial 
support on the level of poverty-related deforestation.

On farms that have to re-allocate labor to obtain off-farm income, the ability to pursue deforesta
tion activities decreases. In addition, alternative revenue sources such as off-farm income directly 
decrease the need for income from deforestation-based agriculture on subsistence-oriented farms. 
In economic terms, off-farm income will increase the opportunity costs of on-farm agricultural 
activities, likely leading to a reduction of agricultural expansion of such farms (Araujo et al., 2019). 
For example, Shively and Pagiola (2004) found that additional (off-farm) income reduced deforesta
tion on farms in the Philippines. Empirical studies by Vasco et al. (2020) showed a clear inverse 
relationship between the number of days worked off the farm and the level of deforestation. Araujo 
et al. (2019) parameterized a theoretically grounded model with empirical data from the Brazilian 
agricultural census. They also obtained clear evidence that off-farm income contributes to 
a reduction in deforestation. Similarly, Ojeda Luna et al. (2020) provided statistical evidence that 
governmental grants have reduced deforestation. Such grants offer farmers a secure income source. 
In line with the results of many statistical studies, Bluffstone (1995) confirmed that the area of natural 
forest is more stable when assuming farmers have access to off-farm income, using a mechanistic 
utility-based optimization model. Based on a multiple-objective robust optimization approach, 
Knoke et al. (2022) analyzed the influence of uncertainty on the acceptability of sustainable 
agricultural intensification and considered off-farm income as a side aspect. Similar to other studies, 
their research ignored the ambiguous character of off-farm income, neither analyzing income and 
labor effects separately nor considering the influence of the type of off-farm income on 
deforestation.

In light of this existing knowledge, future concepts for land-use models need to acknowledge that 
off-farm income will probably influence the level of deforestation, but that the influence will likely 
depend on both farm type and type of off-farm income. For example, in Ojeda Luna et al. (2020), off- 
farm income included wages from permanent or seasonal work outside the farm, income from 
farmer-owned businesses, and also remittances and pensions. This shows that not all off-farm 
income requires reallocating on-farm labor. Farmers could instead use this income to purchase 
labor or invest in intensive agricultural practices, as demonstrated by Vosti et al. (2000). This would 
constitute a typical rebound effect, whereby programs that increase off-farm income with the intent 
of reducing deforestation can inadvertently enhance deforestation. Similar rebound effects have 
been documented, for example, for agricultural intensification (García et al., 2020; Phelps et al., 2013). 
While agricultural intensification should spare land for conservation, the resulting enhanced yields 
often provide a strong incentive to expand the agricultural area. In this context, the influence of off- 
farm income on deforestation rates is ambiguous, for example, depending on the type of the off- 
farm income.

Dynamic mechanistic models, which can project plausible deforestation rates by accounting for 
off-farm income, are currently rare. We help address this research gap by presenting a new model 
concept considering off-farm income for satisficing decisions. Our aim is to support learning of how 
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to integrate off-farm income as an important non-agricultural component of household conditions 
(Janssen & van Ittersum, 2007) into land allocation models. To model possible effects of off-farm 
income on tropical deforestation, we will develop a mechanistic land allocation model, which can 
consider off-farm income either for farms with re-allocation of labor or farms without re-allocation of 
labor. Our main research question is:

How well can we reproduce the existing empirical evidence of the influence of off-farm income on 
tropical deforestation using a mechanistic land allocation model?

Our main contribution is a mechanistic framework to integrate different types of off-farm income 
into a robust multiple-objective optimization model suggested by Knoke et al. (2020), considering 
satisficing as a principle of farmer decision-making. This includes showing how off-farm income may 
be accounted for when minimizing the distance to reference points for multiple farmer objectives, 
instead of maximizing profits or utilities. Empirically, we analyze the impact of different off-farm 
income types on deforestation trajectories, while describing income and labor effects on deforesta
tion separately.

Materials and methods

Simulation of farmer decision-making

We simulated land-use trajectories for typical Andean forested landscapes in South Ecuador, with 
pasture as the major replacement system established after clearing of natural forest. Curatola 
Fernández et al. (2015) measured historical deforestation rates between ~1.5% (1975–1987) and 
0.8% (1987–2000) for our study area, while Tapia-Armijos et al. (2015) reported rates between 0.75% 
and 2.86% p.a. (1976–1989; 1989–2008) for a larger region containing our study area. Manchego 
et al. (2017) measured deforestation rates of 1.4% p.a. for the dry forest in South Ecuador (2008– 
2014).

We simulated future land-use trajectories and associated deforestation rates, building on Knoke 
et al. (2020) as our baseline model. Our planning horizon was h ¼ 30 years (see e.g. Adelaja et al., 
2011), divided into six periods (length p ¼ 5 years). The Supplementary Demonstration program 
illustrates how we modelled land-use trajectories for farms with labor re-allocation to achieve off- 
farm income. We devised the landscape composition at the end of each period. Land allocated to 
a specific land-use/land-cover (LULC) type l is modelled using proportions, astart

l , aend
l and atarget

l , 
which represent landscape shares covered by l at the beginning and end of each period as well as at 
the end of h (atarget

l ). The landscape composition at the end of each previous 5-year period (aend
l ) 

provides the start landscape composition (astart
l ) for each current period (see sections A. and B. in 

Supplementary Demonstration Program for Period 2015–2020 to Period 2040–2045). 

aend
l ¼ astart

l þ atarget
l � astart

l

� �
�

p
h

(1) 

with 
X

l
astart

l ¼
X

l
aend

l ¼
X

l
atarget

l ¼ 1; astart
l ; aend

l ; atarget
l � 0 (2) 

A long-term target landscape composition was obtained by optimization, with the vector ω describ
ing the long-term future proportions (atarget

l , cells AQ1585-AQ1591 in Supplementary Demonstration 
Program) of seven LULC types, being our decision variables. The LULC types include abandoned 
lands, Alnus and Pinus plantations on previously abandoned lands as well as recultivation of 
previously abandoned lands to intensive pasture management, low-input pastures, deforestation 
by forest conversion to low-input pasture and natural forest. 

ω ¼ atarget
abandon; atarget

Alnus ; atarget
Pinus ; atarget

int:pastu; atarget
pastu ; atarget

defor ; atarget
fores

n o
(3) 
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To obtain ω we used reference points to implement satisficing decision-making (Wierzbicki, 1982). 
A reference point is an extreme aspiration level, representing the most desirable outcome of a land- 
use decision for a specific objective, which cannot be achieved for all objectives simultaneously (thus 
called the utopic or ideal point). In fact, reaching such a point would maximize farmers’ satisfaction, 
while the distance to a reference point (cells AO48-AO1583 in Supplementary Demonstration 
Program) quantifies the size of farmers’ dissatisfaction. The actual unattainability of all reference 
points simultaneously implies that decision-makers can only approach them. By minimizing the 
maximum difference between reference points and achieved solution (see below for an explanation) 
we mimic satisficing behavior. Assuming satisficing behavior is typical for goal-programming meth
ods (Orumie & Ebong, 2014; our model follows the goal programming concept in a wider sense) and 
a realistic assumption concerning farmer decision-making, in contrast to efficiency maximizing 
behavior. This has been shown recently by Findlater et al. (2019) even for large-scale commercial 
grain farmers in South Africa.

With our method we assume that tropical farmers have multiple objectives and face multiple 
futures, for each of which a reference point exists. Multiple futures mean that we do not know exactly 
how much our LULC types will contribute to the farmers’ objectives in the future, so that we consider 
multiple possible contributions within our optimization model (and call them multiple futures, see 
section E. in Supplementary Demonstration Program). Farmers strive to achieve the best compro
mise outcome of their decisions across their multiple objectives (Tamiz et al., 1998) and the 
considered possible futures. They do so by minimizing their dissatisfaction with the current land
scape composition, while ruling out compensation among achievement levels for different objec
tives or futures. Technically, we mimic this farmer decision-making by searching for an allocation of 
land proportions to LULC types which minimizes the maximum distance (max Diuf g) between the 
reference points (Y�iu) and the actually achieved decision outcomes (Yiu) across all objectives (i) and 
futures (u) integrated into the optimization process.

We use min-max normalized distances so that the different objectives become comparable 
(Figure 1). A distance Diu expresses farmers’ dissatisfaction and is computed as: 

Diu ¼
Y�iu � Yiu

Y�iu � Yiu�
� 100 (4) 

Diu not only depends on the reference points (with the reference point Y�iu being an ideal and Yiu�

an anti-ideal point), but also on the allocation of land proportions (al) to LULC types (l). Note that the 
most desirable Y�iu (reference point) may either be the maximum or the minimum under future u 
(cells AG48-AG1591 and AH48-AH1591 in Supplementary Demonstration Program). The minimum is 
desirable, for example, when labor requirement or payback periods are the objectives. This implies 
that the numerator and the denominator of Diu are both negative (zero is also possible in case of the 
numerator), resulting always in a positive relative distance. Eq. 4 thus applies for objectives where 
‘more is better’ and for objectives where ‘less is better’. The decision outcome for a specific landscape 
composition is computed as a weighted mean (cells AK48-AK1583 in Supplementary Demonstration 
Program). 

Yiu ¼
X

l
al � yliu (5) 

with 

yliu ¼
E ylið Þ as the optimistic indicator level

E ylið Þ � 3 � SEMli as the pessimistic indicator level

�

(6) 

The weighted mean considers the allocated land proportions al as weights of each contribution yliu 

(cells Z48-AF1583 in Supplementary Demonstration Program) of an LULC type l to the objective i 
under a specific future u. E ylið Þ (see ‘Input Scores’ in Supplementary Demonstration Program) is the 
expected contribution of a LULC type l to the objective i.
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To mimic the land allocation of farmers who aim to minimize their dissatisfaction with the current 
landscape composition, our objective function for optimizing the long-term landscape composition 
was (cell AQ1584 in Supplementary Demonstration Program): 

D ¼ min max Diuf g (7) 

with 

D �
Y�iu � Yiu

Y�iu � Yiu�
� 100 "iu (8) 

The following area constraint applied (cells D28 and F28 in Supplementary Demonstration Program): 

astart
fores ¼ atarget

fores þ atarget
defores (9) 

Figure 1. Schematic to show the normalization of a distance between the best decision outcome and the actually achieved 
decision outcome (here 200) for objective i and future u, assuming 500 as the ideal and −50 as the anti-ideal reference point. For 
instance, in this illustrative example 500 could represent the net present value (NPV, measured in US$/ha) of the most profitable 
LULC type, whereas −50 would be the NPV of the least profitable LULC type. The achieved decision outcome (200 US$/ha) 
represents the weighted mean of the NPVs of all LULC types comprising the landscape composition.
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which means that natural forest may only be converted to low-input pasture by deforestation 
directly, while alternative LULC types may subsequently be established on previously converted 
land.

We assume that off-farm income affects the net present value (NPV, sum of all discounted 
future cash flows) of an agricultural and forested landscape and the available labor to 
establish and manage different LULC types. For simulating the possible impact of both effects 
on land allocation, we assume satisficing farmer decision-making; no fixed constraints on NPV 
or labor were used. We distinguish between farms with re-allocation of labor to obtain off- 
farm income and farms without re-allocation of labor (see ‘Off-farm Income’ in Supplementary 
Demonstration Program).

Farms with re-allocation of labor to obtain off-farm income

For the NPV (index n for NPV) of a smallholder farm with re-allocation of labor we consider the 
contribution of the off-farm income as follows: 

Ynu ¼ Ontu þ
X

l
al � ylnu ¼

X

l
al � Ontu þ ylnuð Þ (7) 

Ontu is the NPV of the off-farm income for future u, which develops over time t. The distance Dnu then 
changes compared to the previously introduced Diu to account for the influence of off-farm income. 

Dnu ¼
Y�o

ntu �
P

l al � Ontu þ ylnuð Þ

Y�o
ntu � Ynu�

� 100 (8) 

where Y�o
ntu ¼ Y�nu þ Ontu, so that Y�o

ntu is the maximum total NPV theoretically achievable by the farmer 
under future u (reference point), consisting of the maximum land-use related and the off-farm 
income NPV.

Obtaining off-farm income requires farm households here to re-allocate labor to off-farm activ
ities, because we assume these farms have only limited access to additional labor and capital. To 
integrate the labor (index w) required off the farm we write: 

Ywu ¼ Owtu þ
X

l
al � ylwu ¼

X

l
al � Owtu þ ylwuð Þ (9) 

Owtu is the off-farm labor required under future u, which changes over time t, as the off-farm NPV 
does. Similar as for Dnu, the distance Dwu changes compared to the previously introduced Diu to 
consider the influence of off-farm labor. 

Dwu ¼
Y�wu �

P
l al � Owtu þ ylwuð Þ

Y�wu � Yo
wtu�

� 100 (10) 

where Yo
wtu� ¼ Ywu� þ Owtu, so that Yo

wtu� is the maximum labor theoretically required under future u 
(anti-ideal point), consisting of the maximum land-use related labor and the labor necessary for off- 
farm activities.

Farms without re-allocation of labor

We assume that for farms without re-allocation of labor their initial farm NPV remains 
unchanged, because they will use the off-farm income to purchase additional labor. In this 
scenario, off-farm income would rather increase the farm NPV long-term, by facilitating enhanced 
agricultural expansion. We assume off-farm income comes from exogenous sources that do not 
commit on-farm labor, such as financial assets held by the farmer. We can then assume that 
additional labor Owtu becoming available for the farm will reduce the labor required from members 
of the farm household. 

Ywu ¼ � Owtu þ
X

l
al � ylwu ¼

X

l
al � � Owtu þ ylwuð Þ (11) 
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For the resulting distances we write:

Dwu ¼
Y�wu �

P
l al � � Owtu þ ylwuð Þ

Y�wu � Yo
wtu�

� 100; (12) 

where  

Yo
wtu� ¼ Ywu� � Owtu 

General effects of off-farm income and information used for modelling
A general effect of off-farm income is the decreased dependency on land-use related income 

(concerning NPV). Another effect is that on-farm labor becomes scarcer, limiting the opportunity to 
achieve land-use related income. Off-farm income guarantees a certain achievement of the NPV, i.e. 
Piu ¼ 100 � D. Such off-farm income secures elevated total farm income (Ontu þ Ynu�), always 
exceeding the land-use related minimum (Ynu�), and thus guarantees a dissatisfaction D less than 
100. The labor effect from off-farm income also means D is always greater than zero on farms with re- 
allocation of labor. Where off-farm income requires on-farm labor, total required labor (Owtu þ Ywu�) 
will always exceed the minimum required labor for land-use activities (Ywu�). This means that D can 
neither become 100%, nor zero, because: Ontu þ Ynu� > Ynu� and Owtu þ Ywu� > Ywu�.

We used information from Ojeda Luna et al. (2020) to obtain 30% as a typical proportion of off- 
farm income (as a share of the total income of the farm household). These authors found shares of 
off-farm income among Ecuadorian farms between 18% and 31%. In addition to off-farm income as 
such, we computed the associated labor in days Owtu. To estimate the worker days associated with 
a specific off-farm income we adopted a wage of US $10 per day, which is consistent with the 
modelling of other economic criteria used for our optimization, which have been described in Knoke 
et al. (2014).

Uncertainty

Our model integrates uncertainty by considering the multiple futures u for the optimization of the 
land allocation. Uncertainty becomes manifest by the likely variation in the expectations of the 
decision-makers concerning the future contribution of the LULC types to their objectives. 
Technically, we implemented the multiple futures by expected and pessimistic contributions of 
each LULC type, thus considering two possible contributions which form an interval. For the 
pessimistic scenario, the achieved contributions which deviate from the expected by three times 
their standard error (the standard errors, SEMli, used are contained in the Supplementary 
Demonstration Program under ‘Input scores’). The use of three times the standard error results 
from calibration experiments, which showed that this level of uncertainty allowed for deforestation 
trajectories over the last decades which best approached the previously measured deforestation 
(Knoke et al., 2022). The optimization of the land allocation considers all combinations of expected 
and pessimistic contributions among all considered seven LULC types so that 27 = 128 uncertainty 
scenarios enter the optimization per objective.

To consider the impact of uncertainty concerning off-farm income and labor we also created an 
expected and a pessimistic scenario. We obtained the amount of off-farm income under each 
scenario by assuming that either the expected or pessimistic on-farm (land-use related) NPV were 
70% of the NPV of the total household income and computed the remaining 30% as the off-farm 
related NPV.
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Interaction across LULC types

Beneficial (e.g. fertilization by leaves shed on pastures) or adverse (e.g. shade) effects of adjacent 
LULC types on their neighbor LULC types were not considered. However, land-use diversification 
effects to buffer uncertainties are a main driver of the land allocation in our model (Knoke et al., 
2016), which we consider a positive interaction across differently mixed proportions of LULC types.

Example study region, objectives and dynamic model nature

To demonstrate the modelling of the ambiguous impact of off-farm income on tropical deforesta
tion, we used input information for a mountain rainforest landscape with pasture as a forest 
replacement system, located in the Andes of South Ecuador (Aguirre et al., 2011; Hartig & Beck, 
2003). Land-use dynamics in this region are representative of pasture expansion into the tropical 
forest area all over Latin America (see, for example, Garrett et al., 2018). We consider tropical land 
allocation among seven representative LULC types. These LULC types comprise the highly biodiverse 
natural system (tropical mountain rainforest), the replacement system (existing and newly estab
lished low-input pasture) and abandoned lands, previously used as pasture or a result of failed 
pasture establishment. In addition, the model includes three LULC types to rehabilitate abandoned 
or degraded low-input pastures (see, Knoke et al., 2016 for a detailed description of all LULC types).

We use various decision criteria to describe the farmers’ objectives, assuming that farmers would 
allocate land to certain LULC types with the tendency to either maximize (e.g. net present values and 
social preferences) or minimize (required labor and payback periods) several decision criteria 
simultaneously. We consider the perceptions of local people by integrating decision criteria captur
ing their stated preferences for LULC types on already cleared lands, such as low-input pasture, 
abandoned lands and three rehabilitative LULC types. These preferences were determined by asking 
local people to rank these LULC types during household interviews (Knoke et al., 2014). All decision 
criteria are described in detail in Knoke et al. (2020).

We have documented all input information with our Supplementary Demonstration Program, 
which contains all coefficients for the decision criteria and uncertainty scenarios. Based on this 
program the results presented in this paper are fully reproducible, when using OpenSolver, which is 
a freely available optimization software (Mason, 2012).

Results

Impact of off-farm income on the future landscape composition

Considering off-farm income on farms with labor re-allocation reduced the loss of natural forest 
compared to a baseline scenario (Figure 2a). To assess the impact of off-farm income, we used 
a baseline scenario that did not consider off-farm income for comparison (adopted from Knoke et al., 
2020). The inclusion of off-farm income resulted in enhanced farm net present value at the cost of 
decreased available labor, as indicated by the achieved performance index for these decision criteria 
across the considered LULC and uncertainty scenarios (red color in Figure 2b).

On farms without re-allocation of labor, as per our assumption, off-farm income does not directly 
add to an enhanced farm NPV, but instead serves to purchase additional labor. Consistent with our 
assumption, the labor criterion improved on the farms without re-allocation of labor (yellow color in 
Figure 2b). This allows for enhanced agricultural expansion, associated with a higher loss of natural 
forest, as indicated by the lowest proportion of natural forest in the long-term target landscape 
composition for the farms without re-allocation of labor (Figure 2a).

The proportion of the off-farm income (as a share of total household income) influenced the 
magnitude of the reduction (farms with re-allocation of labor) or enhancement (farms without re- 
allocation of labor) of the deforestation processes (Table 1).
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Assuming a proportion of off-farm income of 70% nearly halted the forest loss on farms with labor 
re-allocation. On farms without re-allocation of labor however, the same proportion of off-farm 
income would lead to the reduction of the current natural forest (50%) to 16.9%, meaning a forest 
loss of 33.1% points over 30 years.

Figure 2. a. Current and optimized long-term target landscape compositions for various scenarios. The baseline scenario without 
consideration of off-farm income has been adopted from Knoke et al. (2020). b. Influence of off-farm income on distances 
between best and achieved decision outcomes for farms with and without re-allocation of labor, given the current landscape 
composition. We show only the decision criteria influenced by off-farm income (NPVs and required labor). The distances for the 
three objectives are important drivers of change, as the optimization seeks to minimize the maximum distance. As discount rates 
are uncertain (Weitzman, 1998) we considered net present values (NPVs) for two discount rates, representing more moderate 
(5%) and higher time preferences (8%). Each individual symbol represents one uncertainty scenario.
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Changes of annual deforestation rates

All changes reported below (Figure 3) use the deforestation rates for the baseline scenarios (which 
did not consider off-farm income) as a benchmark (1.70%-1.98% p.a.). These deforestation rates were 
obtained for six five-year periods (see, Knoke et al., 2020, page 2415). For example, the baseline 
deforestation rate for the first period (annual average from 2015 to 2020) was 1.70% p.a.: considering 
off-farm income on farms with re-allocation of labor reduced the deforestation rate to 1.17%, but 
increased the deforestation rate to 1.96% on farms without re-allocation of labor.

Off-farm income reduced deforestation rates by 0.53 percentage points on farmers with labor re- 
allocation and increased deforestation rates by 0.26 percentage points on farms without re- 
allocation of labor, for the first period (Figure 3).

For the farms with labor re-allocation we can differentiate between income and labor effects, 
where the labor effect tends to have a slightly stronger impact on reducing deforestation rates than 

Table 1. Influence of the proportion of off-farm income on the proportion of natural forest cover remaining after 30 years of 
simulation (initial forest cover is 50%).

With re-allocation of labor Without re-allocation of labor

Proportion of off-farm 
income

Proportion of natural 
forest after 30 years

Natural forest lost 
over 30 years

Proportion of natural 
forest after 30 years

Natural forest lost 
over 30 years

[%] [%] [percent points] [%] [percent points]
0 29.1 20.9 29.1 20.9
10 30.7 19.3 28.6 21.4
20 32.2 17.8 27.9 22.1
30 33.1 16.9 27.1 22.9
40 34.7 15.3 25.8 24.2
50 38.7 11.3 24.1 25.9
60 44.4 5.6 21.4 28.6
70 49.5 0.5 16.9 33.1

Figure 3. Changes of annual deforestation rates resulting from the consideration of off-farm income. Deforestation rates of the 
baseline scenario form the benchmark against which deforestation rates under the influence of off-farm income are assessed.
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the income effect (Figure 3). The direction of the influence of off-farm income on deforestation rates 
remained consistent over time, while the size of the influence tends to decrease over time.

Deforestation trajectories

Our different assumptions concerning farms with labor re-allocation and farms without re-allocation 
of labor led to diverging trajectories for the proportion of natural forest remaining in the landscape 
(Figure 4). Compared to the statistically extrapolated historical trajectory, the baseline scenario 
without considering off-farm income projected lower future proportions of natural forest until 
2045. The trajectory for the farms with labor re-allocation hardly differed from the statistical trend 
extrapolation. The projected future proportion of natural forest was lowest when assuming a farm 
without re-allocation of labor.

Discussion

Comparison of model outcomes with empirical evidence from Latin America

The impact of off-farm income on farm management is variable and complex to analyze (e.g. 
Caulfield et al., 2021). Our model facilitates simulations of land-use allocation with and without 
inclusion of off-farm income in landscapes shaped by pasture expansion, where off-farm income 
either replaces farm income and leads to less agricultural expansion or is used to invest into 
resources for agricultural expansion, for example, by hiring additional labor. In Table 2 we contrast 
the model results obtained with empirical evidence.

Figure 4. Trajectories of the proportion of natural forest under different scenarios.
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Concerning farms with re-allocation of labor, available household labor is considered an 
important factor potentially limiting the size of deforestation. On such farms we simulated 
a twofold impact of off-farm income to reduce deforestation: 1) replacing agricultural income 
and 2) reducing available labor to conduct deforestation. Both potential impacts align well with 

Table 2. Results of our mechanistic land-use allocation model versus empirical evidence of the influence of off-farm income on 
tropical deforestation in Latin America.

Expectation Model result Empirical evidence

Smallholder farming leads to 
deforestation

For all studied scenarios optimized long-term 
target landscape compositions showed 
conversion of natural forest into pasture 
(Figure 2).

“The imbalanced coincidence of abundant 
forestland, scarce off-farm assets, free 
household labour and time yields near- 
inevitable deforestation as colonos 
convert the resources at their disposal 
(land, forest) to on-farm investments 
(pasture) . . . ” (Sloan, 2008, p. 432)

The proportion of off-farm 
income of total household 
income influences 
deforestation

The higher the proportion of off-farm 
income, the lower the loss of natural forest 
over 30 years on farms with re-allocation 
of labor (Table 1).

Off-farm work can draw away labor which 
would otherwise be used for deforestation 
(Barbier, 2010). As an example, Thapa 
et al. (1996) showed how off-farm income 
reduces women’s participation in 
agriculture with this pressure on natural 
forest (see, also Barbier & Burgess, 2001). 
In Vasco et al. (2020), p. 38% more off- 
farm work reduced deforestation by 28%. 
Off-farm employment also reduces 
interest in clearing forest (Pacheco et al., 
2011). Araujo et al. (2019) obtained an 
average reduction of deforestation by 
0.07% for an increase of 1% in relative off- 
farm income on Brazilian farms. In 
addition, Reyes et al. (2018) showed that 
income generated from forest extraction is 
negatively correlated with off-farm 
income (see, also Ojeda Luna et al., 2020).

The higher the proportion of off-farm 
income, the higher the loss of natural 
forest over 30 years on farms without re- 
allocation of labor (Table 1). Increased 
income without decreasing the on-farm 
labor force thus accelerates deforestation 
(Figures 2 and 3).

Support: Wealthy farmers choose more 
lucrative non-agricultural work and invest 
into agricultural activities (Murphy, 2001). 
They do not use off-farm income to 
replace farm income, but hire additional 
labor associated with high deforestation 
rates (Pacheco, 2009; Mena et al., 2006), 
Bennett et al. (2018) showed how 
additional financial resources becoming 
available boost deforestation. Generally, 
an increase in income accelerates 
deforestation (Culas, 2007). 
No support: Mullan et al. (2018) did not 
find that income changes alter the rates of 
forest clearing and concluded that the 
total labor force is not a significant 
determinant of cleared area.

Off-farm income on farms with 
labor re-allocation can halt 
deforestation

Deforestation would no longer be necessary 
to maintain or enhance the livelihoods of 
extensive farm households, when their 
income is dominated by off-farm income 
(proportion of off-farm income � 70%, 
Table 1).

Some farmers who include off-farm income 
into their livelihood strategy apply 
deintensification and some ultimately step 
out of agriculture (Caulfield et al., 2021).

Increased income used to 
intensify agriculture with 
subsequent decreases of 
deforestation

The intense pasture LULC type is hardly 
affected by additional off-farm income. 
Even with labor and capital available, 
farmers tend to continue deforestation 
before intensifying agriculture. This 
highlights ambiguity about the social 
acceptability for farmers (Figure 3 and 4).

“The odds of deforestation decrease with 
herd size as stocking densities tend to 
increase most markedly only after colonos 
convert most of their forest cover to rough 
pasture.” (Sloan, 2008. p. 431). Similar 
results published by Kaimowitz and 
Angelsen (2008).
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empirical evidence. Income from forest-related activities (clearing or partial timber extraction) 
appears to be generally negatively correlated with off-farm income, as for example, shown by 
Reyes et al. (2018) for firewood extraction in Chile. There is further empirical evidence support
ing the theory that off-farm income reduces deforestation (Table 2). For example, Araujo et al. 
(2019) showed an average reduction of deforestation by 0.07% for an increase of 1% in relative 
off-farm income on Brazilian farms. Similarly, our model suggested a reduction of the deforested 
area by 0.06% per 1% increase in relative off-farm income, when relative off-farm income 
accounts for 5% and a reduction by 0.41% when relative off-farm income comprises 50% of 
the total income. The impact of limiting the labor available for deforestation when off-farm 
income is obtained (Barbier, 2010) has been shown, for example, by Vasco et al. (2020), where 
38% more off-farm work provided by Ecuadorian farmers reduced deforestation by 28%.

Concerning farms without re-allocation of labor, our model suggested higher levels of 
deforestation compared to farms either without off-farm income or with re-allocation of labor. 
This matches with an empirically observed livelihood strategy type in Latin America. Caulfield 
et al. (2021) identified farms generating significant amounts of off-farm income, but remained 
focused on commercial farm production. Such farms invested into chemical fertilizers, pesticides 
and mechanized tillage to expand their agricultural production. How additional financial 
resources becoming available to invest into agricultural LULC types can boost deforestation 
was shown by Bennett et al. (2018) for palm oil in the Peruvian Amazon. Similar results were 
published earlier by Pacheco (2009) for pasture systems in the Eastern Amazon, where wealthy 
farmers hired additional labor, resulting in deforestation of large areas at the same time.

The model results also fit with empirical socio-economic investigations in the study region. Under 
the baseline scenario (which excludes off-farm income) deforestation rates were higher than the 
trend extrapolated from historical observations of deforestation in the study region. Accounting for 
off-farm income on farms with re-allocation of labor approached the statistical trend best among the 
three scenarios considered. This is consistent with the fact that the poor, resource-constrained type 
of farms which receive off-farm income associated with re-allocation of labor prevail in our study 
region, where pure subsistence or hybrid subsistence and market economy livelihood strategies 
have been identified (Pohle et al., 2010).

However, a comparison with empirical evidence also shows some limitations of our mechanistic 
model. Using a multi-indicator survey in rural Andean regions of Bolivia, Ecuador, and Peru, Caulfield 
et al. (2021) found three livelihood strategies including off-farm income, but four livelihood strate
gies that did not incorporate off-farm income. The likelihood of including or excluding off-farm 
income is not addressed in our model. In their study, Caulfield et al. (2021) analyzed household 
characteristics such as age of household head and education level, which were important determi
nants of the livelihood strategies. Another example of factors not included in our model is the type of 
motivation of farmers (intrinsic or extrinsic), which may impact the level of deforestation (Rueda 
et al., 2019). Concerning off-farm income, Mullan et al. (2018) found neither an impact of income nor 
of available labor force on deforestation levels in an already heavily deforested region. They found 
only small immediate income gains by deforestation, but there was a long-term benefit for farmers 
through the accumulation of assets. Such more nuanced relationships under more specific condi
tions (e.g. heavily deforested landscapes) are not represented by our mechanistic model. In addition, 
spatial aspects such as distance to roads or cities, or the slope of the terrain, which may have an 
impact on deforestation levels (e.g. Mullan et al., 2018), are not considered by our model. Finally, our 
focus was on smallholder farms and we assumed satisficing behavior for both farm types, with and 
without re-allocation of labor, while the resulting deforestation levels might underestimate defor
estation levels for larger, more commercially oriented farms. One can use an alteration of our model’s 
objective function to maximize the achieved average performance across all decision criteria that 
farmers may have (see, for example, Diaz-Balteiro et al., 2018 for an explanation). Such a maximizing 
assumption enhances the modelled deforestation levels, with or without off-farm income, because 
such efficiency orientation suppresses land-use diversification.

670 T. KNOKE ET AL.



Off-farm income as a means to halt deforestation

Given our results, very high off-farm income may lead to halting deforestation. This aligns with 
empirical research that showed that off-farm economic incentives can effectively reduce deforesta
tion (Jayachandran et al., 2017; Jones et al., 2017) or even lead to stepping out of agriculture 
(Caulfield et al., 2021; Table 2). However, relying only on the beneficial effect of off-farm payments 
could be too simple, because reducing deforestation means potentially reducing rural food produc
tion. Consequently, when the farm’s contribution to the total income becomes marginal, farm 
abandonment and rural outmigration become increasingly likely. In fact, Pohle et al. (2013) already 
documented a declining population in the study region, possibly linked to decreasing on-farm 
income.

Rural outmigration and depopulation is a world-wide phenomenon (Sauer et al., 2019). According 
to forest transition theory, rural outmigration can lead to reestablishment of forest (Rudel et al., 2005, 
2020), but it may also exacerbate food insecurity for the people remaining in rural areas (Bhawana & 
Race, 2020). Extensive research in the humid tropics, however, has shown that farm abandonment 
and the associated urbanization will boost rather than halt tropical deforestation (Araujo et al., 2019; 
DeFries et al., 2010). The population growth in urban areas and the associated expansion of built-up 
lands (Andrade-Núñez & Aide, 2018) correlated positively with the levels of deforestation. DeFries 
et al. (2010) concluded that depopulated rural landscapes are likely to increase the pressure on 
natural forests, because increasing consumption levels go hand in hand with urbanization. From 
a global perspective, urbanization may encourage export-oriented large-scale industrial agriculture 
that increases tropical deforestation (DeFries et al., 2013). Such effects associated with off-farm 
income are not addressed by our model.

Using REDD+ initiatives (Ji & Ranjan, 2019) to finance conservation payments may reduce 
deforestation more than off-farm income, which is not conditional to forest preservation (Knoke 
et al., 2022). Further, supporting smallholder farms to implement more sustainable land-use systems 
is a desirable additional strategy to help reduce deforestation while avoiding outmigration and 
leakage effects (Knoke et al., 2008). It also represents an alternative strategy to channeling agricul
ture towards large-scale and environmentally damaging industrial practices to meet increasing 
urban demands (Pretty, 2018). Socio-ecological landscapes not only need to protect nature and 
wildlife (Warnock & Griffiths, 2015), but also integrate people and local communities as part of those 
landscapes (Steiner, 2008). For example, Stabile et al. (2020) suggested creating economic, environ
mental and social improvements through technical assistance provided for smallholder farmers in 
Brazil.

The risk of reduced food production represents a typical result of many local policies to reduce 
deforestation, which often lead to win-lose scenarios between forest conservation and agricultural 
production (Angelsen, 2010). Conservation-related food gaps could potentially be compensated for 
by agricultural intensification, for example, by expanding high input pasture in our study region. This 
option would also require on-farm labor and provide a gainful land-use activity for farmers (Knoke 
et al., 2008). However, little is known about the social acceptability of intensive agriculture by 
smallholder farmers. Mechanistic land-allocation approaches as demonstrated in the current study 
may help to study this issue more intensively (Knoke et al., 2022).

Conservation payments to control adverse effects of (other) off-farm income

As already shown by Ochoa et al. (2016), appropriate conservation payments vary quite consider
ably across different farm types. Our simulations showed that additional off-farm resources may 
accelerate deforestation on farms without re-allocation of labor. Consequently, off-farm income 
had divergent effects, depending on the farm type. Such effects need consideration when 
designing conservation strategies. On farms with re-allocation of labor, off-farm income might 
support lower payments required for conservation, while on other farms off-farm income might 
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increase such required payments. It is important that conservation payments that guarantee forest 
preservation are coupled to any agricultural subsidies designed to intensify food production. 
Otherwise such subsidies will enhance the capacity of the farms for deforestation, relaxing their 
resource constraints (Pacheco, 2009; Bennett et al., 2018; Table 2) and leading to rebound effects 
(Phelps et al., 2013).

Uncertainty

Uncertainty is a strong argument to assume satisficing behavior for decision-makers (Jaillet et al., 
2022), which is empirically supported, for example, by Findlater et al. (2019). The existence of large 
uncertainties in land-use decision-making (e.g. Knoke et al., 2022) supports the behavioral assump
tion underlying our land-use model. We extended the consideration of uncertainty also to the aspect 
of off-farm income. We quantified off-farm income as a proportion of the agricultural farm income for 
both expected and worst-case agricultural incomes. As natural forest was progressively replaced 
with more profitable (but also riskier) LULC types, the difference between the expected and worst- 
case agricultural incomes increased over time, and so did the difference between the expected and 
the worst-case off-farm incomes. This trend represented the increasing uncertainty of the off-farm 
income over time, which weakened the size of the off-farm effects. Given that the uncertainty 
surrounding future decision outcomes typically increases with growing time horizons, the observed 
conservative model behavior appears intuitive.

Conclusion

Concerning our research question ‘How well can we reproduce the existing empirical evidence of the 
influence of off-farm income on tropical deforestation by using a mechanistic land allocation model?’ 
we think – despite the mentioned limitations – that our mechanistic modelling concept can 
satisfactorily reproduce some of the existing knowledge of how off-farm income may influence 
tropical deforestation. The integration of off-farm income into robust multiple-objective land 
allocation provides a new and suitable option to consider the influence of off-farm income on 
tropical deforestation.

We second Dalla-Nora et al. (2014) in their conclusion that sound ‘ . . . land use models are useful 
for representing plausible ways in which the future could unfold in the context of scenario 
development, and explore the effects of changes in certain factors’. In this sense, our approach 
to model processes of land allocation has provided a good basis to elucidate the conditions under 
which one could expect reduced tropical deforestation from off-farm income. We consider our 
study as a part of a continuous learning process, mainly consisting of the conceptualization of 
a sequence of land allocation models. This continuous modelling process allows us to understand 
the mechanistic links between input information for different LULC types and output information 
at farm or landscape levels, and also the drivers of land-use change. Ultimately this enhanced 
understanding may help inform policies and programs to achieve more sustainable land-use 
change.

Our current study was conceptual and documents what we have learned about integrating off- 
farm income into a mechanistic land-use model. While the basic model structure (without con
sidering off-farm income) for a one-period (static) optimization is available as an R-package 
(Husmann et al., 2022), we have here provided an Excel version for a dynamic six-period optimiza
tion (see our Supplementary Demonstration Program). This program can be run with OpenSolver 
(Mason, 2012), so that it is possible to reproduce all results, without extensive programming 
knowledge.
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