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Abstract: Time-fractional partial differential equations are nonlocal-in-time and show an innate memory
effect. Previously, examples like the time-fractional Cahn-Hilliard and Fokker-Planck equations have been
studied. In this work, we propose a general framework of time-fractional gradient flows and we provide a
rigorous analysis of well-posedness using the Faedo-Galerkin approach. Furthermore, we investigate the
monotonicity of the energy functional of time-fractional gradient flows. Interestingly, it is still an open
problem whether the energy is dissipating in time. This property is essential for integer-order gradient flows
and many numerical schemes exploit this steepest descent characterization. We propose an augmented
energy functional, which includes the history of the solution. Based on this new energy, we prove
the equivalence of a time-fractional gradient flow to an integer-order one. This correlation guarantees
the dissipating character of the augmented energy. The state function of the integer-order gradient flow
acts on an extended domain similar to the Caffarelli-Silvestre extension for the fractional Laplacian.
Additionally, we present a numerical scheme for solving time-fractional gradient flows, which is based
on kernel compressing methods and reduces the problem to a system of ordinary differential equations. We
illustrate the behavior of the original and augmented energy in the case of the Ginzburg-Landau energy.

Keywords: energy dissipation, time-fractional gradient flows, history and augmented energy, well-posed-
ness of variational form, memory effect
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1 Introduction

In this work, we investigate the influence of the history on the energy functional of time-fractional gradient
flows, i.e., the standard time derivative is replaced by a derivative of fractional order in the sense of Caputo.
By definition, the system becomes nonlocal-in-time and the history of the state function plays a significant
role in its time evolution. Recently, partial differential equations (PDEs) with a time-fractional component is
of increasing interest. Their innate memory effect appears in many applications, e.g., in the mechanical
properties of materials [69], in viscoelasticity [52] and viscoplasticity [23], in heat progression problems
[60], and in bioengineering [51]. We also refer to the recent books [6,31,33,40,61,65] on the modeling,
analysis, and numerics of time-fractional PDEs.
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The theory of gradient flows is well-investigated in the integer-order case, e.g., see the book [5] and the
celebrated work [59] regarding the analysis of the porous medium equation as a gradient flow. One of the
most important properties of a gradient flow is its energy dissipation, which can be immediately derived
from the variational formulation and by the chain rule. This relation is also called the principle of steepest
descent and naturally provides useful schemes for solving the gradient flow numerically. Typical applica-
tions of gradient flows are the heat equation with the underlying Dirichlet energy and the Ginzburg-Landau
energy, which results in the well-known Cahn-Hilliard [54] and Allen-Cahn equation [3] depending on the
choice of the underlying Hilbert space. We also mention the Fokker-Planck [37], and the Keller-Segel
equations [12], which can be written and analyzed as gradient flows.

Some of their time-fractional counterparts have been investigated in the literature, e.g., the time-
fractional gradient flows of type Allen-Cahn [26], Cahn-Hilliard [30], Keller-Segel [41], and Fokker-Planck
[42]. Up to now there is no unified theory for time-fractional gradient flows, and it is not yet known whether
the dissipation of energy is fulfilled, see also the discussions in [16,47,49,77]. This topic is regarded as an
open problem in the analysis of time-fractional PDEs. From a straightforward testing of the variational form
as in the integer-order setting, one can only bind the energy by its initial state but one cannot say whether it
is dissipating continuously in time. This problem traces back to the definition of the fractional derivative
and the influence of the initial state. It has already been observed in [2,20] that it is not enough that the
function does not change its fractional derivative for it to be monotone. Several papers investigated the
dissipation law of time-fractional phase-field equations numerically and proposed weighted schemes in
order to fulfill the dissipation of the discrete energy, see [43,35,46,34,62—-64,68,76].

The main contribution of this article is two-fold. First, we provide a proof of well-posedness of a general
framework of time-fractional gradient flows. Second, we introduce a new augmented energy, which is
motivated by the memory structure of time-fractional differential equations, and therefore, includes an
additional term representing the history of the state function. We prove that the integer-order gradient flow
corresponding to this augmented energy on an extended Hilbert space is equivalent to the original time-
fractional model. Consequently, the augmented energy is monotonically decreasing in time. We note that
the state function of the augmented gradient flow acts on an extended domain similar to the Caffarelli-
Silvestre approach [15] of the fractional Laplacian using harmonic extensions. This technique of dimension
extension has also be used in the analysis of random walks [55] and embeds a long jump random walk to a
space with one added dimension.

In Section 2, we state some preliminary results on fractional derivatives and Bochner spaces. Moreover,
we state and prove a theorem of well-posedness of fractional gradient flows. We state the main theorem of
the equivalence of the fractional and the extended gradient flows in Section 3 and give a complete proof.
Afterward, we give two corollaries, one stating the consequence of energy dissipation and the other con-
cerning the limit case a = 1 in the fractional order. In Section 4, we present an algorithm to solve the time-
fractional system based on rational approximations, which reduce the time-fractional PDE to a system of
ordinary differential equations (ODEs). Finally, we illustrate in Section 5 some simulations based on the
Ginzburg-Landau energy to show the influence of the history on the dissipative augmented energy.

2 Analytical preliminaries and well-posedness of time-fractional
gradient flows

In the following, let H be a separable Hilbert space and X a Banach space such that it holds
X' oH-X!,

where the embedding — is continuous and dense, and ‘< is additionally compact. We apply the Riesz
representation theorem to identify H with its dual. In this regard, (X, H, X') forms a Gelfand triple, e.g.,

(HYQ), HI(Q), HX(Q)) with k>j > 0.
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The duality pairing in X is regarded as a continuous extension of the scalar product of the Hilbert space H in
the sense

U, viyixx = (Uu,v)y Yue H,veX.

We call a function Bochner measurable if it can be approximated by a sequence of Banach-valued
simple functions, and consequently, we define the Bochner spaces L?(0, T; X) as the equivalence class of
Bochner measurable functions u : (0, T) — X such that t — [u(t)|} is Lebesgue integrable. Note that
I1%(0, T; X) is a Hilbert space if X is a Hilbert space. The Sobolev-Bochner space W'P(0, T; X) consists
of functions in LP(0, T; X) such that their distributional time derivatives are induced by functions
in LP(0, T; X).

2.1 Fractional derivative

Let us introduce the linear continuous Riemann-Liouville integral operator 7, ¢ £(L}(0, T; X)) of order
a € (0, 1) of a function u € L'(0, T; X) defined by

Tu =g, *u, 2.1
where the singular kernel g, € L0, T) is given by g,(t) = t*~1/T'(a), and the operator * denotes the con-

volution on the positive half-line with respect to the time variable. Note that the operator 7, has a com-
plementary element in the sense

I Ji_gu=Twu=1=xu, (2.2)

see [19]. Then, the fractional derivative of order a € (0, 1) in the sense of Caputo is defined by
Ofu = g;_, * Otu = I1_,0tu, (2.3)
see, e.g., [19]. In the limit casesa = 0 and a = 1, we define a?u = U - Upand a}u = U, respectively. One can

write (2.3) as

t
1 osu(s)

WU =T J sy

>

in X fora.e.t € (0, T). The infinite-dimensional valued integral is understood in the Bochner sense. We note
that the Caputo derivative requires a function, which is absolutely continuous. But this definition can be
generalized to a larger class of functions which coincide with the classical definition in case of absolutely
continuous functions, see [30,45].

Similar to before, we define the fractional Sobolev-Bochner space W*?(0, T; X) as the functions in
LP(0, T; X) such that their a-th fractional time derivative is in LP(0, T; X). Let us remark that by (2.2) it
follows

(Zo0fu)(t) = Iody-o0tu = Lou(t) = u(t) - uo. 2.4)
As in the integer-order setting, there are continuous and compact embedding results [45,73]. In particular,
provided that X is compactly embedded in H, it holds
1
p
<

w*P'(0, T; X') n LP(0, T; X) — C([0, T]; H), +—=1, a>0,

(2.5)

A A

W0, T; X) n LP(0, T; X') > L0, T; H), 1<r<p, a>0.

Moreover, it holds the following version of the Gronwall-Bellman inequality in the fractional setting.
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Lemma 1. (cf. [30, Corollary 1]). Let w, v € L0, T; Rso), and a, b > 0. If w and v satisfy the inequality
w(t) +g, *v(t)<a+blg, *w)t) ae te(0,T),

then it holds w(t) + v(t) < a - C(a, b, T) for almost every t € (0, T).

We mention the following lemma which provides an alternative to the classical chain rule %f W =f' (u)di‘tu
to the fractional setting for A-convex (or semiconvex) functionals f: X — R with respect to H, i.e.,
x - f(x) - gllxllil is convex for some A € R. If f is twice differentiable and A = -1, then semiconvexity implies
f"(x) = -1, which is also called dissipation property of f'. The result of the fractional chain inequality for the
quadratic function f(u) = %Ilullil is well-known in case of u ¢ H'(0, T; H), see [71, Theorem 2.1], saying

SO8lully < O, wa Vu € HYO, T; H). (2.6)
It has been generalized to convex functionals f in [45, Proposition 2.18] in the form of inequality
off (W) < {f'(w), Ofw)xx  Vu € CY([0, T); X),

and applying it to the convex functional x — f(x) — %HX”%{ directly gives the following result for semiconvex
functionals.

Lemma 2. Let H be a Hilbert space, X—~H a Banach space, and u — f(u) € R a Fréchet differentiable
functional on X. If f is A-convex for some A € R with respect to H, then it holds

EFW) < ('), Frhyny + ga?nunil A, Wk Vi € CY[0, T); X).

We note that the variational solution does not satisfy the required regularity of being in C'([0, T); X).
Therefore, we convolve the inequality with the kernel function g, and it was proved in [30, Proposition 1]
that such an inequality requires less regularity. In fact, it holds

fu®) - fuo) < (g, * (f'(W), Ofudxx)(t) + g(llullﬁ — luolFy) = Ag, * Ofu, wxx)®),  (2.7)

for a.e. t € (0, T), which requires u € W*P'(0, T; X) n LP(0, T; X), uo € H, and f'(u) € L?'(0, T; X").

2.2 Time-fractional gradient flows in Hilbert spaces

In this work, we focus on the time-fractional gradient flow in the Hilbert space H, defined as the variational
problem

Ofu, v)g + 6&u,v) =0 Vv e X, (2.8)
for a given nonlinear energy functional & : X — R, where 6& : X x X — R denotes its Gateaux derivative:

E( + hv) - &)
h

We also define the gradient of & in the Hilbert space H as V4E : X — X' such that at u € X it holds

6EW,v) = }lim Yu,v e X.
-0

(Vg&W), Vixxx = 6&, v) Vv e X.
Then, (2.8) can be equivalently written as dfu = —Vg&() in X’ or

(Ofu + Vg&E(), v)yxx =0 Vre X.

Moreover, we equip this variational problem with the initial data ug € H. In general, we do not have
u € C([0, T]; H), and therefore, we do not have u(t) — uy in H as t — 0. Instead, we are going to prove
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8. * (U —up) € C([0, T]; H) and the initial data are satisfied in the sense g,_, * (u — up)(t) — 0in H as
t — 0. Moreover, due to the Sobolev embedding theorem, we can actually prove u — ug € C([0, T]; X') for
a > 1/p. Consequently, for such values of a the initial condition is satisfied in the sense u(t) — up in X'.

Example 1. We consider the energy functional

) = j(f(u(x)) s éwu(x)ﬁ)dx, 2.9)

Q

for some f € C(R; R.(). Choosing the double-well function f(u) = (1 - u?)?, the energy corresponds to the
Ginzburg-Landau energy [32] with € = 1, and selecting f(u) = 0 reduces to the Dirichlet energy. In order to
justify the well-definedness of the second term of the integral, we require X ¢ H(Q). In case of the double-
well function, we additionally require X ¢ H'(Q) n L*(Q).

Let us consider the Sobolev space with zero mean

H@ = {u ¢ H'(Q) s (u, Doy = 0},

equipped with the scalar product (V-,V-);2q), which is equivalent to the inherited one on H(Q) by the
Poincaré inequality [28]. Moreover, we equip its dual space Hﬁl(Q) = (Hl(Q))’ with the graph norm
V(=AY ll2)» Which is equivalent to the standard dual norm, see [54, Remark 2.7]. Here, homogeneous
Neumann boundary conditions are associated with the Laplace operator.

Then, the Gateaux derivative of the energy functional (2.9) can be written using scalar products of the

Hilbert spaces H € {H'(Q), LA(Q), H'(Q)} as follows:
6w, v) = (A f'(W) + u, V) 1) = (F'(W) = Bu, v)q) = (ZOf (W) + Ku, V)10

for all u, v € X, assuming that X is regular enough. In particular, if X = C°(Q), the strong form of (2.8)
results in the respective gradient flows:
fu=NKY'(u) - u, when H=H(Q),
ofu=Au - f'(u), when H=IXQ),
3% = A(f'(w) - Au), when H = H(Q).
In the case of f = 0, it results in a fractional ODE, in the fractional heat equation, and in the fractional

biharmonic equation, respectively. For a double-well potential it yields the Allen-Cahn equation in case of
H = I2(Q) and the Cahn-Hilliard equation for H = H 71(0).

2.3 Well-posedness of time-fractional gradient flows

We provide the following proposition which yields the existence of variational solutions to time-fractional
gradient flows. In order to show uniqueness and continuous dependence on the data, we have to assume
that & is additionally semiconvex, see Corollary 1. In [70, Chapter 5], similar results are proven for the
exponential kernel k;_4(t) = Ce“t~* with some constants C, w > 0.

Theorem 1. Let X be a separable, reflexive Banach space that is compactly embedded in the separable Hilbert
space H. Furthermore, let uy € H, & € C}(X; R), and 6& : X x X — R be bounded and semicoercive in the
sense

IVaEWlxr < Collully™ + Co, (2.10)

88, u) > Cilluly - Gllulk, (2.11)
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for allu € X for some positive constants Cy, C;, G, < co, and p > 1. Moreover, we assume that the realization of

Vg& as an operator from LP(0, T; X) to Lp’(O, T; X') is weak-to-weak continuous. Then the time-fractional
gradient flow dfu = —Vg&(u) with a € (0, 1] admits a variational solution in the sense that

u e LP(0, T; X) n L®(0, T; H) n W*P'(0, T; X'),
8 * (U - uo) € C([0, T]; H),
fulfills the variational form
(Ofu, v)g + 6&u,v) =0 Vv eX,
and the energy inequality

Wl 7y + Mlioo, iy + IVHEQDIEy (o o < CT)CL + Tuolfy)- (2.12)
Proof. We employ the Faedo-Galerkin method [48] to reduce the time-fractional PDE to a fractional ODE,
which admits a solution u; due to the well-studied theory given in [19,39]. We derive energy estimates,
which imply the existence of weakly convergent subsequences by the Eberlein-Smulian theorem [14]. We
pass to the limit k — co and apply compactness methods to return to the variational form of the time-
fractional gradient flow. Recently, the Faedo-Galerkin method has been applied to various time-fractional
PDEs, see, e.g., [25, 29,30,40,45].

Discrete approximation. Since X is a separable Banach space, there is a finite-dimensional dense sub-
space of X, called X;, which is spanned by the k € N elements x, ..., x; € X. We consider the equation

(a?uk, Vk)H + 68(uk, Vk) =0 Vye Xk. (2.13)
Hence, we are looking for a function uy = Z;.‘:lu,fx,' such that the fractional differential equation system
k . k .
Y %)%, X + { VaE| Y ulx; |, xq =0 Vnefl, ..k},
j=1 j=1 X'xX

with initial data u,(0) = ITu, is fulfilled. Here, Ty : X — X; denotes the orthogonal projection onto X;. This
fractional ODE admits an absolutely continuous solution vector (i}, ...,uf) sinceu — &(u) is assumed to be
continuously differentiable, see [19]. Therefore, the local existence of uy € AC([0, Ti]; Xx) is ensured. If we
can derive a uniform bound on u;, we can extend the time interval by setting T, = T. Moreover, if Vg is
assumed to be Lipschitz continuous, then we can argue by a blow-up alternative to achieve global well-
posedness with T = oo, see the discussion in [25].

Energy estimates. Taking the test function vy = uy in (2.13) gives

(Ofux, ug + 6&(uy, u) = 0.

Applying the fractional chain inequality %af‘llukllﬁ < (0fug, upy, see (2.6), and the semicoercivity of 6&, see
(2.11), gives the estimate

1 2 2
Ea?llukllH + Gilluill < Gllully -

Taking the convolution with g, of this estimate yields with identity (2.4)
IOl + Ci(g, * lurlZ)®) < (O + Colgy * NurliFr)(E). (2.14)

We apply the inequality
t t
[ e@igds < 7o f e - 9 el s, (2.15)
0 0

and the fractional Gronwall-Bellman inequality, see Lemma 1, to (2.14), and find



DE GRUYTER Equivalence between a time-fractional and an integer-order gradient flow = 7

lutelBeoo, s ) + Ml 7. ) < CCDIuolfy. (2.16)

This gives the uniform boundedness of the sequence u; in the spaces L*(0, Ti; H) and L?(0, Ti; X).
Therefore, we can extend the time interval by setting Ty = T. The boundedness assumption of &, see (2.10),
immediately gives the uniform bound

T
IHEQONS 11y < CCT) + € IO PVl < O+ ol (2.17)
0

Estimate on the fractional time derivative. Taking an arbitrary function v € LP(0, T; H) and testing with
its projection onto X in (2.13) give a bound of dfuy, in L? '(0, T; X") due to the boundedness assumption of &.
Indeed, letv € LP(0, T; X) and denote IT;v = Z;‘:lv}‘xj for time-dependent coefficient functions v}‘ :(0,T) >R,
j e {1, ...,k}. We multiply equation (2.13) by v}-k, take the sum from j = 1 to k, and integrate over the interval
(0, T), giving

T T

[ @t v | = | [ e | < 18864, DMisto Mo,
0 0

where we used that (0fu, v)y = (0fug, Ilxv)y due to the invariance of the time derivative under the adjoint

of the projection operator. Therefore, we have
T

lofukllro,rxy = sup f(afuk, Pioxx dt | < C(T) + luoliF)- (2.18)

l@lLpeo,1; x)<1

Limit process. The bounds (2.16)—(2.18) give the energy inequality

2 ! ! 2
ety + Dkl gy + IORURIES o o+ IVHE@OIEy < CDA + uolly),  (219)

which implies the existence of weakly/weakly-* convergent subsequences by the Eberlein-Smulian theorem
[14]. By a standard abuse of notation, we drop the subsequence index. Hence, there exist limit functions u
and ¢ such that for k — oo

U, — u weakly-= in L*°(0, T; H),
U, — u weaklyin L?(0, T; X),
ofuxy — 0fu weakly in LP'(0, T; X"), (2.20)
u — u stronglyin LP'(0, T; H),
Vi) — ¢ weaklyin LP(0, T; X').
Here, we applied the fractional Aubin-Lions compactness lemma (2.5) to achieve the strong convergence of
Uy in Lp'(O, T; H). Moreover, we concluded that the weak limit of 0fuy is equal to 0fu, see [45, Proposi-
tion 3.5].
In the last step, we take the limit k — co in the variational form and use that I} X; is dense in X. By

multiplying the Faedo-Galerkin system (2.13) by a test function € C°(0, T) and integrating over the time
interval (0, T), we find

T T
| @t anode + [seaummede=o, (2.21)
0 0

for all j € {1, ...,k}. We pass to the limit k — co and note that the functional

T
Uje I(B?uk, Xxxxn(t)dt
0
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is linear and continuous on L”'(O, T; X"), since we have by the Hélder inequality
T

J(a?uk, Xxxn(®)dt | < I07urlr o, rxn I%lx Inlleeeo, 1) -
0

The weak convergence (2.20) gives by definition as k — oo
T T
[ @ xexn©de— [ @, meanod
0 0

It remains to treat the integral involving the energy term. Since the realization Vg& : LP(0, T; X) —
LP '(O, T; X') is weak-to-weak continuous by assumption, we have by the weak convergence u; — u in
LP(0, T; X) also Vy&(ux) — Vy&E(u) weakly in LP'(0, T; X), and therefore, & = Vy&u) in LP'(0, T; X').
Applying this weak convergence to the second term in (2.21) completes the limit process. Indeed, taking
k — oo in (2.21) and using the density of Ui Xy in X, we obtain

T T
I(Gf‘u, V(O dt + I&S(u, WNOdt=0, WeX, neC0,T).
0 0

Applying the fundamental lemma of calculus of variations, we finally find

of(u,v)g + 68(u,v) =0, VWvelX

Initial condition. From the estimate above, we have dfuy € L? '(O, T; X"). The definition of the fractional
derivative then yields

g Uk € LP(0, T; X) n WP'(0, T; X') < C°([0, T]; H),

see the embedding (2.5). Therefore, it holds g_, * (ux — up) € C°([0, T]; H) and the given initial uq is
satisfied in the sense g;_, * (ux — up) > 0in H ast — 0.

Energy inequality. We prove that the solution u satisfies the energy inequality. First, we note that norms
are weakly/weakly-+ lower semicontinuous, e.g., we have u; — wu in LP(0, T; X), and therefore, we infer

lullzro,7:%) < liminf [[ugllzro;r; x).-
k—oo

Hence, from the discrete energy inequality (2.19) and the weak convergence

lelieoco, ey + 1lno, 7oy + HORUI g 1o + IVHE@DILy o 1 < CCD- + o) m|
Remark 1. We note that we assumed the weak-to-weak continuity of the realization of u — Vy&(u) in order
to pass the limit and follow Vy&(u) = €. Alternatively, one could use the theory of monotone operators and
assume that V& is of type M, see [66, Definition, p. 38]. In fact, setting X = L?(0, T; X) we call Vg& of type
Mifu — uin X, Vg&ux) — € in X/, and

limsupd&E(ux, ux) < (&, Wxrxx,
k—00

then Vy&(u) = € in X'. The condition on the limit superior can be followed by the weakly lower semiconti-
nuity of norms.

We note that the energy functional from Example 1 fulfills the assumptions from Theorem 1 for p = 2
if the function f satisfies specific growth bounds such as f(x) < C;(1 + |x]?), |f'(x)| < G + |x|), and
f'0Ox = —Gx ? for all x € R. Indeed, in the case H = L*(Q) and X = H(Q) boundedness (2.10) is satisfied
since we have due to the typical inequalities

VaEW)lx = sup I(f' Q) - Au, v)u|

< IVullg + CQ + llullg) < Collul + Co.
veX "V”X
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Moreover, 6& is semicoercive due to
86, w) = (f'(w) - Mu, Wy = -Glluly + [IVuly = lulk - (G + Dilul.

We also obtain & = Vg&(u) for this choice of energy since the Lebesgue dominated convergence theorem
gives as k — oo

O C—

T
j Faudt, x0on() dxdt — j jf(u(t, NGO dxdt.
Q 0 Q

In the following corollary, we prove the continuous dependency on the data and the uniqueness of the
variational solution to Theorem 1 under additional assumptions. In particular, we assume higher regularity
of the initial data and the A-convexity of the energy in apply the fractional chain inequality. In case of the
Cahn-Hilliard equation and the double-well potential f(x) = (1 — x2)2, it holds f"(x) = 12x2 - 4 > —4. Con-
sequently, the function x — f(x) + 4x? is convex and f is (-4)-convex. Consequently, the energy & is

(-4)-convex with respect to L*(Q) since u — &E(u) + 4fQu2 dx is convex.

Corollary 1. Let the assumptions hold from Theorem 1. Additionally, let & be A-convex for some A € R with
respect to some Hilbert spaceY > X and let ug € X such that E(Ilxugy) < E(ug) for all k € N. Then it holds that
the variational solution u € H*(0, T; H) is unique, depends continuously on the data, and the energy bound
E(t)) < E(up) holds for a.e. t € (0, T).

Proof. By testing with dfuy in the Faedo-Galerkin formulation in (2.13), we have
lofuly + 6&uk, Ofuy) = 0,
which yields after the application of the Riemann-Liouville integral operator 7,, see (2.1),
(8, * 10FukliE)(6) + (g, * (VuEWR), dfur)xrx)(t) = O.

Since & is A-convex with respect to Y, we can apply the fractional chain inequality, see (2.7). Note that any
A-convex function is u-convex for all u < A, and therefore, we assume in this proof w.l.o.g. A < 0. Applying
the fractional chain inequality yields

A A
(8, * I0fuxlii)(t) + EQui(t)) - E”uk(t)"%/ < &(Ilxuo) - Ellﬂkuollfz - A(gy * (Ofuk, Uiy xx (D).
The right-hand side can be further estimated by
A CA
(8, * I0fukliFr)(t) + E(u(t)) - E”uk(t)“% < E(Uo) — 7||uo||§( = Aigallo, my 0t ukllLr' o, oxn lukllro,7:xys  (2.22)

which is uniformly bounded due to the auxiliary inequality (2.15) and the energy estimate (2.12) of (1). From
here, we obtain a bound of E(ux) in L*°(0, T). Indeed, it yields E(uk(t)) < E(up), and consequently, the
weakly lower semicontinuity of & implies E(u(t)) < E(uo) for a.e. t € (0, T). Moreover, by (2.22) we achieve
the uniform bound of w; in H*(0, T; H) and L*(0, T;Y), which transfers to the higher regularity of its
limit u.

Continuous dependence. We consider two variational solution pairs u; and u, with data u;,o and u,,o. We
denote their differences by u = w; — u, and ug = uy,0 — Uy,0. Taking their difference yields

of(u, VIg + (VuEy) — VW), vixxx = 0,
for all v € V. Since & is A-convex with respect to Y, we have due to the mean value theorem
(VuEW) — WuEW), wyxx > —Alully,

and therefore, testing with v = u and applying the fractional chain inequality %a?llullfq < (0fu, wy give
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1
ga?nun%, - Allul} < o.

Convolving with g, and applying the fractional Gronwall-Bellman lemma (setting w = lul3%, v=>b=0,
a = |luol in Lemma 1) finally give

luly; < C(T)lluol; - 2.23)

Uniqueness. The proof follows analogously to the procedure of continuous dependency but with the
same initial conditions 1 o and u, . Hence, from (2.23) it holds ||u||§{ = 0 and hence u; = u, in H for a.e.
t e (0, 7). O

Remark 2. We note that we were only able to prove E(u(t)) < &u(0)), t > 0, which does not imply that the
energy is monotonically decaying over time. In the integer-order a = 1 setting we immediately achieve
Eu(t)) < &u(s)), t < s, by the same lines. The effect at t = 0 is of most importance in the study of time-
fractional differential equations. This can also be seen from the inequality [56, Lemma 3.1]

t

arn
[ v vimds > cos T Nuavtg W € CC1OL TI: B,
0

where the integral starts from t = 0. Therefore, testing with v = dtu in the variational form (2.8) yields by the
classical chain rule and integration over the interval (s, t)

t
E()) = Eu(s)) - J(a‘gu, )y dr.

For s = 0 we can apply the inequality from above, which yields again a bound by the initial state:

u0) < 80) - cos LT et < B0,

3 Augmented gradient flow and energy dissipation

In this section, we give one of the main results of this article. We introduce a new energy functional and
prove the equivalence of the fractional gradient flow to an integer-order gradient flow corresponding to the
new energy functional.

3.1 Motivation: Extension of the dimension

Let H be a Hilbert space over the bounded domain Q ¢ R4, d > 1, and let u : (0, T) — H be a Bochner
measurable function with T > 0 being a finite time horizon. We introduce a function & which acts on an
extended domain, and we define

i:(0,T)x(0,1) x Q> R.
As above, we want to interpret it as a function mapping to a Hilbert space, and therefore, we define
ii:(,T)— I%0,1; H),

such that #(t)(0, x) = i(t, 0, x) for almost every t € (0, T), 6 € (0, 1), and x € Q. We refer to Figure 1 for a
sketch of the domains of the respective functions u and ii.

Furthermore, we assume that the energy & : X — R is Fréchet differentiable and satisfies the assump-
tions of Theorem 1. We consider the following two gradient flow problems: the original time-fractional
gradient flow in the Hilbert space H with an initial ug € X, see (2.8),
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(0,T) x Q

Q

Zz X

Opu = — V€ (u) 0yii = — V€ (i)

Figure 1: Left: Time-space domain (0, T) x Q of the function u. Right: Extended domain (0, T) x (0, 1) x Q of .

ofu = -Vg&EW), u(0) = uy, (3.1)
and a higher-dimensional integer-order gradient flow in the augmented Hilbert space H with zero initial,
otii = —Vz&E(i), 1(0) = 0. (3.2

Under suitable assumptions of &, we have that ii — &(il) is non-increasing. We call (3.2) the augmented
gradient flow in the sense that we want to find an appropriate form of the associated energy functional &
and the Hilbert space H, depending on a, which provide an equivalence of the variational solutions u and .

Remark 3. The idea of the dimension extension is reminiscent of the Caffarelli-Silvestre method applied to
the fractional Laplacian, see [15]. Indeed, let (-A)%, & > 0, be the nonlocal fractional Laplacian acting on R4.
Define a function i : R? x (0, co) — R with #i(x, 0) = u(x) in R? such that it is the solution to the local
degenerate differential equation

Voo iy (A2 pii(x, A)) = 0,
in R4 x (0, co). Then, one has the relation

(-A)*u(x) = -C Alirg (A-22di(x, A)).

Thus, one recovers a nonlocal PDE from a local one. We refer to [10,13,58] for numerical methods which
exploit this equivalence.

3.2 Equivalency between fractional and integer-order gradient flow

Let us introduce the following functions of 6 € (0, 1):
Wy (0) = g_,(0) g,(1 - 0),
Wa,0(0) = wp(6)-(1 - 0), 3.3)
Wa,1(6) = wa(6)- 6,

which are plotted in Figure 2 for different values of a. Note that the functions in (3.3) are integrable for all
a € (0, 1). Indeed, we have
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Wa,0(0) We,1(0)
' 0
0.5 1
Figure 2: Depiction of the kernels wy,o (left), w, (middle), and w,,; (right) for a € {0.2, 0.5, 0.8}.
1
IWa(G)de _Bl-aa _ ,
I'l - o)['(a)
0
1
B -a,1+a)
Hdg=—"——==nq, 3.4
I Meol 40 = o ° G4
0
1
B2 - a, a)
0Hdg=——""—=1-q,
I W (0)d0 = L r@
0

where (x, y) — B(x, y) denotes the Euler beta function [1]. Therefore, we consider the following weighted
Lebesgue spaces:
L2(0, 1) = [X0, 1; wy),
L300, 1) = IX(0, 15 Wy 0),
L(f,l(oy 1) = LZ(O, 1; Wa,l)-

In particular, given a Hilbert space H and a weight w, the norm in the w-weighted Bochner space
L%(0, 1; H;w) is induced by the inner product

1
(ﬁ9 V)LZ(O,l; H;w) = j(a(e)’ ‘7(9))1‘1 W(e)dey Vﬁy Ve LZ(O, 1; H;W)'
0

Lemma 3. For a € (0, 1), the following continuous embeddings hold:

Li0,1)> L7 (0,1), i€{0,1},
L0, 1) = 120, 1).

Proof. The first embedding directly follows from the expression

7l — 712 7I12 > (7l i ¢ .
P P P P E (US

Next, we investigate the maximum of w,(6)1. To this end, we compute its derivative:
Ip(wa(6) )
I'(a) T - a)
=[af%1(1 - 9)1-% — (1 — )02%(1 — 6) ]
=011 - 8) a1 - ) - (1 - a)d],

= 2(6°1 - 0~



DE GRUYTER Equivalence between a time-fractional and an integer-order gradient flow =— 13

which vanishes at 8 = a. Given that w,(8) has only one extremum which is a minimum (Figure 2), we
conclude that maxgejo, 1 Wa(6)! = wa(a)™ € (0, co0) for a € (0, 1). Then, by the Holder inequality it yields
the missing result

~ 1.~
Vll20,1) < Wa(@)2lIVll 20,1y o

Let us define the following two functions:

co®) =

0
, 0) = ——.
o O=1"%

Note that it holds that w, = cown,0 and w,; = qw,,e. Correspondingly, for any function v € L,f(O, 1; H),
a € (0, 1), we define an integral operator C : L2(0, 1; H) — H and a functional H : Lj,l(O, 1; H) — Ryq as
follows:

1
CV=uo + (1, V) 20,1y = Uo + (Co» V)12 0,1y = Uo + Igl—a(e)ga(l - 0)v(6)do,

0 3.5)
0g,_o(0)g,(1 - O (O)llz; d.

N | =
Ot—-ﬁ’_‘

- 1, . 1, . -
HW) = 5 ||V||i3‘1(0,1; 0= E(Cl‘/’ V)12 0.1 ) =

We call H the history energy. The following lemma proposes an integral representation in L2(0, 1) of the
fractional kernel g,.

Lemma 4. It holds that (1, coe™); 20,1y = 8,(t) for all t € [0, T], & € (0, 1).

Proof. First, let us remark that it holds I'(1 — a)T(a)wu(8) = co(8) a(6)* and co(6)? = ¢/(6). Then, with the
change of integration variable A := ¢(0), we can write

1

(1 cor )sz00,0 = [ col®le @ (6)d8
0

1
— ; —a ,—c(0)t 2 6
e !el(e) e-a0)c,(0)°d6 (3.6)

S S I)l’“e”“ dA.
I'l - o)['(a)
0

By definition of Euler’s gamma function, see [1], it holds T(1 — a)t* ! = '[;O)l*"‘e*“ dA. Using this identity in
(3.6), we end up with (1, coe™); 20,1y = 8,(t) for all ¢ € [0, T]. O

Lemma 5. The operators C and H , see (3.5), are bounded. In particular, for all vV € Lj(O, 1; X), a € (0, 1), it
holds that
ICV = uollx < IVll20,1; x)-

And for all V € L>(0, 1; LP(0, T; H)) and p > 1, it holds the upper bound

IHN 20,1y <

a 7|2
W0, 1200,7; - 3B.7)

If a goes to 1, then it follows that H(V(t)) vanishes for a.a. t € (0, T) for all v € L*(0, 1; LP(0, T; H)).
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Proof. Note that by (3.4), we have [|[wul10,1) = (1, Wa)12(0,1) = 1. Then, the following estimate holds
1
1
167~ wollx < [ WOIFO)1xdB < Il - Wiz -
0

Besides, by (3.4) we have [wy,1ll10,1) = (1, Wa,1)120,1) = 1 — a. Then, using this and the triangle inequality, we
can write

1
- 1 -
||7'{(V)"LM(0,T) < j Il EWa,l(e)”V(e)"%{ [ LPQ(O,T)de
0

Wa, 1(6) ”V(e) ”%P(O’ T; H) d 9

N | =

| O —

1-a
<

V|12
=7 W ieo0,1; 120,75 - O

Now we are ready to prove our main result stating the equivalence of the time-fractional gradient flow
(3.1) and its integer-order counterpart (3.2).

Theorem 2. Let the assumptions from Theorem 1 hold. Furthermore, let X = LX(0, 1; X) and H = L2 (0, 1; H)
with a € (0, 1). We assume from now on that the energy functional & is of the form

E=EoC+H, (3.8)

with C and H defined in (3.5). Then, for any solution u to the variational form of (3.1) there exists a solution ii
to the variational form of (3.2), and vice versa, such that the following equivalence of solutions holds:

1
u(t) = Ci(t) = up + jgl_a(e) g,(1 - O)il(t, 6)d6, (3.9)
0

t
ii(t, 0) = GLult, 6) = —CO(G)Ie‘cl(")“‘s)VHS(u(s))ds. (3.10)
(0]

Moreover, we have the regularity result
uelLP(0,T; X)nL>®, T; H) n H*0, T; H),
e (0, T; LX0, 1; H)) n H'(0, T; L2 (0, 1; H)) n L(0, 1; LP'(0, T; H)).

Proof. We separate the proof into three steps. First, we assume a variational solution ii of (3.2) and show
that Cii is a solution to (3.1). Second, we assume a solution u of (3.1) and prove that G{u} is a solution to (3.2).
Finally, we prove the stated regularity of the solutions.

Augmented to fractional. Let il be a solution to (3.2). The Gateaux derivative of the energy functional & of
the form (3.8) reads

8&@, V) = (co, 6E(C, V120, + (ail, Vi = (coVHE(CD) + ald, V)i

for all 7 € X. Hence, the H-gradient of & is given by V3&(il) = qii + coVyE(Cil), and the variational form of
the associated gradient flow in A can thus be written as

(Qei(t) + il(t) + coVHE(CU(L)), V)zugz = 0, V7 e X. (3.11)

The solution to this ODE with zero initial condition i(0) = O can be formally written in the form

t
ii(t, 0) = —c0(9)Ie‘Cl(g)'(“S)VHS(Cﬁ(s))ds, (3.12)
0
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in X' for all t € (0, T) and 8 € [0, 1]. Indeed, we have by the Leibniz integral formula
t
oti(t, 8) = —co(6)VyE(CIi(t)) + co(e)cl(e)Ie*cl(")(“”VHS(Cﬁ(s))ds = —co(0)VyE(CH(L)) — q(O)i(t).
0
Then, applying the operator C to (3.12), we can write
t
Cil(t) = uo - I(l, coe ) 120 VE(CH(S)) ds.
0

By Lemma 4, the kernel reads (1, coe @ (-9)) 120,1) = 84(t — ), and thus it holds
Ci = ug — Z,Vg&E(Cil).
Given (2.4) and Cii(0) = uy, it can be written as
T[0°Cii + Vu&(CiD)] = 0.

Hence, we conclude that Cii is a solution to (3.1).

Fractional to augmented. Now, let us assume that u is a solution to (3.1). Then, it satisfies
u = ug - I,Vg&(u). Besides, for ii = G{u} given by (3.10), applying the operator C and Lemma 4, we obtain

Cit = ug — I,Vg&(u).

Hence it follows that Cii = u, and therefore ii writes in the form (3.12), which is a solution to (3.11). Thus, we
conclude that G{u} is a solution to (3.2).

Regularity. Finally, let us comment on the solution regularity. The existence of a solution to (3.1) with
regularity

u e LP(0, T; X) n L°(0, T; H) n W*?'(0, T; H)

directly follows from Theorem 1. Similar to Theorem 1, we proceed in a discrete setting to derive suitable
energy estimates. Afterward, one passes to the limit by the same type of arguments. We skip the details and
directly state the estimates for ii. Let us test equation (3.11) with ¥ = d,ii + i € H to obtain

. 1d,. d . d .
oI + Eallu(t)llﬁ + E(H(u(t)) + ES(u(t)) + 2H@(E)) + (Vg&(t)), u(t) — uo)u = 0.
Note that it holds

vl + IVI7 = [vI7 H) =

712
L2o(0,T; H) L2,0,T; H) L2(0,T; H)’ W

1
5' L2,0,T; H)"

Then, owing to the zero initial condition for i, integration in time from zero to t < T results in

. 1, .
I 1y + 51O )  EC0) = E@D) + Co (¢ + Il ) ol + Collallsy,

where we also used (2.10)—(2.11). Hence, we end up with ii € L*(0, T; L2(0, 1; H)) n H(0, T; Lj’o(o, 1; H)).
Finally, we show that ii € L°(0, 1;L? '(0, T; H)). Indeed, we have by Young’s convolution inequality [40,
Lemma A.1]

T T
sup | I, O)IF dt = sup |co<9)|"’j(e*fl<9><->*||vH8(u(s))||H)(t>P’dt
0¢(0,1) 0¢(0,1)
0 0
= sup |co@)I” le2 @ « |VEUE)a Iy, 1,
6¢(0,1) ’
T '
< sup j|co<e)|e-q<9>fdt VS,
0¢(0,1) L7(0.T; H)

pr

T
< C(T, ug) sup I|co(0)|e-ﬁ<9>fdt
6¢(0,1) o
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and the integral on the right-hand side is bounded owing to

T
_ p—a®T _ »—a®T
co(0>fe’““’”df=(1+c1<9))1 e et i ea®T T, O
p a(® a(0)T

Remark 4. Remark that the augmented gradient flow system (3.11) writes
(1 - 8)oii(t, 8) + 6ii(t, ) + VyE(t)) =0 (3.13)

t
in L2(0, 1; H). That is, for 8 € (0, 1), i(t, 8) presents a smooth transition from #(t, 0) = —jo VgE(u(s))ds to
t(t, 1) = —Vg&E(t)). Thus, the fractional gradient flow solution (3.9) corresponds to a weighted average of
the transient solution t(t, 9).

Remark 5. Note that in case of a steady state otii = 0, equation (3.13) results in Vy&E(u) = 0 when 6 = 0
owing to the regularity specified in Theorem 2, and in @i = —0-1V4&(u) when 0 # 0. Thus, the modes ii(t, 9),
0 # 0, vanish at the steady state, and therefore H(ii) also vanishes.

3.3 Augmented energy and memory contribution

The solution to the time-fractional gradient flow problem (3.1) can be represented in the form u = Cii as a
linear combination of different modes #(-,8). Here, the modes are solutions to the classical gradient flow
(3.2). Moreover, we can formally define the augmented total energy

E(u) = §u) + H(GW}) = E(Cit) + H(@) = &), (3.14)

where the history part H(ii) corresponds to the memory contribution. In the following lemma, we show that
H(ii) is bounded and that the memory effects vanish when a = 1 (i.e., for the classical gradient flow).

Corollary 2. The memory energy contribution H(#(t)) is bounded for a.a. t € [0, T], « € (0, 1), and vanishes
when a goes to 1.

Proof. By definition, it holds for the history part of the energy that

_ 1. 1, . 1 .
HD) = VOB, 6y = WOz = SHOR: o,

for allt > 0. According to Theorem 2, we have @i € L°(0, T; LX(0, 1; H)), hence it follows H (i) € L*°(0, T).
Besides, it directly follows from (3.7) that H(ii(t)) = O for a.e. t € [0, T] for a — 1. O

Eventually, as a direct consequence of the equivalence to an integer-order gradient flow, we can prove
the dissipation of the augmented energy.

Corollary 3. The augmented energy (3.14) is monotonically decreasing in time.

Proof. According to Theorem 2, the time-fractional gradient flow is equivalent to the integer-order gradient
flow and thus, %é(ﬁ) = —||ata||§; < 0 by the chain rule. O

Example 1. We return to case (2.9) in Example 1 and investigate the representation of the history energy H
for these specific gradient flows. We have the Allen-Cahn and Cahn-Hilliard equations
-u,  H=IXQ),

ofu = -Vg&) = )
oo {Au, H=H"©),
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where we defined the chemical potential u = f'(u) — Au. Then, we can compute ii according to (3.12) and
calculate the augmented energy & as given in (3.14). In case of our examples, it yields for ii:

t

) —u

ii(t, 0) = CO(H)Ie‘Cl(e)'(“S){ Aﬂ}ds,
0

and for the augmented energy:

1
EME(u) = &) + H@) = EW) + %jllﬂ(t, Ol we,1(0)d6 = E(u) +
0

O C—

[ {m(t, 6, x)P }dxwa,l(wde,
Q

1
2 ) ve-m)tace, 6, 0P

which can be written in terms of the chemical potential y as

2

1 t
EM8(u) = E) + % j f co(6)? jeqw»«s){v"y}ds dxw 1(0) 6.
0 Q 0

4 Numerical algorithm

Numerical methods for approximating the solution of a time-fractional differential equation are a fast
developing research field. For a detailed overview of the existing methods, we refer to [18,24]. Among
classical methods related to the quadrature of the fractional integral [50,21,22,74,78], there is a class of
so-called kernel compression methods based on the approximation of the spectrum of the fractional kernel
[7-9,36,44,53,75].

The general idea of such methods is to approximate the fractional kernel with a sum of exponentials,
which leads to a system of local ODEs similar to (3.13). An algorithm for the numerical approximation of Ci,
see (3.9), applies a quadrature rule for the w,-weighted integral

1
u(®) - o = [w(O)©)6 = Y wid(©),
0 k=1

with m € N quadrature nodes 6y, the quadrature weights wy, and the modes i = {i(t, 6x) defined by the
integer-order differential system:
(1 = 6y) ok (t) + Ok Tir(t) + VgE(t)) =0, k=1,...,m.

Ok
1- 6
varies from zero to infinity, which leads to a stiff problem; see, e.g., [38]. We implement the exponential
integrator scheme proposed therein and refer for further details to [38], e.g., the numerical method and the

error estimation.
According to (3.5), the history energy H is thus approximated with

These equations can be discretized in time and space with any suitable method. Remark that the value

1
HO) = - [[w(8) e, 6)1 46 = 3 wibiliuOly-
0 k=1

However, to implement the method from [38] based on rational approximations, we have to first reparame-
terize the integral of Cii, see (3.9). Using the change of variable A := 8 /(1 — 8), it can be rewritten in the form

sin(a) (A s oAy da.
T 1+A

0

1
u(t) - o = @ f 0-%(1 - 0)-%i(t, 0)d6 =
0
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Then, we use the following quadrature rule on the integral:

U(t) = Up + Y —K Ty (£) + Weoleo 1), “%.1)
k=1

— 1+ A

where i = U(t, 0(Ay)), the weights w; and the nodes A are given by the residues and the poles, respec-
tively, in the rational approximation of the Laplace spectrum of the fractional kernel g,, see [38] for the
details. In particular, we use the adaptive Antoulas-Anderson (AAA) algorithm [57, Figure 4.1] to determine
the rational approximation

m
- Wi
z %= + Wy, 2z €[1/T,1/h].
kZ:lZ we [1/T, 1/h]
Thus, the solution u is approximated by (4.1) with a linear combination of m + 1 modes i, = ii(t, 6y),

associated with the nodes 6 = A /(1 + Ax) and defined by the following system:
1 - Ae
otti(t) + (t) + Vg&u(t))=0, k=1,...,m,

K 1+ A
lioo(t) + VgE(t)) = 0.

Accordingly, the history energy integral is reparametrized and approximated using the same quadra-
ture rule:

- _ 1sin(ma) T Al )
H()) = S _([(1 A7 (¢, O(A))llg dA

LS W oo + twllinOF
== ) —— Ol + = H-
2 20+ A0 2 0%

5 Numerical example

In this section, we investigate the effect of the history part of the energy on the evolution of the Ginzburg-
Landau energy, which we have already seen in Example 1. It is given by the formula

&) = IW(u) + %2|Vu|2 dx.
Q

We take the underlying Hilbert space H = H “(Q), which yields the Cahn-Hilliard equation. The numerical
results of this section have been obtained by implementing the procedure of the previous section in FEniCS
[4]. Moreover, for the discretization in time and space, we follow the convex-concave splitting scheme
proposed in [38, Section 6.2] for the time-fractional Cahn-Hilliard equation, using standard mixed Q1-Q1
finite elements.

5.1 Simulation setup

We apply the time-fractional Cahn-Hilliard equation to a phase separation process such as in the case of
binary alloys. We assume zero source, homogeneous Neumann boundary, and we take a randomly dis-
tributed initial condition ug in the interval [-1073, 10~3]. In order to ensure the phase-separation process, it
is recommended [17] to scale the prefactor of ¥ with the interfacial width €. In particular, we introduce
& B > 0, define €2 = &8, and choose the prefactor of ¥ as /€. In the simulations, we select &€ = 0.05,
B =0.1, M =1. Consequently, the scaled Landau potential ¥(u) = %(1 —u?)? and the interface width

€2 = 0.005 is considered.
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For the simulation setup, we choose a domain Q = (0, 1)2 with the mesh size Ax = 277 to ensure that the
interface can be resolved and the condition 0.0078 = Ax < & = 0.05 holds, see [17]. Concerning the time
step size, we want to satisfy the condition for energy stability in case of the implicit scheme in the integer-
order setting, see [11]. The condition writes At < 42 /(MC2), where Cy is the prefactor of the potential. We
employ the convex-concave splitting scheme, which is unconditionally stable in the integer-order setting
a = 1, see [27]. Nonetheless, the condition for the implicit scheme is a good indicator for the solution to
behave well; we refer to the discussion in [72] and the included numerical simulations which show incorrect
solution behavior for larger time steps regardless of the unconditional stability. In our case, it suggests
At < 0.01 and we choose At = 0.005 over the time interval [0, 5]. We note that the number m of quadrature
nodes is computed adaptively within the AAA algorithm for a given tolerance. In our simulations, we
obtained m = 15 fora = 0.1, 0.3, 0.5, 0.7, m =14 fora =09 and m = 1 fora = 1.

5.2 Simulation result

We plot the evolution of the Ginzburg-Landau energy & in Figure 3(a) for six values of the fractional
exponent; namely a € {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. First, we observe that the energy decays monotonically
for each a. We want to point out once more that it is not known whether the energy of a time-fractional
gradient flow is dissipating, see the discussions in [16,47,49,77]. Consequently, no counter example of an
increasing energy is known. Nonetheless, we investigate the behavior of the history energy and the influ-
ence on the augmented energy, which is naturally decaying.

We observe in Figure 3(a) that smaller « admit an earlier energy drop of larger magnitude at the initial time
than large values of a. For example, for a = 0.1 the energy drops from & = 0.5 to & = 0.16 att =~ 0.16, whereas
for a = 0.9 it goes from & = 0.5 to & = 0.3 at t =~ 0.24. This corresponds to the instantaneous process of time-
fractional PDEs, see also the numerical studies in [29]. Furthermore, we observe that the energy reaches its
asymptotic regime at & = 0.12 at different times for each a, e.g., fora = 0.1att = 1.25 versus t = 2.4 fora = 0.7.

In Figure 3(b), we plot the difference between the energy of the time-fractional gradient flow and the
energy of the augmented system. We observe that the augmented energy deviates from the original energy
from the first energy drop on, e.g., for a = 0.1 the energy drop is not as large for the augmented energy (from
& = &3 = 0.5to £ ~ 0.18) as for the original one (to & ~ 0.16). Consequently, it takes a longer time for
the augmented energy to reach such an equilibrium-like state as the original energy. We interpret the plot
as the augmented energy cushions the hard kink of the original energy and softens the curve shape.

0.5 —a=0.1
— a=0.5
— a=0.9
0.4
0.3
0.2
|
0.1
3 0 0.5 1 1.5 2 2.5 3

(a) (b)

Figure 3: (a) Evolution of the standard energy & for a € {0.1, 0.3, 0.5, 0.7, 0.9, 1.0} and f € [0, 3]. (b) Comparison of the
augmented energy £2U¢ and original energy & (dashed) for a € {0.1, 0.5, 0.9} and t € [0, 3]. (a) Energy functional t — E(u(t)).
(b) Energy t — &E(u(t)) (dashed) and augmented energy t — E28(u(t)) (solid).
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Figure 4: (a) The evolution of the history energy H for a € {0.1, 0.5, 0.9, 1.0} and t € [0, 5]. (b) Asymptotic behavior of the
history energy H on the logarithmic scale. Dashed lines correspond to the slope of t-# with B ¢ {0.11, 0.36, 0.65}, from top to
bottom, respectively. (a) History energy t — FH(di(t)). (b) Asymptotic behavior of the history energy # .

Rephrasing, one could say that the augmented energy avoids the places where the original energy is almost
constant and runs the risk of being non-dissipative.

We plot the history energy for a € {0.1, 0.5, 0.9, 1.0} in Figure 4(a). In the case of an integer-order gradient
flow, a = 1, we observe the expected scenario — the history energy is zero (see Corollary 2). That is, no memory
effects are present, and thus the augmented and the standard energies are the same. For the other values of a,
we observe several local maxima at the places where the energy admitted the kinks. For example, fora = 0.1 we
had kinks in the energy in Figure 3(b) att = 0.16 and t =~ 1.25, whereas the history energy for « = 0.1 admits its
local maxima at these points. We also observe that smaller values of « lead to a larger history contribution.

In the works [67,68], the asymptotic behavior of the energy t — E(u(t)) of the time-fractional Cahn-
Hilliard equation has been examined. It was found that the coarsening rate not only depends on the mobility
but also on the order a of the fractional derivative. In fact, it was shown that the energy admits a slope of t#/3,
Therefore, we investigate the asymptotic regime of the history functional. As soon as the energy approaches
its equilibrium state, we observed that the history part monotonically decays to zero, see also Remark 5. In
order to estimate the asymptotic slope of the history energy, we plot it for a € {0.1, 0.3, 0.5} on the time
interval 3, 5] on a logarithmic scale in Figure 4(b), compared to the slopes of t# with $ € {0.11, 0.36, 0.65} for
each a, respectively. We observe a good fitting in the asymptotic regime of the history energy with a parameter
B which is close to the fractional exponent a. Moreover, we observe numerically that the history part can be
asymptotically bounded by C(a)t ¢ with C(a) tending to zero for a — 1.
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