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Development of a material-independent
method for calculating the bending
moment stresses acting on railway
sleepers with constant cross-section

David Hoffmann1 and Stephan Freudenstein2

Abstract
Railway sleepers experience bending moment stresses when subjected to railway traffic. These stresses are influenced
by various parameters, such as loading, support conditions or the sleeper material. Approaches for the calculation of rel-
evant bending moments currently exist only for prestressed concrete sleepers. For sleepers made of other materials,
there are neither in-depth studies or literature on their bending stress nor calculation methods for determining the
bending moments. Therefore, several 1000 calculations were carried out with the aim of depicting the stresses acting on
sleepers in ballast. For these calculations, the theory of the beam on elastic foundation was used, with the help of which
combinations of different support and loading conditions as well as of other parameters were investigated. By analysing
the results focussing on the bending moments resp. the lever arms causative for these moments, it was possible to
establish a correlation between the results obtained. Based on this correlation, a procedure for the determination of the
lever arms independently from the load introduction length was developed. In combination with the scaling of the results
over the elastic length of the sleepers, considering the track modulus as well as the sleeper geometry and material prop-
erties, this resulted in a generally valid, material-independent method for determining the moment stress of sleepers of
constant cross-section, independent of the load introduction length.
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Content detailed hereafter is mostly part of the
dissertation ‘Development of a material-independent
verification procedure of railway sleepers’,1 which was
published in 2020 at the Technical University of
Munich. So far, the thesis and all information
contained have been published exclusively in German.

Introduction

For the calculation of theoretical bending stresses on
concrete sleepers, two concepts exist in Europe – that of
UIC Code 7132 and that of EN 13230-6.3 Apart from
these methods, there are no actual standardised
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procedures in Europe for determining such stresses for
sleepers made of other materials.

The ballasted superstructure as an overall system
exhibits a high degree of complexity in its interrelation-
ships. In order to obtain information on the behaviour
and stresses of sleepers, a theoretical analysis is there-
fore only possible by assuming simplifications. The
approach of a beam on elastic foundation with limited
length represents here a suitable method.

This approach is for example also mentioned as an
optional calculation method in EN 13230-6. In this
case, the moment stresses of individual sleepers is to be
determined by means of a finite element calculation.

Common, application-oriented finite element soft-
ware is suitable for determining the desired parameters.
Calculations by different users can produce completely
different results, if the simulation models do not coin-
cide right down to the last detail. Possible reasons for
this are for example the input or software implementa-
tion of material parameters, the meshing of the model
or the definition of contact surfaces.

In order to ensure better comprehensibility of the
assumptions and processes, the investigations were car-
ried out by means of extended hand calculations. These
have been conducted on the basis of the theory of the
beam on elastic foundation using the subgrade reaction
modulus method.

Delimitation of the investigation scope

With regard to the application of the theory of the
beam on elastic foundation with limited length for the
calculation of internal forces in railway sleepers, vari-
ous aspects or boundary conditions have to be consid-
ered. Before setting up different calculation models, it
is first necessary to define the limits of the investigation
scope. The sleeper geometry, the material properties of
the sleeper, the loading and the support situation are
the relevant parameters.

The sleepers typically used in Germany are 2.4 and
2.6m long. In addition, bearers with a minimum length
of 2.2m are used.4 Consequently, the three aforemen-
tioned sleeper lengths of 2.2, 2.4 and 2.6m were defined
as parameters for the model generation. Since the focus
of these investigations was on main-track sleepers or
sleepers with rail seats arranged symmetrically to the
sleeper centreline, no consideration was given to special
shapes or asymmetrically loaded sleepers.

In view of the focus on the German railway net-
work, the investigations were limited to the sleeper
cross-sections usually used here. Accordingly, the
cross-sectional dimensions of 260mm 3 160mm
(w 3 h) and 260mm 3 150mm defined in the
Deutsche Bahn Standard for wooden sleepers5 were

selected. The dimensions of 260mm 3 160mm also
represent the standard cross-section for wooden
bearers.5 Furthermore, a cross-section of 300mm
3 200mm was defined, based on the cross-section geo-
metry of a prestressed concrete sleeper B93 or B93.1.
For simplification, the trapezoidal cross-section has not
been taken into account.

For the numerical representation of the systems, a
basic definition of section lengths was required. In addi-
tion to the definition of the sleeper lengths to be consid-
ered, the distance between the rail foot centrelines or
the load application points was the second decisive
dimension. Due to the focus of the investigations on
the German railway network, the considerations were
made exclusively for the standard gauge with a gauge
of 1435mm, for which the rail foot centre distance for
the modelling was simplified to 1500mm.

The general theoretical considerations on sleeper
stresses are based on the assumption of three nominal
states. These are the states of the freshly tamped super-
structure (case (a), Figure 1), with a support-free area
in sleeper centre, the partially consolidated superstruc-
ture (case (b), Figure 1), with 50% less pressure in slee-
per centre compared to the area of the rail seats, as well
as the consolidated superstructure (case (c), Figure 1),
with constant supporting over the entire length of the
sleeper. The bearing situations to be investigated were
limited to these cases.

According to the superstructure calculation of
Deutsche Bundesbahn,6 the support-free area in the
centre of the sleeper is assumed to be 500mm long.
This is in contrast to the calculation assumption of
EN 13230-6,3 which determines the length of the
unsupported area according to geometrical and
symmetry-related parameters. Here, the distance from
the rail foot centreline to the end of the sleeper must
also be transferred in the direction of the sleeper

Figure 1. Nominal states of the sleeper supporting in ballast.
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centreline. In this way, the supported and consequently
also the unsupported sleeper area is defined. For a slee-
per with a length of 2600mm, using the rail foot centre
distance of 1500mm results in a support-free centre sec-
tion with a length of 400mm. However, a reduction in
sleeper length theoretically results in an increase in the
support-free area in the sleeper centre. From a purely
geometrical point of view, the increase in the support-
free centre section would lead to a shortening of the
lever arms in the support area and would thus result in
a reduction in the bending moments at rail seat. With
regard to a theoretical consideration of the maximum
stresses occurring in connection with usual loads and
support conditions, such a reduction of the moments
would be seen as an underestimation of the stresses and
would therefore be on the unsafe side. Therefore, only
the approach of a support-free length of 400mm, corre-
sponding to the method to be applied according to EN
13230-6 for a 2600mm long sleeper, seemed reasonable.
For this reason, it was decided to use unsupported
lengths of 400 and 500mm for the investigations. For
the illustration of the partially consolidated state, the
identical section lengths were defined. Special abbrevia-
tions have been introduced in order to clearly distin-
guish between the support cases:

� Support-free centre section of 400mm length !
AM400

� Support-free centre section of 500mm length !
AM500

� Partially bedded centre section of 400mm length
! TB400

� Partially bedded centre section of 500mm length
! TB500

� Full-surface support! VL

In light of a material-independent investigation, the
parameter of the material properties could not be nar-
rowed down to a single value. Due to the fact that
the measurement parameters for the calculations of
the beam on elastic foundation are to be applied in the
form of the modulus of elasticity, a corresponding
consideration range was defined. Unpublished test
series at the Institute of Road, Railway and Airfield
Construction of the Technical University of Munich, in
which elastic moduli of various plastic and wooden
sleepers were determined on the basis of three-point
bending tests, formed the foundation for defining the
lower limit of the aforementioned range. In contrast,
the modulus of elasticity of concrete sleepers consti-
tuted the basis for defining the upper limit of the inves-
tigation range. According to the European concrete
sleeper standardisation7, the concretes to be used in
sleeper production must have a minimum compressive

strength class of C45/55, with an average modulus of
elasticity of 36,000N/mm2 .8 According to the require-
ments of the Deutsche Bahn Standard for concrete slee-
pers,9 a compressive strength class of at least C50/60,
with an average modulus of elasticity of 37,000N/mm2,8

is even required. By assuming all values in compression
as well as in tension direction, the influence of reinforce-
ment on the modulus of elasticity could be directly taken
into account. To cover the widest possible spectrum of
elastic moduli, the range of consideration was extended
beyond the previously mentioned values and defined with
a lower limit value of 1000N/mm2 and an upper limit
value of 60,000N/mm2. Since the current approaches
for determining sleeper stresses are valid only for con-
crete sleepers, no basis existed for subdividing the
moduli of elasticity to be investigated. As a result,
knowledge of the properties of known sleeper materi-
als was used to define grid points of the elastic modu-
lus matrix to be considered. The gradations between
these points were obtained according to the most rea-
sonable compaction of the material parameters to be
investigated, without unnecessarily extending the number
of cases to be investigated. Consequently, the calculations
have been based on elastic moduli of 1000, 2500, 5000,
7500, 10000, 12500, 15000, 20000, 30000, 40000, 50000
and 60000N/mm2.

The subgrade reaction modulus is usually used to
represent the subgrade conditions and the stiffness of
the ballast superstructure. However, it is not possible to
make a generally valid assumption because of the wide
variety of boundary conditions. As can be seen from the
superstructure calculation of Deutsche Bundesbahn,6

different moduli of subgrade reaction can be used
depending on the quality of the subgrade. The quality
levels range from a very poor (C=0.02N/mm3) to a
very good (C=0.15N/mm3) subgrade. In addition to
these levels, a subgrade reaction modulus of at least
0.30N/mm3 is defined in the presence of a concrete
base. According to Eisenmann,10 this range of consider-
ation can be limited to a maximum value of the sub-
grade reaction modulus of 0.40N/mm3 in the case of
compacted subsoil and compacted base course, rock
subsoil or a concrete base. Within the framework of the
superstructure calculations6 as well as the publication
by Eisenmann,10 a gradation of the modulus of sub-
grade reaction in steps of 0.05N/mm3 was partly used.
This gradation was also used here for the determination
of the individual values. Only the lowest modulus of
subgrade reaction (C=0.02N/mm3) deviated from this
grid. Accordingly, the subgrade reaction moduli of 0.02,
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40N/mm3

were used as input values for the calculations.
In combination with the selected moduli of subgrade

reaction and elastic moduli, this resulted in 108 variants
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that had to be considered in the calculation of each slee-
per length, cross-section geometry and support condi-
tion. By exploiting symmetry, the consideration could
be reduced to half the system. Accordingly, subsequent
investigations were limited to the analysis of the left half
of the sleeper.

Finally, a choice regarding the loading situation to
be applied was necessary. A distinction must be made
between two basic variants. In the case of a direct fas-
tening or a base plate fastening system, the load is
applied over a defined area. Line loads that are close to
reality can represent this. Alternatively, it is also possi-
ble to use the simplified approach of loading by means
of point loads, which can be implemented with less
effort. This approach represents a local concentration
of the load introduction and allows higher values of the
internal forces to be expected at the points of loading,
compared with the approach of line loads. The corre-
sponding results consequently represent a higher local
sleeper stress and are therefore on the safe side. A selec-
tion of the loading situation was mandatory before the
model was created, since this results in differences in
the approach of the modelling.

For implementing the calculation of a sleeper in bal-
last, based on the theory of the beam on elastic founda-
tion, and solving these systems, a numerical solution
approach was followed. Strictly speaking, this approach
was not a complete numerical solution of the systems,
since external stresses were left as variables in the sys-
tems of equations. Accordingly, the initial definition of
a support point load, represented by point loads F or
line loads q ( x ), could be omitted. For the other para-
meters, an assignment of numerical values was carried
out. As a result of this procedure, the solution of the
equation systems became feasible with usual computing
power and acceptable computing time. The MATLAB
R2016a software was used to implement and perform
the calculations.

In order to distinguish and clearly assign the various
investigation cases, special abbreviated designations are
used in the following. These result from the levels of
the examination structure and consist of three capital
letters. The first letter describes the constant sleeper
geometry G. The second letter differentiates between
the load situations point load E and line load S. The
third letter of the abbreviated designation distinguishes
between the support situations support-free centre sec-
tion A, partially bedded centre section T and full-
surface support V.

Theoretical backgrounds

The theoretical principles presented and applied below,
which were used to develop the method described in

the following, are based on the work of Hayashi11 and
other publications in engineering mechanics.12,13

First, it is necessary to define the positive direction
of action of the internal forces and the external loads.
The corresponding definitions can be found in Figure 2
(p. 5) and in the following list.

� Deformation or subsidence y! downwards
� Angle of inclination u! clockwise
� Transverse force Q, left of element! upwards
� Transverse force Q, to the right of the element!

downwards
� Moment M, left of element! clockwise
� Moment M, right of element! anticlockwise
� external force F or q! downwards
� external moment Mext! anticlockwise

To represent a system using the approach of the beam
on elastic foundation, knowledge of basic boundary
conditions and processes is required in advance. To
enable a calculation, the entire system must be subdi-
vided at defined points. The beginning or the end of
such a subsection are the so-called discontinuity points.
At these points, there is a variation in boundary condi-
tions, such as a change in the support conditions, the
loading situation or the sleeper cross-section.

The basis of the theory of the beam on elastic foun-
dation is Winkler’s hypothesis. According to this
hypothesis, the foundation reacts with a counterpres-
sure, which is proportional to the subsidence of the
beam.11,13

p(x)= bCy(x) ð1Þ

Applying this hypothesis in conjunction with the differ-
ential equation of the fourth-order bending line accord-
ing to the beam theory, the differential equation of the
bending line of the beam on elastic foundation is
obtained.11–13

EI
d4y(x)

dx4
+ bCy(x)= q(x) ð2Þ

By using the simplification of the elastic length L and
restricting the validity to the case of a constant bending
stiffness E I as well as a constant bedding factor bC,
the general solution of the differential equation can be
formulated.11,13

L=

ffiffiffiffiffiffiffiffi
4EI

bC

4

r
ð3Þ

y(x)= (A1e
x
L +A2e�

x
L)cos

x

L
+(A3e

x
L +A4e�

x
L)sin

x

L
+

q(x)

bC

ð4Þ
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Based on this general solution, it is possible to set up
the equations for the different sections of a sleeper to
be examined.

In the case of point loads, the parameter of the line
load q (x ) in equation (2) must be set to zero. Thus
q (x ) is omitted from the differential equation of the
bending line of the beam on elastic foundation as well
as from the general solution of the differential
equation.11,12

EI
d4y(x)

dx4
+ bCy(x)= 0 ð5Þ

y(x)= (A1e
x
L +A2e�

x
L)cos

x

L
+(A3e

x
L +A4e�

x
L)sin

x

L
ð6Þ

The parameters A1, A2, A3 and A4 from the general
solution of the differential equation of the bending line
of the beam on elastic foundation represent the four

integration constants. These must be defined using
boundary and transition conditions. In order to deter-
mine all integration constants, it is necessary to set up
at least one, usually several further equations of the
elastic quantities.13 According to the differential rela-
tions of the beam theory, the equations of the elastic
quantities result as derivatives of the bending line.14,15

u(x) = dy(x)
dx

M(x) = �EI
d2y(x)

dx2

Q(x) = �EI
d3y(x)

dx3

These equations are valid since small deflections and
small angles of inclination are generally assumed. The
linear differential equation used in these investigations
is only applicable for angles of inclination� 1 rad. The
upper limit value is an angle of 10�, corresponding to
0.1745 rad. For the case of larger angles of inclination,
a calculation by means of a non-linear differential equa-
tion is necessary.14,16

To enable independent equations of the elastic line
to be drawn up for different sections of the system, an
additional group of conditions is applied at the discon-
tinuity points. The indices l and r describe the edge to
the left and right of the transition point. In the event
that no local load or moment is applied at the corre-
sponding point, F and Mext are to be set to zero.11

yl = yr

ul = ur

Ml = Mr +Mext

Ql = Qr +F

Within the scope of the investigations, the coordinate
zero point of the control variable x was defined at the
left edge of the respective overall system. The control
variable was continued across the boundaries of the
subsections. Accordingly, no further zero points or sub-
divisions of the control variable were defined at the
intersections of the system.

Investigations – point loads

For setting up the investigation systems, the sleepers
had to be subdivided into appropriate sections accord-
ing to the respective support situation. Due to the con-
stant cross-section, an additional, geometry-related
subdivision was not necessary.

The preparation of the model for sleepers with a
support-free centre section (GEA) required the defini-
tion of three subsections. The first section AB repre-
sented the area from the end of the sleeper to the load
introduction, the second section BC the area from the
load introduction to the beginning of the support-free
centre section and the last section CS the support-free
area, from its beginning to the sleeper centre or

Figure 2. Positive direction of action of the internal forces.11,12

Figure 3. Half-sleeper with support-free centre section and
loading by a point load, investigation case GEA.
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symmetry axis. A graphical representation of the
described area subdivision can be seen in Figure 3.

Conceptually, the use of this system design was pos-
sible for both dimensions of the support-free centre sec-
tion. However, varying the length of the support-free
area also resulted in a change in the length of the adja-
cent area. For the different sleeper lengths, the section
lengths shown in Table 1 resulted.

No further modelling adjustments were necessary to
implement the different cross-section geometries. Due
to the method of calculation, the different sleeper
cross-sections could be taken into account by changing
the corresponding input values numerically. Only the
dimensions of the cross-section had to be adjusted.

The direct depiction of the support-free centre sec-
tion was not possible due to the calculation method of
the theory of the beam on elastic foundation. Since the
use of a subgrade reaction modulus of 0N/mm3 would
have led to the indefiniteness of part of the expressions,
the bedding of the support-free area had to be repre-
sented by means of a value of the subgrade reaction
modulus that was as small as possible but still meaning-
ful. It proved practicable to use a ratio value of 1/100,
based on which the modulus of subgrade reaction of
the supported area was reduced and the modulus of
subgrade reaction for the support-free area was defined.
For example, for a regular modulus of subgrade reac-
tion of 0.40N/mm3, the modulus of subgrade reaction
for the centre area resulted to 0.004N/mm3. Using this
system for defining the bedding in the theoretically
support-free area, problems in the calculation proce-
dure could be avoided. A further reduction of the mod-
ulus of subgrade reaction in the centre area by applying
a reduction factor of 1/1000 resulted in a deviation of
the results of maximum 0.2% in the cases analysed.
This difference was considered to be negligible, so that
the reduction value of 1/100 was used as the standard
parameter for all further calculations of the ‘support-
free centre section’ case.

To represent the unbedded sleeper area, the imple-
mentation of an additional elastic length was necessary
to enable the approach of the subgrade reaction modu-
lus for this delimited area (Figure 4). Accordingly, all

equations of the elastic quantities could be set up for
the three subsections of the sleeper.

The solution of these systems of equations required
the definition of a total of twelve boundary and transi-
tion conditions. In this context, it should be mentioned
that the definition of the conditions for all calculations
was carried out according to a consistent scheme,
which can be seen in Figure 5. Two specific boundary
conditions were applied at the edges of the systems,
namely at the end of the sleeper (x=0) and in the slee-
per centre (x= l0 / 2). The remaining conditions were
obtained by equating the elastic quantities at the transi-
tion points. In the case of loading with point loads, the
force at the point of load application was additionally
to be taken into account according to the definition
given in the ‘theoretical backgrounds’ section.

In order to have the results of the calculation avail-
able for further use, it was necessary to define a step
size of the control variable x and thus of the evaluation
points. The most important aspect here was to obtain
results at the point of load introduction (B) and in the
sleeper centre (S). Accordingly, the step size of the

Table 1. Overview of the sleeper and section lengths used in
the investigation case GEA.

l0 (mm) l1 (mm) l2 (mm) l3 (mm)

2200 350 500 250
2200 350 550 200
2400 450 500 250
2400 450 550 200
2600 550 500 250
2600 550 550 200

Figure 4. Calculation structure of the investigation case GEA.

Figure 5. Scheme of the definition of the boundary and
transition conditions.
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control variable x along the longitudinal axis of the
sleeper was chosen to be 10mm.

For the investigation of the case of partial bedding
in the sleeper centre (GET), the model was created with
the same number of sections and identical sleeper and
section lengths (Table 1) as for the modelling of the
case of bedding with a support-free centre section
(GEA). The only difference between these two models
was the representation of the ballast in the section CS.
As a transitional state between a bedding with a

support-free centre section and a full-surface bedding,
the modulus of subgrade reaction in the sleeper centre
section was assumed to be 50% of the modulus of sub-
grade reaction of the regularly bedded sleeper sections.
Accordingly, a reduction factor of 1/2 was used to
reduce the initial modulus of subgrade reaction. Figure 6
shows the sleeper sections used and the area of the
reduced modulus of subgrade reaction. Due to the other
similarities with the sleeper model with support-free cen-
tre section, the same twelve boundary and transition
conditions as well as the identical step size of the control
variable x were used for this case.

As the last model variant of this investigation section,
the system of the full-surface supported sleeper (GEV) has
been implemented. Here, discontinuities only occurred at
the points of load introduction. Thus, only a segmentation
of the half-sleeper into two sections was necessary. A sub-
division into the section AB, from the end of the sleeper
to the point of load application, and the section BS, from
the point of load application to the symmetry axis of the
sleeper, has been carried out (Figure 7).

For numerical analysis, the section lengths, depend-
ing on the different sleeper lengths, were obtained
according to Table 2.

Figure 8 shows the basic structure of the calculation
for this case. Since no additional evaluation points had
to be taken into account in connection with the full-
surface sleeper support, an increment of the control
variable x of 10mm was also used in this case.

As expected, the comparison of the calculation results of
the three different support conditions showed differences
with regard to the deformations of the sleepers and the
resulting moment stresses. To illustrate the heterogeneity of
the results, they are summarised in Figure 9, reduced to the
cases of maximum stress. As an example, a sleeper with a
cross-sectional area of 260mm 3 160mm, a length of
2600mm and a modulus of elasticity of 10000N/mm2 was
used, applying a subgrade reaction modulus of

Figure 7. Half-sleeper with full-surface support and loading by
a point load, investigation case GEV.

Figure 6. Half-sleeper with partially bedded centre section and
loading by a point load, investigation case GET. Figure 8. Calculation structure of the investigation case GEV.

Table 2. Overview of the sleeper and section lengths used in
the investigation case GEV.

l0 (mm) l1 (mm) l2 (mm)

2200 350 750
2400 450 750
2600 550 750

Hoffmann and Freudenstein 7



0.10N/mm3. The modulus of elasticity was chosen to
represent the material properties of a sleeper made of
beech wood. Since the load was not taken into
account numerically in the calculation, the values
shown represent scaling factors only, which are to be
multiplied by the respective support point load.

Based on the moment curves, it is clear for the exam-
ple case shown here that the centre moment has the
smallest value for the case with a support-free centre
section and the largest value for the case with full-
surface support. In addition, the effects of considering
a beam on elastic foundation are clearly recognisable in
view of the almost identical bending moments at rail
seat for all three support conditions.

In the analysis of further data sets, no maximum val-
ues of the moment stress in connection with the sup-
port condition with partially bedded centre section,
neither in the area of the rail seat nor in the sleeper cen-
tre, could be determined. Since in practice work on the
superstructure is usually only necessary after full sur-
face support has been achieved, the calculation of the
stresses resulting from the support condition with par-
tial bedding in the sleeper centre does not offer any
added value and was therefore not taken into account
for the further considerations. Should it nevertheless be
necessary to carry out superstructure work before the
fully consolidated state is reached, the stresses deter-
mined on the basis of the other two cases can be
regarded as being on the safe side.

As can be seen in Figure 9, the load application by
means of point loads caused a local peak of the moment

stress under the rail seat in all cases investigated. The
reason for this occurrence is the method of calculation,
in which no direct incorporation of the component or
sleeper height takes place. Accordingly, a load propaga-
tion in the material and thus a distribution of the
moment stress remains unconsidered. Since such an
effect exists de facto, an extended analysis taking dis-
tributed loads into account was necessary. This could
be realised based on the approach of line loads.

Investigations – line loads

The change of the load concept, from load application
by point loads to load application by line loads, was
possible with minor modifications. The model of the
sleeper of constant cross-section with loading by point
loads was used as a basis. Since the general solution of
the differential equation of the bending line of the beam
on elastic foundation (equation (4)) basically contains a
term for the consideration of line loads, which could be
omitted for the case of investigation of loading with
point loads, only an integration of this functional equa-
tion and the associated derivatives had to be carried
out for the loaded sleeper section. For the sleeper areas
without external load, the previously used functional
equations could still be applied.

Due to the adjustment of the loading method, the
point load and the associated discontinuity point had
to be removed from the system. To implement the line
load, the loaded area needed to get delimited.
Therefore, two discontinuity points had to be inte-
grated again. For the sleeper with support-free centre
section and loading by line loads, this resulted in five
discontinuity points or four investigation sections. As
can be seen in Figure 10, these ranged from the end of
the sleeper to the beginning of the line load (AB), over
the entire line load area (BC), from the end of the line
load to the beginning of the support-free area (CD)

Figure 9. Deformation and moment curves of the investigation
cases GEA, GET and GEV (260 mm 3 160 mm, l0 = 2600 mm,
E = 10000 N/mm2, C = 0.10 N/mm3).

Figure 10. Half-sleeper with support-free centre section and
loading by a line load, investigation case GSA.
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and from the beginning of the support-free area to the
sleeper centre line (DS).

As a result of the change in load input, the point
load parameter had to be removed from the boundary
and transition conditions. However, it was necessary to
extend the conditions with regard to the additionally
inserted section.

By specifying the corresponding numerical values,
the extension of the support-free area and the load were
defined. Four different load introduction lengths have
been selected, which were applied at the point of load-
ing over the entire width of the sleeper. Load introduc-
tion lengths of 125mm (q125), corresponding to the
foot width of rail types 49E5 and 54E4,17 150mm
(q150), corresponding to the foot width of rail type
60E2,17 as well as 300mm (q300) and 400mm (q400)
were used. The latter two values have been chosen to
represent a load propagation over the sleeper height.
Table 3 shows the sleeper and section lengths consid-
ered in the investigation case of a constant cross-section
with a support-free centre section and loading by line
loads (GSA).

In the case of the full-surface support, the definition
of four discontinuity points and correspondingly three
investigation sections was necessary. Due to the omis-
sion of the support-free area and the associated change
in the support conditions, the analysis could be carried
out without taking the discontinuity point D into
account. Consequently, the third section had to be

extended from the end of the line load to the axis of
symmetry (CS), as shown in Figure 11.

The sleeper and section lengths used for this investi-
gation case are listed in Table 4.

In view of the changed loading concept, the step size
of the control variable x was modified and uniformly
set to 2.5mm for the cases with loading by line loads.
Figure 12 shows the results of the two investigation sce-
narios, using the example parameters already known
from the sleeper with loading by point loads. The
results of the calculations with line loads of an extent
of 150mm are shown here as an example.

Also in connection with the loading by line loads,
only scaling factors are to be taken from the corre-
sponding figures, which are to be multiplied by the
respective support point load.

For comparison or verification of the calculations
made with loading by line loads, investigations using
FEM were carried out. A limited number of eight repre-
sentative combinations, used for the extended hand cal-
culations, was considered in order to check the results

Table 3. Overview of the sleeper and section lengths used in
the investigation case GSA.

l0 (mm) l1 (mm) l2 (mm) l3 (mm) l4 (mm)

2200 287.5 125 437.5 250
2200 287.5 125 487.5 200
2200 275 150 425 250
2200 275 150 475 200
2200 200 300 350 250
2200 200 300 400 200
2200 150 400 300 250
2200 150 400 350 200
2400 387.5 125 437.5 250
2400 387.5 125 487.5 200
2400 375 150 425 250
2400 375 150 475 200
2400 300 300 350 250
2400 300 300 400 200
2400 250 400 300 250
2400 250 400 350 200
2600 487.5 125 437.5 250
2600 487.5 125 487.5 200
2600 475 150 425 250
2600 475 150 475 200
2600 400 300 350 250
2600 400 300 400 200
2600 350 400 300 250
2600 350 400 350 200

Figure 11. Half-sleeper with full-surface support and loading
by a line load, investigation case GSV.

Table 4. Overview of the sleeper and section lengths used in
the investigation case GSV.

l0 (mm) l1 (mm) l2 (mm) l3 (mm)

2200 287.5 125 687.5
2200 275 150 675
2200 200 300 600
2200 150 400 550
2400 387.5 125 687.5
2400 375 150 675
2400 300 300 600
2400 250 400 550
2600 487.5 125 687.5
2600 475 150 675
2600 400 300 600
2600 350 400 550
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on a spot point basis. When assuming a theoretical
wheel load of 100 kN, this comparison showed maxi-
mum deviations of the subsidence y of 0.06mm or of
the bending moment M of 0.09 kNm. Due to these
small variances, the hand calculations were considered
confirmed.

A comparison of the results of the sleeper loading by
point loads and the loading by line loads illustrates the
differences between these two approaches. Figure 13
shows this superposition of results, for which the case
of a sleeper with full-surface support and loading by
point loads (F) as well as by line loads with a length of
150mm (q150) and 400mm (q400) was used exempla-
rily. The illustration clearly shows the distributed load,
with load application by line loads, and the resulting
moment filleting in the area of the rail seat. The realistic

approach of line loads leads in this example case to a
reduction of the rail seat moment of 15% (q150) or
39% (q400) compared to the loading by point loads. As
expected, the correspondence of the centre moments of
both types of loading is additionally evident. No funda-
mental differences can be observed in connection with
the subsidence values.

Derivation of the calculation method

Numerical investigations only provide results for a spe-
cific case. Therefore, a broad basis of input parameters
was defined and a large number of calculations were
carried out based on these values. This resulted in the
creation of an extensive collection of data for further
use and the derivation of a calculation method. The
data compilation was based on 14580 calculations for
sleepers of constant cross-section.

Some of the investigations showed a lifting of the
sleeper at the end or in the centre. The ballast bed is
not capable of counteracting the lifting. As this is not
automatically taken into account by the calculation
method, the models would have had to be adjusted
individually for each case and the subgrade reaction
modulus would have had to be set to zero for the areas
of lifting. However, the models were not revised.
Instead, the affected cases were not taken into account
for the evaluation.

Basically, the bending moments at rail seat and in
the sleeper centre are the decisive parameters of the slee-
per stress, which is why only these values were analysed.
As already mentioned, the load was not taken into
account numerically in the calculations. The moments
to be taken from all the illustrations of results are there-
fore to be seen as scaling factors. Accordingly, by multi-
plying the read value with the support point load, the
moment stress can be determined depending on the
application.

Figure 14 shows a set of curves of the bending
moments at rail seat as a function of the investigated
moduli of elasticity. These results are based on calcula-
tions of a sleeper with a length of 2600mm and cross-
sectional dimensions of 260mm 3 160mm. The case
of the support-free centre section with a length of
500mm was used as support variant. For the loading,
the point load approach has been chosen. Values for
elasticity and subgrade reaction moduli not taken into
account can be interpolated on the basis of this illustra-
tion. However, it is not possible to transfer the results
to other cross-sections or support conditions. Since a
lifting of the sleeper was detected in some cases, part of
the curves do not extend over the complete investiga-
tion area.

In addition to providing a large number of results,
an extra added value should be generated. The aim was

Figure 13. Deformation and moment curves of the
investigation cases GEV and GSV (260 mm 3 160 mm,
l0 = 2600 mm, E = 10000 N/mm2, C = 0.10 N/mm3).

Figure 12. Deformation and moment curves of the
investigation cases GSA and GSV (260 mm 3 160 mm,
l0 = 2600 mm, lq = 150 mm, E = 10000 N/mm2, C = 0.10 N/mm3).
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to bring the collected data into an overall context. This
should enable statements about further cases that were
not part of the investigations. Different approaches
were used to process the collected results. As can also
be seen in Figure 14, a coinciding ratio of modulus of
elasticity and modulus of subgrade reaction leads to a
matching bending moment.

Consequently, one approach investigated was to plot
the results using this ratio. Figure 15 shows the corre-
sponding values or the resulting curves for sleepers of a
length of 2600mm and for dimensions of the cross-
sections of 260mm 3 150mm, 260mm 3 160mm and
300mm 3 200mm. The bedding with a 500mm long
support-free centre section and the loading by point
loads were also taken into account also in this case. By
using the ratio value, it was possible to display all the
results of one investigation case with one curve.
However, different curves resulted for the different
cross-sections.

When investigating further variants, the evaluation
of the bending moments as a function of the sleepers

elastic length L (equation (3)) provided the best result.
The elastic length was determined using the actual slee-
per width. In this way, depiction of all data of one sup-
port condition could be done by means of one function
graph. A differentiation between the various cross-
sections was no longer necessary. Figure 16 shows the
moment curves for sleepers with a length of 2600mm.
The visualisation shows the results of all three support
variants under loading by point loads.

In this way, a generally valid basis was created for
determining the moment stress of sleepers of constant
cross-section with loading by point loads.

In addition, the results of the calculations with load-
ing by line loads were subjected to an analysis. In a
direct comparison of the results, no parallels could be
found initially. By taking the results of the loading with
point loads into account and adapting the approach, a
correlation was established. For this purpose, the
moments had to be converted into lever arms first. For
the bending moments at rail seat, the system simplifica-
tion according to Figure 17 was used. In this case, a
constant and symmetrical distributed bedding reaction
has been supposed. Consequently, the resulting forces
of the support were assumed to be equal to half the
resultant of the line load or equal to the resultant of
half the line load.

Accordingly, the lever arm a was obtained by divid-
ing the bending moment by half the load resultant R.
For the loading with point loads, the lever arm was
determined by dividing the bending moment by half
the point load F. This has been implemented by dou-
bling the moments, since no numerical consideration of
the load was made at the calculations.

Figure 18 shows the lever arms determined in this
way for the case of loading with point loads and for all
cases of loading with line loads. The visualisation
shows the values for a sleeper length of 2600mm for a
supporting with a 500mm long support-free centre
section.

Figure 14. Moment stress at rail seat as a function of the
modulus of elasticity, investigation case GEA (AM500,
260 mm 3 160 mm, l0 = 2600 mm).

Figure 15. Moment stress at rail seat as a function of the
sleeper cross-section, investigation case GEA (AM500,
l0 = 2600 mm).

Figure 16. Moment stress at rail seat in relation to the elastic
length L for sleepers of constant cross-section with loading by
point loads (l0 = 2600 mm).
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By reducing the lever arm of the load case point
loads (aF), the lever arm of the load case line loads
could be approximately obtained. For this purpose, the

lever arm was decreased by the distance between the
resultant of half the line load and the point load. This
distance resulted in 1/4 of the load introduction length
lq (Figure 17). During implementation, differences
between the lever arms were noted, as Figure 19 shows.

By introducing a correction factor ka, the deviations
could be compensated. In order to achieve the best pos-
sible adaptation, this factor was defined section by sec-
tion as a function of the elastic length L of the sleeper.
Using equation (7), it was possible to determine the
resulting lever arm ares.

ka =

0:84+ 0:09
225

(L� 275) for 275 ł L ł 500

0:93+ 0:07
500

(L� 500) for 500\L ł 1000

1:00 for L.1000

8><
>:

ares = aF �
lq

4
ka ð7Þ

Figure 20 shows the result of the corrected lever arm
determination.

Furthermore, it was necessary to determine the lever
arms for the moments in sleeper centre. For this pur-
pose, the system simplification according to Figure 21
had been applied. Due to the assumption of a constant
and uniformly distributed bedding reaction, the resul-
tant of the bedding was to be set equal to the resultant
of the line load. The lever arm m could therefore be
determined by dividing the bending moment by the
resultant of the line load R. For the loading with point
loads, the lever arm had to be determined by dividing
the bending moment by the point load F. Since no
numerical consideration of the load was made in the
calculations, the lever arms were to be equated with the
moments.

Figures 22 and 23 show the lever arms for the case
of loading with point loads and for all cases of loading
with line loads. The visualisations show the values for a
sleeper length of 2600mm with a 500mm long support-

Figure 17. System simplification for determining the lever
arms, bending moment at rail seat.

Figure 18. Lever arms a for determining the moment stress at
rail seat in relation to the elastic length L for sleepers of
constant cross-section (AM500, l0 = 2600 mm).

Figure 20. Result of the adjustment of the lever arm a with
inclusion of the correction factor ka in relation to the elastic
length L.

Figure 19. Result of the adjustment of the lever arm a by 1=4 of
the load introduction length lq in relation to the elastic length L.
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free centre section as well as with full-surface support.
Lever arms of negative bending moments are given a
negative sign and lever arms of positive bending
moments are given a positive sign.

The full-surface support was decisive for the maxi-
mum negative bending moments in almost all cases. In
this context, virtually no deviations in the lever arms
showed up between the loading cases point loads and
line loads. When considering the lever arms in the case
of supporting with a support-free centre section, there
were also only minimal differences. Since the deviations
were small in all cases and the load case point loads
provided the maximum lever arm values in terms of
amount, these differences were neglected as being on
the safe side. Accordingly, the resulting lever arm could
be chosen equal to the lever arm of the load case point
loads (mF).

Conclusions and outlook

Thanks to the explained procedure, it was possible to
determine the lever arms independently of the load
introduction length. The results of the calculations with
loading by point loads consequently formed the sole
basis of the lever arm determination. In combination
with the scaling of the results over the elastic length of
the sleepers, this resulted in a generally valid, material-
independent method for determining the moment stress
of sleepers of constant cross-section, independent of
the load introduction length.

The described method deals with the determination of
bending moments but does not address further influences
to be considered regarding the sleeper stress. In practice
standard, exceptional and accidental loads occur.
Additional influences result from support irregularities
or the installed superstructure material. To consider all
these parameters, the implementation of the new method
to a verification procedure, incorporating the beforemen-
tioned as well as supplementary influences, was pro-
posed. All information regarding this procedure can be
taken from the dissertation ‘Development of a material-
independent verification procedure of railway sleepers’.1

Another potential field of application for the new
method is the determination of the moment stress of
slab track elements. For sleepers of other lengths and
other gauges, the creation of a database and the ela-
boration of the associated curves and diagrams is easily
possible.

Figure 24 shows an example of the lever arm curves
for determining the moment stress at rail seat of a slee-
per with a length of 2600mm. This and all other illus-
trations of the lever arm curves can be found in the
appendices of the dissertation ‘Development of a
material-independent verification procedure of railway
sleepers’.1

Figure 21. System simplification for determining the lever
arms, bending moment in sleeper centre.

Figure 22. Lever arms m for determining the moment stress in
sleeper centre in relation to the elastic length L for sleepers of
constant cross-section (AM500, l0 = 2600 mm).

Figure 23. Lever arms m for determining the moment stress in
sleeper centre in relation to the elastic length L for sleepers of
constant cross-section (VL, l0 = 2600 mm).
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In addition to the calculations explained in detail,
the mathematical application of a prestressing force
was also investigated. By comparing the results with
those of a sleeper that was not prestressed, it could be
shown that a consideration without prestressing results
in identical or higher stresses. For this reason, the focus
of the investigations was placed on the case without
consideration of a prestressing force.

It is needed to be brought up that the whole
investigation was premised on a theoretical base.
Experimental validation of the data or the resulting
method was not contained in this study. For a prospective
research project this open aspect should be considered.

Nonetheless, the described procedure can be trans-
ferred in an identical way to the results of the calcula-
tions for sleepers of variable cross-section. In principle,
such investigations were also carried out with the geo-
metry of a sleeper of type B 70 sleeper. However, a link
to the results of the sleepers of constant cross-section
could not be established. The extension of the method
to all sleepers of variable cross-section is therefore a
task that still needs to be solved. Further research will
be necessary in this context.
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Figure 24. Lever arms a for determining the moment stress at
rail seat in relation to the elastic length L for sleepers of
constant cross-section (l0 = 2600 mm).
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