
Competition and Cooperation of
Autonomous Ridepooling Services:
Game-Based Simulation of a Broker
Concept
Roman Engelhardt *, Patrick Malcolm , Florian Dandl and Klaus Bogenberger

Chair of Traffic Engineering and Control, School of Engineering and Design, Technical University of Munich, Munich, Germany

With advances in digitization and automation, autonomous mobility on demand services
have the potential to disrupt the future mobility system landscape. Ridepooling services in
particular can both decrease land consumption by reducing the need for parking and
increase transportation efficiency by increasing the average vehicle occupancy.
Nevertheless, because ridepooling services require a sufficient user base for pooling to
take effect, their performance can suffer if multiple operators offer such a service and must
split the demand. This study presents a simulation framework for evaluating the impact of
competition and cooperation among multiple ridepooling providers. Two different kinds of
interaction via a broker platform are compared with the base cases of a single monopolistic
operator and two independent operators with divided demand. In the first, the broker
presents trip offers from all operators to customers (similar to a mobility-as-a-service
platform), who can then freely choose an operator. In the second, a regulated broker
platform can manipulate operator offers with the goal of shifting the customer-operator
assignment from a user equilibrium towards a system optimum. Tomodel adoptions of the
service design depending on the different interaction scenario, a game setting is
introduced. Within alternating turns between operators, operators can adapt
parameters of their service (fleet size and objective function) to maximize profit. Results
for a case study based on Manhattan taxi data, show that operators generate the highest
profit in the broker setting while operating the largest fleet. Additionally, pooling efficiency
can nearly be maintained compared to a single operator. The regulated competition
benefits not only operators (profit) and cities (increased pooling efficiency), but customers
also experience higher service rate, though they need to accept slightly increased waiting
and travel time due to increased pooling efficiency. Contrarily, when users can decide
freely, the lowest pooling efficiency and operator profit is observed.
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1 INTRODUCTION

With the increased availability of mobile internet, mobility-on-demand (MOD) services have
become increasingly popular over the last decade. In times of urbanization, they can represent
an alternative to private vehicles that offers a similar convenience. MOD services result in a higher
temporal utilization of vehicles which, if replacing private vehicle trips, can potentially free up urban
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space that would otherwise be used for parking. Furthermore,
ridepooling services have the potential to increase the average
vehicle occupancy during trips, thereby resulting in more
spatially efficient utilization of the road. The probability of
finding and pooling similar trips increases with demand
density. Therefore, the pooling potential increases with the
scale of supply and demand. As a consequence, fragmentation
of the ridepooling market into multiple independent competitors
can be expected to decrease the efficiency of each competitor.
Mobility-as-a-service (MaaS) platforms represent a possibility to
break the stark independence of competitors, as offers from
multiple mobility service providers are collected in one place
for travelers.

Compared to current MOD services, automation can change
the cost structure significantly (Bösch et al., 2018). When these
cost reductions from the fleet operation with autonomous
vehicles are translated into cheaper fares for users, disruptions
to the transportation systems as we know them are possible in the
form of massive modal shifts and system utilization. Hence, city
authorities are confronted with the questions of whether and how
autonomous mobility-on-demand (AMOD) systems and
competition between multiple providers should be regulated.

This paper studies how interaction between AMOD operators
can counteract the effects of competition and fragmentation. To
this end, the concept of an AMOD broker is introduced which is a
(possibly regulated) platform—similar to a MaaS platform—for
multiple AMOD operators. As illustrated in Figure 1), the broker
collects trip offers from multiple AMOD providers and forwards
them to the customers. In addition, the broker can be regulated to
adapt the offers to align the platform with city goals. The
adaptation can range from sorting the offers in a certain order
or manipulating prices, to the suppression of certain offers which
are in conflict with city goals. The effect of the regulating
measures can be compared with moving the dynamic traffic
assignment from a user equilibrium towards the system
optimum.

The goal of this study is to compare different types of AMOD
provider interaction and their impact on the providers. More
specifically, we investigate the following scenarios with the help of
simulations: a monopolistic AMOD service, independent AMOD
providers, and the two forms of broker systems (unregulated and
fully regulated).

1.1 Literature Review
Several studies deal with the operation of AMOD fleets and its
impacts. Even without pooling, a single AV can replace a
significant number of private vehicles (Fagnant et al., 2015) or
carsharing vehicles (Dandl and Bogenberger, 2019).
Optimization of request and repositioning assignments based
on demand estimations can further improve fleet performance
(Hyland and Mahmassani, 2018; Hörl et al., 2019b; Dandl et al.,
2019c). However, without pooling, these vehicle reductions only
affect stationary traffic, i.e., parking space. To observe
improvements to traffic flow, ridepooling is required
(Engelhardt et al., 2019a; Ruch et al., 2020). The optimization
of ridepooling assignments is a challenging problem, which can
be addressed with graph-based approaches (Santi et al., 2014;
Alonso-Mora et al., 2017) and heuristics based on them
(Simonetto et al., 2019; Hyland and Mahmassani, 2020). For
ridepooling services, positive scaling properties, i.e., a higher
efficiency for higher levels of demand, are observed in both
analytical and simulation models (Tachet et al., 2017; Bilali
et al., 2020). Two effects play into this scaling behavior for
ridepooling systems: 1) a higher density of vehicles means that
the approach becomes shorter (similarly to in the ridehailing
case), and 2) the probability of finding trips that can be matched
with only minor detours increases with demand.

These operational studies assume a fixed exogenous demand,
and the problem is to serve this demand as efficiently as possible.
To study the impact of AMOD on transportation systems, the
integration of AMOD into demand models is necessary. Open-
source software packages like SimMobility (Nahmias-Biran et al.,
2020; Oke et al., 2020), MATSim (Hörl et al., 2019a; Kaddoura
et al., 2020), Polaris (Gurumurthy et al., 2020), and mobiTopp
(Wilkes et al., 2021), as well as commercial software solutions
already have capabilities to model AMOD supply and demand
interactions. Most of these demand models utilize a pre-day
assignment of AMOD demand, be it by iterative learning or a
mode choice model. Wilkes et al. (2021) developed a within-day
mode choice model, which is based on real-time information of
the fleet and thereby relevant for modeling MaaS platforms.

Most of the previously mentioned references study a single
AMOD operator; a generalization to multiple independent
operators has been implemented in Dandl et al. (2019a), and
an operator with multiple service offers (hailing and pooling with
different vehicle sizes) was investigated in Atasoy et al. (2015); Liu
et al. (2019). For ridehailing, the impact of multiple AMOD
operators in the same market is analyzed with a theoretical model
by Séjournè et al. (2018) and data-driven models with simulation
by Kondor et al. (2022). Séjournè et al. (2018) show that demand
patterns are crucial when it comes to the division of the market
and find two phases. The first is denoted “fragmentation resilient”
and describes a system where the price of sharing the market
decreases with the size of the market; in the other phase, denoted
“fragmentation affected”, a division of the market generates much
higher costs regardless of the size of the market because empty
vehicle repositioning is required to balance supply and demand.
Kondor et al. (2022) derived a mathematical equation for the cost
of non-coordinated market fragmentation and run simulations to
find the coefficients for various cities. For ridepooling, Pandey

FIGURE 1 | Illustration of an AMOD broker system.
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et al. (2019) analyzed three models of multi-company market
models—competitive, cooperative, and centralized—and derived
approaches to address the resulting problems with linear
assignment problems.

There are several studies examining the even more complex
market dynamics for multiple ridehailing services with drivers.
For instance, Jiang and Zhang (2018) study the effect of “double-
apping” in a (human driven) ridehailing market with two
competitors, where both drivers and customers have the
possibility to use both ridehailing apps. They observed that
users and drivers can benefit, but without any contract or
guarantee that the other ridehailing provider will do the same,
a ridehailing operator does not benefit from drivers serving
customers of both providers. Qian and Ukkusuri (2017) study
the competition between a traditional taxi and a ridehailing
provider in a game, where passengers are the leaders and the
two mobility providers are the followers. They find that fleet size
and pricing policy significantly impact the outcome. In another
study, Xi et al. (2021) propose a “name-your-own-price auction”
in a MaaS platform, where travelers and a wide range of mobility
service providers (with ridehailing being one of them) can submit
a bid. They also use a leader-follower formulation, with the MaaS
platform being the leader and the mobility service providers and
the travelers being the followers.

AMOD providers do not just compete against each other.
They can compete with, but also complement public transport,
depending on their service designs. In most demand models,
AMOD systems are treated as a separate competing mode.
Positive and negative effects mainly depend on the number of
users that are attracted from private vehicle or public transport
modes. Additionally, AMOD systems can be utilized as feeder
systems to increase intermodality and improve public transport
(Liang et al., 2016; Wen et al., 2018). To avoid competition,
AMOD routes can also be restricted/designed to complement the
existing public transport system (Dandl et al., 2019b), or AMOD
and public transport can be designed jointly (Pinto et al., 2019).
With a growing market share of today’s MOD services, negative
externalities of user-centric ridehailing can be observed (Henao
and Marshall, 2019; Schaller, 2021). Therefore, the regulation of
MOD (Li et al., 2019; Zhang and Nie, 2019)—with part of the
focus on the regulatory protection of drivers—and of AMOD
services (Simoni et al., 2019; Dandl et al., 2021; Mo et al., 2021) is
becoming increasingly relevant. Simoni et al. (2019) study various
congestion pricing models in the presence of an AMOD system.
Dandl et al. (2021) consider an AMOD ridepooling service which
is regulated such that it cannot offer guaranteed single-passenger
rides. Moreover, they introduce a regulatory tri-level framework
optimizing a congestion-based road toll, parking fees, public
transport frequency, and an AMOD fleet limit, where the
reaction of an AMOD provider to changed regulatory settings
is taken into account. Mo et al. (2021) investigate how regulatory
measures like fleet size limitations and public transport subsidies
can steer the competition between AMOD and line-based public
transport. The equilibrium state is found with an iterative
approach, in which the AMOD operator is updated every
iteration—representing a day—and the public transport service
every month. These time scales should reflect the frequencies with

which AMOD and public transport operators are likely to modify
their service.

A collaboration of mobility services can help to create a better
combined service offer, which could reduce private vehicle
ownership and be beneficial to the service providers. MaaS
platforms are one form of such collaboration. Typically, they
at least collect information of multiple providers, offer the
possibility to book mobility services, and provide a common
method for payment (Smith and Hensher, 2020). The design and
possible regulation of a MaaS platform, e.g., by pricing and
bundling of services, can affect user decisions (Feneri et al.,
2020) and ultimately help in reaching sustainability objectives
(Muller et al., 2021).

1.2 Contribution
This paper contributes several new aspects to the literature. While
most previous studies focused on the ridehailing market, this
paper evaluates the losses resulting from fragmented ridepooling
demand. Moreover, the effects of different interactions between
multiple operators and a central platform are compared. The
potential benefits of a broker which selects between the offers of
different providers, thereby representing the most extreme form
of regulation on this platform, is examined and compared to a
platform where customers select the offers by themselves. To the
authors knowledge, this is the first study that additionally
evaluates the adoption of the service design to optimize the
operators profit for a given interaction scenario within a game
setting. The case study shows the significant impact that fleet size
and the operator objectives have on the level of service and overall
transportation system.

2 METHODOLOGY

This section describes the agent-based simulation environment,
which is used to study different operator interactions. First, the
simulation’s agents and process flow are introduced, and the
representation of different AMOD operators is explained. Then,
the operator module with the task to assign customers to vehicles
is described in detail. Lastly, an iterative simulation to model
possible service adaptations to the studied operator interactions
(independent, unregulated and regulated broker) in addition to a
monopolistic operator is presented.

2.1 Agent-Based Simulation Flow
The simulation environment consists of three or four main
agents: 1) customers, who request trips from AMOD
operator(s) and choose their travel mode; 2) operators, who
provide the mobility service by operating a fleet of vehicles
with the tasks to create mobility offers for customer requests
and fulfill these offers in case customers accept them; 3) vehicles
controlled and dispatched by an operator which specifies which,
where, and in which sequence customers have to be picked up and
dropped off; and 4) a broker, which makes decisions to regulate
the platform in the broker scenarios.

Customer and vehicle agents move on a network G = (N, E)
with nodes N and edges E connecting these nodes. A customer
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request is defined by the tuple (i, ti, xs
i , x

d
i ) with a request id i, a

time of request ti, the travel origin node of the request xs
i ∈ N and

the travel destination node of the request xd
i ∈ N. Operators

receive these travel requests and, based on their current fleet state,
try to find best possible solutions to serve them and formulate
offers for the service as a reply. Offers from operators are defined
as tuples of parameters defining the course of the customer’s trip
in case the offer is booked. In this study, parameters defining the
offers can be categorized into user parameters ui,o and system
parameters si,o, which influence the decision process of users and
the broker, respectively. We define user parameters as parameters
that users of the service are sensitive to when they have to decide
for or against the service. These parameters can include fare,
expected waiting time, and expected travel time for example. The
broker on the other hand is sensitive to the system parameters.
These parameters describe measures for the possible impact on
the traffic system. In this study, the additional distance, which the
AMOD fleet has to drive in order to serve a customer, is used. To
avoid excessive customer waiting and travel times and therefore
to guarantee a certain service quality, the operator applies time
constraints regarding customer pick-up and drop-off time which
will be described in the following section in more detail. In case
the operator is not able to serve a customer within these time
constraints, no offer is made.

In so-called interaction scenarios, this study distinguishes
several decision processes defining which specific operator is
booked by a customer. The four different interaction scenarios
implemented in this study are as follows:

1) Single Operator: In this scenario, only a single monopolistic
AMOD operator is offering a ridepooling service, and therefore
no interaction between operators is implemented. Customers
requesting a trip from this operator always book a trip if they
receive an offer, and if not, they leave the system unserved.

2) Independent Operators: In this scenario, multiple AMOD
operators are offering a ridepooling service, but no direct
interaction between them is assumed. Customers only request
a trip from one of these operators, and they always book a trip if
they receive an offer from this operator. If they don’t receive an
offer, they leave the system unserved. From the simulation point
of view, this scenario is equivalent to the Single Operator
scenario, but with the demand for AMOD being split
between the operators.

3) User Decision: In this scenario, multiple AMOD operators are
offering themobility service over a central platform, here referred
to as a “broker”. Instead of interacting directly with one of the
operators, customers request a trip from the broker, which
forwards the request to each of the operators. The operators
then each send an offer to the broker, which presents these
options to the customer. The customer then chooses the offer
with the highest user utility ϕuser (ui,o). If the broker does not
receive an offer from either of the operators, the customer leaves
the system unserved. A flowchart of this scenario is shown in
Figure 2.

4) Broker Decision: In this scenario, multiple AMOD operators
are also offering the mobility service via a central broker.
Customers send their requests to the broker, which then

forwards them to each of the operators, who send their
offers back to the broker. In contrast to the User Decision
scenario, however, rather than allowing the customer to
choose their preferred offer, the broker chooses the offer
which it deems best for the transportation system by
evaluating the highest system utility ϕbroker (si,o). Therefore,
a broker decision aims towards a system-optimal state,
whereas the user decision reflects a quasi-user optimal
scenario. A flowchart of this scenario is shown in Figure 2.

2.2 Fleet Operator Model
The main tasks of each operator are 1) to create offers for
customers (or a broker) which serves as their basis to decide
for or against the service, 2) to assign and schedule its vehicles to
customers who have booked their service, and 3) distribute idle
vehicles according to expected demand by assigning
repositioning tasks.

The assignment of customers to vehicles and their
corresponding schedules is modeled as a solution of a
dynamic vehicle routing problem. With the set of vehicles Vo

of operator o, we define a schedule ψk (v, Rγ) as the kth feasible
permutation of stops for vehicle v ∈ Vo serving the subset of
requests Rγ ⊂ Ro of all currently active requests Ro, i.e., all
customers that are either 1) in-vehicle, 2) waiting for or in the
process of pick-up, or 3) waiting for a response by the operator.
Hereby, stops refer to origin and destination locations of requests
in Rγ where boarding and alighting processes of the
corresponding customers are performed. In this study, a
schedule is called feasible if.

1. each customer is picked up before being dropped off,
2. at no point in time the number of on-board passengers exceeds

the vehicle capacity cv,
3. each customer i ∈ Rγ has been or is scheduled to be picked up

before a maximum waiting time twaitmax has elapsed after the
request time ti, and

4. the in-vehicle travel time of each customer i ∈ Rγ is not
increased by more than Δ compared to the direct travel
time between xsi and xdi .

To compare different schedules, each schedule ψk (v, Rγ) is
rated by an objective function ρα which we define in this study by

ρα ψk v, Rγ( )( ) � cdisα · d ψk v, Rγ( )( ) + cvotα

· ∑
i∈Rγ

tarrivali ψk v, Rγ( )( ) − ti⎛⎝ ⎞⎠ −NR · |Rγ|.

(1)
d(ψk(v, Rγ)) is the distance vehicle v has to drive when executing
the schedule ψk (v, Rγ), and tarrivali (ψk(v, Rγ)) is the expected
arrival time of customer i according to this schedule. NR is a large
assignment reward to prioritize serving as many customers as
possible. cdisα and cvotα are cost factors reflecting the distance cost
and the value of time for customers, respectively. The goal of the
optimization is to assign schedules to vehicles that minimize the
sum of the objective functions of all assigned schedules.
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Depending on the operational strategy α, the weights cdisα and cvotα

can be set to prioritize low passenger service times or low fleet
mileage. If cdisα ≫ cvotα this objective would favor schedules that
require only small distances to drive for vehicles. On the other
hand, if cdisα ≪ cvotα , schedules are favored that serve customers as
fast as possible. Figure 3 illustrates in a simple example the
influence of cdisα and cvotα on the assigned vehicle schedules.

Within the simulation, customers can request trips in every
simulation time step of 60 s. Depending on the scenario, the
customers or the broker decide for or against the service
depending on the respective offers sent by the operators. In
this study, an immediate decision process is assumed, i.e., the
operators are informed that a customer is either booking a trip
or declines an offer before the next customer request is
considered.

In most cases, it is not meaningful to use global optimization
to create an offer for a new customer requests. First, performing a
global optimization for the ridepooling assignment problem is

computationally very demanding. Additionally, many of the
requests will be declined by the customers when they choose
to book with the competing operator. Therefore, each time a new
customer requests a trip in the offer phase, a heuristic is applied to
find an initial solution for the assignment problem. This initial
solution is used to create an offer. If the customer books the
service, the solution (schedule) is assigned to the vehicle,
otherwise the solution is discarded. Every 60 s, after all
customer requests in one time step have been processed, a
global re-optimization is performed for all currently scheduled
or on-board requests. The two steps (offer creation, global re-
optimization) are described in more detail in the following.

In the offer phase, an insertion heuristic is applied to find the
initial solution from which the offer is created. In this heuristic,
new feasible vehicle schedules are constructed by inserting
customers into the currently assigned vehicle schedules.
Because a schedule can only be feasible if this new customer
can be picked up within twaitmax , an insertion need only be tested for

FIGURE 2 | Flowchart of the User Decision and Broker Decision scenarios. The only difference between the scenarios is the criteria used to choose an offer,
highlighted in yellow.

FIGURE 3 | Sketch showing the influence of cdisα and cvotα on the assigned vehicle schedules. In the example, two customers request a trip at t1 = t2 = 0s. If cdisα ≫ cvotα

the pooled schedule option 1 is assigned because of a smaller overall driven distance while schedule option two is assigned for cdisα ≪ cvotα because the customers arrive
at their destination earlier.
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vehicles that can reach the customer’s origin within this time
interval. Let ψk (v, Rγ) be a feasible insertion of customer i into the
current solution of vehicle v and ψl (v, Rγ\i) be the current solution
of vehicle v. The offer is based on the solution of the local
optimization problem

min
v,k

ρα ψk v, Rγ( )( ) − ρα ψl v, Rγ\i( )( ) ∀ feasible v, k . (2)

For re-optimizing the vehicle schedules once all new
customers within the current simulation step have been
processed, an algorithm based on that of (Alonso-Mora
et al., 2017) is applied in this study. A high level
description of the implementation is presented here, and
the reader is referred to (Engelhardt et al., 2019b) for
details. The idea of the algorithm is to find all feasible
schedules first and solve an Integer Linear Problem (ILP)
to assign these schedules afterwards. Since an exhaustive
search is intractable for the ridepooling assignment
problem, a guided search is applied which exploits the fact
that most combinations of vehicles serving a set of requests
are infeasible due to time constraints (if sufficiently strict).

Thereby, a V2RB (vehicle-to-request-bundle) Ψ(v, Rγ) is
defined as the set of all feasible permutations k of schedules of
vehicle v serving Rγ with

ραv,γ � ρα Ψ v, Rγ( )( ) � min
k
ρα ψk v, Rγ( )( ), (3)

being the objective function value of this V2RB.
The guided search can be divided into the following three

steps: In a first step, all feasible vehicle-customer
combinations are searched. These combinations are defined
as feasible for all vehicles theoretically able to reach the origin
of the customer request within twaitmax . In a second step, all
feasible customer-customer combinations are searched. A
customer-customer combination is defined as feasible if a
feasible schedule for a hypothetical vehicle can be found
which serves both customers (shared or one-after-the-
other). In a third step, the first two algorithm steps are
exploited to create all feasible V2RBs (schedules) sorted by
their grade, which we define as the number of customers that
are served by the corresponding schedules. A V2RB of grade
one for vehicle v serving customer i can only exist if the
corresponding vehicle-customer combination from the first
step is feasible. A V2RB of grade two can only exist if both
vehicle-customer combinations between vehicle and
customers are feasible and additionally the customer-
customer combination is feasible. And finally, a V2RB of
grade n can only exist if all V2RBs of grade n − 1 exist,
where one of the n customers is removed. That is, for a V2RB
Ψ(v, Rγ = {1, 2, 3}) to exist, the feasibility of V2RBs Ψ(v, Rγ\{3}

= {1, 2}), Ψ(v, Rγ\{1} = {2, 3}) and Ψ(v, Rγ\{2} = {1, 3}) is
necessary. All feasible schedules (V2RBs) can now be created
iteratively by increasing the grades of the V2RBs. Thereby,
requests are inserted into all feasible routes of V2RBs of grade
n − 1 to create a new V2RB of grade n if at least one feasible
insertion is found.

Once all feasible V2RBs are created, the following ILP can be
solved to assign the V2RBs:

minimize ∑
v

∑
γ

ραv,γ · zv,γ (4)

s.t. ∑
γ

zv,γ ≤ 1 ∀v ∈ Vo (5)

∑
v

∑
γ∈Ωi

zv,γ � 1 ∀i ∈ Ro. (6)

Equation 4 selects the schedules with cost ραv,γ of vehicle v to
serve the bundle of requests γ that minimizes the total cost.
Thereby, zv,γ ∈ {0, 1} is the decision variable taking the value 1 if
the schedule with cost ραv,γ is assigned and 0 otherwise. Eq. 5
ensures that only one schedule can be assigned to each vehicle.
Eq. 6 ensures that each currently active customer i ∈ Ro has to be
assigned to exactly one vehicle again. Here, Ωi corresponds to all
request bundles that include customer i. The initial solution
created in the offer phase thereby guarantees that an
assignment can be found for every customer.

To adjust the spatial distribution of vehicles for upcoming
demand, a repositioning strategy is applied periodically. Every
Trepo, a parameter-free rebalancing strategy based on (Pavone
et al., 2012) is applied. After estimating available vehicles and
expected demand for each taxi zone, a minimum transportation
problem, which aims to minimize the travel costs to reach some
zone supply and demand balance constraints, is solved.

2.3 Game
The different interaction scenarios introduced in the beginning of
this section describe different external environments in which the
operators offer their service. Depending on these environments
operators will adapt their service design to maximize profit. In
this study, the adaptation of the service of the operators is
modeled as a turn-based game (illustrated in Figure 4). Each
operator starts with specific service parameters based on the
scenario without interaction. In each turn, one operator has the
active role, while the other one has the passive role. These roles
are exchanged every turn. The active operator explores different
sets of service parameters (with exhaustive search), while the
service parameters of the passive operator remain constant. At the
end of each turn, the active operator adopts the service
parameters that resulted in the highest profit.

The profit P is calculated by the difference of revenue R and
costs C after each simulation.

P � R − C (7)
R � ∑

i∈Cserved

ddirect
i · f (8)

C � Nv · Cv + dfleet · cdis, (9)
with Cserved being the set of all served customers, ddirecti their
corresponding direct travel distances, and f a distance-dependent
fare the customers have paid. Cv is the fixed cost per vehicle, dfleet

is the driven distance of the vehicle fleet and cdis is the distance-
dependent vehicle cost.
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To optimize this profit P for only a few days of simulation,
operators would choose small fleets to increase overall vehicle
utilization (including off-peak times). However, the service
rate would suffer strongly leading to an unreasonable large
number of customers that have to be rejected. Since such an
unreliable service is improbable to survive on the long run,
another term penalizing the number of requests, which did not
receive an offer NC,no (within the given service quality
constraints) during the simulation, should be considered.
Hence, we define the effective profit Peff to be maximized
within the game:

Peff � P −NC,no · pno. (10)
Thereby, pno is a penalty cost for each request without offer. pno
and f will be determined within calibration simulations in the
results section.

Alternating turns with operators maximizing their effective
profit are repeated until equilibrium is reached. All operators
adopting the same parameter set is one of the equilibrium states
the game can converge in. In this case no operator has an
advantage in changing their parameter sets anymore.
Generally, it is not guaranteed to find such equilibrium states.
Depending on the overall setting, it is for example feasible that
operators with different market penetrations and therefore
different fleet sizes also reflect a stable system. Nevertheless, it
turns out that as long as certain symmetries between the
operators are assumed as described in the following case
study, these symmetric equilibrium states can be found in all
scenarios tested.

3 CASE STUDY

We test the model on a case study for the publicly available taxi
data set of Manhattan, NYC. The simulation inputs are described
in the following.

3.1 Network and Demand
Figure 5 shows the street network and the operating area of the
simulated ridepooling services. All operators offer the service
in the same operating area in this study. The street network G =

(N, E) has been extracted from OpenStreetMap data using the
Python library OSMnx (Boeing, 2017). Initially, edge travel
times are assigned according to free flow speeds from the
OpenStreetMap data. In order to replicate realistic travel
times, edge travel times are scaled after every 15 min
simulation time according to actual trip travel times within
the NYC taxi trip data. Shortest (travel time) paths are
computed using a combination of the classical Dijkstra
algorithm and preprocessing origin-destination node pairs
in lookup tables.

As demand for the ride pooling service, NYC taxi trips that
are starting and ending within the operating area of
Manhattan are used. Trip requests are created for the week
from 2018/11/11 to 2018/11/18. Trip origins and destinations
are matched onto the closest intersection nodes that are only
connected to roads with classes “living street”, “residential”,
“primary”, “secondary”, and “tertiary”. Presumably defective
trip records with average travel times below 1 m/s or above
30 m/s are removed from the data set. Overall 1,511,476 trips
remain in the data set. To decrease overall computational
time, this set is subsampled to generate the requests for the
ridepooling services: For each trip a random number between
[0, 1] is drawn. If this random number is smaller than 0.1, the
trip is transferred into the set of ridepooling requests
resembling a 10% market penetration of the simulated
ridepooling services. Using different random seeds, three
set of request sets are generated and used within the
simulations.

The rebalancing algorithm is called every Trepo = 15 min.
Demand and supply forecasts are aggregated to the
corresponding taxi zones. For simplicity, trip forecasts, i.e., the
average number of incoming and outgoing trips within a time
interval of 15 min per zone, are created by counting the overall
trips in the data and multiplying the counts with the market
penetration of 10%. In the case of multiple operators sharing the
demand, it is assumed that all operators rebalance the vehicle fleet
based on the same spatio-temporal forecast distribution.
Therefore the average counts are additionally divided by the
number of operators.

Further details on network and trip data processing can be
found in (Syed et al., 2021).

FIGURE 4 | Illustration of the game. Operators take turns playing the “active” role. In each turn, the active operator tests all of its possible service parameters Ok,l

against the passive operator’s fixed parameters. The parameters that bring the highest effective profit for the active operator are then used in the next turn, where the
roles are reversed.
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3.2 Scenario Specification
We evaluate a system with a maximum of two ridepooling
operators. It is assumed in this study that both operators offer
a similar service quality. Namely, the operators use vehicles with
maximum traveler capacity cv = 4. Additionally, they only offer
trips to customers that do not exceed 1) a maximum waiting time
of tmax

wait � 6 min, and 2) a relative increase in travel time Δ = 40%
compared to the duration of a direct trip. Because a similar service
is offered by the two ridepooling providers, we additionally
assume that: 1) customers do not have an inherent preference
towards any particular operator, and 2) due to market pressure,
both operators synchronize their fares and offer their service for
the same prices. Therefore, price sensitivity of customers is not
explicitly modeled.

With respect to the different interaction scenarios, the inputs
for these scenarios are the following:

1) Single Operator: A single operator with the specified attributes
serves the whole demand.

2) Independent Operators: The demand is split evenly between
two operators. Each customer can only request a trip from the
corresponding assigned operator.

3) User Decision: The broker forwards customer requests to both
operators. In case a customer i receives offers from both
operators, the decision to book with operator oi is made
based on the evaluation of

oi � arg max
o

ϕuser ui,o( ) � arg min
o

tarri,o , (11)

with the arrival time tarri,o offered by operator o.

4) Broker Decision: The broker requests trips for the customers
from each operator. In this study, the system costs are
measured by the additional driven distance to
accommodate a new request. Hence, in case the broker

receives offers from both operators, the decision to book
customer i with operator oi is made based on the evaluation of

oi � arg max
o

ϕbroker si,o( ) � arg min
o

δdi,o, (12)

with the additional driving distance δdi,o required for operator o
to serve customer i.

The parameters defining the objective function for each
operator are set to cdisα � 0.25€/km and cvotα � 16.2€/h,
corresponding to the estimated values in Frei et al. (2017) and
Bösch et al. (2018) respectively.

3.3 Game
The goal of the game is to model operators’ adaptation of their
service within different environments (interaction scenarios) to
maximize their profit. While there are many different parameters
for operators to adapt, in this study we allow the operators 1) to
change their fleet size and 2) to modify their objective function for
assigning offers and vehicle plans. Fleet sizes Nv can be changed
initially in steps of 20 vehicles around the initial fleet size to be
defined in the following calibration step. In the “Single Operator”
scenario, one operator has to serve double the amount of requests;
hence, fleet size step sizes are doubled accordingly. Possible
parameter options (cdisα , cvotα ) for setting the objective function
from Eq. 1 are (0.0€/km, 16.2€/h), (0.125€/km, 16.2€/h), (0.25€/
km, 16.2€/h) (0.25€/km, 8.1€/h), and (0.25€/km, 0.0€/h) initially.
With these options, the objective function can be adapted quite
smoothly between purely minimizing the driven distance to
purely minimizing customer arrival times.

Once an equilibrium with the initial parameter step sizes can
be observed, the step sizes for fleet size and objective parameters
are decreased for the remaining steps of the game to increase the
resolution quality of the equilibrium state. Thereby, parameter
steps are adopted by halving the step size, setting the currently
found optimum within the new parameter table to be observed.

FIGURE 5 | Street network of Manhattan, NYC used in the case study.
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This procedure is repeated until no clear symmetric equilibrium
can be found anymore, which is interpreted as the maximum
solution quality possible with respect to stochastic variations
within the simulations. In the conducted simulations,
alternating jumps between neighbouring cells in the parameter
table are observed indicating the best possible resolution quality
of the optimal parameter set.

Parameters for calculating the costs in Eq. 7, i.e., the fix cost
per vehicle Cv and the distance-dependent cost cdis, are set to
25€per day and cdis = 0.25€/km, respectively, according to (Bösch
et al., 2018).

The fare f to calculate the profit in Eq. 7 and the penalty cost
for requests without offer pno, which are required to calculate the
effective profit in Eq. 10, will be determined within calibration
simulations in the next chapter.

4 RESULTS

In this section, results of the simulations are presented. Firstly, the
calibration is described to determine the initial fleet size as well as
the parameters pno and f. Secondly, the results after performing
the game are presented and lastly, fleet key performance
indicators (KPIs) are compared before and after the game and
between the different interaction scenarios.

4.1 Calibration
Since the envisioned autonomous ridepooling services are not yet
operating, the values for f and pno cannot be found empirically.
Instead, we use the interaction scenario of two independent
operators as calibration scenario, where we choose 90% served
customers as a target service rate. Conducting simulations for
fleet sizes ranging from 75 to 250 reveals 190 vehicles are needed
for each operator to achieve this service rate. The distance
dependent fare f is chosen to create a break even profit using
190 vehicles resulting in f = 43 ct/km (see blue curve in Figure 6).
The goal of calibrating the penalty cost parameter pno for
unserved requests is to create a maximum for effective profit
Peff at the target service rate of 90%. A value of pno = 46 ct

accomplishes this target (see orange curve in Figure 6) and is
used for further simulations.

4.2 Game
Figure 7 shows the development of operator service parameters
over the course of the game for the broker scenario. Within each
turn, the active operator explores 6 by 6 different possibilities for
fleet size and objective function parameters, respectively, while
the parameters of the passive operator remain fixed. During the
course of the game the differences between neighboring explored
parameter possibilities (in the region of the optimum in the
rougher grid) become smaller to increase accuracy. This is
illustrated by grey fields in Figure 7 as yet unexplored
combinations. After each turn, the active operator takes over
the parameter set resulting in the highest effective profit indicated
by the orange boxes. For all interaction scenarios an equilibrium
can be observed by no later than 6 turns. As indicated in Figure 7
no clear symmetric equilibrium is observed after increasing the
step accuracy, which is also the case for the user decision
interaction scenario. Instead alternating jumps between
neighbouring cells are observed, which can likely be attributed
to the dynamic and stochastic nature of the agent-based
simulation model. In the shown example of the broker
scenario, simulations until turn 10 reveal alternating jumps
within the cells (Fleet Size = 210 veh, cvotα � 2.025 €/h, cdisα �
0.25 €/km) and (Fleet Size = 215 veh, cvotα � 2.025 €/h, cdisα � 0.25
€/km). For reasons of symmetry and because only jumps between
neighboring cells occur, symmetric operator parameters are
assumed for further evaluation. The parameter set after the
first jump to neighbouring cells is applied for both operators.
In the case of the example in Figure 7, this leads to a final
parameter set of (Fleet Size = 210 veh, cvotα � 2.025 €/h, cdisα � 0.25
€/km) in turn 6.

Table 1 shows operator parameters before and after the game.
Initially all operators start with a fleet size of 190 vehicles, or 380
vehicles in the case of a single operator, and an objective function
parameterized by cvotα � 16.2 €/h, cdisα � 0.25 €/km. For a single
operator, the game breaks down to a single round with one
optimization table for each parameter set to be explored. As a
result of the optimization, the single monopolistic operator

FIGURE 6 | Calibration of break even fare and unserved customer penalty. The break even fare is chosen to achieve 0 € Profit at 90% served customers, while the
unserved customer penalty is set to result in a maximum for the Effective Profit at 90% served customers as shown in the left figure. 190 vehicles are needed for each
operator to served 90% customers as depicted in the right figure.
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decreases the fleet size and the weight of cvotα . Due to scaling effects
of ridepooling services the larger demand can be served more
efficiently, and the cost reduction of operating a smaller fleet
(viewed relatively) thereby exceeds the overall penalty of
unserved customers. Additionally, costs for driven distance can
be reduced without direct competition by decreasing the weight

of cvotα , thereby puttingmore focus on decreasing fleet mileage and
increased pooling efficiency rather than fast customer pickup and
delivery. Similar behavior for adjusting the objective function can
be observed for two independent operators. Nevertheless, they
even have to slightly increase their fleet size because the fleet can
be used less efficient when demand is shared between the

FIGURE 7 | Illustration of the development of operator parameters over the course of the game for the broker interaction scenario. Blue arrows indicate parameter
settings of the passive operator. Orange arrows indicate the parameter selection resulting in the highest effective profit of the active operator. A first equilibrium can be
observed at turn 4, when OP2 adjusts its parameters to the same parameters as OP1. After turn 6 alternating behavior is revealed once the step size is decreased further
in turn 5.
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operators. Within the user decision scenario, operators are in
direct competition against each other. For a customer to book a
ride with a specific operator, the operator has to offer the smallest
combined waiting and travel time. Therefore, operators select the
highest value for cvotα in this scenario to assign routes with small
customer arrival time. In the broker decision scenario, operators
are also in direct competition to each other, but the decision for a
customer to book with one of the operators is based on the offer
with the smallest additional driven distance. Similarly to the
scenario with independent operators, the value for cvotα is
decreased which puts a higher relative weight on the distance
cost factor cdisα for assigning routes. Compared to the other
interaction scenarios, operators tend to have the highest fleet
sizes in the case of the broker decision. A higher density of
vehicles will lead to shorter pick-up trips (on average) and seems
preferable in this scenario.

4.3 Fleet KPIs
Figure 8 shows the fraction of served requests before and after the
game for each interaction scenario. In all cases around 90% of all
requests could be served as targeted within the calibration. Before
the game the overall fleet size in the system is set the same for all
interaction scenarios to illustrate the price of non-coordination.
Therefore, most customers could be served within a single
monopolistic operator setting, because the fleet can be
controlled most efficiently having full access to all customers.
On the contrary, with completely independent operators fewest
customers can be served before the game due to effects of market
fragmentation. Because customers have access to both operators
and can choose the other operator in case the first cannot serve

them, in the broker and user decision scenarios the fraction of
served customers lies in between. After the game, the single
operator decreases its fleet size resulting in the lowest fraction
of served customers. Most customers are served in the broker
decision scenario because operating larger vehicle fleets is
profitable in this case indicating an advantage also for
customers in this regulated scenario.

In Figure 9 the effective profit and the actual profit before and
after the game is illustrated. Before the game the effective profit is
dominated by the penalty for unserved customers
resulting—similar to Figure 8 — in the highest value for the
single operator and the lowest one for independent operators.
The highest combined actual profit can be obtained within the
broker decision scenario. The operator assignment process of
selecting the operator with the lowest additional driven distance is
here in line with the distance-dependent operating cost. The
profit for independent operators is close to zero because this
scenario is chosen in the calibration step to define the break
even fare.

TABLE 1 | Operator service parameters before (Initial) and after the game (Final).

Parameter Single operator scenario Multi-operator scenario

Initial Final Initial Final

Single Op Indep. Ops User Dec. Broker Dec.

Fleet Size [veh] 380 310 190 195 195 210
cvotα [€/h] 16.2 2.025 16.2 2.025 6.075 2.025

cdisα [€/km] 0.25 0.25 0.25 0.25 0.25 0.25

FIGURE 8 | Served Customers before and after the game for the
different interaction scenarios.

FIGURE 9 | Effective Profit (top) and Profit (bottom) before and after the
game for the different interaction scenarios.
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After the game, operators could increase their effective as
well as their actual profit in all interaction scenarios. The
highest gain is obtained for the single operator who could
decrease both fixed costs by decreasing fleet size and distance-
dependent costs by changing the objective to select shorter
routes without losing many customers by competition. The
smallest gain is observed in the user decision case. Because of
pressure due to competition, operators have to focus on
assigning routes with low waiting and detour time for
customers which results in a trade-off to higher fleet
mileage and therefore in higher costs. Within all scenarios
with more than one operator, operators achieve most actual as
well as effective profit in the broker decision setting after the
game. On the one hand, assigning customers to operators with
the smallest additional driven distance is equal to the option
that produces the lowest costs for the operator. On the other
hand operators can additionally change their objective to
putting more focus on assigning short routes without the
market pressure from customers deciding for fastest trips.

The effectiveness of pooling can be measured by the relative
saved distance rsd, which is plotted in Figure 10 and defined by

rsd � ∑i∈Cserved
ddirect
i − dfleet

∑i∈Cserved
ddirect
i

, (13)

with the direct distance ddirecti of each served customer Cserved and
the fleet driven distance dfleet. The higher this quantity is, the
higher the fraction of fleet driven distance that has been shared
between customers. However, in contrast to simply evaluating the
average occupancy, unreasonable detours with multiple
passengers on board do not improve this performance
indicator. Before the game the saved distance of all operators
is below or close to zero for all interaction scenarios indicating
that the fleet would actually drive more distance than if customers
would drive on a direct trip on their own. The main reason is that
before the game the objective weight of cvotα is very high compared
to after the game resulting in the preference towards direct trips
contrarily to pooled trips. After the game the relative saved
distance could be improved for all interaction scenarios
mainly because all operators decreased their objective weight
cvotα . The highest value for rsd is measured for the single operator

scenario where most pooling can be realized with a centralized
option for optimization. The lowest value is observed in the case
of user decisions. Here, the operators are forced to keep a rather
high value for cvotα . Additionally, if multiple options for a trip are
available, customers tend to choose trips without pooling because
these trips would in many cases result in longer waiting and
detour times. The pooling efficiency in the broker decision
scenario is nearly as high as with a single operator. With a
combination of operators adjusting their parameters
accordingly (low value of cvotα and higher fleet size) and the
broker preferring pooled ride options, the pooling efficiency
lost due to market fragmentation can nearly be restored.

Lastly, Figure 11 shows customer waiting and detour times.
Before the game the average relative detour per customer is rather
low indicating few pooled trips, in line with the evaluation of the
relative saved distance of Figure 10. While the change in
customer waiting times comparing before and after the game
are minor in all scenarios, a large increase in detour times can be
observed especially in the single operator and broker decision
scenario. In these scenarios also the relative saved distance
increases most, showing the trade-off between customer travel
time and efficiency of sharing rides. Nevertheless, the average
relative detour of up to 15% is still acceptable as it is limited by
constraints to 40%. Comparing the scenarios after the game, the
lowest customer waiting and detour times can be observed for the
user decision scenario. Here, customers pick offers with the
smallest waiting and travel times while operators additionally
put more focus on assigning routes that minimize these
parameters.

FIGURE 10 | Saved Distance before and after the game for the different
interaction scenarios.

FIGURE 11 | Customer waiting time (top) and relative detour time
(bottom) before and after the game for the different interaction scenarios.
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5 CONCLUSION

5.1 Summary and Implications
This study evaluates and quantifies the negative operational
impacts of fragmenting AMOD ridepooling demand.
Moreover, the concept of an AMOD broker is introduced to
counteract these negative aspects. Two extreme forms of this
broker, in which 1) the broker only collects the offers of multiple
operators and the user selects the operator, and 2) the broker
selects the operator better suited from a system viewpoint, are
evaluated in a case study for taxi trips in Manhattan, NYC. The
evaluation is performed with agent-based simulations in a static
setting with constant fleet size and operator parameters, as well as
in a game setting allowing the operators to adapt their service to
maximize profit.

After operators adopted their service parameters in the game
setting, the cumulative AMOD fleet size increased to 390 vehicles
in the user decision scenario and 420 vehicles in the broker
decision scenarios, compared to 310 vehicles in the single-
operator system. These increased fleet sizes correspondingly
resulted in higher service-rates when competition is present.
In most interaction scenarios, operators increase their weight
on minimizing fleet mileage to save costs. Only in the scenario
where customers choose their AMOD service, operators are
forced to offer trips with fast customer arrival times to
succeed in competition. Correspondingly, in the user decision
scenario pooling efficiency measured by the relative saved
distance is reduced by around 14% compared to a single-
operator system. This result indicates, that operators might
prioritize offering non-shared trips when competition based
on customer decision is present. Contrarily, the broker
successfully shifts the operators objectives to decrease fleet
mileage resulting in only 2% in relative saved distance loss
compared to the single-operator system. Due to the
correlation of fleet mileage and operating costs, most profit
could be made when the broker regulates the competition of
multiple operators.

All in all, it can be observed that regulating the broker platform
can be beneficial for everyone: the transportation system has to
supply fewer driven kilometers, the operators can save
operational costs, thereby offsetting the fixed costs of adding
more vehicles to the fleet, and, at the same time, less users have to
be rejected from the AMOD services. While users also experience
slightly increased waiting and especially travel time due to
increased pooling efficiency, the maximum increase is limited
by time constraints which are assumed to be accepted by users of
a ridepooling service.

5.2 Future Work
Several open questions have to be addressed before a real-world
application makes sense:

1. Who should operate a broker platform?
2. How will users respond to a platform making the decision for

them about which AMOD provider serves them?

3. Are the shown financial benefits enough motivation for
AMOD providers to join a broker, or will municipalities
have to enforce it?

The components of the broker objective could be more
sophisticated than just additional driven distance, and
additionally have to be traceable, i.e., allow a live tracking of
fleet KPIs. The complexity of operating such platform is rather
high and might be challenging for municipalities. However, as the
broker objective and regulations should be aligned with public
goals, a private platform provider at least should be paid for and
commissioned by municipalities. To avoid cherry-picking, the
AMOD services should likely receive a certain level-of-service/
share of served request goal, e.g., by adding penalties for requests
for which they make no offer. Moreover, an integration into
existing public transportation services will be studied in the
future.

With respect to the second question, behavioral studies
have to be employed. In addition to the extreme regulatory
measure of the broker choosing the AMOD operator, some
intermediary levels of regulation can be studied in future work,
in which the broker does not impose the choice of operator, but
rather merely manipulates the offers (e.g., fares) to influence
traveler behavior. Within this context, the symmetry between
AMOD service levels should also be relaxed. That is, a broker
should also be able to make valuable decisions in case one
operator offers a service with high customer convenience,
higher fares and lower occupancy compared to a service
with the opposite strategy. To quantify such systems, more
advanced mode choice models will be required.

When demand is modeled as price-sensitive, it also makes
sense to integrate competitive pricing into the game framework.
Moreover, the effect of different repositioning strategies can
affect results significantly. It will be interesting to evaluate
whether users benefit from competition as trade-offs are
likely: users likely experience cheaper fares from competitive
pricing, but might also suffer from lower service quality due to
reduced ridepooling efficiency resulting from market
fragmentation. Moreover, future work could also include
studies with more than two operators. Asymmetric service
design or even strongly asymmetric initial conditions can
hint at whether the AMOD market will steer towards
monopolies or a shared market with broker platforms.
Nevertheless, the applied game framework might not be
suited to investigate asymmetric final operator states.
Therefore, the application limits of the current game setting
have to be studied, and possibly, new methods have to be
developed to study these effects.
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